Search:
Computing and Library Services - delivering an inspiring information environment

Detection of incipient gear failures using statistical techniques

Baydar, N, Ball, Andrew and Payne, B.S. (2002) Detection of incipient gear failures using statistical techniques. IMA Journal of Management Mathematics, 13 (1). pp. 71-79. ISSN 1471-678X

Metadata only available from this repository.

Abstract

Gears are important components in most power transmission mechanisms. Failures of gears can cause heavy losses in industry. Condition monitoring and fault diagnosis of gears is therefore important to improve safety and reliability of gearbox operations and reduce losses caused by gear failures. This research proposes a new diagnostic approach based on the statistical analysis of data. It investigates the use of Principal Components Analysis (PCA) to detect growing local faults in a two-stage industrial helical gearbox. In this research, the vibration signal is used to monitor fault conditions and a broken tooth is simulated as a local fault. Since the early detection of faults is a challenge, small fault conditions were tested first as well as severe fault conditions. In order to examine the ability of the PCA to detect fault conditions, first the PCA-based model was created for normal operating conditions. Any unexpected event such as a fault condition causes a significant deviation from the PCA model, which is obtained from the normal condition data of the gearbox. The Square Prediction Error (SPE) was calculated to detect the fault conditions. When the vibration signal from the gearbox is representative of normal operation, the value of the SPE shows very little fluctuation and remains under a certain threshold value. However, in the presence of the fault the SPE fluctuates considerably beyond the threshold value. It is shown that the PCA-based statistical approach cannot only be used to detect severe fault conditions, but that it also reveals small growing fault conditions at very early stage. The technique also provides information about the state of the fault such as the location of the fault as well as its severity.

Item Type: Article
Subjects: T Technology > T Technology (General)
T Technology > TJ Mechanical engineering and machinery
Schools: School of Computing and Engineering
School of Computing and Engineering > Diagnostic Engineering Research Centre
School of Computing and Engineering > Automotive Engineering Research Group
School of Computing and Engineering > Diagnostic Engineering Research Centre > Energy, Emissions and the Environment Research Group
School of Computing and Engineering > Diagnostic Engineering Research Centre > Machinery Condition and Performance Monitoring Research Group
School of Computing and Engineering > Diagnostic Engineering Research Centre > Measurement System and Signal Processing Research Group
Related URLs:
Depositing User: Sharon Beastall
Date Deposited: 20 Jan 2010 12:58
Last Modified: 03 Dec 2010 12:29
URI: http://eprints.hud.ac.uk/id/eprint/6804

Item control for Repository Staff only:

View Item

University of Huddersfield, Queensgate, Huddersfield, HD1 3DH Copyright and Disclaimer All rights reserved ©