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Abstract 

A series of experiments was carried out using a dual sensor conductance probe to 

measure the local axial oil velocity distribution and the local oil volume fraction 

distribution in vertical, oil in water bubbly flows in an 80mm diameter vertical pipe. 

Values of the water superficial velocity were in the range 0.276 1ms−  to 0.417 1ms− , 

values of the oil superficial velocity were in the range 0.025 1ms−  to 0.083 1ms−  and 

values of the mean oil volume fraction were in the range 0.047 to 0.205. For all of the 

flow conditions investigated it was found that the axial velocity profile of the oil droplets 

had a ‘power law’ shape which was very similar to the shape of the air velocity 

distributions previously observed for air-water bubbly flows at similar flow conditions. It 

was also found that the shape of the local oil volume fraction distribution was highly 

dependent upon the value of the mean oil volume fraction. For values of the mean oil 

volume fraction refβ  less than about 0.08, the local oil volume fraction distribution had a 

power law shape. For values of refβ  between about 0.08 and 0.15 the local oil volume 

fraction distribution was essentially flat, apart from within a bubble sub-layer close to the 

pipe wall. For values of refβ  greater than about 0.15 the local oil volume fraction 

distribution had an ‘intermediate peak’ shape. Mathematical modelling showed that the 

shapes of the observed local oil fraction distributions were a result of diffusion and of 

hydrodynamic forces acting upon the oil droplets. For 08.0<refβ  the net hydrodynamic 

force on the droplets was towards the pipe centre whilst for 15.0>refβ  the net 

hydrodynamic force on the droplets was biased towards the pipe wall. The nature, and 

relative strength, of each of the hydrodynamic forces acting on the oil droplets is 

discussed. 

 

Key words: multiphase flow; conductance probe; modelling volume fraction profiles; 
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Nomenclature 

 

0C    distribution parameter 

1c    constant used in equation 14 (m) 

D    internal pipe diameter ( m ) 

 

f    friction factor 

F    frictional pressure loss  ( -2-1skgm ) 

g    acceleration of gravity ( 2ms− ) 

h    pressure tapping separation (m) 

lj    local homogeneous velocity ( 1ms− ) 

0K    constant used in equation 12 ( 12sm − ) 

hyK    constant first used in equation 17 ( 1ms− ) 

εK    constant first used in equation 18 ( 13sm − ) 

n    exponent used in equation 7 

N    number of droplets 

p    power law exponent for velocity profile 

q    power law exponent for volume fraction profile 

r    radial position ( m ) 

R    internal pipe radius ( m ) 

ft1  ft2  rt1  rt2            times when droplet surface contacts sensors (s)  

T    sampling period (s) 

zu , θu , ru   local axial, azimuthal and radial droplet velocity components ( 1ms− ) 

du    mean dispersed phase velocity ( 1ms− ) 

hU    homogeneous velocity ( 1ms− ) 

hyu    local radial droplet velocity due to hydrodynamic forces  ( 1ms− ) 

Lu    local axial velocity of continuous liquid ( 1ms− ) 

ou    local oil velocity ( 1ms− ) 

max,ou    maximum local oil velocity ( 1ms− ) 

osU    oil superficial velocity ( 1ms− ) 

slipu    slip velocity  ( 1ms− ) 

0tu    single droplet terminal velocity ( 1ms− ) 

wu    local water velocity ( 1ms− ) 

wsU    water superficial velocity ( 1ms− ) 

z   axial coordinate (m) 
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α    mean air volume fraction 

dα    mean dispersed phase volume fraction 

lα    local dispersed phase volume fraction 

β    local oil volume fraction 

maxβ    maximum local oil volume fraction 

refβ    reference measurement of mean oil volume fraction 

it ,1δ    time interval defined in equation 1 (s) 

it ,2δ    time interval defined in equation 2 (s) 

p∆    differential pressure ( -2-1skgm ) 

ε    diffusivity ( 12sm − ) 

oρ    oil density  ( -3kgm ) 

wρ    water density ( -3
kgm ) 

θ    azimuthal coordinate (radians)
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1. Introduction 
This paper describes the use of a local, miniature, intrusive dual-sensor conductance 

probe to determine the local oil volume fraction distribution and the local oil axial 

velocity distribution in a range of vertical upward oil-in-water flows in the bubbly flow 

regime. The main objectives for carrying out the work described in this paper were: (i) to 

provide data for quantitative comparison with, and validation of, volume fraction and 

velocity profiles obtained using dual-plane Electrical Resistance Tomography (ERT) 

techniques [1]: (ii) to compare the local oil volume fraction and local oil axial velocity 

profiles with profiles obtained by the same authors in vertical, air-in-water bubbly flows 

[2] using a similar pipe diameter (80mm i.d.), similar phase superficial velocities, similar 

values for the mean dispersed phase volume fraction and similar size particles of the 

dispersed phase: (iii) to investigate whether the local oil volume fraction and axial 

velocity distributions could be represented by ‘power law’ approximations as has found 

to be the case, under certain flow conditions, for the local gas volume fraction and axial 

velocity distributions in vertical air-in-water bubbly flows [2], [3]: (iv) to determine 

values for the Zuber-Findlay [4] distribution parameter 
0C  for oil-in-water flows: and (v) 

to attempt to provide a physical explanation for the shapes of the local oil volume 

fraction distributions in vertical bubbly oil-in-water flows. 

The measurement of velocity and volume fraction profiles of the dispersed phase has 

received much less attention in the literature for oil-water flows than in is the case for 

gas-liquid flows. However the principal previous work in this field includes that which 

has been carried out by; (i) Vigneaux et al [5] who measured local oil volume fraction 

distributions, in vertical and inclined oil water flows in a 200mm diameter pipe, using a 

high frequency impedance probe; (ii) Bruun’s group [6] and [7] who investigated optical 

and hot-wire probes as a means of measuring the local properties of vertical oil-water 

flows; (iii) Zhao et al [8] who measured local oil volume fraction profiles, interfacial 

velocity profiles, interfacial area concentration profiles and oil drop diameters in a 

vertical 40mm diameter tube using a double-sensor conductivity probe; and (iv) Lum et 

al [9] who used high speed video filming and impedance probes to measure phase 

distributions in oil-water flows inclined at small angles (less than o10 ) to the horizontal 

in a 38mm diameter pipe.  

More recently, Wang et al [10] have attempted to use dual-plane ERT to measure local 

oil volume fraction and velocity profiles in vertical oil-in-water flows in an 80mm 

diameter pipe. One of the main aims of the current paper is to provide reference data 

against which Wang’s ERT results can be compared. 

 

2. Experimental Apparatus 

2.1 The dual-sensor probe 

The design and construction of the local dual-sensor conductance probe used in the 

present investigation, the associated electronic circuitry and the relevant signal 

processing techniques are all described in great detail in a previous paper [2]. However, 

for the benefit of the reader, a brief description of the probe and the signal processing 

technique is repeated here.  

The probe was manufactured from two stainless steel needles which were 0.3mm in 

diameter and which were mounted inside a stainless steel tube of outer diameter of 4mm 
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(figure 1). Each needle was coated with waterproof paint and insulating varnish, which 

were removed from the very tip of the needle. Thus, the front and rear sensors of the 

probe were located at the very tips of the needles. For the probes used in the experiments 

described in this paper the axial sensor separation s was typically 2.5mm whilst the 

lateral sensor separation was typically 1mm. The 4mm stainless steel tube forming the 

probe body was used as a common earth electrode for both sensors. The fluid 

conductance at each sensor was obtained using a simple dc amplifier circuit, which 

measured the conductance between the tip of the relevant needle and the probe body. 

Consider the situation where the two sensors of the probe are separated by an axial 

distance s in a vertical upward, bubbly, oil-in-water flow in which the oil droplets travel 

in the axial direction. Let us assume that the surface of a bubble makes first contact with 

the upstream (front) sensor at time ft1 . At this time the measured conductance at the 

front sensor will fall sharply. Let us further assume that the front sensor makes last 

contact with the surface of the droplet at time ft2  (this is the time at which the droplet 

leaves the front sensor). At time ft2  the measured conductance at the front sensor will 

rise sharply as the sensor is again surrounded by water. The times at which the rear 

sensor makes first and last contact with the surface of the droplet are rt1  and rt2 . 

Suppose N  droplets hit both the front and rear sensors during a sampling period T . For 

the th
i  droplet two time intervals it ,1δ and it ,2δ  may be defined as follows 

 

ifiri ttt ,1,1,1 −=δ             (1) 

 

and 

 

ifiri ttt ,2,2,2 −=δ             (2) 

 

The mean local axial oil droplet velocity ou  at the position of the probe is then given by 

 

∑
= +

=
N

i ii

o
ttN

s
u

1 ,2,1 )(

12

δδ
             (3) 

 

The mean local volume fraction β  of the oil at the position of the probe can be estimated 

from the conductance signal from either the front or the rear sensor. For the front sensor 

β  is given by 
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1

1

,1,2∑
=

−=
N

i

ifif tt
T

β             (4) 

 

2.2 The oil-water flow facility 

The experiments described in this paper were carried out in the 80mm internal diameter, 

2.5m long, vertical, perspex working section of a purpose built oil-water flow loop 

(figure 2). The dual-sensor probe described above was mounted in this working section at 
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a distance of approximately 1.5m from the entry point of the oil and water (see also 

section 3).  

The oil and water were stored in a 3m5.2 stainless steel separator tank. The water outlet 

was located close to the base of the tank, the oil outlet was selected using one of three 

manual valves, dependent upon the position of the oil-water interface. On leaving the 

tank the oil and water were conveyed through separate flow lines prior to being mixed 

together in a manifold just upstream of the working section. The oil and water flow lines 

each contained; (i) a pump capable of pumping up to about 20 13hrm −  of liquid at 3 bar 

gauge pressure, (ii) an electro-pneumatic control valve and (iii) a turbine flow meter. For 

each flow line the liquid flow rate was controlled using a separate Proportional-Integral-

Derivative controller so that the oil and water flow rates into the flow loop working 

section could be individually controlled, for long periods of time, to better than 0.5% of 

set-point flow rate. On emerging from the flow loop working section the oil-water 

mixture was piped back to the inlet of the separator tank in the form of a ‘primary 

dispersion’. Gravity induced separation of the oil and water in the tank was accelerated 

with the aid of a coalescer cartridge which spanned the cross section of the separator 
tank. The oil used in the experiments described in this paper was Shellsol D70 with a 

density of 790 3kgm −  and a kinematic viscosity of about 2 12smm −  at C20o . 

At each flow condition investigated a reference measurement refβ  of the mean oil 

volume fraction in the working section was measured using a differential pressure 

technique, compensated for the effects of frictional pressure loss. This technique (figure 

2) required a differential pressure transducer which was connected, via water filled lines, 

to two pressure tappings on the working section, separated by a vertical distance h  equal 

to 1m.  With reference to [11]  refβ  is given by  

 

gh

Fp

ow

ref
)( ρρ

β
−

+∆
=             (5) 

 

where p∆  is the measured differential pressure, wρ  is the water density,  oρ  is the oil 

density, g  is the acceleration of gravity and F  is a frictional pressure loss term which, 

with reference to [11], is given by 

 

D

hfU
F hw

22ρ
=             (6) 

 

where hU  is the homogeneous velocity (also known as the mixture superficial velocity), 

D  is the internal diameter of the working section and f  is  a single phase friction factor 

(in the present investigation a value for f  equal to 0.007 was used). 

 

3. Experimental Results 

A series of experiments was undertaken to measure the local oil volume fraction 

distribution and the local oil axial velocity distribution in the 80mm internal diameter 

working section of the flow loop described in section 2. Experiments were carried out for 
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values of water superficial velocity wsU  in the range 0.276 1
ms

−  to 0.417 1
ms

−  and for 

values of oil superficial velocity osU  in the range 0.025 1
ms

−  to 0.083 1
ms

− . [These are 

flow rates that might be expected to be encountered in small, older oil wells, producing 

oil at a few tens to a few hundred barrels per day and also producing significant quantities 

of water]. For the experiments described herein refβ  was in the range 0.047 to 0.205. For 

all of the experiments undertaken the flow regime was ‘bubbly oil-in-water’ with the oil 

droplets having an oblate spheroidal shape with the major axis, normal to the direction of 

motion, approximately 7mm long and the minor axis approximately 6mm long [12]. 

The dual-sensor probe described in section 2 was mounted in the flow loop working 

section, using a fully automated two-axis traversing mechanism, with the tip of the probe 

at a distance of approximately 1.5m from the inlet to the working section. At each flow 

condition the probe was traversed along eight equispaced radii with measurements being 

made at eight equispaced radial locations along each radius. The first radial position was 

the pipe centre whilst the last radial position was when the probe centerline was at a 

distance of 2mm from the pipe wall. At each measurement position signals from the two 

conductance sensors were obtained for a period of 120 seconds and the local axial oil 

velocity ou  and the local oil volume fraction β  were calculated using equations 3 and 4 

respectively. Convergence tests showed that the use of sampling periods greater than 120 

seconds did not significantly alter the values of ou  and β  obtained in this way. Diagrams 

showing ou  versus Dr /  and β  versus Dr /  (where r  represents radial probe position 

and D  represents the pipe diameter) are given in figures 3 to 8 (the solid and dotted lines 

shown in these figures are simply lines connecting adjacent data points). It should be 

noted that for a given flow condition, the value of  ou  or β  at a given value of Dr /  in 

figures 3 to 8 is actually an averaged value taken from measurements obtained at the 

same value of  Dr /  for each of the eight radii mentioned above. For reasons described 

extensively in a previous paper [2] measurements of ou  taken very close to the pipe wall 

using a dual-sensor probe can be unreliable. Consequently, these ‘wall measurements’ of 

ou  have been excluded from the graphs shown in figures 3 to 5. 

From figures 3 to 5 it is clear that the local axial oil velocity distributions for all of the 

flow conditions investigated are ‘power law’ in shape [2] i.e. the profiles are of the form 
p

oo Rruu )/1(max, −=  where max,ou  is the maximum value of the local oil velocity (at the 

pipe centre), R  is the pipe radius and p  is an exponent. However, from figures 6 to 8 it 

is apparent that the shape of the local oil volume fraction distribution varies significantly 

with the mean oil volume fraction refβ . For values of  refβ  less than about 0.08, the 

local oil volume fraction distribution is approximately ‘power law’ in shape. For the 

middle values of refβ  investigated, i.e. for refβ  in the approximate range 0.08 to 0.15, 

the local oil volume fraction distribution is essentially flat, except toward the pipe wall. 

For higher values of refβ , i.e. greater than about 0.15, the local oil volume fraction 

distribution has a shape referred to in [13]  as ‘intermediate peaked’. 
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The shapes of the distributions of  ou  versus Dr /  and β  versus Dr /  will be discussed 

extensively in subsequent sections of this paper. 

 

4. Comparison of Oil Droplet and Air Bubble Velocity Profiles 

In section 3 it was stated that the oil velocity distribution for each of the flow conditions 

investigated was ‘power law’ in shape and of the form p
oo Rruu )/1(max, −= . The 

exponent p  can be used to characterise the shape of power law profiles because 

relatively low values of  p  indicate a relatively flat profile whilst relatively higher values 

of p  indicate a profile with a relatively pronounced peak at the pipe centre [2]. Using 

curve fitting techniques the value of p  was calculated for each of the oil-water flow 

conditions investigated in the present study. Figure 9 shows p  plotted against  refβ  for 

the oil-water data (diamonds). Also shown in figure 9 are values of the exponent p  for 

velocity profiles of air bubbles in a bubbly-air-water flow (crosses). [NB: in figure 9, 

when considering the values of p  relevant to air-water flows, the horizontal axis is taken 

to represent the mean air volume fraction α ]. The air-water data shown in figure 9 (and 

represented by crosses) was taken by the authors of the present paper at similar flow 

conditions to those at which the oil-water data was taken (the air-water experiments are 

described in detail in [2]). Thus, the air-water data was taken using a dual-sensor 

conductance probe at an axial distance of 2m from the inlet of a vertical, 80mm internal 

diameter pipe. The mean air bubble diameter was about 5mm, the water superficial 

velocity was in the range 0.1 1ms−  to 1.15 1ms−  and the gas superficial velocity took 

values such that the mean gas volume fraction was in the range 08.001.0 << α , thus 

ensuring that the air-water flow regime was always bubbly. Inspection of figure 9 shows 

that the values of p  for the oil velocity profiles are quite similar to the values of p  for 

the air velocity profiles. In fact, the mean value of p  for the oil data is 0.133 whilst for 

the air data it is 0.173. For values of dispersed phase volume fraction of about 0.05 to 

0.06, where there are several data points for both the air-water and the oil-water 

experiments, the values of the exponent p  are often very similar, indicating that the 

velocity profiles for the oil droplets and for the air bubbles are very similar in shape. This 

result is particularly noteworthy given that the oil droplets have a density which is about 

630 times greater than the air bubbles. 

Also shown in figure 9 in the form of a solid line is a correlation by van der Welle [3] 

expressing the exponent p  as a function of α  for air-water flows. Although the van der 

Welle correlation was based on data taken in a vertical 100mm internal diameter pipe, 

and is really only valid for values of gas volume fraction greater than about 0.28, there is 

still remarkable agreement with the values of p  obtained for the oil velocity profiles in 

the present study.  

 

5. Comparison of Oil Droplet and Air Bubble Volume Fraction Profiles 
Quantitative comparison of oil volume fraction profiles with air volume fraction profiles 

in vertical, bubbly, water continuous flows at similar flow conditions is really only 

feasible when the local volume fraction distribution of the dispersed phase is power law 

in shape. For other profile shapes (e.g. ‘wall peaked’ [13]) comparison of the oil and air 
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volume fraction profiles tends to be a qualitative rather than quantitative exercise. In the 

present investigation power law shaped oil volume fraction distributions were only 

observed for values of refβ  less than about 0.08 (see section 3). In the literature, although 

for air-water bubbly flows the local air volume fraction distribution can take a variety of 

shapes [13], for flows where the air bubble size is about 5mm or greater the air volume 

fraction profile is generally power law in shape. In the remainder of this section 

discussion is limited to such power law profiles. 

For the oil-water experiments described in this paper for which 08.0<refβ  the local oil 

volume fraction distribution was of the form q
Rr )/1(max −= ββ , where maxβ  is the 

maximum value of the local oil volume fraction which occurs at the pipe centre. In figure 

10 the exponent q  is shown plotted against refβ  for five distinct flow conditions. Also 

shown in figure 10 (dark line) is a plot of the Lucas et al [2] correlation 
α823.49014.0 −= eq , where α  represents mean air volume fraction, which was obtained 

by the authors of the current paper for air-water bubbly flows at similar flow conditions 

[2] (see also section 4). [NB: again, in figure 10, when considering air-water data, the 

horizontal axis must be assumed to represent α ]. A further correlation relating q  to α , 

obtained by van der Welle [3] for air-water flows is also shown in figure 10 (light line). It 

is apparent that the values of q  for the oil-water data are somewhat lower than the values 

of q  for the air-water data observed by Lucas et al [2], indicating that the oil volume 

fraction profiles are flatter than the air volume fraction profiles. However, the values of 

q  for the oil-water data are scattered about the van der Welle correlation for q  obtained 

for air-water data. Again, given the large density contrast between air and oil, the 

similarities in the shapes of the local dispersed phase volume fraction distributions as 

indicated by figure 10 are very noteworthy. 

 

6. The Zuber-Findlay Distribution Parameter 0C  

For many two phase flows (both vertical and inclined) the mean velocity du  of the 

dispersed phase can be obtained from a relationship of the form 

 
n

dthd uUCu )1(00 α−+=             (7) 

 

where 0tu  is the velocity of a single particle of the dispersed phase rising through the 

static continuous phase, n  is an exponent, hU  is the homogeneous velocity (or mixture 

superficial velocity) , dα  is the mean volume fraction of the dispersed phase and 0C  is 

the so called Zuber-Findlay distribution parameter [4]. The terms n  and 0tu  in equation 7 

can be obtained from calculation or experiment whilst, under a given set of flow 

conditions, hU  and dα  can often be obtained by measurement [11]. Consequently, if the 

relevant value of 0C  is known, equation 7 can be used to determine the mean dispersed 

phase velocity du  (note that for vertical oil-in-water Lucas and Jin [14] found that 
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appropriate values for the terms n  and 0tu  are 2 and 0.167 1ms−  respectively). With 

reference to [4] the parameter 0C  is given by the expression 

 

hd

ll

U

j
C

α

α
=0             (8) 

 

where lα  is the local dispersed phase volume fraction, lj  is the local homogeneous 

velocity and the overbar in the numerator of equation 8 represents averaging in the flow 

cross section. For the oil-water experiments described in section 3 of this paper the 

simplifying assumption was made that the local homogeneous velocity can be calculated 

using the relationship oslipol uuuj ββ +−−= ))(1(  where slipu  is the slip velocity 

between the oil and the water, which was set equal 0.167 1ms− . 0C  can then be calculated 

from the experimental data according to equation 8.  

For the oil-water experiments carried out in the present investigation calculated values of 

0C  are shown plotted against the mean oil volume fraction refβ  in figure 11. Also shown 

in figure 11 are calculated values of  0C  plotted against the mean air volume fraction α  

for the air-water data taken by the authors of this paper at similar flow conditions [2] and 

described in sections 4 and 5 of this paper. It is clear from figure 11 that, for similar 

values of the mean dispersed phase volume fraction, the values of 0C  for the oil-water 

data (diamonds) are very similar to the values of 0C  for the air-water data (crosses). It is 

also apparent that the trend for 0C  to decrease towards unity with increasing air volume 

fraction, observed in bubbly air-in-water flows (for values of α  up to about 0.08), is 

continued for bubbly oil-in-water flows (for values of  refβ  up to about 0.205). The mean 

value of  0C  for the air-water data shown in figure 11 is 1.084. The mean value of 0C  for 

the oil-water data is 1.035, which is also remarkably similar to the 0C  value of 1.036 

observed by Lucas and Jin [14] for vertical, bubbly oil-in-water flows in a 150mm 

diameter pipe with a 42.86mm diameter centrebody. This suggests that, for vertical, 

bubbly oil-in-water flows, the distribution parameter 0C  may be remarkably insensitive 

to the pipe diameter and geometry. 

 

7. Modelling the Local Oil Volume Fraction Distributions 

In an attempt to explain the different shapes of the oil volume fraction profiles in a 

circular pipe by the use of mathematical modelling, the following oil droplet conservation 

equation, in cylindrical polar co-ordinates, was used 

 

 

0  
1

 
1

=
∂

∂
+

∂

∂
+

∂

∂
zr u

z
u

r
ur

rr
ββ

θ
β θ             (9) 
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where zu , θu  and ru  represent the local oil droplet velocities in the axial, azimuthal and 

radial directions respectively and where β  is the local oil volume fraction. [NB: equation 

9 is equivalent to stating that the divergence of the oil droplet flux is equal to zero i.e. 

0) ( =⋅∇ uβ ]. By making the assumptions that the local oil volume fraction profile is (i) 

axisymmetric and (ii) fully developed in the axial direction, equation 9 can be simplified 

to give 

 

 

0) ( =rur
dr

d
β             (10) 

 

In equation 10, ru β  represents the local oil droplet flux per unit area normal to the radial 

direction. In the present study it was initially assumed from the work of Beyerlein [15] 

that this radial flux comprises two components. The first component is a diffusive flux 

arising from the local droplet diffusivity ε . The second component is due to a circulation 

induced, local hydrodynamic force [15] acting on the oil droplets which arises from the 

velocity profile of the continuous water phase. This hydrodynamic force gives rise to a 

local oil droplet velocity hyu  in the positive radial direction which is described in [15] 

and also discussed in more detail later in this section. Equation 10 can now be rewritten 

as 

 

0 =








−
dr

d
ur

dr

d
hy

β
εβ            (11) 

 

Integrating equation 11 gives 

 

0 K
dr

d
ur hy =









−
β

εβ             (12) 

 

where 0K  is a constant of integration. In equation 12 the quantity ) (
dr

d
uhy

β
εβ −  

represents the local net flux per unit area, normal to the radial direction, at a given point 

in the flow. At any given axial location in the pipe (away from the pipe inlet and the pipe 

outlet) there are no sources or sinks of oil droplets at the pipe centre or the pipe wall and 

so ) (
dr

d
uhy

β
εβ −  must always be equal to zero. Thus 0K  must also be equal to zero. 

Equation 12 may now be manipulated to give 

 

ε

ββ hyu

dr

d  
=             (13) 

 

By considering the lateral forces on a solid sphere in a continuous liquid with shear, 

Beyerlein et al [15] reported that the local radial velocity hyu  imparted to spherical 
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droplets of the dispersed phase in a bubbly two phase flow, as a result of the velocity 

profile of the continuous liquid phase, is given by 

 

dr

du
cu L

hy 1−=             (14) 

 

where Lu  is the local axial liquid velocity and where 1c  is  positive, and constant for  a 

given set of flow conditions. In the present study the local axial water velocity wu  may 

be approximated by the expression 

 

0tow uuu −=             (15) 

 

where ou  is the local axial oil droplet velocity and 0tu  is the terminal rise velocity of a 

single oil droplet in stationary water. It was shown in section 4 that the local axial oil 

velocity is of the form 

 
p

oo Rruu )/1(max, −=             (16) 

 

By combining equations 14, 15 and 16 it can be shown that the local radial velocity hyu  

imparted to the oil droplets as a result of shear in the water phase is given by  

 
1)/1( −−= p

hyhy RrKu             (17) 

 

where hyK  is positive and constant for a given set of flow conditions and where p  is the 

exponent defined in section 4. Inspection of equation 17 shows that according to 

Beyerlein et al  [15] the local radial velocity hyu  is always in the direction of increasing 

r . 

With reference to work reported in [15] and [16] the local droplet diffusivity ε  in the 

present investigation was assumed to have a maximum value at the pipe centre and to 

decay towards the pipe wall. The following expression for ε  was adopted 

 

q
Rr

r

K −−= 1
)/1(εε             (18) 

 

where εK  is constant for a given set of flow conditions and where q  is the exponent 

defined in section 5.  

By combining equations 17, 18 and 13 the following expression relating the local oil 

volume fraction β  to radial pipe position r  was obtained. 

 

2)/1( −+−= qphy
Rr

K

K
r

dr

d

ε

β
β

            (19) 
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Equation 19 can be used to model the local oil volume fraction distribution in a so-called 

‘free stream’ region of the flow. However, as briefly reported in [15] a ‘bubble sub-layer’ 

exists in which the local dispersed phase volume fraction decreases to zero toward the 

pipe wall. From the experimental data taken in the present study it was assumed that the 

bubble sub-layer existed in the region for which 405.0/ >Dr and it was further assumed 

that in this sub-layer the value of β  decreased linearly from its free stream value to zero 

at 5.0/ =Dr .  

At a given flow condition equation 19 can be solved numerically to determine the free 

stream local volume fraction distribution provided (i) that β  is known at one value of 

r (the initial condition) and (ii) that the appropriate value for the quantity εKKhy /  is 

known. At a given flow condition equation 19 was used to simulate the experimentally 

observed distribution of β  with r  by using the measured value of the local oil volume 

fraction at the pipe centre as the initial condition and by adjusting the value of εKKhy /  

to give the best fit with the experimental data. The main purpose of this approach was to 

determine both the magnitude and sign of the quantity εKKhy /  at each of the flow 

conditions investigated. A value of 133.0=p  was used in equation 19, corresponding to 

the mean value for this variable for all of the oil-water flow conditions investigated in the 

present study (see section 4). A value of  538.0=q  was used in equation 19, this value 

corresponding to the mean value of q  for those flow conditions in which the local oil 

volume fraction distribution was ‘power law’ in shape (see section 5). It should be noted 

however that the results predicted by equation 19 were not particularly sensitive to the 

precise value of q . 

 

7.1 Application of the model to 15.0>refβ  

In figures12a and 12b plots are shown of the experimentally observed local oil volume 

fraction distributions at two flow conditions for which these distributions have 

‘intermediate peaked’ shapes, i.e. 15.0>refβ  (the exact flow conditions are given in the 

legend to figure 12). Also shown in figures 12a and 12b are the simulated local oil 

volume fraction distributions obtained using equation 19 in conjunction with the concept 

of the bubble sub-layer, as described above. For the flow condition where 187.0=refβ , 

the value of the quantity εKKhy /  which gave the best agreement with the experimental 

data was +70 (see Table I). For the flow condition for which 205.0=refβ  the appropriate 

value for εKKhy /  was +60. It can be seen from figures 12a and 12b that there is very 

good agreement between the experimentally observed and the simulated local oil volume 

fraction distributions. 
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7.2  Application of the model to 08.0<refβ  

For the flow conditions at which the local oil volume fraction distributions were ‘power 

law’ in shape, i.e. 08.0<refβ , it was not possible to obtain agreement between the 

experimentally observed and simulated local oil volume fraction distributions unless 

negative values of εKKhy /  were used (Table I). This result indicates that the modelling 

approach suggested by Beyerlein [15], which proposed a shear induced hydrodynamic 

force on the droplets in the positive radial direction, is insufficient to explain all of the 

observed experimental results. However, by using the appropriate values of εKKhy /  

from Table I, good agreement between the experimental and simulated distributions is 

obtained (figures 13a and 13b). 

 

7.3  Application of the model to  15.008.0 ≤≤ refβ  

For 15.008.0 ≤≤ refβ  simulated and experimentally observed local oil volume fraction 

distributions are shown in figures 14a and 14b. It can be seen from Table I that when 

135.0=refβ  then εKKhy /  is equal to zero, suggesting that the net radial hydrodynamic 

force on each droplet is also zero and that the shape of the local oil volume fraction 

profile is purely due to the effects of diffusion.  

 

7.4 Magnitude and direction of the net hydrodynamic force on the oil droplets 

The values of εKKhy /  required to successfully simulate the experimentally observed 

local volume fraction distributions are shown in Table I for six different values of refβ . 

For 08.0<refβ  negative values of εKKhy /  are required and so it must be concluded 

that for such values of refβ  the resultant hydrodynamic force on the droplets is in the 

direction of the pipe centre. Also for 08.0<refβ  the magnitude of the quantity εKKhy /  

is significantly greater ( 2
520

−≥ m ) than the magnitude of this quantity for 15.0>refβ  

( 2
70

−≤ m ). This strongly suggests that the net hydrodynamic force on the droplets 

towards the pipe centre for 08.0<refβ  is significantly greater than the net hydrodynamic 

force on the droplets toward the pipe wall for 15.0>refβ   

It should be noted that when εKKhy /  is negative it is implicit that the variation of the 

radial velocity of the oil droplets with r  due to hydrodynamic effects will be of the form 

shown in equation 17  - except with a change of sign. Since the exact nature of this net 

inward hydrodynamic force on the oil droplets is unknown, the actual variation of the 

resultant radially inward droplet velocity with r  is also unknown. 

 

8. Radial Forces on Dispersed Phase Particles 

In this section a qualitative discussion is given on possible sources of the radial 

hydrodynamic forces on particles of the dispersed phase in co-current, upward, bubbly 

two phase flows where the superficial velocity of the continuous phase is greater than 

zero. For very low dispersed phase volume fraction flows in which the dispersed particles 
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are relatively large compared to the pipe diameter [13], as was the case for the 6mm to 

7mm oil droplets in the present investigation, it is widely reported in the literature [13] 

that the particles will tend to migrate toward the pipe centre, which may represent an 

equilibrium position for dispersed phase particles in very low volume fraction flows. 

Once the oil droplets are established at the pipe centre as described above, the low 

pressure region in their wakes will draw additional oil droplets towards the pipe centre as 

the oil volume fraction is increased. This may explain the observed tendency for the oil 

droplets to accumulate at the pipe centre for values of  refβ  less than about 0.08, giving 

rise to power law shaped profiles.  

As the oil volume fraction is increased further, the effects of droplet diffusion cause the 

oil droplets to migrate to those parts of the flow cross section where there is significant 

shear in the continuous phase velocity profile. Here, circulation induced forces (see 

section 7, [13] and [15]) give rise to radial droplet velocities in the direction of the pipe 

wall as described by equation 17. This in turn gives rise to the observed ‘intermediate 

peaked’ oil volume fraction profiles. [Note that the modelling work in section 7 suggests 

that the net hydrodynamic force moving each droplet toward the pipe centre, for refβ  less 

than about 0.08, is significantly greater than the net hydrodynamic force moving each 

droplet toward the pipe wall for refβ  greater than about 0.15]. 

For air-water flows there is a much greater tendency for the air bubbles to agglomerate 

into larger structures at the pipe centre (such as cap shaped bubbles) rather than to 

migrate away from the pipe centre. This is the probable reason why power law shaped 

profiles are observed for wide ranges of values of gas volume fraction in flows where gas 

is injected in the form of relatively large bubbles ( mm5≥ ) [13]. In low volume fraction 

air-water flows in which the gas bubbles are relatively small (between 0.8mm to 3.6mm) 

there is a reduced tendency for the migration of bubbles into the wakes of other bubbles 

at the pipe centre [13] due to the relatively lower wake size of lower Reynolds number 

bubbles [17]. This could explain why for gas-liquid bubbly flows, in which the bubble 

size is in the range 0.8mm to 3.6mm, ‘intermediate peaked’ and ‘wall peaked’ gas 

volume fraction distributions are frequently observed [13]. 

 

9. Conclusions 

A series of experiments was carried out on vertical, bubbly oil-in-water flows in an 

80mm internal diameter pipe for values of water superficial velocity in the range 

0.276 1ms−  to 0.417 1ms− , for values of oil superficial velocity in the range 0.025 1ms−  to 

0.083 1
ms

−  and for values of the mean oil volume fraction refβ  in the range 0.047 to 

0.205. The oil droplets were about 6mm to 7mm in size. For all of the flow conditions 

investigated, it was found that the velocity profile of the oil droplets was ‘power law’ in 

shape, with the peak velocity at the pipe centre and with the velocity declining to zero at 

the pipe wall. The shapes of the observed oil velocity distributions were very similar to 

the shapes of air velocity distributions obtained in bubbly air-water flows at similar flow 

conditions and with 5mm air bubbles. Values of the Zuber-Findlay distribution parameter 

0C  for the oil-water flows were very similar to values of 0C  obtained for bubbly air-

water flows at similar flow conditions. These results are noteworthy given the large 

density contrast between oil and air. 
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The shape of the local oil volume fraction distribution for the oil-in-water flows 

investigated was found to be dependent upon refβ . For values of refβ  less than about 

0.08 the net hydrodynamic force on the oil droplets is relatively strong and acts in the 

direction of the pipe centre giving rise to local oil volume fraction distributions that are 

‘power law’ in shape.  

For values of refβ  in the range 0.08 to 0.15 the net hydrodynamic force on the droplets is 

close to zero with the resultant oil volume fraction distributions being mainly due to 

droplet diffusion and hence being essentially flat, apart from within the so-called bubble 

sub-layer adjacent to the wall.  

For values of refβ  greater than about 0.15 the net hydrodynamic force on each droplet is 

relatively weak and in the direction of the pipe wall, giving rise to local oil volume 

fraction distributions with an ‘intermediate peak’ shape.  
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Figure Headings 

 

Figure 1: The dual-sensor probe 

 

Figure 2: Schematic of the 80mm i.d. flow loop working section 

 

Figure 3: Local oil droplet axial velocity ou  versus Dr /  for values of mean oil volume 

fraction less than 0.08. [Squares :- 
1

ms276.0
−=wsU , 

1
ms027.0

−=osU . Diamonds:- 

1ms417.0 −=wsU  , 1ms041.0 −=osU ]. 

 

Figure 4: Local oil droplet axial velocity ou  versus Dr /  for values of mean oil volume 

fraction between 0.08 and 0.15. [Squares :- 
1

ms276.0
−=wsU , 

1
ms055.0

−=osU . 

Diamonds:- 1ms415.0 −=wsU  , 1ms082.0 −=osU ]. 

 

Figure 5: Local oil droplet axial velocity ou  versus Dr /  for values of mean oil volume 

fraction greater than 0.15. [Squares :- 
1

ms276.0
−=wsU , 

1
ms083.0

−=osU . Diamonds:- 

1ms416.0 −=wsU  , 1ms124.0 −=osU ]. 

 

Figure 6: Local oil volume fraction β  versus Dr /  for values of mean oil volume 

fraction less than 0.08. [Squares :- 1ms276.0 −=wsU , 1ms027.0 −=osU . Diamonds:- 

1
ms417.0

−=wsU  , 
1

ms041.0
−=osU ]. 

 

Figure 7: Local oil volume fraction β  versus Dr /  for values of mean oil volume 

fraction between 0.08 and 0.15. [Squares :- 1
ms276.0

−=wsU , 1
ms055.0

−=osU . 

Diamonds:- 1ms415.0 −=wsU  , 1ms082.0 −=osU ]. 

 

Figure 8: Local oil volume fraction β  versus Dr /  for values of mean oil volume 

fraction greater than 0.15. [Squares :- 1ms276.0 −=wsU , 1ms083.0 −=osU . Diamonds:- 

1
ms416.0

−=wsU  , 1
ms124.0

−=osU ]. 

 

Figure 9: Exponent p  versus mean dispersed phase volume fraction for oil-water and air-

water bubbly flows. 

 

Figure 10: Exponent q  versus mean dispersed phase volume fraction for oil-water and 

air-water bubbly flows. 

 

Figure 11: Zuber-Findlay distribution parameter 0C  versus mean dispersed phase volume 

fraction for oil-water air-water flows. [The dotted line shows the trend of the air-water 

data. The solid line shows the trend of the oil-water data]. 



 19

 

Figure 12: Simulated and experimental local oil volume fraction profiles for values of 

mean oil volume fraction greater than 0.15. [12(a):- 
1

ms276.0
−=wsU , 

1
ms083.0

−=osU . 

12(b):- 1
ms416.0

−=wsU  , 1
ms124.0

−=osU ]. 

 

Figure 13: Simulated and experimental local oil volume fraction profiles for values of 

mean oil volume fraction less than 0.08. [13(a) :- 
1

ms276.0
−=wsU , 

1
ms027.0

−=osU . 

13(b):- 1
ms417.0

−=wsU  , 1
ms041.0

−=osU ]. 

 

Figure 14: Simulated and experimental local oil volume fraction profiles for values of 

mean oil volume fraction between 0.08 and 0.15. [14(a):- 
1

ms276.0
−=wsU , 

1
ms055.0

−=osU . 14(b):- 1
ms415.0

−=wsU  , 1
ms082.0

−=osU ]. 

 

Table Heading 

 

Table 1: Calculated values of hyK / εK  for six different flow conditions and the 

corresponding values of  the mean oil volume fraction refβ . 
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mean oil volume fraction = 0.056 (squares) 

mean oil volume fraction = 0.068 (diamonds)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

r/D

A
x
ia

l 
V

e
lo

c
it
y
 m

/s

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 



 23

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 

mean oil volume fraction = 0.121 (squares)

mean oil volume fraction =beta = 0.135 (diamonds)
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mean oil volume fraction = 0.187 (squares) 

mean oil volume fraction = 0.205 (diamonds)
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Figure 5 
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mean oil volume fraction = 0.056 (squares) 

mean oil volume fraction = 0.068 (diamonds)
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Figure 6 



 26

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7 

mean oil volume fraction = 0.121 (squares)

mean oil volume fraction =beta = 0.135 (diamonds)
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mean oil volume fraction = 0.187 (squares) 

mean oil volume fraction = 0.205 (diamonds)
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Figure 8 



 28

0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.05 0.1 0.15 0.2 0.25

Mean dispersed phase volume fraction

E
x
p
o
n
e
n
t 

p

Van der Welle [3] 

correlation for air-water 

Diamonds: oil-water 

Crosses: air-water from Lucas [2] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9 



 29

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10 
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Figure 11 
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Figure 12 

mean oil volume fraction = 0.187

Squares - experimental data. 

Solid line - simulation
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Figure 13 

mean oil volume fraction = 0.056

Squares - experimental data. 

Solid line - simulation

0

0.02

0.04

0.06

0.08

0.1

0.12

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

r/D

O
il 

V
o
lu

m
e
 F

ra
c
ti
o
n

(a) 

mean oil volume fraction = .068

Squares - experimental data. 

Solid line - simulation

0

0.02

0.04

0.06

0.08

0.1

0.12

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

r/D

O
il 

V
o
lu

m
e
 F

ra
c
ti
o
n

(b) 



 33

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14 

mean oil volume fraction = 0.121

Squares - experimental data. 

Solid line - simulation
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hyK / εK  

 

refβ  

-600 0.056 

-520 0.068 

-100 0.121 

0 0.135 

+70 0.187 

+60 0.205 

 

 

Table 1 


