Search:
Computing and Library Services - delivering an inspiring information environment

Mechanism of the sulphurisation of phosphines and phosphites using 3-amino-1,2,4-dithiazole-5-thione (Xanthane Hydride)

Hanusek, Jifi, Russell, Mark A., Laws, Andrew P., Jansa, Petr, Atherton, John H., Fettes, Kevin and Page, Michael I. (2007) Mechanism of the sulphurisation of phosphines and phosphites using 3-amino-1,2,4-dithiazole-5-thione (Xanthane Hydride). Organic and Biomolecular Chemistry, 5 (3). pp. 478-484. ISSN 1477-0539

Metadata only available from this repository.

Abstract

Contrary to a previous report, the sulfurisation of phosphorus(III) derivatives by 3-amino-1,2,4-dithiazole-5-thione (xanthane hydride) does not yield carbon disulfide and cyanamide as the additional reaction products. The reaction of xanthane hydride with triphenyl phosphine or trimethyl phosphite yields triphenyl phosphine sulfide or trimethyl thiophosphate, respectively, and thiocarbamoyl isothiocyanate which has been trapped with nucleophiles. The reaction pathway involves initial nucleophilic attack of the phosphorus at sulfur next to the thiocarbonyl group of xanthane hydride followed by decomposition of the phosphonium intermediate formed to products. The Hammett -values for the sulfurisation of substituted triphenyl phosphines and triphenyl phosphites in acetonitrile are –1.0. The entropies of activation are very negative (–114 ± 15 J mol–1 K–1) with little dependence on solvent which is consistent with a bimolecular association step leading to the transition state. The negative values of S and values indicate that the rate limiting step of the sulfurisation reaction is formation of the phosphonium ion intermediate which has an early transition state with little covalent bond formation. The site of nucleophilic attack has been also confirmed using computational calculations

Item Type: Article
Subjects: Q Science > Q Science (General)
Q Science > QD Chemistry
Schools: School of Applied Sciences
School of Applied Sciences > Biomolecular Sciences Research Centre
Related URLs:
References:

1 F. Eckstein and G. Gish, Trends Biochem. Sci., 1989, 14, 97–100; G.
Zon and W. J. Stec, in Oligonucleotides and Analogues: A Practical
Approach, ed. F. Eckstein, IRL Press, Oxford, 1991, pp. 87–108; P.
Iversen, Anti-Cancer Drug Des., 1991, 6, 539–568; P. C. Zamecnik, in
Prospects for Antisense Nucleic Acid Therapy for Cancer and AIDS,
ed. E. Wickstrom, Wiley Liss, New York, 1991, pp. 1–6; S. Agrawal,
Trends Biotechnol., 1992, 10, 152; C. K. Mirabelli and S. T. Crooke, in
Antisense Research and Applications, ed. S. T. Crooke and B. Lebleu,
CRC,Ann Arbor, MI, 1993, pp. 7–35 and references cited therein.
2 S. T. Crooke and C. F. Bennett, Annu. Rev. Pharmacol. Toxicol., 1996,
36, 107–129; D. A. Braasch and D. R. Corey, Biochemistry, 2002, 41,
4503–4510.
3 E. Uhlmann and A. Peyman, Chem. Rev., 1990, 90, 544–583; W.-Y.
Gao, F.-S. Han, C. Storm,W. Egan and Y.-C. Cheng, Mol. Pharmacol.,
1992, 41, 223–229; R. W. Wagner, Nature, 1994, 372, 333–335; J.-P.
Bongartz, A.-M. Aubertin, P. G. Milhaud and B. Lebleu, Nucleic Acids
Res., 1994, 22, 4681–4688.
4 J. F.Milligan and O. C. Uhlenbeck, Biochemistry, 1989, 28, 2849–2855;
M. Koziolkiewicz and W. J. Stec, Biochemistry, 1992, 31, 9460–9466;
M. J. Moore and P. A. Sharp, Nature, 1993, 365, 364–368.
5 P. C. J. Kamer, H. C. P. F. Roelen, H. van den Elst, G. A. van der Marel
and J. H. van Boom, Tetrahedron Lett., 1989, 30, 6757–6760.
6 R. P. Iyer, L. R. Phillips, W. Egan, J. B. Regan and S. L. Beaucage,
J. Org. Chem., 1990, 55, 4693–4699.
7 H. Vu and B. L. Hirschbein, Tetrahedron Lett., 1991, 32, 3005–3008.
8 M. V. Rao, C. B. Reese andZ.Zhao, Tetrahedron Lett., 1992, 33, 4839–
4842.
9 W. J. Stec, B. Uznanski and A.Wilk, Tetrahedron Lett., 1993, 33, 5317–
5320.
10 M. V. Rao and K. Macfarlane, Tetrahedron Lett., 1994, 35, 6741–6744.
11 V. A. Efimov, A. L. Kalinkina, O. G. Chakhmakhcheva, T. S. Hill and
K. Jayaraman, Nucleic Acids Res., 1995, 23, 4029–4033.
12 Q. Xu,K.Musier-Forsyth,R. P.Hammer andG. Barany, Nucleic Acids
Res., 1996, 24, 1602–1607.
13 Z. Zhang;, A. Nichols, M. Alsbeti, J. X. Tang and J.-Y. Tang,
Tetrahedron Lett., 1998, 39, 2467–2470.
14 Z. Zhang, A. Nichols, J. X. Tang, Y. Han and J.-Y. Tang, Tetrahedron
Lett., 1999, 40, 2095–2098.
15 J.-Y. Tang, Z. Han, J. X. Tang and Z. Zhang, Org. Process Res. Dev.,
2000, 4, 194–198.
16 A. Hantzsch and M. Wolvekamp, Justus Liebigs Ann. Chem., 1904,
331, 265–297.
17 J. D. Pera, US Pat., 2 816 136, 1957; J. P. Fackler and D. Coucovanis,
J. Am. Chem. Soc., 1966, 88, 3913–3920; W. A. Thaler and J. R.
McDivitt, J. Org. Chem., 1971, 36, 14–18; C. J. Burchell, S. M. Aucott,
H. L. Milton, A. M. Z. Slawin and J. D. Woolins, Dalton Trans., 2004,
369–374.
18 A. R. Butler and Ch. Glidewell, J. Chem. Res. (S), 1982, 65; A. R.
Butler and Ch. Glidewell, J. Chem. Res. (M), 1982, 801–815.
19 J. Goerdeler and H. L¨udke, Chem. Ber., 1970, 103, 3393–3406.
20 L. A. Spurlock and P. E. Newallis, J. Org. Chem., 1968, 33, 2073–
2076.
21 A. Hordvik, Acta Chem. Scand., 1963, 17, 2575–2592.
22 W. C. Davies and W. P. G. Lewis, J. Chem. Soc., 1934, 1599–1604.
23 P. D. Bartlett and G. Meguerian, J. Am. Chem. Soc., 1956, 78, 3710–
3715.
24 C. D. Hall, B. R. Tweedy, R. Kayhanian and J. R. Lloyd, J. Chem. Soc.,
Perkin Trans. 2, 1992, 775–779.
25 W. A. Henderson, Jr. and C. A. Streuli, J. Am. Chem. Soc., 1960, 82,
5791–5794.
26 D.D. Perrin, B. Dempsey and E. P. Serjeant, pKa Prediction for Organic
Acids and Bases, Chapman and Hall, London, 1981.
27 B. Kempf and H. Mayr, Chem.–Eur. J., 2005, 11, 917–927.
28 M. J. Frisch, G.W. Trucks, H. B. Schlegel, G. E. Scuseria,M. A. Robb,
J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C.
Burant, J.M.Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci,
M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M.
Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T.
Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E.
Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo,
R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi,
C. Pomelli, J. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P.
Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D.
Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K.
Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S.
Clifford, J. Cioslowski, B. B. Stefanov,G. Liu,A. Liashenko, P. Piskorz,
I. Komaromi, R. L.Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y.
Peng, A. Nanayakkara,M. Challacombe, P.M.W. Gill, B. G. Johnson,
W. Chen, M. W. Wong, C. Gonzalez and J. A. Pople, GAUSSIAN 03
(Revision B.4), Gaussian, Inc., Pittsburgh, PA, 2003.
29 A. D. Becke, Phys. Rev. A, 1988, 38, 3098–3100; C. Lee, W. Yang and
R. G. Parr, Phys. Rev. B, 1988, 37, 785–789; A. D. Becke, J. Chem.
Phys., 1993, 98, 5648–5652.
30 A. Schafer, H. Horn and R. Ahlrichs, J. Chem. Phys., 1992, 97, 2571–
2577.
31 S. Miertus, E. Scrocco and J. Tomasi, Chem. Phys., 1981, 55, 117–129;
M. Cossi, G. Scalmani, N. Rega and V. Barone, J. Chem. Phys., 2002,
117, 43–54.
32 A. E. Reed, L. A. Curtis and F. Weinhold, Chem. Rev., 1988, 88, 899–
926.
33 E. N. Walsh, J. Am. Chem. Soc., 1959, 81, 3023–3026.
34 J. E. Oliver, R. T. Brown and N. L. Redfearn, J. Heterocycl. Chem.,
1972, 9, 447–449.
35 N. Burford, B. W. Royan, E. v. H. Spence and R. D. Rogers, J. Chem.
Soc., Dalton Trans., 1990, 2111–2117.
36 M. Bollmark and J. Stawinski, Chem. Commun., 2001, 771–772.

Depositing User: Sara Taylor
Date Deposited: 25 Jan 2008 16:44
Last Modified: 02 Jun 2009 11:12
URI: http://eprints.hud.ac.uk/id/eprint/503

Item control for Repository Staff only:

View Item

University of Huddersfield, Queensgate, Huddersfield, HD1 3DH Copyright and Disclaimer All rights reserved ©