Search:
Computing and Library Services - delivering an inspiring information environment

Inhibitors of metallo-β-lactamase generated from β-lactam antibiotics

Badarau, Adriana, Llinas, Antonio, Laws, Andrew P., Damblon, Christian and Page, Michael I. (2005) Inhibitors of metallo-β-lactamase generated from β-lactam antibiotics. Biochemistry, 44 (24). pp. 8578-8589. ISSN 1520-4995

Metadata only available from this repository.

Abstract

The resistance of bacteria to the normally lethal action of -lactam antibiotics is largely due to the production of -lactamases that catalyze the hydrolysis of the -lactam. One class of these enzymes is a zinc-dependent metallo--lactamase for which there are no clinically available inhibitors. The hydrolysis of cephalosporin -lactam antibiotics generates dihydrothiazines which subsequently undergo isomerization at C6 by C-S bond cleavage and through the intermediacy of a thiol. These thiols can be trapped by the -lactamase from Bacillus cereus, causing inhibition of the enzyme. The rate of production of the thiol corresponds to the rate of inhibition, and the inhibition constants are in the micromolar range but vary with the nature of the cephalosporin derivative. NMR studies have identified the structure of the thiols causing inhibition and also show that the thiol binds to the zinc ion, which in turn perturbs the metal-bound histidines. Inhibition is slowly removed as the thiol becomes oxidized or undergoes further degradation. The thiol intermediate generated from cephalothin is a slow binding inhibitor. There is no observed inhibition from the analogous degradation products from penicillins

Item Type: Article
Subjects: Q Science > Q Science (General)
Q Science > QD Chemistry
Schools: School of Applied Sciences
School of Applied Sciences > Biomolecular Sciences Research Centre
Related URLs:
References:

1. Fre`re, J. M. (1995) Beta-lactamases and bacterial resistance to
antibiotics, Mol. Microbiol. 16, 385-395.
2. Wang, Z., Fast, W., Valentine, A. M., and Benkovic, S. J. (1999)
Metallo-â-lactamase: structure and function, Curr. Opin. Chem.
Biol. 3, 614-622.
3. Laraki, N., Franceschini, N., Rossolini, G. M., Santucci, P.,
Meunier, C., de Pauw, E., Amicosante, G., Fre`re, J. M., and
Galleni, M. (1999) Biochemical characterisation of the Pseudomonas
aeruginosa 101/1477 metallo-â-lactamase IMP-1 produced
by Escherichia coli, Antimicrob. Agents Chemother. 43, 902-
906; Payne, D. J. (1993) Metallo-beta-lactamasessa new therapeutic
challenge, J. Med. Microbiol. 39, 93-99.
4. Galleni, M., Lamotte-Brasseur, J., Rossolini, G. M., Spencer, J.,
Dideberg, O., and Fre`re, J. M. (2001) Standard numbering scheme
for class B â-lactamases, Antimicrob. Agents Chemother. 45, 660-
663.
5. Fabiane, S. M., Sohi, M. K., Wan, T., Payne, D. J., Bateson, J.
H., Mitchell, T., and Sutton, B. J. (1998) Crystal structure of the
zinc-dependent â-lactamase from Bacillus cereus at 1.9 Å
resolution: binuclear active site with features of a mononuclear
enzyme, Biochemistry 37, 12404-12411.
6. Orellano, E. G., Girardini, J. E., Cricco, J. A., Ceccarelli, E. A.,
and Vila, A. J. (1998) Spectroscopic characterization of a binuclear
metal site in Bacillus cereus â-lactamase II, Biochemistry 37,
10173-10180; Paul-Soto, R., Bauer, R., Fre`re, J. M., Galleni,
M., Meyer-Klaucke, W., Nolting, H., Rossolini, G. M., de Seny,
D., Hernandez-Valladares, M., Zeppezauer, M., and Adolph, H.
W. (1999) Mono- and binuclear Zn2+-beta-lactamase. Role of the
conserved cysteine in the catalytic mechanism, J. Biol. Chem. 274,
13242-13249.
7. Concha, N. O., Rasmussen, B. A., Bush, K., and Herzberg, O.
(1996) Crystal structure of the wide-spectrum binuclear zinc
â-lactamase from Bacteroides fragilis, Structure 4, 823-836.
8. Paul-Soto, R., Hernadez-Valladares, M., Galleni, M., Bauer, R.,
Zeppezauer, M., Fre`re, J. M., and Adolph, H. W. (1998) Monoand
binuclear Zn-beta-lactamase from Bacteroides fragilis: catalytic
and structural roles of the zinc ions, FEBS Lett. 438, 137-
140; Yang, Y., Keeney, D., Tang, X., Canfield, N., and Rasmussen,
B. A. (1999) Kinetic properties and metal content of the
metallo-â-lactamase CcrA harboring selective amino acid substitutions,
J. Biol. Chem. 274, 15706-15711.
9. Wang, Z., Fast, W., and Benkovic, S. J. (1999) On the mechanism
of the Bacteroides fragilis metallo-â-lactamase, Biochemistry 38,
10013-10023.
10. Laraki, N., Franceschini, N., Rossolini, G. M., Santucci, P.,
Meunier, C., de Pauw, E., Amicosante, G., Fre`re, J. M., and
Galleni, M. (1999) Biochemical characterisation of the Pseudomonas
aeruginosa 101/1477 metallo-â-lactamase IMP-1 produced
by Escherichia coli, Antimicrob. Agents Chemother. 43, 902-
906; Haruta, S., Yamaguchi, H., Yamamoto, E. T., Eriguchi, Y.,
Nukaga, M., O’Hara, K., and Sawai, T. (2000) Functional analysis
of the active site of a metallo-â-lactamase proliferating in Japan,
Antimicrob. Agents Chemother. 44, 2304-2309.
11. Concha, N. O., Janson, C. A., Rowling, P., Pearson, S., Cheever,
C. A., Clarke, B. P., Lewis, C., Galleni, M., Fre`re, J. M., Payne,
D. J., Bateson, J. H., and Abdel-Meguid, S. S. (2000) Crystal
structure of the IMP-1 metallo â-lactamase from Pseudomonas
aeruginosa and its complex with a mercaptocarboxylate inhibi-tor: binding determinants of a potent, broad-spectrum inhibitor,
Biochemistry 39, 4288-4298.
12. Hernandez Valladares, M., Felici, A., Weber, G., Adolph, H. W.,
Zeppezauer, M., Rossolini, G. M., Amicosante, G., Fre`re, J. M.,
and Galleni, M. (1997) Zn(II) dependence of the Aeromonas
hydrophila AE036 metallo-â-lactamase activity and stability,
Biochemistry 36, 11534-11541.
13. Crowder, M. W., Walsh, T. R., Banovic, L., Pettit, M., and
Spencer, J. (1998) Overexpression, purification, and characterization
of the cloned metallo-â-lactamase (L1) from Stenotrophomonas
maltophilia, Antimicrob. Agents Chemother. 42, 921-926.
14. Mercuri, P. S., Bouillenne, F., Boschi, L., Lamotte-Brasseur, J.,
Amicosante, G., Devreese, B., van Beeumen, J., Fre`re, J. M.,
Rossolini, G. M., and Galleni, M. (2001) Biochemical characterization
of the FEZ-1 metallo-â-lactamase of Legionella gormanii
ATCC 33297T produced in Escherichia coli, Antimicrob. Agents
Chemother. 45, 1254-1262.
15. Carfi, A., Duee, E., Galleni, M., Fre`re, J. M., and Dideberg, O.
(1998) 1.85 Å resolution structure of the zinc(II) â-lactamase from
Bacillus cereus, Acta Crystallogr., Sect. D: Biol. Crystallogr. 54,
313-323.
16. Carfi, A., Duee, E., Paul-Soto, R., Galleni, M., Fre`re, J. M., and
Dideberg, O. (1998) X-ray structure of the ZnII â-lactamase from
Bacteroides fragilis in an orthorhombic crystal form, Acta
Crystallogr., Sect. D: Biol. Crystallogr. 54, 45-57.
17. Ullah, J. H., Walsh, T. R., Taylor, I. A., Emery, D. C., Verma, C.
S., Gamblin, S. J., and Spencer, J. (1998) The crystal structure of
the L1 metallo-â-lactamase from Stenotrophomonas maltophilia
at 1.7 Å resolution, J. Mol. Biol. 284, 125-136.
18. Garcı´a-Sa´ez, P., Mercuri, S., Papamicael, C., Kahn, R., Fre`re, J.
M., Galleni, M., Rossolini, G. M., and Dideberg, O. (2003) Threedimensional
structure of FEZ-1, a monomeric subclass B3 metallo-
â-lactamase from Fluoribacter gormanii, in native form and in
complex with D-captopril, J. Mol. Biol. 325, 651-660.
19. Garau, G., Bebrone, C., Anne, C., Galleni, M., Frere, J.-M., and
Dideberg, O. (2005) A metallo-â-lactamase in action: crystal
structure of the monozinc carbapenemase CphA and its complex
with biapenem, J. Mol. Biol. 345, 785-795.
20. Garcia-Saez, I., Hopkins, J., Papamicael, C., Franceschini, N.,
Amicosante, G., Rossolini, G. M., Galleni, M., Fre`re, J. M., and
Dideberg, O. (2003) The 1.5-Å Structure of Chryseobacterium
meningosepticum zinc â-lactamase in complex with the inhibitor,
D-Captopril, J. Biol. Chem. 278, 23868-23873.
21. Fitzgerald, P. M., Wu, J. K., and Toney, J. H. (1998) Unanticipated
inhibition of the metallo-â-lactamase from Bacteroides fragilis
by 4-morpholineethanesulfonic acid (MES): a crystallographic
study at 1.85-Å resolution, Biochemistry 37, 6791-6800; Concha,
N. O., Rasmussen, B. A., Bush, K., and Herzberg, O. (1997)
Crystal structure of the cadmium- and mercury-substituted metallobeta-
lactamase from Bacteroides fragilis, Protein Sci. 6, 2671-
2676; Toney, J. H., Fitzgerald, P. M., Grover-Sharma, N., Olson,
S. H., May, W. J., Sundelof, J. G., Vanderwall, D. E., Cleary, K.
A., Grant, S. K., Wu, J. K., Kozarich, J. W., Pompliano, D. L.,
and Hammond, G. G. (1998) Antibiotic sensitization using
biphenyl tetrazoles as potent inhibitors of Bacteroides fragilis
metallo-â-lactamase, Chem. Biol. 5, 185-196.
22. Carfi, A., Pares, S., Duee, E., Galleni, M., Duez, C., Fre`re, J. M.,
and Dideberg, O. (1995) The 3-D structure of a zinc metallo-â-
lactamase from Bacillus cereus reveals a new type of protein fold,
EMBO J. 14, 4914-4921.
23. Paul-Soto, R., Zeppezauer, M., Adolph, H. W., Galleni, M., Fre`re,
J. M., Carfi, A., Dideberg, O., Wouter, J., Hemmingsen, L., and
Bauer, R. (1999) Preference of Cd(II) and Zn(II) for the two metal
sites in Bacillus cereus â-lactamase II: a perturbed angular
correlation of ç-rays (PAC) spectroscopy study, Biochemistry 38,
16500-16506.
24. Toney, J. H., Hammond, G. G., Fitzgerald, P. M., Sharma, N.,
Balkovec, J. M., Rouen, G. P., Olson, S. H., Hammond, M. L.,
Greenlee, M. L., and Gao, Y. D. (2001) Succinic acids as potent
inhibitors of plasmid-borne IMP-1 metallo-â-lactamase, J. Biol.
Chem. 276, 31913-31918.
25. Prosperi-Meys, C., Wouters, J., Galleni, M., and Lamotte-Brasseur,
J. (2001) Substrate binding and catalytic mechanism of class B
â-lactamases: a molecular modelling study, Cell. Mol. Life Sci.
58, 2136-2143.
26. Hemmingsen, L., Damblon, C., Antony, J., Jensen, M., Adolph,
H. W., Wommer, S., Roberts, G. C. K., and Bauer, R. (2001)
Dynamics of mononuclear cadmium â-lactamase revealed by the
combination of NMR and PAC spectroscopy, J. Am. Chem. Soc.
123, 10329-10335; Damblon, C., Prosperi, C., Lian, L. Y.,
Barsukov, I., Paul-Soto, R., Galleni, M., Fre`re, J. M., and Roberts,
G. C. K. (1999) 1H-15N HMQC for the identification of metalbound
histidines in 113Cd-substituted Bacillus cereus zinc â-lactamase,
J. Am. Chem. Soc. 121, 11575-11576.
27. Walter, M. W., Felici, A., Galleni, M., Paul-Soto, R., Adlington,
R. M., Baldwin, J. E., Fre`re, J. M., Golobov, M., and Schofield,
C. J. (1996) Trifluoromethyl alcohol and ketone inhibitors
of metallo-â-lactamases, Bioorg. Med. Chem. Lett. 6, 2455-
2458.
28. Walter, M. W., Hernandez-Valladares, M., Adlington, R. M.,
Amicosante, G., Baldwin, J. E., Fre`re, J. M., Galleni, M.,
Rossolini, G. M., and Schofield, C. J. (1999) Hydroxamate
inhibitors of Aeromonas hydrophila AE036 metallo-â-lactamase,
Bioorg. Chem. 27, 35-40.
29. Arawaka, Y., Shibata, N., Shibayama, K., Kurokawa, H., Yagi,
T., Fujiwara, H., and Goto, M. (2000) Convenient test for
screening metallo-â-lactamase-producing gram-negative bacteria
by using thiol compounds, J. Clin. Microbiol. 38, 40-43.
30. Bounaga, S., Laws, A. P., Galleni, M., and Page, M. I. (1998)
The mechanism of catalysis and the inhibition of the Bacillus
cereus zinc-dependent â-lactamase, Biochem J. 331, 703-711.
31. Goto, M., Takahashi, T., Yamashita, F., Koreeda, A., Mori, H.,
Ohta, M., and Arakawa, Y. (1997) Inhibition of the metallo-â-
lactamase produced from Serratia marcescens by thiol compounds,
Biol. Pharm. Bull. 20, 1136-1140.
32. Greenlee, M. L., Laub, J. B., Balkovec, J. M., Hammond, M. L.,
Hammond, G. G., Pompliano, D. L., and Epstein-Toney, J. H.
(1999) Synthesis and SAR of thioester and thiol inhibitors of
IMP-1 metallo-â-lactamase, Bioorg. Med. Chem. Lett. 9, 2549-
2554.
33. Mollard, C., Moali, C., Papamicael, C., Damblon, C., Vessilier,
S., Amicosante, G., Schofield, C. J., Galleni, M., Fre`re, J. M.,
and Roberts, G. C. K. (2001) Thiomandelic acid, a broad-spectrum
inhibitor of zinc â-lactamases: kinetic and spectroscopic studies,
Biol. Chem. 276, 45015-45023.
34. Bounaga, S., Galleni, M., Laws, A. P., and Page, M. I (2001)
Cysteinyl peptide inhibitors of Bacillus cereus zinc beta-lactamase,
Bioorg. Med. Chem. 9, 503-510.
35. Hammond, G. G., Huber, J. L., Greenlee, M. L., Laub, J. B.,
Young, K., Silver, L. L., Balkovec, J. M., Pryor, K. D., Wu, J.
K., Leiting, B., Pompliano, D. L., and Toney, J. H. (1999)
Inhibition of IMP-1 metallo-â-lactamase and sensitisation of IMP-
1-producing bacteria by thioester derivatives, FEMS Microbiol.
Lett. 179, 289-296.
36. Payne, D. J., Bateson, J. H., Gasson, B. C., Proctor, D., Khushi,
T., Farmer, T. H., Toldon, D. A., Bell, D., Skett, P. W., Marshall,
A. C., Reid, R., Ghosez, L., Combret, Y., and Marchand-Brynaert,
J. (1997) Inhibition of metallo-â-lactamases by a series of
mercaptoacetic acid thiol ester derivatives, Antimicrob. Agents
Chemother. 41, 135-140; Payne, D. J., Bateson, J. H., Gasson,
B. C., Khushi, T., Proctor, D., Pearson, S. C., and Reid, R. (1997)
Inhibition of metallo-â-lactamases by a series of thiol ester
derivatives of mercapto-phenylacetic acid, FEMS Microbiol. Lett.
157, 171-175.
37. Toney, J. H., Fitzgerald, P. M., Grover-Sharma, N., Olson, S. H.,
May, W. J., Sundelof, J. G., Vanderwall, D. E., Cleary, K. A.,
Grant, S. K., Wu, J. K., Kozarich, J. W., Pompliano, D. L., and
Hammond, G. G. (1998) Antibiotic sensitization using biphenyl
tetrazoles as potent inhibitors of Bacteroides fragilis metallo-â-
lactamase, Chem. Biol. 5, 185-196; Toney, J. H., Cleary, K. A.,
Hammond, G. G., Yuan, X., May, W. J., Hutchins, S. M., Ashton,
W. T., and Vanderwall, D. E. (1999) Structure-activity relationships
of biphenyl tetrazoles as metallo-â-lactamase inhibitors,
Bioorg. Med. Chem. Lett. 9, 2741-2746.
38. Payne, D. J., Hueso-Rodrı´guez, J. A., Boyd, H., Concha, N. O.,
Janson, C. A., Gilpin, M., Bateson, J. H., Cheever, C., Niconovich,
N. L., Pearson, S., Rittenhouse, S., Tew, D., Dı´ez, E., Pe´rez, P.,
De La Fuente, J., Rees, M., and Rivera-Sagredo, A. (2002)
Identification of a series of tricyclic natural products as potent
broad-spectrum inhibitors of metallo-â-lactamases, Antimicrob.
Agents Chemother. 46, 1880-1886.
39. Siemann, S., Evanoff, D. P., Marrone, L., Clarke, A. J., Viswantha,
T., and Dimitrenko, G. I. (2002) N-arylsulfonyl hydrazones as
inhibitors of IMP-1 metallo-â-lactamase, Antimicrob. Agents
Chemother. 46, 2450-2457.
40. Wang, Z., and Benkovic, S. J. (1998) Purification, characterization,
and kinetic studies of a soluble Bacteroides fragilis metallo-â-lactamase that provides multiple antibiotic resistance, J. Biol.
Chem. 273, 22402-22408.
41. Davies, A., M., and Page, M. I. (1985) Opening of the thiazolidine
ring of penicillin derivatives, J. Chem. Soc., Chem. Commun.,
1702-1704.
42. Pratt, R. F., and Faraci, W. S. (1986) Direct observation by 1H
NMR of cephalosporoate intermediates in aqueous solution during
the hydrazinolysis and â-lactamase-catalyzed hydrolysis of cephalosporins
with 3¢ leaving groups: kinetics and equilibria of the 3¢
elimination reaction, J. Am. Chem. Soc. 108, 5328-5333; Bundgaard,
H. (1977) Isolation and characterization of cephalexin
degradation products formed in neutral aqueous solution, Arch.
Pharm. Chemi, Sci. Ed. 5, 149-155. Vilanova, B., Frau, J.,
Donoso, J., Munoz, F., and Garcia Blanco, F. G. (1997) â-Lactamase-
catalysed hydrolysis of cephalexin: evolution of the
cephalosporoate intermediate, J. Chem. Soc., Perkin Trans. 2,
2439-2444.
43. Morrison, J. F., and Walsh, C., T. (1988) The behavior and
significance of slow-binding enzyme inhibitors, AdV. Enzymol.
Relat. Areas Mol. Biol. 61, 201-301.
44. Ellman, G. L. (1959) Tissue sulfhydryl groups, Arch. Biochem.
Biophys. 82, 70-77; Riddles, P. W., Blakeley, R. L., and Zerner,
B. (1979) Ellman’s reagent: 5,5¢-dithiobis(2-nitrobenzoic acid)s
a reexamination, Anal. Biochem. 94, 75-81.
45. Bundgaard, H. (1976) Hydrolysis and intramolecular aminolysis
of cephalexin and cephaloglycin in aqueous solution, Arch. Pharm.
Chemi, Sci. Ed. 4, 25-43.
46. Dinner, A. (1977) Cephalosporin degradations, J. Med. Chem. 20,
963-965.
47. Vilanova, B., Munoz, F., Donoso, J., and Garcia Blanco, F. (1993)
Degradation of cephaloridine on alkaline hydrolysis, HelV. Chim.
Acta 76, 1619-1625.
48. Page, M. I. (1987) The mechanisms of reactions of â-lactam
antibiotics, AdV. Phys. Org. Chem. 23, 165-270.
49. Pelton, J. G., Torchia, D. A., Meadow, N. D., and Roseman, S.
(1993) Tautomeric states of the active-site histidines of phosphorylated
and unphosphorylated III(Glc), a signal-transducing protein
from Escherichia coli, using two-dimensional heteronuclear NMR
techniques, Protein Sci. 2, 543-558.
50. Damblon, C., Jensen, M., Ababou, A., Barsukov, I., Papamicael,
C., Schofield, C. J., Olsen, L., Bauer, R., and Roberts, G. C. (2003)
The inhibitor thiomandelic acid binds to both metal ions in
metallo-beta-lactamase and induces positive cooperativity in metal
binding, J. Biol. Chem. 278, 29240-29251.
51. Siemann, S., Clarke, A. J., Viswanatha, T., and Dmitrienko, G. I.
(2003) Thiols as classical and slow-binding inhibitors of IMP-1
and other binuclear metallo-â-lactamases, Biochemistry 42, 1673-
1683.
52. Ghebre-Sellassie, I., Hem, S. L., and Knevel, A. M. (1984)
Epimerization of benzylpenicilloic acid in alkaline media, J.
Pharm. Sci. 73, 125-128.
BI050302J

Depositing User: Sara Taylor
Date Deposited: 07 Feb 2008 16:47
Last Modified: 20 Oct 2008 09:45
URI: http://eprints.hud.ac.uk/id/eprint/510

Item control for Repository Staff only:

View Item

University of Huddersfield, Queensgate, Huddersfield, HD1 3DH Copyright and Disclaimer All rights reserved ©