Search:
Computing and Library Services - delivering an inspiring information environment

The activity of the dinuclear cobalt-β-lactamase from bacillus cereus in catalysing the hydrolysis of β-lactams

Badarau, Adriana, Damblon, Christian and Page, Michael I. (2007) The activity of the dinuclear cobalt-β-lactamase from bacillus cereus in catalysing the hydrolysis of β-lactams. Biochemical Journal, 401. pp. 197-203. ISSN 0264-6021

Metadata only available from this repository.

Abstract

Metallo-b-lactamases are native zinc enzymes that catalyse the hydrolysis of b-lactam antibiotics, but are also able to function with cobalt(II) and require one or two metal-ions for catalytic activity. The hydrolysis of cefoxitin, cephaloridine and benzylpenicillin catalysed by CoBcII (cobalt-substituted b-lactamase from Bacillus cereus) has been studied at different pHs and metal-ion concentrations. An enzyme group of pKa 6.52±0.1 is found to be required in its deprotonated form for metal-ion binding and catalysis. The species that results from the loss of one cobalt ion from the enzyme has no significant catalytic activity and is thought to be the mononuclear CoBcII. It appears that dinuclear CoBcII is the active form of the enzyme necessary for turnover, while the mononuclear CoBcII is only involved in substrate binding. The cobalt-substituted enzyme is a more efficient catalyst than the native enzyme for the hydrolysis of some b-lactam antibiotics suggesting that the role of the metal-ion is predominantly to provide the nucleophilic hydroxide, rather than to act as a Lewis acid to polarize the carbonyl group and stabilize the oxyanion tetrahedral intermediate.

Item Type: Article
Subjects: Q Science > Q Science (General)
Q Science > QD Chemistry
Schools: School of Applied Sciences
School of Applied Sciences > Biomolecular Sciences Research Centre
Related URLs:
References:

1 Fr`ere, J. M. (1995) β-Lactamases and bacterial resistance to antibiotics. Mol. Microbiol.
16, 385–395
2 Galleni, M., Lamotte-Brasseur, J., Rossolini, G. M., Spencer, J., Dideberg, O. and Fr`ere,
J. M. (2001) Standard numbering scheme for class B β-lactamases.
Antimicrob. Agents Chemother. 45, 660–663
3 Fabiane, S. M., Sohi, M. K., Wan, T., Payne, D. J., Bateson, J. H., Mitchell, T. and Sutton,
B. J. (1998) Crystal structure of the zinc-dependent β-lactamase from Bacillus cereus at
1.9A°
resolution: binuclear active site with features of a mononuclear enzyme.
Biochemistry 37, 12404–12411
4 Orellano, E. G., Girardini, J. E., Cricco, J. A., Ceccarelli, E. A. and Vila, A. J. (1998)
Spectroscopic characterization of a binuclear metal site in Bacillus cereus β-lactamase
II. Biochemistry 37, 10173–10180
5 Paul-Soto, R., Bauer, R., Fr`ere, J. M., Galleni, M., Meyer-Klaucke, W., Nolting, H.,
Rossolini, G. M., de Seny, D., Hernandez-Valladares, M., Zeppezauer, M. and Adolph,
H. W. (1999) Mono- and binuclear Zn2+-β-lactamase. Role of the conserved cysteine in
the catalytic mechanism. J. Biol. Chem. 274, 13242–13249
6 Concha, N. O., Rasmussen, B. A., Bush, K. and Herzberg, O. (1996) Crystal structure of
the wide-spectrum binuclear zinc β-lactamase from Bacteroides fragilis. Structure 4,
823–836
7 Paul-Soto, R., Hernadez-Valladares, M., Galleni, M., Bauer, R., Zeppezauer, M., Fr`ere,
J. M. and Adolph, H. W. (1998) Mono- and binuclear Zn2+-β-lactamase from
Bacteroides fragilis: catalytic and structural roles of the zinc ions. FEBS Lett. 438,
137–140
8 Yang, Y., Keeney, D., Tang, X., Canfield, N. and Rasmussen, B. A. (1999) Kinetic
properties and metal content of the metallo-β-lactamase CcrA harboring selective amino
acid substitutions. J. Biol. Chem. 274, 15706–15711
9 Wang, Z., Fast, W. and Benkovic, S. J. (1999) On the mechanism of the Bacteroides
fragilis metallo-β-lactamase. Biochemistry 38, 10013–10023
10 Laraki, N., Franceschini, N., Rossolini, G. M., Santucci, P., Meunier, C., de Pauw, E.,
Amicosante, G., Fr`ere, J. M. and Galleni, M. (1999) Biochemical characterisation of the
Pseudomonas aeruginosa 101/1477 metallo-β-lactamase IMP-1 produced by
Escherichia coli. Antimicrob. Agents Chemother. 43, 902–906
11 Haruta, S., Yamaguchi, H., Yamamoto, E. T., Eriguchi, Y., Nukaga, M., O’Hara, K. and
Sawai, T. (2000) Functional analysis of the active site of a metallo-β-lactamase
proliferating in Japan. Antimicrob. Agents Chemother. 44, 2304–2309
12 Concha, N. O., Janson, C. A., Rowling, P., Pearson, S., Cheever, C. A., Clarke, B. P.,
Lewis, C., Galleni, M., Fr`ere, J. M., Payne, D. J. et al. (2000) Crystal structure of the
IMP-1 metallo-β-lactamase from Pseudomonas aeruginosa and its complex with a
mercaptocarboxylate inhibitor: binding determinants of a potent, broad-spectrum
inhibitor. Biochemistry 39, 4288–4298
13 Garcia-Saez, I., Hopkins, J., Papamicael, C., Franceschini, N., Amicosante, G.,
Rossolini, G. M., Galleni, M., Fr`ere, J. M. and Dideberg, O. (2003) The 1.5A°
structure of
Chryseobacterium meningosepticum zinc β-lactamase in complex with the inhibitor,
D-captopril. J. Biol. Chem. 278, 23868–23873
14 Crowder, M. W. and Walsh, T. R. (1999) Structure and function of metallo-β-lactamases.
Recent Res. Dev. Antimicrob. Agents Chemother. 3, 105–132
15 Hernandez Valladares, M., Felici, A., Weber, G., Adolph, H. W., Zeppezauer, M.,
Rossolini, G. M., Amicosante, G., Fr`ere, J. M. and Galleni, M. (1997) Zn(II) dependence
of the Aeromonas hydrophila AE036 metallo-β-lactamase activity and stability.
Biochemistry 36, 11534–11541
16 Crawford, P. A., Yang, K. W., Sharma, N., Bennett, B. and Crowder, M. W. (2005)
Spectroscopic studies on cobalt(II)-substituted metallo-β-lactamase ImiS from
Aeromonas veronii bv. sobria . Biochemistry 44, 5168–5176
17 Rasmussen, B. A. and Bush, K. (1997) Carbapenem hydrolysing β-lactamases.
Antimicrob. Agents Chemother. 41, 223–232
18 Felici, A., Amicosante, G., Oratore, A., Strom, R., Ledent, P., Joris, B., Fanuel, L. and
Fr`ere, J. M. (1993) An overview of the kinetic parameters of class B β-lactamases.
Biochem. J. 291, 151–155
19 Felici, A. and Amicosante, G. (1995) Kinetic analysis of extension of substrate specificity
with Xanthomonas maltophilia , Aeromonas hydrophila, and Bacillus cereus
metallo-β-lactamases. Antimicrob. Agents Chemother. 39, 192–199
20 Crowder, M. W., Walsh, T. R., Banovic, L., Pettit, M. and Spencer, J. (1998)
Overexpression, purification, and characterization of the cloned metallo-β-lactamase
(L1) from Stenotrophomonas maltophilia . Antimicrob. Agents Chemother. 42, 921–926
21 Mercuri, P. S., Bouillenne, F., Boschi, L., Lammote-Brasseur, J., Amicosante, G.,
Devreese, B., Van Beeumen, J., Fr`ere, J. M., Rossolini, G. M. and Galleni, M. (2001)
Biochemical characterization of the FEZ-1 metallo-β-lactamase of Legionella gormanii
ATCC 33297T produced in Escherichia coli. Antimicrob. Agents Chemother. 45,
1254–1262
22 Carfi, A., Du´ee, E., Galleni, M., Fr`ere, J. M. and Dideberg, O. (1998) 1.85A°
resolution
structure of the zinc (II) β-lactamase from Bacillus cereus. Acta Crystallogr.
Sect. D Biol. Crystallogr. 54, 313–323
23 Carfi, A., Duee, E., Paul-Soto, R., Galleni, M., Fr`ere, J. M. and Dideberg, O. (1998) X-ray
structure of the Zn(II) β-lactamase from Bacteroides fragilis in an orthorhombic crystal
form. Acta Crystallogr. Sect. D Biol. Crystallogr. 54, 45–57
24 Concha, N. O., Rasmussen, B. A., Bush, K. and Herzberg, O. (1997) Crystal structure of
the cadmium- and mercury-substituted metallo-β-lactamase from Bacteroides fragilis.
Protein Sci. 6, 2671–2676
25 Paul-Soto, R., Zeppezauer, M., Adolph, H. W., Galleni, M., Fr`ere, J. M., Carfi, A.,
Dideberg, O., Wouter, J., Hemmingsen, L. and Bauer, R. (1999) Preference of Cd(II) and
Zn(II) for the two metal sites in Bacillus cereus β-lactamase II: a perturbed angular
correlation of γ -rays (PAC) spectroscopy study. Biochemistry 38, 16500–16506
26 Carfi, A., Pares, S., Duee, E., Galleni, M., Duez, C., Fr`ere, J. M. and Dideberg, O. (1995)
The 3-D structure of a zinc metallo-β-lactamase from Bacillus cereus reveals a new
type of protein fold. EMBO J. 14, 4914–4921
27 de Seny, D., Heinz, U., Wommer, S., Kiefer, M., Meyer-Klaucke, W., Galleni, M., Fr`ere,
J. M., Bauer, R. and Adolph, H. W. (2001) Metal ion binding and coordination geometry
for wild type and mutants of metallo-β-lactamase from Bacillus cereus 569/H/9 (BcII);
a combined thermodynamic, kinetic and spectroscopic approach. J. Biol. Chem. 276,
45065–45078
28 Wommer, S., Rival, S., Heinz, U., Galleni, M., Fr`ere, J. M., Franceschini, N.,
Amicosante, G., Rasmussen, B., Bauer, R. and Adolph, H. W. (2002) Substrate activated
zinc binding of metallo-β-lactamases; physiological importance of the mononuclear
enzymes. J. Biol. Chem. 277, 24142–24147
29 Crowder, M. W., Wang, Z., Franklin, S. L., Zovinka, E. P. and Benkovic, S. J. (1996)
Characterization of the metal-binding sites of the β-lactamase from Bacteroides fragilis.
Biochemistry 35, 12126–12132
30 Fast, W., Wang, Z. and Benkovic, S. J. (2001) Familial mutations and zinc stoichiometry
determine the rate-limiting step of nitrocefin hydrolysis by metallo-β-lactamase from
Bacteroides fragilis. Biochemistry 40, 1640–1650
31 Bounaga, S., Laws, A. P., Galleni, M. and Page, M. I. (1998) The mechanism of catalysis
and the inhibition of the Bacillus cereus zinc-dependent β-lactamase. Biochem. J. 331,
703–711
32 Auld, D. S. (1995) Removal and replacement of metal ions in metallopepatidases.
Methods Enzymol. 248, 228–24232a Maret, W. and Vallee, B. L. (1993) Cobalt as probe and label of proteins. Methods
Enzymol. 226, 52–71
33 Vila, A. J. and Fernandez, C. O. (1997) Alkaline transition of Rhus vernicifera
stellacyanin, an unusual Blue copper protein. Biochemistry 36, 10566–10570
33a Guo, J. Q., Wang, S. K., Dong, J., Qiu, H. W., Scott, R. A. and Giedroc, D. P. (1995) X-ray
and visible absorption spectroscopy of wild-type and mutant T4 gene 32 proteins: His61,
not His81 is the non-thiolate zinc ligand. J. Am. Chem. Soc. 117, 9437–9440
34 Bertini, I., Johnsson, B. H., Luchinat, C., Pierattelli, R. and Vila, A. J. (1994) Strategies of
signal assignments in paramagnetic metalloproteins. An NMR investigation of the
thiocyanate adduct of the cobalt (II) substituted human carbonic anhydrase II.
J. Magn. Reson. Ser. B 104, 230–239
35 Oz, G., Pountney, D. L. and Armitage, I. M. (1998) NMR spectroscopic studies of I=1/2
metal ions in biological systems. Biochem. Cell Biol. 76, 223–234
36 Bennet, B. and and Holz, R. C. (1997) EPR studies on the mono- and
dicobalt(II)-substituted forms of the aminopeptidase from Aeromonas proteolytica .
Insight into the catalytic mechanism of dinuclear hydrolases. J. Am. Chem. Soc. 119,
1923–1933
37 Bauer, R., Adolph, H. W., Andersson, I., Danielsen, E., Formicka, G. and Zeppezauer, M.
(1991) Coordination geometry for cadmium in the catalytic zinc site of horse liver
alcohol dehydrogenase: studies by PAC spectroscopy. Eur. Biophys. J. 20, 215–221
38 Bicknell, R., Knott-Hunziker, Y. and Waley, S. G. (1983) The pH-dependence of class B
and class C β-lactamases. Biochem. J. 213, 61–66
39 Baldwin, G. S., Edwards, G. F., Kiener, P. A., Tully, M. J., Waley, S. G. and Abraham, E. P.
(1980) Production of a variant of β-lactamase II with selectively decreased
cephalosporinase activity by a mutant of Bacillus cereus 569/H/9. Biochem. J. 191,
111–116
40 Wang, Z. and Benkovic, S. J. (1998) Purification, characterization, and kinetic studies of
a soluble Bacteroides fragilis metallo-β-lactamase that provides multiple antibiotic
resistance, J. Biol. Chem. 273, 22402–22408
41 Myers, J. L. and Shaw, R. W. (1989) Production, purification and spectral properties of
metal-dependent β-lactamase from Bacillus cereus. Biochim. Biophys. Acta 995,
264–272
42 Garrity, J. D., Bennet, B. and Crowder, M. W. (2005) Direct evidence that the
reaction intermediate of metallo-β-lactamase L1 is metal bound. Biochemistry 44,
1078–1087
43 Crawford, P. A., Sharma, N., Chandrasekar, S., Sigdel, T., Walsh, T. R., Spencer, J. and
Crowder, M. W. (2004) Over-expression, purification, and characterization of
metallo-β-lactamase ImiS from Aeromonas veronii bv. sobria . Protein Expression Purif.
36, 272–279
44 Bicknell, R. and Waley, S. G. (1985) Cryoenzymology of Bacillus cereus β-lactamase II.
Biochemistry 24, 6876–6887
45 Bicknell, R., Schaffer, A, Waley, S. G. and Auld, D. S. (1986) Changes in the coordination
geometry of the active-site metal during catalysis of benzylpenicillin hydrolysis by
Bacillus cereus β-lactamase II. Biochemistry 25, 7208–7215
46 Badarau, A. (2006) Reactivity and inhibition of metallo-β-lactamases, Ph.D. Thesis,
University of Huddersfield, Huddersfield, U.K.
47 Damblon, C., Jensen, M., Ababou, A., Barsukov, I., Papamicael, C., Schofield, C. J.,
Olsen, L., Bauer, R. and Roberts, G. C. (2003) The inhibitor thiomandelic acid binds to
both metal ions in metallo-β-lactamase and induces positive cooperativity in metal
binding. J. Biol. Chem. 31, 29240–29251
48 Rasia, R. M. and Vila, A. J. (2004) Structural determinants of substrate binding to
Bacillus cereus metallo-β-lactamase. J. Biol. Chem. 279, 26046–26051

Depositing User: Sara Taylor
Date Deposited: 04 Feb 2008 12:21
Last Modified: 20 Oct 2008 10:48
URI: http://eprints.hud.ac.uk/id/eprint/507

Item control for Repository Staff only:

View Item

University of Huddersfield, Queensgate, Huddersfield, HD1 3DH Copyright and Disclaimer All rights reserved ©