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Abstract 

 
This paper presents a new approach for the modelling of a screw shaft including 

the axial and torsional dynamics in the same model. The model includes the 

distributed parameter dynamics of the ball screw system and the effect of mass 

distribution. This is based on the flexibility of the Transmission Line Matrix 

Method (TLM) to develop lumped and distributed parameter systems. The 

procedure for the synchronisation of both axial and torsional effects is presented 

in detail.  

 

1. Introduction 
 

Various types of models for feed drives (lumped parameter models, modular 

approach, hybrid models) have been developed by industrial and academic 

researchers. However the simulated responses did not reflect entirely the overall 

dynamic behaviour of the machine tools because the stiffness calculations are 

made considering that the worktable is oscillating around one position. 

A novel application of TLM for the modelling of the dynamic behaviour of 

Computer Numeric Controlled (CNC) machine tool feed drives for various 

running conditions was previously presented [1]. The considered feed drive was 

a non-linear hybrid system where the controller commanded the movement of a 

worktable linked to a motor through a ball-screw. This paper presents the 

improved TLM model of a ball-screw including the moving nut, the distributed 

inertia of the screw, the axial and torsional forces applied on the nut during its 

linear movement and the restraints applied by the bearings. 

The application of TLM technique implies the division of the screw shaft into 

a large number of identical elements. This is necessary in order to achieve the 

synchronisation of events during simulation and produce acceptable resolution 

according to the maximum frequency of interest as presented by Beck et al [2]. 



This normally requires considerable computing effort when small time steps are 

used in the simulation process. This paper presents a solution to reduce the 

simulation time and calculation power and generate accurate and reliable results. 

The TLM model is implemented in MATLAB and simulated values for 

different positions of the moving nut compare well with the measured data when 

same stimuli are applied to the model and the actual feed drive.  

 

2. Transmission line matrix method 
 

TLM is a numeric differential method usually used to solve problems of wave 

propagation through a medium. The system equations are made equivalent with 

the equations for voltages and currents for a mesh of transmission lines. TLM 

technique uses two circuits: The stub and the link. 

Christopoulos [3] stated that any electrical circuit could be represented as a 

network of transmission sections by simply replacing the reactive components 

with corresponding stubs. Variables such as voltage and current are regarded as 

discrete pulses bouncing to and from the nodes of these stubs at each time step. 

The voltage and current in each component (stub and link) is determined from 

the incident (
iii

BAE ,, ) and reflected (
rrr

BAE ,, ) pulses in a port (Figure 1(a)). 

The TLM operation begins with the incident pulses representing the initial 

conditions being injected into the network. Incident pulses take a time ( t∆ ) to 

travel between ports. When incident pulses reach a port (nodes), reflected pulses 

are generated according to boundary conditions. The reflected pulses thus 

become the incident pulses in the next time step. On incidence to the node, the 

pulse will interact with other parts of the circuit.  
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Figure 1:  TLM Units 

If E
i
(k) is known at time step k, the voltages and current in Figure 1(a) may be 

calculated.  Taking E
i
(k)  as the discrete stimulus applied to the stub, gives:  

  ZkEkEki i /))(2)(()( −=         (1) 

the reflected pulse will be     )()()( kEkEkE ir −=                     (2) 

the reflected pulse becomes the next incident pulse, hence  

   )(*)1( kEkE ri Γ=+           (3) 

Now, with E
i
(k+1) obtained from eqn (4), i(k+1) may be obtained from eqn (1).  

Then, the process (scattering algorithm) is repeated for as long as desired. The 

characteristic impedance Z and the reflection factor Γ are chosen accordingly to 

the nature of the element to be represented. 

The application of the scattering algorithm to the TLM link gives: 

ZkAkAki i

a
/))(2)(()( −=   ZkBkBki i

b
/))(2)(()( −=     (5) 



)()()( kAkAkA ir −=   )()()( kBkBkB ir −=                (6) 

the reflected pulses become the next incident pulses, hence  

   )()1( kBkA ri =+   )()1( kAkB ri =+        (7) 

Eqns (5) to (7) represent the TLM link algorithm, which is a numerical method 

for the solution of the wave equation (Sadiku and Agba [4]) with the form: 
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          (8) 

Where the velocity of propagation (u) and the impedance (Z) are: 

LCu /)/1(=   CLZ /=         (9) 

C and L are the capacitance and inductance per unit length of a transmission line. 

The function ),( txy can represent either voltage or current on the transmission 

line. 

Partidge et al [5] used this concept to model a shaft and turntable with linear 

and non-linear friction. TLM stubs represented lumped elements (turntable 

inertia), and distributed elements (shaft) were modelled by TLM links. Thus, for 

the equation for torsional vibration of a shaft 

)/),(()/),(( 2222 ttxyJxtxyJG
mmmm

∂∂=∂∂ ρ      (10) 

The function y(x, t) signifies either torque or angle of twist. The velocity of 

propagation ut and the impedance Zt for the equivalent TLM link are:  

                                             
mmt

Gu ρ/=             (11) 

tmmt
uGZ ρ=            (12) 

Gm, Jm, ρm, Em and Am represent respectively: the material rigidity modulus, the 

polar moment of inertia, the material density, the material Young’s modulus, and 

the cross sectional area of the shaft. 

The same method can be applied for the equation of the longitudinal vibration 

of a bar - eqn (15), where the parameters of the equivalent TLM link are: 

mma
Eu ρ/=            (13) 

amma
uAZ ρ=             (14) 

)/),(()/),(( 2222 ttxyAxtxyAE
mmmm

∂∂=∂∂ ρ       (15) 

The function y(x, t) represents either axial force or longitudinal displacement.  

lf

lr

 Front

bearing

 Rear

bearing

lss

coupling

ln

Nut

 
Figure 2: Ball screw arrangement 
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Figure 3: TLM model of a shaft divided into eight sections including supporting bearings friction and moving nut 
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Table 1:  Calculation of angular velocities and incident pulses for the TLM model of Figure 3



3. TLM model for the ball screw system 
 

The screw shaft is mounted on two preloaded bearings as shown in Figure 2.  

The positions of the front bearing (lf), rear bearing (lr) and nut (ln) are defined 

taking as a reference the screw end attached to the coupling.  

The screw shaft is divided into eight sections (Figure 3) as an example of the 

TLM model for the torsional dynamics of the shaft. The front bearing is placed 

on section two, the nut is on section four and the rear bearing is on section six. 

Table 1 contains the equations for each shaft section according to the TLM link 

scattering algorithm. The angular speed at the last section is calculated as 

     
t

i ZB /2
89

=ω           (16) 

It can be seen that pulses are propagated through out the shaft until a disturbance 

is present in the system. The input torque Tin in the first section, the frictional 

torque in the front bearing (Tfb on section two), the torque needed to 

counterbalance the effect of the table (Td on section four), the frictional torque in 

the rear bearing (Trb on section six), and the end of the shaft on the last section. 

Incident pulses are reflected at those points according to the boundary 

conditions. This dynamic behaviour resembles a circular (linked) list where 

information is stored to be analysed and modified at designated positions. Thus, 

the propagation of pulses in the TLM model takes place on three specific zones 

(loops) as it is graphically represented in Figure 4. 
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Figure 4: Pulse propagation model for the screw shaft torsional dynamics 

 

The same approach is applied for the TLM axial model of the screw shaft. This 

leads to the propagation of pulses on three specific zones (loops) in the axial 

model as it is graphically represented in Figure 5. The screw shaft is divided into 

ma sections, the front bearing is placed on the section fba, the nut is on the section 

na and the rear bearing is on the section rba, where: 
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Figure 5: Pulses propagation model for the screw shaft torsional dynamics 

The model is reduced to the calculation of the longitudinal velocity on section 

one, fba, rba, na, and ma; and the propagation of pulses on the other sections. 
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Figure 6: First and last section of the TLM axial model for the screw shaft  

The velocities on the first section (v1) and the last section (vma+1) are calculated 

from the circuits illustrated in Figure 6 as: 
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Figure 7: Section fba of the TLM axial model for the screw shaft 

The force applied to the front bearing mounting (2Ffb) and its velocity (vfba) are 

calculated including the TLM model for the stiffness of the front bearing 

mounting (see Figure 7): 
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Next pulses:    )(*2)1( kEFkE
i

fbfb

i

fb
−=+          (25) 

afba

i

fba

i

fba
ZvkBkA *)()1(

1+
−=+   

afba

i

fba

i

fba
ZvkAkB *')()1(

111 +++
+=+  (26) 

Where,        
fbafb

ktZ *)2/(=           (27) 

ta and kfb in eqn (32) represent respectively: the propagation time on a section of 

the axial model and the stiffness of the front bearing mounting. 

Applying the same configuration to the section rba gives (kfb represents the 

stiffness of the rear bearing mounting): 
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Figure 8: Connection between the torsional and axial TLM models 

Velocities ωn+1 and vna+1 are calculated analysing the connection between the 

axial and torsional models of the screw shaft, as shown in Figure 8. For this 

purpose, the variables of the torsional model on section n are converted using the 

ball screw force to torque conversion factor (kb), thus: 
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The propagation on the other sections: 
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4. Synchronisation between torsional and axial models 
 

The application of TLM theory to the modelling of the screw shaft gives 

different propagation velocities for the torsional and axial models (see eqns (11) 

and (13)). This leads to different torsional and axial propagation times (tt, ta) for 

the same section length. The synchronisation between axial and torsional models 



can be achieved using the ratio between axial and torsional propagation speeds as 

follows: 

t

a

m

m

t

a

n

n

G

E

u

u
==           (40) 

This value means that the time spent by an axial wave travelling na sections is 

equal to the time spent by a torsional wave travelling on nt sections (where na 

and nt are integers). To model this effect, each torsional section is dived into nt 

axial sections to assure that axial and torsional pulses are arriving to the same 

point at the same time. Subsequently the number of sections of the axial model 

(ma) will be nt times the number of sections in the torsional model (m), hence 

mnm
ta
*=            (41) 

The propagation time of the axial waves is then calculated as: 

t

a

t

a
t

n

n
t =             (42) 

The application of this procedure using the values for Gm and Em specified for 

steel gives a ratio 

6097.1638/10276.79/206/ ===
ta

nn        (43) 

This ratio implies to evaluate the axial model 1027 times per every simulation of 

the torsional model, if each section of the torsional model contains 638 sections 

of the axial model. This value can be reduced to speed up the simulation by 

analysing a variation of 1% in the values of the parameters Gm and Em as shown 

in Table 2. 

 
 1.01*Em 0.99*Em 

1.01*Gm 1.6087 1.5927 

0.99*Gm 1.6249 1.6087 

 
Table 2: na/nt ratio for variations of 1% in the values of Gm and Em 

It can be assumed from Table 2 that a ratio between 1.5929 and 1.6246 is valid 

taking into account the variations the screw shaft material may have due to the 

fabrication process. Therefore, the minimum rational number found into this 

interval (8/5) is selected for the modelling process (nt = 5). In these conditions, 

Em is approximated to 204.8x10
9
 N/m

2
 for a given value of Gm = 80x10

9
 N/m

3
.  

The length of each section in the torsional model  (ltor) and m will be: 

tpwmtor
utl *=            (44) 

torss
llm /=             (45) 

If m is not an integer number, it is rounded to the nearest integer. This implies to 

change the length of the screw shaft by certain quantity. Applying this procedure 

for lss = 1.346 m and tt = 1 µs, gives: 

3.31927850/1080
9 == xu

t
 [m/s]         (46) 

36 101923.33.3192*101 −− == xxl
tor

 [m]       (47) 

42263.421101923.3/346.1 3 ≈== −
xm  sections    (48) 



This means, an increase in the length of the screw shaft (lss) of: 

06.117101923.3*)03.421422( 3 =− −x µm       (49) 

This error model could be present in the real system due to the tolerances in the 

machining process of the shaft and changes in the values of the physical 

properties of the material. For example, if the density value is changed by 0.63% 

to 7800, the number of sections will be 420 and the length of the screw shaft will 

be reduced by 92.35 µm. 

 An approach to cope with this limitation of the modelling technique is to 

assume that the density of the material could vary 1% its nominal value. In 

consequence, a valid number of sections can be defined (without altering the 

length of the shaft) by rounding the value of m towards minus infinity. Then: 

42163.4211923.3/1346 ≈==m  sections       (50) 

The number of sections of the axial model will be 

2105421*5 ==
a

m  sections         (51) 

Rearranging eqn (44) gives:  
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The torsional impedance is calculated using eqn (12): 

29.615.3197*1097.1 3 == −xZ
t

        (55) 

The propagation time for the axial model is 

76
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8

5 −− == xxt
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 [s]          (56) 

ua can be calculated from eqn (40) as: 
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a
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n
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The axial impedance is calculated using eqn (14): 

32.3656344.5115*1013.9*43.7826** 4 === −xuAZ
assssa

ρ    (58) 

The length of each axial section is given by 

5/
toraxial

ll =            (59) 

 

5. Comparison between simulated and measured results 
 

Figure 9 shows the measured and simulated frequency spectrum of the velocity 

control loop (impulse response).  Measured results were obtained from the 

controller's oscilloscope through software provided by the manufacturer for the 

diagnosing of digital control loops. Simulations were conducted using specially 

written MATLAB code.  

Analysing the measured and simulate results reveals that the TLM model is 

predicting the system's main oscillating frequency (at around 338 Hz) however 

the peaks in the simulated diagram are slightly displaced and are more difficult 



to distinguish.  

Although the results demonstrate the accuracy of the TLM model in resembling 

the dynamic behaviour of the ball screw system, more research needs to be done 

in order to improve the model.  
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a) Measured             b) Simulated 

Figure 9:  Frequency spectrum of the ball screw velocity control loop 

 

6. Conclusions 
The paper presents an approach for the TLM modelling of a screw shaft 

including the axial and torsional dynamics in the same model. This was 

accomplished by deriving a procedure for the synchronisation of both axial and 

torsional effects. In this regard, it was assumed that the physical properties of the 

screw shaft material (density) could vary with 1% its nominal value. 

The simulated results compare well with the measured data when same stimuli 

are applied to the model and the actual feed drive.  

The TLM method is faster and mathematically attractive avoiding becoming 

too involved in the boundary value problems associated with partial differential 

equations. 

Future research will concentrate in using TLM for developing accurate feed 

drives models, which could become part of automatic tuning and condition-

monitoring methods.  
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