H

University of
HUDDERSFIELD

University of Huddersfield Repository

Gibson, Ian and Dovey, Matthew

A Collaborative Composition System Based On A Service Oriented Architecture
Original Citation

Gibson, Ian and Dovey, Matthew (2006) A Collaborative Composition System Based On A Service
Oriented Architecture. Proceedings of the International Computer Music Conference. pp. 401-404.

This version is available at http://eprints.hud.ac.uk/id/eprint/4088/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

* The authors, title and full bibliographic details is credited in any copy;
* A hyperlink and/or URL is included for the original metadata page; and
* The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

A Collaborative Composition System Based On A Service
Oriented Architecture

Matthew Dovey” and lan Gibson

" University of Oxford
M.Dovey@oucs.ac.uk
Faculty of Information and Technology, Leeds Metropolitan University
[.Gibson@leedsmet.ac.uk

Abstract
This paper describes a system for vweb-based colluborative
composition. Traditionally, sofnvare svstems for
music composition have been single user svsiems or multi-
wser svstems evolved from single user svstems. Although

music

trese vvstems allow o composition using the Internet.
s wiay nor address issues relaring o shared resources.
The svsiem described here uses Services Oriented
Archirectures, allowing compositional rools and components

r0 ve shared over a disiributed environment.

1 Introduction

Work has begun on the implementation of a distributed
environmient to allow the shanng of sound synthesis
technigues and eventually to allow real-time collaborative
composition. The current prototype system uses SOAP
based Web Services 1o allow access to a database of audio
samples. audio processors and compositions.

2 System Overview

The prototvpe client establishes a link with the server.
Available resources are established using WebServices.
These resources might be compositions (e.g. samples. MIDI
files eter sound processing routines or composition control
date The client requests the required data. processes it as
necessary. and returns any resulting data to the server.

3 Service Oriented Architectures

The current methodology in developing distributed
svatems s Service Oriented Architecture +SOA) (Erl. 2003,
building upon methodologies such as Object Onented
programming. Componernts and Distributed Object Request
Brokers. Within & SOA. systems are composed of multiple
mdividual services Jocated und maintained on different
heterogenzous machines. and administered by different
organizations. The kev in SOA 1s that the component
services should be loosely coupled i.e. be well-defined. self-
contained. and should not depend on the context or state of
other services (What s Web-Service Onented Architecture.

101

2003). To achieve this, a SOA should display the following
properties:

. The services should implement a small set of
simple. ubiquitous and well known interfaces which only
encode generic semantics.

. The interfaces should deliver miessages constrained
by extensible schema for efficiency. This allows both
services and consumers to work with well defined message
structures. while allowing new versions of the services to be
introduced without breaking existing systems

. The messages should be descriptive not instructive
and the interfaces should not define syvstem behaviour. This
allows internals of a service to be viewed as a “black box™.

. Service Oriented Architectures must have
mechanisms for the discovery of services matching the
consumers’ requirements.

There are a number of emergent technologies which can
underpin SOA. namely REST WebServices: SOAP
WebServices and GRID Services (Foster & Kesselman.
1999):

. Representational State Transfer (REST) works on
the basic of “resources”™ which can be referenced by URIx
(Fietding 2000). A REST web service is limited 1o using
HTTP interfaces (GET to obtain a representation of the
resource: DELETE to remove arepresentation of a resource:
POST to update or create a representation of u resource:
PUT to create a representation of o resourcer. REST
messages are in XML, constrained by schema definitions in
the XML Schema lunguage
thutp//www. w3 org/XML/Scheman or Relax NG
thttp://www.oasis-open.org/committees’tc_home.phprw-
_abbrev=relax-ng)

. SOAP Web Services use messages encapsulated in
a structure defined by the SOAP specification
thtep://www, wi org/ 2000/xp/Group/y. This adds additonal
information in the form of headers for message routing
scenarios and mechanisms for reporting errors using faults
(a stvle similar to exceptions In varous programming

languages). SOAP Web Services use the Web Service
Description Language (WSDL) to define both the structures
(using schema languages such as XML Schema) along with
messaging semantics (for example. this might be to test
whether the message is initiated by the client or the server,
and what messages can be used as a response to a particular
message).

. GRIDServices are based on WebServices but
provide additional semantics. In particular they add some
object-oriented and REST concepts. The object-oriented
concepts are demonstrated by the ability to inherit service
definitions (portTyvpes in WSDL terminology). to add new
messages (using a multiple inheritance model) and to add
properties (or service data elements) to WebServices. The
REST concept introduced is that of creating a new
representation of resource. In the GRIDServices model this
uses a factory model whereby a new instance of a
GRIDService can be created by its corresponding factory
GRIDService. GRIDServices also offer an extensibility
model wherebyv part of the structure of the message can be
fett undefined. but the allowed structures can be determined
dynamically by querying the appropriate service data
elements.

The current prototype 1s based upon SOAP based
WebServices. although future versions may need to take
advantage of GRIDService based technology for some of
the more advanced features (such as remote execution of
compositions).

3.1 Web Service Definitions

The Web Service definitions define how the client
communicates with the server using XML based messages.
The prototype definitions are defined within WSDL which
would allow clients and servers to be implemented on
different platforms using different programming languages.
The definition defines three different “PortTypes™ (which is
the WSDL term for a collection of functions). The division
into different functional groups allows for a system in which
different servers implement different groups. although our
current prototype server includes implementations of all
three. The defined PortTypes are described in the following
sections.

Processor Service PortType. This defined two functions:
processAudio and getProcessorsDescriptions. The
processAudio function allows the client to send audio data
to be processed at the server. It takes as its parameters an
identifier. a collection of audio samples and a collection of
parameters and returns a single audio sound file. The
identifier determines what code will be used to process the
audio. The collection of audio samples consists of MIME
based 64 bit encoded binary of the actual wave data plus a
name to identify that particular input to the code — typical
names might be “input1”, “input2” etc. The collection of

402

5

parameters also consists of a hst of name. value pairs and
allows fine control over the functioning of the server side
sound svnthesis code. The getProcessorsDecriptions
returns a list of all the sound synthesis techniques available
on the server. For each technique. it also retums the list of
names for the input audio. the hst of parameters including
descriptions and tvpe (e.g. integer. real or Boolean). and
also the provenance of the sound synthesis technique (using

Dublin Core metadata such as ‘title’. “creator’ and
“description’).
Audio Service PortType. This defines functions for

managing a server-based database of audio samples. Tt
implements the functions getAudio and submitAudio for
adding new samples und SAVISSII
respectivelyv. [t also has the function getAudioDeseriptions
which returns a list of avatlable samples and their
provenance using Dublin Core metadata.

retieving samples

Composition Service PortType. Thix defines functions for
managing o senver haed datehase o compositions. A
composition s represented as an XML document detailing
the identifiers of the audio samples and processors used (1.e.
the identifiers to use ax a parameter for the getAudio and
processAudio functions respectively) and the workflow (1.e.
how the audio and syvnthexs are composed to form the final
audio). It implements the functions getComposition and
submitComposition for adding new compositions and
retrieving existing compositions. It also has the function
getCompositionsDescriptions which returns a list of
available compositions and their provenance using Dublin
Core metadata.

3.2 Server Implementation
A prototype server has been developed in Java
implementing all three port tvpes. 1.e. performing the roles
of an audio repository. composition repository and a
repository of various audio synthesis processors. This has
been developed using OpenSource components such as
Apache Tomcat (http://jakarta.apache.org) to provide the
base HTTP functionality and the Apache Axis
(http://ws.apache.org; to provide SOAP functionality.

The Audio and Composition repositories have currently
been implemented as simple file stores with additional
metadata store in an XML index file. The processor web
service dynamically Joads new processors by compiling and
loading java classes stored in the processor directory. A web
interface has been developed to allow remote uploading of
new processors.

Helper java classes have been written to hide the Web
Service complexity. These make use of the new Java 1.5
annotation feature so that exisung code can casily be

modified to work within the framework without major
changes.
Consider the following small piece of java code:

Essentially this code provides a very simple channel
swap function — taking input from byte streams leftIn and
rightln and returning an output using byte streams leftOut
and rightOut. The function also has an additional parameter
(swap) which affects its behawviour,

To tell the framework to expose this Java method as an
available WebService we merelv need to add the annotation
“@ AudioProcessor(...)" to the function. This marks the
function as being available through the web service. Within
the parenthesis we include additional metadata such as the
name and description of the function. The input channels are
similarly marked by using @ Audiolntput(..) (including title
and description within the parenthesis). output channels
using @ AudioOutput. and additional parameters by using
@ Parameter. Hence. the marked-up Java code becomes:

tog

The marked-up code can still be compiled and used
within its original context but can now also be used within
the framework. The server allows the code to be added
either in a compiled form (e.g. as a jar tile) or by dropping
the source code in the processor directory with the extension
jps. In the latter case. the file is automatically and
dynamically detected and compiled by the server. and the
processor is then available for use.

3.3 Client Implementation

A prototype client has been developed using Java Swing.
The client establishes a link to the server and uses the
getAudioDescriptions and getProcessorsDescnptions
WebServices to enumerate available resources. These are
listed in the Java JTree control (on the left hand side of the
screen). Audio samples and audio synthesis processors can
be dragged and dropped onto the flowchart control on the
right hand side of the screen (implemented using the open
source JGraph Swing control). The various components can
be then linked up to form a composition. Right-clicking on a
processor brings up a list of the parameters that can be
changed for that processor. The file menu allows the saving
and loading of compositions either to the server (via
submitComposition and getComposition WebServices) or to
the local machine. The output of the composition can be
sent to the speakers of the local machine. a local wave file
or to the server (via the submitAudio WebService).

3.4 System Testing

The current svstem 1s an early prototype and stll
requires testing and feedback by users. However there are a
number of areas which have alreadv been identified as
requiring further development. In particular. the network
traffic generated 1s considerable. and data relating to this is
being gathered for analysis. Modifications to the simple user
interface are being undertaken during these early testing
stages. However. a review of user interface requirements
will be used to establish a specification for the final version.

4 FUTURE RESEARCH

4.1 Searching

At present. a client must request the data for all the
resources (audio. processors or composition) on the server
in order to discover what is available. This is clearly not
scalable as the number of resources grows. It would be
better for the server to support a search interface so that
audio processors, audio clips or compositions can be found
matching a user’s query. The use of the generic SRW
WebService protocol will be investigated for this purpose.

4.2 Multiple Servers

The architecture should be expandable to support
multiple servers. so that the client might use processors,
audio. etc. from numerous servers. For this to work there
needs to be a naming convention so that a resource (audio
sample or synthesis processor) and the server on which it is
located can be determmed from an identifier stored in a
compuosition. Various systems such as WS-Addressing will
be investigated for this purpose. There are also various ways
as to how a client discovers the various servers and their
resources. For example. a client might send a
get...Descriptions web service (or a search) to multiple
servers simultaneously. An alternative approach might be
for the servers to replicate metadata descriptions between
themselves so that a client need only send a
get.. Descriptions or a search to a single server. This will
then initiate a response with information about the resources
of all servers. It is likely that a hybrid approach will be
implemented for greater flexibility.

4.3 Server execution of compositions

The current prototype is inefficient in the use of network
traffic. In a typical composition, the client will retrieve a
number of audio samples from the server using the getAudio
WebService, then send those audio samples back over the
network to the server for a synthesis technique to be applied
(via the processAudio WebService). The resultant audio will
be transferred back to the client. As this may be an input to
another audio processor the resultant audio may be passed
over the network to and from the server many times. A more
efficient solution would be for the composition to be sent to
the server and executed on the server. With multiple servers
1t will be necessary to calculate the most efficient workflow.
GRID technologies will be investigated to provide this
functionality.

4.4 Peer to Peer technologies

The prototype architecture is a chient-server approach. A
more flexible approach might be to use a peer to peer
approach whereby a user can publish audio samples and
syvnthesis processors from their local machine. Combining

404

the client with the server would enable this once a muluple
server architecture is in place. However. this might have
security implications.

4.5 Instant Messaging Technologies

The system described 15 meant to encourage
collaborative composition. Thix can only be achieved if the
collaborative composers not only have access to shared
resources but also to real time communication tools such as
text based chatting, whiteboards. videoaudio conferencing
etc. Various technologies will be ivestigated for mtegration
into the chent,

References

What 1s Service-Ornented Architecture,
hitp://webservices.xml.com/pub/a’ws/2005/09/30 504 ht

m]

ERL. T (2005, Service-Ovriented Architectire: Concepis,
Technoloey, wid Desien Upper Saddle River: Preatice Hall

PTR.

FIELDING. R. T. (2000). Architectural Styvles and the
Design of Network-based Software Architectures. Ph.D.
Dissertation (University of California. Irvine). Chapter §

FOSTER. I. & KESSELMAN. C. (1999, The Grid:
Blueprint for a New Computing Infrastrucrure. Morgan-
Kaufmann.

