University of Huddersfield Repository

Zeng, Wenhan, Jiang, Xiang, Scott, Paul J. and Blunt, Liam

New Geometrical Filtratation For Ultra-Precision And Micro,Nano Manufactured Products

Original Citation

This version is available at http://eprints.hud.ac.uk/5225/

The University Repository is a digital collection of the research output of the University, available on Open Access. Copyright and Moral Rights for the items on this site are retained by the individual author and/or other copyright owners. Users may access full items free of charge; copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational or not-for-profit purposes without prior permission or charge, provided:

- The authors, title and full bibliographic details is credited in any copy;
- A hyperlink and/or URL is included for the original metadata page; and
- The content is not changed in any way.

For more information, including our policy and submission procedure, please contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/
The aim of this project is to explore and develop fast and stable algorithms, standard reference algorithms, and measurement procedures for non-linear geometrical Gaussian and spline filtration. Focusing on:

- Exploration of suitable numeric models for robustness and stability of non-linear filters.
- Creation of fast algorithms for the efficient implementation of non-linear Gaussian and spline filters.
- Development of standard reference algorithms implementing the definitions according to the ISO 16610 series of standards.

\[
\sum_{k=0}^{n-1} \rho \left(z_k - s(x_k) \right) + 2 \int_{s(x_0)}^{s(x_{n-1})} \left[\frac{d^2 s(x)}{dx^2} \right]^2 dx \rightarrow \text{Min } s(x_k)
\]

<table>
<thead>
<tr>
<th>L2</th>
<th>L1</th>
<th>Huber</th>
<th>Cauchy</th>
<th>Tukey</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n L2)</td>
<td>(n L1)</td>
<td>(n \text{ Huber})</td>
<td>(n \text{ Cauchy})</td>
<td>(n \text{ Tukey})</td>
</tr>
</tbody>
</table>

Generalised higher order gaussian regression filter for 2D Profile

Generalised higher order gaussian regression filter for 3D surface

Fast algorithms:
1. Convolution to FFT;
2. Pre-calculation;
3. Separable in rows and cols

Significant speed improvement:
For a typical 60,000 pts data, 100 ms is needed compared with traditional algorithms need a few hours