Computing and Library Services - delivering an inspiring information environment

Crystal structure and dielectric properties of LaYbO3 ceramics

Feteira, A., Gillie, Lisa .J., Elsebrock, R. and Sinclair, D.C. (2007) Crystal structure and dielectric properties of LaYbO3 ceramics. Journal of the American Ceramic Society, 90 (5). pp. 1475-1482. ISSN 0002-7820

[img] PDF
Restricted to Registered users only

Download (1102kB)


    The crystal structure and dielectric properties of LaYbO3 ceramics prepared by the mixed-oxide route have been investigated. Rietveld refinements performed on X-ray and neutron diffraction data show the room-temperature structure to be best described by the orthorhombic Pnma space group [a=6.02628(9) Å, b=8.39857(11) Å, and c=5.82717(7) Å; Z=4, and theoretical density, Dx=8.1 g/cm3] in agreement with electron diffraction experiments. LaYbO3 ceramics fired at 1600°C for 4 h attain 97% of Dx and their microstructures consist of randomly distributed equiaxed grains with an average size of 8 μm. Conventional transmission electron microscopy shows densification to occur in the absence of a liquid phase and reveals domain-free grains. The relative permittivity, r, of LaYbO3 ceramics at radio frequencies is 26 in the range 10–300 K; however, a small dielectric anomaly is detected at 15 K. At room temperature and microwave frequencies, LaYbO3 ceramics exhibit r 26, Q × fr20 613 GHz (at 7 GHz), and τf−22 ppm/K. Q × fr show complex subambient behavior, decreasing from a plateau value of 20 000 GHz between 300 and 200 K to a second plateau value of 6000 GHz at 90 K before decreasing to <1000 GHz at 10 K. The large decrease in Q × fr at low temperature may be related to the onset of antiferromagnetism at 2.7 K.1

    Item Type: Article
    Additional Information: © 2007 The American Ceramic Society
    Subjects: Q Science > QD Chemistry
    Schools: School of Applied Sciences
    School of Applied Sciences > Materials and Catalysis Research Centre
    Related URLs:

    1K. Ito, K. Tezuka, and Y. Hinatsu, "Preparation, Magnetic Susceptibility, and Specific Heat on Interlanthanide Perovskites ABO3 (A=La–Nd, B=Dy–Lu)," J. Solid State Chem., 157, 173–9 (2001).
    CrossRef, ISI, Chemport
    2W. Wersing, "Microwave Ceramics for Resonators and Filters," Curr. Opinion Solid State Mater. Sci., 1, 715–31 (1996).
    CrossRef, ISI
    3S. Y. Cho, K. S. Hong, and K. H. Ko, "Mixture-Like Behavior in the Microwave Dielectric Properties of the (1−x)LaAlO3−xSrTiO3 System," Mater. Res. Bull., 34, 511–6 (1999).
    CrossRef, ISI, Chemport
    4E. A. Nenasheva, L. P. Mudroliubova, and N. F. Kartenko, "Microwave Dielectric Properties of Ceramics Based on CaTiO3–LnMO3 System (Ln–La, Nd; M–Al, Ga)," J. Eur. Ceram. Soc., 23, 2443–8 (2003).
    CrossRef, ISI
    5S. Skapin, D. Kolar, and D. Suvorov, "Chemical Reactions and Dielectric Properties of the BaTiO3–LaAlO3 and BaTiO3–LaAlO3–LaTi3/4O3 Systems," J. Solid State Chem., 129, 223–30 (1997).
    CrossRef, ISI, Chemport
    6A. Feteira, R. Elsebrock, A. Dias, R. L. Moreira, D. C. Sinclair, and M. T. Lanagan, "Synthesis and Characterisation of La0.4Ba0.6Ti0.6Re0.4O3 (Where Re=Y, Yb) Ceramics," J. Eur. Ceram. Soc., 26, 1947–51 (2006).
    CrossRef, ISI, Chemport
    7H. Müller-Buschbaum and C. Teske, "Crystal Structure of LaYbO3," Zeitschrift Fur Anorganische Und Allgemeine Chemie, 369, 255 (1969).
    8J. M. Moreau, "Crystallographic and Magnetic Study in Double Oxides of Rare Earths of LaTO3 Type Where T=Ho,Y,Er,Tm,Yb,Lu," Mater. Res. Bull., 3, 427 (1968).
    CrossRef, ISI, Chemport
    9J. M. Moreau, M. J. Marescha, and E. F. Bertaut, "Neutron Diffraction Study of LaErO3," Solid State Commun., 6, 751 (1968).
    CrossRef, ISI, Chemport
    10R. L. Moreira, A. Feteira, and A. Dias, "Raman and Infrared Spectroscopic Investigations on the Crystal Structure and Phonon Modes of LaYbO3 Ceramics," J. Phys.-Condensed Matter, 17, 2775–81 (2005).
    CrossRef, ISI, Chemport
    11E. Ruiz-Trejo, G. Tavizon, and A. Affoyo-Landeros, "Structure, Point Defects and Ion Migration in LaInO3," J. Phys. Chem. Solids, 64, 515–21 (2003).
    CrossRef, ISI, Chemport
    12E. Ruiz-Trejo, M. S. Islam, and J. A. Kilner, "Atomistic Simulation of Defects and Ion Migration in LaYO3," Solid State Ionics, 123, 121–9 (1999).
    CrossRef, ISI, Chemport
    13A. C. Larson and R. B. Von Dreele, "General Structure Analysis System (GSAS)," Los Alamos National Laboratory Report LAUR, 86–748 (2004).
    14R. D. Shannon and C. T. Prewitt, "Revised Values of Effective Ionic Radii," Acta Crystallographica Section B-Structural Crystallography and Crystal Chemistry, B 26, 1046 (1970).
    15V. A. Dubok, V. V. Lashneva, and Y. N. Kryuchkov, "Electrophysical Properties of Oxide Interlanthanides and Solid Solutions Based on Them," Glass Ceram., 60, 115–7 (2003).
    CrossRef, ISI, Chemport
    16A. M. Glazer, "Simple Ways of Determining Perovskite Structures," Acta Crystallographica Section A, 31, 756–62 (1975).
    CrossRef, ISI
    17I. M. Reaney, E. L. Colla, and N. Setter, "Dielectric and Structural Characteristics of Ba-Based and Sr-Based Complex Perovskites as a Function of Tolerance Factor," Japanese J. Appl. Phys. Part 1-Regular Papers Short Notes & Review Papers, 33, 3984–90 (1994).
    CrossRef, ISI
    18Y. S. Zhao, D. J. Weidner, J. B. Parise, and D. E. Cox, "Thermal-Expansion and Structural Distortion of Perovskite—Data for NaMgF3 Perovskite .1," Phys. Earth Planetary Interiors, 76, 1–16 (1993).
    CrossRef, ISI, Chemport
    19N. Orlovskaya, N. Browning, and A. Nichols, "Ferroelasticity in Mixed Conducting LaCoO3 Based Perovskites: A Ferroelastic Phase Transition," Acta Mater., 51, 503–5071 (2003).
    20C. H. Kim, J. W. Jang, S. Y. Cho, I. T. Kim, and K. S. Hong, "Ferroelastic Twins in LaAlO3 Polycrystals," Phys. B, 262, 438–43 (1999).
    CrossRef, Chemport
    21W. L. Wang and H. Y. Lu, "Phase-Transformation-Induced Twinning in Orthorhombic LaGaO3: {121} and 010 Twins," J. Am. Ceram. Soc., 89, 281–91 (2006).
    Synergy, ISI
    22A. Rouanet, J. Coutures, and M. Foex, "High-Temperature Study on Equilibrium Diagram of System La2O3–Yb2O3," J. Solid State Chem., 4, 219 (1972).
    CrossRef, ISI, Chemport
    23R. D. Shannon, "Dielectric Polarizabilities of Ions in Oxides and Fluorides," J. Appl. Phys., 73, 348–66 (1993).
    CrossRef, ISI, Chemport
    24C. Vineis, P. K. Davies, T. Negas, and S. Bell, "Microwave Dielectric Properties of Hexagonal, Perovskites," Mater. Res. Bull., 31, 431–7 (1996).
    CrossRef, ISI
    25D. C. Dube, H. J. Scheel, I. Reaney, M. Daglish, and N. Setter, "Dielectric-Properties of Lanthanum Gallate (LaGaO3) Crystal," J. Appl. Phys., 75, 4126–30 (1994).
    CrossRef, ISI, Chemport
    26R. Zurmuhlen, J. Petzelt, S. Kamba, G. Kozlov, A. Volkov, B. Gorshunov, D. Dube, A. Tagantsev, and N. Setter, "Dielectric-Spectroscopy of Ba(B'1/2B"1/2)O3 Complex Perovskite Ceramics—Correlations between Ionic Parameters and Microwave Dielectric-Properties .2. Studies Below the Phonon Eigenfrequencies (1012–1012 Hz)," J. Appl. Phys., 77, 5351–64 (1995).
    CrossRef, ISI
    27S. Y. Cho, I. T. Kim, and K. S. Hong, "Microwave Dielectric Properties and Applications of Rare-Earth Aluminates," J. Mater. Res., 14, 114–9 (1999).
    ISI, Chemport
    This Article
    Full Text HTML
    Full Text PDF (1,102 KB)
    Rights & Permissions
    By author
    Antonio Feteira
    Lisa J. Gillie
    Ralf Elsebrock
    Derek C. Sinclair

    Depositing User: Briony Heyhoe
    Date Deposited: 10 Oct 2007
    Last Modified: 28 Jul 2010 19:21


    Downloads per month over past year

    Repository Staff Only: item control page

    View Item

    University of Huddersfield, Queensgate, Huddersfield, HD1 3DH Copyright and Disclaimer All rights reserved ©