Computing and Library Services - delivering an inspiring information environment

Structure analysis of adsorbates on single crystal surfaces using photoelectron diffraction

Nisbet, Gareth (2007) Structure analysis of adsorbates on single crystal surfaces using photoelectron diffraction. Doctoral thesis, The University of Huddersfield in collaboration with the Fritz-Haber-Institut der Max-Planck-Gesellschaft.

Download (10MB) | Preview


    The structural determination of the Pt(111)c(5x3)rect.-CO phase formed by 0.6 ML of
    adsorbed CO has been undertaken using scanned-energy mode photoelectron diffraction
    utilising the two distinct components of the C 1s photoemission peak. Earlier assignments of
    CO to atop and bridge sites have been confirmed as well as the respective 2:1 ratio of these
    assignments. Additionally, quantitative local structural details have been obtained. In particular,
    the Pt-C chemisorption bond lengths for the atop and bridging sites are 1.86 ± 0.02 Å and 2.02
    ± 0.04 Å respectively. These values are similar to those obtained in previous studies for the 0.5
    ML coverage c(4 x 2) phase involving an atop:bridge occupation ratio of 1:1. The results also
    indicate a definite tilt in the atop CO species of 10.7º +1.5º/-3.1º consistent with earlier
    investigations using electron-stimulated desorption ion angular distribution, LEED, Monte
    Carlo simulations and IR.
    The local structure of benzene adsorbed on Si(001) has also been investigated using scanned
    energy photoelectron diffraction. The standard butterfly (SB), tilted (T), tight bridge (TB),
    pedestal (P), twisted bridge (TB), and diagonal bridge butterfly (DDB) models were optimized
    and compared with the lowest R-factors being achieved for SB and TB models (0.2337 and
    0.2641 respectively). Further optimization was performed for a mixed overlayer (0.25 ML)
    consisting of SB and TB structures in various proportions. A significant improvement in the Rfactor
    was achieved for a combined model in which 58 ± 35 % of the overlayer is composed of
    the SB structure.
    Using the structural data for the CO/Pt(111), and benzene/Si(001) adsorption systems,
    comparative simulations have been undertaken to explore the effect of using vertically and
    horizontally polarized radiation on PhD modulation amplitudes and more importantly the
    sensitivity of each method to various structural parameters.
    It has been shown theoretically that perpendicularly polarized photoelectron diffraction
    (PPPhD) yields modulation functions with intensities often being several times those observed
    in PhD. The new technique is shown to be more sensitive when the parameters involve mainly
    lateral displacements. The sensitivity of PhD on the other hand exceeds that of PPPhD only
    when dealing with bond lengths involving mainly vertical displacements. Parameters involving
    similar vertical and lateral displacements show similar sensitivities for both methods. Despite
    potential weaknesses such as a reduced signal to noise ratio and the sensitivity of PPPhD to the
    sample positioning, the potential gains of this technique especially when considering systems in
    which the adsorbates lie across the substrate such as benzene adsorbed on Si(001), make it ripe
    for experimental validation.

    ▼ Jump to Download Statistics
    Item Type: Thesis (Doctoral)
    Additional Information: © The Author 2007
    Uncontrolled Keywords: structure analysis; adsorbates; single crystal surfaces; photoelectron diffraction
    Subjects: Q Science > Q Science (General)
    Q Science > QD Chemistry
    Schools: School of Applied Sciences
    Related URLs:

    K.W. Kolasinski, p xiv, Surface Science, Wiley, (2002).
    2 K.W. Kolasinski, p xv, Surface Science, Wiley, (2002).
    4's_Law, 10/09/2007.
    5, 26/10/2007.
    6 Vee S. C. Len, , R. E. Hurley, N. McCusker, D. W. McNeill, B. M. Armstrong and H. S. Gamble, Solid-
    State Electronics 43, 6 (1999) 1045-1049.
    7 (September 2007).
    page=1, 01/11/2007
    9 Pier Luigi Silvestrelli, Francesco Ancilotto, and Flavio Toigo. Phys. Rev. B, 62 (2000) 1596.
    10, 07/05/2003.
    11, 08/05/2003.
    12 Kurt W. Kolasinski, p55, Surf. Sci., Wiley, (2002).
    13, 26/10/2007
    14 D.P. Woodruff and A M Bradshaw, Rep.Prog.Phys. 57 (1994) 1029 1080.
    15 V. Fritzsche, J. Phys. Condens. Matter 2 (1990) 1413-1424.
    16 V. Fritzsche, J. Phys. Condens. Matter 2 (1990) 9735-9747.
    17 V. Fritzsche, Surf. Sci., 265 (1992) 187-195.
    18 V.Fritzsche and P.Rennert. phys.stat.sol.(b) 135, 49 (1986).
    19 N.A. Booth, R. Davis, R. Toomes, D. P. Woodruff, C. Hirschmugl, K.M. Schindler, 0. Schaff, V.
    Femandez, A. Theobald, Ph. Hofmann, R. Lindsay, T. GieBel, P. Baumgartel and A. M. Bradshaw, Surf.
    Sci., 387 (1997) 152 –159.
    20 Jon Tobias Hoeft, PhD Thesis, The University of Warwick, p20, (2002).
    21 Mathieu Pascal, PhD Thesis, p48, The University of Huddersfield, (2002).
    22 G. S, Blackman, et al. Phys. Rev. Lett. 61 (1998) 2352.
    23 H. Steininger, S. Leehwald and H. Ibach, Surf. Sci., 327 (1995) 193.
    24 D.F. Ogletree, M.A. Van Hove, G.A. Somorjai. Surface Science 173 (1986) 351.
    25 C.A. Lucas, N.M. Markovic and P.N. Ross. Surf. Sci., 425 (1999) L381.
    26 M.Ø. Pedersen, M.-L. Bocquet, P. Sautet, E. Laegsgaard, I. Stensgaard and
    F. Besenbacher. Chem. Phys. Let., 299 (1999) 403-409.
    27 N.V. Petrova, I.N. Yakovkin. Surf. Sci. 519 (2002) 90–100.
    28 B. N. J. Persson, M. Tüshaus J. Chem. Phys., 92 (8) 1990.
    29 N. R. Avery, J. Chem. Phys., 74 (7) 1981
    30 M. Song, K. Yoshimi, M. Ito. Chem. Phys. Let., 263 (1996) 587-590.
    31 A. Alavi, P. Hu, T. Deutsch, P.L. Silvetrelli, J. Hutter. Phys. Rev. Lett., 80 (1998) 3650.
    32 M. Lynch and P. Hu Surf. Sci., 458 (2000) 1-14.
    33 D.P. Woodruff, Phys. Rev. Let. 90 (2003) 116104.
    34 M.Kiskinova, A. Szaco and J.T. Yates, Jr. Surf. Sci. 205 (1988) 215–229.
    35 R.Brako and D. Sokcevic. Vacuum 61 (2001) 89-93.
    36 I. Zasada, Surf. Sci. 498 (2002) 293-306.
    37 Van Hove, 30/05/2003.
    38 Klaus Hermann (Fritz-Haber-Institut Berlin, Germany) and Michel A. Van Hove (Lawrence Berkeley
    National Laboratory, Berkeley, and University of California, Davis, USA).Made by K. Hermann (FHI)
    and M. A. Van Hove (LBL) (2002).
    39 19/09/2007
    40 F. Bondino. Surf.Sci. 459 (2000) 467-474.
    41 A. Beutler, E. Lundgren, R. Nyholm, J.N. Andersen, B.J. Setlik, D. Heskett, Surf. Sci. 396 (1998) 117.
    42 S. R. Longwitz, J. Phys. Chem. B, 108 (2004) 38.
    43 P.R. Chalker, Diamond in Electronics and Optics, page 1,3, 4/11/1993
    44 P Baumgärtel, R Lindsay, O Schaffy, T Gießel, R Terborg, J T Hoeft, M Polcik, A M Bradshaw, M
    Carbone, M N Piancastelli, R Zanoni, R L Toomesk and D P Woodruff. New Journal of Physics 1 (1999)
    45 07/03/2006
    46 Schlier R E and Farnsworth H E 1959 J. Chem. Phys. 30 917 47 Y. Taguchi, M. Fujisawa, T. Takaoka, T. Okada and M. Nishijima J. Chem. Phys. 95 (9), 1 November
    48 G. P. Lopinski, T. M. Fortier, D. J. Moffatt, and R. A. Wolkow. J. Vac. Sci. Technol. A 16(3), (1998).
    49 S. Gokhale, P. Trischberger, D. Menzel, and W. Widdra. Journal Of Chemical Physics Vol. 108, 13
    50 Sarah K. Coulter, Jennifer S. Hovis, Mark D. Ellison, and Robert J. Hamers. J. Vac. Sci. Technol. A
    18(4), (2000).
    51 Borovsky, Michael Krueger, and Eric Ganz. Physical Review B, Vol. 57, 8 (1998).
    52 R.A. Wolkow, G.P. Lopinski, D.J. Moffatt. Surface Science 416 (1998) L1107-1113.
    53 W.A. Hofer, A.J. Fisher, G.P. Lopinski, R.A. Wolkow. Surf. Sci. 484-485 (2001) 1181-1185.
    54 W. A. Hofer, A. J. Fisher, G. P. Lopinski and R. A. Wolkow. Physical Review B, Vol. 63, 085314
    55 P. Kruse and R. A. Wolkow. Applied Physics Letters Volume 81, 23 (2002).
    56 H.D. Jeong, S. Ryu, Y.S. Lee, S. Kim. Surface Science 344 (1995) L1226-L1230.
    57 U. Birkenheuer, U. Gutdeutsch, N. Rösch. Surface Science 409 (1998) 213-228.
    58 N. Witkowski, M. Nagasono, M. N. Piancastelli. Physical Review B, 68 (2003) 115408.
    59 M. Shimomura, M. Munakata, K. Honma, S. M. Widstrand, L. Johansson, T. Abukawa And S. Kono.
    Surface Review and Letters, Vol. 10, Nos. 2 & 3 (2003) 499-503.
    60 Y. K. Kim, M. H. Lee, and H. W. Yeom. Physical Review B 71, 115311 (2005).
    61 J. Kong, A.V. Teplyakov, J.G. Lyubovitsky, S.F. Bent. Surf. Sci. 411 (1998) 286
    62 Jung-Yup Lee and Jun-Hyung Cho. Phys. Rev. B 72 (2005) 235317.
    63 (September 2007).
    64 R.J. Hamers and U.K. Köhler, J. Vac. Sci. Technol. A 7, 2854 (1989).
    65 Feng Tao, Zhong Hai Wang, Guo Qin Xu. Surf. Sci. 530 (2003) 203.
    66 (April 2007).
    67 (April 2007).
    68 The Physical Basis of Polarized Emission. Petr Petrovich Feofilov. Page 19, 37.
    69 R. D´ıez Muino, D. Rolles, F.J. Garcıa de Abajo, F. Starrost, W. Schattke, C.S. Fadley , M.A. Van Hove
    Journal of Electron Spectroscopy and Related Phenomena 114 (2001) 99.
    70 Charles S. Fadley Progress in Surf. Sci. 16 (1984) 275.

    Depositing User: Sara Taylor
    Date Deposited: 08 May 2008 11:44
    Last Modified: 28 Jul 2010 19:23


    Downloads per month over past year

    Repository Staff Only: item control page

    View Item

    University of Huddersfield, Queensgate, Huddersfield, HD1 3DH Copyright and Disclaimer All rights reserved ©