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ABSTRACT 
 
This paper presents the use of Cellular Automata (CA) for modelling micro abrasive machining. A one-
dimensional CA was initially used to model the workpiece, as having different heights, to represent the 
roughness; and the forces from the abrasive grits were modelled to randomly erode the workpiece, as such 
smoothening out and polishing the surface. The modelling was then extended further to two dimensions. 
Results of the simulations have shown that the mean heights of the peaks, depicting the surface roughness 
of the workpiece and the mean standard deviation sharply decrease as time evolved. Good surface finish 
was always observed just after 20 pass steps. The work carried out has demonstrated that it is possible to 
model and simulate abrasive machining processes by implementing simple rules of cellular automata. 
  
Keywords Cellular Automata, Micromachining  
 

1     INTRODUCTION 
 

Abrasive machining is a manufacturing process where material is removed from the workpiece using a 
multitude of small abrasive particles, where each of these particles acts as a miniature cutting tool. The most 
important property of an abrasive is its hardness. It must be significantly harder than the workpiece material, 
to cut effectively. Chips are formed by the mechanism of compression and shear. Examples of abrasive 
machining are namely; grinding, polishing, honing, lapping etc. There is now a critical requirement for these 
processes to achieve micro/nanometre surface finishes for many applications in medicine, aerospace, 
electronics and energy industrial sectors. Models for the simulation of micro abrasive machining are 
numerous, but the Cellular Automata (CA) method is  considered in this article because it exhibits high 
efficiency when handling arbitrarily complex systems.  
 
The concept of CA was initiated by Von Neumann (1966), as a means of modelling the nature of self-
reproduction in biological systems. A cellular automaton is a decentralized computing model, providing an 
excellent platform for performing complex computation with only local interactions. It consists of a regular 
array of identically programmed units, called cells which interact with their neighbours subject to a finite set 
of prescribed rules for local transitions. In practice, cellular automata may be viewed as parallel-processing 
computers of simple construction Yu et al (2005) and Ganguly et al (2005). CA has been applied to many 
fields ranging from life sciences to science and engineering. Wolfram (2002) introduced the method to the 
broad scientific public with the publication of his book, “A New Kind of Science”. One of the most popular 
applications of CA is in the creation of the ‘game of life’. The program simulates an evolution of society of 
living organisms Gardner (1970). In materials science, Liu et al (1996) used CA for the modelling of the 
motion of grain boundaries in evolving microstructures. CA has also been used in machining applications, 
Karafyllidis and Thanailakis (1995) used CA for simulating the photo resist etching process, Gurney et al 
(1999) applied CA to roughening in the etching process; Zhu and Liu (2000) developed an anisotropic 
crystalline etching simulation program for micro electromechanical systems (MEMS) structures, based on CA 
model; and a two-dimensional CA model was used by Orbanic and Junkar (2004) for the simulation of the 
abrasive water jet (AWJ) cutting process. 

2     THE CELLULAR AUTOMATA (CA) METHOD 
 
A cellular automaton consists of a finite-dimensional lattice of sites whose values are restricted to finite set of 
integers, }1,.....2,1,0{ −= kZk . The value of each site at any time step is determined as a function of the 
values of the neighbouring sites at previous time step. This can be stated as follows Jen (1990); 
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Where is the value of site i at time t  t

ix
             f is the rule defining the automaton 
             r is a non negative integer specifying the radius of the rule 
 
CA Neighbourhoods 
 
Each cell in CA can only interact with other cells, which are in its neighbourhood, and this consists of the 
surrounding (adjacent) cells. The simplest neighbourhood is an elementary system, consisting of a 1-
dimensional row of cells, each of which can have the value 0 or 1. The CA can have different 
neighbourhoods, some of which are, namely; the von Neumann, Moore, first neighbours and one way, as 
shown in Figure 1. The state of all cells is updated simultaneously in discrete time steps with regard to the 
state in their neighbouring cells in the previous time step. The algorithm for calculating the new states is 
known as the local rule of CA (Orbanic and Junkar 2003). 
The formula for calculating the rule size space, , in n-Dimension (Adapted from Speller et al (2007)) nS

                                                               (2)  
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where k is possibilities for each state and r is the radius of the neighbourhood. 
 
For 1- Dimension CA, if r=1 and k=2, the rule space is 256, which are the so called elementary CA. 
For 2- Dimension CA, if r=1 and k=2, the rule space is 1.341 x ! 15410
This type of CA is known as deterministic. For modelling, the rules can be obtained by trial and error or by 
other methods namely; genetic algorithms (Hajela and Kim (1999, 2000)), genetic programming (Koza et al 
1999) and shape grammar (Speller et al 2007). This shows the fundamental problem in the application of 
deterministic CA, which is the difficulty in finding rules from the large rule space, that exhibit the desired 
behaviour that one is interested in. Also, it often yields configurations which lack the apparent randomness of 
real systems. To provide the flexibility in modelling physical systems, probabilistic CA can be used, where 
rules are probabilities ranging from 0 to 1 and the deterministic CA are the limits in which the probabilities 
are all 0 or 1 (Gurney et al 1999). For a real machining process case, the values can be decided based on 
the material removal rates. Orbanic and Junkar (2004), in modelling the Abrasive Water Jet (AWJ), 
introduced an intensity parameter ,(which is related to kinetic energy, and depends on water pressure, 
water mass flow rate, abrasive mass flow rate, type and size of abrasive grains and geometry of the cutting 
head), a removal resistance parameter  and the cutting velocity. These three input parameters are 
entered into the CA model to perform the material removal step. Equation 3 shows an example of a rule for 
material removal; 
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where is the material resistance at time step t+1,  1

,
+t
jiM

t
jiM ,  is the material resistance at time step t 

hv RandR are the coefficients for vertical and horizontal material removal respectively, and  
t

jiA ,1− , and  are the AWJ intensities in the neighbourhood cells. t
jiA ,1+

t
jiA 1, −

t
jiA 1, +

  
3     THE MODELLING OF THE POLISHING METHOD 

 
The CA was used to model the workpiece, as having different heights, to represent the roughness; and the 
forces from the abrasive were modelled to randomly erode the workpiece, as such smoothening out and 
polishing the surface. A set of random real numbers was generated to model the initial roughness of the 
surface. Figure 2 shows the surface asperities of a nominal surface in 3 D. 
 
Steps for the CA 
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• The n-dimensional space is partitioned into discrete subset of finite n-dimensional volumes - cells 
• A state is assigned to each cell, using a set of random real numbers 
• At every time step, a local neighbourhood is defined for each cell 
• A state change rule is defined, which computes the new state of a cell as a function of all cells in the 

local neighbourhood of that cell 
• The simulation proceeds by discrete time steps (Adapted from Janssens (2009)) 

 
The Rules 
 
For the 1-D case, using the ‘first neighbours’ neighbourhood, a set of 3 numbers, say (p, q and r) were 
generated to represent the cells. The cells p and r are ‘neighbours’ of cell q. The value of cell q in the set, 
was updated according to some simple rules as follows, viz; 
 
                   If q>p and q>r, then q=q-M (where M =1) 
              If q<p and q>r, and If q>p and q<r then q=M, (where M =0.5)   (4)  
                  If q=p and q>r, and If q>p and q=r then q=q-M, (where M =0.25) 
and M is a function of parameters relating to the model 
 
For other possibilities, the value of q is unchanged.  
For the 2-D case, using the von Neumann neighbourhood, the rule generations follow the same pattern. A 
set of 5 numbers say (p, q, r, s, and t) was used for the modelling of the cells. The cells p, q, s and t are the 
‘neighbours’ of cell q.   
The influential parameters, like hardness of workpiece material, abrasive grit size, bonnet pressure, spindle 
speed, et cetera, can be mapped into the rules of the CA to provide characteristic material removal rate. The 
above M parameter can be shown to be a function of the desired influential parameters; 
 

      (5)  .....),,,( speedspindlepressurebonnetsizegritabrasivehardnessfM =
So, M can take values ranging from 0 to 1, like 0.7, 0.6.etc., which would affect the shapes of the roughness 
graphs, like in Figure 3. The modelling was implemented by using Mathematica 7.  
 

4   RESULTS 
1-D Case: 
The final surface finish is depicted in Figure 4. 
The mean of the peaks' heights for 50 iterations is shown in Figure 5. 
The standard deviation of the mean of the peaks' heights for 50 iterations is shown in Figure 6. 
 
2-D Case: 
The mean of the peaks' heights for 50 iterations is shown in Figure 7. 
The standard deviation of the mean of the peaks' heights for 50 iterations is shown in Figure 8. 
The time evolution of the abrasive process is shown in Figure 9. 
 
The results of the simulations have shown that the mean heights of the peaks, depicting the surface 
roughness of the workpiece and the mean standard deviation sharply decrease as time evolved. Good 
surface finish was always observed just after 20 pass steps. These present some natures of the practical 
aspects of polishing. By adjusting the cellular automata rules, it can be possible to model polishing process 
accurately. The results also show similarities to other research output in improvements of surface finish 
(Chen and Rowe 1999 and Chen 2009). They studied the surface finish in grinding spark-out, and found that 
the surface roughness follows a non-linear relationship with the grinding depth (Figure 10). The rate at which 
the residual stock is removed is slowed down due to plastic pile-up, which in turn slows down the 
improvement in surface roughness. 
 
 
 
 
 

5   CONCLUSION 
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The work carried out has demonstrated that it is possible to model and simulate abrasive machining 
processes by implementing simple rules of cellular automata. The challenge is to be able to develop a robust 
polishing model, which will incorporate material properties. 
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Figure 1: CA Typical Neighbourhoods (Ollinger 2008) 

 

 
Figure 2: Surface Asperities of a Nominal Smooth Surface (Stokes 2008) 

 
 

 
 

Figure 3: Variations Dependent on Influential Parameters 

 
Figure 4: The Final Surface Finish in 1-D 

 

 
Figure 5: The Mean of the Peaks' Heights for 50 Iterations for 1-D 
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Figure 6: The Standard Deviation of the Mean of the Peaks' Heights for 50 Iterations for 1-D 
 

 
Figure 7: Snapshots of the Time Evolution of the Abrasive Process in 2-D 

 

 
Figure 8: The Mean of the Peaks' Heights for 50 Iterations for 2-D 

 

 
Figure 9: The Standard Deviation of the Mean of the Peaks' Heights for 50 Iterations for 2-D 

 

 
Figure 10: Roughness Improvement during Spark-out (Chen 1999) 
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