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Abstract 

Thermal gradients from internal and external heat sources cause instabilities 

which affect the machine tool positional accuracy. Positioning error results 

from deformation of the machine structure due to linear thermal expansions of 

some machine parts combined with the thermal behaviour of associated 

complex discrete structures producing non linear thermal distortions.  Thermal 

gradients due to internally generated heat and varying environmental conditions 

pass through structural linkages and mechanical joints where the roughness and 

form of the contacting surfaces act as resistance to thermal flow and affect the 

heat transfer coefficients. Measurement of long term thermal behaviour and 

associated thermal deformations in the machine structure is a time consuming 

procedure and most often requires machine downtime and is therefore 

considered a dominant issue for this type of activity, whether for 

characterisation or correction. This paper presents a novel offline technique 

using Finite Element Analysis (FEA) to simulate the combined effects of the 

internal and external heat sources on a small vertical milling machine (VMC). 

Detailed long term experimental testing of the effects of temperature 

distribution in the machine structure and in-depth heat transfer work to obtain 

accurate values of heat transfer coefficients across joints is reported. Simplified 

models have been created offline using FEA software and the evaluated 

experimental results applied for offline simulation of the thermal behaviour of 

the machine structure. The FEA simulated results obtained are in close 

correlation with the obtained experimental results. FEA simulation enables 

quick and efficient offline assessments of temperature distribution and 

displacement in the machine tool structures along with characterisation of the 

machine under variable environmental conditions. This results in a significant 

reduction in machine non productive downtime and can provide significantly 

more thermal data for the creation and validation of robust long term error 

compensation models.  

 

1.   INTRODUCTION 

 
Machine tool structures are susceptible to temperature changes which occur due 

to the heat produced internally from machining processes and externally from 

environmental changes. The heat flows through the structural elements and 

produces inevitable temperature gradients which cause deformations often in a 

very complex manner, resulting in unwanted displacements of the cutting tool 

relative to the work piece known as thermal errors. It has been reported that 

thermal errors can represent 70% of the total volumetric error [1]. Three main 

causes of structural temperature changes are 1) Internal heat generation with 

possible heating sources such as bearings, motors, belt drives etc. 2) 

Environmental variations with possible heat sources such as direct sunlight, 
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workshop heating etc. Typically in non-temperature controlled environments, 

the 24 hours day and night cycle resulting from these sources are the most 

dominating long term variations. 3) Radiant heating with possible sources such 

as infrared workshop heating, direct sunlight striking the machine [2]. Figures 1 

to 3 below shows possible affect heat sources. 

                                
 Figure 1: Original machine                  Figure 2: Deformation                         Figure 3: Deformation 
 tool structural profile [2]                      example due to internal                       example due to heat 

                                                              heat sources [2]                                    sources [2]                                

 

A broad range of research has been carried out to compensate thermal errors. 

Mian et al. [3] discussed the usage of techniques such as Neural Networks, 

linear regressions, multiple linear regression and Finite Element Analysis 

(FEA) with their capabilities, results and complexities associated with machine 

downtime and cost. It was also discussed that FEA has been used as part of the 

research as a validation tool on discrete structural elements but not on a full 

CNC machine for thermal compensation however it has proved its significance 

in predicting thermal errors in reduced time scales which leads to reduced 

machine downtime.
 
Mian [3] showed machine tool offline thermal assessment 

strategy using FEA which can reduce machine downtime. Assessment was 

carried on assembled machine models of spindle, carrier head, bearings tool 

and column of a small vertical milling machine. Abaqus 6.7-1 [4] simulated 

results showed well matched simulation results with experimental tests for one 

hour heat and one hour cool down. In order for this strategy to be able to 

predict results more accurately and efficiently, it was required to use this 

strategy on the full optimized machine model with simulations for longer 

periods to match the long term industrial operating conditions. 

 

2.   THERMAL CONTACT RESISTANCE TESTING 

 

Heat flows through machine structure and passes through structural joints and 

contacts. Mian [3] showed TCR testing results using two steel plates tested in 

dry and oiled conditions to replicate the precision and accuracy used in 

assembly of the relevant components of a typical machine tool. The results 

were used to carry out accurate FEA simulations. TCR values were calculated 

using equation 1.  

 

 

(1)

Where  is TCR and K is the conductivity of steel, Q is the heat energy, 

is temperature difference and L is the distance. 
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3.   ABAQUS MODELS 

 

Optimised and idealised machine models of base, table and saddle were created 

and assembled with previously created models [3] to a full machine model. 

Idealization includes halving of the full model due to its symmetrical nature 

over X axis. Figure 4 and Figure 5 shows the full and halved machine CAD 

model. Bearings, belt drives and motor supporting structure were simplified 

and represented as heat generation sources in the machine CAD model.  

 

                                                                       
    Figure 5: Full machine CAD                            Figure 6: Halved model (Symmetry) 

    model created in ABAQUS 6.7-1 

 

4.    MACHINE TOOL TESTING 

 

For more accuracy in results obtained [3], it was required to devise an efficient 

strategy to calculate the convective heat transfer coefficient (h) due to airflow 

across test mandrels or even generic tooling. A thermal imaging camera was set 

up to view the spindle and mandrel rotating at 4000rpm. The heating and 

cooling cycle data was recorded with high speed imaging (per second) and h 

was calculated using equation 2 and 3. The values obtained were 55W/m
2
C and 

9W/m
2
C respectively which were used to simulate thermal distribution across 

the mandrel. 

TmCpQ  (2)                         ThAQ   (3) 

Where Q is the energy, m is mass, Cp is specific heat capacity of a material, h 

is convective heat transfer coefficient, A is area and T is temperature 

difference. 

 

4.1   Thermal testing (Online test) 

 

Optimised values for heat transfer coefficients were applied to the machine 

based on new experimental results. One hour heat and one hour cooling test 

was repeated and the spindle was rotated at 4000rpm. Thermal data was 

recorded using 61 thermal sensors in strips located at the surface of the carrier 

and spindle boss considered as thermal key points explained by White et al. [5]. 

Thermal imaging was also used to capture temperature data at the surface and 
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places where thermal sensors are hard to install. The data obtained is presented 

in section 5.1 (Figure 12) for reviewing them in direct comparison with the 

obtained simulated profiles. Figure 7 shows the thermal sensors location on the 

machine. Figure 8 shows the thermal image showing thermal distribution in the 

spindle motor and the belt drive.  

 

                                
Figure 7: Thermal sensors                                                Figure 8: Thermal distribution (top)                                                                                 

location on the machine                                                   showing spindle motor and belt drive 

                                                                 

4.2   Displacement testing (Online test) 

 

Five Non Contact Displacement Transducers (NCDTs) were placed around a 

test mandrel (see Figure 9) to monitor the displacements of the tool in X, Y and 

Z axes during the test. Again the results are presented in section 5.1 (Figure 13) 

for reviewing them in direct comparison with the obtained simulated results.  

 

 
Figure 9: NCDTs located around the tool 

 

5.  ABAQUS SIMULATIONS (OFFLINE ASSESSMENTS) 

 

The thermal information was converted into thermal loads for applying as body 

heat flux generated from the heat sources in the software [3]. TCR values [3] 

were applied at the assembly contacting surfaces and the simulation was set for 

1 hour heating and 1 hour cooling. 

5.1   Temperature and Displacement Simulations (Offline assessment) 

 

Temperature and displacement results were extracted from the nodes located at 

similar positions to the actual sensor locations on the machine (both thermal 

sensors and NCDTs). The results showed improved accuracy in temperature 

and displacement profiles compared with previous results [3]. Simulation time 

was also reduced to 3 minutes and 7 minutes for thermal and displacement 

analyses in Abaqus respectively. A very good correlation of 82% can be 

observed in both experimental and simulated displacement profiles and 
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magnitude values (Figure 12 and 13). Figure 10 shows the simulated 

temperature distribution in the spindle carrier assembly and Figure 11 shows 

the simulated machine behaviour due to thermal distribution.  

 

 

                     
Figure 10: Temperature distribution in                         Figure 11: Deformations in the  

the machine structure during heating                            machine due to thermal distribution 
cycle. (Red=hot, Blue=cold) 

 

 
Figure 12: Experimental temperature and displacment profiles for 1 hour heat 

and 1 hour cooling cycle 

 

 
Figure 13: Simulated temperature and displacement profiles for 1 hour heat and 1 hour  cooling 

cycle 

 

6.   LONG TERM TESTS 

 

As machine down time is involved with carrying out extended thermal trials on 

production machine tools, one of the greatest advantages of improving offline 

simulation capability is to enable characterisation of the machine to a 

reasonable accuracy over medium and long term periods over which, on-
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machine testing becomes impractical. The machine was set for a heating test 

with spindle rotated at 4000rpm constant speed for 3 hours followed by 2 hours 

cooling phase. NCDTs were setup for measurement of long term thermal drifts 

at the test mandrel (see Fig 9). Heat transfer coefficients for air were applied 

(see section 4). Figure 14 and Figure 15 shows the comparison graphs of 

experimental and simulated thermal and displacement profiles respectively. 

The Abaqus simulation took 5 minutes for thermal and 10 minutes for 

displacement analysis. Again good correlation of 74% can be observed in both 

experimental and simulated displacement profiles and magnitude values. 

 

 
Figure 14: Experimental temperature and displacment profiles for 3 hour heat and 2 hour cooling 

cycle  

 
Figure 15: Simulated temperature and displacment profiles for 3 hour heat and 2 hour cooling cycle 

 

7.   STEP HEAT AND COOL TEST 

 

The complexity of the duty cycle was increased to more closely match 

operating conditions over much longer test periods. The spindle was rotated in 

steps at 4000rpm with two 2 hours heating cycles with 1 hour cooling gap. The 

total test length was 6 hours. Figure 16 And Figure 17 shows the obtained 

experimental and simulated thermal and displacement profiles respectively.  

The Abaqus simulation took 8 minutes for thermal and 12 minutes for 

displacement analysis. Again excellent correlation of 86% can be observed in 

both experimental and simulated displacement profiles and magnitude values. 
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Figure 16: Experimental temperature and displacment profiles step heat and cool cycles 

 

 
Figure 17: Simulated temperature and displacment profiles for step heat and cool cycle 

8.   ENVIRONMENTAL TESTING 

 

The machine was tested over 3 day period for thermal drifts due to variation in 

environmental temperatures. Numbers of thermal sensors increased and were 

placed at mandrel’s surface, table surface, machine’s base and two sensors 

placed inside the machine to measure ambient temperature variations. Ambient 

temperatures were used to calculate convective heat transfer coefficient inside 

the machine enclosure and was obtained 6W/m
2
C.  The displacement was 

measured at mandrel’s Z direction. Figure 18 shows experimental thermal 

profiles obtained for 3 days. The overall temperatures varied approx. ±2˚C 

noted in the head assembly and approx. ±0.5˚C at the bed (base) during the 3 

day period. The results confirm that the environmental temperature variations 

exist and play an important role in producing thermal drifts over longer 

production periods.  

 



8 
 

 
Figure 18: Environmental temperature variations recorded over 3 days 

 

 
Figure 19: Experimental temperature and displacement profiles recorded over 3 days at mandrel’s 

Z axis 

 

Figure 19 shows the experimental temperature and displacement at the mandrel 

where displacement followed the temperature variation and varied approx 15 

microns in z negative direction over 3 days. This gives a clear picture of 

machine structure bending sensitivity to environmental variations. The 

displacement profile’s lag is due to the response time of the structure to the 

temperature variation. Data obtained from environmental testing was applied 

into Abaqus along with convective heat transfer coefficient measured (section 

8). Simulation for thermal and displacement testing took 15 and 22 minutes 

respectively. Simulated temperature and displacement profiles are shown in 

Figure 20.  Very good correlation of 70% can be observed in both experimental 

and simulated displacement profiles and magnitude values.  

 

 
Figure 20: Simulated temperature and displacement profiles recorded over 3 days at mandrel’s Z 

axis 
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5.    CONCLUSIONS 

 

Thermal distribution and its associated error in a small VMC CNC machine 

tool was studied and analysed experimentally and predicted offline using FEA 

techniques. Heat transfer experiments between contacting surfaces in 

assemblies and structural linkages were given high importance to evaluate 

values as accurate as possible in order to obtain accurate FEA results. In depth 

experimental work has been carried out to obtain the thermal behaviour in the 

machine structure by running the machine and carefully extracting detailed 

temperature and displacement data. The machine and FEA model was tested for 

long term heating and cooling cycles using only the data from initial short 

terms tests (one hour). Environmental testing was carried out over a 3 day 

period to record temperature variations and thermal drifts. The results obtained 

from experiments were analysed and applied in the FEA simulation software 

Abaqus 6.7-1. The results from FEA matches very well with the experimental 

results obtained. The simulated FEA technique enabled offline assessments of 

the temperature distribution and displacements in a machine tool reducing 

machine non productive downtime and can provide significantly more thermal 

data for the creation and validation of robust long term thermal error 

compensation models.  
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