
University of Huddersfield Repository

Mustafa, Faisal and McCluskey, T.L.

Dynamic web services composition: current issues

Original Citation

Mustafa, Faisal and McCluskey, T.L. (2008) Dynamic web services composition: current issues. In:
Proceedings of Computing and Engineering Annual Researchers' Conference 2008: CEARC’08.
University of Huddersfield, Huddersfield, pp. 48-54. ISBN 978-1-86218-067-3

This version is available at https://eprints.hud.ac.uk/id/eprint/3683/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

School of Computing and Engineering Researchers’ Conference, University of Huddersfield, Nov 2008

Dynamic Web Services Composition: Current Issues

Faisal Mustafa, T. L. McCluskey

University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK

ABSTRACT

A great deal of recent web-related research has concentrated on automated web service composition.
The main advantage of web services technology is the possibility of creating value-added services by
combining existing ones to achieve customized tasks. How to combine these services efficiently into
an arrangement that is both functionally sound and architecturally realizable is a very challenging topic
that has founded a significant research area within computer science.
Our research contribution lies in the area of dynamic composition service selection. We have started
by collating and analyzing current outstanding problems within the dynamic composition area. To help
explain the background to these challenges we compare, firstly, the key components of distributed
computing technologies with web service composition. Then we define the ‘execute ability’ problem -
the key idea that preconditions of web services must be satisfied before or during composition. We
discuss data distribution strategies among services, how they can be used to overcome problems in
dynamic composition problems and how they relate to the quality of service. Finally, we present our
proposed framework model to handle the process of web service composition and execution. We
propose that this framework eliminates the main problems as discussed in the paper.

Keywords Dynamic Web Services, Composition, Quality of Service

SECTION I

1 INTRODUCTION

People use the internet daily to look up financial market quotations, buying different manufacture’s
products, searching, filling in forms and to get the latest updates. This level of interaction is useful for
information retrieval purposes. Most of the information on the web is designed only for human use
[1,6,23,24]. Humans can read HTML documents and understand them, but their inherent meaning is
not shown to allow their interpretation by computers. In other words the essential text-based web does
not support software interactions. How we give meaning to the text based web is precisely the
objective of the Semantic Web – to make possible the processing of Web information by computers
[24]. The Semantic Web is a future vision of an extension of the www, in which information is given
machine-readable semantics, enabling computers and people to work in cooperation [4,7,19]. Internet
based applications need to be capable of performing search and automatically interact with other
internet-based application. The goal is to enable software systems to automatically perform operations
that previously required human intervention, such as searching for and buying goods and services
while optimizing user criteria such as a resource (price, time etc). All these examples come from
relatively different areas but still share some fundamental characteristics [1,6,22]. Figure 1 shows a
common operation scenario of available services. A service is offered by service provider, an
organization that procures the service implementation supplies its service description (WS Register),
and provides technical and business support to clients [7,11,16].
 Previous research [14,17,21,23,29] has divided the process of composition of services into
static and dynamic. Static composition is purely manual i.e. firstly, the user problem must be defined
and then a manual selection of services according to desired outputs is performed. In dynamic
composition, automated tools are used to analyze a user problem, and select and assemble web
service interfaces so that their composition will solve the user problem [4]. In other words, from a user
perspective, this composition will continue to be considered as a simple service, even though it is
composed of several web services [30].
 In our research project, we are aiming to create methods for the automatic, dynamic
composition of web services. In particular the methods will be able to cope with problems associated
with the distributed, independent, and uncertain nature of the web. Individual service availability,
reliability and quality are factors which make composition difficult. This paper discusses the main
issues faced by web services composition researchers and proposes some solutions.
 The paper is structured as follows: section 1 discusses web services, distributed computing
technologies and the execute ability problem as discussed in [15]. This is to do with determining

48

School of Computing and Engineering Researchers’ Conference, University of Huddersfield, Nov 2008

whether the preconditions of the actions which make up a composite service can be satisfied in the
“open world” environment of the web, where information is incomplete. We try to discuss execute
ability issue in section I because actually it is common problem in both approaches (web services and
distributed application development methods). In section II, we try to advocate data distribution
strategy in the composition process model, web services selection criteria on the base of QoS (Quality
of services) issues like throughput Capacity, Latency, Response Time, Availability, Reliability,
Reputation and Execution cost[18,19]. Although different approaches are available to address this
problem, but we are trying to start with current problems from different approaches in this area. In
proposed frame work model, our main attention is to eliminate currently faced problem during
composition, which we discussed in section I and II.

2 A MOTIVATING EXAMPLE

Web services are self contained programs that can be executed through the standard, global protocols
of the internet. There are many services around the web and each one has a limited functionality. In
many cases, a single web service is not sufficient to respond to the user’s request and often services
should be combined through services composition pattern to achieve a specific goal [3,5,7,9,22,29].
Such composition is carried out manually at present, which means that a user needs to execute all
these services one by one and these tasks can be time and effort consuming. Due to constant
changes in output/input parameters values, interfaces, networking issues, it is difficult to integrate
these services.
 As an example application, we consider the work by Hu, who has used the web service
paradigm in an effort to make more the communication between police departments and UK
government agencies more effective [3, 23,29]. Each of the providers (the agencies) offers data and
enquiry capabilities to the police forces (a range of services are offered as shown in Figure 2). In a
typical police enquiry, whenever a police officer wants to investigate about any person he has to
search through for a criminal record, fingerprints, vehicle registered in the person’s name, insurance
details and vehicle movement in a particular interval of time across the country. In fact, more than 50
department’s services required integration in this project [29].
 To date this work has achieved limited success towards the application of automated, dynamic
composition of web services, as in the Police domain, only authorized persons have access to some
of these services [4, 5]. So just in time integration of services is not possible at the moment. Currently
they are using a semi-automatic static composition method as shown in figure 2. Enquiry officer is
getting query response after execution of composer process. But for real time results we need
dynamic composition. Such a type of dynamic composition is difficult because of the following factors.

o Firstly, it is very difficult to analyze services (even manually) from the web services repository
(the UDDI) and integrate them to get specific required outputs.

o Secondly, web services contents are going to be changed routinely to fulfil the user
requirements. On selection time before composition the system must be able to select up-to-
date services. There has been a considerable research to get updated web services at the
time of composition but still unable to fulfil dynamic composition requirements.

o Thirdly, web service suppliers are using different conceptual models to describe their services.
To enable an automated dynamic composition process we need one structure (model) of
available services so that a service can easily invoke other services with out any technical
overhead. Figure 3 provide us summarize overview of bottom to top development stages of
web services. We also try to draw sub stages on some levels.

On next stage of composition process selection of services is also very important issue. There are
three types of rules to consider, whether involved in static or dynamic composition, as illustrated in
Figure 3.In Template Based, a specific template either needs to be created, or acquired from a
repository. A user has to locate the respective template first (in static composition process) before
compose services. This is time consuming process as well. In Interface Base, on the base of inputs
and outputs through interfaces, user is getting services reference and these composite services after
composition process provide final results. It is highly adaptable method but functionality is not
guaranteed. During composition process, some time we are getting similar interfaces, but after
composition undesirable outputs (final results). Mostly automated composition available tools using
interface base selection concept. In Functionality Base Composition, along with pre-conditions and
post-conditions, user has to provide first-order logic (formula representing the logic) into the interface
information. The above mentioned individual rules are adaptable if we are interested in manual
selection. In the context of our interface and functionality based (two rules combination) approach, the
problem of dynamic selection can be solved as discussed in section II.

49

School of Computing and Engineering Researchers’ Conference, University of Huddersfield, Nov 2008

3 WEB SERVICES AND DISTRIBUTED COMPUTING

It has been claimed that web services are reinventing the wheel because they share many
characteristic with other distributed computing architecture, such as CORBA, Distributed Smalltalk,
RMI or DCOM [14, 24]. Technologies from distributed computing normally have a tightly coupled
relationship between client and server where the coupling between various components in a system is
high. In RPC–oriented interaction, the service request takes the form of a method call defined by a
name and a set of input and output parameters. During execution it waits for a response in a real time.
In the web service-oriented interaction style, the particular web service request takes the form of
complete XML (query) document and will provide result on screen, acknowledgement in the form of
email or any other type of real time response. In both above cases we need detailed knowledge of
available services and about all involved overheads (physical and logical structure) to combine them.
Although less effort is required during the setup of such structure. It still leads to some type of static
binding. Because in distributed object technologies we are normally following object reference call
procedure, defined data structures, language specific protocols. Therefore it cannot inherently take the
advantage of the existing available services, while the web assumes that parties can connect without
prior knowledge of participants, by following URL links and observing some fundamental rules [7, 24].
The main question arising at this point is how can we reduce tight coupling and static binding between
these components? Otherwise web service composition will give us same concept like any distributed
computing applications. The main potential advantage, therefore, of web services over RPC’s is the
potential for service (application) to automatically discover and compose services on demand. One
technology for achieving this is AI planning, which can be used to automate the composition of
semantic web services and dynamic discovery [7,10,12,13]. These techniques can potentially enable
client and web services to find each other with out prior knowledge of each other. To apply these
techniques for accurate results we have to introduce semantic and ontological concepts to our web
service model. Hence the act of looking up capabilities of a Web services can be done at the same
time as dynamically composing it with others, rather than the use of inflexible static binding between
one or more services. These two previous concepts make web services stand out against distributed
applications. So it will be impractical to develop real time applications (like Hu’s police example
explained above) by using distributed technology environments.

4 EXECUTE ABILITY PROBLEM

Web services are some times portrayed as “silver-bullet” solutions to integrated web applications,
because they have the potential to replace the role of the original web and relational database-related
technologies [24]. Web service technology enables application-to-application interactions over the
web, since any interaction with a web service involves sending and receiving messages [15,28]. One
way to describe a particular service is in terms of its preconditions on input parameters values,
precondition on prior operations invoked, and its output conditions and effects. In web services
composition process, the two terms choreography and orchestration are very important. Web services
choreography is to do with the interactions of services with clients/users, and determines the
specification of operations, states and conditions, which control how the interaction occurs [27].
Following the temporal constraints output by the choreography process should result into the
completion of a useful function [23]. As stated by Micheal Hu, Web service choreography permits the
description of how web services can be composed, how rules and association in the web services can
be established, and how the state, if any, of composed services is to be managed [29]. The World
Wide Web Consortium introduced the Web Services Choreography Description Language (WS-CDL)
which captures the interaction in the participating services. The choreography model also helps out to
determine control-flow dependencies, message correlation, time constraints and transactional
dependencies. On the other hand an orchestration defines the sequence and condition in which one
web service invokes other services in order to carry out any specific task, i.e. an orchestration is the
pattern of interaction that a web service planner must follow in order to achieve goal [23,29].On the
base of above discussion we can say the dynamic composition model requires four additional layers
Semantic, Ontological, Choreography description and Orchestration concepts. Choreography Model
and Orchestration Model provide us a comprehensive solution for basic issues like precondition, effect
and post condition.

50

School of Computing and Engineering Researchers’ Conference, University of Huddersfield, Nov 2008

SECTION II

5 DATA DISTRIBUTION AND QUALITY OF SERVICES

Service-Oriented Architecture is recently defined paradigm for organizational models of systems,
aimed at simplifying large business operations using existing services. SOA’s main manifestation is in
the area of web services. Although there is plenty of controversy about how SOA will manifest itself in
the context of web services technologies, the issue of the quality of services will always be central to
the argument [2, 24]. Businesses will have to have secure web services and will have to be able to
guarantee that messages arrive at their intended destination and are processed reliably [4, 7, 23].
During this web services composition process we also required output variable values from different
services (data servers). If some parameters are missing or due to any reason not available for next
service then process will fail. Web services standards and technologies are composed of two major
types of application interaction patterns on the basis of their database interaction access. Centralized
dataflow and Decentralized dataflow. If our focus is towards dynamic service composition then in both
approaches there are some limitations [3,8,9,11,17,19]. In Centralized Dataflow, data between
components services is passed through the composite services and in that situation bottleneck
problem occur, that is why throughput and response time affected. On the other end in Decentralized
Dataflow Components, services exchange data directly with various data base servers. This result is
that the distribution of network traffic among all the services involved improves loading characteristics
on the composite service, improving in particular throughput and response time. Both of the models
have there own advantages in distributed computing environment [7,13,21,23,25]. The Decentralized
Dataflow seems to be very efficient for dynamic services composition but in some situation like Police
example it will affect QoS factors like latency, execution cost and capacity. For automatic web services
composition we can use centralized data model by adding middleware extension support to avoid tight
coupling between services. This type of extension will be automatically added in our model if we use
UDDI (Universal Description Discovery and Integration) or WS-Coordination and WS-Transaction.
Proposed frame work model will result in performance improvement, lower time response and higher
throughput maintainability. The web services QoS requirement refers to both functional as well as non-
functional quality aspects of web services [2,16]. The overall performance of web services depends on
the complexity of the application, as well as the network, messaging and transport protocols
(SOAP.HTTP).Automatic service compositions are error prone, while developing web services
following practices are very important [2].Adopting standards such as BPEL4WS, WS-Coordination,
WS-Transaction, and WSCI (Web Service Choreography Interface), Service Pooling and Load
Balancing, Web Service Clustering, Use of Security Assertions, P3P (Platform for Privacy
Preferences), Use of Asynchronous message queues, Use of simple data types in messages as
discussed in [8,21,24,26,27].

6 CURRENT TECHNICAL AND FUTURE WORK

In this short paper our discussion is around distributed technologies, execute ability issues, data
distribution, QOS issues and how to avoid execute ability issues. So this basic path provide us a way
leading to one real time integrated setup for execution of these composed services with out any
dependencies and faults as mentioned in [14, 11, 19, 23]. In proposed model as shown in figure 4 we
try to add solution of main problems which we discussed in section I and II. The activity of this process
starts when a new service is firstly registered in service repository. We use a translator if any type of
language conversion is required. The service composition request is firstly coming to web server. Web
server will try to locate in its own services database if already such type of interface base composition
exists then integrated result will send to client. Otherwise server will try to search from web services
database. The web server will find desired services through matching engine from web service
database. Evaluator will evaluate these services on the base of interface base search in first round.
On the base of results during first round, evaluator again apply functionality base rule in second round.
Composer will compose these selected services and return services address to web server. The
composed solution results will send to composition requestor. The copy of this services integration will
also be saved in service repository for future use. For practical implementation of such desired
framework we tried by using Eclipse version 3.4.0 with GEF (Graphical Editing Framework) plug-in,
Apache tomcat server 6.0, UDDI server based integrated platform. The above mentioned path actually
leads us towards semiautomatic type of composition. If any of servers is not responding or

51

School of Computing and Engineering Researchers’ Conference, University of Huddersfield, Nov 2008

input/output issues then composition process will fail. Secondly during experiment we also observe
that composition process is not getting any advantage from the new uploaded services. To include
new services into our composition process we have to re instantiates both servers. By this integrated
environment we are trying to fill the gap between distributed network application development and web
services as discussed in section I. In SOA paradigm if we introduce communication links between
distributed technologies and web services then automatically we will find autonomous environment.
Where applications can connect without prior knowledge of platform, human interaction and technical
details, then we can achieve loosely-coupled, platform-agnostic, self-describing and self-healing
application properties.
 To overcome this issue we have to introduce a plan which (planner) itself produces required
outputs on the base of input values as discussed in [7, 13]. So our next step is to view dynamic web
composition process as AI planning problem. We can consider composition tasks process in different
states i.e. initial state, final state and goal (composition final result) of a planner.

7 CONCLUSIONS

At this stage, automated dynamic web service composition development process is still under
development, although some automated tools and proposals are available. The full automation of this
dynamic process is still ongoing research activity. In this paper we outlined the main challenges faced
by web service composition, like execute ability, data distribution and its effect on QoS. We also tried
to elaborate the main differences and advantages of web services over distributed application
development. Based on an analysis of current problems, we have introduced a model of dynamic
services. In the proposed model we try to fix current issues for dynamic composition. In our future
work we intend to elaborate the phases of the proposed model, and develop searching algorithms,
leading to a robust solution to the dynamic composition task.

8 REFERENCES

[1] Jinghai Rao and Xiaomeng Su. “A survey of automated web services composition Methods”.

[2] Natallia Kokash. “A Service Selection Model to improve Composition Reliability”.

[3] Volha Bryl and Fabio Massacci. “Designing Security Requirements Models through planning”.

[4] Evern Sirin, James Hendler and Bijan Parsia. “Semi-automatic Composition of Web Services

using Semantic Descriptions”.

[5] Biplav Srivastava and Jana Koehler. “Web Service Composition – Current Solutions and Open

problems”.

[6] Dan Wu, Evren Sirin james Hendler and Dana Nau. “Automatic Web Service Composition Using

SHOP2”.

[7] Mark Carman, Luciano Serafini and Paolo Traverso. “Web service Composition as Planning”.

[8] Daniela Berardi , Giuseppe De Giacomo and Massimo Mecella. “Automatic Web Service

Composition: Service- tailored vs. Client-tailored Approaches.

[9] Rosanna Bova, Salima Hassas and Salima Benbernou. “An Immune System-Inspired Approach

for Composite Web Service Reuse.

[10] Konard Pfadenhauer, Schahram Dustdar and Burkhard Kittl. “Challenges and Solutions for Model

Driven Web Service Composition”.

[11] Cheng Yushi, Lee Eng Wah and Dilip Kumar Limbu. “ Web Services Composition- An Overview of

Standards”. Pages (137-149)

[12] Axel Polleres presented topic “ AI Planning for Semantic Web Service Composition.

[13] Freddy Lecue and Alain Leger. “Causal link matrix and AI planning: A model for Web Service

Composition”.

52

School of Computing and Engineering Researchers’ Conference, University of Huddersfield, Nov 2008

53

[14] Biplav Srivastava, Joseph P. Bigus and Donald A. Schlosnagle. “Using ABLE to bring Planning to

Business Application”.

[15] Yilan Gu and Mikhail Soutchanski. “ A Logic For Decidable Reasoning About Services”.

[16] Federico Chesani, Paola Mello and Marco Montali. “Abduction for Specifying and verifying Web

Service and Choreographies”.

[17] Annapaola Marconi, Marco Pistore and Paolo Traverso. “Implicit vs. Explicit Data-Flow

Requirements in Web Services Composition Goals”.

[18] John Gekas and Maria Fasli. “Automatic Web service Composition using web connectivity

analysis techniques”.

[19] Shuping Ran. “A Model for web services discovery with QoS”.

[20] Mikio Aoyama, Sanjiva Weerawarana, Hiroshi, Clemens Szyperski, Kevin Sullivan, Doug Lea.

“Web Services Engineering: Promises and Challenges”.

[21] Lucian-Mircea Patcas. “Data Distribution in Web services Composition”. Presented in (“The 15th

PhDOOS workshop ECOOP, Glasgow).

[22] Marco Pistore, Jose Luis Ambite, Biplav Srivastava. “Workshop on Knowledge level Automated

Software Engineering” (August 28, 2006).

[23] Michael Hu, Howard Foster “Using a Rigorous Approach for Engineering Web Services

Compositions: A Case Study”.

[24] Eric Newcomer “Understanding Web Services, XML, WSDL, SOAP and UDDI”.

[25] H. M. Deitel, P. J. Deitel “Web Services A Technical Introduction”.

[26] Rajesh Sumra, Arulazi D “Quality of service for web services-demystication, limitations and best

practices”.

[27] Chris Peltz (Hewlett-Packard Company) “Web Services Orchestration and Choreography”.

[28] Francisco Curbera, William A. Nagy, Sanjiva Weerawarana “Web services: why and how”.

[29] Michael Hu “ Web Services Composition, partition, and quality of service in distributed system

integration and re-engineering”.

[30] Daniela Barreirs clars “ selecting web services for optimal composition”.

Composer
Vehicle

Web
Services

Automatic
Web Service
Composition

Nominal
Enquiry

Web
Service

Figure 2: Police Web Services Example

WS
Provider

WS
Client

WS
Register

Service Invocation

Service Discovery Service Publication

Figure 1 Web Services Operation scenario

ANPR
Enquiry

Web
Service

Finger-
Print

Enquiry
Web

Police Officer
Enquiry

Motor
Insurance

Web
Service

School of Computing and Engineering Researchers’ Conference, University of Huddersfield, Nov 2008

Invocation

Figure 3: Stages towards Composition Process

Figure 4: Proposed Frame work Model

WSDB

ME

C

E

Service
Provider

Service
Requester

WS

SR
Service

Registratio

Service
Request

T

E = Evaluator WS = Web Server
C = Composer
SR = Service Repository

Selection

Discovery

Advertise

Composition
WD1

SWD2

Develop

Static

Dynamic

QoS3

Interface Base

Functionality Base

Template Base

WD = Web Development (Non semantic
based web)
SWD = Semantic Web Development
QoS = Quality of Services

54

	Faisal Mustafa, T. L. McCluskey

