
University of Huddersfield Repository

Xu, Zhijie and Taylor, D.

Top-Down Virtual Environment Construction for Manufacturing Simulations

Original Citation

Xu, Zhijie and Taylor, D. (2001) Top-Down Virtual Environment Construction for Manufacturing
Simulations. In: Proceedings of the Second International Workshop VR-MECH'2001. Belgian
Society of Mechanical and Environmental Engineering (BSMEE), pp. 117-122.

This version is available at http://eprints.hud.ac.uk/id/eprint/3639/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

 Top-Down Virtual Environment Construction for Manufacturing Simulations

Zhijie Xu and Dave Taylor

School of Engineering University of Huddersfield
Queensgate Gate, Huddersfield HD1 3DH, United Kingdom

Abstract: Virtual environments (VEs) are becoming important tools for simulating manufacturing systems. Various
virtual environment constructing techniques and toolkits have been devised in recent years. This paper provides an
“inside” view of those methods. Based on the insight, a futuristic VE construction approach that aims to integrate
manufacturing application knowledge with environment data is proposed and its implementation discussed.

Keywords: virtual reality, virtual environment, manufacturing simulation

1 Introduction:

Simulation has been widely considered one of the most
useful tools for analysing and designing complex
manufacturing systems [1]. However, the conventional
simulation modellers have two fundamental problems.
Firstly, simulation modellers often encounter difficulties
in transforming the real world multi-dimensional, visual
and dynamic characteristics into the one-dimensional,
textual and static representation required by traditional
simulation languages [2]. The result of such presentation
produced from the conventional simulation process is
often hard to understand, manipulate and utilize. The
second problem is due to the difficulties on integrating
design and manufacturing information [3].

Virtual Reality (VR) and Virtual Environment (VE)
techniques have provided a new dimension in solving
those problems by integrating more human senses into a
computer-generated real-time 3-D interactive
environment. Hence, the VR application users will have
better insight of the simulated system and its potential
problems. One challenge for achieving those purposes is
to find a format that supports the representation of VE-
based manufacturing knowledge and, paradoxically, the
simplification of the environment construction and
application data management processes.

Despite system functions claimed by various vendors, the
current utilities for constructing VR environments are still
left for users because commercial VR systems need to
remain as general as possible to accommodate different
users. The construction of VR environments is still
application specific and consequently involves time
consuming processes often led to poor system usability.

2 Literature Review

Current virtual environment construction toolkits can be
classified as geometric library-based programming
functions, interpreted environment modelling scripts, and,
the most popular, commercial VE authorisers.

2.1 API based approach

Application program interface (API) methods rely on
stand-alone or built-in 3D programming libraries or
interface functions that enable advanced users to write
system code using, say, C/C++ and Java languages. The
code developed by the users is normally built into an
executable program or a series of interpretable "class"
files that generates a dedicated virtual environment.

WorldToolkit (WTK) from Sense8 Co.Ltd is a library of
over 1000 functions written in C that enable user to
develop new virtual reality applications [4]. WTK
functions are organized into over 20 classes. These
classes include the Universe (which manages the
simulation and contains all other objects), Geometries,
Nodes, Viewpoints, Windows, Lights, Sensors, Paths,
Motion Links, and others. Functions are included for
things such as device instancing, display setup, collision
detection, loading geometry from a file, dynamic
geometry creation, specifying object behaviour,
manipulating textures, and controlling rendering. The
architecture of the WTK incorporates the power of scene
hierarchies which is a tree-like structure that manages all
the contents and contexts in a virtual environment. By
calling different functions, user can build a simulation by
assembling “nodes” into a hierarchical scene graph,
which dictates how the simulation is rendered and allows
all of the efficiencies of a state-preserving, stack-oriented
rendering architecture. Each “node” of the scene graph (or
scene graphs) represents part of the simulation.

The Java 3D API (Sun Co.Ltd) is an Application
Programming Interface used for writing three-
dimensional (3D) graphics applications and applets. It
gives developers high-level tools for creating and
manipulating 3D geometry and for constructing the
structure used in rendering that geometry [5]. Similar to
the WTK, The Java 3D API draws its ideas from existing
graphics APIs and from new technologies. Java 3D’s low-
level graphics tools synthesizer the theories and practices
found in low-level APIs such as Direct3D, OpenGL,
QuickDrw3D, and XGL. Its high-level tools synthesize
the best ideas found in several scene graph-based systems.

Except those commercial programming libraries
mentioned above, researchers in various universities and
institutes have developed a series of customised APIs. For
example, researchers in the University of Maryland [6]
have developed VE construction software – Metis, a
toolkit for building immersive virtual environment with
environment-independent application computing
components. The Metis toolkit defines an application-
programming interface (API) on the simulator side, which
communicates via a network with a standalone viewer
program that handles all immersive display and
interactivity.

Researchers at Advanced Interface Group (AIG) in the
University of Manchester have developed a system that
tackles problems on constructing large-scale applications.
This system aimed to deliver the performance and
flexibility required by the large-scale complex application
environments, which addresses the graphics, interaction,
distribution and systems architecture problems [7].
Similar to the Metis system described above, this
proposed system also separates the simulation task and
environment rendering process into two core components,
Maverik and Deva: Maverik manages the world as a
participant perceives it, and Deva manages the "reality"
behind this perception. The Maverik has functions for
optimized display management including culling, spatial
management, interaction and navigation, and control of
VR input and output devices. It allows data exchange
between its core functions and external application data so
that optimal representation and algorithms can be
employed. Deva extends Maverik to support the
distributed applications and controls the environment
simulation.

Other developments have been reported in the literature
review including VEDAM system developed by Angster
[8] in Washington State University and Interactive Virtual
manufacturing Environment developed by the University
of Bath [9]. All the API based methods introduced above
provide flexibility for environment developers to create a
large and complex virtual environment. However, they
demand high-level programming skills, for example,
MFC and ActiveX, and the generated environments
provide no flexibility for users to change and reconfigure,
when different applications requirements are involved.

2.2 Virtual reality modelling language

The Virtual Reality Modelling Language (VRML) is a
script language to describe VEs and an ISO standard
(International Standard ISO/IEC 14772) for specifying 3D
virtual worlds networked via the Internet. The VRML
environment on the World Wide Web (WWW) can link to
or be linked from other sources on the Internet, but the
use of VRML for constructing virtual environments is
very much similar to the API method. VRML files
describe 3D objects and worlds using the hierarchical
scene graph. The scene graph contains nodes which
describe objects and their properties. It contains

hierarchically grouped geometry to provide an audio-
visual representation of objects, as well as nodes that
participate in the event generation and routing
mechanism. Entities in the scene graph are called nodes.
VRML 2.0 defines 54 different node types, including
geometry primitives, appearance properties, sound and
sound properties, and various types of grouping nodes.

2.3 Graphical VE authorisers

Currently, the most common way to build a virtual
environment is using an environment authoriser, which is
a graphical user interface that works in a drag-and-drop
manner similar to an ordinary CAD system. For example,
the SuperscapeVRT is an integrated visual-based virtual
environment developing tool set. It consists of two
browser platforms (one for desktop application and one
for Internet usage) and a suite of seven editors. Virtual all
the development work involved in the process of
constructing an virtual environment can be completed in
the VRT, from creating 3D objects to organising their
spatial positions, from editing sound clips to painting
background images.

Similar to the VRT, Sense8 World Up is also an
Integrated Development Environment (IDE) from which
you create objects and properties, and design simulations.
WorldUp supports the import of 3D models from industry
standard modellers. To add behaviours to objects,
developers can author customer behaviours or change a
property of an existing behaviour by writing scripts using
the BasicScript language, or use property change events
to trigger behaviours.

2.4 Contextualizing the VE construction

approaches

Virtual environment construction approaches can be
simplified as Bottom-up generative Approach, Event-
driven Building-block Approach, and Variant
Construction Approach. The first approach focused on
environment geometric modelling and detailed object
grouping and layout. The second approach required
system developer's skills in implementing application
knowledge in sequencing environment activities. The
third approach noticed the importance of application
environment data integration and management. All three
approaches are able to constructing “exhibition-style”
environments, i.e., 3D models for display and
manipulation. To the knowledge of authors, there are
limited methods available for constructing virtual
environments, and, at the mean time, being able to
support application knowledge acquisition and
environment data management. The difficulties of
achieving this can be summarized as follows:

(1) A virtual environment and its contents must be
abstracted from their physical forms and existence to a
low-level hyper (or digital) detail such as VR codes,

3D polygon rendering geometry, animation elements
and other virtual environment sensory factors. Such
abstracted low-level VR elements must have real
world semantic meanings so that a virtual application
environment could be constructed not only to have a
visual resemblance but also to functionally perform
like its physical counterpart. Abstraction of physical
(geometrical and functional) reality into a VR model
is not a generic problem due to the diversity of
application requirements. So far little research toward
this problem has been reported in the literature.

(2) Practical virtual environment applications require
large-scale and complex VR models. However,
currently available construction methods to create
even a reasonably small-scale VR model, for example,
a human head, are a tedious and time-consuming and
expensive process.
(3) A unique difficulty exists when application
environments need to be modelled in a higher degree
of accuracy than that of, say, virtual environments for
entertainment. The precision of VR modelling is
mainly driven by the internal application data rather
than by the VR rendering result or graphical
visualization effect.
(4) A large proportion of application data and
information required in a VR model is empirical and
non-generic. Although one of the strengths of a VR
model is that it can deal with such knowledge without
a knowledge base, the data needs to be strictly
monitored and managed within the model.
Incorporating a graphically correct (or even crude) VR
models with a complex, diverse application database
is a challenging problem.
(5) Application reconfigurability is essential for most
multi-user and multi-purpose virtual environments. At
present, VR models are mostly created by VR
specialists or programmers. The hidden model
structure and non-transparent modelling data leaves
users little flexibility to make changes especially when
an application requirement has been changed.

To overcome those problems, works need to be done on
(i) establishing effective methods for rapid creation of
large and complex virtual environments that can be
reconfigured, and (ii) providing techniques for acquiring
application knowledge and managing environment data
within a application environment that is accessible for the
third party analysis tools.

3 Domain-Analysis Top-Down Approach

A domain analysis-based top-down approach is proposed
in this research that can satisfy three needs: (i) to provide
a user-friendly and rapid method for the construction of
virtual manufacturing environments, (ii) to provide a
reusable and re-configurable mechanism of virtual
environments for different manufacturing applications
and (iii) to allow the capture and presentation of
manufacturing knowledge and manage manufacturing

data. The proposed approach was implemented with the
aid of two concepts: application domain analysis and top-
down VE construction.

3.1 Application domain analysis

Application domain-analysis attempts to understand,
classify and abstract the real world knowledge into a
virtual environment and provides realistic guidance for
the constructing of the applied environment. For example,
a virtual lathe would carry the knowledge of its spindle
speeds and the chunk would carry the knowledge of the
diameter range it could hold. The approach negates the
need to encapsulate all the knowledge in to a single
environment.

Consider an environment designed for a process planner,
the knowledge needed on a machine tool would relate to
spindle power available, job-type and machine capacity.
On the other hand, a plant layout designer will merely
require data concerning the machine footprint, and
possibly, some safety factors. In this way the application
domain-analysis actually performs the task of identifying
which part of manufacturing knowledge is going to be
applied in a specific environment.

Figure 1 Template Manufacturing Environments

3.2 Top-down VE construction

The top-down approach intends to avoid the time-
consuming processes of constructing an environment
from scratch, or struggling with mastering an environment
authorizer. As shown in Figure 1, a set of representative
manufacturing environments for different application
domains are constructed that can be used as templates as a
starting point to develop an environment. A template
environment has defined properties such as suitable tasks,
environment size, simulation level and interactive mode,
which can be used to compare with the required
application task and modified to suit.

A computing system named Knowledge Acquisition and
Management using Virtual Reality (KAMVR) has been

developed with an environment knowledge database at its
core. All constitutional virtual objects from the
aforementioned template environments and their
rendering information are managed and stored by it. Also
stored is the manufacturing knowledge data, such as
machine specifications. At system run-time, the object
graphical representation data are bound with
corresponding manufacturing knowledge data in a
dynamic-link mode to enable environment simulation and
control.

4 KAMVR System

The KAMVR system has four layers. Each layer has its
related functional modules, see Figure 2.

 4.1 The system structure
Layer 1 is an interactive virtual environment interface
used to create, visualize and interact with the virtual

environments. It also deals with the adoption of virtual
reality peripheral devices.

USERS

Interactive
Application
Interface

Layer 2 - the 'System Manager' - is the main knowledge
handling and data management layer with four constituent
modules. The task description and coding module
(Module 1) is a programming utility for application
domain-analysis and task coding based on the template
environments and manufacturing information stored in the
VE database. The knowledge representation and
acquisition module (Module 2) supports the real-time data
exchange between virtual environments and the database
for environment retrieval, modification, and
configuration. The device communication and control
module (Module 3) is a program for processing signals
received from real world manufacturing equipment. In the
prototype system, an Audit lathe, a Bridgeport milling
machine, a PUMA 560 robot and a Lansing PWIOII robot
were connected. The networking and data communication
module (Module 4) is used for manufacturing cell
communication and Internet connection for VE-based on-
line training. The KAMVR System Manager forms the
heart of the system structure and is pivotal for connecting
virtual environment application interface with the

VE control
module

Virtual Environment Authorizer & Visualiser

Task
description
and coding
(Module 1)

Knowledge
representation
and acquisition

(Module 2)

Device
communication

and control
(Module 3)

Networking
and data

communication
(Module 4)

VE-DBMS

System
Manager

Layer 1

Layer 2

LAN & WWW Manufacturing
Workshops

Network System DB

VE Manufacturing
Database System

Real Application
Environment

Data
Files

Layer 3 Layer 4

Figure 2 KAMVR System Structure

database system and the protocols of real manufacturing
equipment.

Layer 3 is a dedicated VE-manufacturing database, which
includes a database management system (DBMS) and a
database with domain-specific data files. It manages the
template virtual manufacturing environments and related
manufacturing tasks.

Layer 4 contains the real manufacturing environment for
virtual manufacturing based process planning and
workshop control.

4.2 Data administration

In the KAMVR system, there are two classes of data
being stored - template environment data and
manufacturing data.

(1) Template environment data. This is arranged in
six data files in a relational database, including
Environment, Object, Shape, Standard, Static, and
Dynamic files. The Environment data file contains
template environment general information such as name
and type. Each of the environments has a distinctive
environment code (Envcode) as the index key to start the
environment at system run-time. The Object file stores a
unique object ID number, its relative type and numbers. It
has a many-to-one relationship with the Environment
table through the key field - environment ID. The
remaining data files deal with virtual object property data
(i.e., object sizes and positions are saved in the Standard
Information Table, while the object rotational data would
be saved in the Dynamic Table) and has a one-to-one
relationship with the Object Table. For example, a query
to locate an object’s rotational speed along the X-axis will
require the object and the environment number to retrieve
the record. Instead of manually keying in all the template
environment data, scanner utility has been incorporated to

automatically save all the data from an environment into
the database. This utility relies on the VE graphical
structure – an upside-down tree-like hierarchy. Every
object in the hierarchy has parent, child and sibling
relationships with other objects. The structure allows an
exhaustive search of all the objects in an environment and
access to their property data structure to store in the
database until it reaches the “Root Object”, which is a
common virtual universe that holds all the objects created
in it.

(2) Manufacturing information. For implementing

manufacturing knowledge into virtual environment

applications, the database is used as a bridge. The
manufacturing knowledge considered here can be
considered as, static facility information and dynamic
machining data.

Machine Tool Information

General
Attributes

Machine
Movements

Tool
Geometry

Machine Tool
Capacities

• Machine name and
number

• Machine power
• Cutting tool name

and number
• Cutting tool

material

• Machining
movements

• Auxiliary
movements

• Motion primitives
• Coordinate frames

and datums

• Cutting tool types
• Cutting tool forms
• Cutting primitives

• Dimension
capabilities

• Attainable
accuracy

• Machining
parameters

• Capacity primitives

 Figure 3. Static facilities information

Static facilities mainly include machines and cutting tools
as shown in Figure 3, which consist of physical and
functional facts that play an important role in determining
machining conditions, optimising processes and selecting
machines and cutting tools.

Dynamic machining activities define axes of machine
movements and coordinate frames, see Figure 4. All the
machine movements can be described by so-called
fundamental movements, each having its own direction
along a coordinate axis. Fundamental movements can be
used to construct any type of machining process. Each
fundamental movement is represented by a unit vector
that has a specific meaning in process planning. For
example, the machine tool dynamic operations are defined
as translation, rotation, scaling, and changing appearance
so that all the activities occur in a machining process can
be seen as a composite activity assembled from
fundamental movements. These movements are stored as
motion primitives in the database. They allow machining

processes and geometrical forms to be represented and
provide a basis for conjugating environment and
manufacturing information.

Figure 5 KAMVR System Interface

4.3 System implementation

The KAMVR system has an integrated platform
developed using Microsoft Visual C++ and Superscape
3D Control, where virtual environments, database, and
application programs are all embedded objects. The
platform acts as a comprehensive controller for user-
environment interaction, enabling environment-database
interaction, monitoring environment simulation and
facilitating virtual and real environment communication,
see Figure 5. At simulation run-time, the system starts
from coding manufacturing task for environment
retrieval. Then, the retrieved template environment is
automatically loaded in the embedded visualiser.
Application users can modify the environment according
to their specific requirements. Finally, the modified is
initialised and the simulation started.

5 Conclusions

The research presented in this paper has provided an easy-
to-use method for users to construct rapidly large and
complex virtual manufacturing environments. Further
research is required to establish such real-time control
with different manufacturing systems. Research work is
also needed to explore the potential for developing an
integrated VR based manufacturing knowledge base for
data acquisition and process knowledge management of
different manufacturing systems.

References

[1] Ozdemirel, N. E., Mackulak, G. T., and Cochran, J.
K., 1993, A group technology classification and
coding scheme for discrete manufacturing
simulation models. International Journal of
Computer Integrated Manufacturing, 31(3), 579-
601.

Figure 4 KAMVR Machine Operations

[2] Ülgen, O. M., and Thomasma, T., 1990, SmartSim:
An Object Oriented simulation program generator
for manufacturing systems. International Journal of
Computer Integrated Manufacturing, 28(9), 1713-
1730.

[3] Bullinger, H. and Roessler, A., 1998, Using Virtual
Reality to Enhance Productivity. The Proceedings of
the VEs’98 Conference (Eurographics Workshop in
Stuttgart, Germany), ISBN 3-211-83233-5.

[3] Dam, A., 2000, Scientific Visualisation: A Progress
Report. The Proceedings of IEEE Virtual Reality
2000 Conference, ISBN 0-7695-0478-7.

[4] WorlToolKit Reference Manual, 1999. Engineering
Animation, Inc. Sese8 Product Line.

[5] The Java 3D API Specification, 1998. Corporate &
Professional Publishing Group, Addision Wesley
Longman, Inc. ISBN 0-201-32576-4.

[6] Turner, R., Li, S., and Gobbetti, E., 1999. Metis – an
Object-Oriented Toolkit for Constructing Virtual
Reality Applications. Computer Graphics Forum,
Vol.18, No.2, pp122-130.

[7] Cook, J., Hubbold, R., Keates, M. Virtual Reality for
Large-Scale Industrial Applications, Future
Generation Computing Systems, Vol. 14, No. 3/4,
pp.157-166, ISSN 0167-739X.

[8] Angster, S. R., 1996, VEDAM: Virtual Environments
for Design and Manufacturing. Ph.D. Dissertation,
Washington State University.

[9] Taylor, R., Bayliss, G., Bowyer, A., and Willis, P.,
1995. A Virtual Workshop For Design By
Manufacture. 15th ASME International Computers
in Engineering Conference, Boston USA.

	2 Literature Review
	2.1 API based approach

