Search:
Computing and Library Services - delivering an inspiring information environment

Cs-doped H4SiW12O40 catalysts for biodiesel applications

Pesaresi, L., Brown, D.R., Lee, Adam F., Montero, J.M., Williams, H.M. and Wilson, K. (2009) Cs-doped H4SiW12O40 catalysts for biodiesel applications. Applied Catalysis A General, 360 (1). pp. 50-58. ISSN 0926-860X

Metadata only available from this repository.

Abstract

Cs exchanged silicotungstic acid catalysts of general formula CsxH4−xSiW12O40 (x = 0.8–4) have been synthesised and characterised by a range of techniques including elemental analysis, N2 gas adsorption, XRD, XPS and NH3 flow calorimetry. Cs substitution promotes recrystallisation of the parent H4SiW12O40 polyoxometallate to the Cs4 salt, via a stable intermediate phase formed at compositions between Cs0.8–2.8. This recrystallisation is accompanied by a pronounced rise and subsequent fall in porosity, with a maximum mesopore volume obtained for materials containing 2.8 Cs atoms per Keggin unit. Calorimetry reveals all CsxH4−xSiW12O40 are strong acids, with ΔHθads(NH3) ranging from −142 to 116 kJ mol−1 with increasing Cs content, consistently weaker than their phosphotungstic analogues. CsxH4−xSiW12O40 materials are active catalysts for both C4 and C8 triglyceride transesterification, and palmitic acid esterification with methanol. For loadings ≤0.8 Cs per Keggin, (trans)esterification activity arises from homogeneous contributions. However, higher degrees of substitution result in entirely heterogeneous catalysis, with rates proportional to the density of accessible acid sites present within mesopores.

Item Type: Article
Subjects: Q Science > QD Chemistry
Schools: School of Applied Sciences
School of Applied Sciences > Materials and Catalysis Research Centre
Related URLs:
Depositing User: Graham Stone
Date Deposited: 11 Jun 2009 12:38
Last Modified: 24 Mar 2011 11:42
URI: http://eprints.hud.ac.uk/id/eprint/4682

Item control for Repository Staff only:

View Item

University of Huddersfield, Queensgate, Huddersfield, HD1 3DH Copyright and Disclaimer All rights reserved ©