The Orthogonal Distance Fitting of Parametric Surfaces for Precision Coordinate Metrology

Xiangchao Zhang, Xiangqian Jiang, and Paul J Scott
Centre for Precision Technologies, School of Computing and Engineering, University of Huddersfield, HD1 3DH, UK

1. Introduction
To evaluate the form quality of a surface, it is required to compare the measured data with the design template and determine the relative deviation between them. However, the two surfaces are not necessarily well aligned, then we need to transform the measurement data properly to best-match them.

Traditionally, only the vertical deviation is considered in the error metric, where \(g \) is the nominal function of the design template.

\[
E = \sum_{i=1}^{N} \left[z_i - f(x_i, y_i) \right]^2
\]

Here \(\{x_i, y_i, z_i\}^T = p_i^* = Rx_i + t, i = 1, 2, \ldots, N \) is the transformed point of an arbitrary measurement point \(p_i = [x_i, y_i, z_i] \) and \(z = f(x, y) \) is the nominal function of the design template.

The definition of error distance above does not coincide with measurement guidelines and the estimated fitting parameters will be biased [1]. Consequently we solve this problem by applying the orthogonal distances in the error metric, where \(q \) is the orthogonal projection of \(p \) onto the template.

\[
\min_{R, t} \sum_{i=1}^{N} \left\| R p_i + t - q \right\|^2 = \min_{m} \sum_{i=1}^{N} \left\| p_i - q \right\|^2
\]

In the equation, \(q_i = [X_i, Y_i, Z_i] \) is the orthogonal projection of \(p_i \) onto the template.

2. Algorithm of Orthogonal Distance Fitting
Parametric forms are the most general ways to specify a surface, and hence extensively used in engineering design. They represent a surface with,

\[
S(u, v) = [x(u, v), y(u, v), z(u, v)]^T
\]

To solve the optimal rotation matrix \(R \) and translation vector \(t \), we calculate the projection points and transformation \(m = \{\theta, \phi, \psi, t_x, t_y, t_z\} \) alternately in a nested way,

\[
\min_{m} \sum_{i=1}^{N} \min\left\| p_i - q \right\|^2
\]

The closest projection point of each measurement point can be obtained with the Newton-Raphson algorithm [2].

So that the objective function becomes,

\[
\min_{m} \sum_{i=1}^{N} g_i^2 = \min_{m} \left\| g - R x - t \right\|^2
\]

The Jacobian matrix \(J = \partial g / \partial m \in \mathbb{R}^{3N \times 6} \) can be calculated by,

\[
J_{3i-2}^3 = \frac{\partial p_i^T}{\partial m} - \frac{\partial p_i^T}{\partial u} \frac{\partial u}{\partial m}
\]

Here \(u = [u_i, v_i]^T \) are the foot-point parameters of \(q \), and \(\frac{\partial u}{\partial m} \) will be derived from [3],

\[
\frac{\partial}{\partial u} (p_q - q_q)^T (p_q - q_q) = \left(\frac{\partial q_q}{\partial u} \right)^T = 0
\]

Omit the subscript \(i \) and rewrite \(\frac{\partial q_q}{\partial u} \) as \(u_m \), we obtain,

\[
u_m = q_m (q_m - q_m^T q_m) q_m^T
\]

And the motion parameters can be updated with the Levenberg-Marquardt algorithm [2],

\[
(J^T J + \lambda I) \delta m = -J^T g
\]

\(\lambda \) is a user-set damping factor.

3. Verification
We tested the performance of this algorithm with various experiments and found its bias of fitted motion parameters and intrinsic characteristics is at least one order better than the traditional algebraic fitting method.

References