
University of Huddersfield Repository

Wilson, David

A Framework for the Definiton of a Generative Design Pattern

Original Citation

Wilson, David (2008) A Framework for the Definiton of a Generative Design Pattern. Post-Doctoral
thesis, University of Huddersfield.

This version is available at http://eprints.hud.ac.uk/id/eprint/6969/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

A Framework for the De�nition of a Generative Design Pattern
David Wilson

A dissertation submitted in partial ful�llmentof the requirements for the degree ofDo
tor of Philosophy
The S
hool of Computing and EngineeringThe University of Hudders�eldSupervisorDr Gary AllenDr Adrian Ja
ksonJune 2008

To Helen xxxHelen, thy beauty is to meLike those Ni
ean barks of yore,That gently, o'er a perfumed sea,The weary, way-worn wanderer boreTo his own native shore.On desperate seas long wont to roamThy hya
inth hair, thy
lassi
 fa
e,Thy Naiad airs have brought me homeTo the glory that was Gree
e,And the grandeur that was Rome.Lo! in yon brilliant window-ni
heHow statue-like I see thee stand,The agate lamp within thy hand!Ah, Psy
he, from the regions whi
hAre Holy-Land! `Edgar Allen Poe'

DECLARATION

In presenting this dissertation in partial ful�llment of the requirements for the degree of Do
tor ofPhilosophy at the University of Hudders�eld, I de
lare that this work has not been submitted for adegree at this or any other University, and that unless otherwise stated, it is entirely my own work.David WilsonJune 2008

ACKNOWLEDGMENTS
First and foremost I would like to thank my supervisor, Dr. Gary Allen for his advi
e, support andfeedba
k throughout this proje
t.I would also like to thank Professor Lee M
Cluskey and Dr. Christopher Newman for their support,advi
e and o

asional feedba
k.I am grateful to the University of Hudders�eld and the a
ademi
 sta� in the Department of Computingand Engineering for their support and o

asional advi
e, and to the te
hni
al department for providingthe resour
es on whi
h to develop my resear
h work.Mu
h of my time was spent in the main resear
hers oÆ
e in the Computing and Mathemati
s building,and I would like to extend my appre
iation to my fellow resear
hers for making my stay there a pleasantone.Most of all, I would like to thank Dr Adrian Ja
kson, who provided me with the opportunity andfunding to study for this proje
t and the opportunity it gave me to pursue a
areer in a
ademia.My deepest appre
iation goes to my wife Helen, who's support throughout my degree and this resear
hproje
t has been invaluable. I would like to thank her for her time, her �nan
ial support and for herunwavering
ommitment when times were hard.And �nally, I would like to thank my
hildren Kelly, Skye and Ailsa just for being there when I neededthem.

ABSTRACTConventional design patterns found in many pattern
atalogues are stati

omponents of reusable designknowledge. They are fully des
riptive of the problems they will solve, but the des
riptive knowledgeand design they provide does not des
ribe how they
an work with other patterns in a design anddevelopment pro
ess. Therefore, the
ontention of this thesis is that the knowledge
ontained withinstati
 design patterns is inadequate for the purpose of applying the patterns to generate a softwarear
hite
ture with the intention of developing software systems.The fo
us of this resear
h has been the investigation of Design Patterns and their potential
ontributionto a generative development pattern language. Generative design patterns are a
tive and dynami
: theydes
ribe how to
reate something and
an be observed in the resulting systems they help to
reate.To this end, a framework is presented that identi�es the notational qualities that
an be applied toa design pattern for the bene�t of implementing ar
hite
tural design. The impra
ti
ality of stati
design patterns for ar
hite
tural design is addressed by revising the standard design pattern with anotation that des
ribes the pattern as a generative
omponent. The notation required for this revisionis abstra
ted in part from the ri
h set of design notations and knowledge
ontained within:(a) the quality driven pro
esses
ontained in development methods that
ontributed to the now standardUni�ed Modelling Language (UML),(b) the des
riptive
ontent of two distin
t pattern
lassi�
ationsi Design Patterns: Elements of Reusable Obje
t-Oriented Software[45℄,ii A Catalogue of General-Purpose Software Design Patterns[104℄ and(
) a known study of relationships between design patternsi Relationships Between Design Patterns[119℄.

TABLE OF CONTENTSList of Figures viList of Tables ixChapter 1: Introdu
tion 1Chapter 2: Exploring The Link Between Software Development Methods And Pat-terns 62.1 Introdu
tion . 62.1.1 Pattern / Method Analogy . 62.2 Obje
t-Oriented Software Development Methods . 72.3 Contemporary Software Development Methods . 92.3.1 Rational Uni�ed Pro
ess . 92.3.2 Agile Methods . 142.3.3 Model Driven Ar
hite
ture (MDA) . 222.4 Summary . 25Chapter 3: Understanding Design Pattern Notation 273.1 Introdu
tion . 273.2 Patterns in Obje
t-Oriented Software . 273.2.1 The Pattern Con
ept . 273.2.2 Idioms . 283.2.3 Pattern Catalogues { (Design Patterns) . 28i

3.2.4 Pattern Systems . 303.2.5 A Pattern Language . 323.2.6 Design Pattern Stru
ture . 353.2.7 Narrative Form (Portland) . 373.3 De�ning a Template . 403.4 Summary . 55Chapter 4: Relationships Between Patterns 564.1 Introdu
tion . 564.2 Classi�
ation of Design Patterns . 574.2.1 High Level Classi�
ation . 574.2.2 Low Level Classi�
ation . 594.3 Individual Relationships . 644.4 Pattern Map . 684.5 Des
ribing Relationships . 694.5.1 Classi�
ation . 704.5.2 Problem Solving . 714.5.3 Asso
iation Type . 744.6 Summary . 76Chapter 5: Pattern Modelling 775.1 Introdu
tion . 775.2 Sequen
e Diagrams . 785.3 Class Diagrams . 825.4 Summary . 88ii

Chapter 6: A Generative Design Pattern 906.1 Introdu
tion . 906.2 Generative Pro
ess . 916.2.1 Summary of Chapter Two . 916.2.2 Summary of Chapter Three . 916.2.3 Summary of Chapter Four . 916.2.4 Summary of Chapter Five . 926.3 Generative Pattern Format . 926.4 Composite as a Generative Design Pattern . 946.5 Con
lusion . 1046.6 Summary . 105Chapter 7: Evaluation 1067.1 Introdu
tion . 1067.1.1 Evaluation Strategy . 1077.2 Metri
s . 1087.3 Stati
 vs. Generative Patterns . 1107.3.1 Introdu
tion . 1107.3.2 A Simple Case Study using Composite and De
orator 1127.3.3 A Simple Case Study using Composite, Command and Builder 1157.3.4 A Case Study using Composite, Command, De
orator and Builder 1197.3.5 An Alternative Case Study using Composite, Command, De
orator and Builder 1247.4 Con
lusion . 1307.5 Summary . 132
iii

Chapter 8: Con
lusion 133Chapter 9: Future Work 1359.1 Introdu
tion . 1359.2 To label patterns by their Classi�
ation, Problem and Asso
iation type 1369.2.1 Problem type . 1369.2.2 Classi�
ation type . 1369.2.3 Relational type . 1379.3 A de�nitive standard or formula for
ombining or ex
luding
ombinations of patterns . . 1389.4 Develop a
ase tool for design using generative patterns 1399.5 Formal Mathemati
al Spe
i�
ation of generative patterns 1399.6 Consideration of design patterns for de�nition and usability 140Bibliography 141Appendix A: Composite
ombines Command 150Appendix B: Composite
ombines Builder 158Appendix C: Builder
ombines Command
ombines Composite 166Appendix D: Builder Uses Command 177Appendix E: Relationship Trees 186E.0.1 Stru
tural . 186E.0.2 Creational . 187E.0.3 Behavioural . 188Appendix F: Pattern Sour
e Code and S
enarios 189iv

F.1 Sour
e Code { S
enario 1 . 189F.2 S
enario 2 . 193F.3 S
enario 3, based on E
kel[39℄ . 199Appendix G: Software Metri
 Suite 208G.1 Basi
[16℄ . 208G.2 Cohesion[16℄ . 209G.3 Complexity[16℄ . 210G.4 Coupling[16℄ . 213G.5 En
apsulation[16℄ . 218G.6 Halstead[16℄ . 219G.7 Inheritan
e[16℄ . 220G.8 Inheritan
e-Based Coupling[16℄ . 220G.9 Maximum[16℄ . 223G.10 Polymorphism[16℄ . 223G.11 Ratio[16℄ . 224G.12 Test Coverage[16℄ . 225Appendix H: Additional Case-Studies 226H.1 A Simple Case Study using Composite and Builder . 226H.2 A Simple Case Study using Command and Builder . 229H.3 A Simple Case Study using Composite and Command 232Appendix I: An Example Design Pattern 235I.1 Fa
ade (Based on Gamma[45℄) . 235
v

LIST OF FIGURES2.1 MDA Development Life
y
le[66℄ . 232.2 MDA Transformation Pro
ess[66℄ . 244.1 Relationships Between Design Patterns . 584.2 Creational Pattern Information Hierar
hy . 614.3 Behavioural Pattern Information Hierar
hy . 624.4 Relationships Between Design Patterns (Based on Zimmer[119℄) 654.5 Pattern X uses, is used by . 664.6 Patterns Related to Composite . 694.7 Relationship between Composite and De
orator . 755.1 Sequen
e Diagram for the Broker Pattern . 785.2 Sequen
e Diagram for the Broker Pattern . 795.3 Sequen
e Diagram for the Dispat
her View Pattern . 805.4 Dispat
her in Controller Strategy . 805.5 Dispat
her in View Strategy . 815.6 Composite Class Diagram . 835.7 Grand's Composite Class Diagram[48℄ . 845.8 Reverse Engineered Composite Class Diagram[48℄ . 855.9 Composite Pattern . 865.10 Grand's De
orator Class Diagrams . 875.11 Grand's Builder Class Diagrams . 88vi

6.1 Stru
ture of the Composite Pattern . 966.2 Relationship between Composite and De
orator . 1006.3 Use-Case Diagram - Composite
ombines De
orator . 1016.4 Class Diagram - Composite
ombines De
orator . 1027.1 Generative vs. Stati
 { Composite and De
orator . 1127.2 Generative vs. Stati
 { Command + Composite + Builder 1157.3 Generative vs. Stati
 { Command + Composite + Builder + De
orator 1197.4 Example Appli
ation using Stati
 Design Patterns . 1247.5 Example Appli
ation using Dynami
 Design Patterns . 125A.1 Relationship between Composite and Command . 151A.2 Use-Case Diagram - Composite
ombines Command . 151A.3 Class Diagram - Composite
ombines Command . 152A.4 Sequen
e Diagram - Composite
ombines Command . 153B.1 Relationship between Composite and Builder . 159B.2 Use-Case Diagram - Composite
ombines Builder . 159B.3 Class Diagram - Composite
ombines Builder . 160B.4 Sequen
e Diagram - Composite
ombines Builder . 161C.1 Relationship between Builder, Command and Composite 167C.2 Use-Case Diagram - Builder
ombines Command
ombines Composite 168C.3 Class Diagram - Composite
ombines Command . 169C.4 Sequen
e Diagram - Composite
ombines Command . 170D.1 Relationship between Builder and Command . 178vii

D.2 Use-Case Diagram - Builder uses Command . 178D.3 Class Diagram - Builder uses Command . 179D.4 Sequen
e Diagram - Builder uses Command . 180E.1 Stru
tural Hierar
hy . 186E.2 Creational Hierar
hy . 187E.3 Behavioural Hierar
hy . 188F.1 Use-Case Diagram - Composite
ombines De
orator . 193F.2 Class Diagram - Composite
ombines De
orator . 194F.3 Use-Case Diagram - Composite
ombines De
orator . 199F.4 Class Diagram - Composite
ombines De
orator . 200G.1 The relation among the di�erent types of supplier
lasses 217H.1 Generative vs. Stati
 { Composite and Builder . 226H.2 Generative vs. Stati
 { Command and Builder . 229H.3 Generative vs. Stati
 { Command and Composite . 232I.1 Fa
ade as an Interfa
e . 235I.2 Message Creator as Fa
ade . 236

viii

LIST OF TABLES3.1 Design Patterns' Notation[45℄ . 293.2 Bus
hmann's Pattern Notation[20℄ . 313.3 Bus
hmann's alternative
ategories of Notation[19℄ . 323.4 Alexander's Pattern Notation[3℄ . 333.5 Coplien's Pattern Notation for a Generative Development-Pro
ess[29℄ 343.6 Meszaros' Criteria on Pattern Stru
ture[79℄ . 363.7 Varying Uses of Notation . 413.8 Amalgamating Notation . 453.9 Reje
ted Notation . 493.10 Reje
ted Amalgamated Notation . 513.11 A

epted Notation . 534.1 Design Pattern Classi�
ation[45℄ . 574.2 Logi
al Information for a Generative Design Pattern - Iteration 1 594.3 Logi
al Information for a Generative Design Pattern - Iteration 2 624.4 Logi
al Information for a Generative Design Pattern - Iteration 3 674.5 Con
rete Information for a Generative Design Pattern - Iteration 1 714.6 Con
rete Information for a Generative Design Pattern - Iteration 2 744.7 Con
rete Information for a Generative Design Pattern - Iteration 3 747.1 General statisti
s for the Generative and Stati
 versions of Composite and De
orator . . 1137.2 Individual statisti
s for the Generative and Stati
 versions of Composite and De
orator 114ix

7.3 Code statisti
s for the Generative and Stati
 versions of Command + Composite + Builder1167.4 Individual statisti
s for the Generative and Stati
 versions of Command, Composite andBuilder . 1187.5 Code statisti
s for the Generative and Stati
 versions of Command, Composite, De
ora-tor and Builder . 1217.6 Individual statisti
s for the Generative and Stati
 versions of Command, Composite,De
orator and Builder . 1237.7 Code statisti
s for the Generative and Stati
 versions of a tou
h s
reen
ash register . . 1277.8 Individual statisti
s for the Generative and Stati
 versions of Command, Composite,De
orator and Builder . 130H.1 General statisti
s for the Generative and Stati
 versions of Composite and Builder . . . 227H.2 Individual statisti
s for the Generative and Stati
 versions of Composite and Builder . . 228H.3 General statisti
s for the Generative and Stati
 versions of Command and Builder . . . 230H.4 Individual statisti
s for the Generative and Stati
 versions of Command and Builder . . 231H.5 General statisti
s for the Generative and Stati
 versions of Command and Composite . . 233H.6 Individual statisti
s for the Generative and Stati
 versions of Command and Composite 234

x

1
Chapter 1INTRODUCTIONGenerative programming is a
on
ept familiar to software engineers and is an ideologi
al goal forsoftware development. Generative programming has attra
ted a
onsiderable amount of resear
h anddevelopment over the years
ulminating in a number of sophisti
ated CASE tools. Czarne
ki[37℄ de�nesgenerative programming as:A software engineering paradigm based on modelling software system families su
h thatgiven a parti
ular requirements spe
i�
ation, a highly
ustomized and optimized end-produ
t
an be automati
ally manufa
tured on demand from elementary, reusable implementation
omponents by means of
on�guration knowledge.Czarne
ki goes on to de�ne a Generative Domain Model that
onsists of a problem spa
e, a solutionspa
e and
on�guration knowledge, whi
h maps the two together.� The solution spa
e
onsists of the implementation
omponents with all possible
ombinations. Theimplementation
omponents maximize
ompatibility, maximize reuse and minimize redundan
y.� The problem spa
e
onsists of the appli
ation-oriented
on
epts and features that are required toful�l a spe
i�
ation.� The
on�guration knowledge spe
i�es default
ombinations, illegal
ombinations, developmentrules, dependen
ies and optimizations[37℄.The
on
ept of generative programming maps adequately to the
on
ept of generative design patterns,whi
h have a problem / solution pair held together by the
ontext in whi
h the pair
an be applied(the
on�guration knowledge).The
on�guration knowledge is parti
ularly useful in that there may be default
ombinations, illegal
ombinations and spe
i�
 rules that need to be applied to any given
ombination of patterns.

2However, in the s
heme of life-
y
le development, programming is edging towards the output phaseof development. Prior to development
omes analysis and design, yet generative design has attra
tedless resear
h and development than generative programming. The amount of resear
h into generativedesign through design patterns is extremely limited by
omparison to design patterns in general.The designs pattern found in software engineering (An example design pattern
an be seen in AppendixI) are analogous to those des
ribed in ar
hite
ture by Christopher Alexander[2, 3, 4℄. Patterns, likethose de�ned by Alexander, are des
ribed as being generative, mainly be
ause they will generate stru
-tures. That is, a
olle
tion of patterns
an be brought together to
reate a new stru
ture. Softwaredesign patterns, like those of Alexander, are a development prin
iple that
ontains the knowledge of ex-perts who have used re
urring design
onstru
ts in development proje
ts. These experts have re
ordedne
essary information about these patterns for others to use in their own development proje
ts. How-ever, although these design patterns are abstra
ted from appli
ation design, they are not des
ribed insu
h a way that they
an be used to design appli
ations. Expert knowledge des
ribes them as being
onstru
ts that
an be slotted into an appli
ation, but the knowledge to do that is missing from thepatterns. The fa
t is that design patterns
annot be used to generate the ar
hite
tures from whi
hthey are abstra
ted. They do not des
ribe how pattern A will
ollaborate with pattern B. They do notdes
ribe how separate patterns may share resour
es or design
omponents. There is a need to intro-du
e additional knowledge into design patterns to empower them with the ability to generate systems.The majority of design patterns used in software development are stati
, they des
ribe a problem thatexists, but do not des
ribe mu
h beyond their own environment | they will mention a relationship toother patterns but little else. In other words, they are not adequate for generating new environments.Appleton[6℄ provides a simple a

ount of generative and non-generative patterns:Generative patterns are a
tive and dynami
: they tell us how to
reate something and
anbe observed in the resulting system ar
hite
tures they helped shape. Non-generative patternsare stati
 and passive: they des
ribe re
urring phenomena without ne
essarily saying howto reprodu
e them. We should strive to do
ument generative patterns be
ause they not onlyshow us the
hara
teristi
s of good systems, they tea
h us how to build them!As su
h, the use of stati
 design patterns as a means of developing systems is problemati
, in that thedesign pattern is stati
 and needs to be generative. Therefore, the aim of this thesis is to
ontribute tothe methodology of software systems development by introdu
ing into design patterns design knowledgethat fa
ilitates
ommuni
ation between separate design patterns.

3Fundamental to this aim is the assertion that:Generative design patterns will assist in improving software design when
ompared to using stati
 designpatterns.In support of this assertion, both generative and stati
 design patterns are
ompared and assessed ina number of appli
ation development
ase-studies. From the
ase-studies a further assertion is madethat:Generative design patterns provide a more eÆ
ient software solution to that of stati
 design patternswhen
ommuni
ation between separate design patterns is required.This assertion is supported by the metri
s
al
ulated in
omparative studies on generative and stati
design patterns. The metri
s
on�rm that there is an overall improvement in systems design andsoftware eÆ
ien
y for the generative patterns examined.The main
ontribution to this thesis, and to generative design patterns, is a notation that has beenabstra
ted from a range of pattern styles. A means of pattern
lassi�
ation has been in
luded in thegenerative pattern des
ription to identify their
ontribution to systems fun
tionality. Problem solvingnotation has been added to the patterns to identify appropriate development
ontexts in whi
h thepatterns
an be applied. And �nally, relational notation has been added to the generative pattern toidentify how separate patterns will
ommuni
ate.The re-engineered notation has been applied to four di�erent design patterns as examples of how touse the notation, and are in
luded within the thesis in Chapter Six and Appendi
es A, B, C and D. Anexample of a stati
 design pattern from the Design Patterns[45℄
atalogue
an be seen in Appendix I.This thesis is organised as follows:Chapter Two
onsiders software development methods, whi
h have been studied as a means of �ndingqualities that
ould be applied to the notation of a generative design pattern. Although there are largenumbers of di�erent development methods, they all have a
ommon goal and that is a quality produ
t.Many use similar te
hniques to a
hieve their goal whilst others use alternative te
hniques or are spe
i�
to a parti
ular phase in the development life-
y
le.Chapter Three looks at pattern notation with a view to understanding where the notation
omesfrom and how it is applied in spe
i�
 types and styles of patterns. Be
ause software design patterns arenot de�ned as generative, there are no guidelines on how to do
ument them as generative. Therefore,in order to �nd a suitable do
ument notation for generative design patterns, multiple pattern notationsare explored for
lues to a quality driven design pro
ess.

4Chapter Four
onsiders the fun
tionality and the relationships between patterns. Di�erent typesof patterns have di�erent fun
tions; therefore some property of the pattern needs to des
ribe therelationship that exists between di�erent fun
tional types. Some of these patterns form the body of asystem whilst others perform some operational requirement of the system. Whatever type of patternthey may be, all di�erent types need to de�ne how they
ollaborate.Chapter Five looks at the modelling notation that is used within patterns. Many software patternsuse only a
lass diagram in the notation of a pattern although there are many modelling notations inthe Uni�ed Modelling Language that
ould be used to help des
ribe the usability of a design pattern.Quite often, pattern writers who reprodu
e the patterns originally des
ribed in the Design Patterns[45℄
atalogue will modify the design notation in their interpretation of the pattern to meet the needs oftheir example. However, what is evident from some of these interpretations is that the example
odethey provide does not mat
h the design notation that they use.Chapter Six integrates the work des
ribed in Chapters Two to Five. The work from the previous
hapters is summarised and a generative pattern is de�ned from the desired notation and the require-ments of the de�ned relationships. Three separate examples of generative design are provided withdi�erent
on�gurations of design. Further examples are provided in the Appendi
es.Chapter Seven evaluates the approa
h taken in de�ning a generative pattern, re
e
ting on the
on-stru
tion pro
ess used for the framework and the examples that were produ
ed to support the generativepattern
on
ept.Chapter Eight
onsiders the work still to be done in the area of
ommuni
ation between spe
i�

lassi�
ations of patterns. A
ustomised Computer Aided Software Engineering tool is proposed aswell as some alternative resear
h that
an be
ondu
ted in relation to generative design patterns.Chapter Nine
on
ludes the work undertaken in de�ning a generative pattern.Appendix A provides an example of a Composite
ombines Command design pattern.Appendix B provides an example of a Composite
ombines Builder design pattern.Appendix C provides an example of a Builder
ombines Command
ombines Composite design pat-tern. This pattern also
ombines with the Composite pattern and is also an example of a Creational,Behavioural and Stru
tural pattern working together.Appendix D provides an example of a Builder uses Command design pattern.Appendix E des
ribes the Relationship Trees from the hierar
hy of
lassi�
ations. The hierar
hyin
ludes only the patterns de�ned in the Design Patterns[45℄
atalogue.

5Appendix F
ontains the sour
e
ode for the generative patterns des
ribed in Chapter Six.Appendix G des
ribes the metri
s that are available for assessing software quality.Appendix H
ontains three sets of paired patterns that have been used in the evaluation pro
ess ofgenerative design patterns.Appendix I
ontains an example of a stati
 design pattern from the Design Patterns[45℄
atalogue.

6
Chapter 2EXPLORING THE LINK BETWEENSOFTWARE DEVELOPMENT METHODS AND PATTERNS2.1 Introdu
tionIn this
hapter an overview of software development methods is presented with the purpose of exploringthe expert knowledge and quality driven aspe
ts
ontained within the methods. Consideration is givento development methods as a means of determining if expert knowledge
ontained within methods
an be appended to the expert knowledge
ontained within design patterns. From this study it hasbeen determined that there are similarities between methods and patterns. It is found that there arequalities in some methods, mainly design aspe
ts and
oding prin
iples, whi
h
an be used to enhan
ethe quality of a design pattern.In Se
tion 2.2 a representative sele
tion of early Obje
t-Oriented development methods is listed, o�er-ing an histori
al insight into the evolving pra
ti
e of quality driven software development. Several ofthe methods listed represent the driving for
e behind the Uni�ed Modelling Language[15, 54℄ (UML),elements of whi
h feature in design pattern notation. The authors of the original methods that
on-tributed to the UML are seen as experts in the �eld of software engineering and the methods theydevised have been a signi�
ant in
uen
e in the development of modern methods. The same expertsthat devised the UML made a signi�
ant
ontribution to IBM's1 Rational Uni�ed Pro
ess[89℄ (RUP),a
ontemporary development method, whi
h is explored further in Se
tion 2.3.Se
tion 2.3 examines several
ontemporary methods: RUP, Extreme Programming[9, 10℄ (XP) andS
rum[12℄ as well as the Obje
t Management Group's[53℄ (OMG) Model Driven Ar
hite
ture[55℄(MDA).2.1.1 Pattern / Method AnalogyThe prin
iple of a software development method is to impose dis
ipline, predi
tability and eÆ
ien
yon a proje
t. In most
ases, the methods that are used to develop a software system often followsome life-
y
le pro
ess, whi
h in many
ases will expand upon the subje
ts of Analysis, Design and1International Business Ma
hines

7Development. By following these methods, whi
h are often de�ned by experts in their �eld, who havetried, tested and re�ned the pro
esses that fa
ilitate the e�e
tiveness of the method, the likelihoodof proje
t failure is often redu
ed. In this respe
t, there is a simple
omparison that
an be appliedbetween a method and a design pattern:� Expert knowledge: design patterns are the do
umentation of expert knowledge.� Failure redu
tion: design patterns are tried and tested examples of quality design.The
on
ept of software design patterns and the expert knowledge that they
ontain are des
ribed ingreater detail in Chapter Three.By examining design pattern
atalogues and the patterns
ontained within, it is not obvious to thereader that the patterns
ontain simple methodi
al prin
iples of software development. The simplereason for this is that patterns are not methods and no eviden
e has been obtained to suggest thatthey were ever intended to be methods. However, the analogy is there. For example:� Many patterns
ontain the se
tions Problem and For
es, whi
h analyse the situation in whi
h apattern
an be applied { (Analysis).� In many software design patterns there is often some form of design using a
lass, sequen
e and/orother diagrams { (Design).� And, quite often there will be implementation details in the form of sample
ode { (Development)Working on this prin
iple, it
an be seen that methods and patterns share some
ommon ground andin taking advantage of this
ommon ground it is
on
eivable that methods and patterns
ould worke�e
tively as a uni�ed subje
t in the �eld of software development.2.2 Obje
t-Oriented Software Development MethodsWith the emergen
e of the obje
t-oriented software paradigm
ame many obje
t-oriented developmentmethods. In the period 1988{1995 at least 19 obje
t-oriented methods had been proposed in book formand many more were proposed in
onferen
e and journal papers[115℄. To abstra
t good pra
ti
e forthe assimilation of methodi
al pro
esses into design patterns a thorough review of all su
h methods

8
ould be applied in order to obtain the best and most appropriate aspe
ts of these methods. How-ever, this line of resear
h would be extensive and would detra
t from the main purpose of de�ning agenerative pattern. In addition, during this period 1988{1995, many studies were
ondu
ted into thestate of obje
t-oriented development methods and
omparisons made between them | A Comparisonof Obje
t-Oriented Development Methodologies[13℄ by Berard of The Obje
t Agen
y[1℄ lists seven su
hstudies whilst being a study in its own right. Brighton University[107℄ do
uments signi�
antly more
omparative studies, whi
h itself in
ludes a list of development methods. Therefore,
ondu
ting yetanother
omparative study is unlikely to provide any new and usable information that would be ofbene�
ial use within the
urrent resear
h program. However, by examining previous studies, an insightinto some of the more
ommon and popular development methods has been established.The list below has been
onstru
ted primarily from the list presented by Berard[13℄, although not inits entirety, and represents some of the early, more
ommon obje
t oriented methods | as
ertainedthrough their repeated in
lusion in
omparative studies.� Obje
t Modelling Te
hnique[97℄ (OMT). OMT was originally
reated as a method for developingobje
t-oriented systems. It uses many of the design te
hniques that be
ame part of the UML.� Obje
t-Oriented Software Engineering[63℄ (OOSE). OOSE is very similar to OMT and employsUse-Cases to drive design. OOSE Be
ame one of the key
omponents of the Uni�ed ModellingLanguage.� Obje
t-Oriented Analysis and Design[14℄ (OOAD). OOAD
on
entrates on the analysis and designphases but exempli�es the pro
esses with existing appli
ations. OOAD represents a good exampleof applying expert knowledge | a
ommon theme in design patterns. OOADS is another design-oriented method that evolved into the Uni�ed Modelling Language.� Berard Obje
t-Oriented Method[100℄ (BOOM). BOOM is a set of integrated methodologies su
has OOSE and OOAD among others.� Business Obje
t Notation[113℄ (BON). BON was designed to work seamlessly with the program-ming language Ei�el[80℄ and has been used su

essfully with other programming languages.� Obje
t-Oriented Analysis, Obje
t-Oriented Design, Obje
t-Oriented Programming[23, 24, 25℄ (OOA, OOD, OOP). OOA / OOD / OOP
overs the prin
iples of obje
t-orientedte
hnology through basi
 life-
y
le pro
esses of Analysis, Design and Programming.

9� Shlaer-Mellor[101℄. Shlaer and Mellor devised an OOA / OOD method to
ompensate for theper
eived de�
ien
ies in the stru
tured analysis and stru
tured design te
hniques that were beingused in the late 1980s, su
h as SSADM[47℄ and YSM[117, 118℄.� Wirfs-Bro
k[116℄. Wirfs-Bro
ks method is a design pro
ess that
an be applied to both obje
t-oriented and non obje
t-oriented development.� Fusion[28℄. Fusion is an obje
t-oriented analysis and design method that integrates features fromexisting methods su
h as OMT and OOAD.Several of these methods fo
us on design and therefore have a strong design
ontent, whi
h is a primefeature of design patterns. Three of the methods listed above have between them re
eived over 2200known
itations[86℄ and were the forerunners of the Uni�ed Modelling Language[15, 54℄ (UML) namely,OOAD, OOSE and OMT. It is design elements from these traditional methods that have been appliedto design patterns. However, only limited elements have been utilised in a design pattern, namely,
lassand intera
tion diagrams.As a result of
ontinuous development and revision some of the above listed methods have evolved into
ontemporary working pra
ti
es that
an be found in methods su
h as the RUP. Agile methods su
has XP
an also be
onsidered as
ontemporary but these too have long rooted histories[26℄. Althoughnot based on Obje
t-Oriented methods su
h as those above, Agile methods were a rea
tion to rigid,heavyweight methods of the day[44℄, whi
h often adapted the life
y
le framework of the Waterfall modeldevised Roy
e[96℄. The RUP and other
ontemporary methods are dis
ussed in se
tion 2.3 below.2.3 Contemporary Software Development Methods2.3.1 Rational Uni�ed Pro
essAbout the Rational Uni�ed Pro
essThe Rational Uni�ed Pro
ess is a life-
y
le pro
ess that provides a dis
iplined approa
h to assigningtasks and responsibilities within a development team. Its aim is to ensure the development of qual-ity driven software that meets the requirements of end-users[62, 67℄. The RUP provides every teammember with a

ess to a knowledge base. By having all team members a

ess the same knowledgebase, irrespe
tive of whether a team member is working with requirements, design, testing, proje
tmanagement, or
on�guration management, the pro
ess ensures that all team members share a
om-mon view of how to develop software. Rather than fo
using on the produ
tion of do
umentation, the

10RUP emphasizes the development and maintenan
e of models. That is, the Rational Uni�ed Pro
essis a guide on how to use the Uni�ed Modelling Language, whi
h was developed by the same team that
reated the RUP. Like design patterns, whi
h will be dis
ussed in Chapter Three, the RUP is the resultof expert knowledge and, as will be shown in the following text, de�nes a number of similarities betweenthe two
on
epts and
ontains modelling elements that
an
ontribute to an appropriate notation forgenerative design patterns,Four Phases of the Pro
essThe Rational Uni�ed Pro
ess attempts to
apture what is
onsidered to be best pra
ti
es in modernsoftware development within a four phase strategy:� In
eption phase� Elaboration phase� Constru
tion phase� Transition phaseIn
eptionDuring the in
eption phase a business
ase for the system is proposed and the s
ope of the proje
t isidenti�ed. In this, all external entities with whi
h the system will intera
t are established (a
tors). Theintera
tion with external entities involves identifying prominent use
ases and des
ribing those that willhave a signi�
ant impa
t on the system[62, 67℄. The out
ome of the in
eption phase is, among otherthings:� A do
ument of the proje
t's requirements, key features, and main
onstraints. (Analysis)� An initial use-
ase model. (Design)� An optional domain model. (Design)� One or several prototypes. (Implementation)� A number of proje
t plans and business related models.

11ElaborationThe purpose of the elaboration phase is to analyze the problem domain, establish an ar
hite
ture,develop the proje
t plan, and eliminate high risk elements of the proje
t. Ar
hite
tural de
isions have tobe made with an understanding of the whole system: its s
ope, major fun
tionality and non-fun
tionalrequirements su
h as performan
e requirements.At the end of this phase, the analysis and design aspe
ts are
onsidered to be
omplete and de
isionsare made on whether or not to
ommit to the
onstru
tion and transition phases. While the pro
essmust always a

ommodate
hanges, the elaboration phase ensures that the ar
hite
ture, requirementsand plans are stable, and risks have been assessed.In the elaboration phase, an exe
utable prototype is built in one or more iterations, depending on thes
ale of the proje
t, whi
h at minimum should address the
riti
al use-
ases identi�ed in the in
eptionphase. Whilst a prototype of a produ
tion-quality
omponent is always the goal, one or more throw-away prototypes may be produ
ed as a means of testing design and requirements trade-o�s.The out
ome of the elaboration phase is:� A use-
ase model where all use
ases and a
tors have been identi�ed, and most use-
ase des
rip-tions have been developed.� Identi�
ation of supplementary requirements that are not asso
iated with spe
i�
 use-
ases.� A software Ar
hite
ture.� An exe
utable prototype.� A revised risk list and business
ase.� A development plan.� An optional user manual.Constru
tionDuring the
onstru
tion phase, all remaining
omponents and appli
ation features are developed andintegrated into the produ
t, and all features are thoroughly tested. The
onstru
tion phase is a pro
esswhere emphasis is pla
ed on managing resour
es and
ontrolling operations to optimize
osts, andquality.

12Often, proje
ts are large enough that
on
urrent
onstru
tion plans
an be implemented. These parallela
tivities
an hasten the availability of deployable releases; however, they
an also in
rease the
om-plexity of resour
e management and work
ow syn
hronization. This is one reason why the balan
eddevelopment of the ar
hite
ture and the plan is stressed during the elaboration phase.The out
ome of the
onstru
tion phase is a produ
t ready to put in the hands of its end-users. Atminimum, it
onsists of:� A software produ
t
on�gured for desired platforms.� User manuals.� A des
ription of
urrent releases.TransitionThe transition phase is
on
erned with pla
ing the software into the hands of the users. On
e theprodu
t has been given to the end user, issues usually arise that require the team to develop newreleases,
orre
t problems, or
omplete any features that were postponed.The transition phase is entered when a produ
t is suÆ
iently robust that it
an be deployed in theend-user domain. This typi
ally requires that a prototype of the system has been
ompleted to ana

eptable level of quality and that user do
umentation is available. This in
ludes:� Testing; to validate the new system against user expe
tations.� Parallel operation with a lega
y system that it may be repla
ing.� Conversion of operational data stores.� Training of users and those involved with maintenan
e.� Roll-out the produ
t to the marketing, distribution, and sales teams.Typi
ally, this phase may in
lude several iterations, in
luding beta releases, general availability releases,maintenan
e releases and enhan
ement releases. At this point, e�ort will be put into developing userdo
umentation, user training, user support in produ
t use, and rea
ting to user feedba
k. User feedba
kis usually
on�ned to produ
t tuning,
on�guring, installation, and usability issues.

13The primary obje
tives of the transition phase in
lude:� A
hieving self-support from the user.� A
hieving stakeholder agreement that deployment requirements are
omplete and
onsistent withthe evaluation
riteria.� A
hieving a �nal produ
t as rapidly and
ost e�e
tively as pra
ti
al.This phase
an range from being simple to
omplex, depending on the produ
t. For example, a newrelease of an existing desktop produ
t may be very simple, whereas developing a nation's medi
alre
ords system would be very
omplex.Con
lusionA

ording to DeMar
o[38℄, \Analysis is the study of a problem, prior to taking some a
tion" - a familiar
on
ept in terms of design pattern notation in that a problem is identi�ed and a solution provided.A

ording to Coad[24℄ Analysis is a pro
ess of extra
ting system requirements from the major stake-holders in the system under development. Therefore, the main
on
ern of analysis is to determine whatis required in order to develop the system that is being
ommissioned. On investigating the RationalUni�ed Pro
ess it
an be seen from the authoritative texts that the pro
ess is heavily weighted towardsanalysis with emphasis on analysing the business pro
esses involved in systems development. However,the RUP does not dwell heavily on problems but
on
entrates signi�
antly on a generi
 solution toquality driven systems development. In this respe
t there are few similarities between the RUP anddesign patterns as there are in many of the early Obje
t-Oriented methods su
h as OOAD, OMT andOOSE, whi
h
ontributed towards the UML. However, the
on
ept of Solution, whi
h is a signi�
antaspe
t of RUP, is also a signi�
ant aspe
t of design patterns, whi
h presents in one aspe
t a similaritybetween this parti
ular method and design patterns.What
an be seen in the RUP, whi
h stands out signi�
antly against other aspe
ts of the pro
ess isthe use-
ase. The originators of the RUP have put great emphasis on the use-
ase, whi
h is usedthroughout the early stages of pro
ess in most aspe
ts of the analysis and design life
y
le. This isba
ked up by the authors of the RUP who des
ribe the Uni�ed Pro
ess as being \Use-Case Driven,Ar
hite
ture-Centri
, Iterative and In
remental[62℄. In this respe
t, the authors of the method areputting ar
hite
ture and how they realise that ar
hite
ture at the forefront of the RUP. One of the keyaspe
ts of the generative pattern is ar
hite
ture, in that
ollaborating patterns
an be used to de�ne thear
hite
ture of a software system. From this, one
an
onsider that there is a
orrelation between design

14goals in RUP and the design goals of generative design patterns. This notion is supported by the Uni�edSoftware Development Pro
ess[62℄ (USDP), an early version of RUP, that looks at ar
hite
ture fromvarious viewpoints. This aspe
t is similar to one of the quality aspe
ts
ontained within the PatternOriented Software Ar
hite
ture[20℄ (POSA)
atalogue of design patterns in that alternative views of asolution are
onsidered. Given this
orrelation between these quality aspe
ts of RUP and the POSAdesign patterns it is
on
eivable that multiple views of generative design should be in
orporated intogenerative design patterns. The dynami
 aspe
ts of the POSA design patterns and how these aspe
ts
an be in
orporated into a generative design pattern will be dis
ussed further in Chapters Three andFive.2.3.2 Agile MethodsAbout Agile MethodsA
riti
ism of early obje
t-oriented methods des
ribed them as being too bureau
rati
. As a rea
tionto this
riti
ism a number of new methods appeared. These new methods are referred to as lightweightor agile methods[44℄. The new agile methods are a
on
ession between no pro
ess and too mu
hpro
ess, providing just enough pro
edure to gain a reasonable
ompromise. The result is that agilemethods have some signi�
ant
hanges in emphasis from life
y
le methods. One of the
ore aspe
ts ofagile software development is the use of light but suÆ
ient rules of proje
t behaviour and the use ofhuman and
ommuni
ation-oriented rules[26℄. One of the most visible aspe
ts of this is that they are lessdo
ument-oriented, usually emphasizing a smaller amount of do
umentation for a given task. A

ordingto Fowler[44℄, they are rather
ode-oriented: following a route that says the key part of do
umentationis sour
e
ode. whilst some methods
an be quite rigid, agile methods en
ourage
exibility in theirpro
edures. What may be suitable for one proje
t may not be the right pro
ess for every proje
t orsituation. Therefore, the agile team is en
ouraged to re�ne and re
e
t as it goes along,
onstantlyimproving its pra
ti
es in its lo
al
ir
umstan
es.Extreme Programming (XP)About XPIn the early days of XP the method was de�ned with the distin
t se
tion headings of Problem, Solutionand Implementation |
ommon notation used in many design patterns. The method looked at theproblems of software development, proposed some solutions to those problems and des
ribed how toimplement the method. There were four values, �fteen basi
 prin
iples, and twelve pra
ti
es[9℄. In the
ontemporary version of XP the distin
t aspe
ts of Problem, Solution and Implementation are removed

15in name whilst the
ore aspe
ts of values, prin
iples and pra
ti
es that underpin the method have beenrede�ned. The very basi
 XP paradigm of adaptation and
hange has been applied to XP itself[10℄.There are now �ve values, fourteen prin
iples, thirteen primary pra
ti
es and eleven
onsequentialpra
ti
es. Of the twelve original pra
ti
es, two have been abandoned, whi
h gives the revised methodfourteen new pra
ti
es with whi
h to apply the method[10℄. In fa
t, whilst the newer version of XPretains its original values, the whole method has been re�ned in terms of its prin
iples and its pra
ti
es.Just as it is expe
ted that patterns will evolve, and as will be shown they
an evolve into generativepatterns, XP has evolved and may
ontinue to evolve, whi
h demonstrates a similarity that patternshave with this parti
ular method. The original
on
ept of XP was divided into three founding se
tions:1. Problem: where the values and prin
iples of XP are explained and a
tivities de�ned.2. Solution: where good pra
ti
es are applied following the guiding values and prin
iples.3. Implementation: how the strategies dis
ussed in the solution
an be put into pra
ti
e.Although these
on
epts are removed in name, the underlying essen
e of the method is still evident inthat the basi

ontent of the method that underpinned these three se
tions is still evident. Referen
esare still made to problems but the emphasis of where the problem lies has been rede�ned. When on
ethe problem was de�ned in terms of where weaknesses may be evident in the development pro
ess, theproblem is now de�ned in terms of a developer's inability to
ope with
hange[10℄, and the solution isXP itself. The solution in regards of XP begins by �rst understanding the
ore
on
epts of the methodwhi
h are represented by values, prin
iples and pra
ti
es.Five ValuesThe basi
 root elements of XP are �ve
ore values that are deemed to be strategi
ally important forthe su

essful development of software. These
ore values are guidelines for XP as a method and afo
al point for development itself. The �rst four values are retained from the original XP, and respe
tis added as an additional value. The values for the
ontemporary version of XP are:1. Communi
ation: Most problems and errors are
aused by la
k of
ommuni
ation.2. Simpli
ity: The main guideline is to keep the system simple and do not plan too far ahead. Newfeatures, when needed,
an be added to a simple system with greater ease.

163. Feedba
k: Feedba
k is seen as being an important
omponent of
ommuni
ation in that whenyou
ommuni
ate you are in a position to gain feedba
k. Feedba
k also
ontributes to simpli
ityin that the simpler a system, the easier it is to get feedba
k about it.4. Courage: If fear is expressed about a proje
t, then the burden of ta
kling the proje
t be
omesmu
h bigger. However
ourage alone is not enough to ta
kle a proje
t and should be ba
ked upby
ommuni
ation, simpli
ity and feedba
k.5. Respe
t: If members of a team do not
are about ea
h other and their work, the
han
es ofdevelopment failure are mu
h greater.The �ve values that support XP as a method do not give spe
i�
 advi
e on how to manage a proje
t,or how to write software. To this end, what are required are pra
ti
es. However, bridging the gapbetween values and pra
ti
es are prin
iples[10℄.Fourteen Prin
iples1. Humanity: Software is developed by people for people, so human fa
tors are taken into
onsid-eration in attempting to deliver quality software.2. E
onomi
s: Ensure that what is being developed has business value, meets business goals andmeets business needs. Someone has to pay and they want value for money.3. Mutual bene�t: All a
tivities should bene�t both developers and
lients alike, both in thepresent and in the future4. Self-Similarity: Try
opying the stru
ture of one solution into a new
ontext, even at di�erents
ales.5. Improvement: XP asks for ex
ellen
e in software development through
ontinuous improvement.6. Diversity: Teams should in
lude a variety of skills attitudes and viewpoints in order to identifyproblems and provide solutions.7. Re
e
tion: An e�e
tive team should ask themselves how they are working, and why they areworking in that way. They need to analyze the reasons behind su

ess or failure without hidingtheir mistakes and learn from them.

178. Flow: The pra
ti
es of XP assume a
ontinuous
ow of software by engaging in all a
tivitiessimultaneously, rather than a sequen
e of dis
rete phases.9. Opportunity: Problems must be seen as an opportunity for learning and improvement.10. Redundan
y: Criti
al and diÆ
ult problems should be solved in several di�erent ways. Thus,if one solution fails, another solution may prevent a disaster.11. Failure: Failure should not be viewed as failure but an opportunity for learning. Failure is nota waste if it imparts knowledge.12. Quality: Sa
ri�
ing quality is not an e�e
tive means of
ontrol. Proje
ts do not go faster bya

epting lower standards. In addition, team members need to do work they are proud of.13. Baby Steps: One of the reasons behind baby steps is that a small step in the wrong dire
tionis easier to re
over. A big step that fails
an damage a proje
t. It is more prudent to pro
eediteratively in baby steps. Baby steps do not mean pro
eeding slowly. A team pro
eeding in babysteps
an take a lot of them in a short period of time.14. A

epted Responsibility: A

epted Responsibility is about being responsible. Responsibilityshould only be taken if you are
on�dent enough to a

ept it.Prin
iples are a means of providing a better understanding of pra
ti
es and to improvise
omplementarypra
ti
es when a pra
ti
e
annot be found for a given purpose. They also give a better idea of whatthe pra
ti
e is intended to a

omplish[10℄.Twenty Four Pra
ti
esThe updated version of XP de�nes thirteen primary pra
ti
es, and eleven
orollary (
onsequential)pra
ti
es. The primary pra
ti
es must be applied �rst, and ea
h of them may add to an improvementin the software development pro
ess. Consequential pra
ti
es require expertise in primary pra
ti
es,and may be diÆ
ult to apply without �rst having
onsidered the primary ones. All twenty four pra
ti
esare an integral part of the method, and should be fully applied in order to obtain the maximum bene�tof XP.Thirteen Primary pra
ti
es1. Sit Together: The working environment should be an open spa
e that is able to host the wholeteam.

182. Whole Team: A team should be
omposed of members that have all the skills ne
essary for theproje
t to su

eed.3. Informative Workspa
e: The workspa
e should be supplied with information on the status ofthe proje
t and the tasks to be performed.4. Energized Work: The team must respe
t a work { life balan
e, so that they
an fo
us on theirjob and be produ
tive.5. Pair Programming: Code should be written by two team members at one workstation.6. Stories: The system should be des
ribed using short des
riptions of fun
tionalities that area

essible to the
ustomer.7. Weekly Cy
le: At the beginning of the week a meeting should take pla
e where the fun
tional-ities (Stories) to develop in the week are
hosen by the
ustomer.8. Quarterly Cy
le: Development is planned on a lager time s
ale. This
onsiders feedba
k onthe team, the proje
t and what progress is being made.9. Sla
k: Avoid making promises that
annot be ful�lled. Consider tasks that
an be dropped ifthe plan falls behind s
hedule.10. Ten-Minute Build: The build and testing of a system should only take minutes.11. Continuous Integration: Teams should be integrating
hanges regularly.12. Test-First Programming: Before updating or adding
ode, tests should be written in order toverify the
ode.13. In
remental Design: XP is opposed to produ
ing a
omplete design prior to development andsuggests that design should be done in
rementally during
oding.Eleven Corollary Pra
ti
es1. Real Customer Involvement: Stakeholders who are a�e
ted by the system must be
ame apart of the team. They
an
ontribute to quarterly and weekly planning.

192. In
remental Deployment: When repla
ing a system, start by repla
ing some of the fun
tion-ality and gradually repla
e all the system.3. Team Continuity: Development teams should remain inta
t throughout several proje
ts.4. Shrinking Teams: As a team be
omes more produ
tive, gradually redu
e its size, sending freemembers to form new teams.5. Root-Cause Analysis: When a defe
t is dete
ted, �nd the
auses of the defe
t and eliminatethem.6. Shared Code: Any member of the development team must be able to
hange any part ofdevelopment at any time.7. Code and Tests: Code and tests are permanent artefa
ts and have to be preserved.8. Single Code Base: There should be only one version of the system. Temporary systems
an be
reated but must not be preserved.9. Daily Deployment: New software should be put into produ
tion every night. A gap betweenwhat is on a programmer's desk and what is in produ
tion is a risk.10. Negotiated S
ope Contra
t: Contra
ts should be written for software development that have�xed time,
osts and quality, but
all for an ongoing negotiation of the s
ope of the system.11. Pay-Per-Use: The
ustomer usually pays for ea
h release of the software.A

ording to Be
k[10℄, the primary and
orollary pra
ti
es are not everything that is needed to su
-
essfully develop software. They are however,
ore elements of ex
ellen
e in software development. If aproblem arises that is not
overed by one of the pra
ti
es then one should look ba
k at the values andprin
iples to
ome up with a solution.Con
lusionWhat is evident with XP and parti
ularly the updated version is that there is a strong emphasis appliedto the management of the method. The method does not go into detail about analysis or design andhow to
ondu
t these aspe
ts of software development. Appli
ation of knowledge and how to applysu
h aspe
ts as analysis and design, as XP relates, is in the hands of the experts who are following themethod.

20One thing that stands out in the original version of Extreme Programming[9℄ is the emphasis that wasput on de�ning the method in terms of Problem and Solution. In this respe
t, XP had very obvioussimilarities with design patterns, in that Problem and Solution is representative of the expert knowledge
ontained within them.Another signi�
ant aspe
t of XP in both new and older versions is that
oding is seen as a key a
tivityof the method. This, from the point of view of the authors of the method, is one of the strengths ofXP. What will be shown in Chapter Six is that the generative design pattern will utilise this strengthto demonstrate
oded examples of generative design. The
on
ept of
oded examples is supported bythe
on
luding
omments on RUP in Se
tion 2.3.1, where it is noted that multiple views
an be appliedto a generative pattern. In this respe
t, multiple views refer to multiple
oded examples.S
rumAbout S
rumS
rum is an agile pro
ess that
an be used to manage and
ontrol produ
t development using iterativeand in
remental pra
ti
es. The method is
apable of produ
ing a set of fun
tioning artefa
ts at the endof every iteration. S
rum fa
ilitates the development of the best possible software from the availableresour
es with a

eptable quality within required release dates. Produ
t fun
tionality is delivered at theend of what is known as a sprint, whi
h may last between �fteen to thirty days, depending on the sizeof the proje
t. As requirements and design are evolving so the produ
t will evolve. The name S
rumrefers to the s
rum in rugby { a tight formation of forwards who bind together in spe
i�
 positionswhen a s
rum down is
alled.RolesThere are three primary roles in the S
rum development pro
ess:� The S
rum team: The team normally
onsists of 5-9 people. The team members de
ide how thework is arranged and how assignments are distributed. There are no set proje
t roles, everyoneshould be able to swap tasks with another member. The team is self-organized and the membershave a joint responsibility for the results.� Produ
t owner: The produ
t owner represents the
ustomer and ensures that the S
rum Teamis working e�e
tively from a business perspe
tive. The Produ
t Owner administers a Produ
tBa
klog, a to-do list, where all the spe
i�
ations for a produ
t are listed and prioritised. Beforeea
h Sprint, the highest prioritized goals are transferred to a Sprint Ba
klog. The Produ
t Ba
klogis visible to the whole organization so that everyone is aware of what to expe
t in future releases

21of the produ
t.� S
rum master: The S
rum Master meets with the team every day in brief meetings known asdaily s
rums. When someone from outside the proje
t has an issue to dis
uss with the team,the S
rum Master ensures that the team are disturbed as little as possible in their work. Afterea
h Sprint, the S
rum Master holds an evaluation meeting with the S
rum team, during whi
hexperien
es and
on
lusions are reviewed. The purpose of the evaluation meeting is to raise theteams level of knowledge and strengthen motivation prior to the next Sprint.The S
rum Pro
ess� Creating a ba
klog: The Produ
t Owner
ompiles requests and spe
i�
ations that are thebasis of the produ
t, su
h as any new fun
tionality or bug �xes. After goals have been de�ned,the spe
i�
ation is broken down into
hunks of work a
hievable in a sprint. The Produ
t Ownermakes a to-do list arranged a

ording to how market demands and
ustomer requests may
hangeover time and de
ides in what order any
hanges should be made and delivered. Ea
h sprintshould
reate in-part a working sub-se
tion of the produ
t. When it is time to start a new Sprint,the Produ
t Owner freezes the leading items on the to-do list and summons the S
rum Team toa meeting.� The sprint phase: Of the Sprints 15 to 30 days period, the �rst one or two days are set asideto
reate a Sprint Ba
klog. When the tasks have been determined, the Produ
t Owner releaseswork to the development team. From that point, the team works under its own responsibility. Ifthe team has been properly
omposed, the work should be self organising.� Daily S
rum: Every day, usually at the same time in the morning, the S
rum Master and theS
rum Team have a brief meeting. The purpose is to try and eliminate any restri
tions thatmay have developed within the group. Ea
h of the parti
ipants should in some way answer threequestions:1. What have you done sin
e the last meeting?2. What will you do between now and the next meeting?3. Is there anything preventing you from doing what you have planned?The �rst two questions give the parti
ipants an insight into how the proje
t is progressing. Thethird question provides a basis for problem solving that may range from damaged resour
es to

22organizational
hanges at the
ompany. Anyone may attend and listen at the meeting, but onlythe S
rum Master and the team members may have some input.� Demonstration and evaluation: Ea
h Sprint �nishes with a demonstration of fun
tioningsoftware. Attending at the demonstration will be the Produ
t Owner, users and possibly rep-resentatives of
orporate management. This is in e�e
t an evaluation meeting and the startingpoint for the next Sprint.Con
lusionLike XP, the fo
us of S
rum is signi�
antly dire
ted towards fa
ilitation of the method and the a
tivitiesof the team, whilst leaving the pro
esses of analysis, design and development in the hands of the expertsthat are using the method. This pra
ti
e
an be seen in most of the agile methods. Be
ause this andother similar methods are more
on
erned with their own pro
esses they have little to o�er in terms ofexpert
ontent that
an be appended to a design pattern.2.3.3 Model Driven Ar
hite
ture (MDA)About MDAThe Obje
t Management Group's Model Driven Ar
hite
ture is a standards driven pro
ess to build sys-tems from models using model transformations. A
omplete MDA spe
i�
ation
onsists of a platform-independent model (PIM), one or more platform-spe
i�
 models (PSM) and a set of interfa
e de�nitions,ea
h des
ribing how the PIM is implemented on a di�erent platform. MDA development looks at thefun
tionality and behaviour of a system, independent of the platform or platforms on whi
h it will beimplemented. Thus, it is not ne
essary to repeat the pro
ess of de�ning a system's fun
tionality andbehaviour when new platforms or te
hnologies are developed. With MDA, fun
tionality and behaviourare modelled only on
e[55℄.The whole ethos of the MDA is to design an ar
hite
ture and generate an appli
ation or systemfrom that ar
hite
ture. Therefore, MDA models must be extremely detailed: the appli
ation will begenerated from it, and will in
lude only those fun
tional
omponents that are expli
itly represented inthe model. MDA works by separating the business logi
 of an appli
ation (the
ode that implementsits fun
tionality) from the infrastru
ture in whi
h it is deployed. On
e
aptured, the business logi

anbe reused in other ways with other appli
ations, as long as they adhere to the standards. The MDAapproa
h
aptures business logi
 in reusable models that are written in a standard modelling language,su
h as UML. These models form the metadata des
ribing the stru
ture and
hara
teristi
s of a system.

23The metadata is then used by the MDA tools to generate and deploy the appli
ation.MDA Development Life Cy
leThe MDA development life
y
le is not mu
h di�erent from the traditional life
y
le of many devel-opment methods. Requirements are gathered and analysed, a design is
reated,
ode is written andthe system is tested and deployed. The major di�eren
e lies in the nature of the
omponents that are
reated during the development pro
ess. The
omponents are formal models that
an be understoodby
omputers[66℄. Figure 2.1 below illustrates the MDA development life
y
le.
Requirements
 Analysis
 Deployment
Testing
Coding

Low-level

design

Document
 PIM
 PSM
 Code
 Code

Figure 2.1: MDA Development Life
y
le[66℄The formal models of the MDA are:� PIM - des
ribes a software system that supports some business.� PSM - for ea
h spe
i�
 te
hnology platform a separate PSM is generated.� Code - ea
h PSM is transformed into
ode that �ts the platform te
hnology.The PIM, PSM and Code are shown in Figure 2.1 as artefa
ts of di�erent steps in the developmentlife
y
le and represent di�erent abstra
tion levels in the system spe
i�
ation.ModelsThe UML
ontains both stati
 and dynami
 modelling notation and
an be used to provide stati
 anddynami
 views a software system. However, MDA makes no distin
tion between stati
 and dynami
models. MDA regards di�erent diagrams in UML as being a view of the same model, if they are allwritten in the same language. That is, the MDA will make no distin
tion between a re
tangle thatrepresents a stati

lass in a
lass diagram and a re
tangle that represents an obje
t instan
e of a
lassin an intera
tion diagram. Models in MDA are not restri
ted to UML, for example, a Petrinet or ER

24model
ould be used to des
ribe a system[66℄. If a parti
ular modelling language is not
apable ofde�ning a spe
i�
 aspe
t of a system then more than one model will have to be used to de�ne thesystem.TransformationsThe MDA pro
ess as des
ribed in Figure 2.1 is very similar to traditional development where transfor-mations from model to model or model to
ode are done by hand. With MDA the transformations aredone by tools. Transferring a PSM to
ode is nothing new, there are several very sophisti
ated, andnot so sophisti
ated, tools on the market that will do this (Together[16℄, Visual Paradigm[85℄, RationalRose[61℄). What is new is transferring PIMs to PSMs. Figure 2.2 below shows the three major stepsin the MDA transformation pro
ess.
PIM
 Transformation

Tool

Code
PSM
 Transformation

Tool
Figure 2.2: MDA Transformation Pro
ess[66℄A transformation tool takes as input a PIM and returns as output a PSM. A se
ond transformationtool, or the same tool depending on the level of sophisti
ation, transforms the PSM to
ode. Withinthe tool(s) there is a transformation de�nition that des
ribes how the model should be transformed.Con
lusionWhat stands out about MDA is that it is driven by design, but more signi�
antly it uses tools totransform designs and generate
ode. MDA is not so mu
h a method, but a pro
ess to be usedin generating systems and any well-written modelling language
an be used to model a system. Ameta-modelling language is used to transform models to models and models to
ode. So long as themeta-modelling language is well-written in the same language as the model, a model
an be transformedby the transformation tool. MDA itself makes no distin
tion about how to analyse or put together amodel of a system, it leaves that up to the expert. However, MDA
an be used with the RUP or otheragile methods su
h as XP. Indeed, be
ause
hanging a model means
hanging the software, the MDAapproa
h helps support agile software development[66℄.MDA is a step
loser to the utopian goal of generating systems from reusable
omponents but isworking mostly at the generative programming level as dis
ussed by Czarne
ki[37℄, and not at a level ofgenerative design, whi
h is proposed in this thesis. For MDA to work, someone has to
reate an initial

25design for a proposed system, whi
h is then fed into a transformation tool. A tool designed to buildar
hite
tures from generative design patterns
ould be used to
reate the models that are fed into atransformation tool.2.4 SummaryIn the study on methods it is shown that a method is a way of using an ordered set of instru
tionsto sele
t and apply a number of te
hniques and tools to identify and analyse a problem and
onstru
ta solution to that problem. It is also shown that there are numerous development methods fromwhi
h to
hoose. Many of the methods viewed represent what their authors see as being good softwaredevelopment pra
ti
e. The study provided a summary of those methods that gave birth to the standarddesign notation, the UML. What is evident in many of the older Obje
t-Oriented methods is thatthe design notations from these methods, and the UML, are not used to their fullest extent withindesign patterns, parti
ularly state, obje
t intera
tion and use-
ase diagrams. The summary on obje
t-oriented methods found that there are signi�
ant similarities between patterns and methods. BothObje
t-Oriented methods and patterns have analysis, design and implementation details
ontained intheir do
umentation. With modern agile methods the similarities between patterns and methods is notas strong as it is with the older methods. Where a pattern has analysis, design and implementationdetail
ontained in its do
umentation, whi
h follows the life
y
le detail of some older methods, modernmethods do not
on
ern themselves with how to analyse or design a system.However, modern methods do have something to o�er in providing quality aspe
ts for a generativepattern. The following points represent pra
ti
es from these
ontemporary methods that
an be usedto do
ument generative patterns:� Se
tion 2.3.2
omments on developers who found older methods too bureau
rati
. As a result,many of the modern development methods are
ode-oriented rather than do
ument-oriented. Thisaspe
t
an be applied to a generative design pattern in that dis
ussions about the Problem andSolution aspe
ts of a pattern
ould be kept to a minimum. More emphasis
an be put intodesign and implementation, rather than analysis. In this respe
t, generative patterns
ould movetowards a more graphi
al notation than textual notation { however, this aspe
t is an issue forfurther investigation.� One aspe
t that stands out with agile methods is sour
e
ode. Again, as
ommented upon inSe
tion 2.3.2, many of the pra
ti
es of these agile methods
on
entrate on pra
ti
es that support

26
oding. Borrowing from this, more emphasis
ould be put into using sour
e
ode to demonstratethe usability of a generative pattern.� Providing more examples of sour
e
ode supports use of the quality aspe
ts of USDP/RUP dis-
ussed in Se
tion 2.3.1 in that di�erent views of an ar
hite
ture
an be used to demonstrate thegenerative
on
ept of a pattern. In this respe
t, several di�erent examples of sour
e-
ode
ouldbe used to explain how several patterns
an work together.� Design is a key aspe
t of design patterns and is used to emphasise the stru
ture of a pattern, yetdesign is used sparingly in many design patterns. The Rational Uni�ed Pro
ess makes
onsiderableuse of design te
hniques, parti
ularly the use-
ase diagram. From this it
an be
onsidered thatthe use-
ase is a useful modelling aspe
t that
an be used in a design pattern. The use-
ase
anbe used to illustrate a business aspe
t that is being demonstrated in a sour
e
ode example of
ollaborating design patterns.One of the fun
tional aspe
ts of agile methods is
exibility, in that methods
an be adapted to meetthe needs of di�erent proje
t situations. Based on the idea of thinking in terms of di�erent proje
tsituations and adapting to those, whi
h a

ounts for some of the
exibility of agile methods, it is
on
eivable that the same generative design patterns
an be rede�ned with alternative examples to
over a spe
i�
 software domain. For example, patterns that are aimed at desktop appli
ations
anbe de�ned with a di�erent set of examples to patterns that are aimed at, for instan
e,
lient / serverappli
ations { again, this aspe
t is an issue for further investigation.

27
Chapter 3UNDERSTANDING DESIGN PATTERN NOTATION3.1 Introdu
tionWithin the design pattern
ommunity there have
ome several stylisti
 forms of patterns | the most
ommon being the style used in the Design Patterns[45℄
atalogue. This format is often referred to asthe GoF Format (Gang of Four), whi
h is a referen
e to the four authors of the Design Patterns[45℄
atalogue. Another format is referred to as Alexandrian Form | the style of pattern written by theAr
hite
t Christopher Alexander[2℄, whose pattern language has inspired mu
h of the growth in writingdesign patterns. Yet another form, and one that is often used in non-software patterns and patternsthat are only dis
ussed in brief, is the Portland Form, whi
h is purely narrative.How patterns are written is only one fa
tor in understanding the nature of the pattern itself. This
hapter is an exploration of design patterns, explaining their origins, their purpose and their distin
tions.In attempting to understand the nature of design patterns, four di�erent pattern
on
epts are dis
ussed:Idioms, Design Pattern Catalogues, Pattern Systems and Pattern Languages. Also within this
hapter,the rationale behind pattern notation and how that notation should re
e
t the
ontext in whi
h thepattern is des
ribed is dis
ussed. Knowing why a pattern is des
ribed in a given way is important fordes
ribing new pattern types or refa
toring existing patterns.This
hapter
ontinues with a look at how elements of good pra
ti
e from within a diverse range ofdesign pattern types and styles
an be abstra
ted for the bene�t of de�ning a generative pattern. Asele
tion of pattern writers from di�erent software dis
iplines and pattern
on
epts is sele
ted for study.From this study the most fundamental notation is determined and sele
ted as being the type of notationthat
an be used in a generative pattern without
luttering the pattern with unne
essary detail.3.2 Patterns in Obje
t-Oriented Software3.2.1 The Pattern Con
eptThe
urrent use of the term `pattern' within the software
ommunity is popularised from the writings ofthe ar
hite
t Christopher Alexander[2, 3, 4℄ who wrote several books on the topi
 of patterns in urban

28planning. Although these books are ostensibly about ar
hite
ture and urban planning, many of the
on
epts
aptured therein are appli
able to many other dis
iplines, in
luding software development[6℄.Alexander proposed that urban development should be based on a
olle
tion of reusable patterns. Inthe software domain,
olle
tions of patterns
an be
ategorized by their stru
ture and intent. Based onstru
ture and intent, a Pattern System is di�erent to a Pattern Catalogue or Pattern Language, whi
hare de�ned by their spe
i�ed relationships expressed within the pattern
olle
tions.Ea
h pattern des
ribed by Alexander represents a single element in a hierar
hy known as a patternlanguage. Alexander's notion of a pattern is that a pattern des
ribes a problem whi
h o

urs over andover again in our environment, and then des
ribes the
ore of the solution to that problem, in su
h away that you
an use this solution a million times over, without ever doing it the same way twi
e[3℄.This indi
ates that a pattern is not a �xed entity and will provide, if required, a unique solution. Whatthis implies is that the patterns
an be modi�ed to suit individual needs without losing the essen
ethat is
entral to the pattern.3.2.2 IdiomsWhilst design patterns des
ribe general stru
tural problems, idioms are less portable when viewed at thelevel of a programming language. Idioms are the lowest level of abstra
tion in a pattern
lassi�
ation.Be
ause idioms are at a low level of abstra
tion they are spe
i�
 to a programming language. Theydes
ribe how to implement parti
ular
omponents, their fun
tionality, and their relationships to other
omponents in the language itself. They may also depend upon, or represent, features that are notpresent in other programming languages. For example, the pointer me
hanism in C++ that has no
orresponding feature in the Java programming language. Be
ause idioms are at the lowest level ofabstra
tion and deal with sour
e
ode, they represent a link between design and implementation.3.2.3 Pattern Catalogues { (Design Patterns)A pattern
atalogue is typi
ally a
olle
tion of related patterns. It subdivides the patterns into sepa-rate
ategories and may in
lude some amount of
ross-referen
ing between them[6℄. Design Patterns:Elements of Reusable Obje
t-Oriented Software[45℄ is a ben
hmark example of a pattern
atalogue andtypi�es the
on
ept of the Design Pattern in software.The motivation for design patterns and/or the pattern
atalogue is the
on
ept of software reuse. Asoftware design pattern names, abstra
ts, and identi�es the key aspe
ts of a
ommon design stru
turethat make it useful for
reating reusable obje
t-oriented systems[45℄. In a pattern language, the patterns

29are organised by the relationships between the patterns, whilst in a pattern
atalogue the patterns areorganised by some
lassi�
ation s
heme[84℄. The patterns in the Gamma[45℄
atalogue are dividedinto Creational, Stru
tural and Behavioural. These are subdivided by s
ope as being Class or Obje
t.The design pattern identi�es parti
ipating
lasses and instan
es, their roles and
ollaborations andthe distribution of responsibilities. The notation of the pattern des
ribes when it applies, whether it
an be applied in view of other design
onstraints and the
onsequen
es and trade-o�s of its use[45℄.The pattern provides graphi
al solutions using abstra
t modelling and exempli�es solutions with
odefragments (whi
h might be thought of as being equivalent to re
ommending the type of bri
ks andmortar to use in an Alexandrian solution). Unlike Alexander's pattern language, the Design Patterns
atalogue was not without pre
edent. It follows Alexander's prin
iples on patterns but adapts the genrefor the software domain.Gamma's pattern
atalogue
onsists of 23 patterns, whi
h
onform to a thirteen-point stru
ture:Rule Des
riptionName A name by whi
h the pattern is knownIntent The purpose of the patternAlso Known As A pattern of a similar nature but with a di�erent nameMotivation A s
enario that illustrates the design problemAppli
ability The situations in whi
h the pattern
an be appliedStru
ture A standard modelling notation, e.g. UMLParti
ipants The di�erent
lasses and obje
ts involved in the designCollaborations How the parti
ipants
ollaborateConsequen
es The way in whi
h the pattern supports its obje
tivesImplementation Pros,
ons, hints, te
hniques, language spe
i�
 issuesSample Code An illustration of how the pattern may be implementedKnow Uses Where the pattern has been applied in the real worldRelated Patterns Other patterns that
an be used in
ombination with this oneTable 3.1: Design Patterns' Notation[45℄

303.2.4 Pattern SystemsA pattern system (system ar
hite
ture) is an extended
on
ept of the pattern
atalogue, but is onestep removed from the
ompleteness of the pattern language. Some of the patterns de�ned in a patternsystem link together to form sequen
es, similar to those found in a pattern language, whilst otherpatterns within the system have no dire
t relationship to any other pattern. Therefore, those patternsthat have no relationship with other patterns within a pattern system represent an individual solutionto a problem within the
on�nes of that ar
hite
tural
on
ept.Although pattern languages are thought to be
omplete, they are not
reated
omplete; they evolve overtime from pattern systems. Likewise, a pattern system may evolve over time from a pattern
atalogue[6℄,indi
ating that some element of refa
toring may take pla
e within the patterns of a
atalogue.The
on
ept of the pattern system is a
ohesive set of related patterns that are organized into groupsand subgroups. A system des
ribes the inter-relationships between patterns and groups of patterns andhow they may be
ombined to solve more
omplex problems. The patterns in a pattern system needto
over a suÆ
iently broad base of problems and solutions to enable signi�
ant portions of
ompletear
hite
tures to be built[6℄.A pattern system is signi�
antly similar to a pattern language in terms of the relationships betweenpatterns. However, a pattern language requires that its
onstituent patterns
over every aspe
t of itsgiven domain. For example, in some given software domain a pattern language for that domain is
omputationally
omplete: at least one pattern must be available for every aspe
t of the
onstru
tionand implementation within that software domain | that is, there must be no gaps or blanks[20℄.Whereas, in a pattern system the patterns des
ribed may only
over
ertain aspe
ts of the givendomain | that is, in some given software domain, that domain will not be
omputationally
omplete.The pattern system des
ribed by Bus
hmann[20℄ separates patterns into two
ategories: those thatwill
reate a system ar
hite
ture and those that stand alone as design patterns. These patterns arethen sub-
lassi�ed by their intent. Bus
hmann follows both Alexander's and Gamma's prin
iples onpatterns, adapting the genre for the system ar
hite
ture domain.

31Bus
hmann's pattern system
onforms to the following stru
ture:Rule Des
riptionName A name by whi
h the pattern is knownExample An example of where the pattern is usedContext A situations to whi
h the pattern appliesProblem A des
ription of the problemSolution A brief des
ription of how the solution is a
hievedStru
ture A
omplete des
ription of the
omponents used, and any models thatmay aid in des
ribing
omponentsDynami
s A number of s
enarios that illustrate behaviourImplementation Guidelines for implementing the pattern. May be supplemented withabstra
t or
on
rete
ode examples.Example Resolved A dis
ussion of the implementationVariants Similar situations where the pattern
an be usedKnown Uses Where the pattern has been applied in the real worldConsequen
es The way in whi
h the pattern supports its obje
tivesSee Also Referen
es to related patternsTable 3.2: Bus
hmann's Pattern Notation[20℄In Bus
hmann's early writings on patterns[19℄ he had some alternatively named
ategories (See Table3.3 on the following page), thereby indi
ating an evolutionary pro
ess in how patterns are written anddes
ribed.This evolutionary pro
ess is indi
ative of the aim set out in this resear
h program in that standarddesign patterns will be provided with the additional stru
ture, whi
h will allow the patterns to evolveinto generative design patterns.

32Rule Des
riptionRationale The motivation for developing the patternAppli
ability When to use the patternClassi�
ation A pattern is
lassi�ed a

ording to its propertiesDes
ription Parti
ipants and
ollaborators in the pattern and the responsibilities andrelationships to other patternsDiagram A graphi
al representation of the pattern's stru
tureMethodology The steps for
onstru
ting the patternDis
ussion A dis
ussion of the
onstraints in applying the patternTable 3.3: Bus
hmann's alternative
ategories of Notation[19℄
3.2.5 A Pattern LanguageA pattern language
an be des
ribed as being more than just a
olle
tion of patterns. The patternlanguage written by Alexander explains how patterns should be applied to a greater problem thanthe problem solved by a single pattern. Alexander's book, A Pattern Language, also says that nopattern should be an isolated entity[3℄. Ea
h pattern
an exist in the world only to the extent that it issupported by other patterns i.e. the larger patterns in whi
h it is embedded, the patterns of the samesize that surround it, and the smaller patterns whi
h are embedded within it[3℄. A popular
li
h�e maysuggest that the pattern language is greater than the sum of its parts. For instan
e, any small sequen
eof patterns from this language is itself a language for a smaller part of the environment, i.e. a subset ofa higher order of the language. This small list of patterns is then
apable of generating, as Alexandersays, a million di�erent elements of that environment[3℄. When patterns are put together in this waythey
an
reate an in�nite variety of
ombinations and, therefore, an in�nite variety of solutions.Alexander also says that ea
h pattern is a three-part rule[3℄, whi
h expresses a relation between a
ertain
ontext, a problem and a solution. With this three-part rule we
an look at the patterns froma language in two ways:1. As an element in the world, ea
h pattern is a relationship between a
ertain
ontext, a
ertainsystem of for
es whi
h o

ur repeatedly in that
ontext, and some pro
ess that allow these for
esto resolve themselves. The for
es are the goals that are desired when applying the pattern. Forexample, the study of algorithms in
omputer s
ien
e, where the main for
e to be resolved iseÆ
ien
y or time
omplexity[70℄.

332. As an element of a language, a pattern is an instru
tion that shows how this
on�guration
anbe used over and over again, to resolve the given system of for
es, wherever the
ontext makes itrelevant[2℄.Alexander's pattern language
onsists of 253 patterns, all
onforming to the following seven pointstru
ture:Rule Des
riptionName A short meaningful name whi
h may be an indi
ation of the solutionPi
ture An ar
hetypi
al example of the solutionProblem A set of for
es that o

ur in a given
ontextContext Re
urring situations to whi
h the pattern appliesSolution Rules applied to resolve the given for
esDiagram The solution in the form of a diagramRelated patterns Higher/Lower order patterns whi
h
onne
t to the given patternTable 3.4: Alexander's Pattern Notation[3℄The stru
ture of patterns, the methods and the pro
esses surrounding them are not ex
lusive to ar-
hite
tural design. The interrelationship that exists between
ontext, problem, for
es, and solutions,makes Alexander's framework an ideal basis for
apturing other kinds of design knowledge.In Coplien's \A Generative Development-Pro
ess Pattern Language"[29℄, a pattern language that
anbe used to shape a new organization and its development pro
esses, is also de�ned by seven rules.However, there is no spe
i�
 rule for graphi
s, although graphi
s may appear within the o

asionalpattern. Coplien separates the for
es that de�ne the problem from the problem itself. He also introdu
esa
ontext that results from the pattern after it has been applied, and a set of reasons for using thepattern, des
ribed as a rationale (See Table 3.5 on the following page).

34Rule Des
riptionName A short meaningful nameProblem The problem in briefContext Re
urring situations to whi
h the pattern appliesFor
es A set of for
es that apply to the problemSolution Rules applied to resolve the problemResulting Context The result of applying the patternDesign Rationale Reasons for using the patternTable 3.5: Coplien's Pattern Notation for a Generative Development-Pro
ess[29℄The patterns introdu
ed by Coplien are inspired by Alexander's language and prin
iples. Indeed,some of the patterns in Coplien's pattern language are re�nements of Alexander's
ommuni
ation andorganizational patterns. For example:� The philosophy of establishing stable
ommuni
ation paths a
ross the industry has strong analo-gies with the Alexandrian patterns that establish transportation webs in a
ity (Web of Publi
Transportation[3℄). Here, the
on
ern for Coplien is the transportation of information betweenindividuals and groups.� Many of the organization patterns are re�nements of Alexander's
ir
ulation patterns whi
h de�nethe higher-order pattern (Cir
ulation Realms[3℄). This inspired the pattern \Shaping Cir
ulationRealms", whi
h a
ts as a building blo
k for other patterns in Coplien's language.Pattern languages are generative in nature in that the patterns that a given language
ontains generatesystems or parts of systems, or will shape the system ar
hite
ture in whi
h they are used[30℄. Coplienuses the English language as an analogy in whi
h he says the English language
an generate all possiblepapers in
onferen
e pro
eedings, so a pattern language
an generate all senten
es in a given domain[30℄.That is, the letters of an alphabet work together to form words, a
olle
tion of words form senten
es;senten
es form paragraphs and so forth. Viewed in this way, the pattern language works in the sameway as natural language.Non-generative patterns, su
h as those from a pattern
atalogue, are stati
 and passive. They maymake referen
es to other patterns or may be related in some way but they are not dependent on otherpatterns, they do not generate ar
hite
tures, and they only provide a solution to a problem in a givenarea.

353.2.6 Design Pattern Stru
tureBe
ause design patterns are primarily a
ommuni
ation tool, written within the
on�nes of a spe
i�

on
ept, it is important to have a more or less standard way of des
ribing them[64℄. However, manystylisti
 variants of Alexander's pattern des
ription are possible. Some are written in a literary stylelike Alexander's, whilst others favour a more detailed approa
h used in Design Patterns[45℄. Otherpatterns may adopt a totally di�erent stru
ture. The attribute shared by all these pattern stru
tures isjust that - stru
ture[109℄. The most popular format is that used in the Design Patterns
atalogue[45℄illustrated in Table 3.1.The pattern forms that exist in software di�er by the kind of template used to emphasize their message,although most forms
ontain the basi

ategories: name, problem, statement,
ontext, des
riptionof for
es, solution and related patterns[52℄, interspersed with elements spe
i�
 to the pattern form.However, a
omprehensive stru
ture for a pattern format should provide: a des
ription of best pra
ti
es,appropriate generality, eviden
e that the pattern re
urs, s
ope,
onstru
tiveness,
ompleteness, utility,examples, appropriate level of abstra
tion, la
k of originality, appropriate name and
larity[70℄. Theseelements are not ne
essarily headings to be in
luded within a pattern template, but represent elementsthat
ontain the overall
ommuni
ation
riteria for a well-de�ned pattern.Quite often, the di�eren
es in pattern types, su
h as Ar
hite
tural patterns, Design Patterns or Idiomsare in their
orresponding levels of abstra
tion[6℄. That is, the need to des
ribe the level of detailrequired for a
ertain pattern type. For example, a higher level pattern su
h as those for softwarear
hite
ture require more detail than lower level patterns su
h as idioms be
ause an idiom is alreadyspe
i�
 to a given area and only needs to des
ribe its appropriateness to that area.A pattern needs to
onvey a message relating to its
ontext in the real world and an important step inde�ning an appropriate pattern stru
ture for any given pattern
on
ept is the identi�
ation of a TargetAudien
e[79℄. On
e an audien
e has been identi�ed, patterns
an be written for that audien
e withan appropriate pattern stru
ture. For example, patterns written for the target audien
e of
ataloguessu
h as Pattern Oriented Software Ar
hite
ture[20, 99℄, (POSA) or Analysis Patterns[42℄
ould havea slightly di�erent stru
ture to patterns written for the target audien
e of the Design Patterns[45℄
atalogue.Meszaros and Doble[79℄ have written a number of patterns to assist in writing e�e
tive patterns. In thisthey de�ne a number of issues, des
ribed in Table 3.6, relating to the
ontent of a pattern or patterntype.

36Pattern For
eMandatory Elements Not all patterns require the same kinds of information to be e�e
tively
ommuni
ated.Present Capturing all elements regardless of need only
lutters many patterns.For a pattern to be truly useful, it must have a minimum set of essential information.These information elements are required to allow patterns to be found when required andto be applied when appli
able.If the ne
essary elements are missing, it be
omes mu
h harder to determine whether thepattern solves the reader's problem in an a

eptable way.There is no single
orre
t style or template for patterns; trying to impose one
ould sti
e
reativity and get in the way of e�e
tive
ommuni
ationReaders expe
t
ertain information to be present in a pattern. This is what di�erentiatesa pattern from a mere problem/solution des
ription.Optional Elements All patterns do not require the same kind of information to be e�e
tively
ommuni
ated.when Helpful Capturing all elements regardless of need only
lutters many patterns.Table 3.6: Meszaros' Criteria on Pattern Stru
ture[79℄The for
es within the pattern \Optional Elements when Helpful" reiterate the �rst item of the for
eswithin \Mandatory Elements Present", indi
ating that a pattern should
onvey a �nite amount ofinformation but
an be extended with elements a

eptable within that pattern's domain, when requiredto
onvey additional information.Patterns in the form adopted by Gamma, Bus
hmann, and other pattern writers are mu
h longer thanAlexander's so, although they share a
ommon literary style, they provide a more detailed sele
tionof
on
rete information. Table 3.4 represents the pattern stru
ture proposed within ar
hite
ture fordes
ribing towns and buildings, whilst Table 3.5 modi�es that stru
ture to des
ribe patterns relat-ing to a development pro
ess. For software and ar
hite
tural-software patterns, whose stru
tures aredes
ribed in Table 3.1 and 3.2, the template (the stru
ture of the pattern) is rede�ned to in
lude im-plementation details. The design pattern template used by Gamma serves to be more des
riptive thangenerative. However, design patterns of Gamma and other pattern writers
ould be rede�ned to makethem generative[11℄.A pattern needs to balan
e between providing suÆ
ient and insuÆ
ient understanding. If room isleft for interpretation, then di�erent readers may interpret the same pattern in di�erent ways, or maysee the pattern as being part of some other language. The impli
ation for the stru
ture of patternssuggests that the stru
ture or template for the pattern is subje
t to the intended use of the pattern[92℄.

37Therefore, in order to
reate generative patterns from standard design patterns a template appropriateto the intended use of the pattern is required, whi
h should re
e
t the generative pro
ess of the pattern.3.2.7 Narrative Form (Portland)All pattern forms are a narrative; they are a written des
ription of the knowledge and experien
eof experts in the �eld. Several forms of pattern writing have already been mentioned above whilstdis
ussing di�erent types of patterns. The Design Patterns[45℄
atalogue and the POSA[20, 99℄
ata-logues by Bus
hmann use what has be
ome known as the GoF Format and whi
h is used extensivelyin one variation or another. Organizational Patterns by James Coplien[29℄, dis
ussed above, use theAlexandrian form.One pattern form that has not been dis
ussed is Portland Form[35, 56℄, named as su
h be
ause theoriginators of the form
ome from Portland, Oregon, USA. Portland Form, unlike other forms, is apure narrative and is often referred to as a Narrative Form. Also, unlike other formats, the PortlandForm does not use a full-featured pre-de�ned template with spe
i�ed headings to dis
uss the knowledge
ontained in a design pattern. The writer of a pattern that is written in a Narrative Form may
hooseto write a pattern in a set layout, and all patterns written by that person may follow that layout.However, a di�erent pattern writer may
hoose to write with a totally di�erent format in the narrativestyle. Some patterns of the narrative style are written as a step-wise a

ount of utilizing the knowledgewithin[60℄, whilst others, su
h as the Che
ks Pattern Language[34, 31℄ and the Caterpillars Fate PatternLanguage[65, 31℄ are written in a few paragraphs des
ribing how to go about some task. Within patternsof this type, there may or may not be one or more headings that relate to a popular de�nition of apattern - the headings being Problem, Solution, Context as well as several other headings. Woolf hasused su
h headings in his Smalltalk ENVY/Developer[110℄ pattern language.What
an be seen in patterns of this style is a la
k of �ne detail. What is often being written aboutpatterns
an, in most
ases, only be des
ribed as an overview or abstra
t of what
ould be
ontainedin the pattern. However, many of the patterns written in this form are patterns for de�ning some formof pro
ess. The Caterpillar's Fate Pattern Language by Kerth[31℄ is a pattern language for makingthe transformation from Analysis to Design. In patterns of this type there will often be some elementrelated to a software pro
ess but there is no real software involved.Whilst patterns of this style provide good reading material for de�ning a software pro
ess, there areseveral
atalogues that have applied the style to software
omponents. Software
atalogues that arewritten in the Narrative Form retain the singular dis
ussion, but will often exemplify the dis
ussion

38with diagrams and in some
ases with
ode. The dis
ussion of ea
h pattern is based on the motivatingfa
tors of the pattern itself and any sub-headings that may be written into a pattern are relative tothat pattern only. For example, in the J2EE Design Patterns
atalogue by Crawford and Kaplan[33℄the pattern Servi
e to Worker in J2EE has the following sub-headings:� Models and Views� A
tions� The Dispat
her� The Front ControllerIn the same
atalogue, the pattern Composite View has a
ompletely di�erent set of sub-headings:� The Composite View Pattern� Implementing Composite Views� Reusing the Front Controller and Dispat
her� Building the Custom Tags� Using TemplatesThe patterns from this
atalogue
ontain
ode, tips and one or more diagrams. A notable feature ofthis
atalogue is that the patterns often
ontain more
ode than dis
ussion. However, in most
ases,the dis
ussion does
over vital aspe
ts of why the pattern is useful and what it will a
hieve, althoughhow it will a
hieve its goal is not dis
ussed in �ne detail, parti
ularly in respe
t of other patterns, whi
his
onsistent with the dis
ussion in most patterns.The EJB Design Patterns
atalogue by Marines
u[74℄ also embra
es the Narrative Form with mostlywritten dis
ussion, small snippets of
ode and the o

asional diagram. Although there are no set
ategories of dis
ussion as there is in the Alexandrian or GoF formats, Marines
u's dis
ussion of patternsdoes have some stru
ture.

39Most of the patterns by Marines
u
onform to the following stru
ture:� Name� Identify a need� Promote a question� Dis
uss the problem relative to the question� Bullet point issues raised from the dis
ussion� Promote a solution� Dis
uss the solution� Bullet point the bene�ts� Close the dis
ussionNot all the patterns have this exa
t stru
ture; some
ontain more of the stru
ture than others, andin varying levels of detail. For example the pattern Stored Pro
edures for Auto generated Keys has alengthy dis
ussion of the problem but does not bullet point the issues raised from the dis
ussion. TheUniversally Unique Identi�er for Enterprise JavaBeans (UUID for EJB) pattern has a short dis
ussionof the problem with no issues bulleted, a lengthy dis
ussion of the solution and no
losing
omment.The basis of this stru
turing is the identi�
ation of a problem and the formulation of a solution,whi
h represents the
onstituent parts of a popular de�nition of a pattern (Solution, Problem, Context,For
es). Although the patterns in this
atalogue provide a reasonable dis
ussion with some usefulinformation
ontained within the
ontent of that dis
ussion, the detail in this
atalogue does not mat
hup to the dis
ussion provided in other
atalogues su
h as Core J2EE Patterns[5℄, whi
h may be a resultof the limited way in whi
h patterns of the Narrative Form are dis
ussed.The
atalogue Server Component Patterns by V�olter[112℄ presents patterns in a very similar format tothat of Marines
u. However, V�olter has no spe
i�
 points relating to issues raised by the problem orthe solution. However, one interesting feature that V�olter presents in his patterns is a
artoon drawingthat summarises the pattern. It would be easy to dismiss this feature as irrelevant, but the
li
h�e doesmaintain that `a pi
ture paints a thousand words' and the drawings do add some weight to the limiteddis
ussion of the patterns. Although the drawings add an interesting feature to the patterns it is not

40always straightforward in making the
onne
tion between the drawing and the purpose of the pattern.When this is the
ase then the drawing is not adding signi�
antly to the
ontent of the pattern. Ifthis type of feature were to be added to the de�nition of a pattern then it would have to be free ofambiguity, whi
h would be diÆ
ult to maintain given the varying per
eptions that people may hold onusefulness of design patterns.3.3 De�ning a TemplateSo far in this
hapter a number of di�erent pattern formats, styles and templates have been dis
ussed,the purpose being to form an understanding of the pattern
on
ept. From this understanding it isenvisaged that a template for a generative design pattern
an be proposed, the template being thedi�erent notational se
tions in
luded for dis
ussion of the generative pattern itself. As
an be seenfrom this
hapter, di�erent people have di�erent ideas for what they in
lude in the patterns theyare dis
ussing. Ea
h of these individuals and groups of individuals has their own justi�
ation forwhat they dis
uss in a pattern. This
hapter has introdu
ed only a small proportion of the stylisti
variants that are available in the dis
ussion of design patterns. For example, there are a numberof Hypermedia[94, 95℄ design patterns that have a template similar to the GoF format as do manyHCI[60, 105℄, User Interfa
e[106, 114℄ and Multimedia[36℄ patterns.However, as
an be seen from the dis
ussion above, the di�erent templates used by various pattern writ-ers in
orporate many of the same named
ategories, whi
h
arry a similar dis
ussion or have
ategoriesof a similar dis
ussion, but are introdu
ed under an alternative name. For example, the GoF templatehas the heading Stru
ture whilst the Alexandrian template uses Diagram. Both headings have thesame intent in that they produ
e a graphi
al representation of the solution. V�olter's Server ComponentPatterns, although without named heading, uses a
artoon, whi
h is equivalent to Alexander's Drawing
omponent in his template.Table 3.7 lists a sele
tion of pattern writers and the notation that they use in des
ribing patterns:

41WritersHCI Hypermedia Multimedia Software User I'fa
e Web App OtherNotation [60, 105℄ [46, 72, 94℄ [36℄ [20, 45, 48, 102℄ [27, 106, 114℄ [5, 50, 81, 103℄ [3, 29℄Also Known As - - - [20, 45℄ - - -Appli
ability - [46, 72℄ - [45, 102℄ - - -Appli
ations - [46℄ - - - - -Ba
kground [60℄ - - - - - -Bad Example [60℄ - - - - - -Bene�t/Drawba
ks - - - [102℄ - - -Collaborations - [46, 94℄ - [45℄ - - -Comments - - [36℄ - - - -Consequen
es - [46, 94℄ - [20, 45, 48℄ [27℄ [5, 50, 103℄ -Consider ... [60℄ - - - - - -Context [105℄ - - [20, 48℄ [27℄ [50, 81℄ [3, 29℄Des
ription - - - [102℄ - - -Design Rationale - - - - - - [29℄Diagram - [46℄ - - - - [3℄Dynami
s - - - [20℄ - - -Example - - - [102℄ - - -Example (Graphi
) [60, 105℄ [72℄ [36℄ [20℄ [106, 114℄ - -Example Resolved - - - [20℄ - - -For
es [105℄ - - [48℄ [27℄ [5, 50, 81, 103℄ [29℄How - - - - [106℄ - -Implementation - [72, 94℄ - [20, 45, 48, 102℄ - [50, 81, 103℄ -Table 3.7: Varying Uses of NotationContinued on next page.

42Varying Uses of Notation
ontinued: WritersHCI Hypermedia Multimedia Software User I'fa
e Web App OtherNotation [60, 105℄ [46, 72, 94℄ [36℄ [20, 45, 48, 102℄ [27, 106, 114℄ [5, 50, 81, 103℄ [3, 29℄Introdu
tion - - - [102℄ - - -Intent - [46, 72, 94℄ - [45℄ - [103℄ -Known Uses - [46, 94℄ - [20, 45℄ [27℄ [50℄ -Motivation - [46, 72, 94℄ - [45℄ - - -Notes [105℄ - - - - - -Parti
ipants - [46, 72, 94℄ - [45℄ - [5, 103℄ -Pi
ture - - - - - - [3℄Post-
ondition - - [36℄ - - - -Pre-
ondition - - [36℄ - - - -Problem [60, 105℄ [94℄ [36℄ [20℄ [27, 114℄ [5, 81, 103℄ [3, 29℄Properties - - - [102℄ - - -Purpose - - - [102℄ - - -Rationale - [46℄ - - - - -Related Patterns - [72℄ - [45, 48, 102℄ [27℄ [5, 50, 81, 103℄ [3℄Resulting Context [105℄ - - - - [81℄ [29℄Sample Code - - - [45, 48℄ - [5, 50, 103℄ -See Also - - - [20℄ - - -Solution [60, 105℄ [72, 94℄ [36℄ [20, 48℄ [27, 114℄ [5, 50, 81℄ [3, 29℄Stru
ture - [46, 94℄ [36℄ [20, 45℄ - [5, 103℄ -Synopsis - - - [48℄ - [50℄ -Thumbnail - - - - [27℄ - -Table 3.7 Varying Uses of Notation - ContinuedContinued on next page.

43Varying Uses of Notation
ontinued: WritersHCI Hypermedia Multimedia Software User I'fa
e Web App OtherNotation [60, 105℄ [46, 72, 94℄ [36℄ [20, 45, 48, 102℄ [27, 106, 114℄ [5, 50, 81, 103℄ [3, 29℄Variants - - - [20, 102℄ - - -When to Use - - [36℄ - [106, 114℄ - -What - - - - [106℄ - -Why - - - - [106, 114℄ - -Table 3.7 Varying Uses of Notation - ContinuedAlthough the list of notations des
ribed in Table 3.7
ould be extended further by in
luding notationsused by all known pattern writers and known
atalogues, it is felt that extending the table would notadd to the goal of �nding an a

eptable list of usable notations for a generative pattern. Some of thenotations that are displayed in the above table represent similar information but have been dis
ussedunder an alternative name by di�erent pattern writers. For example, Problem, whi
h is used by themajority of writers listed and Introdu
tion, used by Stelting[102℄ are essentially the same | they dis
ussa re
urring problem. Synopsis by Grand[48, 50℄ and Ba
kground by Hong[60℄ also share similar intentin their detail in that they provide an overview of the patterns in whi
h they o

ur. Although di�erentpattern writers use di�erent headings in their notation, they are not providing dissimilar informationin what they write under those spe
i�
 headings. Therefore in
luding all notations would only add tothe task of �ltering out related and lesser-used notations.A unilateral de
ision
ould be made on what notation to in
lude in a generative design pattern, howeverit would be useful to �nd out what di�erent notations have to o�er in the way of des
ribing a designpattern. From this understanding of what
an be des
ribed as good pra
ti
e in des
ribing patternsa de
ision
an be made on what to in
lude in the notation of a generative pattern. Some notationsdisplayed in the above table are obs
ure and only used by a single pattern writer, whilst only a smallminority of writers may use some notations. Other notations are used by a majority of writers and aretherefore per
eived as being an important fa
tor in des
ribing spe
i�
 types of pattern. In the
ase ofSolution and Problem, these are indi
ative of a
ommon de�nition of a pattern | that it is a Solutionto a Problem in a Context. Others su
h as Sample Code are indi
ative of patterns that
an providethis type of information.

44Two
riteria
an be used for �ltering out related and obs
ure notation:1. Amalgamate related information.2. Remove obs
ure and seldom used notation.From this position a portfolio of notation
an be a
quired that will serve as an appropriate sour
e ofinformation for des
ribing a generative pattern. The notation that is left in the list will have beendevised by experts, be used by multiple experts and used in a range of di�erent pattern styles.Firstly, related information
an be amalgamated into a single notation. The reason for amalgamatingnotation �rst is that some amalgamated notation may still
ome under the
riteria of being obs
ureand seldom used. For example, \See Also" and \Consider..." both represent similar information aboutthe patterns they des
ribe. \Consider..." is in a HCI pattern and \See Also" is in a Software pattern.Although both of the pattern types relate to software through design and development, they don'tadd to the general information of an individual design pattern | they are only dire
ting the reader tosome other pattern. Although they have been amalgamated, they
an still
ome under the
ategory ofobs
ure and seldom used, as there is still only a small minority of writers who have used this type ofnotation.For the purpose of
larity, any amalgamated notations are given the name of one of the notations fromthe group that is amalgamated. In all
ases the most popular name has been
hosen to represent thegroup of amalgamated notations. For example, in the group `Consequen
es', Consequen
es is used bynine of the pattern writers, whilst di�erent writers use the other notations in the group sporadi
ally.

45Table 3.8 represents the related notations that
an be amalgamated into single notations.Notation Original Notation About the Notation NotesRelated Consider ...[60℄ Provides a list of patterns that The notation refers to other patterns thatPatterns
omplement the existing pattern. provide a similar solution. In the
ase ofRelated Patterns Names other patterns, whi
h
an be used Consider... the notation provides a list of[3, 5, 27, 45, 48℄ with the existing pattern. More often other patterns but does not indi
ate a[50, 72, 81, 102℄ names patterns that perform a similar
ollaboration or variation. Both Bus
hmann[103℄ fun
tion to the existing pattern [20℄ and Stelting[102℄ have dual entries.See Also[20℄ A referen
e to patterns that solve similar It is felt that a variation of a pattern isproblems, and to patterns that re�ne the a pattern in its own right that holds someexisting pattern
onne
tion to the existing pattern.Variants[20, 102℄ Other patterns that are asso
iated with orare variations of the existing patternIntent Ba
kground[60℄ Some rudimentary information des
ribing The notations that
ome under Intent, as theythe need for the pattern. are used by most writers, represent some formIntent[45, 46, 72℄ A short statement relating to design issues of introdu
tion to the pattern. The brief[94, 103℄ or problems that the pattern may address. des
riptions that are used under this notationIntrodu
tion[102℄ A des
ription of the problem where the are providing an overview of the pattern relatingpattern might be used as a solution. to its purpose and what
an be a
hieved throughPurpose[102℄ A short statement relating to design issues its use. Some writers have in
luded informationor problems that the pattern may address. about the problem and several have brie
ySynopsis[48, 50℄ A brief des
ription of the pattern that des
ribed a solution. Whilst most pattern
onveys the essen
e of the solution. writers provide just a few lines of introdu
tion,Thumbnail[27℄ Brief notes on the problem and solution Stelting[102℄, provides a deeper insight into theWhat[106℄ A short statement of design issues problem and solutionTable 3.8: Amalgamating NotationContinued on next page.

46Amalgamating Notation
ontinued:Notation Original Notation About the Notation NotesExample Diagram[3, 46℄ A pi
ture or sket
h that shows the Bus
hmann[20℄ has a written explanation of(Graphi
) possible output from using the pattern. the example but always provides a sket
hExample[20, 114℄ An example in the form of a graphi
. to ba
k up his argument. Alexander[3℄ shows[36, 60, 72, 106, 105℄ Can be a sket
h or a pi
ture. how the pattern
an be applied and how itPi
ture[3℄ A snapshot of a known example of has been applied. Some writers provide anwhere the pattern has been used. image but do not put it under a heading.Comments Comments[36℄ Additional
omments about the pattern Tidwell's[105℄ Notes are more ane
dotal whilstthat have no pla
e in the main notation Cybulski's[36℄ Comments and Bus
hmann's[20℄Example Resolved Aspe
ts about the pattern that are not Example Resolved are more additional to the[20℄
overed in the main notation. existing notation. Mi
rosoft[81℄, uses ResultingNotes[105℄ A dis
ussion about the environment Context to dis
uss bene�ts and liabilities.in whi
h the pattern
an be appliedFor
es Appli
ability[45℄ Situations in whi
h the pattern
an be In most
ases, For
es
an be seen asapplied. pre-
onditions for the solution. An alternativeFor
es[105, 48, 27℄ Considerations that lead towards a view
ould see For
es as being a list of[5, 50, 81, 103, 29℄ solution, often written as a number requirements. Therefore For
es
ould be seenof one line statements. as being a short form of requirements analysis.When to use[36℄ Situations in whi
h the pattern is Analysis is a life-
y
le feature that is mentionedappli
able. in Chapter Two and in
luded as part of thegenerative pattern in Chapter SixTable 3.8 Amalgamating Notation - ContinuedContinued on next page.

47Amalgamating Notation
ontinued:Notation Original Notation About the Notation NotesConse- Bene�ts/ The
onsequen
es of using the pattern The various notations under Consequen
es are-quen
es Drawba
ks[102℄ and issues that may arise from its use. dis
ussing the bene�ts and drawba
ks of usingConsequen
es[46℄ Trade-o�s, results and issues of the pattern. An alternative way of looking at this[45, 94, 20, 48, 27℄ using the pattern, in
luding any element of notation is to see it as a
on
lusion to[5, 50, 103℄ bene�ts and drawba
ks. the des
riptive nature of the pattern. However, ifRational[46℄ Bene�ts of using the pattern. Consequen
es is viewed this way then it shouldWhy[106, 114℄ The bene�ts the pattern will bring. appear at the end of the pattern des
ription.Resulting Context The expe
ted results of using Germ�an[46℄ uses both Consequen
es and Rational.[105, 81, 29℄ the pattern.Problem Context[20, 48, 105℄ The situations in whi
h a problem There are di�erent interpretations on what is[27, 50, 81, 3, 29℄ may exist, or a des
ription of a de�ned as being Context and Problem. Grand[48℄problem addressed by the pattern. states dire
tly that Context \des
ribes the problemthat the pattern addresses". Bus
hmann[20℄ usesDes
ription[102℄ A dis
ussion of the pattern and/or one line of text to des
ribe the
ontext in whi
h thethe problem. pattern applies, and follows up with a long passageon the Problem. Grand[48℄ on the other hand usesMotivation[46, 72℄ A dis
ussion of the problem and Context to des
ribe the whole problem and follows[94, 45℄ the situations in whi
h the problem up with a signi�
ant dis
ussion of For
es. Coldeweymight o

ur. [27℄ and Mi
rosoft[81℄ use a short passage forContext, whi
h des
ribe a number of problems, thenProblem[60, 105℄ A general dis
ussion of a problem des
ribes the Problem as a question. Tidwell[105℄[94, 36, 20, 27℄, [29℄ that may apply in a development also asks a question of the Problem but only has[114, 5, 81, 103, 3℄ pro
ess one or two senten
es relating to the Context.Table 3.8 Amalgamating Notation - ContinuedContinued on next page.

48Amalgamating Notation
ontinued:Notation Original Notation About the Notation NotesParti
ipants Collaborations[45℄ How the various parti
ipants Most pattern writers that use this notation give a[46, 94℄ in the pattern
ollaborate. brief des
ription of the parti
ipants. Gamma[45℄Parti
ipants[45℄ Classes and Obje
ts that Rossi[94℄ and Germ�an[46℄ follow this up with a[46, 72, 94, 5, 103℄ parti
ipate in the pattern few senten
es on how the parti
ipants
ollaborate.It is interesting to note that Stelting uses thenotation, `Implementation' to dis
uss parti
ipants.Implementation Implementation Issues that may arise from Several pattern writers have separate se
tions for[81, 46, 72, 94, 103℄ implementing this pattern. Implementation and Sour
e Code. However, these[20, 45, 48, 102℄ May
ontain sample
ode to notations are
omplementary as they both relateillustrate the issue. to the implementation of the pattern. It
an alsoSample Code[45℄ A
oded example, often be observed that writers are often dis
ussing[5, 50, 48, 103℄ a

ompanied by the
onsequen
es of implementing the pattern.implementation issues. Stelting's[102℄ version of `Implementation' is toExample[102℄ A
oded example, with dis
uss parti
ipants of the pattern.instru
tions. Bus
hmann uses Dynami
s to dis
ussDynami
s[20℄ Three typi
al examples of the implementation details.pattern in useKnown Uses Appli
ations[46℄ Some known appli
ations of Germ�an[46℄ uses Appli
ations and Known Usesthe pattern inter
hangeably.Known Uses[46℄ Some known appli
ations of[20, 45, 27, 50, 94℄ the patternTable 3.8 Amalgamating Notation - ContinuedFrom the notations that have been
ollated, as used by the referen
ed
olle
tion of pattern writers,thirty-seven of the original forty-six notations, des
ribed in Table 3.7, have been amalgamated into alist of ten distin
t notations. Ea
h of the ten notations is derived from notations with similar intent andfun
tionality and therefore
an be stated as an individual
omponent in a design pattern. It is felt that\For
es" and \Problem" are inexorably linked and as su
h, For
es
ould be stated or des
ribed as partof the dis
ussion of the problem. Alexander[3℄, who is
ited in most dis
ussions on patterns, does not usethe notation For
es in his patterns, although he does refer to the term for
es on several o

asions. Theuse of the notation For
es stems from early pattern writers who have dis
ussed Alexander, and made

49strong referen
es to the term For
es in their des
ription of Alexander's notation Problem. Lea[69℄, forexample, states of Alexander's Problem notation, \A des
ription of the relevant for
es and
onstraints,and how they intera
t". Hen
e, several pattern writers have taken it upon themselves to separateout For
es from Problem, in
luding Coplien[29℄ | Table 3.5. In an attempt to simplify patterns andrewrite them to be more a

essible to novi
e users, For
es and Problem will be uni�ed under thenotation Problem.From the original
olle
tion of pattern notations, as listed in Table 3.7, there are still nine notationsto
onsider. Ea
h of these nine notations is individual in nature and will not �t neatly into any of thenotations of the amalgamated list. For example, Pre-Condition and Post-Condition
ould �t in withComments, but Pre-Condition
ould also �t into Intent, For
es or Problem. Therefore it seems �tting to
onsider any remaining notation on its own merit. Consideration for the remaining notations is based ontheir frequen
y of use by the pattern writers. The
riterion for retaining any given notation is that it isused by the majority of writers. Also taken into
onsideration at this point is the amalgamated notation.As stated earlier, there are two
riteria for �ltering out notation: similarity and obs
urity. Some of theamalgamated notation is still obs
ure and therefore will be �ltered out. There are ex
eptions to therule for �ltering out obs
ure notation. For example, Dynami
s[20℄, although an obs
ure notation, isa quality driven
on
ept of a pattern. For a pattern to be a

epted as a pattern it has to have threeknown uses and Dynami
s, as used by Bus
hmann[20℄, provides three examples of using the pattern.Table 3.9 below lists the notation that is not
onsidered for use in the future de�nition of a generativepattern:Notation About the Notation NotesAlso Known As[20℄ Other names for the pattern. Only used in the
atalogues of Gamma[45℄ and Bus
hmann[20℄, two early[45℄ pattern writers. Adds nothing to the pattern in question and attra
tsfew entries in their
atalogues, parti
ularly that of Bus
hmannTable 3.9: Reje
ted NotationContinued on next page

50Reje
ted Notation
ontinued:Notation About the Notation NotesBad Example[105℄ Pla
es where the pattern has been An obs
ure notation that is only used by one patternapplied but is not user friendly writer. May be appropriate for HCI patterns, but not forsoftware patterns. However, for software patterns thistype of notation
ould be useful in an Anti PatternDesign Rational[29℄ Reasons for using the pattern. Used by Coplien[29℄, Table 3.5, in his Development Pro
esspattern language. Not stri
tly a software based notation.Could have been amalgamated with Comments, Intent orFor
es as it provides some ba
kground information.How[106℄ A des
ription of how the pattern
ould Used by only one pattern writer. It
ould be amalgamatedbe used. with Implementation as it
ontains, among otherinformation, instru
tions on how to apply the pattern.Post Condition[36℄ What the artefa
t to whi
h the pattern Post Condition represents something of a
on
lusion, whi
hhas been applied should look like after all good do
umentation should have. However, thisappli
ation of the pattern. notation is only used by one pattern writer, and
an bestated as part of the Implementation details.Pre Condition[36℄ Conditions that should exist before the Pre Condition des
ribes what needs to be in pla
e beforepattern is applied. the pattern
an be applied. It is diÆ
ult to as
ertain as towhether this notation should �t in with Intent, Problem,For
es or none of these notations.Properties[102℄ The purpose/
lassi�
ation of the pattern. Used by only one pattern writer. See belowTable 3.9 Reje
ted Notation - Continued

51Table 3.10 below lists the amalgamated notation that is not
onsidered for use in the future de�nitionof a generative pattern:Amalgamated Notation (Reje
ted)Example (Graphi
) Used by almost half of the sele
ted pattern writers but not signi�
antly by writers where software
odeis being
onsidered. Bus
hmann[20℄ uses a graphi
 to emphasise a point and Germ�an[46℄ uses a diagramto show parti
ipants, whi
h are not, in most
ases,
lass based
omponents. Other pattern writers, are forthe most part, showing a desired or �nished produ
t as a result of applying the pattern. It is thereforefelt that an example graphi
 would not add signi�
antly to a software based pattern.Comments Used by only a small number of the sele
ted pattern writers. Comments are often only used to providesome additional ba
kground information. Any vital information about a pattern
an be written into themain
ontent of the pattern itself. In Bus
hmann's[20℄
ase, where he uses Resulting Context, this
anbe seen as something of a Con
lusion and
an be built into the implementation details of a pattern or
an be written into a
on
lusion to the pattern do
ument. The notation Consequen
es is seen assomething of a
on
lusion and would be an ideal pla
e to �t any meaningful
omments.Known Uses Known Uses is only used by a small number of the sele
ted pattern writers. This, in the �rst instan
e,seems to be a problem in the des
ription of some patterns in that this notation is not
onsistently usedthroughout pattern writing. Known Uses is one of the a

epted prin
iples of a pattern in that it shouldhave as a minimum three known uses to be
onsidered a pattern. However, some pattern writers useexamples (graphi
s) to show where a pattern is being implemented | but not always three examples.As just indi
ated, Known Uses is a prin
iple
on
ept of a pattern and needs to be retained in someform. However, there are no known uses of generative patterns as they are presented in this thesistherefore, this notation is removed in name. However, the
on
ept of three known uses will be presentedunder the name of Dynami
s. That is, Dynami
s, as will be used in a Generative pattern, will representthree examples of generative patterns rather than three known uses of generative patterns.Table 3.10: Reje
ted Amalgamated Notation
From the original list of used notations des
ribed in Table 3.7, seven notations have been removedfrom
onsideration for use in a Generative pattern on the grounds that they are obs
ure. Of the ninenotations that were
reated through amalgamation, three have been dis
arded on the grounds that theamalgamated notation is still obs
ure. However, there are some obs
ure notations in
luding those notyet
onsidered (Dynami
s and Stru
ture) that deserve spe
ial
onsideration.

52� Dynami
s[20℄, although an obs
ure notation, is a quality driven aspe
t of Bus
hmann's[20℄ designpatterns. For a pattern to be a

epted as a pattern it has to have three known uses and Dynami
s,as used by Bus
hmann[20℄, provides three examples of using the pattern. It would be a fault inthe notation to spe
ify generative patterns in a dynami
 way and not
onsider using Dynami
s asa heading within that notation. Dynami
s
an be amalgamated with Implementation as indi
atedin Table 3.8 therefore, Dynami
s will be used as the main notation for providing three di�erents
enarios of how two or more patterns will work together, whilst Implementation will be theheading for the in
luded sour
e
ode.� Stru
ture, like Dynami
s,
omes under the
ategory of obs
ure. However, Stru
ture in softwaredesign patterns represents a design notation, often written using a modelling notation su
h asUML. One of the key aspe
ts of a design pattern is design and although Stru
ture is not used bythe majority of pattern writers, a software design pattern is not a pra
ti
al solution to a designissue without the design notation to demonstrate how the problem is being solved. ThereforeStru
ture has to be in
luded as an element of notation in a design pattern.� Parti
ipants also
omes under the
ategory of obs
ure. However, it would be extremely diÆ
ult todis
uss a software pattern and not dis
uss its parti
ipants. Therefore, the notation Parti
ipantsneeds to be in
luded in a pattern in some form. In this respe
t, Parti
ipants is to be in
luded ina pattern as a sub-heading within the Implementation aspe
ts of the pattern - See Chapter Six.� In the
ase of Properties[102℄, Properties is used by only one of the listed pattern writers, and is
onsidered to be an overlooked aspe
t of a software pattern. The notation `Properties' refers tothe
lassi�
ation and s
ope of a pattern. Gamma[45℄ de�nes ea
h of his patterns by
lassi�
ationand s
ope but does not dis
uss this under a notation. Although the use of Properties as a notationis extremely limited,
lassifying patterns is an important fa
tor of de�ning good quality softwaredesign patterns. Again, although Properties will be �ltered out by name, for a Generative pattern,the properties of a pattern will be revealed by the relationship that any given pattern has withanother pattern - See Chapter Four.The only notation not yet
onsidered from the original forty-six notations listed in Table 3.7 is Solution.Solution is the most popular of the do
umented notations, used by fourteen of the nineteen listed patternwriters. Of the four software pattern writers, it is only used by two of them. It is interesting to notethat Solution is not used in the Design Patterns[45℄
atalogue despite the authors indi
ating that apattern has four essential elements, Solution being one of them. As the most popular of the notations

53listed, Solution will be used in the de�nition of a generative design pattern. This links in with theProblem notation in that a pattern is often de�ned as being a solution to a problem { it is �ttingtherefore, that both these notations are to be used.From the original list of forty-six there are a total of nine notations that represent a list of headings that
an be adequately used to des
ribe a generative design pattern. The list represents the most signi�
antnotations that are used by the majority of pattern writers in des
ribing a design pattern and thosenotations that are not widely used.Table 3.11 below represents the list of nine notations that will be used in de�ning a Generative pattern.The order of the list at this point is not representative of the format for a generative pattern. Formattingof the pattern will be
onsidered in Chapter Six.Notation RationalConsequen
es A
on
lusion to the pattern do
ument, highlighting any advantages or disadvantages of using the pattern.Certain issues may arise from using this pattern therefore they should be dis
ussed at this point.Dynami
s Three examples of generative patterns in use, with instru
tions on how to implement the pattern.Can be linked to Implementation to give a
omplete overview of how patterns are
ollaborating.Implementation Examples of sour
e
ode showing how patterns work together. Elements of Stru
ture (design)
an bein
luded to illustrate how the Parti
ipants of the pattern
ollaborate.Intent Intent represents an introdu
tion to the pattern. It
an des
ribe the origins of the pattern or the need forthe pattern itself. It may outline di�erent Problem s
enarios or a Solution that will
ome from using thepattern. A design pattern is a do
ument of good pra
ti
e and all good quality do
uments will or should
ome with an introdu
tion. Intent
an �ll the pla
e of an introdu
tion in a design pattern.Table 3.11: A

epted NotationContinued on next page

54A

epted Notation
ontinued:Notation RationalParti
ipants The individual
omponents that parti
ipate in the de�ned stru
ture of the pattern. Parti
ipants
an bedis
ussed within a pattern as a sub-heading of the notation Implementation. Within the notation ofParti
ipants, how ea
h
omponent
ollaborates
an also be dis
ussed.Problem A problem that
an be addressed by the pattern. Amalgamated with Context and For
es throughinterdependen
y. A Solution that is provided by the pattern is derived from a spe
i�
 Problem assignation.A Problem is de�ned by the Context in whi
h it arises and the For
es that drive the Problem. Any
hangein Context or For
es reveals a new Problem or leads to an alternative Solution. Ea
h example in agenerative pattern will require its own Problem spe
i�
ation.Related Patterns In the
ontext of a Generative pattern, Related Patterns refers to patterns that will
ombine with theexisting pattern, and not to patterns that represent a similar solution. See Chapter Four.Solution The Solution is a resolution of the de�ned problem. A Solution is unique to a problem, therefore, ea
hexample in a Generative pattern will require its own problem spe
i�
ation. Although the Solution given inea
h example may be similar, ea
h will be di�erent based on the de�ned problem.Stru
ture Stru
ture represents the design
onsiderations for the spe
i�
 Solution to the de�ned Problem. If a patternis de�ned with three examples, then ea
h example should be supported by the appropriate design stru
ture.In order to
onvey alternative design stru
tures for the pattern, alternative Problem/Solution pairingsshould be presented.Table 3.10: A

epted Notation ContinuedThe main issue in de�ning a suitable notation for design patterns is interpretation. As has been seenin this dis
ussion, di�erent pattern writers have pla
ed their own interpretation on how to des
ribea pattern. Some of the interpretation used has a
ommon theme, whilst others are unique to anindividual, or pattern style or type. The de�ning fa
tor in des
ribing a pattern is
onveying relevantinformation about the knowledge represented in a pattern. Meszaros and Doble[79℄, see Table 3.6,des
ribe the issues relating to de�ning a pattern, and their main issue is not
luttering the patternwith unne
essary detail. However, as they
onvey, spe
i�
 information needs to be present within thepattern or the reader will not be able to determine if the pattern will solve their problem. The listof headings in Table 3.11 are drawn from a sele
tion of experts in their �eld and together provide therelevant information about a pattern without
luttering the pattern with unne
essary detail. How theseheadings and relevant information are applied to a pattern is dis
ussed in Chapter Six.

553.4 SummaryThe study of design patterns has looked into pattern origins and the di�erent pattern styles andabstra
tions that have emanated from the
on
ept. The patterns that have now been de�ned rangefrom
ode spe
i�
 patterns (Idioms), to pattern languages written for a given
ontext (Ar
hite
ture,Pro
ess, Software). An integral part of the study of design patterns sought to gain an understandingof the rationale behind a pattern notation. The output from this study lists four di�erent patternabstra
tions (Idioms, Catalogues, Systems and Languages) and three di�erent pattern styles (GoF,Portland and Alexandrian).All the di�erent patterns
onsidered, whether they be type abstra
tions or parti
ular styles, are alltext based patterns. However, there are some patterns that have a high degree of graphi
al notation.The user interfa
e patterns by Hong and Tidwell use s
reenshots to emphasise how the pattern
an beapplied or where they should be applied. Larman also uses a high degree of design graphi
s (UML) indemonstrating Analysis Patterns. As a notation, graphi
s
an be applied if it will serve the purpose ofdemonstrating the uses of the pattern. Cooper, like Hong and Tidwell uses s
reenshots to demonstratethe output of using a pattern. It is not in
on
eivable that a design pattern
ould be purely graphi
al,in that there is a minimum amount of text in the pattern and the majority of the pattern is graphi
sand design notation, however, no eviden
e has been found to suggest patterns of su
h nature exist.It is also determined within this study that design patterns should be stru
tured to the
ontext in whi
hthey are being written and the audien
e at whom they are aimed. Therefore, spe
i�
 types of patterns(HCI, Pro
ess, Software) have alternative notations. However, di�erent types of patterns have manysimilarities and it is these similarities that de�ne the overall
ommuni
ation
riteria for a well-de�nedpattern. In
ompleting this study a pattern notation has been abstra
ted that represents the de�nitivenotation used by experts in pattern writing and it is this notation that will be used for de�ning agenerative design pattern.

56
Chapter 4RELATIONSHIPS BETWEEN PATTERNS4.1 Introdu
tionThere are potentially hundreds of patterns that
ould be rede�ned as generative patterns, whi
h withinthemselves
ould de�ne many hundreds of dynami
 relationships to the other patterns. It would,therefore, be appropriate to produ
e a standardised way of de�ning the relationships between
olle
tionsof patterns | the obje
tive being that a pattern de�ned or rede�ned as generative by any givenindividual,
an be read and understood by any other pattern reader, writer or developer, in
ludingnovi
e developers.The fo
us of many resear
h papers has been on the patterns des
ribed within the Design Patterns[45℄
atalogue. These patterns are a

epted by many in the software industry as being ben
hmark patterns,and have been the in
uen
e for many other pattern writers. There are hundreds of software patternspublished in many di�erent texts but the patterns de�ned by Gamma and
olleagues are probablythe best known and therefore make an ideal representative sele
tion of patterns from whi
h to dis
ussnew te
hniques of pattern de�nition and writing. In modifying stati
 design patterns to be used asgenerative design patterns it is ne
essary to establish how pattern X is related to pattern Y. In thefollowing dis
ussion on the de�nition of relationships between patterns, one
atalogue and two individualareas of resear
h are
onsidered:� The demar
ation of patterns based on the type
lassi�
ation in the Design Patterns[45℄
atalogue.� The demar
ation of patterns based on the problem solving
lassi�
ation of Ti
hy[104℄.� The relationship between patterns based on the
lassi�
ation of relationships by Zimmer[119℄.Both of the individual areas of resear
h by Zimmer and Ti
hy identi�ed above have used the DesignPatterns[45℄
atalogue as their primary sour
e of material for their own elements of dis
ussion. Thedis
ussion within this thesis retains the Design Patterns[45℄
atalogue as the patterns
hosen for study.Within this
hapter the relational requirements of generative design patterns are dis
ussed. This is

57
onsidered from the point of view of how stati
 design pattern notation
an be rede�ned to realize the
omponent's potential as a generative
omponent.4.2 Classi�
ation of Design Patterns4.2.1 High Level Classi�
ationThere are many di�erent types of patterns with di�erent roles and fun
tionality. In order to de�negenerative patterns whereby di�erent patterns will work together to produ
e systems, it is ne
essaryto establish whi
h patterns will
ollaborate. Patterns as they are
urrently de�ned do not providesuÆ
ient information as to whi
h other patterns they will readily
ommuni
ate with. In order to de�nea
ommuni
ation proto
ol for design patterns, and thereby use them to build systems, it is ne
essarythat the purpose of the design pattern is established. If we
an determine what a pattern does, then we
an establish some rules on whether it
an be applied in
ollaboration with another pattern. Rules arerequired as it may be possible for two patterns to work together although there is no pra
ti
al reasonfor them to do so. However, determining pra
ti
ality
an be established through experimentation andexpli
itly written into the details of a pattern.The
atalogue of Design Patterns[45℄ referred to in Chapter Three by Gamma and
olleagues are
lassi�ed by two
riteria; Purpose and S
ope. S
ope spe
i�es whether a pattern is appli
able to a
lassor an obje
t.
Purpose

Creational
 Structural
 Behavioural

Factory Method
 Adapter (class)
 Interpreter

Template Method

Chain of Responsibility

Command

Iterator

Mediator

Memento

Observer

State

Stratergy

Visitor

Adapter (object)

Bridge

Composite

Decorator

Facade

Flyweight

Proxy

Abstract Factory

Builder

Prototype

Singleton

Class

Object

Scope

Table 4.1: Design Pattern Classi�
ation[45℄However, the main interest for this body of resear
h, in
lassifying design patterns, re
e
ts what thepattern does in terms of the purpose of the pattern, whi
h is the
riteria being sought. Table 4.1,

58presented by Gamma and
olleagues, sets out the
lassi�
ation of the patterns in the Design Patterns
atalogue.As
an be seen from the table there are three di�erent types of pattern de�ned by the Design Patterns[45℄
atalogue; Creational, Stru
tural and Behavioural. Although the
atalogue and the patterns themselvesmay des
ribe why a pattern is Creational, Stru
tural and Behavioural the immediate informationprovided by the pattern is not suÆ
ient to des
ribe a relationship to another pattern. If the relationshipbetween pattern types is de�ned at this level of abstra
tion then it
ould be argued that all relationshipsbetween individual patterns are the same and that all patterns irrespe
tive of their type or fun
tionalitywill
ollaborate. It
ould be possible that all patterns, irrespe
tive of their type or fun
tionality, will
ollaborate for the simple reason that the
ollaboration
ould be for
ed. However, the question arisesas to why one would do this if it is not pra
ti
al to do so. For example, it may not be pra
ti
al for
ertain Creational patterns to work with
ertain Behavioural patterns. The type abstra
tion within apattern at this level
an be seen as a generi

lassi�
ation where a relationship
ould be applied to anypattern within that type or to any pattern of a di�erent type. At a lower level of abstra
tion a patternmay de�ne a relationship that only exists between patterns that solve a parti
ular type of problem.However, from the Design Patterns
atalogue it is known that there are relationships between patternsthat have been de�ned at this level of abstra
tion[45, 119℄.Ea
h pattern in the Design Patterns
atalogue
omes under one of these
ategories { Stru
tural, Cre-ational and Behavioural. Figure 4.1 shows the Creational
lassi�
ation of the patterns within the
atalogue.
Creational

Abstract

Factory

Builder

Factory

Method

Prototype
 Singleton
Figure 4.1: Relationships Between Design PatternsIn de�ning the relationships between di�erent
lassi�
ations of pattern, a given pattern from any
lassi�
ation has three high-level relational options. For example, a stru
tural pattern may be relatedto another stru
tural pattern, a
reational pattern or a behavioural pattern. Some patterns may berequired to de�ne a relationship to three di�erent
lassi�
ations whilst other patterns may only need todes
ribe one or two relationships. For example, the stru
tural pattern Composite de�nes a relationship

59to stru
tural,
reational and behavioural patterns whilst the
reational pattern Abstra
t Fa
tory onlyde�nes relationships to other
reational patterns[45, 119℄.Writing this in terms of the notation of a pattern, we
an add this information to the pattern des
rip-tion. For the Composite pattern, whi
h is
lassi�ed in the Design Patterns[45℄
atalogue as Obje
tStru
tural, under the heading Related Patterns we
an add information about related patterns andtheir
lassi�
ation. Table 4.2 below represents the proposed des
riptive information for a generativedesign pattern.Related PatternsClassi�
ation typesStru
tural (Flyweight, De
orator)Commentary......Creational (Builder)Commentary......Behavioural (Visitor, Interpreter, Iterator, Command, Chain of Responsibility)Commentary......Table 4.2: Logi
al Information for a Generative Design Pattern - Iteration 1
4.2.2 Low Level Classi�
ationThe
atalogue of patterns presented by Gamma represents a de�nitive
olle
tion of available patterns.Ti
hy[104℄, on the other hand, de�nes a
atalogue of over 100 general-purpose patterns, although thepatterns are not de�ned in detail as in the
ase of Gamma. Although Ti
hy does not de�ne rela-tionships between patterns he does
lassify patterns by the problems that they solve. Whilst Gammade�nes three families of purposeful patterns, Ti
hy's
lassi�
ation
ontains nine separate problem solv-ing
ategories[104℄:1. De
oupling: Dividing a software system into independent parts in su
h a way that the parts
an be built,
hanged, repla
ed, and reused independently.2. Variant Management: Treating di�erent obje
ts uniformly by fa
toring out their
ommonality.3. State Handling: Generi
 manipulation of obje
t state.

604. Control: Control of exe
ution and method sele
tion.5. Virtual Ma
hines: Simulated pro
essors.6. Convenien
e Patterns: Simpli�ed
oding.7. Compound Patterns: Patterns
omposed from others, with the original patterns visible.8. Con
urren
y: Controlling parallel and
on
urrent exe
ution.9. Distribution: Problems relevant to distributed systems.In the
ase of Ti
hy, there is a deeper level of re�nement in the
lassi�
ation. In des
ribing therelationship between di�erent types of patterns, it
ould be useful as a des
riptive element to dis
usshow di�erent
lasses of pattern intera
t based on the type of problem they solve, parti
ularly where sub-systems or non-fun
tional elements are
on
erned. This
an be a
hieved by introdu
ing problem solvingproperties into a pattern based on Ti
hy's
lassi�
ation. With the implied detail that is
ontainedwithin the problem type
lassi�
ation, Ti
hy's
lassi�
ation
an be de�ned at a lower level than the
lassi�
ation presented by Gamma. By lower level it is implied that Ti
hy's
lassi�
ation types area sub
lass of the Gamma
lassi�
ation types. Ti
hy's
lassi�
ation relates to spe
i�
 problems orareas of
on
ern whereas Gamma's
lassi�
ation is generalised within three areas. For example, aStru
tural de�nition, as de�ned by Gamma, indi
ates that the pattern will represent some aspe
t ofthe basi
 framework of a system, whereas the
on
ept of De
oupling, as de�ned by Ti
hy, provides alevel of detail that des
ribes how
ertain aspe
ts of the base framework
an be separated out for easeof development and maintenan
e.In attempting to determine whi
h patterns are best suited to
ommuni
ate in a generative patternlanguage, information about the patterns and their purpose is going to play an important role. Figure4.1 shows that
ertain patterns, as
lassi�ed by Gamma, are de�ned as Creational patterns. We
annow add information to those patterns based on the
lassi�
ation provided by Ti
hy. Figure 4.2 onthe following page uses the same Creational patterns as is
ontained in Figure 4.1 but whi
h are nowextended with an additional level of information. The information as it is presented is analogous toan inheritan
e hierar
hy where the top level of the tree
ontains base information. Lower levels of thehierar
hy
ontain more detailed information that is spe
i�
 to the
omponents at that level. To thisend, the tree represents a
lassi�
ation hierar
hy of information.

61
Variant

Management

State Handling

Creational

Abstract

Factory

Builder

Factory

Method

Prototype
 Singleton
Implementation

Problem

Purpose

Figure 4.2: Creational Pattern Information Hierar
hyAlthough the patterns
lassi�ed by Gamma are present within the
atalogue of Ti
hy, the other patternsin Ti
hy's
atalogue have not been
lassi�ed in terms of stru
tural,
reational or behavioural. Thereforeonly those patterns
lassi�ed by Gamma
an be worked into the hierar
hy tree. Adding Gamma's
lassi�
ation types to all the patterns in Ti
hy's
atalogue is an element of future work and will bedis
ussed further in Chapter Nine, Future Work. The tree des
ribes three layers in the hierar
hy whereea
h des
ending layer is des
ribed at a lower level of abstra
tion. The highest layer des
ribes the generalpurpose of the patterns. The intermediate layer des
ribes the problem area that is best suited to thepatterns, whilst the lowest layer des
ribes the �ner detail of the patterns.Figure 4.3 on the following page illustrates the information tree based on behavioural patterns at theroot of the tree. It is important to separate information trees to indi
ate that spe
i�
 low-level patternsdo not inherit
ontext from multiple parents. Ti
hy indi
ates that the pattern
lassi�
ations that heproposed are mutually ex
lusive; therefore a pattern
annot belong to more than one
ategory. Forexample, the De
orator pattern
annot be a De
oupling pattern and a Variant Management patternat the same time. The
omplete set of relational trees based on stru
tural,
reational and behaviouralpatterns is illustrated in Appendix E.

62
Variant

Management

State Handling

Template

Method

Strategy
 Memento
Visitor

Behavioural

Figure 4.3: Behavioural Pattern Information Hierar
hyWe
an now add this additional
riterion to the existing pattern des
ription that was de�ned earlier.Again,
on
entrating on the Composite pattern, we
an add the problem solving types. Table 4.3 belowrepresents the proposed des
riptive information for a generative design pattern.Related PatternsClassi�
ation type (Stru
tural)Commentary on Stru
tural relationship between patterns......Related Pattern (Flyweight)Commentary on Flyweight pattern......Problem Solving Type (State Handling)Commentary on State Handling relationship between patterns in a Stru
tural
ontext......Related Pattern (De
orator)Commentary on De
orator pattern......Problem Solving Type (De
oupling)Commentary on De
oupling relationship between patterns in a Stru
tural
ontext......Table 4.3: Logi
al Information for a Generative Design Pattern - Iteration 2Continued on next page.

63Classi�
ation type (Creational)Commentary on Creational relationship between patterns......Related Pattern (Builder)Commentary on Builder pattern......Problem Solving Type (De
oupling)Commentary on De
oupling relationship between patterns in a Creational
ontext......Classi�
ation type (Behavioural)Commentary on Behavioural relationship between patterns......Related Pattern (Visitor)Commentary on Visitor pattern......Problem Solving Type (Variant Management)Commentary on Variant Management relationship between patterns in a Behavioural
ontext......Related Pattern (Iterator)Commentary on Iterator pattern......Problem Solving Type (De
oupling)Commentary on De
oupling relationship between patterns in a Behavioural
ontext......Related Pattern (Interpreter)Commentary on Interpreter pattern......Problem Solving Type (Virtual Ma
hines)Commentary on Virtual Ma
hines relationship between patterns in a Behavioural
ontext......Related Pattern (Command)Commentary on Command pattern......Related Pattern (Chain of Responsibility)Commentary on Chain of Responsibility pattern......Continued on next page.

64Problem Solving Type (Control)Commentary on Control relationship between patterns in a Behavioural
ontext......
4.3 Individual RelationshipsA signi�
ant area of interest in identifying how and whi
h patterns should
ommuni
ate in terms ofa generative pattern is Zimmer's Relationships between Design Patterns[119℄
riteria. Zimmer's
las-si�
ation explores the relationships between existing design patterns and uses the Design Patterns[45℄
atalogue as the role models on whi
h to de�ne the
lassi�
ation. In this, three relationship
lassi�
a-tions are dis
ussed:� Pattern X uses Pattern Y in its solution.� Pattern X
an be
ombined with Pattern Y.� Pattern X is similar to Pattern Y.The third
lassi�
ation, des
ribed above, refers to patterns that have a similar problem/solution pairing.That is, patterns that give details of an alternative solution. This relationship
lassi�
ation is not takeninto
onsideration be
ause it de�nes an alternative solution to a given pattern and not how solutionsare related, whi
h represents the work in progress.The pattern map de�ned by Zimmer is illustrated in Figure 4.4 above showing the Pattern X usesPattern Y in its solution
lassi�
ation and the Pattern X
an be
ombined with Pattern Y
lassi�
ation.The third relationship de�ned by Zimmer, Pattern X is similar to Pattern Y, has been left out ofthe illustration to improve the
larity of the two elements that are useful as an additional element ofnotation for a generative design pattern.As
an be seen from Zimmer's
lassi�
ation, there are two di�erent types of relationship. However, themap indi
ates that a pattern only has one type of relationship to any one related pattern. If a givenpattern is related to more than one other pattern then the de�nition for ea
h relationship needs tore
e
t the type of relationship between ea
h of the two related patterns.It is an argument within this thesis that the des
ription of any relationship between patterns shouldre
e
t how patterns are used by other patterns. The argument also maintains that the relationshipbetween the
lassi�
ation types to whi
h the patterns belong be de�ned. This argument is founded

65
Abstract Factory
 Flyweight
 Adapter
Proxy
Composite

Prototype

Observer

Singleton
 Template Method

Factory Method

Builder

Command
Iterator
Visitor

Strategy
Mediator

Facade

Interpreter

State

Memento

Bridge
Chain of Resp

Decorator

KEY

Facade

Singleton

Strategy

Structural

Creational

Behavioural

X
 Y

X
 Y

X uses Y in its Solution

X can be Combined with Y
Figure 4.4: Relationships Between Design Patterns (Based on Zimmer[119℄)on the prin
iple that the relationship between, for example, two stru
tural patterns may be di�erentto the relationship between a stru
tural pattern and a
reational or behavioural pattern. Any givendes
ription within a pattern would �rst des
ribe how parti
ular types of patterns
ommuni
ate andse
ondly how the individual patterns
ollaborate to form a bond between the two.When de�ning the relationships between patterns any given pattern requires one des
ription of a re-lationship for ea
h pattern to whi
h it is related. Given the
ase that a stru
tural pattern
ould berelated to more than one stru
tural pattern or more than one behavioural pattern the
ontent of thedes
ription of the relationship between pattern
lassi�
ations would be repeated { whi
h is an unne
-essary dupli
ation of e�ort. In this situation therefore, the
onsideration des
ribed above detailing therelationships between
lassi�
ations of patterns would remove the dupli
ation of des
riptive passages.Within the
lassi�
ation map in Figure 4.4 there are two de�ned relationships: Pattern X uses PatternY in its solution and Pattern X
an be
ombined with Pattern Y. However, there is a third relationshipwithin the map that is not dis
ussed. The reason for not extending the relationship as a
lassi�
ationis be
ause it is the same relationship as Pattern X uses Pattern Y in its solution but des
ribed in adi�erent way; namely Pattern X is used by Pattern Y in its solution. The `used by' relationship is

66de�ned by Meszaros[79℄ and further dis
ussed by Noble[83℄, who des
ribes it as the inverse of the `uses'relationship. On the basis of two individual
ommuni
ating patterns these are identi
al relationships.It is shown[20, 83℄ that not only
an a pattern use another pattern but also a pattern
an be used byanother pattern. In ea
h de�nition of the relationship the fo
us of attention is on the pattern beingde�ned. In the relationship X uses Y, X is the de�ned pattern. In the
ase of X is used by Y, X is stillthe de�ned pattern. Therefore, X is the dominant partner in the two de�nitions of the relationship sothe relationship be
omes X uses / X is used by, illustrated in Figure 4.5 below.
Pattern X
 Uses
Is used by
Figure 4.5: Pattern X uses, is used byThe `used by' relationship, although only the inverse of the `uses' relationship, provides information ofa known relationship between two patterns. It is not enough when de�ning a generative pattern onlyto dis
uss whi
h pattern a given pattern uses | the generative pattern has to des
ribe known relatedpatterns in order to be generative, in
luding those patterns it is used by.By in
luding the `used by' relationship, relationships
an be de�ned not only by how a pattern isrelated to another pattern but how another pattern is related to the pattern in question. In this way itis possible to de�ne how ar
hite
tures are built from patterns by de�ning mat
hing join-points betweenpatterns. That is, a relationship
an be de�ned within the pattern on how it uses other patterns andhow it is used by other patterns.We
an now add this
riterion to the existing pattern des
ription that was de�ned earlier. Again,
on
entrating on the Composite pattern, we
an add the asso
iation types. Table 4.4 on the followingpage represents the proposed des
riptive information for a generative design pattern.

67Related PatternsClassi�
ation type (Stru
tural)Commentary on Stru
tural relationship between patterns......Related Pattern (Uses Flyweight)Commentary on how Composite uses the Flyweight pattern......Problem Solving Type (State Handling)Commentary on State Handling relationship between patterns in a Stru
tural
ontext......Related Pattern (Combines De
orator)Commentary on how Composite
ombines with the De
orator pattern......Problem Solving Type (De
oupling)Commentary on De
oupling relationship between patterns in a Stru
tural
ontext......Classi�
ation type (Creational)Commentary on Creational relationship between patterns......Related Pattern (Combines Builder)Commentary on how Composite
ombines with the Builder pattern......Problem Solving Type (De
oupling)Commentary on De
oupling relationship between patterns in a Creational
ontext......Classi�
ation type (Behavioural)Commentary on Behavioural relationship between patterns......Related Pattern (Combines Visitor)Commentary on how Composite
ombines with the Visitor pattern......Table 4.4: Logi
al Information for a Generative Design Pattern - Iteration 3Continued on next page.

68Problem Solving Type (Variant Management)Commentary on Variant Management relationship between patterns in a Behavioural
ontext......Related Pattern (Combines Iterator)Commentary on how Composite
ombines with the Iterator pattern......Problem Solving Type (De
oupling)Commentary on De
oupling relationship between patterns in a Behavioural
ontext......Related Pattern (Used By Interpreter)Commentary on how Composite is used by Interpreter pattern......Problem Solving Type (Virtual Ma
hines)Commentary on Virtual Ma
hines relationship between patterns in a Behavioural
ontext......Related Pattern (Used By Command)Commentary on how Composite is used by the Command pattern......Related Pattern (Used By Chain of Responsibility)Commentary on how Composite is used by the Chain of Responsibility pattern......Problem Solving Type (Control)Commentary on Control relationship between patterns in a Behavioural
ontext......
4.4 Pattern MapAs
an be seen in Se
tion 4.3, the
omposite pattern alone takes up a full page of text just to highlightthe known patterns with whi
h it will fun
tion. This itself is not a problem but, when des
riptive
ommentary has been added the reader may have diÆ
ulty in �nding and visualising the related patternsthrough the jumble of text. A qui
k and easy way to visualise the related patterns is to in
lude at thispoint a relational map, whi
h expands on the models des
ribed in Figures 4.2 and 4.3.

69The Pattern map for the Composite pattern, des
ribed in Figure 4.6 provides a visual representationof related patterns and the
ategories into whi
h they fall.
Structural
 Creational
 Behavioural

State

Handling

Decoupling

Flyweight
 Decorator

Decoupling

Variant

Management

Decoupling

Virtual

Machine

Control

Builder
 Visitor
 Iterator
 Interpreter
 Command

Chain of

Responsibility

Composite

U

s
e
s

C

o
m

b
i
n
e
s

C
o
m
b
i
n
e
s

C

o
m

b
i
n
e
s
 C

o

m

b

i
n

e

s

U
s
e

d

B
y

U

s
e

d

B

y

U

s
e

d

B

y

Figure 4.6: Patterns Related to CompositeThe map itself in this
urrent form is not over
omplex but
ould be if patterns from outside the DesignPatterns[45℄
atalogue were also de�ned as part of the Composite pattern. Also the map does not givethe full pi
ture of relationships | it only des
ribes at this point a relationship to other patterns. Themap
ould also in
lude attributes of a pattern, for example the parti
ipating
lasses of a parti
ularpattern.4.5 Des
ribing RelationshipsIn de�ning a meaningful des
ription of the relationship to other patterns, three levels of des
riptionhave been identi�ed.� A des
ription of the
lassi�
ations of pattern.� A des
ription of the problem solving
lassi�
ation of patterns.� A des
ription of the relationship between patterns.As dis
ussed in se
tion 4.2.1 High Level Classi�
ation ea
h pattern
ould des
ribe a relationship to threedi�erent
lassi�
ation types, assuming that a
lassi�
ation of pattern
ould be related to a pattern of its

70own
lass. To alleviate any possible
onfusion and for reasons of pra
ti
ality, only those
lassi�
ationsattributed to related patterns should be dis
ussed in the text of a pattern. For example, if a CreationalPattern is not related to any Behavioural patterns then do not dis
uss the relationship between Cre-ational and Behavioural
lassi�
ation types. To dis
uss non-essential relationships will waste time ande�ort of the pattern reader and will ultimately serve no purpose other than to add
onfusion.4.5.1 Classi�
ationIn de�ning a relationship or relationships, the pattern should de�ne its own
lassi�
ation and the
lassi�
ation types to whi
h it is related, and what makes that relationship. The relationship between
lassi�
ation types
an be de�ned through an assessment of the intent of the pattern, and the intentof the pattern to whi
h a relationship is proposed. For example, stru
tural patterns de�ne how
lassesand obje
ts
an be
omposed to form larger stru
tures. Stru
tural patterns often use inheritan
eto
ompose interfa
es. Through multiple inheritan
es, two or more interfa
es
an be
ombined toform a
omposite pattern (that is, a union of two or more patterns and not The Composite Pattern).Therefore, stru
tural patterns often form a `
ombines' relationship with other stru
tural patterns.However, stru
tural patterns also use other stru
tural patterns, whi
h must be made expli
it whende�ning the relationship to other patterns.Therefore, in the meaningful des
ription, the relationship between
lassi�
ation types should makeexpli
it that the relationship is a Combines relationship or a Uses relationship or a Used By relationship,together with the intent of that relationship. Be
ause a Stru
tural pattern, su
h as Composite, mayalso be related to Creational and Behavioural patterns as well as to other Stru
tural, de�ning how thepatterns
ooperate (Combines, Uses, Used By) needs to be done at a lower level than the
lassi�
ationrelationship level.The related pattern information in Table 4.5, on the following page, is an example of the type of
ommentary that
ould des
ribe the relationship between Stru
tural patterns within the se
tion onrelated patterns for a generative design pattern.

71Related PatternsRelational Classi�
ation type (Stru
tural)The
onne
tion of two or more Stru
tural Patterns serves to form a larger stru
ture. For example,multiple inheritan
es will mix spe
i�
 parti
ipants from a pattern into one parti
ipating
lass.The result is a single parti
ipating
lass inherited from two or more patterns that
ombines theproperties of its parent
lasses.Table 4.5: Con
rete Information for a Generative Design Pattern - Iteration 1
4.5.2 Problem SolvingThe se
ond level of des
ription is the problem type that a pattern may solve. Again the pattern shouldbe
lear about the problem that it solves and its relationship to other problem solving types. Types aremutually ex
lusive so it is unlikely that a pattern will solve more than one problem, although, a

ordingto Ti
hy, there are a few ex
eptions[104℄. Within this se
tion only those problems that are re
ognisedas being an attribute of the patterns in the Design Patterns[45℄
atalogue are dis
ussed.De
ouplingA large proportion of patterns tend to deal with De
oupling whi
h helps to divide a system intoindependent units. A system
omposed of de
oupled parts
an easily be extended or adapted byadding or modifying parts[104℄. De
oupling patterns are often stru
tural or behavioural and mostlyuse or work in
ombination with other stru
tural or behavioural patterns.For a De
oupling pattern the pattern
ould in
lude:� Why the de
oupling takes pla
e.� How the de
oupling takes pla
e.� What the de
oupling will add to a system, or� What the de
oupling will modify.Variant ManagementVariant Management patterns treat di�erent obje
ts with a
ommon purpose in a
onsistent mannerby fa
toring out their
ommonality. However, Variant Management patterns are often dependent on

72the features of a programming language[104℄. Patterns that solve Variant Management problems
omefrom all
lassi�
ation types and are usually an alternative to another pattern. Variant Managementpatterns usually have a Combines relationships to other Variant Management patterns, whilst a fewpatterns have a Used and a Used By relationship.For Variant Management patterns the des
ription
ould des
ribe:� What obje
ts are being manipulated.� Why they are being manipulated.� What obje
ts will be manipulated through a Combines relationship and how the
ombination willa�e
t the obje
t.� How the pattern will use other patterns to manipulate an obje
t, or� How the pattern will be used by other patterns to manipulate an obje
t.State HandlingState Handling patterns manipulate the state of obje
ts generi
ally. This means that these patternswork on the state of any obje
t, independent of their a
tual purpose. Like Variant Managementpatterns, patterns that solve State Handling problems
ome from all
lassi�
ation types. State Handlingpatterns are most often used by patterns within their own
lassi�
ation type but rarely use or
ombinewith other patterns.The pattern des
ription for State Handling
ould in
lude:� The state of an obje
t prior to a
hange of state and after a
hange of state.� How the
hange of state is a�e
ted by the pattern that is using the
urrent pattern, and� How the
urrent pattern might a�e
t the state of the obje
ts manipulated by a pattern that is beingused.

73ControlControl patterns deal with the
ontrol of exe
ution and the sele
tion of appropriate methods. Controlpatterns are mostly Behavioural patterns and use other patterns in their manipulation of system fun
-tionality. Although Control patterns are mostly behavioural, they do for the most part use Stru
turalpatterns. O

asionally, Control patterns will
ombine to manipulate aspe
ts of fun
tionality.In des
ribing aspe
ts of Control the des
ription
ould de�ne:� For what aspe
ts of fun
tionality it is responsible.� How it uses and/or
ontrols the fun
tionality of other patterns, and� How it will
ombine with other patterns to enhan
e fun
tionality.Virtual Ma
hinesA Virtual Ma
hine problem is derived from system pro
esses. It is mostly an element of fun
tionalitythat interprets a program written in a spe
i�
 language. Like Control problems, Virtual Ma
hineproblems are Behavioural. They also use other Behavioural and Stru
tural patterns, but are rarelyused or
ombine with other patterns.A Virtual Ma
hine problem
ould des
ribe:� How its internal fun
tionality is exe
uted, and� How it will use the fun
tionality provided by a related pattern.Se
tion 4.5.2 gives a brief des
ription of the problem type under ea
h
ategory of problem solvingrelationships, as des
ribed by Ti
hy[104℄. This however, is inadequate to des
ribe the relationshipto other patterns. Ea
h brief des
ription above provides details of what should be des
ribed in therelationship to other patterns for a given problem solving type. However, the How, What and Why ofthe relationship will depend on the individual pattern. How Pattern `X' uses De
oupling with Pattern`Y' may be di�erent from how Pattern `X' uses De
oupling with Pattern `Z'. Therefore, this �ner detailof How, What and Why should be des
ribed in the Relational Asso
iation Type se
tion.The basi
 detail
an now be added to the des
ription of the problem solving relationship under theheading Related Patterns. The detail in Table 4.6, on the following page, is repeated from previousse
tions to show how the de�nition is being built up.

74Related PatternsRelational Classi�
ation type (Stru
tural)The
onne
tion of two or more Stru
tural Patterns serves to form a larger stru
ture. For example,multiple inheritan
es will mix spe
i�
 parti
ipants from a pattern into one parti
ipating
lass.The result is a single parti
ipating
lass inherited from two or more patterns that
ombines theproperties of its parent
lasses.Problem Solving Type (De
oupling)De
oupling helps to divide a system into independent units. A system that in
ludes de
oupledelements
an easily be extended or adapted by adding or modifying those elements[104℄.Table 4.6: Con
rete Information for a Generative Design Pattern - Iteration 24.5.3 Asso
iation TypeThe �nal element in de�ning a relationship between related patterns is the type of asso
iation and theindividual knowledge of how the parti
ipating patterns
ommuni
ate. This des
ription should re
e
tthe individuality of the pattern and its relations. The des
ription should en
apsulate the How, Whatand Why of the relationship as well as des
ribing what element of Pattern X Uses, is Used By orCombines with Pattern Y. This
ould be a general des
ription or
ould be des
ribed at the
oding levelwith an example.Again, we
an now add this type detail to the de�nition of the relationship. The detail in Table 4.7 isrepeated from previous se
tions to show how the de�nition is being built up.Related PatternsRelational Classi�
ation type (Stru
tural)The
onne
tion of two or more Stru
tural Patterns serves to form a larger stru
ture. For example,multiple inheritan
es will mix spe
i�
 parti
ipants from a pattern into one parti
ipating
lass.The result is a single parti
ipating
lass inherited from two or more patterns that
ombines theproperties of its parent
lasses.Table 4.7: Con
rete Information for a Generative Design Pattern - Iteration 3Continued on next page.

75Problem Solving Type (De
oupling)De
oupling helps to divide a system into independent units. A system that in
ludes de
oupledelements
an easily be extended or adapted by adding or modifying those elements[104℄.Asso
iation Type (Combines (De
orator))Why the de
oupling takes pla
e.How the de
oupling takes pla
e.What the de
oupling will add to a system, orWhat the de
oupling will modify.These des
riptions
an be supported by the generative modelling, dis
ussed in Chapters Two and Five,or more spe
i�
 models atta
hed to an example. Further to this, more spe
i�
 Pattern Maps
ansupport the whole se
tion on related Stru
tural patterns. Figure 4.6 on page 68 shows a
ompletepattern map for Composite as a whole. This
an be used at the beginning of the se
tion in its
urrentform. To show greater detail in the map it
an be broken down for ea
h individual pattern for whi
hComposite has a relation | as is shown below in Figure 4.7.Relational Map
Combines

Decoupling()

Structural : Decorator

VariantMan()

Structural : Composite

Participants:

 Component

 ConcreteComponent

 Decorator

 ConcreteDecorator

Participants:

 Component

 Leaf

 Composite

 Client

Composite - Decorator Relationship

Figure 4.7: Relationship between Composite and De
oratorThe se
tion on Related Patterns as it is de�ned above for the purpose of a generative pattern, is farmore detailed than the Related Patterns se
tion as it is de�ned in the Design Patterns
atalogue, whi
his reprinted below.Related Patterns[45℄\De
orator is often used with Composite. When De
orators and Composites are used together, they willusually have a
ommon parent
lass. So De
orators will have to support the Component interfa
e withoperations like Add, Remove, and GetChild"[45℄.This
ommentary does provide some information, but it is limited in detail. The
orresponding text inthe De
orator pattern from the Design Patterns
atalogue[45℄ has even less detail.

764.6 SummaryThe relationship between patterns has been dis
ussed on three levels: �rstly at a high level based onthe
lassi�
ation introdu
ed by Gamma whi
h divides patterns into three types based on their purpose;se
ondly at an intermediary level based on the problem solving
lassi�
ation introdu
ed by Ti
hy; and�nally on the individual relationships between patterns as de�ned by Zimmer. These relationships are
entral to the generative design pattern as they des
ribe how di�erent patterns intera
t based on thetype of intera
tion de�ned by the pattern.The relationship trees that have been de�ned break the patterns down into spe
i�

ategories, allowinga pattern to be tra
ed ba
k to its roots in the relational hierar
hy. The trees provide the rationalefor the
onditions that have been de�ned in determining the relations of the
urrent pattern. The
onditions are supported by a pattern map, whi
h itself is based on the relational tree.As a result of bringing together a
lassi�
ation from a popular book and two individual pie
es of resear
ha way of de�ning relationships between individual patterns has been de�ned.

77
Chapter 5PATTERN MODELLING5.1 Introdu
tionChapter Five is an exploration of the modelling notation used in existing software design patterns,parti
ularly the Class and Sequen
e diagrams. An important fa
tor in a design pattern is the designstru
ture of the pattern itself. In existing design patterns su
h as those produ
ed by Gamma etal[45℄ and many other pattern writers (for example the Pattern Oriented Software Ar
hite
ture[20, 99℄
atalogues and the Pattern Language of Program Design series[31, 41, 76, 110, 111℄) the
lass diagramis a signi�
ant feature of the pattern. However, it
an be seen from these and other
atalogues, thatother important models su
h as the sequen
e diagram are not used as
onsistently as the
lass diagram.Indeed, the wide range of models available in numerous software development methods and the Uni�edModelling Language[54℄, a standard modelling notation, are hardly given any
onsideration at all.It is shown in Chapter Five that the
lass diagram is used extensively throughout software designpatterns but is not used
onsistently throughout pattern
atalogues. In some design patterns a
lassdiagram is drawn but la
ks viable dis
ussion[45℄, whilst diagrams within other design patterns aregiven
onsiderable thought, and are often dis
ussed with the in
lusion of sample
ode su
h as those byGrand[48, 49℄ and Stelting[102℄. A similar situation
an be seen with sequen
e diagrams in that thereis limited dis
ussion in some design patterns whilst in others they are given a more important role toplay in the dis
ussion of the pattern. For example, Bus
hmann[20, 99℄ makes signi�
ant use of thesequen
e diagram.From looking at existing modelling notations that are used within design patterns, eviden
e is presentedin Se
tion 5.3 to show that not only are
lass diagrams used in
onsistently but what is being modelledby pattern writers is not
onsistent with what is being provided as an example. In most
ases, themodel being used and des
ribed does not mat
h the sample
ode that is being provided by the patternwriter (See Figures 5.10 and 5.11). To this end, it is re
ommended that what is being de�ned in amodel should be developed in the sample
ode.

785.2 Sequen
e DiagramsSequen
e diagrams may or may not be used in di�erent pattern
atalogues or in individual patterns.When they are used in pattern
atalogues, they may be used in some patterns but not in others.In the Design Patterns[45℄
atalogue, the sequen
e diagram is rarely used. There is an example ofa sequen
e diagram in the Design Patterns[45℄
atalogue of the following patterns: Builder, Chainof Responsibility, Command, Mediator, Memento, Observer and Visitor. The diagram is presentedmostly in the Collaborations se
tion of the design pattern notation and o

asionally in the Motivationse
tion. Six of the seven examples are de�ned within Behavioural patterns with the ex
eption beingBuilder, whi
h is a Creational pattern. What this represents is the in
onsisten
y of use of a valuablemodelling te
hnique in this parti
ular
atalogue of patterns. However, in the POSA[20, 99℄
ataloguesthe sequen
e diagram is used far more
onsistently. Almost all the patterns present a sequen
e diagramand it is always
ontained within the Dynami
s se
tion of the pattern, whi
h would appear to be anappropriate pla
e to display the diagram as the sequen
e diagram is a dynami
 modelling artefa
t[54℄.The sequen
e diagram that is presented with the Broker pattern from the POSA[20℄
atalogue is shownin Figure 5.1 below. As well as providing the sequen
e diagram, the dynami
s of the intera
tion arealso dis
ussed with a step-by-step a

ount of what is ta
king pla
e in the diagram.
Server
 Broker

Start

Main

event

loop
Initialise

Register_service

Update_repository

Acknowlegement

Enter_main-loop

Possible

process

boundary

Figure 5.1: Sequen
e Diagram for the Broker PatternAdditionally, most patterns from this
atalogue will provide more than one example of the dynami
s ofthe pattern, whi
h is felt to be good pra
ti
e and whi
h is in keeping with the prin
iple of a minimumof three known uses before being a

epted as a pattern. For the Broker pattern, the Dynami
s se
tion

79of the pattern presents three examples. Example number three from the Broker pattern, as de�ned inthe POSA[20℄
atalogue is shown in Figure 5.2 below.
Broker A
 Broker B

Forward

request

Find_server

Unpack_data

Forward_request

Transmit_message

Possible

process

boundary

Forward_message

Bridge A

Pack_data

Bridge B

Find_server

Figure 5.2: Sequen
e Diagram for the Broker PatternThe two diagrams in Figures 5.1 and 5.2 represent di�erent s
enarios on the use of the Broker pattern.By presenting alternative dynami
s for a pattern the reader of the pattern
an explore di�erent ap-proa
hes to solving problems or indeed, developing systems. For example, if s
enario one does not meetthe needs of the reader then there are other s
enarios that may solve the problem or aid development.A similar situation is evident in the J2EE[5℄ patterns
atalogue where the sequen
e diagram is a

ompa-nied by a number of
oded examples. In the J2EE examples the pattern in question is regularly shownintera
ting with
omponents from related patterns, although it has to be said, the separate patternsoften share the same individual
omponents. Where the POSA[20℄
atalogue de�nes sequen
e diagramsunder the Dynami
s heading of a pattern, in the J2EE[5℄
atalogue sequen
e diagrams are presentedunder the heading Parti
ipants and Responsibilities. Along with the diagram ea
h
omponent of thediagram is a

ompanied by a short des
ription. Using the sequen
e diagram as part of a
oded example
an make the pattern easier to understand, as the diagram itself is providing an obje
tive view that the
lass diagram
annot portray. This type of diagram is a positive aspe
t for generative design patternsas generative patterns are intended to be dynami
 in nature in that they will
reate systems.

80The sequen
e diagram for the J2EE pattern shown in Figure 5.3 below shows the range of obje
ts that
ould be used in this parti
ular pattern.
Client
 BusinessService

<<Servlet>>

Controller

<<JSP>>

View

Helper
 Auth Helper

1: Request

1.2.1: Dispatch

1.2.1.1: Retrieve Content

1.2.1.1.1: Get Data

1.2.1.2: Get Property

Dispatcher
 ValueBean

1.2: Delegate

1.1: Authenticate

Figure 5.3: Sequen
e Diagram for the Dispat
her View PatternIt is unlikely that all the
omponents des
ribed in the diagram above will be utilized at any one time inan implementation of the pattern, as is shown by Figures 5.4 and 5.5. The sequen
e diagram in Figure5.4 below is an example from the Dispat
her View pattern and represents the �rst of two di�erentstrategies for its use.
Client
 BusinessService

<<Servlet>>

Controller

<<JSP>>

View

Helper
 Helper

1: Request

1.1: Dispatch

1.1.1: Retrieve Content

1.1.1.1: Get Data

1.1.2: Get Property

Figure 5.4: Dispat
her in Controller Strategy

81Figure 5.5 below represents an alternative strategy for using the Dispat
her View pattern.
Client
 BusinessService

<<Servlet>>

Controller

<<JSP>>

View

Helper
 Helper

1: Request

1.1: Dispatch

1.1.1: Retrieve Content

1.1.1.1: Get Data

1.1.2: Get Property

<<JSP>>

View

1.1: Delegate

Figure 5.5: Dispat
her in View StrategyWithin the se
tion on Parti
ipants and Responsibilities ea
h
omponent of the sequen
e diagram shownin Figure 5.3 is dis
ussed, although in brief. However, unlike the POSA patterns the J2EE patternsdo not provide a step-by-step a

ount of what is taking pla
e in the diagram, although ea
h s
enariois dis
ussed in general. Also, unlike the POSA patterns the sample
ode appears in a se
tion of thepattern dis
onne
ted from the sequen
e diagram, although there is some dis
ussion of the
ode thatdoes relate to the diagram. However, the sample
ode and dis
ussion is
onfusing as it appears to makereferen
es to both strategies as if they were the same implementation. Although the use of sequen
ediagrams representing alternative s
enarios is a step in the right dire
tion, its usefulness as appliedin the J2EE[5℄
atalogue is still not suÆ
ient for providing adequate understanding for the reader,parti
ularly when the dis
ussion in the Sample Code se
tion is
onfusing.There are many other
atalogues on design patterns: some are spe
i�
 to Java[33, 48, 49, 50, 74, 102,112℄, whilst others are spe
i�
 to .NET[51, 81, 103℄, others su
h as the PLoPD[31, 41, 76, 110, 111℄
atalogues have no allegian
e to any spe
i�
 language. What is
onsistent among the many
ataloguesis in
onsisten
y, not just in the use of sequen
e diagrams but in the way design patterns are des
ribedin general. Many of the
atalogues do not use standard UML diagrams whilst others will use UMLdiagrams to emphasise a parti
ular point.What
an be seen in the POSA[20, 99℄ and J2EE[5℄
atalogues
an be
onsidered as good pra
ti
e inproviding knowledge and understanding for a pattern. Whilst some pattern
atalogues provide only awritten des
ription of a pattern or a des
ription with a limited number of design
onsiderations, thePOSA[20, 99℄ and J2EE
atalogues provide good additional information that should be exploited in

82de�ning a generative pattern. Ea
h utilization of the sequen
e diagram that has been dis
ussed has itsgood and bad points. The good points from these separate
on�gurations
an be
ombined to make apattern easier to understand and use.5.3 Class DiagramsThe
lass diagram is a signi�
antly important UML
omponent for modelling the attributes, operationsand relationships between separate
omponents of a software artefa
t. Any person involved in thedevelopment phase of a software system will use the models of design, parti
ularly the
lass diagram,as a blueprint for writing the software
ode. Similarly, the
lass diagram is a signi�
antly important
omponent of a design pattern; it models the
omponents of what is being des
ribed in the patternitself, and the relationships between those
omponents. Without the
lass diagram the design patternwould la
k
redibility as a
omponent of expert knowledge be
ause there would be no key
omponent tohold the dis
ussion together. That is, software is built from models of design and without that designthe end produ
t is open to interpretation.Class diagrams represent an element of
onsisten
y throughout most pattern
atalogues. In any pat-tern
atalogue there will be very few software patterns that do not
ontain a
lass diagram in theirnotation. One su
h ex
eption is the pattern `Identity Map' in the Patterns of Enterprise Appli
ationAr
hite
ture[43℄
atalogue by Fowler. Indeed, even in individual patterns that are often presented at
onferen
es and published in pro
eedings there will be few that do not
ontain a
lass diagram.In the Design Patterns[45℄
atalogue the notation of the pattern
ontains an element `Stru
ture' wherea high-level model of the pattern's
omponents are displayed. Stru
ture as de�ned in the DesignPatterns[45℄
atalogue is often nothing more than a single
lass diagram. Whereas most pattern
at-alogues will in
lude a dis
ussion together with the model being displayed, or use a
lass diagram toemphasise a dis
ussion, in the Design Patterns[45℄
atalogue, the model is not
onne
ted to any dis-
ussion of the design or indeed the pro
esses or
ollaborations between any of the model's
omponents.However, the heading `Stru
ture' where the model is displayed is followed up by the heading `Par-ti
ipants', whi
h names ea
h
omponent in the diagram and gives a brief summary of the role ea
hparti
ipant plays. In defen
e of the Design Patterns[45℄
atalogue, they do use additional
lass diagramsto further dis
uss elements of notation su
h as `Motivation', where s
enarios of problems to be solvedare exempli�ed. However, the diagrams used in this area are often there to show how a parti
ularsystem stru
ture is being ineÆ
iently utilised. Figure 5.6 below is based on the stru
tural model of theComposite pattern as de�ned in the Design Patterns
atalogue.

83
Client

Operation()

Add(Component)

Remove(Component)

GetChild(int)

Component

Operation()

Add(Component)

Remove(Component)

GetChild(int)

Composite

Operation()

Leaf

forall g in children

g.Operation()

Figure 5.6: Composite Class DiagramThe
lass diagrams used in the Design Patterns[45℄
atalogue are often used as ben
hmark designs byother
atalogues or people who
ontribute to the dis
ussion of design patterns through edu
ation orother means. However, it
an be shown that the model being used to dis
uss the pattern does notalways mat
h the model that is
reated from reverse engineering the supplied
ode. In other words,people are interpreting the design put forward in the Design Patterns[45℄
atalogue, but not alteringthe design to mat
h the true implementation, whi
h adds signi�
ant
onfusion to the understanding ofdesign patterns, parti
ularly for novi
e developers.From the book Patterns in Java: a Catalogue of Reusable Design Patterns Illustrated with UML[48℄, the
lass diagram des
ribed in the For
es and Solution se
tions of the Composite pattern are a simulationof the
lass diagram des
ribed in the Design Patterns[45℄
atalogue. The only di�eren
e in the diagramdes
ribed by Grand[48℄ and that des
ribed by Gamma et al[45℄ is that the Composite pattern byGrand uses a Composition asso
iation and not an Aggregation asso
iation. This is understandable asthe example being des
ribed is a do
ument, whi
h requires a Composition asso
iation. An illustrationof Grand's Composite
lass diagram from the Solution se
tion of the design pattern
an be seen inGraphi
 A of Figure 5.7. on the following page.

84
*

«interface»

ComponentIF

operation()

...

Component1

operation()

...

Component2

operation()

...

AbstractComposite

add(AbstractComponent)

remove(AbstractComonent)

getChild(int)

ConcreteComposite1

operation()

...

ConcreteComposite2

operation()

...

A. Composite Pattern
 B. Implementation of Composite Pattern

Document
 Page
 Column
 Frame
 LineOfText

AbstractDocumentElement

...

getFont() : Font

setFont(font:Font)

getParent() : CompositeDocumentElement

setParent(parent:CompositeDocumentElement)

CompositeDocumentElement

getChild(index:int) : DocumentElement

addChild(child:DocumentElement)

removeChild(child:DocumentElement)

...

changeNotification()

getCharLength() : int

Character

...

getCharLength() : int

Image

...

getCharLength() : int

*

«interface»

DocumentElementIF

...

getFont() : Font

setFont(font:Font)

getCharLength() : int

getParent() : CompositeDocumentElement

Figure 5.7: Grand's Composite Class Diagram[48℄The minor di�eren
e in the
lass diagrams is not a
ause for
on
ern, the reader of the pattern, be itnovi
e or professional, should a

ept that what is being modelled in the
lass diagram is the stru
tural
omposition of the pattern being des
ribed. However, further reading of the Composite design pattern asdes
ribed by Grand[48℄ reveals a di�erent
lass stru
ture des
ribed in the Code Example se
tion to thatde�ned in the Solution se
tion of the pattern. The
lass diagram shown in Graphi
 B of Figure 5.7 hasa
quired an Abstra
tDo
umentElement
omponent that implements the interfa
e
omponent. Hen
e,the Leaf
omponents and the Composite
omponent extend the newly a
quired Abstra
t
lass. Alsoin the Code Example in Graphi
 B, the Composition asso
iation has
hanged ba
k to an Aggregationasso
iation, as
an be found in the standard design of the Composite pattern. Also noti
eable in bothexamples of the design is the la
k of a
olle
tion obje
t in the details of the Composite
lass, despitethe model indi
ating that one exists.Further to the
hange in diagram stru
ture to that des
ribed in the Solution se
tion of the pattern, the
ode examples are supplied to the reader from a Web site that a
ts as a
ompanion to the book[48℄. Onreverse engineering the
ode example of the Composite pattern, a di�erent
lass stru
ture is revealed tothat des
ribed by Grand in Graphi
 B of Figure 5.7. Although the supplied
ode does mat
h, in part,the
ode written in the
atalogue, the engineered diagram does not mat
h the diagram that is modelledin the Code Example se
tion of the pattern. What is revealed in the engineered diagram, shown in

85Figure 5.8, is a stru
ture similar to that in Graphi
 A of Figure 5.7. Although these di�eren
es areminor in this parti
ular example of a design pattern, there are in
onsisten
ies and these in
onsisten
ies
an be
onfusing to a novi
e developer. Further examples are shown in the next few pages that
an be
onfusing to both novi
e and experien
ed developer.

Document
 Page
 Column
 Frame
 LineOfText

Character

charLength:int

Image

charLength:int

DocumentElement

font:Font

Parent:CompositeDocumentElement

charLength:int

CompositeDocumentElement

-children:Vector

-cachedCharLength:int

+addChild:void

+removeChild:void

+changeNotification:void

child:DocumentElement[]

charLength:int

Figure 5.8: Reverse Engineered Composite Class Diagram[48℄It is true to say that the
lass diagrams of the Design Patterns[45℄ that are dupli
ated in the book byGrand[48℄ are repli
as with, in some
ases, minor modi�
ations. It is also true to say that with fewex
eptions, the physi
al
lass diagram abstra
ted from the
ode through reverse engineering does notmat
h the
lass diagram des
ribed in the book. However, Grand is not alone in his interpretation ofmodelling design patterns. Stelting and Massen[102℄ also interpret the Design Patterns[45℄ in the sameway. In this
atalogue of patterns, the
lassi
 model of the Design Patterns[45℄ is des
ribed in the bookbut the resulting model that is abstra
ted from the supplied
ode is signi�
antly di�erent. It is plain tosee that in many of the patterns, several helper
lasses have been added to the appli
ation to embellishthe example. However it is also plain to see that the models provided in the patterns themselves arenot des
ribing the real interpretation of the
oded example.This reworking of the de�ned stru
ture is endemi
 throughout pattern
atalogues and Internet relatededu
ational and informational dis
ussion pages on design patterns. Consult the majority of web-sites

86that dis
uss patterns, and a stru
ture that repli
ates the stru
ture de�ned in the Design Patterns[45℄
atalogue will be found. Yet, the resulting
ode, if
ode is provided, will paint a di�erent pi
ture. Forexample, the implementation of the Composite pattern on the Ri
e University[108℄ web-site revealsthe standard modelling stru
ture repli
ated from the Design Patterns[45℄
atalogue, but the resultingmodel abstra
ted through reverse engineering the sour
e
ode presents a distorted view of the model. Afurther example[82℄ dire
tly uses the dis
ussion and stru
ture from the Design Patterns[45℄
atalogue,but the resulting stru
ture of the supplied
ode is di�erent from the model.Figure 5.9 below is a model of what pattern writers are des
ribing in their dis
ussion of the Compositepattern. This however, is not what is being
reated in their examples. Quite often in examples of theComposite pattern the aggregation asso
iation from the
omponent to the
omposite will be missing orwill just be a
ommon asso
iation. Furthermore, the
lient, if there is one, will be
alling the
ompositeand leaf
lasses dire
tly. To follow the design that is being modelled, the
lient should be intera
tingwith the Component element of the pattern; de
laration of Components within the Client
lass shouldbe global; the Leaf and Composite
lasses should extend the Component
lass; and the asso
iationbetween the Component
lass and the Composite
lass should be an aggregation. The aggregation
ould be in the form of a stati
 array or a dynami
 ve
tor.

componentVector:Vector

composite:String

Composite

sampleOperation:void

Add:void

Remove:void

components:Enumeration

composite:Component

composite1:Component

composite2:Component

main:void

sampleOperation:void

Add:void

Remove:void

Component

Composite

leaf:String

Leaf

sampleOperation:void

Leaf

Client

Figure 5.9: Composite PatternTo this point, only the Stru
tural pattern Composite has been dis
ussed, but this situation where apattern is modelled in a parti
ular fashion, repli
ated from a popular book, is also evident in otherstru
tural patterns. Grand[48℄ again displays the stru
ture de�ned in the Design Patterns[45℄ book forthe De
orator pattern, but does not implement that same stru
ture in the
oded example.

87Figure 5.10 provides a
omparison of the model for the De
orator pattern as de�ned by Grand[48℄ andthe model abstra
ted from his
oded example.
A. Decorator Pattern

AbstractDoorControllerWrapper

-wrapee:DoorControlerIF

AbstractDoorControllerWrapper

+requestOpen:void

+close:void

DoorControllerWrapperA

-camera:String

-monitor:SurveilanceMonitorIF

DoorControllerWrapperA

+requestOpen:void

«interface»

SurveilanceMonitorIF

+viewNow:void

«interface»

DoorControllerIF

+requestOpen:void

+close:void

B. Implementation of Decorator Pattern

ConcreteService

Operation()

Operation2()

...

AbstractWrapper

Operation()

Operation2()

...

ConcreteWrapperA

Operation()

Operation2()

...

ConcreteWrapperB

Operation()

Operation2()

...

1

«interface»

AbstractServiceIF

Operation()

Operation2()

...

1

Extends

Figure 5.10: Grand's De
orator Class DiagramsChanges to how a parti
ular pattern is modelled and to how the supplied examples are modelled �ltersthrough to other
lassi�
ations of models. For example, the Creational pattern, Builder, whi
h isde�ned in the Design Patterns[45℄
atalogue, also re
eives an implementation makeover at the hands ofnumerous authors. This parti
ular pattern, as
an be seen in Figure 5.11 below, re
eives su
h a
hangeto that des
ribed in the book from whi
h it was extra
ted that it is unre
ognizable as a Builder pattern.Similarly, the implemented stru
ture of Behavioural patterns is a�orded the same implementation shiftfrom that of the original des
ription. It would appear that the whole ethos of des
ribing known patternsis to ignore the design written in the stru
ture of the pattern.

88
MIMEParser

Msg:MIMEMessage

builder:MessageBuilder

…..

…..

…..

…..

…..

MIMEMessage

rawMessage:Byte[]

MIMEMessage

Message:byte[]

MessageBuilder

getInstance:MessageBuilder

…..

…..

…..

…..

…..

AbstractBuilder

getInstance():AbstractBuilder

buildPart1()

buildPart2()

...

getProduct():ProductIF
directs

ConcreteBuilder

buildPart1()

buildPart2()

...

getProduct():ProductIF

Director

Build(:Builder):ProductIF

Client

 Request-creation-of-ConcreteBuilder

requestor

creator

1

1

 Request-direction-of-build

director

requestor

Product

Creates

«interface»

ProoductIF

1
 1

1

1

1

Uses

1..
*

1

0..
*

«interface»

OutboundMessageIF

«interface»

send:void

Defined Pattern
 Actual Pattern

Figure 5.11: Grand's Builder Class DiagramsThe di�eren
es that are evident between the publishedmodel of a design pattern and that revealed in thesupplied
ode examples is not restri
ted to Java based design patterns. The same dis
repan
y in modelsalso applies to examples and patterns des
ribed in C# and other languages. The Composite patternsdes
ribed on various
ommunity web-sites[87, 88, 32℄ also
onstru
t the model from the pattern as anear repli
a of the Composite
lass model des
ribed in the Design Patterns
atalogue, yet the resultingmodels abstra
ted from the supplied
ode are di�erent.5.4 SummaryThe dis
ussion in Chapter Five began with a review of how sequen
e diagrams are used and presentedin a range of design pattern
atalogues. It was soon established that while they are used in only asubset of
atalogues observed, how they are used and presented is an asset to the intended knowledge
onveyed in a design pattern. Whilst some design patterns only pay a passing interest in extendingknowledge with the aid of these diagrams, some pattern writers link the diagrams to di�erent s
enariosasso
iated with the pattern and to alternative
oded examples of the pattern in its use. From thepoint of view of de�ning a design pattern, the use of sequen
e diagrams linked to multiple s
enariosand
oded examples is seen as good pra
ti
e and should be
o-opted into the standard for de�ning agenerative pattern.Where
lass diagrams are
on
erned, it is easy to observe, through reading multiple
atalogues, thatdiagrams of this type are used in almost all des
riptions of a software design pattern. However, what

89is not obvious is that what pattern writers are des
ribing with a
lass diagram is not what they areprodu
ing in a
oded example. It
an be seen that most examples of well-known design patterns, �rstprodu
ed in the Design Patterns
atalogue, are re
reating the
lass diagrams used in that
atalogue.What
annot be seen, until the
oded examples have been investigated and re-engineered, is that writersare not produ
ing an example based on the
lassi
 design they have des
ribed. They are
reating anexample modi�ed from that design but not mat
hing the
ode to the modi�ed design. What
an beseen in the des
ription of many patterns from a diverse range of sour
es is that the writer is des
ribingone thing and
onstru
ting another, whi
h suggests pattern writers are being led by a traditionala

eptan
e of the
lass stru
ture �rst adopted in the Design Patterns[45℄
atalogue. Writers thereforeare not
hallenging the traditional view of design notation, whilst they are interpreting the
on
eptthrough example. Dis
ussing patterns without a
knowledging this interpretation is not
ondu
ive toextending the knowledge and understanding that is the raison d'etre of design patterns. One of theprin
iples of the design pattern is that they are easy for novi
es to use. However, be
ause there areoften dis
repan
ies between the supplied
ode and the design
ontained in many design patterns, thenovi
e
an easily be
onfused and turned o� the
on
ept of the design pattern. Furthermore, bybeing in
onsistent, one
ould
all into question the usefulness of design patterns in aiding softwaredevelopment. With this in mind, it is intended that the
oded examples produ
ed for the generativedesign patterns des
ribed in this work will mat
h the design.

90
Chapter 6A GENERATIVE DESIGN PATTERN6.1 Introdu
tionIn Se
tion Two of this
hapter, the output from the four previous
hapters is brought together to serve asa reminder of the qualities that have been abstra
ted in order to de�ne a generative pattern. Methodi
alqualities were dis
ussed in Chapter 2 and a summary of the similarities that exist between softwaredevelopment methods and design patterns is given. In Chapter Three a range of pattern styles and
atalogues were dis
ussed and from these styles and
atalogues a desired format for a pattern notationhas been abstra
ted. This desired notation is again summarised prior to applying the notation inSe
tion 6.4. It was shown in Chapter Four that di�erent types of
lassi�
ation are attributed to designpatterns and that these
lassi�
ations
an be used to des
ribe the relationship between two di�erentgenerative patterns. Finally, a summary of Chapter Five is presented where modelling notation isdis
ussed.In Se
tion 6.3 and 6.4 the main
ontribution to this thesis is des
ribed in the format of a generativepattern. (The format of the generative pattern
an be
ompared against the stati
 pattern example inAppendix I). What distinguishes the generative pattern from a stati
 pattern is the additional knowledgepresented in the generative pattern. To present this extra knowledge, the generative pattern expandsupon the prin
iple of pattern
lassi�
ation by introdu
ing a Problem Solving
lassi�
ation, as dis
ussedin Chapter Four. Also from Chapter Four the knowledge of how
ollaborating patterns
an
ombine orbe used by other patterns is introdu
ed. An additional
ontribution to the generative pattern
omesfrom showing, in the
oded examples, how patter `X' will
ollaborate with pattern `Y'.Having gathered the desired notation and the additional knowledge for a generative pattern, a generativepattern is des
ribed. Within several of the previous
hapters, several referen
es are made towards theComposite design pattern. For this reason, the Composite pattern is used here as an example of agenerative pattern. The Composite pattern, as des
ribed by several authors, is related to the De
oratorpattern. Not only is it related in terms of its appearan
e as a stru
ture, it
an be
ombined with theDe
orator pattern to form a larger stru
ture. The generative design pattern seen in Se
tion 6.4 is anexample of two individual patterns, the Composite and De
orator
ombining to form a larger stru
ture.

916.2 Generative Pro
essSoftware design patterns
ome in many di�erent styles and ea
h style has its own way of des
ribinga pattern. Some styles use what is
onsidered to be
ommon forms of notation,
ommon in thatthe notation is used
onsistently in di�erent styles by di�erent pattern writers. Other styles use less
ommon notations but make passing referen
e to notations that are used in other patterns. Somepattern
atalogues de�ne a pattern under a spe
i�
 set of headings, while other
atalogues de�ningthe same patterns will use some of the same headings but present them in a di�erent order. Other
atalogues use a di�erent set of headings altogether. The de�ning issue is that most
atalogues willuse what is
onsidered a popular design notation as well as obs
ure notations and it is these popularnotations that have been exploited in de�ning a generative design pattern.6.2.1 Summary of Chapter TwoIn Chapter Two, design patterns were des
ribed as having a lot in
ommon with development methods| the
ommon fa
tor being the elements of a life-
y
le. It was found through analysis of methods that
ertain aspe
ts of methods will map to aspe
ts of design patterns and this has served to re-enfor
e thequalities obtained and dis
ussed in Chapter Three. Some of the design models that are used in softwaredevelopment methods are appropriate notation for a generative design pattern.6.2.2 Summary of Chapter ThreeChapter Three sought to provide an understanding of pattern notation and showed how spe
i�
 patternstyles used di�erent types of notation to format a pattern. Many of the notations are not used by allpattern writers but the frequen
y of use throughout di�erent pattern notations suggests that the themeis an element of good pra
ti
e and should be retained in a refa
tored pattern notation. The elements of
ommon notation that are attributed to a range of design pattern types are to be used in the de�nitionof a generative design pattern.6.2.3 Summary of Chapter FourIn Chapter Four, two
lassi�
ation proto
ols and a relationship proto
ol were explored and a suitable
ommuni
ation diagram was de�ned, where a relationship between di�erent
lassi�
ations of patternswas established. It was also established how patterns
an be
lassi�ed by the type of problem theysolve. This type of knowledge is used in de
iding if a pattern is suitable to work with another pattern.

92It also provides some idea of the fun
tion of the pattern itself. Individual relationships between patternswere dis
ussed. From this, three relational types were established.6.2.4 Summary of Chapter FiveFinally, Chapter Five took a
loser look at modelling elements
ontained within patterns with a viewto obtaining what may be
onsidered as best pra
ti
e. An element of good pra
ti
e that was des
ribedin Chapter Five was the use of di�erent s
enarios within a pattern. This, it is felt, is in keeping withone of the prin
iples of the design pattern in that there should be three known uses of the pattern.Therefore, it is proposed that a generative pattern should des
ribe, as a minimum, three s
enarios ofthe pattern in use.6.3 Generative Pattern FormatThe format of the generative pattern is based on what is already
ontained within existing stati
 designpatterns - that of a simple methodi
al pro
ess. Although design patterns do not present themselves asmethodi
al
omponents, the analogy is there. There are analyti
al elements, design
omponents andimplementation details en
apsulated in what is the notation of a pattern. Many of these en
apsulateddetails have been
on�rmed by examining the details of a range of development methods.A
olle
tion of generative design patterns, if put to proper use, have the potential to produ
e a soft-ware system or subsystem. Therefore, it is desirable that some methodi
al pro
ess is engaged in thedevelopment of that system or subsystem. Whilst generative patterns are not intended to represent amethodi
al pro
ess, the format of the generative pattern is written in su
h a way that it mirrors thelife-
y
le aspe
ts of a methodi
al pro
ess in terms of analysis, design and development.The �ndings from Chapters Two to Five and summarised in Se
tion 6.2 above
an now be integratedinto the pro�le of the generative pattern. As su
h, the pro�le and the desired notation form the
urrentversion of the stru
ture of a generative design pattern. As an addition to
urrent resear
h, it is envisagedthat through a pro
ess of re�nements to the generative pattern pro�le a
on
rete and �nal pro�le willbe established. From this, it is expe
ted that the pro�le itself will undergo mathemati
al s
rutiny fromthe pro
ess of Formal Spe
i�
ation | see Chapter Nine, Future Work.

93Stru
ture of a Generative Design PatternNameClassi�
ation TypeProblem Solving TypeAnalysisIntent (Introdu
tion)ProblemSolutionDesignStru
ture - Class diagram { (Classi
 View)ImplementationParti
ipantsCode exampleRelated Patterns (Dynami
s - Three Examples of Generative Design)S
enarios 1, 2, 3(Analysis)Details of s
enario(Design)Use-Case Diagram { (if appli
able)A
tivity Diagram { (if appli
able)Class Diagram { (Required as a model of the applied
ode)Sequen
e Diagram { (if appli
able)(Implementation)Details of implementationParti
ipantsCoded ExampleConsequen
es

946.4 Composite as a Generative Design PatternThe following highlighted se
tions represent the notation of a generative design pattern. Ea
h se
tionis a spe
i�
 aspe
t of the pattern as des
ribed above in Se
tion 6.3. The sour
e
ode for ea
h of thes
enarios
an be seen in Appendix F.The highlighted se
tions on pages 94 - 98 represent the pro�le of the named pattern, whi
h is splitinto four areas. The four areas represent pattern
lassi�
ation, analysis, design and implementation{ those aspe
ts that de�ne the pattern itself. The highlighted se
tions on pages 99 - 100 representthe relationship that Composite has with the De
orator pattern. The �nal se
tions, pages 100 - 104,highlight the Dynami
s of the generative pattern as applied in S
enario 1.Name { CompositeClassi�
ation type Stru
tural.Stru
tural patterns are an arrangement of
lasses that together form a larger stru
ture.Solves Problem Type Variant Management.Variant Management patterns treat di�erent obje
ts in a uniform manner by fa
toring outtheir
ommon properties.AnalysisIntentCompose obje
ts into a
olle
tion or
olle
tions of obje
ts.Composite des
ribes an obje
t that is
omposed of Composite obje
ts. The Composite obje
t isbuilt as a
olle
tion of obje
ts and
an be de�ned by a Colle
tion, ArrayList, Ve
tor or simplyan Array among other artefa
ts that de�ne a
olle
tion of
omponents. The Composite
an bedes
ribed as being a tree-like stru
ture.Continued on next page.

95ProblemOften, developers require
omplex obje
ts that
an be manipulated in a dynami
 fashion byusers during the exe
ution of a program. For example, in a drawing pa
kage drawn items
ome in di�erent shapes and sizes and
an be added to a drawing, removed from a drawing orresized, reshaped or repositioned. Components of a drawing
an be grouped together orungrouped; multiple grouped items
an be
olle
ted into a single group. A do
ument obje
tmay be
omposed of text, images and drawings, whi
h
an be grouped into Chapters, Se
tionsand Subse
tions. The problem is to store these items in a uniform manner as individual itemsin a
olle
tion of items. Ea
h of these examples represent
omplex obje
ts that need to bemanipulated.SolutionProvide a Composite obje
t to store individual or
omposite obje
ts. Clients
an build anda

ess the
omposite through an interfa
e
omponent that is implemented by all
omponentsin the Composite stru
ture. Colle
tions su
h as ArrayList and Ve
tor make ideal
omponentsto store
omposite obje
ts.DesignStru
tureThe Stru
ture represents the
lassi
 view of Composite as des
ribed in the Design Patterns[45℄
atalogue.Continued on next page.

96

componentVector:Vector

composite:String

Composite

sampleOperation:void

Add:void

Remove:void

components:Enumeration

composite:Component

composite1:Component

composite2:Component

main:void

sampleOperation:void

Add:void

Remove:void

Component

Composite

leaf:String

Leaf

sampleOperation:void

Leaf

Client

Figure 6.1: Stru
ture of the Composite Pattern
Parti
ipantsClientA
lient
an
reate or manipulate the
omposed
olle
tion through the interfa
e
omponent.ComponentRepresents an interfa
e for obje
ts in the
omposed
olle
tion.De�nes
ommon methods for
hild
omponentsCompositeDe�nes a
omposite obje
t that has
hildrenStores the
olle
tion obje
t.LeafRepresents an individual or leaf obje
t that has no
hildren.Continued on next page.

97ImplementationSample CodeThe following
ode, in Java, is a demonstration of how the implementation follows the design:Example 6.1 Client.javapubli

lass Clientfprote
ted stati
 Component
omposite = new Composite(\Composite 0");prote
ted stati
 Component
omposite1 = new Composite(\Composite 1");prote
ted stati
 Component
omposite2 = new Composite(\Composite 2");publi
 stati
 void main(String arg[℄)ftryfLeaf leaf1 = new Leaf(\Leaf 1");Leaf leaf2 = new Leaf(\Leaf 2");
omposite1.add(leaf1);
omposite1.add(leaf2);Leaf leaf3 = new Leaf(\Leaf 3");Leaf leaf4 = new Leaf(\Leaf 4");
omposite2.add(leaf3);
omposite2.add(leaf4);
omposite.add(
omposite1);
omposite.add(
omposite2);
omposite.sampleOperation();g
at
h(Ex
eption e)fe.printSta
kTra
e();gggContinued on next page.

98Example 6.2 Component.javapubli

lass Componentfvoid add(Component
omponent);void sampleOperation()fSystem.out.println(\Component Operation");ggExample 6.3 Leaf.javapubli

lass Leaf extends Componentfprivate String leaf;publi
 Leaf(String leaf)fthis.leaf = leaf;gpubli
 void sampleOperation()fSystem.out.println(leaf);ggExample 6.4 Composite.javaimport java.util.Ve
tor;import java.util.Enumeration;publi

lass Composite extends Componentfprivate Ve
tor
omponentVe
tor = new Ve
tor();private String
omposite;publi
 Composite(String
omposite) fthis.
omposite =
omposite;gpubli
 void sampleOperation()fSystem.out.println(
omposite);Enumeration
omponents =
omponents();while (
omponents.hasMoreElements())f((Component)
omponents.nextElement()).sampleOperation();ggpubli
 void add(Component
omponent)f
omponentVe
tor.addElement(
omponent);gpubli
 Enumeration
omponents()freturn
omponentVe
tor.elements();gg

99Related PatternsDe
orator (See De
orator Pattern)Provide a way of adding fun
tionality or de
oration to an obje
t.Classi�
ation type (Stru
tural)The
onne
tion of two or more Stru
tural Patterns serves to form a larger stru
ture.Problem Solving Type (De
oupling)Why the de
oupling takes pla
e.De
oupling helps to divide a system into independent units. A system that in
ludesde
oupled elements
an easily be extended or adapted by adding or modifying thoseelements.[104℄.What the de
oupling will add to a systemThe De
orator provides de
orative or fun
tional embellishment of obje
ts that were
reatedseparately. De
oration is applied to the obje
t rather than being part of the obje
t.By providing a spe
i�ed fun
tional
onstru
t, de
oration of the obje
t
an
hange withouta�e
ting the obje
t. That is, the de
oration is de
oupled from the obje
t.How the de
oupling takes pla
e.An obje
t
an be
reated that is de�ned with spe
i�
 fun
tionality. The de
orative
omponent
an be in
luded in that fun
tionality. However if the obje
t is modi�ed thenthe de
orative fun
tionality may have to be modi�ed also. For this reason the de
orative
omponent is de
oupled from the obje
ts
onstru
tion by providing alternative
lasses tohandle the de
oration.Asso
iation Type (Combines (De
orator))The interfa
e
omponents of both Composite and De
orator
ombine to form a single interfa
e.The Composite element of the pattern supplies the
olle
tion obje
t for the
ombined patternswhilst the De
orator element a
ts as an interfa
e to the Con
reteDe
orator
omponents. TheLeaf elements of Composite retain their original purpose and fun
tionality.Continued on next page.

100
Combines

Decoupling()

Structural : Decorator

VariantMan()

Structural : Composite

Participants:

 Component

 ConcreteComponent

 Decorator

 ConcreteDecorator

Participants:

 Component

 Leaf

 Composite

 Client

Composite - Decorator Relationship

Figure 6.2: Relationship between Composite and De
orator
Dynami
s { Examples of Generative DesignS
enario 1AnalysisS
enario 1 illustrates a simple drawing pa
kage where lines, squares and
ir
les
an be drawnwithin a frame. Ea
h drawing item
an be individually de
orated or a group of drawing items
an be de
orated. Ea
h individual item and or groups of items
an be
olle
ted into a
ompositeobje
t.DesignUse-Case DiagramThe use-
ase diagram represents a business pro
ess that de�nes the a
tivities that
an beapplied to the drawing s
enario. In this
ase, drawing
omponents
an be
reated, de
oratedand displayed.Continued on next page.

101
Create

Drawing

Objects

Add Objects to

Collection

Set Decoration

Object

Print Collection

Client

Compose

Objects

<<Extends>>

<<Extends>>

Figure 6.3: Use-Case Diagram - Composite
ombines De
orator
The diagram on the following page shows the
lass
omponents that
ollaborate to form thestru
ture of the Composite { De
orator drawing s
enario. Three di�erent drawing
omponents
an be
reated and
an be de
orated with
olour and or line weighting
an be applied(thi
kness of lines).

102Class Diagram
Client

comp : Shapecomponent

colour: Shapecomponent

size : Shapecomponent

paintComponent : void

 Shapecomponent

Draw : void

addDrawing : void

removeDrawing : void

Drawdecorator

Drawdecorator

Draw : void

Rectangleleaf

x : int

y : int

x1 : int

y1 : int

Rectangleleaf

Draw : void

Circleleaf

x : int

y : int

x1 : int

y1 : int

Circleleaf

Draw : void

Lineleaf

x : int

y : int

x1 : int

y1 : int

Lineleaf

Draw : void

Drawcomposite

Drawings : Vector <Shapecomponent>

Drawcomposite

addDrawing : void

removeDrawing : void

components : Enumeration

Draw : void

Colourdecorator

C : Color

Colourdecorator

Draw : void

Sizedecorator

S : setSize

Sizedecorator

Draw : void
Figure 6.4: Class Diagram - Composite
ombines De
orator

ImplementationThis example uses the Composite and De
orator patterns to demonstrate a simple drawing pa
kage.For the purpose of demonstration the
omponents are hard
oded into the
lient but in a liveappli
ation the
omponents would be
reated dynami
ally.Continued on next page.

103Parti
ipantsClientThe Client
omponent is a simple driver used to
reate the drawn
omponents. The
lient
reates the
omponent and de
oration obje
ts and adds them to the
olle
tion obje
t.Shape
omponentThe Shape
omponent
lass spe
i�es an Abstra
t interfa
e to the main
omponents of theComposite and De
orator. Shape
omponent de�nes three methods that
an be implemented byall sub-
lasses. The addDrawing(Shape
omponent draw)and removeDrawing(Shape
omponent draw) methodsare implemented in the Composite
lass and the Draw(Graphi
s g) method is implemented in allsub-
lasses.Draw
ompositeDraw
omposite has two fun
tions; one is to add or remove items from the Colle
tion obje
t(the Ve
tor) - private Ve
tor<Shape
omponent> drawings; and the other is to
all ba
k the items fromthe
olle
tion (print to the frame) - ((Shape
omponent)
omponents.nextElement()).Draw(g). In this exampleitems are only added to the
olle
tion - addDrawing(Shape
omponent draw)fdrawings. addElement(draw)g.Lineleaf, Cir
leleaf, Re
tangleleafLeaf
omponents represent the drawing obje
ts that are added to the
omposite
olle
tion.Ea
h
omponent de�nes its own type of drawing obje
t, whi
h is
alled in the Draw method- g.drawLine(x, y, x1, y1).Drawde
oratorDrawde
orator spe
i�es an Abstra
t interfa
e whose Draw method is implemented in the Colourand Size sub-
lasses. Like the Shape
omponent
lass Drawde
orator is something of a Fa
adein that a

ess to sub-
lasses is only made through the Fa
ade.Continued on next page

104Colourde
orator, Linestylede
oratorThe de
oration obje
ts that are used to set the de
oration for the drawn
omponents. Ea
h
omponent de�nes its own type of de
oration, whi
h is
alled in the Draw method- g.setColor(
olour). Be
ause they are Shape
omponents de
oration is added to the
omposite
olle
tion as an obje
t.Consequen
esThe main bene�t of linking Composite and De
orator together is the separation of fun
tionality intospe
i�

lass
omponents. This itself will bring easier maintenan
e to the system in that leaf items
an be added or removed without a�e
ting the de
oration and de
oration
an be
hanged withouta�e
ting leaf items. The drawba
k to this is the level of fun
tionality required within the
lient tomanipulate the drawing obje
ts within the
olle
tion.The sour
e
ode for this s
enario and the remaining two s
enarios
an be seen inAppendix F.6.5 Con
lusionRede�ning design patterns as generative has not been as simple a pro
ess as de
iding to add somedetail to a pattern and
alling it generative. What has been
ondu
ted is a systemati
 study ofdesign patterns to �nd out how to de�ne them appropriately,
onsistently and how to implement therelationships between the
ollaborating patterns.There are a number of obvious di�eren
es between stati
 design patterns and the generative patternexamples presented in Chapter Six and the Appendi
es. Notably:� The generative pattern identi�es a life-
y
le pro
ess (a mini methodi
al pro
ess) that is not readilyre
ognisable in a stati
 pattern.� Some stati
 patterns are quite
omplex and it is diÆ
ult to identify within these patterns whataspe
ts of the notation are the Problem and the Solution. In the generative pattern the Problemand Solution have a prominent position in the notation of the pattern.� Most patterns o�er only one
oded example of a working pattern whilst the generative patternhas three su
h examples.

105� Studies have shown that design patterns do work well together[22, 77, 91, 98℄, but do not des
ribeopenly a method of pattern integration. Therefore, whilst stati
 patterns fo
us dire
tly on thenamed pattern, the generative pattern identi�es other patterns with whi
h it will
ommuni
ateand the
omponents of the
ollaborating patterns that fa
ilitate that
ommuni
ation.� Although stati
 patterns des
ribe some problem in their narrative, the pattern only des
ribeswhat the problem is in relation to the stati
 nature of the named pattern. The generative patternintrodu
es a problem type whi
h o�ers an idea of the fun
tionality of other
ollaborating patterns,thereby fa
ilitating a possible solution in
onjun
tion with another pattern.� In stati
 design patterns the se
tion on Related Patterns is extremely brief. The generativedesign pattern by its very nature treats Related Patterns as being the signi�
ant
ontribution tothe pattern itself.The above points highlight the di�eren
es between the stati
 design pattern and the generative designpattern. An evaluation of the generative design pattern and the example experiments that were
arriedout on
ollaborating patterns is dis
ussed in Chapter Seven, Evaluation.6.6 SummaryThe
on
luding aspe
t for this Chapter is the de�nition of a generative design pattern. To this end apattern has been written that shows the de�nition in use. The Composite pattern has been de�ned in the
reated format for the generative pattern and is shown as an example of generative design,
ollaboratingwith the De
orator pattern. In
omposing the Composite pattern in this generative format a signi�
antobservation
an be made. The reader will noti
e that there is a la
k of detail in the pattern
omparedto other de�nitions of software design patterns
ontained in prominent pattern
atalogues. There aretwo reasons for this; �rstly, the generative design pattern des
ribed in this Chapter is not about theknowledge or the
ontent of the pattern, it is about the framework of the pattern and how it is de�nedin a generative format; se
ondly, the
ontent of the notation as it is written is not intended to be readin a book-based
atalogue, therefore �ne detail has been omitted. That is, if detail is required fordistribution in
atalogue form, then detail
an be added. However, there is suÆ
ient detail to re
ognisethe pro
ess of generative design.

106
Chapter 7EVALUATION7.1 Introdu
tionStudies have shown that design patterns do work well together[22, 77, 91, 98℄, but do not des
ribeopenly a method of pattern integration. Although there have been a few attempts to take standarddesign patterns and de�ne them as generative, these attempts are related to tool development that willgenerate
ode from design patterns[17, 18, 40, 73℄. The term generative in this
ontext relates only tothe fa
t that patterns are used to generate
ode.This
hapter
on
ludes the work undertaken in de�ning a generative pattern for the purpose of gener-ating systems. The groundwork has been laid for the re-engineering of design patterns with a view tousing the de�ned notation as a template for design and development. Currently, stati
 design patternsare used as a solution to an individual problem in the development of a system, but with generativedesign patterns multiple problems
an be brought together to simplify the development of a system.However, rede�ning design patterns as generative is not as simple a pro
ess as de
iding to add somedetail to a pattern and
alling it generative. What has been
ondu
ted is a systemati
 study of designpatterns to �nd out how patterns do or do not work well together, how to de�ne them
onsistently andhow to implement the relationships between
ollaborating patterns.In Chapter Seven, the patterns that have been
onsidered in the main text and the appendi
es of thisstudy are evaluated for their appropriate quality and usefulness as a development artefa
t. This qualityand usefulness is determined by
omparing the use of stati
 and then generative design patterns inseveral simple and more
omplex
ase-studies. Firstly, the
omposite and de
orator design patterns areevaluated in a simple desktop based s
enario. Se
ondly, the use of three and then four design patternsare evaluated using the same simple desktop based s
enario. Finally, a more
omplex appli
ation isdeveloped and
ompared using the same
olle
tion of stati
 and generative design patterns. Threeadditional paired pattern
ase-studies are evaluated in Appendix H, whi
h
ontribute to the overallresults of the evaluation. The stati
 and generative s
enarios are evaluated and
ompared using metri
sto establish the quality of the developed appli
ations in terms of the basi
 software prin
iples of
oupling,
ohesion and
omplexity.

1077.1.1 Evaluation StrategyIn an ideal situation the generative design patterns would be independently tested by teams of softwaredevelopers. Team A would develop test appli
ations using generative patterns and team B develop testappli
ations using stati
 patterns. However, this is not a realisti
 proposition. It is unlikely that asoftware
ompany would allo
ate teams of developers to an evaluation pro
ess for an a
ademi
 studywithout payment.However, there are alternatives to se
uring the assistan
e of professional developers. As a se
ond resortthe evaluation
ould be put in the hands of
omputing students who
ould a
t as study groups for thetesting of software development proje
ts. However, this itself has its own set of problems:� The students may not be willing to parti
ipate.� They may la
k the ne
essary edu
ation in design patterns.� Separate
ontrol groups may be unbalan
ed.� A single group will develop prior learning from the stati
 or generative pattern developmentpro
ess, whi
h will enhan
e the students' ability with the se
ond example study, thereby
reatingan unbalan
ed
omparison.As a ne
essary alternative to evaluation by independently
ondu
ted experiments, dependant experi-mentation
an be
ondu
ted on the
ase-studies. In this instan
e, the author of the generative designpatterns
an develop the
ase-studies,
ondu
t the experiments and evaluate the results. A problemwith this is the author
ould deliberately or un
ons
iously put a bias on ensuring the results of anyexperiments were in favour of the generative patterns. To
ounter this problem the
ode and test results
an be independently
he
ked and / or the
ode and results made available for publi
 s
rutiny.The pragmati
s of
ase-studies and the evaluation pro
ess
an be
awed for many reasons and at-tempting to over
ome those
aws to ensure unbiased or independent results
an be a major task initself. Se
uring the assistan
e of independent developers, whether industrial or a
ademi
, is initiallydependant on the willingness or availability of the persons approa
hed to do the task. Time is the realproblem in se
uring independent evaluation.Self evaluation, although not ideal, is from a pra
ti
al point of view the best that
an be a
hieved giventhe limited time available. Given more time a more independent approa
h
ould have been taken.

108However, this approa
h was not available. Therefore, a self evaluation has been
ondu
ted on thegenerative design patterns.7.2 Metri
sMetri
s as the prin
iple evaluation
riteria have been used to determine the usefulness of generativedesign patterns. The Borland Together[16℄ modelling tool that was used for modelling the generativedesign patterns lists eighty eight di�erent metri
s tests. The full list of these metri
s
an be seen inAppendix G. Rosenberg and Hyatt[93℄ propose a range of both traditional and obje
t-oriented metri
sfor testing obje
t oriented systems. The metri
s they use are useful in a wide range of models andevaluate the following attributes:� EÆ
ien
y� Complexity� Understanding� Reuse� Testing� Maintenan
eThe metri
s used for the evaluation of the generative design patterns de�ned in this thesis are a sub-set of the metri
s proposed by Rosenberg and Hyatt. Although the metri
s used here are borrowedfrom Rosenberg and Hyatt based on what they
onsider to be appropriate metri
s in obje
t-orientedenvironments, the metri
s used are
ommonly dis
ussed throughout many papers[8, 21, 90℄ and texts[57,68, 71℄.The following metri
s are used in this study to evaluate the generative design patterns:1. Coupling Between Obje
ts (CBO) CBO represents the number of other
lasses to whi
h a
lass is
oupled. It
ounts the number of referen
e types that are used in attribute de
larations,formal parameters, return types, throws de
larations, lo
al variables, and types from whi
h at-tribute and method sele
tions are made. Ex
essive
oupling between obje
ts is detrimental to

109modular design and prevents reuse. The more independent a
lass is, the easier it is to reuse it inanother appli
ation. The larger the CBO �gure for a
lass, the higher the sensitivity to
hangesin other parts of the design, and therefore maintenan
e is more diÆ
ult. A measure of
oupling isuseful to determine how
omplex the testing of various parts of a design is likely to be. The higherthe inter-obje
t
oupling, the more rigorous the testing needs to be. CBO evaluates eÆ
ien
yand reusability. The Together modelling tool re
ommends an upper limit of 30 for this metri
,where a higher number represents a higher degree of required testing.2. Cy
lomati
 Complexity (CC) Cy
lomati
 Complexity[78℄ is used to evaluate the
omplexityof methods within a
lass rather than the
lass itself for reasons of inheritan
e. Ideally, a lownumber should be returned, preferably below ten. However, there is a slight drawba
k to CC inthat a low �gure
ould be returned be
ause de
isions are deferred through message passing, notbe
ause the method is not
omplex[93℄.3. La
k Of Cohesion Of Methods (LCOM) LCOM[57℄ measures the degree of similarity be-tween methods in a
lass. A low value indi
ates good
lass subdivision, implying simpli
ity andhigh reusability. A high la
k of
ohesion in
reases
omplexity, thereby in
reasing the likelihood oferrors during the development pro
ess[16℄. Cohesion
an be measured by
al
ulating the per
ent-age of methods that use a data �eld. Average the per
entages, then subtra
t from 100. Lowerper
entages indi
ate greater data and method
ohesion within the
lass. High
ohesion indi
atesgood
lass subdivision. La
k of
ohesion or low
ohesion in
reases
omplexity, thereby in
reasingthe likelihood of errors during development. Classes with low
ohesion
ould probably be subdi-vided into two or more sub
lasses with in
reased
ohesion. This metri
 evaluates eÆ
ien
y andreusability[71, 93℄. The Together modelling tool re
ommends an upper limit of 101 and a lowerlimit of 30 for this metri
, where a higher number represents lower
ohesion.4. Lines Of Code (LOC) Lines Of Code is the number of lines of
ode in a
lass, in
luding
omments and empty lines. A large
lass may pose a higher risk to understandability, reusability,and maintainability[71, 93℄. There are no re
ommended �gures for how many lines of
ode thereshould be in a
lass, although the Together[16℄ modelling tool defaults to a 1000 line upper limit.5. Response For Class (RFC) The size of the response for the
lass in
ludes methods in the
lass's inheritan
e hierar
hy and methods that
an be invoked on other obje
ts. A
lass, whi
hprovides a larger response, is
onsidered to be more
omplex and require more e�ort in testingthan one with a smaller response �gure[16℄. If a large number of methods
an be invoked inresponse to a message, testing and debugging the
lass requires a greater understanding on the

110part of the tester. This metri
 evaluates understandability, maintainability, and testability[71, 93℄.The Together modelling tool re
ommends an upper limit of 50 for this metri
, where a highernumber represents a higher degree of required testing.6. Weighted Methods Per Class (WMPC)WMPC is the sum of the
omplexity of all methodsfor a
lass, where ea
h method is weighted by its
y
lomati

omplexity. The number of methodsand the
omplexity of the methods involved is a predi
tor of how mu
h time and e�ort is requiredto develop and maintain the
lass[16℄. A
lass with a large numbers of methods is likely to bespe
i�
 to an appli
ation, whi
h will limit its possibility of reuse[93℄. This metri
 measures under-standability, reusability, and maintainability[71, 93℄. The Together modelling tool re
ommendsan upper limit of 30 for this metri
, where a higher number represents greater
omplexity.7. Number of Classes The NOC metri
 is very simple, it
ounts the number of
lass and interfa
e
omponents in the appli
ation.8. Exe
utable Size The size of the binary �les in Kilobytes. Although this is not a spe
i�
 metri
 itis used by Arnout[7℄ in her
omparison of systems that do and do not use
omponentised patterns.In her thesis she presents a set of patterns that have been
omponentised into a set of library
lasses. A system is then
ompared with and without these
lasses and the size of the exe
utableappli
ation is measured.7.3 Stati
 vs. Generative Patterns7.3.1 Introdu
tionThe following evaluation provides statisti
s and a dis
ussion of ea
h
ase-study / experiment
ondu
tedon the generative patterns using metri
s. In ea
h
ase-study, the same generative patterns are
omparedagainst the same stati
 patterns in the same s
enario. The s
enario is a representation of a
o�ee shopwhere a drink
an be pur
hased. When the drink is pur
hased a des
ription of the drink and the
ostare displayed on the output window of the appli
ation.All the patterns used in these
ase-studies were �rst dis
ussed in Chapter Six and Appendi
es A toD. The �rst
ase-study in this
hapter and the three
ase-studies in Appendix H
onsist of pairs ofpatterns. The se
ond and third
ase-studies
ontain three and four patterns respe
tively. The �nal
ase-study uses all four patterns but in a larger appli
ation.For ea
h
ase-study, a
omparative model of the generative and stati
 design patterns is provided.

111The �rst table in ea
h
ase-study provides the general statisti
s for the
ompared appli
ations. TheTogether modelling tool that provides the metri
s uses the highest value obtained from the individual
lass
omponents as the ben
hmark �gure for the appli
ation as a whole. Therefore the �gures in the�rst table represent the overall proje
t statisti
s.The se
ond table provides the statisti
s for two types of individual
lass
omponents:1. Those that have a like-for-like
omponent in the
omparative appli
ation but show di�erentstatisti
al results.2. Those that have no
orresponding
omponent in the
omparative appli
ations, where a
omparison
annot be made.Both the �rst and se
ond table of ea
h
ase-study indi
ates whether there is a positive or negativedi�eren
e between the
omparative examples or whether there is no di�eren
e at all.Table Key� + Represents a positive result in favour of the generative pattern.� { Represents a negative result against the generative pattern.� / Indi
ates that there is no di�eren
e between the
omparative examples.� * Indi
ates that there is no
orresponding
omponent with whi
h to
ompare.� A blank spa
e indi
ates that the metri
s
ompiler did not return a value.� GP A
omponent from a generative pattern.� SP A
omponent from a stati
 pattern.

1127.3.2 A Simple Case Study using Composite and De
orator
Generative Design Example
 Static Design Example

CombinedIF

Small

Drink

Composite

Client

Drink

Decorator

Chocolate

Sprinkle

Whipped

Cream

Medium
 Large

Steamed

Milk

Foamed

Milk

Espresso

Decorator

Component

Small

Drink

Composite

Client

Drink

Decorator

Chocolate

Sprinkle

Whipped

Cream

Medium
 Large

Steamed

Milk

Foamed

Milk

Espresso

Composite

Component

Drink

Leaf

Figure 7.1: Generative vs. Stati
 { Composite and De
oratorFigure 7.1 above provides a
lass diagram for the
omparative examples of the
omposite and de
oratorpatterns used in a generative and stati
 pattern environment. As
an be seen from the diagram, thegenerative example on the left has an interfa
e that is
ombined from the two interfa
e
omponentsthat are used in the stati
 example on the right. The four sub-
omponents of the De
oratorComponentfrom the stati
 pattern example are now leaf
omponents to the DrinkComposite
lass in the generativepattern example.In order for the two patterns to work together in the stati
 environment, a de
orator obje
t is
reated andadded to a
olle
tion obje
t in the DrinkLeaf
omponent of the
omposite pattern. As su
h, multiplede
orator obje
ts
an be added to one or more DrinkLeaf
omponents and one or more DrinkLeaf
omponents
an be added to a DrinkComposite
omponent. DrinkComposite
omponents
an be addedto other DrinkComposite
omponents as is intended with a
omposite pattern.In the generative example, be
ause any de
orator obje
t that is
reated is now a leaf
omponent to theDrinkComposite
omponent, it
an be added dire
tly to a DrinkComposite obje
t.Table 7.1 shows the overall results of the metri
s that were produ
ed from the generative and stati
examples of the
omposite and de
orator patterns des
ribed above.

113Metri
 Generative Patterns Stati
 Patterns Di�eren
e (%)CBO 11 13 +CC 2 2 /LCOM 100 100 /LOC 242 278 +12.9%RFC 31 33 +WMPC 5 6 +NOC 12 14 +EXE SIZE 10.0 12.1 +17.4%Table 7.1: General statisti
s for the Generative and Stati
 versions of Composite and De
oratorWhat the statisti
s in Table 7.1 indi
ate, whi
h is
on�rmed by the CBO and RFC metri
s, is that thegenerative pattern example will require slightly less testing than the stati
 pattern example. As
an beseen in Table 7.2 the higher values for the CBO and RFC metri
s
omes from the
lient of the stati
example, whi
h is having to
ommuni
ate with two interfa
e
omponents instead of just one interfa
e
omponent in the generative example.Whilst a like-for-like
omparison
annot be made between
omponents that have no
ounterpart, theadditional
omponents in the stati
 example have something of an overhead in terms of
omplexity.The overall value of the WMPC metri
 suggests that the generative example is slightly less
omplex.The higher
omplexity value in the stati
 example
omes from the CompositeComponent, whi
h de-�nes two sets of methods (add(Component drink) and remove(Component drink) in the
omposite, andadd(Co�eeProdu
t drink) and remove(Co�eeProdu
t drink) in the leaf) for the
olle
tion
omponentsde�ned in ea
h sub
lass of the interfa
e. Signi�
antly, the joint values for the interfa
e
omponents inthe stati
 example are double that of the single interfa
e in the generative example.Where the two separate interfa
es are
on
erned (De
oratorComponent and CompositeComponent) inthe stati
 example, the statisti
s in Table 7.2 show that the overall testing �gures for the CBO andRFC values are double that of the CombinedIF interfa
e
omponent of the generative example. So,whilst the
lient in the stati
 example will require more testing than that of the generative example,the stati
 example, yet again, will require more testing in the individual interfa
e
omponents plussome additional testing for the DrinkLeaf
omponent.Three other signi�
ant points in favour of the generative example are the redu
tion in the number oflines of
ode, the redu
tion in the number of
lasses and the size of the exe
utable �le. As
an be seen

114in this example, the exe
utable �le for the stati
 patterns is over 17% higher, whilst it has almost 13%more
ode and two extra
lasses.Class CBO CC LCOM LOC RFC WMPCGP SP GP SP GP SP GP SP GP SP GP SPClient 11 13 1 1 86 86 56 56 31 33 5 5+ / / / + /Class CBO CC LCOM LOC RFC WMPCGP SP GP SP GP SP GP SP GP SP GP SPCombinedIF 0 * 1 * * 7 * 4 * 4 ** * * * * *Composite * 1 * 1 * * 10 * 6 * 6Component * * * * * *De
orator * 0 * 1 * * 5 * 2 * 2Component * * * * * *Drink * 4 * 2 * 0 * 28 * 8 * 5Leaf * * * * * *Table 7.2: Individual statisti
s for the Generative and Stati
 versions of Composite and De
oratorThe individual
lass statisti
s for the like-for-like
omponents in the examples are identi
al throughoutall metri

ategories, therefore they are not in
luded in Table 7.2. In this example this equates tothe
omponents that make up the de
orator and the
omposite
lass elements of the appli
ation. Thereason for this is modularity, in that ea
h
orresponding
omponent provides identi
al fun
tionality.The only ex
eption in like-for-like
omponents is the
lient. For the
lient there is a minor di�eren
ein that it
ommuni
ates with two separate interfa
es.Three additional paired pattern
ase-studies
an be seen in Appendix H.

1157.3.3 A Simple Case Study using Composite, Command and Builder
Generative Design Example

Static Design Example

Coffee

Product

Concrete

Builder1

Invoke

Button

Client

Director

CombinedIF

Concrete

Builder2

Concrete

Builder3

Concrete

Command4

Composite

Command

Holder

Command

Holder

Coffee

Product

Concrete

Builder1

Invoke

Button

Client

Director

Builder

Concrete

Builder2

Concrete

Builder3

Concrete

Command1

Command

Concrete

Command2

Concrete

Command3

Concrete

Command4

Component

Composite
Leaf

Figure 7.2: Generative vs. Stati
 { Command + Composite + BuilderFigure 7.2 above provides a
lass diagram for the
omparative examples of the
omposite,
ommandand builder patterns used in a generative and stati
 pattern environment. This example of the threepatterns is very similar to the
ommand and builder examples seen in Figure H.2 of Appendix H.However, other than the in
lusion of the
omposite pattern, there are some slight di�eren
es.In the generative example, both the
ommand and builder patterns are being
ombined with the
omposite pattern, but the builder pattern is still only using the InvokeButton from the
ommandpattern. Additionally, although Con
reteCommand4 from the
ommand pattern shares an interfa
ewith the
omposite pattern, Con
reteCommand4 is not stri
tly a leaf
omponent of the
omposite as it

116is not pra
ti
al to add Con
reteCommand4 to the
omposite obje
t. Con
reteCommand4 in this instan
eis using the
omposite to extra
t information for later use.The builder and
ommand patterns are
ollaborating as they do in the
ommand and builder exampleseen earlier, ex
ept in this example the Co�eeProdu
t obje
t that is being
reated is now being storedin the
omposite obje
t.In order for the patterns to work together in the stati
 environment, a produ
t obje
t is built and
reated when a Con
reteCommand is issued through an InvokeButton
ommand. The Con
reteCommandinstru
ts the Con
reteBuilder to build the produ
t; the produ
t is then added to a
olle
tion obje
t inthe Leaf
omponent of the
omposite pattern. As su
h, multiple produ
t obje
ts
an be added to oneor more Leaf
omponents and one or more Leaf
omponents
an be added to a Composite
omponent.Composite
omponents
an be added to other Composite
omponents as is intended with a
ompositepattern.In the generative example, be
ause any produ
t obje
t that is
reated is now a leaf
omponent to theComposite
omponent, it
an be added dire
tly to a Composite obje
t.Table 7.3 shows the overall results of the metri
s that were produ
ed from the generative and stati
examples of the
omposite,
ommand and builder patterns des
ribed above.Metri
 Generative Patterns Stati
 Patterns Di�eren
e (%)CBO 20 26 +CC 17 17 /LCOM 88 88 /LOC 428 478 +10.5%RFC 14 11 {WMPC 14 11 {NOC 11 17 +EXE SIZE 18 20.7 +12.1%Table 7.3: Code statisti
s for the Generative and Stati
 versions of Command + Composite + BuilderThe statisti
s in Table 7.3 show that the stati
 pattern will require more testing in respe
t of theCBO metri
 than that of the generative pattern. With three patterns in these examples, the
lientin the stati
 example has to
ommuni
ate with two more interfa
e
omponents than the
lient in thegenerative example. As su
h the CBO metri
 in the stati
 example is thirty per
ent higher than that

117in the generative pattern example. This represents a higher degree of
oupling in the stati
 exampleand a higher degree of testing of the
lient.However, as
an be seen from Table 7.3, the RFC metri
 of the generative pattern is thirty per
ent higherthan the stati
 pattern. This higher value
omes from the CombinedIF
omponent of the generativepattern, whi
h is listed in Table 7.4. This is a result of the CombinedIF
omponent de�ning methodsfor three di�erent types of sub
omponent. As a result, there will be a need for more testing of theCombinedIF
omponent. Additionally, the WMPC metri
 shows that the
omplexity of the generativeexample is higher than the stati
 example. Again the higher value for this metri

omes from theCombinedIF
omponent whi
h is a
ting as a
ommuni
ation hub between the
lient and the remaining
lass
omponents in the example.A signi�
ant negative aspe
t of the generative example is shown in the statisti
s of the InvokeButton,whi
h
an be seen in Table 7.4. The InvokeButton as it is used in the generative example is providingtwo sets of methods that are used to set the
ommands for the Con
reteCommand4
omponent and theCon
reteBuilder
omponents:publi
 void setCommand(Co�eeDire
tor
omd);publi
 Co�eeDire
tor getCommand();publi
 void setPri
eCommand(CombinedIF
omd);publi
 CombinedIF getPri
eCommand();In a regular
ommand pattern there would only be one pair of set and get methods. As su
h, theLCOM value is signi�
antly higher for the generative example - indi
ating that the InvokeButton of thegenerative example is less
ohesive than the stati
 example. Likewise, the CommandHolder interfa
ewhi
h provides the implementation details for the InvokeButton also exhibits the negative values for itsmetri
s.Whilst the three separate interfa
es (Builder, Command and Component) in the stati
 example still have
olle
tive values lower than the CombinedIF interfa
e of the generative example, the stati
 examplewill require some additional testing and maintenan
e for the Con
reteCommand and Leaf
omponents.Although the generative pattern returns a higher
omplexity value, the additional
omponents in thestati
 example have some degree of
omplexity, whi
h has to be taken into a

ount.Whilst there are some negative aspe
ts relating to the InvokeButton in the generative example, thegenerative example exhibits better
olle
tive values in its metri
 than the stati
 pattern. This takesinto a

ount the redu
tion in the number of lines of
ode, the redu
tion in the number of
lasses and

118the size of the exe
utable �le, whi
h are in favour of the generative example.Class CBO CC LCOM LOC RFC WMPCGP SP GP SP GP SP GP SP GP SP GP SPClient 20 26 17 17 130 130 2 2 2 2+ / / / /Button 7 9 17 17 49 45 14 14 17 17Handler + / { / /Command 2 1 1 1 7 5 4 2 4 2Holder { / { { {Invoke 2 1 1 1 66 0 26 17 4 2 5 3Button { / { { { {Con
rete 1 2 1 1 14 14 3 3 2 2Command4 + / / / /Class CBO CC LCOM LOC RFC WMPCGP SP GP SP GP SP GP SP GP SP GP SPCombinedIF 1 * 1 * * 21 * 14 * 14 *Component * 1 * 1 * * 12 * 5 * 5Command * 0 * 1 * * 4 * 1 * 1Builder * 1 * 1 * * 10 * 6 * 6Leaf * 4 * 2 * 0 * 29 * 8 * 5Con
rete * 1 * 1 * * 9 * 2 * 2Commands * * * * * *Table 7.4: Individual statisti
s for the Generative and Stati
 versions of Command, Composite andBuilderLike in the previous example, the individual
lass statisti
s for the like-for-like
omponents in theexamples are identi
al throughout all metri

ategories, therefore they are not in
luded in Table 7.4.In this example this equates to the Con
reteBuilder
omponents, the Co�eeProdu
t, the Dire
tor andthe Composite
lass. Again, like the previous examples the reason for this is modularity, in that ea
h
orresponding
omponent provides identi
al fun
tionality.

1197.3.4 A Case Study using Composite, Command, De
orator and Builder
Generative Design Example

Static Design Example

Composite

Coffee

Product

Concrete

Builder1

Invoke

Button

Client

Director

Builder

Concrete

Builder2

Concrete

Builder3

Concrete

Command1

Command

Concrete

Command2

Concrete

Command3

Concrete

Command4

Component

Composite
Leaf

Decorator

Decorator

Component

Concrete

Decorator1

Concrete

Decorator2

Decorator

Coffee

Product

Concrete

Builder1

Invoke

Button

Client

Director

CombinedIF

Concrete

Builder2

Concrete

Builder3

Concrete

Command

Concrete

Decorator1

Concrete

Decorator2

Figure 7.3: Generative vs. Stati
 { Command + Composite + Builder + De
oratorFigure 7.3 above provides a
lass diagram for the
omparative examples of the
omposite,
ommand,de
orator and builder patterns used in a generative and stati
 pattern environment. This exampleof the four patterns is very similar to the
omposite,
ommand and builder examples seen in Figure7.2. However, with the in
lusion of the de
orator pattern, there are some minor
hanges to how theexamples operate.Like the previous example on the generative side of the diagram, both the
ommand and builder

120patterns are being
ombined with the
omposite pattern, but the builder pattern is still only using theInvokeButton from the
ommand pattern. Again, similar to the previous example, Con
reteCommand4from the
ommand pattern shares an interfa
e with the
omposite pattern, but is not stri
tly a leaf
omponent of the
omposite as it is not pra
ti
al to add Con
reteCommand4 to the
omposite obje
t.The builder and
ommand patterns are
ollaborating as they do in the previous example, ex
ept inthis example it is not the Co�eeProdu
t obje
t that is being stored in the
omposite obje
t. In thisexample it is a de
orator obje
t that is being stored in the
omposite obje
t. With this di�eren
e, thede
orator
omponent is taking as a parameter a Co�eeProdu
t obje
t. This in e�e
t means that theCo�eeProdu
t is a leaf in the de
orator pattern, whilst the De
orator is a leaf in the
omposite pattern.However, the Co�eeProdu
t is still a leaf in the
omposite pattern as it
ould be added to the
ompositeobje
t without having de
oration applied to it.The situation des
ribed in the previous paragraph is diÆ
ult to a
hieve in the stati
 example as theleaf
omponent has been de�ned to take de
orator
omponents only in its
olle
tion obje
t.In order for the patterns to work together in the stati
 environment, the user has to de
ide whetherthe sale of a
o�ee is to be a drink indoors or a drink out option. Depending on the de
ision, oneof the de
orator obje
ts is
reated. Following this, a produ
t obje
t is built and
reated when aCon
reteCommand is issued through an InvokeButton
ommand. The Con
reteCommand instru
ts theCon
reteBuilder to build the produ
t; the produ
t is then added as a parameter to the previously
reatedde
orator obje
t. The de
orator obje
t is added to a
olle
tion obje
t in the Leaf
omponent of the
omposite pattern. As su
h, multiple de
orator obje
ts
an be added to one or more Leaf
omponentsand one or more Leaf
omponents
an be added to a Composite
omponent. Composite
omponents
anbe added to other Composite
omponents as is intended with a
omposite pattern.Table 7.5 shows the overall results of the metri
s that were produ
ed from the generative and stati
examples of the
omposite,
ommand, de
orator and builder patterns des
ribed above.

121Metri
 Generative Patterns Stati
 Patterns Di�eren
e (%)CBO 21 28 +CC 23 23 /LCOM 88 88 /LOC 487 543 +10.1%RFC 14 11 {WMPC 14 11 {NOC 13 20 +EXE SIZE 20.5 23.8 +13.9%Table 7.5: Code statisti
s for the Generative and Stati
 versions of Command, Composite, De
oratorand BuilderThe statisti
s in Table 7.5 show that the stati
 pattern will require more testing in respe
t of the CBOmetri
 than that of the generative pattern. With four patterns in these examples, the
lient in thestati
 example is
ommuni
ating with four interfa
e
omponents whereas the
lient in the generativeexample only
ommuni
ates with one. As su
h the CBO metri
 in the stati
 example is
onsiderablyhigher than that in the generative pattern example. This represents a higher degree of
oupling in thestati
 example and a higher degree of testing and maintenan
e of the
lient.Like the previous example, the RFC metri
 of the generative pattern is higher than the stati
 pattern.This higher RFC value
omes from the CombinedIF
omponent of the generative pattern, whi
h is listedin Table 7.6. This is a result of the CombinedIF
omponent de�ning methods for four di�erent typesof sub
omponent. As a result, there will be a need for more testing of the CombinedIF
omponent.Again, like in previous examples, the WMPC metri
 shows that the
omplexity of the generativeexample is higher than the stati
 example. The higher value for this metri
 again
omes from theCombinedIF
omponent whi
h is a
ting as a
ommuni
ation point between the
lient and the remaining
lass
omponents in the example.The signi�
ant negative aspe
t in this generative example
omes from the InvokeButton whi
h, as isshown in Table 7.6, is quite high in terms of RFC and WMPC metri
s. This is a result of it providingtwo sets of methods to set the
ommands for the Con
reteCommand4
omponent and the Con
reteBuilder
omponents, as des
ribed in the previous example.Whilst the four separate interfa
es (Builder, Command, Component and De
oratorComponent) in thestati
 example still have
olle
tive values lower than the CombinedIF interfa
e of the generative example,the di�eren
e is marginal. When taking all the additional
omponents of the stati
 example into

122
onsideration, the stati
 example will require some additional testing and maintenan
e. Although thegenerative pattern returns a higher
omplexity value, the additional
omponents in the stati
 examplehave some degree of
omplexity, whi
h has to be taken into a

ount.Whilst there are some negative aspe
ts relating to the InvokeButton in the generative example, thegenerative example exhibits better
olle
tive values in its metri
 than the stati
 pattern. This takesinto a

ount the redu
tion in the number of lines of
ode and the size of the exe
utable �le, whi
h arein favour of the generative example.Be
ause the general metri
s in this example are so similar to the previous example, it appears thatthe addition of the de
orator pattern has not added to the overall value of the general metri
s, otherthan the
lient. However, the addition of extra
omponents has in
reased the
olle
tive values of themetri
s, whi
h in
reases additional work that may need to be applied in terms of the attributes listedin Se
tion 7.2.Class CBO CC LCOM LOC RFC WMPCGP SP GP SP GP SP GP SP GP SP GP SPClient 21 28 23 23 151 151 2 2 2 2+ / / / /Button 9 12 23 23 59 55 16 15 23 23Handler + / { { /Command 2 1 1 1 7 5 4 2 4 2Holder { / { { {Invoke 2 1 1 1 66 0 26 17 4 2 5 3Button { / { { { {Con
rete 1 2 1 1 14 14 3 3 2 2Command4 + / / / /Con
rete 0 1 1 1 14 14 2 2 2 2De
orators { / / / /Continued on next page.

123Class CBO CC LCOM LOC RFC WMPCGP SP GP SP GP SP GP SP GP SP GP SPCombinedIF 1 * 1 * * 21 * 14 * 14 *Component * 1 * 1 * * 12 * 5 * 5Command * 0 * 1 * * 4 * 1 * 1Builder * 1 * 1 * * 10 * 6 * 6De
orator * 1 * 1 * * 5 * 1 * 1Component * * * * * *Leaf * 4 * 2 * 0 * 29 * 8 * 5Con
rete * 1 * 1 * * 9 * 2 * 2Commands * * * * * *Table 7.6: Individual statisti
s for the Generative and Stati
 versions of Command, Composite, De
o-rator and BuilderLike in previous examples, the individual
lass statisti
s for the like-for-like
omponents in the examplesare identi
al throughout all metri

ategories, therefore they are not in
luded in Table 7.6 above. Inthis example this equates to the Con
reteBuilder
omponents, the Co�eeProdu
t, the Dire
tor and theComposite
lass. Again, like the previous examples the reason for this is modularity, in that ea
h
orresponding
omponent provides identi
al fun
tionality.

1247.3.5 An Alternative Case Study using Composite, Command, De
orator and Builder
A

p
p

G

U

I

I
n

v
o

k
e

P

a
n

e
l

S
a

l
e

s
P

a
n

e
l

B
u

i
l
d

e
r

P

a
n

e
l

D

r
i
n

k
s

P

a
n

e
l

D

e
c

o
r

a
t

o
r

C

o
m

p
o

n
e

n
t

L
a

r
g

e

M

e
d

i
u

m

S
m

a
l

l

E

s
p

r
e

s
s

o

C

h
o

c
o

l
a

t
e

M

i
l
k

C

r
e

a
m

D

r
i
n

k
D

e
c

o
r

a
t

o
r

C

o
m

m

a

n
d

C

o
m

m

a
n

d
1

C

o
m

m

a
n

d
2

C

o
m

m

a
n

d

H

o
 l

d
e

r

I
n

v
o

k
e

C

o
m

m

a
n

 d

B
u

 i
l
d

e
r

 M

e
a

l
B

u
i

l
d

e
r

1

M

e
a

l
B

u

i
l
d

e
r

2

M

e
a

l
D

i
r
e

c
t

o
r

M

e
a

l
P

r
o

d
u

c
t

C

o
m

p
o

s
i

t
e

C
o

m

p

o
n

e
n

t

S
a

l
e

C

o
m

p

o
s

i
t
e

E

a
t

I
n

T
a

k
e

A

w

a
y

U

s
e

r

I
n

t
e

r
f

a
 c

e

D
e

c
o

r
a

t
o

r

P
a

t
t
e

r
n

B
u

 i
l
d

e
r

P

a
t

t
e

r
n

C

o
m

m

a
n

d

P
a

t
t
e

r
n

C

o
m

p
o

s
i

t
e

P
a

t
t
e

r
n

Figure 7.4: Example Appli
ation using Stati
 Design Patterns

125
A

p
 p

 G

 U

 I

I
n

 v
 o

 k
 e

 P

 a
 n

 e
 l

B

u
 i

l
d

 e
 r

P

a
 n

 e
 l

S

a
 l

e
 s

 P

 a

n
 e

 l

D

 r
 i

n
 k

 s
 P

 a
 n

 e
 l

E

s
 p

 r
e

 s
 s

 o

C

 h
 o

 c
 o

 l
a

 t
e

M

 i
l
k

C

 r
e

 a
m

C

 o

m

 m

 a
 n

 d

H

 o

l
d

 e
 r

I
n

 v
 o

 k
 e

 C

 o

m

 m

 a

 n
 d

C

 o

m

 b
 i

n
 e

 d
 I

F

S

a
 l

e
 C

 o

m

 p
 o

 s
 i

t
e

U

 s
 e

 r

I
n

 t
e

r
f

a
 c

 e

D

 e
 c

 o
 r

a
 t

o
 r

P

a
 t

t
e

 r
n

B

u
 i

l
d

 e
 r

P

 a
 t

t
e

 r
n

C

 o
 m

 m

 a
 n

 d

P

a
 t

t
e

 r
n

C

 o
 m

 p
 o

 s
 i

t
e

P

a
 t

t
e

 r
n

C

 o
 m

 m

 o
 n

I
n

 t
e

 r
f
a

 c
 e

f
o

 r

a

 l
l

P

a
 t

t
e

 r
n

 s

E

a
 t

I
n

M

 e
 a

 l
B

 u
 i

l
d

 e
 r

2

M

 e
 a

 l
B

 u
 i

l
d

 e
 r

1

M

 e
 a

 l
D

 i
r
e

 c
 t

o
 r

C

 o

m

 m

 a
 n

 d
 2

L
 a

 r
g

 e

M

 e
 d

 i
u

 m

S

m

 a
 l

l

D

 r
i

n
 k

 D

 e

c
 o

 r
a

 t
o

 r

T

a
 k

 e

A

w

 a

y

M

 e
 a

 l
P

 r
o

 d
 u

 c
 t

C

 o
 m

 m

 a
 n

 d
 1

Figure 7.5: Example Appli
ation using Dynami
 Design Patterns

126The examples illustrated by the designs in Figure 7.4 and Figure 7.5 uses the same four patterns asin the previous examples. However, where the design patterns in the previous examples supported asingle fun
tional aspe
t of an appli
ation, the patterns in these examples support several independentfun
tions within the
ontext of a tou
h s
reen
ash register.Other than the
omposite pattern that is used to store data relating to di�erent types of sales, thede
orator,
ommand and builder pattern ea
h represents a di�erent sales type:� The de
orator pattern
reates a small, medium or large drink of
o�ee that
an be de
orated witha range of di�erent additives.drink = new Espresso(new SteamedMilk(new Cho
olateSprinkle(new WhippedCream(new Small()))));� The
ommand pattern represents the sale of a single item.InvokeCommand
ommOne = new InvokeCommand();Command eggs = new EggCommand();
ommOne.setCommand(eggs);� The builder pattern represents the sale of several di�erent types of meal that
an be built up froma range of di�erent items.BuildEggs()fmealProdu
t.setBuildEggs("One Egg");gBuildSausage()fmealProdu
t.setBuildSausage("One Sausage");gBuildBeans()fmealProdu
t.setBuildBeans("Small Beans");gBuildChips()fmealProdu
t.setBuildChips("Small Chips");gBuildToast()fmealProdu
t.setBuildToast("One Toast");gBuildPri
e()fmealProdu
t.setBuildPri
e(3.50);gAlthough the three patterns that are mentioned in the list above work together for the appli
ation as awhole, they do not work together to support a single fun
tional aspe
t of the appli
ation. This approa
hto using the patterns was deliberate in an attempt to demonstrate how patterns
an still
ollaboratewhilst supporting di�erent fun
tionality, whi
h is di�erent to how the previous examples have beenapplied. There is an ex
eption to this in that two di�erent implementations of a Con
reteCommandhave been used. One implementation supports its own fun
tionality, whilst the se
ond implementation
reates a de
orator obje
t.

127The generative example shown in Figure 7.5 provides a single interfa
e
omponent to all four of thepatterns as it did in the previous example. However this interfa
e has four di�erent
lients, one for ea
hpattern. In this respe
t, the TillComponentIF
omponent is a
ting like a fa
ade[45℄ pattern, providinga

ess to sub-
omponents of the appli
ation.In the stati
 pattern example, ea
h obje
t that is
reated from ea
h di�erent pattern has two methodsthat return a
ost and a des
ription. A get method is used to extra
t the
ost and des
ription fromea
h obje
t and is passed into an instan
e of a leaf
omponent of the
omposite pattern, whi
h
anthen be added to the
omposite obje
t.Table 7.7 below shows the metri
 values that were returned for ea
h of the generative and stati
examples of the appli
ation.Metri
 Generative Patterns Stati
 Patterns Di�eren
e (%)CBO 30 30 /CC 4 8 +LCOM 100 100 /LOC 1322 1312 -0.76%RFC 47 47 /WMPC 31 25 {NOC 25 28 +EXE SIZE 56.1 58.4 +3.9%Table 7.7: Code statisti
s for the Generative and Stati
 versions of a tou
h s
reen
ash registerThe statisti
s in Table 7.7 show that the testing requirements in respe
t of the CBO metri
 are exa
tlythe same. In previous examples the value of the CBO metri
 in the general statisti
s table has
omefrom the
lient, whi
h in all
ases has been higher in the stati
 example. However, the examples inFigures 7.4 and 7.5 have a slight di�eren
e in the
lient
omponent, parti
ularly with the stati
 example,in that the
lient for ea
h of the di�erent patterns is a di�erent JPanel. Where the generative exampleis
on
erned, ea
h JPanel
lient mat
hes the fun
tionality that is provided by the patterns that are usedin the stati
 example. Therefore, both examples have been developed with the same fun
tionality inrelation to the patterns.The CBO value in ea
h of the examples
omes from the CashTillGUI
omponent where the graphi
al userinterfa
e is built. Be
ause both CashTillGUI
omponents are built in exa
tly the same way, leaving theJPanel extended
omponents to maintain fun
tionality, the CBO values are the same. The value of the

128RFC metri
 in the general statisti
s also
omes from the CashTillGUI
omponent and is of equal value forthe same reasons as the CBO metri
 mentioned above. Like in previous examples, the WMPC metri
shows that the
omplexity of the generative example is higher than the stati
 example. The highervalue for this metri
 again
omes from the CombinedIF
omponent whi
h is a
ting as a
ommuni
ationpoint between the
lient and the remaining
lass
omponents in the example. This metri
, for thegenerative pattern, is above the upper value re
ommended by the modelling tool where the metri
swere taken. This suggests that it may be better to separate some of the fun
tionality into separateinterfa
e
omponents.In the generative example, the patterns do not share any
omponents other than the CombinedIF in-terfa
e be
ause ea
h of the patterns in the generative example is supporting separate fun
tionality.Therefore, the sub
omponents in the stati
 example mat
h the sub
omponents in the generative exam-ple. However, in the generative example there are three extra Con
reteCommand
omponents, whi
hexe
ute the
reation of the de
orator pattern obje
ts. So, whilst there is a redu
tion in the number ofinterfa
e
omponents in the generative example there is an in
rease in sub
omponents. For this reason,there is virtually the same number of lines of
ode in ea
h of the examples.The four separate interfa
es (Builder, Command, CompositeComponent and De
oratorComponent) in thestati
 example have a
olle
tive value of thirty for both the WMPC and RFC metri
. Although thisvalue is lower than in the generative example, the di�eren
e is marginal. As su
h, the
oupling and
omplexity aspe
ts of the two examples are very similar. Additionally, the testing and maintenan
easpe
ts are also very similar. There are some minor di�eren
es in some of the
omponents, whi
h
anbe seen in Table 7.8. These di�eren
es are brought about by how the patterns handle the fun
tionality.In the generative pattern fun
tionality is a

essed or provided through the CombinedIF
omponent. Inthe stati
 example, fun
tionality is handled through one or more di�erent interfa
e
omponents.

129Class CBO CC LCOM LOC RFC WMPCGP SP GP SP GP SP GP SP GP SP GP SPBuilder 13 12 2 2 130 123 12 11 2 2Panel { / { { /Button 7 6 2 2 20 15 12 9 2 2Handler { / { { /Drinks 11 10 4 8 100 100 132 178 15 12 3 3Panel { + / + { /Button 8 15 4 8 23 50 7 20 4 8Handler + + + + +Invoke 10 11 2 2 100 100 115 115 14 14 3 3Panel + / / / / /Button 7 8 2 2 12 12 8 8 2 2Handler + / / / /Ba
on 1 2 1 1 18 18 5 5 2 2Command + / / / / /Egg 1 2 1 1 18 18 5 5 2 2Command + / / / / /Continued on next page.

130Class CBO CC LCOM LOC RFC WMPCGP SP GP SP GP SP GP SP GP SP GP SPCombinedIF 2 * 1 * * 43 * 31 * 31 *Con
rete 3 * 1 * * 15 * 8 * 2 *Commands * * * * * *Composite * 1 * 1 * * 22 * 13 * 13Component * * * * * *Command * 1 * 1 * * 4 * 1 * 1Builder * 1 * 1 * * 28 * 13 * 13De
orator * 0 * 1 * * 5 * 2 * 2Component * * * * * *Table 7.8: Individual statisti
s for the Generative and Stati
 versions of Command, Composite, De
o-rator and BuilderLike in previous examples, the individual
lass statisti
s for many of the like-for-like
omponents in theexamples are identi
al throughout all metri

ategories, therefore they are not in
luded in Table 7.8above. In this example this equates to the Con
reteBuilder
omponents, MealProdu
t and MealDire
tor,the Composite and Leaf
omponents, the De
orator and Con
reteDe
orator
omponents, the SalesPanel,the CommandHolder and the CashTillGUI. Again, like the previous examples the reason for this ismodularity, in that ea
h
orresponding
omponent provides identi
al fun
tionality.7.4 Con
lusionFrom the eviden
e presented in the evaluation a number of observations
an be made. On the wholethere is a positive set of results, as indi
ated by the metri
s, in favour of the generative patterns when
ompared to the metri
s for the stati
 patterns. Where di�erent patterns have been used there areminor di�eren
es in metri
 values and in some
ases the metri
s favour the stati
 patterns, parti
ularlywhere individual
omponents are
on
erned. However, taking the metri
s as a whole the generativepatterns have more plus points than negative points. Where multiple patterns have been used, the gapbetween the positive and negative aspe
ts of the metri
s for the
ollaborating patterns
omes down.It would be evident at this point to suggest that using pairs of patterns is more eÆ
ient than usingmultiple patterns. To
on
lude that as a fa
t for the majority of patterns would require
onsiderablymore testing with pairs and multiples of patterns. However, from the patterns used for this thesis andthe way they have been used, they are better used in pairs.

131Where the four patterns have been used in a single appli
ation there is a di�eren
e in results between thegenerative example that supports a single fun
tion and the generative example that supports multiplefun
tions. In the �nal
ase-study the four patterns used ea
h supported a di�erent fun
tion. Whatwas found was that there was little di�eren
e between the stati
 and generative example. Whereasin the previous
ase-study using four patterns where the patterns supported a single fun
tion, it wasfound that there was a favourable result for the generative example. Again, a fa
tual
on
lusion
annotbe drawn from a single
ase-study, but for the patterns used in this thesis, generative patterns thatsupport a single fun
tion give better results than generative patterns that support multiple fun
tions.In any development pro
ess, there is always a balan
ing a
t between obtaining good
oupling,
ohesionand
omplexity in a system. Coupling problems
ould be eliminated by putting all aspe
ts of fun
tion-ality in one
lass, but this would not be good programming pra
ti
e and would adversely a�e
t testingand maintenan
e of the appli
ation. On the opposite side of this there
ould be multiple
lasses ea
hwith a small pie
e of fun
tionality. Again, this would not be good pra
ti
e and would serve to in
reasethe overall
omplexity of the appli
ation. What is evident from the generative patterns is that there area redu
ed number of
lasses without any signi�
ant loss of integrity in the aspe
ts of
oupling,
ohesionand
omplexity. There are some minor losses in
ertain
omponents, mainly the
ombined interfa
e,but overall, the generative patterns provide a better option than stati
 patterns when multiple stati
patterns are used to support a single fun
tion.The �nal result to these experiments is to
on
lude, that for the patterns used:they are better used in small numbers to support a single fun
tion,there is an overall improvement in the
oupling,
ohesion and
omplexity measures.A positive aspe
t that has
ome from the
ase-studies and the evaluation is that
ondu
ting multipleexperiments has provided information that
an be used in providing knowledge that
an be suppliedwith the generative patterns. For example, it was found that when the
ommand pattern is used withthe builder pattern it is easier to use the Dire
tor
omponent of the builder pattern as a sub
omponentof the
ombined interfa
e. However, when builder is
ombined with the
omposite pattern it is betterto use the Produ
t
omponent of the builder pattern as a sub
omponent of the
ombined interfa
e. Thereason for this is that the Produ
t is a leaf of the
omposite
omponent and
an be added dire
tly tothe
omposite obje
t.Therefore, there are
ertain pros and
ons that
an be dis
ussed in patterns as a result of
ondu
t-ing multiple experiments. For example, the
ase-study with the four patterns in Figure 7.3 showedthat the InvokeCommand had grown in
omplexity be
ause it was supporting two di�erent types of

132Con
reteCommand. Therefore this
an be dis
ussed as a
on, with a re
ommendation to provide oneInvokeCommand for ea
h type of Con
reteCommand.7.5 SummaryDe�ning generative patterns
an only be done when it is known how two parti
ular patterns worktogether. The
ombinations des
ribed above are only a small proportion of all possibilities for rela-tionships, but are a start. These pairings and multiple
ombinations are des
ribed with the designknowledge of how they
ombine, therefore it is possible to extrapolate a des
riptive relationship fromthat design. In the Design Patterns
atalogue there are many referen
es to
ombinations of patternsworking together, su
h as the Iterator pattern being used to traverse the Composite pattern, but thedesign knowledge for this is not provided. Some pattern users might say that the design knowledge
ontained in a design pattern is the Stru
ture (Class diagram). Others might say that the design pat-tern is more than a
lass diagram and some implementation knowledge. If the prin
iple of the patternis to be maintained then the pattern should
onvey more knowledge than the design. This however, isone of the problems with
urrent patterns, in that they do not
onvey suÆ
ient knowledge[59℄. The ex-periments
ondu
ted above are an attempt to provide some of the extra knowledge that
an be writteninto a design pattern. Although the experiments
ondu
ted have been a
omparison of two di�erentdevelopment styles, the experiments have shown that
ombining patterns as a generative
omponent
an provide some additional knowledge for pattern users.

133
Chapter 8CONCLUSIONThe prin
iple
ontributions of this thesis in de�ning patterns as a generative development
omponentare:� The notation required for a generative design pattern. This is the
ontribution of the work inprogress. The notation
ontained in a standard design pattern de�nes a stati
 stru
ture of areusable
omponent. To provide patterns with a dynami
 stru
ture, quality driven pro
esses havebeen examined, and elements of these pro
esses have been integrated into the generative designpatterns. Independent elements of pattern
lassi�
ations have also been examined and in
ludedin the generative pattern des
ription.� The relationships between
ollaborating design patterns. There are three primary de�nitions ofrelationship between design patterns, Combines, Uses and Used By. Of these three relationshipsthe Combines relationship has been applied in the experiments on implementing a relationshipbetween patterns. From this it was determined that a Uses relationship was more appropriate inone of the experiments.� The appli
ation of generative design patterns. The re-engineered pattern notation has been appliedto four separate patterns in seven examples of how to use the notation. The generative patternsthat have been written using the generative notation are in
luded within this thesis in ChapterSix and Appendi
es A to D.Therefore, this
hapter
on
ludes the work undertaken in de�ning a generative pattern. The intro-du
tion in Chapter One made the point that the goal of generative programming is the sele
tion ofreusable
omponents from a
oded library for the automation of appli
ation development. However,the point was also made that in the s
heme of appli
ation development, the pre
ursor to developmentis design. In order to fa
ilitate the
on
ept of generative programming the pre
ursor to this ought tobe generative design.The aim of this thesis has been met through the refa
toring of a stati
 design pattern notation toprodu
e a dynami
 pattern notation for the purpose of generative design.

134A generative design pattern framework has been
onstru
ted through identifying aspe
ts of
ommonnotation and has been applied in the de�nition of a number of generative design patterns. The gener-ative design patterns published in this thesis represent a small number of experiments that have been
ondu
ted into �nding how these stati
 design patterns will work together in a generative format. By
ontinuing with experimentation on design patterns rules
an be established that will allow patternwriters to stipulate
riteria for their own patterns to be
onsidered as a generative design pattern.As a subtext to the framework, a signi�
ant
ontribution to the output of the work
ondu
ted in thisthesis is the implementation details required to support the dynami
 aspe
ts of the pattern. Relationalqualities have been applied that supports the
on
ept of a relationship that Combines patterns through
ollaboration between individual or multiple
omponents of the
ollaborating patterns.However, it was found that
ontrary to published material, in a Uses relationship,
ertain patternsdo not use other patterns in their entirety, they may only use an individual
omponent from anotherpattern in their
ollaboration with that pattern. In addition it was found that the Uses relationship maybe better suited to
ertain patterns when attempting to form a
ollaboration between those patterns. Itis not essential when
ombining patterns that all aspe
ts of the
ollaborating patterns have to utilizedin the
ollaboration. In this respe
t the use of an individual
omponent from a pattern will be suÆ
ientto form the
ollaboration.

135
Chapter 9FUTURE WORK9.1 Introdu
tionA thesis
an be looked upon as being an apprenti
eship where skills are �rst developed. After theapprenti
eship has been
ompleted, these skills are expanded upon and re�ned until the pra
titionerbe
omes the expert they aspire to be. This thesis represents the apprenti
eship and should be seen as abeginning on whi
h re�nements
an be made. Although design patterns have
ontinued to be publishedover the years sin
e Design Patterns[45℄ was �rst released in 1995, the patterns in the book have not
hanged and very little has been done to
hange them. Henney's[58℄ view is that re�nements did nothappen with Design Patterns[45℄.Although a generative pattern has been de�ned there is still mu
h work to be done. The template for thenotation
an
hange and there is every possibility that as re�nements are made to generative patternsthat the template will
hange. To date, only a small number of experiments have been
ondu
ted ona small number of patterns from one
atalogue of patterns. There is the potential for years of futurework experimenting with
ombinations of patterns. Given the seven stru
tural patterns in the Gamma
atalogue, there are twenty one possible
ombinations of
onne
tivity.Cal
ulating the number of potential experiments on patterns uses the formula:((n * (n - 1)) / 2) e.g. 7 x 6 / 2 = 21. Where n = number of patterns.In the Gamma
atalogue as a whole, there are twenty three di�erent patterns. If we were to experimentwith
ombining every pattern with every other pattern there would be 253 experiments. Maintainingthe prin
iple of three examples for every possible
ombination there are 759 possible experiments. TheGamma
atalogue mentions the MVC pattern, add that into the �gures and there are 828 possibleexperiments. The list of patterns presented by Ti
hy alone has the potential for almost �ve thou-sand experiments on paired
ombinations of patterns. As more experiments are
ondu
ted so a
learerunderstanding of whi
h patterns will
ollaborate and whi
h should not will be developed and an un-derstanding of best pra
ti
e will be developed. This will possibly lead to a revision of the template forthe generative pattern.

136The summary of future work in pursuit of update and revision is as follows:� To label patterns by their Classi�
ation type, Problem type and Asso
iation type.� A de�nitive standard or formula for
ombining or ex
luding
ombinations of patterns.{ Obtained through developing
oded examples from related patterns.� Develop a Computer Aided Software Engineering tool for the pro
ess of ar
hite
tural design withgenerative design patterns.The following aspe
ts of future work represent proje
ts separate from the above that
ould be under-taken in respe
t of the development of generative design patterns.� A generative pattern development method.� A formal mathemati
al spe
i�
ation of generative design patterns.9.2 To label patterns by their Classi�
ation, Problem and Asso
iation type9.2.1 Problem typeFor many patterns a Problem type
lassi�
ation is already known | Ti
hy, who is mentioned in thisthesis, has
lassi�ed approximately one hundred patterns. However, Ti
hy published his work in 1998and sin
e that time many other patterns have been published but have not been subje
ted to the sames
rutiny as patterns were from that period. Therefore, known software patterns that have not beensubje
t to problem solving s
rutiny need to be examined and
lassi�ed. To do this, publi
ations thatrelate to appropriate software patterns
an be analysed for their
ontent and problem solving intent.9.2.2 Classi�
ation typeIn looking at the problem solving intent of patterns the
lassi�
ation type of a pattern
an also be deter-mined. The patterns de�ned by Gamma[45℄ are already
lassi�ed and are the inspiration for
lassifyingpatterns by this type of labelling. However, most patterns, in
luding those
lassi�ed by Ti
hy, are notidenti�ed by the Gamma
lassi�
ation. Although some patterns, other than the Gamma patterns, havebeen given a
lassi�
ation, analysing published material on patterns will, along with determining the

137Problem type
lassi�
ation, provide valuable information towards the knowledge
ontained within agenerative pattern and as su
h, work in this area should
ontinue.9.2.3 Relational typeAlthough Zimmer has not instigated an investigation into �nding
ommon attributes between patternshe has, through his investigation of the Design Patterns
atalogue, detailed a quantity of known re-lationships. However it is evident, through studying the literature on patterns, that there are somerelationships between patterns that are not des
ribed by Zimmer. For example the Composite / Com-mand
ombination in Appendix A has not been identi�ed by Zimmer and is not mentioned in theDesign Patterns
atalogue.Of the nine possible
ombinations of unidire
tional
ooperation (See Table 4.2), only six are revealedby Zimmer's
lassi�
ation of relationships. The relationships suggest, as revealed by Zimmer, thatstru
tural patterns do not use behavioural patterns, whilst behavioural patterns do use stru
turalpatterns. However, this does not mean that other uses relationships do not exist and further experimentswith patterns will assist in revealing a

eptable relationships between patterns that are not
urrentlyde�ned.The relationships between patterns de�ned by Zimmer are only a small proportion of the relationshipsthat
ould exist between all known software design patterns. Zimmer
on
entrated only on those rela-tionships that were mentioned in the Design Patterns
atalogue, negle
ting other possible relationships.For example, it is reasonable to expe
t that there might be some form of relationship between the Fa-
ade pattern and the Singleton pattern. The fa
t that this relationship is not do
umented is not anindi
ator that the relationship does not exist. Therefore, further experiments between patterns willreveal as yet unde�ned relationships that may exist between patterns { not only the patterns from thedesign patterns
atalogue, but patterns from other
atalogues and pro
eedings.There is also additional work to be
onsidered in this area. The experiment with Builder
ombinesCommand revealed that the Builder pattern does not
ombine with the Command pattern, it only Usesthe Invoke obje
t from the Command pattern. Further analysis may reveal that other Uses relationshipsbetween patterns may not be as they have been des
ribed.

1389.3 A de�nitive standard or formula for
ombining or ex
luding
ombinations of patternsTo over
ome the potential volume of work in de�ning relationships between every pattern, some
ommonground
ould be found that de�nes the relationship between spe
i�
 pattern types. In �nding
ommonground it
an be shown that two previously unrelated patterns
an be de�ned as related, be
ause thetwo patterns meet on the
ommon ground. The obje
tive therefore is not to set out and de�ne therelationship between every possible
ombination of patterns, but to �nd the
ommon attributes ofpatterns and map them to the attributes of other patterns. However, this task requires experimentingwith
ombinations of patterns to determine what, if any, relationship exists between any given patterns,and what attributes
an be abstra
ted from the relationships that are
ommon to other patterns andtheir relationships.It is not enough to say that there is, or should be, a relationship between patterns. The proposedrelationship has to be applied and do
umented, primarily to be a

epted as a generative pattern.De�ning a universal relationship between patterns requires rules in order to meet the needs of theindividual pattern(s) to whi
h the relationship applies. It
ould be the
ase that the `uses' relationshipbetween Pattern X and Pattern Y is di�erent to the `uses' relationship between Pattern Y and PatternX. In this situation the rules may de�ne default or illegal
ombinations. However, de�ning relationshipsto other patterns as a universal property of the patterns
lassi�
ation will not a

ount for any unique
ir
umstan
es in a relationship or ex
eptions to the rule.Zimmer reveals in his work that the `Uses' relationship
an have two separate meanings. The standardmeaning is Pattern X uses Pattern Y in its solution. However, the relationship
ould be: PatternX must use Pattern Y in its solution, or Pattern X might use Pattern Y in its solution. This, asZimmer relates, indi
ates the strength of the relationship. Noble[83℄, reveals twelve di�erent types ofrelationship between patterns: three primary relationships and nine se
ondary. Through observationit
an be
on
luded that most of the relationships are re�nements of a Uses or Combines
lassi�
ation,whilst others indi
ate that two patterns are similar.It
ould be said that there is only one type of relationship between patterns and that is a Combinesrelationship. This is stated on the grounds that: if two or more patterns work together to form asolution, then the patterns `Combine' their resour
es to solve the problem. For a generative patternthis train of thought
ould make the des
ription of the pattern easier to de�ne.It may be the
ase that Variant Management patterns of the type Behavioural should not work in
ombination. Until signi�
ant testing has been done on these types of patterns a de�nitive answer isnot known and rules that will ex
lude them in
ombination
annot be de�ned.

139The intended future work should bring forth rules for de�ning relationships between spe
i�
 patterns.By applying the rules to the patterns it should make it a simple task to identify whi
h patterns willwork together to build an ar
hite
ture. However, the rules will not reveal themselves. A
ontinuoussear
h of new and existing literature
an be
ondu
ted to �nd examples of patterns working together.Hands on experimentation
an be
ondu
ted by developing examples of appli
ations
onstru
ted fromrelated patterns. This type of work will also provide sample
ode for in
lusion within a generativepattern.This therefore represents the body of future work. By de�ning examples,
ommon attributes
an beabstra
ted from the designs of related patterns, and utilized in the de�nition of generative patterns.9.4 Develop a
ase tool for design using generative patternsThere are many CASE tools on the market that
an be used to design software. Some are sophisti
atedIntegrated Development Environments that
an be pur
hased at a signi�
ant pri
e, whilst others arefree or open sour
e with an emphasis on simpli
ity. However, design tools of whatever standard have onething in
ommon. They
annot be used to develop ar
hite
tures by
ombining design patterns. Severaltools do have support for design patterns, su
h as Together[16℄ but there is no means of generating anar
hite
ture from those patterns. The patterns when applied to a design have to be modi�ed in orderto work together.The ultimate output from the work
ondu
ted in this thesis
ould be a tool that
an be used toapply generative pattern design. Although generative design patterns are as yet a proposition under
ontinued investigation, a tool
an be instigated that will apply generative patterns to a design. As moregenerative patterns are de�ned, so the tool
an be expanded to in
lude additional design
omponents.One interesting fa
tor in this pro
ess would be to design the tool from generative design patterns.9.5 Formal Mathemati
al Spe
i�
ation of generative patternsOne aspe
t of quality assuran
e for generative design patterns would be to provide a formal math-emati
al spe
i�
ation for generative design patterns. Again, like a generative pattern developmentmethod this is an o�shoot to the
urrent proje
t but is dependent on developing a signi�
ant numberof generative design patterns.

1409.6 Consideration of design patterns for de�nition and usabilityMany relationships between the patterns in the Design Patterns
atalogue have not been de�ned | notbe
ause they don't exist, but be
ause the patterns themselves may be la
king in the quality required tode�ne the relationships. Henney[59℄ gave a tutorial on the patterns from the Design Patterns
ataloguein whi
h he:Re
e
ts on them, de
onstru
ts them and re-evaluates them from a pra
titioner's perspe
tive.His dis
ussion was aimed at, in his own words:Why patterns su
h as Abstra
t Fa
tory, Builder, Flyweight, Command and others are miss-ing vital ingredients to be proper parts of an ar
hite
tural vo
abulary.He dis
usses:Why Singleton de
reases a system's
exibility and testability.Why Iterator is not always the best solution for traversing aggregates.Why State is not the only state pattern.Why some patterns, su
h as Bridge, are more than one pattern.Henney
on
ludes that Design Patterns[45℄ was a start to the design pattern
ulture and not the endresult; that improvements in design knowledge has lead to a greater understanding of design patterns,and that the Design Patterns
atalogue is dated[58℄.In Appendix A the Composite pattern is
ombined with the Command pattern. However, a

ording toGamma[45℄ and Zimmer[119℄ the Command pattern
an use the Composite pattern in its implementa-tion. In reality what the Command pattern uses, if it does use the Composite in its implementation,is the Composite obje
t and not the Composite pattern. This emphasizes the point made earlier byHenney[59℄ that the Design Patterns[45℄
atalogue is not a
omprehensive referen
e guide to designpatterns. In fa
t there is one visible anomaly presented by Gamma in their des
ription of the Com-mand pattern. The sequen
e diagram shows an intera
tion between the Client and the Invoke obje
t,whi
h does not appear in the
lass stru
ture.To this end, the re-engineering of standard design patterns should not only look at how patterns
anbe de�ned as generative but should also look at the pattern itself.

141
BIBLIOGRAPHY[1℄ The Obje
t Agen
y. http://www.toa.
om, 2004 [A

essed August 2007℄.[2℄ C. Alexander. The Timeless Way of Building. OUP, 1979.[3℄ C. Alexander, S. Ishikawa, M. Silverstein, M. Ja
obson, I. Fiksdahl-King, and A. Shlomo. APattern Language. OUP, 1977.[4℄ C. Alexander, S. Sanford, S. Ishikawa, C. CoÆn, and A. Shlomo. Houses Generated by Patterns.Berkley (Calif.), Center for Environmental Stru
ture, 1970. ISBN x3360704.[5℄ D. Alur, J. Crupi, and D. Malks. Core J2EE Patterns. Prenti
e Hall, 2001.[6℄ B. Appleton. Patterns and software: Essential
on
epts and terminology.http://www.
m
rossroads.
om/bradapp/do
s/patterns-intro.html, [Last A

essed June 2008℄.[7℄ K. Arnout. From Patterns to Components. PhD thesis, Swiss Federal Institute of Te
hnologyZuri
h, 2004.[8℄ J. Avotins and C. Mingins. Metri
s for obje
t-oriented design. In TOOLS (12/9), 1993.[9℄ K. Be
k. Extreme Programming Explained. Addison Wesley, 2000.[10℄ K. Be
k and C. Andres. Extreme Programming Explained 2nd Ed. Addison Wesley, 2004.[11℄ K. Be
k and R. Johnson. Patterns generate ar
hite
tures. In Pro
eedings of ECOOP 94. SpringerVerlag, 1994.[12℄ M. Beedle and K. S
hwaber. Agile Software Development with S
rum. Prenti
e Hall, 2008.[13℄ E. Berard. A
omparison of obje
t-oriented development methodologies.http://www.ipipan.gda.pl/marek/obje
ts/TOA/OOMethod/m
r.html, 1995 [Last A

essed June2008℄.[14℄ G. Boo
h. Obje
t Oriented Design With Appli
ations 2nd ed. Benjamin Cummings, 1994.

142[15℄ G. Boo
h, J. Rumbaugh, and I. Ja
obson. The Uni�ed Modeling Language User Guide. AddisonWesley, 1999.[16℄ Borland. Together ar
hite
t.http://www.borland.
om/us/produ
ts/together/index.html/, 1994 - 2008 [Last A

essed Novem-ber 2008℄.[17℄ J. Bos
h. Design patterns as language
onstru
ts. Journal of Obje
t-Oriented Programming, Vol.11, No. 2, 1998.[18℄ F. Budinsky, M. Finnie, J. Vlissides, and P. Yu. Automati

ode generation from design patterns.IBM Systems Journal. Vol. 35, No. 2, 1996.[19℄ F. Bus
hmann and R. Meunier. A system of patterns. In Pro
eedings of Pattern Languages ofProgramming, 1994.[20℄ F. Bus
hmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. Pattern Oriented SoftwareAr
hite
ture: A System of Patterns. Wiley, 1996.[21℄ S. Chidamber and C. Kemerer. A metri
s suite for obje
t-oriented design. IEEE Transa
tionson Software Engineering., June 1994.[22℄ M. Cline. The pros and
ons of adopting and applying design patterns in the real world. Com-muni
ations of the ACM, Vol. 39, No. 10, 1996.[23℄ P. Coad and J. Ni
hola. Obje
t-Oriented Programming. Prenti
e Hall, 1993.[24℄ P. Coad and E. Yourdon. Obje
t-Oriented Analysis, 2nd Ed. Prenti
e Hall, 1991.[25℄ P. Coad and E. Yourdon. Obje
t-Oriented Design. Prenti
e Hall, 1991.[26℄ A. Co
kburn. Agile Software Development. Addison Wesley, 2002.[27℄ J. Coldewey. User interfa
e software. In Pro
eedings of the Conferen
e on Pattern Languages ofProgramming, 1998.[28℄ D. Coleman, P. Arnold, S. Bodo�, C. Dollin, H. Gil
hrist, F. Hayes, and P. Jeremaes. Obje
t-Oriented Development: The Fusion Method. Prenti
e Hall, 1994.

143[29℄ J. Coplien. A generative development-pro
ess pattern language. In Pattern Languages of ProgramDesign Vol. 1., 1995.[30℄ J. Coplien. Software design patterns: Common questions and answers. The Patterns Handbook:Te
hniques, Strategies, and Appli
ations, 1998.[31℄ J. Coplien and D. S
hmidt. Pattern Languages of Program Design. Addison Wesley, 1995.[32℄ C# Corner. Composite patterns in
#.http://www.
-sharp
orner.
om/Language/CompositPattersnInCSRVS.asp, 1999 - 2008 [Last A
-
essed June 2008℄.[33℄ W. Crawford and J. Kaplan. J2EE Design Patterns. O'Reilly, 2003.[34℄ W. Cunningham. The
he
ks pattern language of information integrity. In Pattern Languages ofProgram Design Vol. 1., 1995.[35℄ W. Cunningham. Portland pattern repository. http://
2.
om/ppr/index.html, [Last A

essedJune 2008℄.[36℄ J. Cybulski and T. Lynden. Composing multimedia artefa
ts for reuse. In Pattern Languages ofProgramming, Allerton Park, Illinois, USA, 1998.[37℄ K. Czarne
ki and U. Eisene
ker. Generative Programming. Addison Wesley, 2000.[38℄ T. DeMar
o. Stru
tured Analysis and System Spe
i�
ation. Yourdon Press - Prenti
e Hall, 1978.[39℄ B. E
kel. Thinking in Patterns - Ele
troni
 Book. Bru
e E
kle, MindView In
, 2003.[40℄ G. Florijn, M. Meijers, and P. van Winsen. Tool support for obje
t-oriented patterns. In EuropeanConferen
e on Obje
t-Oriented Programming, Vol. 1241 of LNCS, Springer, 1997.[41℄ B. Foote, N. Harrison, and H. Rohnert. Pattern Languages of Program Design 4. Addison Wesley,1999.[42℄ M. Fowler. Analysis Patterns 2nd Ed. Addison Wesley, 1997.[43℄ M. Fowler. Patterns of Enterprise Appli
ation Ar
hite
ture. Addison Wesley, 2003.

144[44℄ M. Fowler. The new methodology.http://www.martinfowler.
om/arti
les/newMethodology.html, 2005 [Last A

essed November2008℄.[45℄ E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of reusable obje
t-oriented software. Addison Wesley, 1995.[46℄ DM. Germ�an and DD. Cowan. Hypermedia design patterns. In 7th. Mini Conferen
e on De
isionSupport Systems, Groupware, Multimedia and Ele
troni
 Commer
e, Brugge, Belgium, 1997.[47℄ M. Goodland and C. Slater. Stru
tured Systems Analysis and Design Method: A Pra
ti
al Ap-proa
h. M
Graw Hill, 1995.[48℄ M. Grand. Patterns in Java, Vol. 1. Wiley, 1998.[49℄ M. Grand. Patterns in Java, Vol. 2. Wiley, 1999.[50℄ M. Grand. Java Enterprise Design Patterns. Wiley, 2002.[51℄ C. Gross. Foundations of Obje
t-Oriented Programming Using .NET 2.0 Patterns. Apress, 2006.[52℄ D. Gross and E. Yu. From non-fun
tional requirements to design through patterns. RequirementsEngineering, 1998.[53℄ Obje
t Management Group. The obje
t management group. http://www.omg.org, 2004 [LastA

essed June 2008℄.[54℄ Obje
t Management Group. The Uni�ed Modeling Language V. 2.0.http://www.uml.org/#UML2.0, 2004 [Last A

essed June 2008℄.[55℄ Obje
t Management Group. Model Driven Ar
hite
ture. http://www.omg.org/mda, 2008 [LastA

essed O
tober 2008℄.[56℄ The Hillside Group. Patterns home page. http://hillside.net/patterns, 2005 [Last A

essed June2008℄.[57℄ B. Henderson-Sellers. Obje
t-Oriented Metri
s: Measures of Complexity. Prenti
e-Hall, 1996.

145[58℄ K. Henney. Patterns in java: One or many.http://www.two-sdg.demon.
o.uk/
urbralan/papers/javaspektrum/OneOrMany.pdf, [Last A
-
essed June 2008℄.[59℄ K. Henney and F. Bus
hmann. Beyond the gang of four. In 18th ACM SIGPLAN Conferen
e onObje
t-Oriented Programming, Systems, Languages and Appli
ations. From the abstra
t., 2003.[60℄ J. Hong, D. Duyne, and J. Landay. The Design of Sites: Prin
iples, Pro
esses and Patterns forCrafting a Customer-
entered Web Experien
e. Addison Wesley, 2002.[61℄ IBM. Rational rose. http://www-306.ibm.
om/software/awdtools/developer/rose/index.html,[Last A

essed November 2008℄.[62℄ I. Ja
obson, G. Boo
h, and J. Rumbaugh. The Uni�ed Software Development Pro
ess. AddisonWesley, 1999.[63℄ I. Ja
obson, M. Christerson, P. Jonsson, and G. �Overgaard. Obje
t-Oriented Software Engineer-ing: A Use Case Driven Approa
h. Addison Wesley, 1992.[64℄ JM. J�ez�equel, M. Train, and C. Mingis. Design Patterns and Contra
ts. Addison Wesley, 1999.[65℄ N. Kerth. Caterpiller's fate: A pattern language for the transformation from analysis to design.In Pattern Languages of Program Design Vol. 1., 1995.[66℄ A. Kleppe, J. Warmer, and W. Bast. MDA Explained. Addison Wesley, 2003.[67℄ P. Kru
hten. The Rational Uni�ed Pro
ess { An Introdu
tion, 3rd ed. Addison-Wesley, 2003.[68℄ M. Lanza and R. Marines
u. Obje
t-Oriented Metri
s in Pra
ti
e. Springer, 2006.[69℄ D. Lea. Christopher Alexander: An Introdu
tion for Obje
t-Oriented Designers.http://gee.
s.oswego.edu/dl/
a/
a/
a.html, 1997 [Last A

essed June 2008℄.[70℄ D. Lea. Patterns-dis
ussion faq.http://gee.
s.oswego.edu/dl/pd-FAQ/pd-FAQ.html, 2001 [Last A

essed June 2008℄.[71℄ M. Lorenz and J. Kidd. Obje
t-Oriented Software Metri
s: A Pra
ti
al Guide. Prenti
e Hall,1994.

146[72℄ F. Lyardet, G. Rossi, and D. S
hwabe. Patterns for dynami
 websites. In Pattern Languages ofPrograms Conferen
e, Monti
ello, Illinois, USA, 1998.[73℄ S. Ma
Donald, D. Szafron, J. S
hae�er, J. Anvik, S. Bromling, and K. Tan. Generative designpatterns. In 17th IEEE International Conferen
e on Automated Software Engineering (ASE),2002.[74℄ F. Marines
u. EJB Design Patterns. Wiley, 2002.[75℄ R. Marines
u. An obje
t oriented metri
s suite on
oupling. Te
hni
al report, UniversitateaPolitehni
a Timisoara, Fa
ultatea de Automati
a si Cal
ulatoare, Departamentul de Cal
ulatoaresi Inginerie Software, 1998.[76℄ R. Martin, D. Riehle, and F. Bus
hmann. Pattern Languages of Program Design 3. AddisonWesley, 1997.[77℄ G. Masuda, N. Sakamoto, and K. Ushijima. Applying design patterns to de
ision tree learningsystem. In Pro
eedings of the ACM SIGSOFT Sixth International Symposium on the Foundationsof Software Engineering, 1998.[78℄ T. M
Cabe. A
omplexity measure. IEEE Transa
tions on Software Engineering, De
ember 1976.[79℄ G. Meszaros and J. Doble. A pattern language for pattern writing. In Pattern Languages ofProgram Design, vol.3, 1996.[80℄ B. Meyer. Ei�el: The Language. Prenti
e-Hall, 1992.[81℄ Mi
rosoft. Enterprise Solution Patterns Using Mi
rosoft .NET. Mi
rosoft Press, 2003.[82℄ Vi
o Open Modelling. Composite pattern.http://vi
o.org/pages/PatronsDisseny/Pattern[Last A

essed June 2008℄.[83℄ J. Noble. Classifying relationships between obje
t-oriented design patterns. In In AustralianSoftware Engineering Conferen
e (ASWEC), 1998.[84℄ J. Noble. Towards a pattern language for obje
t oriented design. In Pro
eedings of the Te
hnologyof Obje
t-Oriented Languages and Systems. IEEE, 1998.

147[85℄ Visual Paradigm. Visual paradigm. http://www.visual-paradigm.
om/, 2008 [Last A

essedNovember 2008℄.[86℄ College of Information S
ien
es Pennsylvania State University and Te
hnology. S
ienti�
 litera-ture digital library. http://
iteseer.ist.psu.edu, 2007 [Last A

essed November 2007℄.[87℄ Code Proje
t. Composite pattern.http://www.
odeproje
t.
om/
s/design/CompositePattern.asp, 2006 [Last A

essed June 2008℄.[88℄ Code Proje
t. Composite pattern.http://www.
odeproje
t.
om/
s/design/
sdespat 2.asp, 2006 [Last A

essed June 2008℄.[89℄ Rational. Rational uni�ed pro
ess. http://www-01.ibm.
om/software/awdtools/rup/, 2004 [LastA

essed O
tober 2008℄.[90℄ R. Reissing. Towards a model for obje
t-oriented design measurement. In In ECOOP Workshopon Quantative Approa
hes in Obje
t-Oriented Software Engineering, pages 71{84, 2001.[91℄ D. Riehle. Composite design patterns. In Pro
eedings of the Conferen
e on Obje
t-OrientedProgramming Systems, Languages and Appli
ations, 1997.[92℄ D. Riehle and H. Zullighoven. Understanding and using patterns in software development. Theoryand Pra
ti
e of Obje
t Systems, 1996.[93℄ L. Rosenberg and L. Hyatt. Software quality metri
s for obje
t-oriented environments. SoftwareAssuran
e Te
hnology Centre, 1997. published in Crosstalk Journal, April 1997.[94℄ G. Rossi, A. Garrido, and D. S
hwabe. Design reuse in hypermedia appli
ations development. In8th ACM Conferen
e on Hypertext and Hypermedia (Hypertext 97), Southampton, UK, 1997.[95℄ G. Rossi, D. S
hwabe, and F Lyardet. Improving web information systems with navigationalpatterns.http://www8.org/w8-papers/5b-hypertext-media/improving/improving.html, [Last A

essedJune 2008℄.[96℄ W. Roy
e. Managing the development of large software systems. In Reprinted in 9th InternationalConferen
e on Software Engineering. ACM Press, 1987.

148[97℄ J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen. Obje
t-Oriented Modelingand Design. Prenti
e Hall, 1991.[98℄ D. S
hmidt. Using design patterns to develop reusable obje
t-oriented
ommuni
ation software.Communi
ations of the ACM. Volume 38, Number 10, 1995.[99℄ D. S
hmidt, M. Stal, H. Rohnert, and F. Bus
hmann. Pattern Oriented Software Ar
hite
ture:Patterns for Con
urrent and Networked Obje
ts. Wiley, 2000.[100℄ R. S
hultz and E. Berard. Mapping the Berard Obje
t-Oriented Method into DoD-2167A.http://www.ipipan.gda.pl/marek/obje
ts/TOA/2167a/2167a-BOOM.html, 1995 [Last A

essedJune 2008℄.[101℄ S. Shlaer and S. Mellor. Obje
t-Oriented Systems Analysis: Modelling the World in Data. Prenti
eHall, 1988.[102℄ S. Stelting and O. Maassen. Applied Java Patterns. Prenti
e Hall, 2002.[103℄ C. Thilmany. .NET Patterns: Ar
hite
ture, Design and Pro
ess. Addison Wesley, 2004.[104℄ W. Ti
hy. A
atalogue of general-purpose design patterns. In Pro
eedings of Te
hnology ofObje
t-Oriented Languages and Systems (TOOLS 23), IEEE Computer So
iety, 1998.[105℄ J. Tidwell. Common ground: A pattern language for human-
omputer interfa
e design.http://www.mit.edu/jtidwell/intera
tion patterns.html, 1999 [Last A

essed June 2008℄.[106℄ J. Tidwell. Designing Interfa
es. O'Riley, 2005.[107℄ Brighton University. What are the
urrent obje
t-oriented methodologies?http://burks.brighton.a
.uk/burks/p
info/progdo
s/oofaq/s37.htm,1996 [Last A

essed August 2007℄.[108℄ Ri
e University. Composite pattern. http://www.ex
iton.
s.ri
e.edu/UWis
onsin/session2/,2006 [Last A

essed June 2008℄.[109℄ J. Vlissides. Pattern Hat
hing: Design Patterns Applied. Addison Wesley, 1998.[110℄ J. Vlissides, N. Kerth, and J. Coplien. Pattern Languages of Program Design 2. Addison Wesley,1996.

149[111℄ M. Voelter, J. Noble, and D. Manoles
u. Pattern Languages of Program Design 5. AddisonWesley, 2006.[112℄ M. V�olter, A. Shmid, and E. Wol�. Server Component Patterns. Wiley, 2002.[113℄ K. Walden and JM. Nerson. Seamless Obje
t-oriented Software Ar
hite
ture: Analysis and Designof Reliable Systems. Prenti
e-Hall, 1994.[114℄ M. Welie. Web design patterns. http://www.welie.
om/patterns, 2007 [Last A

essed June 2008℄.[115℄ R. Wieringa. A survey of stru
tured and obje
t-oriented software spe
i�
ation methods andte
hniques. ACM Computing Surveys. Volume 30, Number 4, 1998.[116℄ R. Wirfs-Bro
k, B. Wilkerson, and L. Wiener. Designing Obje
t-Oriented Software. Prenti
e Hall,1990.[117℄ E. Yourdon. Modern Stru
tured Analysis. Prenti
e Hall, 1989.[118℄ E. Yourdon. Yourdon Systems Method: Model-Driven Systems Development. Prenti
e Hall, 1993.[119℄ W. Zimmer. Relationships between design patterns. In Pattern Languages of Program Design,1995.

150
Appendix ACOMPOSITE COMBINES COMMANDRelated PatternsCommand (See Command Pattern)Add behaviour to an appli
ation or system by en
apsulating a request in an obje
t.Classi�
ation type (Behavioural)Behavioural patterns apply responsibility to obje
ts.Problem Solving Type (Control)� For what aspe
ts of fun
tionality is the Command pattern responsible?The Command pattern deals with the
ontrol of exe
ution, and the sele
tion of appropriate methods.� How the Command pattern uses and/or
ontrols the fun
tionality of other patterns.The Command pattern adds fun
tionality to an appli
ation or system. The Command pattern
antake
ontrol of spe
i�
 aspe
ts of other pattern
omponents by o�ering an alternative to
ontrollingbehaviour.� How it will
ombine with other patterns to enhan
e fun
tionalityThe Command pattern will usually share an interfa
e. This
ould be a
ombination of the two interfa
esof the
ombining patterns or
ould be an interfa
e that has
ommon methods.Asso
iation Type (Combines (Command))The interfa
e
omponents of both Composite and Command
ombine to form a single interfa
e. TheComposite element of the pattern supplies the
olle
tion obje
t for the
ombined patterns whilst theCommand element invokes fun
tionality on the Leaf elements of Composite. The reality is that theLeaf
omponents be
ome Con
reteCommands that are invoked by a
lient that issues a
ommand.

151Composite - Command Relationship
Combines

Control()

Behavioural : Command

VariantMan()

Structural : Composite

Participants:

 Command

 ConcreteCommand

 Invoker

 Receiver

 Client

Participants:

 Component

 Leaf

 Composite

 Client
Figure A.1: Relationship between Composite and CommandExamples of Generative DesignS
enario 1AnalysisS
enario 1 illustrates a simple drawing pa
kage where lines, squares and
ir
les
an be drawn withina frame. Ea
h drawing item
an be individually added to the drawing area by the
li
k of a button,whi
h issues a
ommand to draw the item. Ea
h drawn item
an be added to the
omposite obje
twhere it
an be used to repaint the drawing area.DesignUse-Case DiagramThe use-
ase diagram represents a business pro
ess that de�nes the a
tivities that
an be applied tothe drawing s
enario. In this
ase, drawing
omponents are
reated on
ommand and displayed in thedrawing area.

Create Drawing

Objects

Add Objects to

Collection

Execute Command

Client

<<Include>>
 <<Extends>>

Invoke Command

<<Include>>

Could execute

one of several

commands
Figure A.2: Use-Case Diagram - Composite
ombines Command

152Class DiagramThe diagram below shows the
lass
omponents that
ollaborate to form the stru
ture of the Composite{ Command drawing s
enario. Three di�erent buttons are
reated that are used to issue the
ommands.
interface

CommandHolder

getCommand

setCommand

 Shapecomponent

Draw : void

addDrawing : void

removeDrawing : void

Rectangleleaf

x : int

y : int

x1 : int

y1 : int

Rectangleleaf

Draw : void

Circleleaf

x : int

y : int

x1 : int

y1 : int

Circleleaf

Draw : void

Drawcomposite

Drawings : Vector <Shapecomponent>

Drawcomposite

addDrawing : void

removeDrawing : void

components : Enumeration

Draw : void

Lineleaf

x : int

y : int

x1 : int

y1 : int

Lineleaf

Draw : void

InvokeButton

getCommand

setCommand

Client

comp : Shapecomponent

obj: CommandHolder

draw : InvokeButton

line : Lineleaf

Figure A.3: Class Diagram - Composite
ombines Command

153Sequen
e DiagramThe intera
tion diagram shows the sequen
e of events that o

ur between the various
omponents thatare utilized in this pattern
ombination. It also shows that the Command de
ouples the invoking obje
tfrom the re
eiving obje
t. When the drawing obje
t has been
reated it is then added to the Compositeobje
t.
Client
 Command
 Invoke
 Receive

line Command

new Command(this)

store Command(line)

Draw(g)

Draw(g)

Compose

addDrawing(line)
Figure A.4: Sequen
e Diagram - Composite
ombines CommandImplementationThis example uses the Composite and Command patterns to demonstrate a simple drawing pa
kage.For the purpose of demonstration the
omponents are hard
oded into the
lient but in a live appli
ationthe
omponents would be
reated dynami
ally.Parti
ipantsClientThe Client
omponent is a simple GUI used to
reate the drawn
omponents. The
lient implementsthe Command obje
ts and adds the
omponents
reated on
ommand to the
olle
tion obje
t.Shape
omponentThe Shape
omponent
lass spe
i�es an Abstra
t interfa
e to the
omponents of the Composite andCommand. Shape
omponent de�nes three methods that
an be implemented by all sub-
lasses. TheaddDrawing(Shape
omponent draw) and removeDrawing(Shape
omponent draw) methods are implemented in theComposite
lass and the Draw(Graphi
s g) method is implemented in all sub-
lasses.

154Draw
ompositeDraw
omposite has two fun
tions; one is to add or remove items from the Colle
tion obje
t (the Ve
tor):- private Ve
tor<Shape
omponent> drawings;and the other is to
all ba
k the items from the
olle
tion (print to the frame)- ((Shape
omponent)
omponents.nextElement()).Draw(g).In this example items are only added to the
olle
tion:- addDrawing(Shape
omponent draw)fdrawings. addElement(draw)g.Lineleaf, Cir
leleaf, Re
tangleleafLeaf
omponents represent the drawing obje
ts that are added to the drawing area when issued witha
ommand to do so. Ea
h
omponent de�nes its own type of drawing obje
t, whi
h is
alled in theDraw method:- g.drawLine(x, y, x1, y1).InvokeCommandThe InvokeCommand stores the Con
reteCommand obje
t whi
h is passed to InvokeCommand as aparameter in a setCommand() method. The InvokeCommand
omponent asks the Command to
arryout a request.CommandHolderCommandHolder a
ts as an interfa
e to one or more
omponents that
an invoke a
ommand. In thisexample there is only one Invoke
omponent that a
tivates a button
ommand but there
ould be otherssu
h as menu items.Re
eiverThe re
eiver in this
ase is the panel on whi
h the drawing obje
ts are drawnClientCommand.java (Client)import java.awt.*;import java.awt.event.*;import javax.swing.*;publi

lass ClientCommand implements A
tionListenerf Shape
omponent
omposite = new Draw
omposite();

155CommandHolder obj;InvokeButton drawline;Lineleaf line;publi
 ClientCommand()f super("Draw
ommands");JPanel jp = new JPanel();getContentPane().add(jp);jp.setLayout(new BorderLayout());JPanel bp = new JPanel();jp.add("South", bp);PaintPanel
p = new PaintPanel();jp.add("Center",
p);drawline = new InvokeButton("Draw Line", this);line = new Lineleaf(30, 30, 50, 50);drawline.setCommand (line);bp.add(drawline);drawline.addA
tionListener(this);setBounds(200,200,400,200);setVisible(true);gpubli
 void a
tionPerformed(A
tionEvent e)f Graphi
s g = getGraphi
s();obj = (CommandHolder)e.getSour
e();if(obj == drawline)f obj.getCommand().Draw(g);
omposite.addDrawing(line);ggpubli

lass PaintPanel extends JPanelf publi
 void paint(Graphi
s g)f
omposite.Draw(g);ggstati
 publi
 void main(String argv[℄)

156f new ClientCommand();ggShape
omponent.java (Component)import java.awt.*;publi
 abstra
t
lass Shape
omponentf publi
 void Draw(Graphi
s g) fgpubli
 void addDrawing(Shape
omponent draw) fgpubli
 void removeDrawing(Shape
omponent draw) fggDraw
omposite.java (Composite)import java.awt.*;import java.util.Ve
tor;import java.util.Enumeration;publi

lass Draw
omposite extends Shape
omponentf private Ve
tor<Shape
omponent> drawings;publi
 Draw
omposite()fdrawings = new Ve
tor<Shape
omponent>();gpubli
 void addDrawing(Shape
omponent draw)fdrawings.addElement(draw);gpubli
 void remove(Shape
omponent draw)fdrawings.removeElement(draw);gpubli
 Enumeration
omponents()freturn drawings.elements();gpubli
 void Draw(Graphi
s g)f Enumeration
omponents =
omponents();while (
omponents.hasMoreElements())f ((Shape
omponent)
omponents.nextElement()).Draw(g);ggg

157Lineleaf.java (Leaf)import java.awt.*;publi

lass Lineleaf extends Shape
omponentf private int x, y, x1, y1;publi
 Lineleaf(int x, int y, int x1, int y1)f this.x = x;this.y = y;this.x1 = x1;this.y1 = y1;gpubli
 void Draw(Graphi
s g)fg.drawLine(x, y, x1, y1);ggCommandHolder.java (An interfa
e Component)publi
 interfa
e CommandHolderfpubli
 void setCommand(Shape
omponent
omd);publi
 Shape
omponent getCommand();gInvokeButton.java (Invoker)import java.awt.*;import javax.swing.*;publi

lass InvokeButton extends JButton implements CommandHolderf private Shape
omponent btnCommand;publi
 InvokeButton(String name)f super(name);gpubli
 void setCommand(Shape
omponent
omd) fbtnCommand =
omd;gpubli
 Shape
omponent getCommand() freturn btnCommand;gg

158
Appendix BCOMPOSITE COMBINES BUILDERRelated PatternsBuilder (See Builder Pattern)Simplify
omplex obje
t
reation by de�ning a
lass whose purpose is to build instan
es of another
lass.Classi�
ation type (Creational)Creational patterns provide
exibility for what gets
reated, what
reates it, how it gets
reated andwhen[45℄.Problem Solving Type (Variant Management)Variant Management patterns treat di�erent obje
ts with a
ommon purpose in a
onsistent mannerby fa
toring out their
ommonality.� What obje
ts are being manipulated.In this example, the Leaf
omponents of the Composite pattern are being manipulated. Several di�erentobje
ts are being used by one builder to
reate a pre-de�ned drawing.� Why they are being manipulated.In this instan
e the system
an provide a

ess to
ommon graphi
al stru
tures.� What obje
ts will be manipulated through a Combines relationship and how the
ombination willa�e
t the obje
t.The Composite and Builder share an interfa
e and the Builder uses the Leaf
omponents of Compositeas a produ
t. An instan
e of the Composite obje
t is passed through the Builder to store the drawing.Asso
iation Type (Combines (Builder))

159The interfa
e
omponents of both Composite and Builder
ombine to form a single interfa
e. TheComposite element of the pattern supplies the
olle
tion obje
t for the
ombined patterns whilst theBuilder element builds obje
ts from the Leaf elements of Composite.Composite - Builder Relationship
Combines

VariantMan()

Structural : Composite

Participants:

 Component

 Leaf

 Composite

 Client

Varient Management()

Creational : Builder

Participants:

 Builder

 ConcreteBuilder

 Director

 Product

 Client
Figure B.1: Relationship between Composite and BuilderExamples of Generative DesignS
enario 1AnalysisS
enario 1 illustrates a simple drawing pa
kage where pre-de�ned graphi
s
an be drawn within a frame.Di�erent graphi
al representations
an be added to the drawing area when the builder obje
t is
alled.Ea
h graphi
 item is be added to the
omposite obje
t where it
an be used to paint the drawing area.DesignUse-Case DiagramThe use-
ase diagram represents a business pro
ess that de�nes the a
tivities that
an be applied tothe drawing s
enario. In this
ase, a graphi
al is built on request and displayed in the drawing area.

Build Object

Call Object

Add to Collection

Client

<<Include>>

Construct Object

<<Include>>

Multiple objects could be

constructed at start-up and

called on request
Figure B.2: Use-Case Diagram - Composite
ombines Builder

160Class DiagramThe diagram below shows the
lass
omponents that
ollaborate to form the stru
ture of the Composite{ Builder drawing s
enario.
 Shapecomponent

Draw : void

addDrawing : void

removeDrawing : void

buildLine() : void

buildCircle() : void

buildRectangle() : void

getComposite() : void

Rectangleleaf

x : int

y : int

x1 : int

y1 : int

Rectangleleaf

Draw : void

Circleleaf

x : int

y : int

x1 : int

y1 : int

Circleleaf

Draw : void

Drawcomposite

Drawings : Vector <Shapecomponent>

Drawcomposite

addDrawing : void

removeDrawing : void

components : Enumeration

Draw : void

Lineleaf

x : int

y : int

x1 : int

y1 : int

Lineleaf

Draw : void

DrawDirector

Builder : Shapecomponent

Construct : void

DrawHouseConcreteBuilder

buildLine() : void

buildCircle() : void

buildRectangle() : void

composite : Shapecomponent

Client

composite : Shapecomponent

PainPanel

Figure B.3: Class Diagram - Composite
ombines Builder

161Sequen
e DiagramThe intera
tion diagram shows the sequen
e of events that o

ur between the various
omponents thatare utilized in this pattern
ombination. When the drawing obje
t has been built it is added to theComposite obje
t.
Client
 ConcreteBuilder
 Director

new ConcreteBuilder(Composite)

New Director(ConcreteBuilder)

BuildLine()

Construct()

getComposite()

BuildCircle()

BuildRectangle()

Product

new Line(w,x,y,z)

new Circle(w,x,y,z)

new Rectangle(w,x,y,z)

Composite

Composite.add(Product)
Figure B.4: Sequen
e Diagram - Composite
ombines BuilderImplementationThis example uses the Composite and Builder patterns to demonstrate a simple drawing pa
kage. The
omponents are hard
oded into the Con
reteBuilder and
ould be in a live appli
ation. Alternatively,the
omponents
ould be
reated dynami
ally and stored for future use.Parti
ipantsClientThe Client
omponent is a simple GUI used to display the drawn
omponents. The
lient implementsthe Builder whi
h
reates the obje
t and adds it to the
olle
tion obje
t.Shape
omponentThe Shape
omponent
lass spe
i�es an Abstra
t interfa
e to the
omponents of the Composite andthe Con
reteBuilder. Shape
omponent de�nes seven methods that are a
ombination of the methodsrequired by both patterns. The addDrawing(Shape
omponent draw) and removeDrawing(Shape
omponent draw)methods are implemented in the Composite
lass and the Draw(Graphi
s g) method is implemented in allsub-
lasses of the Composite part of the
ombined patterns. The remaining methods are implementedby the Builder part of the
ombined patterns.

162Draw
ompositeDraw
omposite has two fun
tions; one is to add or remove items from the Colle
tion obje
t (the Ve
tor):- private Ve
tor<Shape
omponent> drawings;and the other is to
all ba
k the items from the
olle
tion (print to the frame)- ((Shape
omponent)
omponents.nextElement()).Draw(g).In this example items are only added to the
olle
tion- addDrawing(Shape
omponent draw)fdrawings. addElement(draw)g.Lineleaf, Cir
leleaf, Re
tangleleafLeaf
omponents represent the drawing obje
ts that are added to the drawing area when issued witha
ommand to do so. Ea
h
omponent de�nes its own type of drawing obje
t, whi
h is
alled in theDraw method - g.drawLine(x, y, x1, y1).DrawDire
torThe DrawDire
tor
alls the
reational methods on its builder instan
e to have the di�erent parts of thegraphi
al obje
t built.DrawHouseCon
reteBuilderDrawHouseCon
reteBuilder implements all the methods required to
reate the produ
t - in this
asethe graphi
al obje
t.ClientCommand.java (Client)import java.awt.*;import java.awt.event.*;import javax.swing.*;publi

lass ClientBuilder extends JFramef Shape
omponent
omposite = new Draw
omposite();publi
 ClientBuilder()f super("Draw Builder");JPanel jp = new JPanel();getContentPane().add(jp);jp.setLayout(new BorderLayout());JPanel bp = new JPanel();

163jp.add("South", bp);PaintPanel
p = new PaintPanel();jp.add("Center",
p);setBounds(200,200,400,400);setVisible(true);gpubli

lass PaintPanel extends JPanelf publi
 void paint(Graphi
s g)f Shape
omponent
omposite = new Draw
omposite();Shape
omponent houseBuilder = new DrawHouseCon
reteBuilder(
omposite);DrawDire
tor draw = new DrawDire
tor(houseBuilder);draw.
onstru
t();
omposite = houseBuilder.getComposite();
omposite.Draw(g);ggstati
 publi
 void main(String argv[℄)f new ClientBuilder();ggShape
omponent.java (Component)import java.awt.*;publi
 abstra
t
lass Shape
omponentf publi
 void Draw(Graphi
s g) fgpubli
 void addDrawing(Shape
omponent draw) fgpubli
 void removeDrawing(Shape
omponent draw) fgpubli
 void buildLine() fgpubli
 void buildCir
le() fgpubli
 void buildRe
tangle() fgpubli
 Shape
omponent getComposite() freturn null;gg

164Draw
omposite.java (Composite)import java.awt.*;import java.util.Ve
tor;import java.util.Enumeration;publi

lass Draw
omposite extends Shape
omponentf private Ve
tor<Shape
omponent> drawings;publi
 Draw
omposite()fdrawings = new Ve
tor<Shape
omponent>();gpubli
 void addDrawing(Shape
omponent draw)fdrawings.addElement(draw);gpubli
 void remove(Shape
omponent draw)fdrawings.removeElement(draw);gpubli
 Enumeration
omponents()freturn drawings.elements();gpubli
 void Draw(Graphi
s g)f Enumeration
omponents =
omponents();while (
omponents.hasMoreElements())f ((Shape
omponent)
omponents.nextElement()).Draw(g);ggg//The Leaf
omponents of Composite are all very similar. The Re
tangleleaf will have g.drawRe
t(x, y, x1, y1);Lineleaf.java (Leaf)import java.awt.*;publi

lass Lineleaf extends Shape
omponentf private int x, y, x1, y1;publi
 Lineleaf(int x, int y, int x1, int y1)f this.x = x;this.y = y;this.x1 = x1;this.y1 = y1;gpubli
 void Draw(Graphi
s g)fg.drawLine(x, y, x1, y1);gg

165DrawDire
tor.java (Dire
tor)
lass DrawDire
torf private Shape
omponent builder;publi
 DrawDire
tor(Shape
omponent builder) fthis.builder = builder;gpubli
 void
onstru
t()f builder.buildLine();builder.buildCir
le();builder.buildRe
tangle();ggDrawHouseCon
reteBuilder.java (Con
reteBuilder)import java.awt.*;publi

lass DrawHouseCon
reteBuilder extends Shape
omponentf Shape
omponent
omposite;publi
 DrawHouseCon
reteBuilder(Shape
omponent
omposite) fthis.
omposite =
omposite;gpubli
 void buildLine()f Lineleaf roof1 = new Lineleaf(100, 100, 175, 50);Lineleaf roof2 = new Lineleaf(175, 50, 250, 100);
omposite.addDrawing(roof1);
omposite.addDrawing(roof2);gpubli
 void buildCir
le()publi
 void buildRe
tangle()f Re
tangleleaf walls = new Re
tangleleaf(100, 100, 150, 150);
omposite.addDrawing(walls);gpubli
 Shape
omponent getComposite() freturn
omposite;gg

166
Appendix CBUILDER COMBINES COMMAND COMBINES COMPOSITEThe Composite in this example is supplemental to the
ombining patterns Builder and Command.Related PatternsCommand (See Command Pattern)Composite (See Composite Pattern)Add behaviour to an appli
ation or system by en
apsulating a request in an obje
t.Classi�
ation type (Behavioural)Behavioural patterns apply responsibility to obje
ts.Problem Solving Type (Control)� For what aspe
ts of fun
tionality is the Command pattern responsible?The Command pattern deals with the
ontrol of exe
ution, and the sele
tion of appropriate methods.� How the Command pattern uses and/or
ontrols the fun
tionality of other patterns.Adds fun
tionality to an appli
ation or system. The Command pattern
an take
ontrol of spe
i�
aspe
ts of other pattern
omponents by o�ering an alternative to
ontrolling behaviour.� How it will
ombine with other patterns to enhan
e fun
tionalityWill usually share an interfa
e. This
ould be a
ombination of the two interfa
es of the
ombiningpatterns or
ould be an interfa
e that has
ommon methods.Asso
iation Type (Combines (Command) Combines (Composite))The interfa
e
omponents of both Builder and Command
ombine to form a single interfa
e. However,in addition the interfa
e from the Composite pattern adds to the
ombination. The Composite element

167of the pattern supplies the
olle
tion obje
t for the
ombined patterns. The Command element invokesfun
tionality on the Dire
tor element of Builder, whi
h supplies the method
alls on the Con
rete-Builders. The Leaf
omponents of Composite work as Con
reteCommands / Produ
ts that are invokedby a
lient that issues a
ommand.Builder - Command - Composite Relationship
Combines

VariantMan()

Structural : Composite

Participants:

 Component

 Leaf

 Composite

 Client

Control()

Behavioural : Command

Participants:

 Command

 ConcreteCommand

 Invoker

 Receiver

 Client

Combines
 Combines

Varient Management()

Creational : Builder

Participants:

 Builder

 ConcreteBuilder

 Director

 Product

 Client

Figure C.1: Relationship between Builder, Command and CompositeExamples of Generative DesignS
enario 1AnalysisS
enario 1 illustrates a simple drawing pa
kage where lines, squares and
ir
les
an be drawn within aframe. The drawing artefa
ts are
reated by the Builder pattern but are not drawn on the frame untilthey invoked by the Command pattern. Ea
h drawing item
an be individually added to the drawingarea by the
li
k of a button, whi
h issues a
ommand to draw the item. Ea
h drawn item
an beadded to the
omposite obje
t where it is used to paint the drawing area.

168DesignUse-Case DiagramThe use-
ase diagram represents a business pro
ess that de�nes the a
tivities that
an be applied tothe drawing s
enario. In this
ase, drawing
omponents are
reated by the
lient and only
alled whenan invoke a
tion is a
tivated.
Add Objects to

Collection

Execute Command

Client

<<Extends>>

Invoke Command

<<Include>>

Could execute

one of several

commands

Build Drawing

Objects
Figure C.2: Use-Case Diagram - Builder
ombines Command
ombines Composite

169The diagram below shows the
lass
omponents that
ollaborate to form the stru
ture of the Builder{ Command { Composite drawing s
enario. Three di�erent buttons are
reated that are used to issuethe
ommands.Class Diagram
interface

CommandHolder

getCommand

setCommand

Rectangleleaf

x : int

y : int

x1 : int

y1 : int

Rectangleleaf

Draw : void

Circleleaf

x : int

y : int

x1 : int

y1 : int

Circleleaf

Draw : void

Drawcomposite

Drawings : Vector <Shapecomponent>

Drawcomposite

addDrawing : void

removeDrawing : void

components : Enumeration

Draw : void

Lineleaf

x : int

y : int

x1 : int

y1 : int

Lineleaf

Draw : void

InvokeButton

getCommand

setCommand

Client

comp : Shapecomponent

obj: CommandHolder

draw : InvokeButton

line : Lineleaf

DrawHouseConcreteBuilder

buildLine() : void

buildCircle() : void

buildRectangle() : void

composite : Shapecomponent

DrawDirector

Builder : Shapecomponent

Construct : void

 Shapecomponent

Draw : void

addDrawing : void

removeDrawing : void

Figure C.3: Class Diagram - Composite
ombines Command

170Sequen
e DiagramThe intera
tion diagram shows the sequen
e of events that o

ur between the various
omponents thatare utilized in this pattern
ombination. The obje
ts are built and stored in the Composite obje
t untilthey are drawn on demand. It also shows that the Command de
ouples the invoking obje
t from theProdu
t. When the a button is a
tivated a
ommand is invoked and the
omposite obje
t is
alled.
Client
 ConcreteBuilder
 Director

new ConcreteBuilder(Composite)

New Director(ConcreteBuilder)

BuildLine()

Construct()

getComposite()

Product

new Line(w,x,y,z)

Composite

Composite.add(line)

Invoke

new Command(this)

setCommand(ConcreteBuilder)

Draw(g)

new Composite()

Figure C.4: Sequen
e Diagram - Composite
ombines CommandImplementationThis example uses the Builder and Command patterns to demonstrate a simple drawing pa
kage. Thefull Composite pattern is used in the s
enario. The
omposite obje
t holds the drawing obje
ts whilstthe Leaf obje
ts of Composite a
t as Produ
t
omponents. For the purpose of demonstration the
omponents are hard
oded into the
lient but in a live appli
ation the
omponents would be
reateddynami
ally.Parti
ipantsClient (Re
eiver)The Client
omponent is a simple GUI used to build the drawn
omponents. The drawing obje
ts are
reated automati
ally and added to the
olle
tion obje
t. The
lient implements the Command obje
ts,whi
h
alls the
olle
tion obje
t to display the drawing. The re
eiver in this
ase is the panel on whi
hthe drawing obje
ts are drawn.Shape
omponentThe Shape
omponent
lass spe
i�es an Abstra
t interfa
e to the
omponents of the Command, Builderand Composite. Shape
omponent de�nes three methods that
an be implemented by all sub-
lasses.

171The addDrawing(Shape
omponent draw) and removeDrawing(Shape
omponent draw) methods are implementedin the Composite
lass and the Draw(Graphi
s g) method is implemented in all sub-
lasses.Draw
ompositeDraw
omposite has two fun
tions; one is to add or remove items from the Colle
tion obje
t (the Ve
tor):- private Ve
tor<Shape
omponent> drawings;and the other is to
all ba
k the items from the
olle
tion (print to the frame)- ((Shape
omponent)
omponents.nextElement()).Draw(g).In this example items are only added to the
olle
tion- addDrawing(Shape
omponent draw)fdrawings. addElement(draw)g.Lineleaf, Cir
leleaf, Re
tangleleaf (Produ
t)Leaf
omponents represent the drawing obje
ts that are added to the Composite obje
t during thebuild operation. Ea
h
omponent de�nes its own type of drawing obje
t, whi
h is
alled in the Drawmethod - g.drawLine(x, y, x1, y1). The Leaf
omponents of Composite a
t as Produ
t
omponents in theBuilder element of the generative pattern.InvokeButtonThe InvokeButton stores the Con
reteCommand obje
t whi
h is passed to InvokeButton as a parameterin a setCommand() method. The InvokeButton
omponent asks the Command to
arry out a request.CommandHolderCommandHolder a
ts as an interfa
e to one or more
omponents that
an invoke a
ommand. In thisexample there is only one Invoke
omponent that a
tivates a button
ommand but there
ould be otherssu
h as menu items.DrawDire
torThe DrawDire
tor
alls the
reational methods on its builder instan
e to have the di�erent parts of thegraphi
al obje
t built.DrawHouseCon
reteBuilderDrawHouseCon
reteBuilder implements all the methods required to
reate the produ
t - in this
asethe graphi
al obje
t.

172ClientCommand.java (Client)import java.awt.*;import java.awt.event.*;import javax.swing.*;publi

lass ClientCommand extends JFramef Shape
omponent
omposite = new Draw
omposite();CommandHolder obj;InvokeButton drawhouse;DrawHouseCon
reteBuilder houseBuilder = new DrawHouseCon
reteBuilder(
omposite);DrawDire
tor drawHouseDire
tor = new DrawDire
tor(houseBuilder);publi
 ClientCommand()f super("Draw Builder - Command");JPanel jp = new JPanel();getContentPane().add(jp);jp.setLayout(new BorderLayout());JPanel bp = new JPanel();jp.add("South", bp);JPanel dp = new JPanel();jp.add("Center", dp);drawhouse = new InvokeButton("Draw House");drawhouse.setCommand (drawHouseDire
tor);drawHouseDire
tor.
onstru
t();bp.add(drawhouse);ButtonHandler handler = new ButtonHandler();drawhouse.addA
tionListener(handler);setBounds(200,200,800,400);setVisible(true);gprivate
lass ButtonHandler implements A
tionListenerf publi
 void a
tionPerformed(A
tionEvent e)f Graphi
s g = getGraphi
s();obj = (CommandHolder)e.getSour
e();if(obj == drawhouse)f
omposite.Draw(g);ggg

173stati
 publi
 void main(String argv[℄)f new ClientCommand();ggShape
omponent.java (Component)import java.awt.*;publi
 abstra
t
lass Shape
omponentf publi
 void Draw(Graphi
s g) fgpubli
 void addDrawing(Shape
omponent draw) fgpubli
 void removeDrawing(Shape
omponent draw) fgpubli
 void buildLine() fgpubli
 void buildCir
le() fgpubli
 void buildRe
tangle() fgpubli
 Shape
omponent getComposite() freturn null;ggDraw
omposite.java (Composite)import java.awt.*;import java.util.Ve
tor;import java.util.Enumeration;publi

lass Draw
omposite extends Shape
omponentf private Ve
tor<Shape
omponent> drawings;publi
 Draw
omposite()fdrawings = new Ve
tor<Shape
omponent>();gpubli
 void addDrawing(Shape
omponent draw)fdrawings.addElement(draw);gpubli
 void remove(Shape
omponent draw)fdrawings.removeElement(draw);gpubli
 Enumeration
omponents()freturn drawings.elements();gpubli
 void Draw(Graphi
s g)f Enumeration
omponents =
omponents();while (
omponents.hasMoreElements())f

174((Shape
omponent)
omponents.nextElement()).Draw(g);gggThe Leaf
omponents of Composite are all very similar. The Re
tangleleaf will have g.drawRe
t(x, y, x1, y1);Lineleaf.java (Leaf)import java.awt.*;publi

lass Lineleaf extends Shape
omponentf private int x, y, x1, y1;publi
 Lineleaf(int x, int y, int x1, int y1)f this.x = x;this.y = y;this.x1 = x1;this.y1 = y1;gpubli
 void Draw(Graphi
s g)fg.drawLine(x, y, x1, y1);ggCommandHolder.java (An interfa
e Component)publi
 interfa
e CommandHolderf publi
 void setCommand(Shape
omponent
omd);publi
 Shape
omponent getCommand();gInvokeButton.java (Invoker)import java.awt.*;import javax.swing.*;publi

lass InvokeButton extends JButton implements CommandHolderf private Shape
omponent btnCommand;publi
 InvokeButton(String name)f super(name);

175gpubli
 void setCommand(Shape
omponent
omd)f btnCommand =
omd;gpubli
 Shape
omponent getCommand()f return btnCommand;ggDrawDire
tor.java (Dire
tor)
lass DrawDire
torf private Shape
omponent builder;publi
 DrawDire
tor(Shape
omponent builder)f this.builder = builder;gpubli
 void
onstru
t()f builder.buildLine();builder.buildCir
le();builder.buildRe
tangle();ggDrawHouseCon
reteBuilder.java (Con
reteBuilder)import java.awt.*;publi

lass DrawHouseCon
reteBuilder extends Shape
omponentf Shape
omponent
omposite;publi
 DrawHouseCon
reteBuilder(Shape
omponent
omposite)f this.
omposite =
omposite;g

176publi
 void buildLine()f Lineleaf roof1 = new Lineleaf(100, 100, 175, 50);Lineleaf roof2 = new Lineleaf(175, 50, 250, 100);
omposite.addDrawing(roof1);
omposite.addDrawing(roof2);gpubli
 void buildCir
le()publi
 void buildRe
tangle()f Re
tangleleaf walls = new Re
tangleleaf(100, 100, 150, 150);
omposite.addDrawing(walls);gpubli
 Shape
omponent getComposite()f return
omposite;gg

177
Appendix DBUILDER USES COMMANDRelated PatternsCommand (See Command Pattern)Add behaviour to an appli
ation or system by en
apsulating a request in an obje
t.Classi�
ation type (Behavioural)Behavioural patterns apply responsibility to obje
ts.Problem Solving Type (Control)� For what aspe
ts of fun
tionality is the Command pattern responsible?The Command pattern deals with the
ontrol of exe
ution, and the sele
tion of appropriate methods.� How the Command pattern uses and/or
ontrols the fun
tionality of other patterns.Adds fun
tionality to an appli
ation or system. The Command pattern
an take
ontrol of spe
i�
aspe
ts of other pattern
omponents by o�ering an alternative to
ontrolling behaviour.� How it will
ombine with other patterns to enhan
e fun
tionality.Will usually share an interfa
e. This
ould be a
ombination of the two interfa
es of the
ombiningpatterns or
ould be an interfa
e that has
ommon methods.Asso
iation Type (Uses (Command))The Builder pattern is not using the whole of the Command pattern, it is only using the Invoke
omponent of Command. The build operation of the Builder pattern has a strong in
uen
e over thefun
tionality of the
ombined patterns and as su
h there is little need for mu
h of the Command
omponents. As su
h, the Invoke operation works on the Dire
tor from the Builder pattern and not aCon
reteCommand from the Command pattern.

178
Uses

Varient Management()

Creational : Builder

Participants:

 Builder

 ConcreteBuilder

 Director

 Product

 Client

Control()

Behavioural : Command

Participants:

 Invoker

Figure D.1: Relationship between Builder and CommandBuilder - Command RelationshipExamples of Generative DesignS
enario 1AnalysisS
enario 1 illustrates a simple operation where parti
ular styles of
o�ee
an be sele
ted. Ea
h style of
o�ee is sele
ted at the push of a button, whi
h is intended to simulate the sele
tion pro
ess that
anbe seen on modern
ash registers.DesignUse-Case DiagramThe use-
ase diagram represents a business pro
ess that de�nes the a
tivities that
an be applied tothe drinks sele
tion s
enario. In this
ase, drinks are sele
ted by the
lient at the tou
h of a button,whi
h is
ontained in the invoke obje
t.
Execute Director

Client

<<Include>>

Invoke Command

<<Include>>

Could execute

one of several

commands

Build Drink Type

Figure D.2: Use-Case Diagram - Builder uses Command

179Class DiagramThe diagram below shows the
lass
omponents that
ollaborate to form the stru
ture of the Builderuses Command
o�ee shop s
enario. Three di�erent buttons are
reated that are used to issue the
ommands.
interface

CommandHolder

getCommand

setCommand

InvokeCommand

getCommand

setCommand

CoffeeDirector

coffeeBuilder : CoffeeBuilder

constructCoffee : void

CoffeeBuilder

BuildCoffee

BuildMilk

BuildTopping

BuildSprinkle

BuildPrice

LatteConcreteBuilder

BuildCoffee: void

BuildMilk: void

BuildTopping: void

BuildSprinkle: void

BuildPrice: void

Client

obj: CommandHolder

latte: InvokeCommand

latteBuilder: LatteConcreteBuilder

latteDirector: CoffeeDirector

latteProduct: CoffeeProduct

CoffeeProduct

coffee: String

milk: String

topping: String

sprinkle: String

price: int

Figure D.3: Class Diagram - Builder uses Command

180Sequen
e DiagramThe intera
tion diagram shows the sequen
e of events that o

ur between the various
omponents thatare utilized in this pattern
ombination. The obje
ts are built and stored in the Composite obje
t untilthey are drawn on demand. It also shows that the Command de
ouples the invoking obje
t from theProdu
t. When the a button is a
tivated a
ommand is invoked and the
omposite obje
t is
alled.
Client
 ConcreteBuilder
 Director

new ConcreteBuilder()

New Director(ConcreteBuilder)

construct()

setCommand(Director)

getProduct()

Product

Build()

Invoke

setProduct()

Figure D.4: Sequen
e Diagram - Builder uses CommandImplementationThis example uses the Builder and Command patterns to demonstrate a simple drink sele
tion pa
kage.The Client
reates a Con
reteBuilder and Dire
tor and uses the buttons of the Invoke
ommand tosele
t a given type of
o�ee. The Invoke buttons
all the
onstru
t method of the Dire
tor, whi
h issuesthe a
tion to build the drinks.Parti
ipantsClientThe Client
omponent is a simple GUI used to implement the Invoke
ommands. Drinks are built anddisplayed when a button is sele
ted.Co�eeBuilderThe Co�eeBuilder
lass spe
i�es an Abstra
t interfa
e to the
omponents of the Con
reteBuilder.Co�eeBuilder de�nes �ve methods that
an be implemented by all Co�eeBuilder sub-
lasses.

181CommandHolderCommandHolder a
ts as an interfa
e to one or more
omponents that
an invoke a
ommand. In thisexample there is only one Invoke
omponent that a
tivates a button
ommand but there
ould be otherssu
h as menu items.InvokeButtonThe InvokeButton stores the Dire
tor obje
t whi
h is passed to InvokeButton as a parameter in asetCommand() method. the InvokeButton
omponent returns a Co�eeBuilder on request.Co�eeDire
torThe Co�eeDire
tor
alls the
reational methods on its builder instan
e to have the di�erent parts ofthe graphi
al obje
t built.LatteCon
reteBuilderLatteCon
reteBuilder implements all the methods required to
reate the produ
t - in this
ase the arepresentation of the sale of a drink.Produ
tA produ
t is
reated from the spe
i�ed methods that are
alled to
reate parti
ular drink. The produ
tis
alled by the
lient and shown in the display area of the
lient.Co�eeClient.java (Client)import java.awt.*;import java.awt.event.*;import javax.swing.*;publi

lass Co�eeClient extends JFramef Co�eeCommand obj;InvokeCommand latte;LatteCon
reteBuilder latteBuilder = new LatteCon
reteBuilder();Co�eeDire
tor latteDire
tor = new Co�eeDire
tor(latteBuilder);Co�eeProdu
t latteProdu
t = new Co�eeProdu
t();prote
ted JTextArea textArea = new JTextArea(20,60);private �nal stati
 String newline = "nn";JS
rollPane s
rollPane = new JS
rollPane(textArea);publi
 Co�eeClient()f super("Builder Command Co�ee House");

182JPanel jp = new JPanel();getContentPane().add(jp);jp.setLayout(new BorderLayout());JPanel bp = new JPanel();jp.add("South", bp);JPanel dp = new JPanel();jp.add("Center", dp);dp.add(s
rollPane);latte = new InvokeCommand("Latte");latte.setCommand (latteDire
tor);latteProdu
t = latteBuilder.getCo�eeProdu
t();bp.add(latte);ButtonHandler handler = new ButtonHandler();latte.addA
tionListener(handler);setBounds(200,200,800,400);setVisible(true);gprivate
lass ButtonHandler implements A
tionListenerf publi
 void a
tionPerformed(A
tionEvent e)f obj = (Co�eeCommand)e.getSour
e();if(obj == latte)f latteDire
tor.
onstru
tCo�ee();textArea.append(latteProdu
t.getCo�ee() + newline);textArea.append(latteProdu
t.getMilk() + newline);textArea.append(latteProdu
t.getTopping() + newline);textArea.append(latteProdu
t.getSprinkle() + newline);textArea.append("" + latteProdu
t.getPri
e() + newline);textArea.append(newline);gggstati
 publi
 void main(String argv[℄)f new Co�eeClient();gg

183Co�eeBuilder.java (Builder)publi
 abstra
t
lass Co�eeBuilderf publi
 void buildCo�ee()publi
 void buildMilk()publi
 void buildTopping()publi
 void buildSprinkle()publi
 void buildPri
e()gCommandHolder.java (An interfa
e Component)publi
 interfa
e CommandHolderf publi
 void setCommand(Co�eeBuilder
omd);publi
 Co�eeBuilder getCommand();gInvokeCommand.java (Invoker)import javax.swing.*;publi

lass InvokeCommand extends JButton implements CommandHolderf private Co�eeBuilder btnCommand;publi
 InvokeButton(String name)f super(name);gpubli
 void setCommand(Co�eeBuilder
omd)f btnCommand =
omd;gpubli
 Co�eeBuilder getCommand()f return btnCommand;gg

184Co�eeDire
tor.java (Dire
tor)
lass Co�eeDire
torf private Co�eeBuilder builder;publi
 Co�eeDire
tor(Co�eeBuilder builder)f this.builder = builder;gpubli
 void
onstru
tCo�ee()f builder.buildPri
e();builder.buildCo�ee();builder.buildMilk();builder.buildTopping();builder.buildSprinkle();ggLatteCon
reteBuilder.java (Con
reteBuilder)publi

lass LatteCon
reteBuilder extends Co�eeBuilderf prote
ted Co�eeProdu
t
o�eeProdu
t = new Co�eeProdu
t();publi
 LatteCon
reteBuilder()publi
 void buildCo�ee()f
o�eeProdu
t.setCo�ee("Latte");gpubli
 void buildMilk()f
o�eeProdu
t.setMilk("Steamed Milk");gpubli
 void buildTopping()f
o�eeProdu
t.setTopping("");gpubli
 void buildSprinkle()

185f
o�eeProdu
t.setSprinkle("Vanilla");gpubli
 void buildPri
e()f
o�eeProdu
t.setPri
e(200);gpubli
 Co�eeProdu
t getCo�eeProdu
t()f return
o�eeProdu
t;ggpubli

lass Co�eeProdu
tf private String
o�ee = "";private String milk = "";private String topping = "";private String sprinkle = "";private int pri
e = 0;publi
 Co�eeProdu
t() fgpubli
 void setCo�ee(String
o�ee) fthis.
o�ee =
o�ee;gpubli
 void setMilk(String milk) fthis.milk = milk;gpubli
 void setTopping(String topping) fthis.topping = topping;gpubli
 void setSprinkle(String sprinkle) fthis.sprinkle = sprinkle;gpubli
 void setPri
e(int pri
e) fthis.pri
e = pri
e;gpubli
 String getCo�ee() freturn
o�ee;gpubli
 String getMilk() freturn milk;gpubli
 String getTopping() freturn topping;gpubli
 String getSprinkle() freturn sprinkle;gpubli
 int getPri
e() freturn pri
e;gg

186
Appendix ERELATIONSHIP TREESE.0.1 Stru
tural

State Handling

Variant

Management

Decoupling

Flyweight
Composite

Structural

Facade
 Bridge
 Proxy
 Adapter
 Decorator

Figure E.1: Stru
tural Hierar
hy

187E.0.2 Creational
Variant

Management

State Handling

Creational

Abstract

Factory

Builder

Factory

Method

Prototype
 Singleton
Figure E.2: Creational Hierar
hy

188E.0.3 Behavioural

Strategy
 Memento
Visitor

Behavioural

State Handling
Control

Variant

Management

Decoupling
 Virtual Machines

Mediator
 Iterator

Interpreter

Template

Method

Observer
Ch of Resp
State
 Command
 Figure E.3: Behavioural Hierar
hy

189
Appendix FPATTERN SOURCE CODE AND SCENARIOSF.1 Sour
e Code { S
enario 1DrawPanel.java (Client)import java.awt.*;import javax.swing.*;
lass DrawPanel extends JPanelf prote
ted stati
 Shape
omponent
omposite1 = new Draw
omposite();prote
ted stati
 Shape
omponent
omposite2 = new Draw
omposite();prote
ted stati
 Shape
omponent
omposite3 = new Draw
omposite();prote
ted stati
 Shape
omponent
olour1 = new Colourde
orator(Color.BLUE);prote
ted stati
 Shape
omponent
olour2 = new Colourde
orator(Color.RED);prote
ted stati
 Shape
omponent
olour3 = new Colourde
orator(Color.YELLOW);prote
ted stati
 Shape
omponent style1 = new Linestylede
orator(8);prote
ted stati
 Shape
omponent style2 = new Linestylede
orator(4);prote
ted stati
 Shape
omponent leaf1 = new Lineleaf(10, 10, 20, 20);prote
ted stati
 Shape
omponent leaf2 = new Re
tangleleaf(20, 20, 40, 40);prote
ted stati
 Shape
omponent leaf3 = new Cir
leleaf(50, 40, 20, 20);publi
 void paintComponent(Graphi
s g)f
omposite1.addDrawing(
olour1);
omposite1.addDrawing(style2);
omposite1.addDrawing(leaf1);
omposite2.addDrawing(
omposite1);
omposite2.addDrawing(
olour2);
omposite2.addDrawing(style1);
omposite2.addDrawing(leaf2);
omposite3.addDrawing(
omposite2);
omposite3.addDrawing(
olour3);
omposite3.addDrawing(leaf3);

190
omposite3.Draw(g);ggShape
omponent.java (Component)import java.awt.*;publi
 abstra
t
lass Shape
omponentf publi
 void Draw(Graphi
s g) fgpubli
 void addDrawing(Shape
omponent draw) fgpubli
 void removeDrawing(Shape
omponent draw) fggDraw
omposite.java (Composite)import java.awt.*;import java.util.Ve
tor;import java.util.Enumeration;publi

lass Draw
omposite extends Shape
omponentf private Ve
tor<Shape
omponent> drawings;publi
 Draw
omposite()fdrawings = new Ve
tor<Shape
omponent>();gpubli
 void addDrawing(Shape
omponent draw)fdrawings.addElement(draw);gpubli
 void remove(Shape
omponent draw)fdrawings.removeElement(draw);gpubli
 Enumeration
omponents()freturn drawings.elements();gpubli
 void Draw(Graphi
s g)f Enumeration
omponents =
omponents();while (
omponents.hasMoreElements())f ((Shape
omponent)
omponents.nextElement()).Draw(g);ggg

191Lineleaf.java (Leaf)import java.awt.*;publi

lass Lineleaf extends Shape
omponentf private int x, y, x1, y1;publi
 Lineleaf(int x, int y, int x1, int y1)f this.x = x;this.y = y;this.x1 = x1;this.y1 = y1;gpubli
 void Draw(Graphi
s g)fg.drawLine(x, y, x1, y1);ggCir
leleaf.java (Leaf)import java.awt.*;publi

lass Cir
leleaf extends Shape
omponentf private int x, y, x1, y1;publi
 Cir
leleaf(int x, int y, int x1, int y1)f this.x = x;this.y = y;this.x1 = x1;this.y1 = y1;gpubli
 void Draw(Graphi
s g)fg.drawOval(x, y, x1, y1);ggRe
tangleleaf.java (Leaf)import java.awt.*;publi

lass Re
tangleleaf extends Shape
omponentf private int x, y, x1, y1;publi
 Re
tangleleaf(int x, int y, int x1, int y1)f

192this.x = x;this.y = y;this.x1 = x1;this.y1 = y1;gpubli
 void Draw(Graphi
s g)fg.drawRe
t(x, y, x1, y1);ggDrawde
orator.java (De
orator)import java.awt.*;publi
 abstra
t
lass Drawde
orator extends Shape
omponentf publi
 Drawde
orator()fgpubli
 void Draw(Graphi
s g) fggColourde
orator.java (
on
reteDe
orator)import java.awt.*;publi

lass Colourde
orator extends Drawde
oratorf private Color
olour;publi
 Colourde
orator(Color
olour)fthis.
olour =
olour;gpubli
 void Draw(Graphi
s g)fg.setColor(
olour);ggLinestylede
orator.java (
on
reteDe
orator)import java.awt.*;publi

lass Linestylede
orator extends Drawde
oratorf private int width;publi
 Linestylede
orator(int width)fthis.width = width;gpubli
 void Draw(Graphi
s g)f Graphi
s2D g2=(Graphi
s2D)g;g2.setStroke(new Basi
Stroke(width));

193ggF.2 S
enario 2S
enario two is very similar to s
enario one. The di�eren
e in the two patterns is in how the Compositeand De
orator
lass has been
ombined into a single
lass in s
enario two.AnalysisS
enario 2 illustrates a simple drawing pa
kage where lines, squares and
ir
les
an be drawn within aframe. Ea
h drawing item
an be individually de
orated or a group of drawing items
an be de
orated.Ea
h individual item and or groups of items
an be
olle
ted into a
omposite obje
t.DesignUse-Case DiagramThe use-
ase diagram represents a business pro
ess that de�nes the a
tivities that
an be applied tothe drawing s
enario. In this
ase, drawing
omponents
an be
reated, de
orated and displayed.
Create

Drawing

Objects

Add Objects to

Collection

Set Decoration

Object

Print Collection

Client

Compose

Objects

<<Extends>>

<<Extends>>

Figure F.1: Use-Case Diagram - Composite
ombines De
orator

194The diagram below shows the
lass
omponents that
ollaborate to form the stru
ture of the Composite{ De
orator drawing s
enario. Three di�erent drawing
omponents
an be
reated and
an be de
oratedwith
olour and or line sizes
an be applied (thi
kness of lines).Class Diagram
Client

comp : Shapecomponent

colour: Shapecomponent

size : Shapecomponent

paintComponent : void

 Shapecomponent

Draw : void

addDrawing : void

removeDrawing : void

Rectangleleaf

x : int

y : int

x1 : int

y1 : int

Rectangleleaf

Draw : void

Circleleaf

x : int

y : int

x1 : int

y1 : int

Circleleaf

Draw : void

Lineleaf

x : int

y : int

x1 : int

y1 : int

Lineleaf

Draw : void

CompositeDecorator

Drawings : Vector <Shapecomponent>

Drawcomposite

addDrawing : void

removeDrawing : void

components : Enumeration

Draw : void

Colourdecorator

C : Color

Colourdecorator

Draw : void

Sizedecorator

S : setSize

Sizedecorator

Draw : void
Figure F.2: Class Diagram - Composite
ombines De
oratorImplementationThis example uses the Composite and De
orator patterns to demonstrate a simple drawing pa
kage.For the purpose of demonstration the
omponents are hard
oded into the
lient but in a live appli
ationthe
omponents would be
reated dynami
ally.Parti
ipantsClientThe Client
omponent is a simple driver used to
reate the drawn
omponents. The
lient
reates the
omponent and de
oration obje
ts and adds them to the
olle
tion obje
t.Shape
omponentThe Shape
omponent
lass spe
i�es an Abstra
t interfa
e to the main
omponents of the Compositeand De
orator. In this respe
t Shape
omponent is something of a Fa
ade. Shape
omponent de�nesthree methods that
an be implemented by all sub-
lasses. The addDrawing(Shape
omponent draw) and

195removeDrawing(Shape
omponent draw)methods are implemented in the Composite
lass and the Draw(Graphi
sg) method is implemented in all sub-
lasses.CompositeDe
oratorCompositeDe
orator has two fun
tions; one is to add or remove items from the Colle
tion obje
t (theVe
tor) - private Ve
tor<Shape
omponent> drawings; and the other is to
all ba
k the items from the
olle
tion(print to the frame) - ((Shape
omponent)
omponents.nextElement()).Draw(g).In this example items are only added to the
olle
tion - addDrawing(Shape
omponent draw)fdrawings. addEle-ment(draw)g.Additionally, CompositeDe
orator is the parent
lass to the
on
reteDe
orator
omponents.Lineleaf, Cir
leleaf, Re
tangleleafLeaf
omponents represent the drawing obje
ts that are added to the
omposite
olle
tion. Ea
h
omponent de�nes its own type of drawing obje
t, whi
h is
alled in the Draw method - g.drawLine(x, y,x1, y1).Colourde
orator, Linestylede
oratorThe de
oration obje
ts that are used to set the de
oration for the drawn
omponents. Ea
h
omponentde�nes its own type of de
oration, whi
h is
alled in the Draw method - g.setColor(
olour). Be
ause theyare Shape
omponents, de
oration is added to the
omposite
olle
tion as an obje
t.DrawPanel.java (Client)import java.awt.*;import javax.swing.*;
lass DrawPanel extends JPanelf prote
ted stati
 Shape
omponent
omposite1 = new Draw
omposite();prote
ted stati
 Shape
omponent
omposite2 = new Draw
omposite();prote
ted stati
 Shape
omponent
omposite3 = new Draw
omposite();prote
ted stati
 Shape
omponent
olour1 = new Colourde
orator(Color.BLUE);prote
ted stati
 Shape
omponent
olour2 = new Colourde
orator(Color.RED);prote
ted stati
 Shape
omponent
olour3 = new Colourde
orator(Color.YELLOW);prote
ted stati
 Shape
omponent style1 = new Linestylede
orator(8);prote
ted stati
 Shape
omponent style2 = new Linestylede
orator(4);prote
ted stati
 Shape
omponent leaf1 = new Lineleaf(10, 10, 20, 20);prote
ted stati
 Shape
omponent leaf2 = new Re
tangleleaf(20, 20, 40, 40);prote
ted stati
 Shape
omponent leaf3 = new Cir
leleaf(50, 40, 20, 20);

196publi
 void paintComponent(Graphi
s g)f
omposite1.addDrawing(
olour1);
omposite1.addDrawing(style2);
omposite1.addDrawing(leaf1);
omposite2.addDrawing(
omposite1);
omposite2.addDrawing(
olour2);
omposite2.addDrawing(style1);
omposite2.addDrawing(leaf2);
omposite3.addDrawing(
omposite2);
omposite3.addDrawing(
olour3);
omposite3.addDrawing(leaf3);
omposite3.Draw(g);ggShape
omponent.java (Component)import java.awt.*;publi
 abstra
t
lass Shape
omponentf publi
 void Draw(Graphi
s g) fgpubli
 void addDrawing(Shape
omponent draw) fgpubli
 void removeDrawing(Shape
omponent draw) fggCompositeDe
orator.java (Composite/De
orator)import java.awt.*;import java.util.Ve
tor;import java.util.Enumeration;publi

lass CompositeDe
orator extends Shape
omponentf private Ve
tor<Shape
omponent> drawings;publi
 Draw
omposite()fdrawings = new Ve
tor<Shape
omponent>();gpubli
 void addDrawing(Shape
omponent draw)fdrawings.addElement(draw);gpubli
 void remove(Shape
omponent draw)fdrawings.removeElement(draw);g

197publi
 Enumeration
omponents()freturn drawings.elements();gpubli
 void Draw(Graphi
s g)f Enumeration
omponents =
omponents();while (
omponents.hasMoreElements())f ((Shape
omponent)
omponents.nextElement()).Draw(g);gggLineleaf.java (Leaf)import java.awt.*;publi

lass Lineleaf extends Shape
omponentf private int x, y, x1, y1;publi
 Lineleaf(int x, int y, int x1, int y1)f this.x = x;this.y = y;this.x1 = x1;this.y1 = y1;gpubli
 void Draw(Graphi
s g)fg.drawLine(x, y, x1, y1);ggCir
leleaf.java (Leaf)import java.awt.*;publi

lass Cir
leleaf extends Shape
omponentf private int x, y, x1, y1;publi
 Cir
leleaf(int x, int y, int x1, int y1)f this.x = x;this.y = y;

198this.x1 = x1;this.y1 = y1;gpubli
 void Draw(Graphi
s g)fg.drawOval(x, y, x1, y1);ggRe
tangleleaf.java (Leaf)import java.awt.*;publi

lass Re
tangleleaf extends Shape
omponentf private int x, y, x1, y1;publi
 Re
tangleleaf(int x, int y, int x1, int y1)f this.x = x;this.y = y;this.x1 = x1;this.y1 = y1;gpubli
 void Draw(Graphi
s g)fg.drawRe
t(x, y, x1, y1);ggColourde
orator.java (
on
reteDe
orator)import java.awt.*;publi

lass Colourde
orator extends CompositeDe
oratorf private Color
olour;publi
 Colourde
orator(Color
olour)fthis.
olour =
olour;gpubli
 void Draw(Graphi
s g)fg.setColor(
olour);ggLinestylede
orator.java (
on
reteDe
orator)import java.awt.*;publi

lass Linestylede
orator extends CompositeDe
oratorf private int width;

199publi
 Linestylede
orator(int width)fthis.width = width;gpubli
 void Draw(Graphi
s g)f Graphi
s2D g2=(Graphi
s2D)g;g2.setStroke(new Basi
Stroke(width));ggF.3 S
enario 3, based on E
kel[39℄AnalysisS
enario 3 illustrates a simple
o�ee shop where drinks
an be ordered to a parti
ular taste. The basi
drink
ontained within a small, medium or large mug
an be de
orated with parti
ular types of
o�ee,milk and additives. The
ost of individual drinks is
omposed and via the de
orator obje
ts and storedin the
omposite obje
t. The
omposite obje
t will display a total sale and the total sales for the day.DesignUse-Case DiagramThe use-
ase diagram represents a business pro
ess that de�nes the a
tivities that
an be applied to the
o�ee shop s
enario. In this
ase, basi
 drinks
an be
reated and extended (de
orated) with spe
i�
ingredients.
Select Size
 Select Coffee

Display Sales

Total

Display All

Sales Total

Client

Select

Additions

<<Extends>>
<<Includes>>

Total Stored

in Composite

Contained in

Decorator

Components

Figure F.3: Use-Case Diagram - Composite
ombines De
orator

200The diagram below shows the
lass
omponents that
ollaborate to form the stru
ture of the Com-posite { De
orator
o�ee shop s
enario. The size of mug
an be sele
ted and de
orated with requiredingredients.Class Diagram
Small

getDescription : String

getTotalCost : double

Large

getDescription : String

getTotalCost : double

Medium

getDescription : String

getTotalCost : double

SteamedMilk

cost : double

description : String

SteamedMilk

getTotalCost : double

getDescription : String

WhippedCream

cost : double

description : String

WhippedCream

getTotalCost : double

getDescription : String

ChocolateSprinkle

cost : double

description : String

ChocolateSprinkle

getTotalCost : double

getDescription : String

Espresso

cost : double

description : String

Espresso

getTotalCost : double

getDescription : String

FoamedMilk

cost : double

description : String

FoamedMilk

getTotalCost : double

getDescription : String

DrinkComposite

DrinkComposite

add : void

remove : void

getTotalCost : double

cost : ArrayList

item: DrinkComponent

DrinkDecorator

component : DrinkComponent

DrinkDecorator

getDescription : String

getTotalCost : double

CafeClient

decorator : DrinkComponent

composite : DrinkComponent

main : void

DrinkComponent

getDescription : String

getTotalCost : double

add : void

remove : void

Figure F.4: Class Diagram - Composite
ombines De
oratorImplementationThis example uses the Composite and De
orator patterns to demonstrate a simple drinks maker. Forthe purpose of the demonstration the
omponents are hard
oded into the
lient but in a live appli
ationthe
omponents would be
reated dynami
ally.Parti
ipantsClientThe Client
omponent is a simple driver used to
reate the drinks
omponents. The
lient
reatesthe drinks as a de
oration obje
t. Ea
h
omponent of the de
oration obje
t is a

essed through theDrinkComponent abstra
t interfa
e. The
lient
reates the
omposite
omponent, whi
h is used tostore the de
orator obje
ts.DrinkComponent

201The DrinkComponent
lass spe
i�es an abstra
t interfa
e to the Abstra
t
lass DrinkDe
orator andLeaf
omponents of the De
orator. DrinkComponent de�nes two methods that are implemented byall de
orator sub-
lasses. The getTotalCost() and getDes
ription(). DrinkComponent also spe
i�es twoother methods add(DrinkComponent item) and remove(DrinkComponent item), whi
h are implemented by theComposite obje
t.DrinkDe
oratorDrinkDe
orator spe
i�es an Abstra
t interfa
e whose methods are implemented in the De
orator sub-
lasses. The getTotalCost() and getDes
ription() methods are de
lared abstra
t in the De
orator
lass asthey have no required return value of their own.SteamedMilk, WhippedCream, Cho
olateSprinkle, Espresso, FoamedMilkEa
h
omponent de�nes a spe
i�
 type of de
oration. getTotalCost() returns the
ost of the de
orationand getDes
ription() returns a name for the de
oration. The
onstru
tor of ea
h de
oration obje
t takesas a parameter a DrinkComponent, whi
h
an be another de
oration obje
t or a Leaf obje
t of theDe
orator. A drink is built up as a
omposed obje
t, with the obje
t being
losed o� by a Leaf nodethat takes no parameters.Small, Medium, LargeThese
omponents are Leaf
omponents to the De
orator (DrinkDe
orator), whi
h in this example is thedominant pattern of the
ombination. The Leaf
omponent represents an end node of the
omposedobje
t. As su
h the
omponent does not take a parameter in its
onstru
tor. Like the De
oration
omponents, ea
h method in the Leaf returns a value relative to its purpose.DrinkCompositeDrinkComposite has two fun
tions; one is to add or remove items from the Colle
tion obje
t (theArrayList):- private ArrayList
ost = new ArrayList();and the other is to
all ba
k the items from the
olle
tion:- DrinkComponent item = (DrinkComponent)items.next();- total += item.getTotalCost();It is in e�e
t only a storage area for DrinkComponents.CafeClient.java (Client)

202publi

lass CafeClientf private DrinkComponent
appu

ino;private DrinkComponent mo
ha;private DrinkComponent latte;private DrinkComponent java;private DrinkComponent sale1 = new DrinkComposite();private DrinkComponent sale2 = new DrinkComposite();private DrinkComponent total = new DrinkComposite();publi
 stati
 void main(String[℄ args)f new CafeClient();gpubli
 CafeClient()f Sale1();Sale2();Total();gpubli
 void Sale1()f
appu

ino = new Espresso(new FoamedMilk(new Small()));System.out.println(
appu

ino.getDes
ription().trim() + ": GBP " +
appu

ino.getTotalCost());sale1.add(
appu

ino);mo
ha = new Espresso(new SteamedMilk(new Cho
olateSprinkle(new WhippedCream(new Medium()))));System.out.println(mo
ha.getDes
ription().trim() + ": GBP " + mo
ha.getTotalCost());sale1.add(mo
ha);System.out.println("Sale 1 Sub Total = " + sale1.getTotalCost());gpubli
 void Sale2()f latte = new Espresso(new SteamedMilk(new Medium()));System.out.println(latte.getDes
ription().trim() + ": GBP " + latte.getTotalCost());sale2.add(latte);java = new Espresso(new FoamedMilk(new Cho
olateSprinkle(new WhippedCream(new Large()))));System.out.println(java.getDes
ription().trim() + ": GBP " + java.getTotalCost());sale2.add(java);System.out.println("Sale 2 Sub Total = " + sale2.getTotalCost());g

203publi
 void Total()f total.add(sale1);total.add(sale2);System.out.println("All Sales Sub Total" + total.getTotalCost());ggDrinkComponent.java (Component)publi
 abstra
t
lass DrinkComponentf publi
 String getDes
ription() freturn "";gpubli

oat getTotalCost() freturn 0.0;gpubli
 void add(DrinkComponent item) fgpubli
 void remove(DrinkComponent item) fggDrinkDe
orator.java (De
orator)abstra
t
lass DrinkDe
orator extends DrinkComponentf prote
ted DrinkComponent
omponent;DrinkDe
orator(DrinkComponent
omponent)f this.
omponent =
omponent;gpubli
 abstra
t double getTotalCost();publi
 abstra
t String getDes
ription();gEspresso.java (Con
reteDe
orator)
lass Espresso extends DrinkDe
oratorf private
oat
ost = 2.75;private String des
ription = " Espresso";publi
 Espresso(DrinkComponent
omponent)f super(
omponent);

204gpubli

oat getTotalCost()f return
omponent.getTotalCost() +
ost;gpubli
 String getDes
ription()f return
omponent.getDes
ription() + des
ription;ggFoamedMilk.java (Con
reteDe
orator)
lass FoamedMilk extends DrinkDe
oratorf private
oat
ost = 0.25;private String des
ription = " Foamed Milk";publi
 FoamedMilk(DrinkComponent
omponent)f super(
omponent);gpubli

oat getTotalCost()f return
omponent.getTotalCost() +
ost;gpubli
 String getDes
ription()f return
omponent.getDes
ription() + des
ription;ggSteamedMilk.java (Con
reteDe
orator)
lass SteamedMilk extends DrinkDe
oratorf private
oat
ost = 0.25;private String des
ription = " Steamed Milk";publi
 SteamedMilk(DrinkComponent
omponent)f super(
omponent);

205gpubli

oat getTotalCost()f return
omponent.getTotalCost() +
ost;gpubli
 String getDes
ription()f return
omponent.getDes
ription() + des
ription;ggWhippedCream.java (Con
reteDe
orator)
lass WhippedCream extends DrinkDe
oratorf private
oat
ost = 0.25;private String des
ription = " Whipped Cream";publi
 WhippedCream(DrinkComponent
omponent)f super(
omponent);gpubli

oat getTotalCost()f return
omponent.getTotalCost() +
ost;gpubli
 String getDes
ription()f return
omponent.getDes
ription() + des
ription;ggCho
olateSprinkle.java (Con
reteDe
orator)
lass Cho
olateSprinkle extends DrinkDe
oratorf private
oat
ost = 0.25;private String des
ription = " Cho
olate Sprinkle";publi
 Cho
olateSprinkle(DrinkComponent
omponent)f super(
omponent);

206gpubli

oat getTotalCost()f return
omponent.getTotalCost() +
ost;gpubli
 String getDes
ription()f return
omponent.getDes
ription() + des
ription;ggSmall.java (Leaf)
lass Small extends DrinkComponentf publi
 String getDes
ription()f return "Small Mug";gpubli

oat getTotalCost()f return 0.5;ggMedium.java (Leaf)
lass Medium extends DrinkComponentf publi
 String getDes
ription()f return "Medium Mug";gpubli

oat getTotalCost()f return 0.75;gg

207Large.java (Leaf)
lass Large extends DrinkComponentf publi
 String getDes
ription()f return "Large Mug";gpubli

oat getTotalCost()f return 1.0;ggDrinkComposite.java (Composite)import java.util.ArrayList;import java.util.Iterator;
lass DrinkCompositef private ArrayList
ost = new ArrayList();private DrinkComponent item;publi
 DrinkComposite() fgpubli
 void add(DrinkComponent element)f
ost.add(element);gpubli
 void remove(DrinkComponent element)f
ost.remove(element);gpubli

oat getTotalCost()f double total = 0;Iterator items =
ost.iterator();while(items.hasNext())f item = (DrinkComponent)items.next();total += item.getTotalCost();greturn total;gg

208
Appendix GSOFTWARE METRIC SUITEThe metri
s des
ribed below are the suite of metri
s
ontained in the Together Ar
hite
t[16℄ modellingtool that was used for design
omponents seen in the generative patterns. The des
riptions below arethose
ontained in the help �le of the tool.G.1 Basi
[16℄� Class Interfa
e Width (CIW) CIW is de�ned as the number of members of the
lass thatbelong to the interfa
e of the
lass. The members that belongs to the interfa
e of the
lass arethe publi
, non-inherited methods and data members of a
lass.� Lines Of Code (LOC) LOC is the number of lines of
ode in a namespa
e,
lassi�er or method,in
luding
omments and white-lines.� Number Of Attributes (NOA) Counts the number of attributes. Inherited attributes may be
ounted optionally. If a
lass has a high number of attributes, it may be wise to
onsider whetherit would be appropriate to divide it into sub
lasses.� Number Of Classes (NOC) NOC
ounts the number of
lasses.� Number Of Constru
tors (NOCON) Counts the number of
onstru
tors. You
an spe
ifywhether to
ount all
onstru
tors or only publi
, or prote
ted, and so on.� Number Of Import Statements (NOIS) Counts the number of imported pa
kages /
lasses.This measure
an highlight ex
essive importing and
an also be used as a measure of
oupling.� Number Of Members (NOM) Counts the number of members, i.e. attributes and operations.Inherited members
an optionally be in
luded in the total. If a
lass has a high number ofmembers, it might be wise to
onsider whether it would be appropriate to divide it into sub
lasses.

209� Number Of Operations (NOO) NOO
ounts the number of operations. Inherited operationsmay be
ounted optionally. If a
lass has a high number of operations, it may be wise to
onsiderwhether it would be appropriate to divide it into sub
lasses.� Number Of Parameters (NOP) NOP is the number of parameters that build the signatureof a method.� Number Of Publi
 Attributes (NOPA) NOPA is de�ned as the number of non-inheritedattributes that belong to the interfa
e of a
lass.� Number of A

essor Methods (NAM) NAM is de�ned as the number of the non-inheriteda

essor methods (properties) de
lared in the interfa
e of a
lass. To �nd a

essor methods, NAMrelies on the name
onventions.� Pa
kage Interfa
e Size (PIS) PIS is the number of
lasses in a pa
kage that are used fromoutside the pa
kage . A
lass uses a namespa
e if it
alls methods, a

esses attributes or extendsa
lass de
lared in that namespa
e.� Pa
kage Size (PS) PS is the number of
lasses whi
h are de�ned in the measured pa
kage .Inner
lasses are not
ounted.G.2 Cohesion[16℄� A

ess of Lo
al Data (ALD) ALD
ounts the number of the data a

essed in the given method,whi
h is lo
al to the
lass where the method is de�ned. Inherited data should be
ounted too.� Class Lo
ality (CL) CL is
omputed as the relative number of dependen
ies that a
lass has inits own pa
kage. In order to
ompute the metri
 the CBO value is divided by the total numberof
lasses on whi
h the measured
lass depends on. Inner
lasses should not be
ounted.� La
k of Cohesion of Methods 1 (LCOM1) Takes ea
h pair of methods in the
lass anddetermines the set of �elds they ea
h a

ess. If they have disjoint sets of �eld a

esses, in
reasethe
ount P by one. If they share at least one �eld a

ess, then in
rease Q by one. After
onsidering ea
h pair of methods:RESULT = (P > Q) ? (P - Q) : 0

210A low value indi
ates high
oupling between methods, whi
h indi
ates a high testing e�ort be
ausemany methods
an a�e
t the same attributes and potentially has low reusability. The de�nitionof this metri
 was provided by Chidamber and Kemerer[21℄.� La
k of Cohesion Of Methods 2 (LCOM2) Counts the per
entage of methods that do nota

ess a spe
i�
 attribute, averaged over all the attributes in the
lass. A high value of
ohesion (alow la
k of
ohesion) implies that the
lass is well designed. A
ohesive
lass will tend to providea high degree of en
apsulation, whereas a la
k of
ohesion de
reases en
apsulation and in
reases
omplexity.� La
k Of Cohesion Of Methods 3 (LCOM3) Measures the dissimilarity of methods in a
lassby its attributes.m - number of methods in a
lassa - number of attributes in a
lassmA - number of methods that a

ess an attributeEmA - sum of mA for ea
h attributeRESULT = 100*(EmA/a-m)/(1-m)The de�nition of this metri
 was proposed by Henderson-Sellers[57℄. A low value indi
ates good
lass subdivision, implying simpli
ity and high reusability. A high la
king of
ohesion in
reases
omplexity, thereby in
reasing the likelihood of errors during the development pro
ess.If there are no more than one method in a
lass, LCOM3 is unde�ned. If there are no variablesin a
lass, LCOM3 is unde�ned. An unde�ned LCOM3 is displayed as -1. Methods that do nota

ess any
lass variables are not taken into a

ount.� Pa
kage Cohesion (PC) PC is de�ned as the relative number of
lass pair from a pa
kagebetween whi
h a dependen
y exists.� Tight Class Cohesion (TCC) TCC is de�ned as the relative number of dire
tly
onne
tedmethods. Two methods are dire
tly
onne
ted if they a

ess a
ommon instan
e variable of the
lass.G.3 Complexity[16℄� Attribute Complexity (AC) De�ned as the sum of ea
h attribute's weight in the
lass. You
an set up weights for types, the enum type and the array type separately. Use *" to de�ne

211types of a pa
kage with all its subpa
kages . For example, java.lang.* means that the row de�nesall
lasses of the java.lang pa
kage and its subpa
kages . To pro
ess all types not listed in thetable, spe
ify the last row as *". The row order is important, be
ause
he
king of attributes goesfrom the top of the table downwards. (Repetitions of a type aren't
ounted, so if a spe
i�
 typefollows a more general type that already in
luded it, the spe
i�
 type isn't
ounted. For example,java.lang.* won't be
ounted if it
omes after java.* .)� Cy
lomati
 Complexity (CC) CC represents number of
y
les in the measured method. Thismeasure represents the
ognitive
omplexity of the
lass. It
ounts the number of possible pathsthrough an algorithm by
ounting the number of distin
t regions on a
owgraph, meaning thenumber of if, for, and while statements in the operation's body. Case labels for swit
h statementsare
ounted if the Case as bran
h property is a
tivated. A stri
t de�nition of CC (introdu
ed byM
Cabe[78℄) looks at a program's
ontrol
ow graph as a measure of its
omplexity:CC = L - N + 2Pwhere L is the number of links in the
ontrol
ow graph, N is the number of nodes in the
ontrol
ow graph, and P is the number of dis
onne
ted parts in the
ontrol
ow graph. For example,
onsider a method whi
h
onsists of an if statement:if (x > 0)f x = x + 1;gelsef x = x - 1;gCC = L - N + 2P = 4 - 4 + 2*1 = 2A less formal de�nition is:CC = D + 1where D is the number of binary de
isions in the
ontrol
ow graph, if it has only one entry andexit. In other words, the number of if, for and while statements and number of logi
al and, andor operators.For the example above:

212CC = D + 1 = 1 + 1 = 2� Maximum Number Of Bran
hes (MNOB) MNOB is de�ned as the maximum number ofif-else and/or
ase bran
hes in the method.� Number Of Lo
al Variables (NOLV) NOLV
ounts how many lo
al variables are de
laredwithin a method.� Number Of Remote Methods (NORM) Pro
esses all methods and
onstru
tors and
ountsthe number of various remote methods
alled. A remote method is de�ned as a method that isnot de
lared in the
lass itself or in its an
estors.� Response For Class (RFC) The size of the response set for the
lass in
ludes methods in the
lass's inheritan
e hierar
hy and methods that
an be invoked on other obje
ts. A
lass, whi
hprovides a larger response set, is
onsidered to be more
omplex and require more e�ort in testingthan one with a smaller overall design
omplexity. This measure is
al
ulated as the 'Number OfOperations' + 'Number Of Remote Methods'.� Weight Of a Class (WOC) WOC is the number of non-a

essor methods in the interfa
e ofthe
lass, divided by the total number of interfa
e members. Inherited members are not
ounted.The members that belong to the interfa
e of the
lass are the publi
, non-inherited methods and�elds of a
lass.� Weighted Methods Per Class 1 (WMPC1) This metri
 is the sum of the
omplexity of allmethods for a
lass, where ea
h method is weighted by its
y
lomati

omplexity. The number ofmethods and the
omplexity of the methods involved is a predi
tor of how mu
h time and e�ortis required to develop and maintain the
lass. Only methods spe
i�ed in a
lass are in
luded,that is, any methods inherited from a parent are ex
luded.� Weighted Methods Per Class 2 (WMPC2) This metri
 is intended to measure the
om-plexity of a
lass, assuming that a
lass with more methods than another is more
omplex, andthat a method with more parameters than another is also likely to be more
omplex. The metri

ounts methods and parameters for a
lass. Only methods spe
i�ed in a
lass are in
luded, thatis, any methods inherited from a parent are ex
luded.

213G.4 Coupling[16℄� A

ess Of Foreign Data (AOFD) AOFD represents the number of external
lasses from whi
ha given
lass a

esses attributes , dire
tly or via a

essor methods . The higher the AOFD valuefor a
lass, the higher the probability that the
lass is or is about to be
ome an unfo
used-
lass.Inner
lasses and super
lasses are not
ounted.� A

ess of Import Data (AID) AID the amount of data members a

essed in a method dire
tlyor via a

essor-methods , from whi
h the de�nition-
lass of the method is not derived.� Average Use of Interfa
e (AUF) AUF metri
 is de�ned as the average number of interfa
emembers of a
lass that are used by another
lass. AUF is
omputed by totalling up the numberof used members for ea
h of
lient-
lasses and dividing it by the number of
lient
lasses (COC).� Changing Classes (ChC) ChC metri
 is de�ned as the number of
lient-
lasses where the
hanges must be operated in result a
hange in the server-
lass.� Changing Methods (CM) CM is de�ned as the number of distin
t methods in the system thatwould be potentially a�e
ted by
hanges operated in the measured
lass. The methods potentiallya�e
ted are all those that a

ess an attribute and/or
all a method and/or rede�ne a method ofgiven
lass.� Clients Of Class (COC) COC is de�ned as the number of
lasses that use the interfa
e of themeasured
lass. Inner
lasses are not
ounted. In the
ontext of this metri
,
lass A uses interfa
eof a
lass C if (at least) it
alls a publi
 method or a

esses a publi
 attribute of that
lass.� Coupling Between Obje
ts (CBO) CBO represents the number of other
lasses to whi
h a
lass is
oupled to. Counts the number of referen
e types that are used in attribute de
lara-tions, formal parameters, return types, throws de
larations, lo
al variables, and types from whi
hattribute and method sele
tions are made. Primitive types, types from java.lang pa
kage andsupertypes are not
ounted.Ex
essive
oupling between obje
ts is detrimental to modular design and prevents reuse. Themore independent a
lass is, the easier it is to reuse it in another appli
ation. In order to improvemodularity and promote en
apsulation, inter-obje
t
lass
oupling should be kept to a minimum.The larger the number of
oupling, the higher the sensitivity to
hanges in other parts of thedesign, and therefore maintenan
e is more diÆ
ult. A measure of
oupling is useful to determine

214how
omplex the testing of various parts of a design is likely to be. The higher the inter-obje
t
lass
oupling, the more rigorous the testing needs to be.� Coupling Fa
tor (CF) This measure is from the MOOD (Metri
s for Obje
t-Oriented Develop-ment) suite. It is
al
ulated as a fra
tion. The numerator represents the number of non-inheritan
e
ouplings. The denominator is the maximum possible number of
ouplings in a system.� Data Abstra
tion Coupling (DAC) DAC
ounts the number of referen
e types used in theattribute de
larations. Primitive types, types from java.lang pa
kage and supertypes are not
ounted.� Dependen
y Dispersion (DD) DD is the number of other pa
kages on whi
h a
lass depends.The
lass depends on a pa
kage if it depends on one of the
lasses from that pa
kage.� FanOut (FO) FO
ounts the number of referen
e types that are used in attribute de
larations,formal parameters, return types, throws de
larations and lo
al variables. Simple types and su-pertypes are not
ounted.� Message Passing Coupling (MPC) MPC
ounts the number of method
all expressions madeinto body of the measured method.� Method Invo
ation Coupling (MIC) MIC is the (relative) number of other
lasses to whi
ha
ertain
lass sends messages.MICnorm = nMIC/(N - 1)where N is the total number of
lasses de�ned in the proje
t, and nMIC the number of
lasses towhi
h messages are sent.Viewpoints: (These viewpoints summarize the impa
t that
oupling has on some external at-tributes).1. Maintainability. The maintenan
e of a strongly
oupled
lass (high MIC value) is morediÆ
ult to do be
ause of its dependen
y on the
lasses it is
oupled to.2. Comprehensibility. A strongly
oupled
lass is more diÆ
ult to understand, as its un-derstanding implies a partial (or sometimes total) understanding of the
lasses it is
oupledto.3. Error-prone and Testability. Errors in a
lass is dire
tly proportional to the number of
ouplings to other
lasses. Consequently high
oupling has a negative impa
t on testability.

215Observations:1. The proposed de�nition of MIC is obviously a normalized one. Although this has advantages,but for some viewpoints, like maintainability, it is more important to operate on the absolutevalues, i.e. the number of
lasses to whi
h it is
oupled.2. For some viewpoints it might be important to
ount only the
ouplings of the system touser-de�ned
lasses, i.e. ex
lude the library
lasses.Radu Marines
u[75℄� Number Of Client Pa
kages (NOCP) NOCP is the number of other pa
kages that use themeasured pa
kage. A pa
kage uses another pa
kage if at least one if its
lasses is using thatpa
kage (i.e.
alls methods, a

esses attributes or extends a
lass de
lared in that pa
kage).� Number Of External Dependen
ies (NOED) NOED is the number of
lasses from otherpa
kages on whi
h the measured
lass depends on. A
lass A depends on another
lass B, if
lassA
alls methods and/or a

esses attributes and/or extends
lass B.� Number of Client Classes (NCC) NCC represents the number of
lasses from other pa
kagesthat use the measured pa
kage. A
lass uses a pa
kage if it
alls methods, a

esses attributes orextends a
lass de
lared in that pa
kage.� Number of import
lasses (NIC) The NIC metri

ounts the number of external
lasses fromwhi
h the given method uses data.� Pa
kage Usage Ratio (PUR) The PUR metri
 is de�ned as the relative number of
lasses fromthe measured pa
kage that are used from outside that namespa
e. The number of uses
lasseswill be divided by the total number of
lasses in the pa
kage: inner
lasses are ex
luded. Thus:PUR = PISPS� Violations of Demeters Law (VOD)Law of Demeter :De�nition 1 (Client) Method M is a
lient of method f atta
hed to
lass C, if insideM messagef is sent to an obje
t of
lass C, or to C. If f is spe
ialized in one or more sub
lasses, then M isonly a
lient of f atta
hed to the highest
lass in the hierar
hy. Method M is a
lient of somemethod atta
hed to C.

216De�nition 2 (Supplier) If M is a
lient of
lass C then C is a supplier to M. In other words, asupplier
lass to a method is a
lass whose methods are
alled in the method.De�nition 3 (A
quaintan
e Class) A
lass C1 is an a
quaintan
e
lass of method M atta
hedto
lass C2, if C1 is a supplier to M and C1 is not one of the following:1. the same as C2;2. a
lass used in the de
laration of an argument of M3. a
lass used in the de
laration of an instan
e variable of C2De�nition 4 (Preferred-a
quaintan
e Class) A preferred-a
quaintan
e
lass of method M iseither:1. a
lass of obje
ts
reated dire
tly in M, or2. a
lass used in the de
laration of a global variable used in M.Realization note: Dire
t
reation means that a given obje
t is
reated via operator new.De�nition 5 (Preferred-supplier
lass) Class B is
alled a preferred-supplier to method M(atta
hed to
lass C) if B is a supplier to M and one of the following
onditions holds:1. B is used in the de
laration of an instan
e variable of C,2. B is used in the de
laration of an argument of M, in
luding C and its super
lasses,3. B is a preferred a
quaintan
e
lass of M.

217
 Instance

 variables and

 Argument

 classes

 Aquaintance

 classes to be

 avoided

Preferred-acquaintance

classes

Preferred-supplier

classes

Acquaintance classes

Supplier classes
Figure G.1: The relation among the di�erent types of supplier
lassesThe
lass form of Demeters Law has two versions: a stri
t version and a minimization version.The stri
t form of the law states that every supplier
lass of a method must be a preferred supplier.The minimization form is more permissive than the �rst version and requires only minimizing thenumber of a
quaintan
e
lasses of ea
h method.Observations.1. The motivation behind the Law of Demeter is to ensure that the software is as modular aspossible. The Law e�e
tively redu
es the o

urren
es of
ertain nested message sends andsimpli�es the methods.2. The de�nition of the Law makes a di�eren
e between the
lasses asso
iated with the de
lara-tion of the method and the
lasses used in the body of the method, i.e. the
lasses asso
iatedwith its implementation. The former in
ludes the
lass where the method is atta
hed, itssuper
lasses, the
lasses used in the de
larations of the instan
e variables and the
lassesused to de
lare the arguments of the method. In some sense, there are 'automati
'
onse-quen
es of the method de
laration. They
an be easily derived from the
ode and shownby a browser. All other supplier
lasses to the methods are introdu
ed in the body of thefun
tion, whi
h means these
ouples were
reated at the time of
on
retely implementingthe method. They
an only be determined by a
areful reading of the implementation.

218Violations of Demeters Law - VODThe de�nition of this metri
 is based on the minimization form of the Law of Demeter. Basedon the
on
epts de�ned there, and remembering that the minimization form of Demeters Lawrequires that the number of a
quaintan
e
lasses should be kept low, the VOD metri
 is de�ned.De�nition 6 (VOD Metri
) Being given a
lass C and A the set of all its a
quaintan
e
lasses,VOD(C) = jAjInformally, VOD is the number of a
quaintan
e
lasses of a given
lass. Keeping the VOD valuefor a
lass low o�ers a number of bene�ts:1. Coupling
ontrol. A proje
t with a low VOD value is the sign of minimal \use"
ouplingbetween abstra
tions. That means that a redu
ed number of methods
an be invoked. Thismakes the methods more reusable.2. Stru
ture hiding. Redu
ing VOD represents in fa
t the redu
ing of the dire
t retrieval ofsubparts of the \part-of" hierar
hy. In other words, publi
 members should be used in arestri
ted way.3. Lo
alization of information. A low VOD value also means that the
lass information islo
alized. This redu
es the programming
omplexity.Radu Marines
u[75℄� Weighted Changing Methods (WCM) For ea
h method that would be
ounted by the CMmetri
, a \weight" is given to it. The weight is de�ned as the number of distin
t members fromthe server-
lass that are referen
ed in that method. WCM is
omputed as the sum of the weightsof all the methods a�e
ted by
hanges.G.5 En
apsulation[16℄� Attribute Hiding Fa
tor (AHF) This measure is from the MOOD (Metri
s for Obje
t-Oriented Development) suite. It is
al
ulated as a fra
tion. The numerator is the sum of theinvisibilities of all attributes de�ned in all
lasses. The invisibility of an attribute is the per
ent-age of the total
lasses (ex
luding the
lass owner of attribute) from whi
h this attribute is notvisible. The denominator is the total number of attributes de�ned in the proje
t.

219� Method Hiding Fa
tor (MHF) This measure is from the MOOD (Metri
s for Obje
t-OrientedDevelopment) suite. It is
al
ulated as a fra
tion. The numerator is the sum of the invisibilities ofall methods de�ned in all
lasses. The invisibility of a method is the per
entage of the total
lasses(ex
luding the
lass owner of method) from whi
h this method is not visible. The denominatoris the total number of methods de�ned in the proje
t.G.6 Halstead[16℄� Halstead DiÆ
ulty (HDi�) This measure is one of the Halstead Software S
ien
e metri
s.It is
al
ulated as (`Number of Unique Operators' / 2) * (`Number of Operands' / `Number ofUnique Operands').� Halstead E�ort (HE�) This measure is one of the Halstead Software S
ien
e metri
s. It is
al
ulated as `Halstead DiÆ
ulty' * `Halstead Program Volume'.� Halstead Program Length (HPLen) This measure is one of the Halstead Software S
ien
emetri
s. It is
al
ulated as `Number of Operators' + `Number of Operands'.� Halstead Program Vo
abulary (HPVo
) This measure is one of the Halstead Software S
i-en
e metri
s. It is
al
ulated as `Number of Unique Operators' + `Number of Unique Operands'.� Halstead Program Volume (HPVol) This measure is one of the Halstead Software S
ien
emetri
s. It is
al
ulated as `Halstead Program Length' * Log2(`Halstead Program Vo
abulary').� Number of Operands (NOprnd) This measure is used as an input to the Halstead SoftwareS
ien
e metri
s. It
ounts the number of operands used in a
lass.� Number of Operators (NOprtr) This measure is used as an input to the Halstead SoftwareS
ien
e metri
s. It
ounts the number of operators used in a
lass.� Number of Unique Operands (NUOprnd) This measure is used as an input to the HalsteadSoftware S
ien
e metri
s. It
ounts the number of unique operands used in a
lass.� Number of Unique Operators (NUOprtr) This measure is used as an input to the HalsteadSoftware S
ien
e metri
s. It
ounts the number of unique operators used in a
lass.

220G.7 Inheritan
e[16℄� Attribute Inheritan
e Fa
tor (AIF) This measure is from the MOOD (Metri
s for Obje
t-Oriented Development) suite. It is
al
ulated as a fra
tion. The numerator is the sum of inheritedattributes in all
lasses in the proje
t. The denominator is the total number of available attributes(lo
ally de�ned plus inherited) for all
lasses.� Depth Of Inheritan
e Hierar
hy (DOIH) The length of the inheritan
e
hain from the rootof the inheritan
e tree to the measured
lass is the DOIH metri
 for the
lass.� Method Inheritan
e Fa
tor (MIF) This measure is from the MOOD (Metri
s for Obje
t-Oriented Development) suite. It is
al
ulated as a fra
tion. The numerator is the sum of inheritedmethods in all
lasses in the proje
t. The denominator is the total number of available methods(lo
ally de�ned plus inherited) for all
lasses.� Number Of Child Classes (NOCC) NOCC
ounts the number of
lasses dire
tly or indire
tlyderived from the measured
lass.G.8 Inheritan
e-Based Coupling[16℄� Inheritan
e Usage Ratio (IUR) The IUR metri
 is a metri
 de�ned between a sub
lass and oneof its an
estor
lasses. It is the relative number of inheritan
e-spe
i�
 members from the an
estor
lass used in the derived
lass. A member of an an
estor
lass is an inheritan
e-spe
i�
 memberif its usage is related to inheritan
e. There are two identi�ed inheritan
e-spe
i�
 members:{ prote
ted data members and methods;{ non-private virtual methods.The IUR is
omputed by
ounting the number of inheritan
e-spe
i�
 members of the an
estor
lass that are used in the sub
lass, and then divide it by the total numbers of inheritan
e-spe
i�
members from the an
estor. The only usages that are
ounted are: the a

ess of prote
ted datamembers, the
all of prote
ted methods and the rede�nition of a virtual method.� Average Inheritan
e Usage Ratio (AIUR) AIUR is de�ned for a derived
lass as the averagevalue of the IUR metri

omputed between that
lass and all its an
estor
lasses.

221� Total Reuse of An
estor per
entage (TRAp) & Total Reuse of An
estor unitary(TRAu) Reuse of An
estors.The RA Metri
De�nition 1 (Reuse of An
estor-
lass - RA) The RA metri
 between a
lass C and one ofits an
estor
lasses A.Explanations The RA metri
 quanti�es the reuse from a super
lass by totalizing this reuse fromall of its methods. The degree to whi
h a method reuses an an
estor
lass is variable. The way thisreuse degree is
al
ulated depends on the goals of the measurement. The metri
 is parameterisedwith a family of metri
s
alled Reuse Degree of An
estor-
lass (RDA) that evaluates this reusedegree.The RDA Metri
sDe�nition 2 (Reuse Degree of An
estor-
lass) A fun
tion expressing the measure of reuseof an an
estor
lass A in method mthi of
lass C is
alled Reuse Degree of An
estor-
lass A inmethod mthi.RDA : SMFC X SACC {> [0; 1℄where SMFC is the set of all member fun
tions (methods) in
lass C and SACC is the set ofan
estors
lasses A for
lass C.Observations Be
ause the stability of the an
estor-
lass plays an important role from the per-spe
tive of the
lient
lass, the de�nition of RDA also
onsiders the stability of an
estors interfa
e.The Total RA Metri
 - TRAThe RA metri
 has two parameters: a parti
ular
lass and one of its an
estor
lasses. It isne
essary to have also a metri
 that expresses the total reuse (from all the an
estors) for a given
lass. The de�nition of this new metri
 is based on the de�nition of the already de�ned RAmetri
.De�nition 3 (Total Reuse from An
estors - TRA) The Total Reuse from An
estors metri
for a
lass C is de�ned as the sum of all RA values between
lass C and its super
lasses.Radu Marines
u[75℄� Total Reuse in Des
endants per
entage (TRDp) & Total Reuse in Des
endants uni-tary (TRDu) Reuse in Des
endants.

222The RD Metri
De�nition 1 (Reuse in Des
endant-
lass - RD) The RD metri
 between a
lass C and oneof its des
endant
lasses D.Explanations The RD metri
 quantities the totalized reuse of all the members of a
lass C, inone of its des
endant
lasses. The degree to whi
h a parti
ular member is reused in a des
endant
lass is variable. The way this reuse degree is
al
ulated depends on the goals of the measurement.Analogous to the RA metri
, the RD metri
 is parameterised with a family of metri
s
alled ReuseDegree in Des
endant-
lass (RDD), that quantities this reuse degree.The RDD Metri
sDe�nition 2 (Reuse Degree in Des
endant Class) A fun
tion expressing the measure of reuse of a
lass membermC
lass C in a des
endent
lass D is
alled Reuse Degree ofmC in Des
endant-
lassD.RDD : SMC X SDCC { [0; 1℄where SMC is the set of all members in
lass C and SDCC is the set of des
endant
lasses D for
lass C .The Total RD Metri
 - TRD In the previous se
tions the RD metri
 was de�ned with two param-eters: a parti
ular
lass and a des
endant of that
lass. In the same way that the TRA is de�nedit is
onsidered ne
essary to de�ne a metri
 that expresses the total value for the reuse of a
lassby all its des
endants. There are two viewpoints for the interpretation of this metri
.1. Maintainability. A high TRD value for a
lass indi
ates that a
hange in that
lass has ahigh impa
t on the underlying
lass-hierar
hy, i.e. its des
endants.2. Degree of Member Reuse. A high TRD for a
lass indi
ates that the very most of itsmembers are reused in the sub-
lasses.It is observed that be
ause their fo
us is strongly di�erent it would be quite impossible to have asingle de�nition for TRD. Therefore, a de�nition is proposed for ea
h one of the two viewpoints:De�nition 3 (Des
endants-based De�nition of TRD) The Total Reuse in Des
endantsmetri
 for a
lass C is de�ned as the sum of all RD values between
lass C and its des
endants.Radu Marines
u[75℄

223G.9 Maximum[16℄� Maximum Number Of Levels (MNOL) Counts the maximum depth of if, for and whilebran
hes in the bodies of methods. Logi
al units with a high number of nested levels might needimplementation simpli�
ation and pro
ess improvements, be
ause groups that
ontain more thanseven pie
es of information are in
reasingly harder for people to understand in problem solving.� Maximum Number Of Parameters (MNOP) Counts the highest number of parametersde�ned for a single operation, from among all the operations in the
lass. Methods with manyparameters tend to be more spe
ialized and so are less likely to be reusable.� Maximum Size Of Operation (MSOO) Counts the maximum size of operations for a
lass.Method size is determined in terms of
y
lomati

omplexity, meaning the number of if, for, andwhile statements in the operation's body. Case labels for swit
h statements
an be optionallyin
luded.G.10 Polymorphism[16℄� Number Of Added Methods (NOAM) NOAM
ounts the number of operations added bya
lass. Inherited and overridden operations are not
ounted. Classes without parents are notpro
essed. The large value of this measure indi
ates that the fun
tionality of the given
lassbe
omes in
reasingly distin
t from that of the parent
lasses. In this
ase, it should be
onsideredwhether this
lass should genuinely be inheriting from the parent or if it
ould be broken downinto several smaller
lasses.� Number Of Overridden Methods (NOOM) NOOM
ounts the number of inherited oper-ations, whi
h a
lass overrides. Classes without parents are not pro
essed. High values tend toindi
ate design problems, i.e. sub
lasses should generally add to and extend the fun
tionality ofthe parent
lasses rather than overriding them.� Polymorphism Fa
tor (PF) This measure is from the MOOD (Metri
s for Obje
t-OrientedDevelopment) suite. It is
al
ulated as a fra
tion. The numerator is the sum of overridingmethods in all
lasses. This is the a
tual number of possible di�erent polymorphi
 situations.A given message sent to a
lass
an be bound, stati
ally or dynami
ally, to a named methodimplementation. The latter
an have as many shapes (morphs) as the number of times this samemethod is overridden in that
lass's des
endants. The denominator represents the maximum

224number of possible distin
t polymorphi
 situations for that
lass as the sum for ea
h
lass ofthe number of new methods multiplied by the number of des
endants. This maximum would bethe
ase where all new methods de�ned in ea
h
lass would be overridden in all of their derived
lasses.G.11 Ratio[16℄� Comment Ratio (CR) Counts the ratio of do
umentation and/or implementation
ommentsto total lines of
ode (
omments are in
luded in the
ode
ount). You
an also spe
ify whi
h typeof
omments to use for the ratio.{ Do
umentation
omments are Javado

omments.{ Implementation
omments are any other type of
omments.� Per
entage of Pa
kage Members (PPkgM) Counts the per
entage of pa
kage members ina
lass.� Per
entage of Private Members (PPrivM) Counts the per
entage of private members in a
lass.� Per
entage of Prote
ted Members (PProtM) Counts the per
entage of prote
ted membersin a
lass.� Per
entage of Publi
 Members (PPubM) Counts the proportion of vulnerable members ina
lass. A large proportion of su
h members means that the
lass has high potential to be a�e
tedby external
lasses and means that in
reased e�ort will be needed to test su
h a
lass thoroughly.� True Comment Ratio (TCR) Counts the ratio of do
umentation and/or implementation
omments to total lines of
ode (all
omments are ex
luded from the
ode
ount). You
an alsospe
ify whi
h type of
omments to use for the ratio.{ Do
umentation
omments are Javado

omments.{ Implementation
omments are any other type of
omments.

225G.12 Test Coverage[16℄� JUnit test Coverage (JUC) JUC measures JUnit test
overage for methods and
lasses. Fora method, the value of JUC is 1 if the method is dire
tly or indire
tly
alled from any JUnit test
ase and 0 otherwise. For a
lass, the value of JUC is the per
entage of methods
he
ked withJUnit tests.

226
Appendix HADDITIONAL CASE-STUDIESH.1 A Simple Case Study using Composite and Builder

Builder

Component

Mocha

Builder

Latte

Builder

Drink

Composite

Cappuccino

Builder

Director

Product

Client

Builder

Mocha

Builder

Latte

Builder

Drink

Composite

Cappuccino

Builder

Director

Product

Client

Component

Drink

Leaf

Generative Design Example
 Static Design Example

Figure H.1: Generative vs. Stati
 { Composite and BuilderFigure H.1 above provides a
lass diagram for the
omparative examples of the
omposite and builderpatterns used in a generative and stati
 pattern environment. As
an be seen from the diagram,the generative example on the left has an interfa
e (BuilderComponent) that is
ombined from the twointerfa
e
omponents that are used in the stati
 example on the right. The three sub-
omponents of theBuilder interfa
e
lass and the Produ
t
lass from the stati
 pattern example are now leaf
omponentsto the DrinkComposite
lass in the generative pattern example.In order for the two patterns to work together in the stati
 environment, a produ
t obje
t is
reatedand added to a
olle
tion obje
t in the DrinkLeaf
omponent of the
omposite pattern. As su
h,multiple produ
t obje
ts
an be added to one or more DrinkLeaf
omponents and one or more DrinkLeaf
omponents
an be added to a DrinkComposite
omponent. DrinkComposite
omponents
an be addedto other DrinkComposite
omponents as is intended with a
omposite pattern.In the generative example, be
ause any produ
t obje
t that is
reated is now a leaf
omponent to theDrinkComposite
omponent, it
an be added dire
tly to a DrinkComposite obje
t.

227Table H.1 shows the overall results of the metri
s that were produ
ed from the generative and stati
examples of the
omposite and builder patterns des
ribed above.Metri
 Generative Patterns Stati
 Patterns Di�eren
e (%)CBO 18 20 +CC 17 17 /LCOM 88 88 /LOC 376 403 +6.7%RFC 13 11 {WMPC 13 11 {NOC 8 10 +EXE SIZE 14.8 16.1 +8.1%Table H.1: General statisti
s for the Generative and Stati
 versions of Composite and BuilderThe statisti
s in Table H.1 indi
ate that the generative pattern will require less testing in respe
tof the CBO metri
 but will require more testing in respe
t of the RFC metri
. As
an be seen inTable H.2, the higher value for the CBO metri
s
omes from the
lient of the stati
 example, whi
hhas to
ommuni
ate with two interfa
e
omponents instead of just one interfa
e
omponent in thegenerative example. However, the higher value of the RFC metri
 in the generative pattern
omes fromthe ComponentBuilder interfa
e, whi
h is now having to de�ne two sets of methods for di�erent sub
omponents. The �rst set of method de�nitions relate to the Co�eeProdu
t
lass, where values are setfor the
reated obje
t. The se
ond set of method de�nitions relate to the Con
reteBuilder
lasses, whi
hbuilds the values into the Co�eeProdu
t obje
t.Although there is less
oupling in the generative example, as
on�rmed by the CBO metri
, there isa higher degree of
omplexity. The higher value in the WMPC metri

on�rms that the Component-Builder
lass is more
omplex and will therefore require more testing, and if required, more
omplexmaintenan
e.Whilst the two separate interfa
es (Builder and Component) in the stati
 example still have
olle
tivevalues lower than the ComponentBuilder interfa
e of the generative example, the stati
 example willrequire some additional testing for the DrinkLeaf
omponent.The overall viewpoint on this pair of patterns is that the generative example has more points in favourthan the stati
 example. This takes into a

ount the redu
tion in the number of lines of
ode, thenumber of
lasses and the size of the exe
utable �le, whi
h are in favour of the generative example.

228Class CBO CC LCOM LOC RFC WMPCGP SP GP SP GP SP GP SP GP SP GP SPClient 18 20 17 17 118 120 2 2 2 2+ / + / /Button 6 7 17 17 43 44 11 13 17 17Handler + / + + /Class CBO CC LCOM LOC RFC WMPCGP SP GP SP GP SP GP SP GP SP GP SPComponent 1 * 1 * * 28 * 13 * 13 *Builder * * * * * *Component * 1 * 1 * * 11 * 5 * 5* * * * * *Builder * 1 * 1 * * 14 * 6 * 6* * * * * *Drink * 4 * 2 * 0 * 28 * 8 * 5Leaf * * * * * *Table H.2: Individual statisti
s for the Generative and Stati
 versions of Composite and BuilderLike the examples in Chapter Seven, the individual
lass statisti
s for the like-for-like
omponents in theexamples are identi
al throughout all metri

ategories, therefore they are not in
luded in Table H.2.In this example this equates to the Con
reteBuilder
omponents, the Co�eeProdu
t, the Co�eeDire
torand the DrinkComposite
lass. Again, like the previous example the reason for this is modularity, inthat ea
h
orresponding
omponent provides identi
al fun
tionality. The only ex
eption in like-for-like
omponents is the
lient. For the
lient there is a minor di�eren
e in that it
ommuni
ates with twoseparate interfa
es.

229H.2 A Simple Case Study using Command and Builder

Coffee

Product

Concrete

Builder1

Invoke

Button

Client

Director

Builder

Concrete

Builder2

Concrete

Builder3

Concrete

Command1

Command

Concrete

Command2

Concrete

Command3

Generative Design Example
 Static Design Example

Command

Holder

Coffee

Product

Concrete

Builder1

Invoke

Button

Client

Director

Command

Builder

Concrete

Builder2

Concrete

Builder3

Command

Holder

Figure H.2: Generative vs. Stati
 { Command and BuilderFigure H.2 above provides a
lass diagram for the
omparative examples of the
ommand and builderpatterns used in a generative and stati
 pattern environment. Although the generative example is being
onsidered as a
ombination of the two patterns, this is in
orre
t. In this example, the builder patternis a
tually using the
ommand pattern, as de�ned by the term Pattern X uses Pattern Y in its solution,des
ribed in Chapter Four. In stri
ter terms the builder pattern is only using the InvokeButton
lassfrom the
ommand pattern. The eviden
e for this
omes from the CommandBuilder interfa
e, whi
h onlyde�nes methods that are appli
able to the Con
reteBuilder
lasses. As su
h there is no method in theCon
reteBuilder
lasses that
ould be
onsidered as being an Exe
ute method that would be appli
ableto a
ommand pattern.Also note that in this instan
e of the builder pattern being used in a generative environment, thedire
tor
lass is a sub
lass of the interfa
e and not the produ
t, as in the previous example. In theprevious example, the produ
t
omponent had to be a leaf
omponent to the
omposite so it
ould beadded dire
tly to the
omposite obje
t.In order for the two patterns to work together in the stati
 environment, the Con
reteCommand
om-ponents take as a parameter a Dire
tor:Builder latteBuilder = new LatteCon
reteBuilder();

230Co�eeDire
tor latteDire
tor = new Co�eeDire
tor(latteBuilder);LatteCommand latteCommand = new LatteCommand(latteDire
tor);Now that the Con
reteCommand has an instan
e of a Dire
tor, a
all to the Exe
ute method in theCon
reteCommand will implement the Constru
t method that will build the Produ
t in the builderpattern { Exe
ute()flatteDire
tor.
onstru
tCo�ee();g.Table H.3 shows the overall results of the metri
s that were produ
ed from the generative and stati
examples of the
ommand and builder patterns des
ribed on the previous page.Metri
 Generative Patterns Stati
 Patterns Di�eren
e (%)CBO 18 22 +CC 16 16 /LCOM 88 88 /LOC 342 375 +8.8%RFC 11 11 /WMPC 11 11 /NOC 9 13 +EXE SIZE 13.7 16.2 +15.4%Table H.3: General statisti
s for the Generative and Stati
 versions of Command and BuilderFrom looking at Figure H.2, one might expe
t that the metri
s results for the generative example wouldbe
onsiderably better than those of the stati
 example given the in
reased number of
lasses in thestati
 example. However, the results for this experiment were not as expe
ted. The general statisti
sin Table H.3 indi
ate that the generative pattern will require less testing and maintenan
e in respe
tof the CBO metri
 only; all other metri
s, other than LCOM and EXE SIZE, are of equal value.As
an be seen in Table H.4 the higher value for the CBO metri
s
omes from the
lient of thestati
 example, whi
h has to
ommuni
ate with two interfa
e
omponents instead of just one interfa
e
omponent in the generative example. The equal values in the RFC and WMPC metri
s seen in TableH.3
ome from the builder
lasses in both the generative and stati
 examples: namely the Co�eeProdu
tfor the WMPC metri
 and the Con
reteBuilder
lasses for the RFC metri
. Therefore in respe
t ofthe general values the generative example is neither more nor less
omplex than the stati
 example.However, the general values are not taking into a

ount the
ommand pattern
omponents that donot play a part in the generative pattern example. As su
h, there is an overhead in terms of the six

231attributes itemised in se
tion 7.2, whi
h have to be taken into a

ount in
omparing the examples.Taking the
olle
tive values of the Con
reteCommand
lasses and the Command interfa
e of the stati
example into a

ount, the stati
 example is
ertainly more
omplex than the generative example. Addto this the redu
tion in the number of lines of
ode and the size of the exe
utable �le, the generativeexample
omes a
ross as an improvement on the stati
 example.Class CBO CC LCOM LOC RFC WMPCGP SP GP SP GP SP GP SP GP SP GP SPClient 18 22 16 16 115 117 2 2 2 2+ / + / /Button 7 8 16 16 39 40 10 12 16 16Handler + / + + /Class CBO CC LCOM LOC RFC WMPCGP SP GP SP GP SP GP SP GP SP GP SPCommand 1 * 1 * * 10 * 6 * 6 *Builder * * * * * *Command * 0 * 1 * * 4 * 1 * 1* * * * * *Builder * 1 * 1 * * 10 * 6 * 6* * * * * *Con
rete * 1 * 1 * * 9 * 2 * 2Commands * * * * * *Table H.4: Individual statisti
s for the Generative and Stati
 versions of Command and BuilderLike previous examples, the individual
lass statisti
s for the like-for-like
omponents in the examples areidenti
al throughout all metri

ategories, therefore they are not in
luded in Table H.4. In this examplethis equates to the CommandHolder interfa
e, the Con
reteBuilder
omponents, the Co�eeProdu
t, andthe Co�eeDire
tor
lass. Again, like the previous examples the reason for this is modularity, in thatea
h
orresponding
omponent provides identi
al fun
tionality. The only ex
eption in like-for-like
omponents is the
lient, whi
h is
ommuni
ating with two separate interfa
es.

232H.3 A Simple Case Study using Composite and Command
Command

Component

Invoke

Button

Client
 Command

Coffee

Command1

Coffee

Command2

Composite

Coffee

Command3

Invoke

Button

Total

Command

Client

Component

Leaf

Generative Design Example
 Static Design Example

Composite

Coffee

Command1

Coffee

Command2

Coffee

Command3

Total

Command

Command

Holder
Command

Holder

Figure H.3: Generative vs. Stati
 { Command and CompositeFigure H.3 above provides a
lass diagram for the
omparative examples of the
omposite and
ommandpatterns used in a generative and stati
 pattern environment. As
an be seen from the diagram, thegenerative example on the left has an interfa
e (CommandComponent) that is
ombined from the twointerfa
e
omponents that are used in the stati
 example on the right. The four sub-
omponents of theCommand interfa
e
lass from the stati
 pattern example are now leaf
omponents to the Composite
lass in the generative pattern example.In order for the two patterns to work together in the stati
 environment, an obje
t is
reated from theCon
reteCommand
omponents and added to a
olle
tion obje
t in the Leaf
omponent of the
ompositepattern. As su
h, multiple
ommand obje
ts
an be added to one or more Leaf
omponents and one ormore Leaf
omponents
an be added to a Composite
omponent. Composite
omponents
an be addedto other Composite
omponents as is intended with a
omposite pattern.In the generative example, be
ause any Con
reteCommand obje
t that is
reated is now a leaf
omponentto the Composite
omponent, it
an be added dire
tly to a Composite obje
t.Table H.5 shows the overall results of the metri
s that were produ
ed from the generative and stati
examples of the
omposite and builder patterns des
ribed above.

233Metri
 Generative Patterns Stati
 Patterns Di�eren
e (%)CBO 18 20 +CC 2 2 /LCOM 90 90 /LOC 249 294 +15.3%RFC 10 10 /WMPC 9 8 {NOC 9 11 +EXE SIZE 13.2 14.7 +10.2%Table H.5: General statisti
s for the Generative and Stati
 versions of Command and CompositeThe
omposite and
ommand examples above, are very similar to that of the
omposite and builderexamples. Like the
omposite and builder example the statisti
s in Table H.5 indi
ate that the gen-erative pattern will require less testing and maintenan
e in respe
t of the CBO metri
 but in thisinstan
e are quite even in respe
t of the RFC metri
. Like all previous examples, the higher valuefor the CBO metri
s
omes from the
lient of the stati
 example, whi
h has to
ommuni
ate with twointerfa
e
omponents instead of just one interfa
e
omponent in the generative example. The valueof the RFC metri
 in both pattern examples
omes from the Composite
omponent. Although theCommandComponent interfa
e has to de�ne di�erent sets of methods to support the Composite
lassand the Con
reteCommand
lasses, the RFC value is less than that of the Composite.Although there is less
oupling in the generative example, as
on�rmed by the CBO metri
, there is ahigher degree of
omplexity. The higher value in the WMPC metri

on�rms that the CommandCom-ponent
lass is more
omplex than other
omponents in the stati
 example and will therefore requiremore testing, and if required, more maintenan
e.However, the two separate interfa
es (Command and Component) in the stati
 example have
olle
tivevalues higher than the CommandComponent interfa
e of the generative example. In addition, the stati
example will require some additional testing for the Leaf
omponent.As in previous examples, the generative example has more points in favour than the stati
 example.This takes into a

ount the redu
tion in the number of lines of
ode, the number of
lasses and the sizeof the exe
utable �le, whi
h are in favour of the generative example.

234Class CBO CC LCOM LOC RFC WMPCGP SP GP SP GP SP GP SP GP SP GP SPClient 18 20 1 1 84 85 2 2 2 2+ / + / /Class CBO CC LCOM LOC RFC WMPCGP SP GP SP GP SP GP SP GP SP GP SPCommand 0 * 1 * * 13 * 9 * 9 *Component * * * * * *Component * 1 * 1 * * 12 * 5 * 5* * * * * *Command * 0 * 1 * * 10 * 7 * 7* * * * * *Leaf * 4 * 2 * 0 * 28 * 8 * 5* * * * * *Table H.6: Individual statisti
s for the Generative and Stati
 versions of Command and CompositeLike in previous examples, the individual
lass statisti
s for the like-for-like
omponents in the examplesare identi
al throughout all metri

ategories, therefore they are not in
luded in Table H.6 above. Inthis example this equates to the Con
reteCommand
omponents, the InvokeButton, the CommandHolderinterfa
e and the Composite
lass. Again, like the previous examples the reason for this is modularity, inthat ea
h
orresponding
omponent provides identi
al fun
tionality. The only ex
eption in like-for-like
omponents is the
lient. For the
lient there is a minor di�eren
e in that it
ommuni
ates with twoseparate interfa
es.

235
Appendix IAN EXAMPLE DESIGN PATTERNI.1 Fa
ade (Based on Gamma[45℄)NameFa
adeIntentProvide a uni�ed interfa
e to a set of interfa
es in a subsystem. Fa
ade de�nes a higher-level interfa
ethat makes the subsystem easier to use.Motivation[45, 48, 102℄Stru
turing a system into subsystems helps redu
e
omplexity. A
ommon design goal is to minimizethe
ommuni
ation and dependen
ies between subsystems. One way to a
hieve this goal is to introdu
ea fa
ade obje
t that provides a single, simpli�ed interfa
e to the more general fa
ilities of a subsystem.

Client
 Client
Client
 Client

Facade

Client
Client

Subsystem Classes

Client Classes

Figure I.1: Fa
ade as an Interfa
eDividing a system into several subsystems helps deal with
omplex systems and provides an opportunityto partition the work. Dividing a system into a number of spe
ialized
lasses is a good obje
t orienteddesign pra
ti
e. However, having a large number of
lasses in a system
an be a drawba
k as well.Clients using that system have to deal with more obje
ts thereby in
reasing
omplexity. The Fa
adepattern provides a way to shield
lients of a set of
lasses from the
omplexity of using those
lasses.The way it does this is to provide an additional reusable obje
t that hides most of the
omplexity of

236working with the other
lasses from
lient
lasses.Appli
abilityUse the Fa
ade pattern when:� You want to provide a simple interfa
e to a
omplex subsystem. A fa
ade
an provide a simpledefault view of the subsystem that is good enough for most
lients. Only
lients needing more
ustomisation will need to look beyond the fa
ade.� There are many dependen
ies between
lients and the implementation
lasses of an abstra
tion.Introdu
e a fa
ade to de
ouple the subsystem from
lients and other subsystems, thereby pro-moting subsystem independen
e and portability.� You want to layer your subsystems. Use a fa
ade to de�ne an entry point to ea
h subsystemlevel. If subsystems are dependent, then you
an simplify the dependen
ies between subsystemsby making them
ommuni
ate with ea
h other solely through their fa
ades.Stru
ture[48℄
Client

Uses

1

MessageCreator

MessageBody

Attachement

MessageHeader
Message

Security
 MessageSender

Contains

0..
*

1

Contains

1
 1
 1
 1

1

0..1
 1

0..
*

Creates

Creates

Creates

1

1

1
 1

1

1

1

0..
*

0..1

1
 1

1

Creates

Creates

Creates

Contains

Contains

Sends

sender

sendee

1

Subsystem Classes

Figure I.2: Message Creator as Fa
ade

237Parti
ipants� Fa
ade{ Knows whi
h subsystem
lasses are responsible for a request.{ Delegates
lient requests to appropriate subsystem obje
ts.� Subsystem Classes{ Implement subsystem fun
tionality.{ Handle work assigned by the Fa
ade obje
t.{ Have no knowledge of the fa
ade.Collaborations� Clients
ommuni
ate with the subsystem by sending requests to Fa
ade, whi
h forwards them tothe appropriate subsystem obje
t(s). Although the subsystem obje
ts perform the a
tual work,the fa
ade may have to do work of its own to translate its interfa
e to subsystem interfa
es.� Clients that use the fa
ade don't have to a

ess its subsystem obje
ts dire
tly.Consequen
esThe Fa
ade pattern o�ers the following bene�ts:1. It shields
lients from subsystem
omponents, thereby redu
ing the number of obje
ts that
lientsdeal with and making the subsystem easier to use.2. It promotes weak
oupling between the subsystem and its
lients. Week
oupling lets you vary the
omponents of the subsystem without a�e
ting its
lients. Fa
ades help layer a system and thedependen
ies between obje
ts. They
an eliminate
omplex or
ir
ular dependen
ies. Redu
ingdependen
ies with Fa
ade
an limit the re
ompilation needed for a small
hange in an importantsubsystem.3. It doesn't prevent appli
ations from using subsystem
lasses dire
tly if they need to. Thus you
an
hoose between ease of use and generality.

238ImplementationConsider the following issues when implementing a fa
ade:1. Redu
ing
lient-subsystem
oupling. The
oupling between
lients and the subsystem
an beredu
ed even further by making Fa
ade an abstra
t
lass with
on
rete sub
lasses for di�erentimplementations of a subsystem. Then
lients
an
ommuni
ate with the subsystem throughthe interfa
e of the abstra
t
lass. This abstra
t
oupling keeps
lients from knowing whi
himplementation of a subsystem is used.An alternative to sub
lassing is to
on�gure a Fa
ade obje
t with di�erent subsystem obje
ts. To
ustomize the fa
ade, simply repla
e one or more of its subsystem obje
ts.2. Publi
 versus private subsystem
lasses. A subsystem is analogous to a
lass in that a
lassen
apsulates state and operations, while a subsystem en
apsulates
lasses. It is useful to thinkof the publi
 and private interfa
e of a
lass. In the same way we
an think of the publi
 andprivate interfa
es of a subsystem.The publi
 interfa
e of a subsystem
onsists of
lasses that all
lients
an a

ess; the privateinterfa
e is just for subsystem extenders. The Fa
ade
lass is part of the publi
 interfa
e, but itis not the only part. Other subsystem
lasses are usually publi
 as well.Sample Code[48℄The following
ode represents MessageCreator as the Fa
ade
lass shown in the
lass diagram in FigureI.2. Instan
es of the MessageCreator
lass are used to
reate and send e-mail messages. It is shownhere as a typi
al example of a fa
ade
lass.publi

lass MessageCreatorf publi
 final stati
 int MIME = 1;publi
 final stati
 int MAPI = 2;private Hashtable headerFields = new Hashtable();private Ri
hText messageBody;private Ve
tor atta
hments = new Ve
tor();private boolean signMessage;publi
 MessageCreator(String to, String from, String subje
t)f this(to, from, subje
t, inferMessageType(to));g

239publi
 MessageCreator(String to, String from, String subje
t, int type)f headerFields.put("to", to);headerFields.put("from", from);headerFields.put("subje
t", subje
t);gpubli
 void setMessageBody(String messageBody)f setMessageBody(new Ri
hTextString(messageBody));gpubli
 void setMessageBody(Ri
hText messageBody)f this.messageBody = messageBody;gpubli
 void addAtta
hment(Obje
t atta
hment)f atta
hments.addElement(atta
hment);gpubli
 void setSignMessage(boolean signFlag)f signMessage = signFlag;gpubli
 void setHeaderField(String name, String value)f headerFields.put(name.toLowerCase(), value);gpubli
 void send()fgprivate stati
 int inferMessageType(String address)f int type = 0;return type;gprivate Se
urity
reateSe
urity()f Se
urity s = null;return s;gpubli
 void
reateMessageSender(Message msg)fgg

240Known UsesThe MessageCreator example in the Sample Code se
tion is a typi
al example of using fa
ade to
reateand send email.Related PatternsAbstra
t Fa
tory
an be used with Fa
ade to provide an interfa
e for
reating subsystem obje
ts in asubsystem-dependent way. Abstra
t Fa
tory
an also be used as an alternative to hide platform-spe
i�

lasses.Mediator is similar to Fa
ade in that it abstra
ts fun
tionality of existing
lasses. Mediator's purposeis to abstra
t arbitrary
ommuni
ation between
olleague obje
ts. It often provides
entralized fun
-tionality that does not belong to any of them. Mediator's
olleagues are aware of and
ommuni
atewith mediator instead of one another. In
ontrast a fa
ade merely abstra
ts the interfa
e to subsystemobje
ts to make them easier to use; it does not de�ne new fun
tionality and subsystem
lasses do notknow about it.Usually only one Fa
ade obje
t is required. Thus, Fa
ade obje
ts are often Singletons.

