Computing and Library Services - delivering an inspiring information environment

Expression of the chloride channel CLC-K in human airway epithelial cells

Mummery, Jennifer L., Killey, Jennifer and Linsdell, Paul (2005) Expression of the chloride channel CLC-K in human airway epithelial cells. Canadian Journal of Physiology and Pharmacology, 83 (12). p. 1123. ISSN 00084212

Download (1132kB) | Preview


    Airway submucosal gland function is severely disrupted in cystic fibrosis (CF), as a result of genetic mutation
    of the cystic fibrosis transmembrane conductance regulator (CFTR), an apical membrane Cl– channel. To identify other
    Cl– channel types that could potentially substitute for lost CFTR function in these cells, we investigated the functional and
    molecular expression of Cl– channels in Calu-3 cells, a human cell line model of the submucosal gland serous cell. Whole
    cell patch clamp recording from these cells identified outwardly rectified, pH- and calcium-sensitive Cl– currents that resemble
    those previously ascribed to ClC-K type chloride channels. Using reverse transcription – polymerase chain reaction,
    we identified expression of mRNA for ClC-2, ClC-3, ClC-4, ClC-5, ClC-6, ClC-7, ClC-Ka, and ClC-Kb, as well as the
    common ClC-K channel b subunit barttin. Western blotting confirmed that Calu-3 cells express both ClC-K and barttin
    protein. Thus, Calu-3 cells express multiple members of the ClC family of Cl– channels that, if also expressed in native
    submucosal gland serous cells within the CF lung, could perhaps act to partially substitute lost CFTR function. Furthermore,
    this work represents the first evidence for functional ClC-K chloride channel expression within the lung.

    ▼ Jump to Download Statistics
    Item Type: Article
    Additional Information: © 2005 NRC Canada
    Uncontrolled Keywords: chloride channel, epithelial transport, airway, cystic fibrosis.
    Subjects: Q Science > Q Science (General)
    Q Science > QD Chemistry
    Schools: School of Human and Health Sciences

    Ando, M., and Takeuchi, S. 2000. mRNA encoding ‘ClC-K1, a
    kidney Cl–-channel’ is expressed in marginal cells of the stria
    vascularis of rat cochlea: its possible contribution to Cl– currents.
    Neurosci. Lett. 284: 171–174. doi: 10.1016/S0304-
    3940(00)01021-1. PMID: 10773426.
    Ballard, S.T., and Inglis, S.K. 2004. Liquid secretion properties of
    airway submucosal glands. J. Physiol. 556: 1–10. PMID:
    Basbaum, C.B., Jany, B., and Finkbeiner, W.E. 1990. The serous
    cell. Annu. Rev. Physiol. 52: 97–113. doi: 10.1146/
    52.030190.000525. PMID: 2158772.
    Catala´n, M., Cornejo, I., Figueroa, C.D., Niemeyer, M.I., Sepu´lveda,
    F.V., and Cid, L.P. 2002. ClC-2 in guinea-pig colon:
    mRNA, immunolabeling, and functional evidence for surface
    epithelium localization. Am. J. Physiol. 283: G1004–G1013.
    PMID: 12223361.
    Cowley, E.A., and Linsdell, P. 2002a. Characterization of basolateral
    K+ channels underlying anion secretion in the human airway
    cell line Calu-3. J. Physiol. 538: 747–757. doi: 10.1113/jphysiol.
    2001.013300. PMID: 11826162.
    Cowley, E.A., and Linsdell, P. 2002b. Oxidant stress stimulates anion
    secretion from the human airway epithelial cell line Calu-3:
    implications for cystic fibrosis lung disease. J. Physiol. 543:
    201–209. doi: 10.1113/jphysiol.2002.022400. PMID: 12181292.
    Cuppoletti, J., Tewari, K.P., Sherry, A.M., and Malinowska, D.H.
    2000. Activation of human ClC-2 Cl– channels: implications in
    cystic fibrosis. Clin. Exp. Pharmacol. Physiol. 27: 896–900. doi:
    10.1046/j.1440-1681.2000.03357.x. PMID: 11071306.
    Este´vez, R., Boetter, T., Stein, V., Birkenha¨ger, R., Otto, E., Hildebrandt,
    F., and Jentsch, T.J. 2001. Barttin is a Cl– channel bsubunit
    crucial for renal Cl– reabsorption and inner ear K+ secretion.
    Nature (London), 414: 558–561. PMID: 11734858.
    Finkbeiner, W.E. 1999. Physiology and pathology of tracheobronchial
    glands. Respir. Physiol. 118: 77–83. doi: 10.1016/
    S0034-5687(99)00080-8. PMID: 10647853.
    Friedrich, T., Briederhoff, T., and Jentsch, T.J. 1999. Mutational
    analysis demonstrates that ClC-4 and ClC-5 directly mediate
    plasma membrane currents. J. Biol. Chem. 274: 896–902. doi:
    10.1074/jbc.274.2.896. PMID: 9873029.
    Fuller, C.M., Ji, H.-L., Tousson, A., Elble, R.C., Pauli, B.U., and
    Benos, D.J. 2001. Ca2+-activated Cl– channels: a newly emerging
    anion transport family. Pflugers Arch. 443: S107–S110.
    doi: 10.1007/s004240100655. PMID: 11845314.
    Gibson, R.L., Burns, J.L., and Ramsey, B.W. 2003. Pathophysiology
    and management of pulmonary infections in cystic fibrosis.
    Am. J. Respir. Crit. Care Med. 168: 918–951. doi: 10.1164/
    rccm.200304-505SO. PMID: 14555458.
    Gyo¨mo¨rey, K., Yeger, H., Ackerley, C., Garami, E., and Bear, C.E.
    2000. Expression of the chloride channel ClC-2 in the murine
    small intestine epithelium. Am. J. Physiol. 279: C1787–C1794.
    PMID: 11078693.
    Haws, C., Finkbeiner, W.E., Widdicombe, J.H., and Wine, J.J.
    1994. CFTR in Calu-3 human airway cells: channel properties
    and role in cAMP-activated Cl– conductance. Am. J. Physiol.
    266: L502–L512. PMID: 7515579.
    Huang, P., Liu, J., Di, A., Robinson, N.C., Musch, M.W., Kaetzel,
    M.A., and Nelson, D.J. 2001. Regulation of human ClC-3 channelsnase. J. Biol. Chem. 276: 20093–20100. doi: 10.1074/jbc.
    M009376200. PMID: 11274166.
    Hug, M.J., Tamada, T., and Bridges, R.J. 2003. CFTR and bicarbonate
    secretion to epithelial cells. News Physiol. Sci. 18: 38–42.
    PMID: 12531931.
    Illek, B., Tam, A.W.-K., Fischer, H., and Machen, T.E. 1999. Anion
    selectivity of apical membrane conductance of Calu 3 human
    airway epithelium. Pflugers Arch. 437: 812–822. doi: 10.
    1007/s004240050850. PMID: 10370058.
    Jeck, N., Waldegger, P., Doroszewicz, J., Seyberth, H., and Waldegger,
    S. 2004. A common sequence variation of the CLCNKB
    gene strongly activates ClC-Kb chloride channel activity. Kidney
    Int. 65: 190–197. doi: 10.1111/j.1523-1755.2004.00363.x.
    PMID: 14675050.
    Jentsch, T.J., Stein, V., Weinreich, F., and Zdebik, A.A. 2002. Molecular
    structure and physiological function of chloride channels.
    Physiol. Rev. 82: 503–568. PMID: 11917096.
    Jiang, Q., and Engelhardt, J.F. 1998. Cellular heterogeneity of
    CFTR expression and function in the lung: implications for
    gene therapy of cystic fibrosis. Eur. J. Hum. Genet. 6: 12–31.
    doi: 10.1038/sj.ejhg.5200158. PMID: 9781011.
    Lourdel, S., Paulais, M., Marvao, P., Nissant, A., and Teulon, J.
    2003. A chloride channel at the basolateral membrane of the
    distal-convoluted tubule: a candidate ClC-K channel. J. Gen.
    Physiol. 121: 287–300. doi: 10.1085/jgp.200208737. PMID:
    Mohammad-Panah, R., Gyomorey, K., Rommens, J., Choudhury,
    M., Li, C., Wang, Y., and Bear, C.E. 2001. ClC-2 contributes to
    native chloride secretion by a human intestinal cell line, Caco-2.
    J. Biol. Chem. 276: 8306–8313. doi: 10.1074/jbc.M006764200.
    PMID: 11096079.
    Mohammad-Panah, R., Ackerley, C., Rommens, J., Choudhury, M.,
    Wang, Y., and Bear, C.E. 2002. The chloride channel ClC-4 colocalizes
    with cystic fibrosis transmembrane conductance regulator
    and may mediate chloride flux across the apical membrane
    of intestinal epithelia. J. Biol. Chem. 277: 566–574. PMID:
    Nilius, B., and Droogmans, G. 2003. Amazing chloride channels:
    an overview. Acta Physiol. Scand. 177: 119–147. doi: 10.1046/
    j.1365-201X.2003.01060.x. PMID: 12558550.
    Picollo, A., Liantonio, A., Didonna, M.P., Elia, L., Conte Camerino,
    D., and Pusch, M. 2004. Molecular determinants of differential
    pore blocking of kidney CLC-K chloride channels.
    EMBO Rep. 5: 584–589. doi: 10.1038/sj.embor.7400169.
    PMID: 15167890.
    Pilewski, J.M., and Frizzell, R.A. 1999. Role of CFTR in airway
    disease. Physiol. Rev. 79: S215–S255. PMID: 9922383.
    Sauve´, R., Cai, S., Garneau, L., Klein, H., and Parent, L. 2000. pH
    and external Ca2+ regulation of a small conductance Cl– channel
    in kidney distal tubule. Biochim. Biophys. Acta, 1509: 73–85.
    PMID: 11118519.
    Shen, B.-Q., Finkbeiner, W.E., Wine, J.J., Mrsny, R.J., and Widdicombe,
    J.H. 1994. Calu-3: a human airway epithelial cell line
    that shows cAMP-dependent Cl– secretion. Am. J. Physiol. 266:
    L493–L501. PMID: 7515578.
    Sheppard, D.N., and Welsh, M.J. 1999. Structure and function of
    the CFTR chloride channel. Physiol. Rev. 79: S23–S45. PMID:
    Szkotak, A.J., Man, S.F.P., and Duszyk, M. 2003. The role of the basolateral
    outwardly rectifying chloride channel in human airway
    epithelial anion secretion. Am. J. Respir. Cell Mol. Biol. 29:
    710–720. doi: 10.1165/rcmb.2003-0109OC. PMID: 12777250.
    Uchida, S., and Sasaki, S. 2005. Function of chloride channels in
    the kidney. Annu. Rev. Physiol. 67: 759–778. PMID: 15709977.
    Uyekubo, S.N., Fischer, H., Maminishkis, A., Illek, B., Miller, S.S.,
    and Widdicombe, J.H. 1998. cAMP-dependent absorption of
    chloride across airway epithelium. Am. J. Physiol. 275: L1219–
    L1227. PMID: 9843860.
    Verkman, A.S., Song, Y., and Thiagarajah, J.R. 2003. Role of airway
    surface liquid and submucosal glands in cystic fibrosis lung
    disease. Am. J. Physiol. 284: C2–C15. PMID: 12475759.
    Vessey, J.P., Shi, C., Jollimore, C.A.B., Stevens, K.T., Coca-Prados,
    M., Barnes, S., and Kelly, M.E.M. 2005. Hyposmotic activation
    of ICl,swell in rabbit nonpigmented ciliary epithelial cells
    involves increased ClC-3 trafficking to the plasma membrane.
    Biochem. Cell Biol. 82: 708–718. PMID: 15674438.
    Waldegger, S., Jeck, N., Barth, P., Peters, M., Vitzthum, H., Wolf,
    K., et al. 2002. Barttin increases surface expression and changes
    current properties of ClC-K channels. Pflugers Arch. 444: 411–
    418. doi: 10.1007/s00424-002-0819-8. PMID: 12111250.
    Wang, G.-X., Hatton, W.J., Wang, G.L., Zhong, J., Yamboliev, I.,
    Duan, D., and Hume, J.R. 2003. Functional effects of novel anti-
    ClC-3 antibodies on native volume-sensitive osmolyte and anion
    channels in cardiac and smooth muscle cells. Am. J. Physiol.
    285: H1453–H1463. PMID: 12816749.
    Wills, N.K., and Fong, P. 2001. ClC chloride channels in epithelia:
    recent progress and remaining puzzles. News Physiol. Sci. 16:
    161–166. PMID: 11479365.
    by multifunctional Ca2+/calmodulin-dependent protein ki-

    Depositing User: Sara Taylor
    Date Deposited: 01 May 2008 15:09
    Last Modified: 28 Jul 2010 19:22


    Downloads per month over past year

    Repository Staff Only: item control page

    View Item

    University of Huddersfield, Queensgate, Huddersfield, HD1 3DH Copyright and Disclaimer All rights reserved ©