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ABSTRACT 
With an aging population and the increased burden and economic cost of dementia on the 

community, coupled with an ongoing pandemic, it is becoming critical to develop a faster, 

cheaper, reliable way of diagnosing and screening for dementia and its progression. 

Dementia is a condition associated with memory decline, cognitive impairment, and 

difficulties in language, problem-solving, and sometimes functional impairment. Pre-

diagnosis of common dementia conditions such as Alzheimer’s disease (AD) in the initial 

stages is crucial to help in early intervention, treatment plan design, disease management, 

and for providing quicker healthcare access. Current pathological assessments are often 

physically invasive, psychologically stressful, and their availability in poor countries and 

rural areas is low. In addition, many neuropsychological assessments are time-

consuming, rarely cover all cognitive domains involved in AD diagnosis, and they do not 

measure the individual’s cognitive and functional abilities together. Therefore, the design 

and implementation of an intelligent method for AD progression from few cognitive and 

functional items in a manner that is accessible, easy, affordable, quick to perform, and 

does not require special and expensive resources, is desirable. This thesis investigates the 

issue of AD progression based on cognitive and functional items using machine learning 

to offer good performance (accuracy, time, etc.) and accessibility besides providing 

valuable knowledge for clinicians during the clinical assessment. 

The thesis proposes a Machine Learning Architecture for Alzheimer’s Disease 

Progression (MLA-ADP), which contains a novel classification algorithm called 

Alzheimer’s Disease Class Rules (AD-CR). The proposed AD-CR algorithm learns 

models from the distinctive feature subsets that contain rules with low overlapping among 

their cognitive and functional items yet are easy to be interpreted by the clinicians during 

clinical assessment. More importantly, our research investigated cognitive elements, 

functional abilities and their correlations during dementia progression using 

computational intelligence, and it was able to identify sets of key cognitive and functional 

items within neuropsychological assessments. The cognitive items mainly covering the 

cognitive domains of learning and memory, and language, when processed by machine 

learning techniques, produced models that performed well and showed superior models 

using the AD-CR algorithm. As for functional items, demographic features must be 

included with functional items for AD progression detection, at least when using machine 

learning techniques. Overall, cognitive items appear to be more influential, the AD-CR 

algorithm model was still able to generate results across the dissimilar evaluation metrics 

that are within the standard medical research.  

To measure the performance of the dementia progression models, extensive experiments 

have been conducted using classification methods on the Disease Neuroimaging Initiative 

data repository (ADNI) datasets. Results obtained by ten-fold cross validation showed 

that fewer cognitive and functional items can be processed by the AD-CR algorithm 

generating models that maintain adequate performance in terms of accuracy, sensitivity, 

and specificity. The models derived by the AD-CR algorithm are competitive in terms of 

accuracy, specificity, and sensitivity rates. For the cognitive subsets, processing three 

items by the AD-CR algorithm with the addition of demographic information derives 

models with 91.25% accuracy, 89.50% sensitivity, and 92.90% specificity. Whereas for 
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functional items, when four items are processed by the AD-CR algorithm, the models 

derived show 87.57% accuracy, 86.70% sensitivity, and 88.30% specificity. 
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Chapter One  

 

Introduction 

 
This chapter introduces dementia, the thesis aims, objectives, and research questions, the 

problems considered, and thesis contributions. The chapter also introduces basic concepts 

related to machine learning. Most of this chapter’s content has been disseminated in the 

Journal of Biomedical Informatics, the journal of Health and Technology, and the Journal 

of Behavioural and Healthcare Research. 

 

1.1 Introduction  
Dementia is a neurodegenerative disorder characterised by difficulties in memory, 

disturbance in language, psychological and psychiatric changes, and impairments in 

activities of daily living, and mainly occurring in the elderly (Burns & Iliffe, 2009; Kim 

et al., 2020). There are 50 million people worldwide living with dementia, a condition 

that has a devastating impact on a person’s physical and psychological status, as well as 

damaging effects on the society and the economy (World Health Organization, 2020). 

This number has been predicted to rise considerably in the future if there is no 

improvement in preventive interventions (Prince et al., 2013; Wimo et al., 2003). In 2007, 

Wimo et al. (2007) estimated the total worldwide cost of dementia in 2005 to be US$315 

billion. In 2013, they updated this figure to US$604 billion for 2010, and in 2017 assessed 

it as being to US$818 billion for 2015 (Wimo et al., 2013; Wimo et al., 2017). According 

to Dementia Statistics (2021), the cost of dementia in the UK is £25 billion annually, and 

globally US$817 billion. 

In 2019 in the United Kingdom, there was an estimated 885,000 people with dementia, 

and this is projected to surge by 80% to approximately 1.6 million people by 2040 

(Wittenberg et al., 2019). With this growing prevalence of dementia and the associated 

costs, there has also been a call for an increase in research initiatives (Pickett et al., 2018). 

Topics for research include preventing future cases of dementia, bettering the quality of 
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life for people with dementia, enhancing and enabling dementia health and social care 

systems and the dementia workforce, and the focus of this thesis: improving the process 

of dementia pre-diagnosis using intelligent data-driven approaches. To date, there is no 

cure or an effective treatment for the disease. Particularly during a pandemic where focus 

and resources are diverted, it is crucial that we devise a fast, affordable, and reliable way 

for screening and prognosis using innovative technologies such as machine learning and 

artificial intelligence. 

Recently, machine techniques have been explored in the neurological and behavioural 

science arenas, such as for the detection of dementia, to enhance the accuracy/efficiency 

of conventional medical assessments (Clemmensen et al., 2020; Chua et al., 2019; 

Jammeh et al., 2018; Bang et al., 2017; Balsis et al., 2015). The reason for adopting 

machine learning technology in medical applications is because it efficiently explores 

data to derive classification systems and predictive models; these offer clinicians and 

medical professionals rich information and knowledge for making better quality 

decisions. Machine learning models can explain influential cognitive and 

neuropathological features related to the diagnosis of dementia, which can help in early 

detection, therefore rapid intervention and medical resource accessibility for the patients 

and caregivers (Xefteris  et al., 2020; Kemp et al., 2020; Gupta & Katarya, 2020; Youn 

et al., 2018; Weakley et al., 2015). 

According to Wessels et al. (2015), identifying a few cognitive items that cause 

progression of the disease can assist in early intervention. While pathological assessments 

of Alzheimer’s disease (AD) diagnosis such as using biological markers (biomarkers), 

cerebrospinal fluid (CSF), and magnetic resonance imaging (MRI) can be used to predict 

the disease, they are also time and cost intensive, stressful, and with results requiring 

laboratory study and professional personnel who may not be available (Zhu et al., 2020; 

Battista et al., 2017). Cognitive psychological assessments such as the Functional Activity 

Questionnaire (FAQ), the Alzheimer’s Disease Assessment Scale-Cognitive 13 (ADAS-

Cog-13), Mini Mental State Examination (MMSE), and others (Pfeffer et al., 1982; Rosen 

et al., 1984; Folstein et al., 1975), are useful methods that can screen for signs of early 

impairment. These assessments are usually easier to carry out than pathological 

procedures and show acceptable performance with reference to validity, sensitivity, and 

specificity (Zhu et al., 2020; Pereira et al., 2018; Teng et al., 2010). However, few 
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research studies have measured the progression of AD using both functional and cognitive 

features, i.e. Jutten et al. (2020), Battista et al. (2017), and Shahbaz et al. (2019).   

The above studies acknowledged that early detection and distinguishing the stages of AD 

were important for appropriate treatment plan purposes, but they did not consider each 

cognitive item to identify disease progression to assist early intervention. While Battista 

et al. (2017) used machine learning to assess cognitive and behavioural measures, their 

study focused on diagnosing AD and not the progression of the disease, which is more 

challenging, and it did not consider the neuropsychological criteria defined in the 

Diagnostic and Statistical Manual of Mental Disorders (DSM-5) framework (American 

Psychiatric Association, 2013). Mapping between the assessed cognitive items and DSM-

5’s criteria would have been helpful for the clinicians’ understanding of linking the 

machine learning results and actual diagnosis of the disease.  

To fill the gap, the aims of this research are:  

• To improve neuropsychological methods’ performance in terms of dementia 

progression detection rate using machine learning  

• To understand cognitive and functional elements and their mapping to 

neurocognitive conditions like dementia according to the DSM-5 framework 

• To assess the associations among cognitive items as well as functional items 

within neuropsychological assessments using computational intelligence  

• To identify key neuropsychological items that can primarily trigger the 

advancement of AD experimentally using real data observations from the 

Alzheimer’s Disease Neuroimaging Initiative data repository (ADNI) (ADNI, 

2021)  

• To propose a new classification algorithm with the ability to not only improve 

predictive performance of the disease progression detection, but also provide 

clinicians with a useful and easy-to-understand knowledge base derived from real 

data related to the dementia stages.  

The scope of our research is limited to neuropsychological assessments—results related 

to other pathological procedures, neuroimaging, or biomarkers are excluded. To achieve 

the aim, we propose a Machine Learning Architecture for Alzheimer’s Disease 

Progression (MLA-ADP) that incorporates a novel classification method and models 
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cognitive-functional activities from the ADNI data repository. In this thesis, we attempt 

to contribute the following benefits to clinicians: 

1. The ability to predict the progression of AD objectively using influential sets of 

features and machine learning to model and analyse the data subjects. 

2. To disseminate a rule-based classification model comprised of easy-to-interpret 

rules on the association of the cognitive and functional items to the DSM-5 

framework as a knowledge base toolkit that can be used during early screening.  

3. To improve the classification accuracy of AD progression when using models 

derived objectively from cases and controls by machine learning methods.  

4. To incorporate the learnt classification models into digital platforms such as 

mobile for accessibility and fast and accurate screening for quick referrals. 

5. To discover a few impactful cognitive items that are crucial to disease progression 

so clinicians can use this knowledge in early screening.  

6. To present functional items related to the instrumental activities of daily living 

(IADL) that are key to detect the disease progression so that clinicians can use 

this knowledge to improve the design of future functional assessments.  

 

1.2 The Problem  

Early dementia diagnosis, also known as dementia screening, can be defined as the 

process by which an individual, who might be in the prodromal stage of dementia, is 

verified as a case of dementia using neuropsychological assessment (Panegyres et al., 

2016). The prognosis of AD progression has been recognised as a challenging problem 

due to the massive number of cognitive and pathological features recorded for patients 

and controls. While many studies have investigated the diagnosis of dementia using these 

characteristics, predicting the advancement of the disease has not been heavily studied, 

particularly using technologies such as artificial intelligence and machine learning. 

Two intercorrelated areas that are normally assessed by clinicians for determining 

dementia are cognitive and functional abilities. For example, the MMSE is one of the 

screening methods for cognitive impairments in dementia, while the FAQ is an 

established method used for measuring functional performance (Folstein et al., 1975; 

Pfeffer et al., 1982). Cognition involves remembering, thinking, problem solving, 
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decision making, judgment, and knowing, among others—all mental processes that are 

associated with activities that an individual performs routinely (Jutten et al., 2019).  

Functional abilities involve basic functions (ADL) such as walking, dressing, and bathing 

as well as more complex functions (IADL) such as preparing a multi-recipe meal, 

managing finances, and shopping, besides others (Pfeffer et al., 1982). According to 

Barberger-Gateau et al. (1992), functional ability or status can be defined as the ability of 

the individual to perform physical tasks, self-manage, and self-care. Functional ability, 

one of the criteria used to assess quality of life, enables individuals to maintain functional 

independence (Hoffmann et al., 2013). When patients with dementia start to exhibit 

functional loss in their daily activities, they experience negative consequences such as 

hospitalisation, the need for more medical care and services, depression, and hardship in 

personal care, among others (Brown et al., 2014). 

Since the problem is to detect the progression of AD using specific neuropsychological 

and IADL activities, we consider it as a supervised learning problem in data science in 

which a classification algorithm is used to construct classification models. These models 

in turn are exploited by the clinicians to detect any possible advancement of the AD using 

a few, yet effective, items. The models are tested automatically to evaluate their 

effectiveness in terms of multiple performance metrics such as accuracy, specificity, and 

sensitivity. In this research, we assess sets of functional and cognitive items separately, 

and then consider integrating these sets to show fewer items that, when processed by a 

classification technique, can detect AD advancement, if any.  

The proposed data driven architecture will be implemented and evaluated in a digital 

mobile platform to increase accessibility and reduce costs associated with resources. Part 

of the problem under consideration is the process of mapping between the key cognitive 

items to the DSM-5 framework, which is used to describe the standard criteria to diagnose 

neurocognitive disorders. 

1.3 Scope, Aims, and Research Questions  

One of the aims of this research project is to improve the performance of screening 

methods for early dementia and Mild Cognitive Impairment (MCI) advancements using 

machine learning technology. A further aim is to determine influential 

neuropsychological features based on computational intelligence methods from real data 
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observations. We intend to design and implement an architecture that consists of a 

classification algorithm plus feature selection that can distinguish between dementia 

stages using models extracted from real ADNI data subjects.  

To narrow the scope of work, we focus on two primary domains in the neuropsychological 

assessments of AD: cognitive and functional. We use two accepted psychological 

methods that emphasise cognition and functional activities: the ADAS-Cog-13, and the 

FAQ.  The selection of ADAS-Cog-13 is primarily because this method has been used 

widely to capture in cognitive-related research cognitive impairment for MCI and 

dementia conditions such as AD for example by Tabatabaei-Jafari, et al. (2020), Nogueira 

et al. (2018), Kueper et al. (2018), and Liu-Seifert et al. (2015). ADAS-Cog-13 is the 

most common of the 31 versions of the ADAS cognitive assessment. More importantly, 

it has more features than other available cognitive methods in ADNI such as MMSE, 

potentially covering larger cognitive domains. Lastly, ADAS-Cog-13 is associated with 

enough real data observations in ADNI thus can be easily evaluated by a data-driven study 

such as ours. However, the FAQ method is one of the popular assessments to capture an 

individual’s independence in daily living including functional activities, and it is the only 

functional method available in the ADNI data repository with a sufficient number of data 

observations.    

Being able to identify the items that have the highest impact on the progression of AD 

will assist the clinician, not only in time and cost-savings, but in early detection and 

provide a quick-to-deploy information sheet on AD diagnosis. This will give a better 

understanding of how neuropsychological items can trigger the progression of AD.  

The research questions that this research study aims to answer are:  

• How can the neuropsychological items, at each dementia stage, if any, be 

determined using machine learning?  

• Which is more influential in AD progression: functional or cognitive activities? 

• Do functional or cognitive activities/items vary when the dementia stage changes? 

• How can the performance of screening methods of AD progression be improved 

when providing a new classification method based on rules? 

It should be noted that the Clinical Dementia Rating-Sum of Boxes (CDR-SOB) 

assessment method (Hughes et al., 1982) has not been used in the experimental analysis 
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of this research since it was primarily used to assign the class labels in ADNI project 

besides MMSE method; we therefore avoided any biased results, especially in feature-

class correlations, by excluding the CDR-SB scores. 

 

1.4 Dementia and Causes  

As defined by the Mayo Clinic (2021), “dementia is a term used to describe a group of 

symptoms affecting memory, thinking, and social abilities, severely enough to interfere 

with daily life”. Dementia does not refer to any one disease—there are many diseases 

which cause dementia, the most common of which is AD. This disease attributes between 

60–80% of dementia cases to AD, 5–10% of cases to vascular dementia, 5–10% of cases 

to Lewy body dementia, and 5–10% of cases to frontotemporal dementia. It is possible to 

suffer from more than one of these types simultaneously, resulting in what is known as 

mixed dementia. 

Nall (2017) further explains these common types of dementia. AD is a progressive form 

of dementia caused by brain cell death. Typical symptoms begin with a loss of short-term 

memory which progresses to confusion, mood changes, and difficulty in speaking and 

walking. Vascular dementia can be either progressive or present rapidly. It is caused by a 

lack of blood flow to the brain following a stroke or otherwise, and tends to result in 

confusion, disorientation, and affects the ability to concentrate and complete tasks. Lewy 

body dementia is caused by protein deposits in nerve cells. It shares similar symptoms 

with AD including a loss of memory and difficulty in walking. People with Lewy body 

dementia may also have difficulty falling asleep at night and often become disoriented. 

Frontotemporal dementia refers to several types of dementia which specifically affect the 

frontal and temporal lobes of the brain. This form of dementia usually affects people’s 

motivation, behaviour, and speaking ability. 

Many forms of dementia tend to progress in severity over a person’s life, so it has been a 

focus of research to detect or even predict the development of dementia as early as 

possible (Knopman et al., 2003; Xefteris et al., 2020). MCI, which has been explored as 

a possible diagnostic precursor to dementia, is defined by Gauthier et al. (2006) as 

“cognitive decline greater than expected for an individual’s age and education level but 

does not interfere notably with their activities of daily life”. While cognitive decline is 

also consistent with dementia, MCI differs in that the cognitive decline is not yet severe 
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enough to interfere with the individual’s daily life. Over half of the people with MCI 

deteriorate to the point of having dementia within five years, so MCI is considered as an 

early marker for possible dementia; some authors have introduced minor functional 

disability among the criteria for diagnosing MCI (Winblad et al., 2004).  

With the arrival of the DSM-5, there has been a redefining of dementia and MCI to the 

new categories of Major Neurocognitive Disorder (Major ND) and Minor Neurocognitive 

disorder (Minor ND). This change in terminology reflects a distancing from the stigma 

associated with dementia and a shift towards placing more emphasis on other cognitive 

areas besides memory (Crisis Prevention Institute, n.d.). As with MCI, Minor ND differs 

from Major ND in that people with Minor ND can retain independence with daily 

activities. Details on the diagnostic criteria of dementia based on the DSM-5 are discussed 

in Chapter 2. 

 

1.5 Research Gaps and Contributions  

1.5.1 Detecting Disease Progression  

In the early stages of the condition (mild dementia) or before establishing a prognosis of 

the condition (MCI), most of the cognitive methods have difficulty in detecting any 

progression due to floor or ceiling effects in the scores (Mura et al., 2014; Podhorna et 

al., 2016). Subsequently, patients whose cognitive test scores are close to the cut-off that 

differentiates dementia stages are hard to classify, resulting in high false positives and 

false negatives. Therefore, the composite methods used by Harrison et al. (2013) and 

Jutten et al. (2017) can be considered promising directions. However, such methods are 

limited and do not measure the progression of the disease as they only deal with detecting 

dementia traits by conventional neuropsychological methods. 

To deal with the above issue, cognitive elements and functional features can be combined 

in a single data repository with real cases and controls. A computational approach that 

considers feature-feature and feature-class assessments can then be conducted to 

distinguish types of dementia. In this thesis, we use a combined approach of feature 

selection that examines multiple feature selection methods besides clustering to pinpoint 

limited, yet non-overlapping, cognitive and functional subsets related to the dementia 
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subcategories. These subsets can assist the clinician during a clinical setting to 

differentiate possible progression points.  

 

1.5.2 Interpretable Models      

Limited data-driven research studies related to dementia have considered building a 

knowledge base with simple-to-understand rules for clinicians and other stakeholders to 

exploit (Das et al., 2019). Having interpretable classification models that can be converted 

into rules will offer the patient and their families answers as to which components have 

triggered dementia progression. This is aligned with the patient’s right outlined in the 

General Data Protection Regulation (GDPR), particularly the section on decision-making 

using automated algorithmic methods and the ‘right for an explanation’ (Goodman & 

Flaxman, 2016; GDPR, n.d.).  

Furthermore, the GDRP requires that for any data collected from a subject (the individual 

undergoing dementia screening) in an automated decision process (the screening process 

using the machine learning), that the subject should have the right to be given the rationale 

behind the decision-making process. Consequently, having an intelligent and easy-to-

understand classification system that provides information to the patients and their family 

members, besides clinicians, is advantageous. The system can articulate to the different 

stakeholders useful information to answer many questions. 

We propose within MLA-ADP a rule-based classifier called Alzheimer’s Disease Class 

Rules (AD-CR) to derive understandable If-Then rules, and more importantly, to learn 

models for predicting the progression status of anyone undergoing pre-diagnosis. The 

rules derived by the AD-CR can be exploited by clinicians to understand correlations 

among features and AD progression, while its classification method can predict changing 

points of disease advancement.  

 

1.5.3 Classification Performance  

Healthcare professionals, in particular clinicians, use neuropsychological assessments to 

assess the presence of dementia conditions such as AD. These methods, including the 

ADAS-Cog, MMSE, and CDR-SOB (Rosen et al., 1984; Folstein et al., 1975; Hughes et 
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al., 1982) produce indicative scores based on the patient’s learning, memory, executive 

function, comprehension, social cognition, etc. Generally, these methods have shown 

acceptable diagnostic performance in terms of sensitivity and specificity (Liu-Seifert et 

al., 2015; Carrion et al., 2018). However, the quality of these cognitive methods for 

detecting gradual changes in the condition remains a challenge (Bossers et al., 2012; 

Jutten et al., 2017). 

We propose within MLA-ADP architecture a classification algorithm that learns models 

objectively from real data for predicting the disease advancement of any participants 

undergoing the dementia screening process. The algorithm contains a novel rule 

discovery method that not only reduces the number of rules significantly, but also 

performs better in terms of predictive accuracy, sensitivity, and specificity rates. 

Empirical results reveal that the proposed AD-CR algorithm within the MLA-ADP 

architecture outperforms conventional methods besides common classification 

algorithms including SVM, ANN, statistical, rule-based classifiers, and probabilities. 

Chapter 4 provides details of the classification algorithms’ details. 

  

1.5.4 Time and Accessibility     

A deficiency of neuropsychological assessments is that the assessment time can be 

lengthy, which may be a burden for the patients and possibly result in a loss of 

concentration and fatigue (Jutten et al., 2017; Ong, 2017)—some patients may feel tired 

and stop before completing the assessment. In addition, many cognitive activities in 

neuropsychological tests require direct interaction with the patient in a clinical setting 

which is difficult in the era of pandemics such as Covid 19.  

Previously, a study by the European Task Force concentrated on a few cognitive domains 

that could potentially trigger the progression of AD in the early stages (Vellas et al., 

2008). Our research fits within the scope of the European Task Force by not only 

identifying a few, albeit influential, cognitive elements and daily functions that may be 

key performance indicators for the progression of the condition, but by providing these 

elements within an interactive digital platform to expedite the screening process and 

improve accessibility for patients, caregivers, and clinicians. The proposed MLA-ADP 

can be implemented in a cloud-based environment to provide clinicians with an accessible 
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and cost-effective platform since he/she can access the items of the assessment via mobile 

or tablet. The AD-CR models can be invoked whenever a prediction is needed. 

  

1.5.5 Composite Elements      

Some research studies have reported that a decline in cognitive skills can be used to red 

flag the possibility of developing functional impairment (Cipriani et al., 2020; 

Clemmensen et al., 2020; Lim et al., 2018; Liu-Seifert et al., 2015;  Razani et al., 2009). 

Two of the requirements for diagnosing dementia/major ND are a substantial decline in 

one of the six cognitive domains defined in the DSM-5 framework, and that the cognitive 

deficits experienced by the individual interfere with their independence during everyday 

activities (American Psychiatric Association, 2013). Winblad et al. (2004) showed that 

not only does minor cognitive decline not interfere with everyday life, but that this decline 

is associated with minor functional impairment. These findings suggest that functional 

impairment should be used as a specific criterion to diagnose patients with AD.  

Unfortunately, most of the existing neuropsychological methods used for dementia pre-

diagnosis rarely measure cognitive and functional activities in a single assessment or 

establish DSM-5 criteria coverage. Both the functional and cognitive perspectives should 

be considered during the screening process for dementia in ageing individuals so that 

healthcare professionals can capture any concealed correlations.  It is also imperative to 

distinguish between influential functional and cognitive items for the subgroups of 

dementias, especially prior to dementia conditions like MCI and mild dementia as these 

are more challenging than the later stages. 

In the proposed architecture, we have not only assessed cognitive and functional elements 

separately, but also in combination to comprehensively cover larger sets of features that 

might directly prompt dementia advancement. Thus, unlike typical neuropsychological 

assessment, the proposed architecture takes into account both the individual’s cognitive 

and functional areas so that clinicians are able to have a wider perspective on which 

elements may prompt any changing points in the disease, and for which dementia sub-

groups.  
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1.5.6 Cognitive and IADL Correlations   

Cognitive elements within existing neuropsychological methods, as suggested by some 

previous research studies, may be used to predict some daily functions (Barberger-Gateau 

et al., 1992; Cahn-Weiner et al., 2000; Sperling et al., 2011; Zahodne et al., 2013; Yu et 

al., 2018). A study by De Paula and Malloy-Diniz (2013) showed that memory and 

executive functions correlate with some functional deficiencies. However, the scores 

from cognitive methods partly capture the functional status which limits their relevance 

in clinical settings (Robin et al., 2012).  

Additionally, many patients who exhibit cognitive impairment, particularly for MCI or 

mild dementia, may still have normal ability to function in their daily life. Moreover, 

Clemmensen et al. (2020) and Boyle et al. (2003) revealed that the executive function 

scores of some neuropsychological assessments can be used as indicators for functional 

performance of IADLs. Krall et al. (2014) in a longitudinal study, researched the 

possibility of a relationship between memory and functional performance. However, a 

functional and cognitive performance relationship in early-stage dementia is not well 

characterised as described by Zucchella et al. (2017) and Jutten et al. (2019).  

The correlation between cognitive and functional areas at the pre-dementia and mild 

dementia stage is complex, as a particular function is typically assessed by multiple 

cognitive elements. For example, the ‘assembling tax records, business affairs, or other 

papers’ function necessitates cognitive processes related to complex attention, executive 

function, learning, and memory. Playing a game of skill, and working on a hobby also 

requires these as well as perceptual motor function. As considered in this research, it is 

then essential to capture the relationship between cognitive and functional performance 

defined in IADLs so that clinicians can predict a decline in functional abilities or 

cognition before it reflects in the patient’s quality of life. Specifically, we investigate 

whether a positive correlation exists between functional activities and cognitive tasks 

using computational intelligence. We not only evaluate cognitive elements during a 

dementia progression assessment experimentally, but also their impact on functions 

related to IADL, and for dissimilar sub-groups of participants  in different dementia 

stages.  
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1.5.7 Non-Overlapping Models    

Another major challenge in dementia pre-diagnosis methods is the overlapping of the 

cognitive elements as defined in the DSM-5 framework. More precisely, some activities 

that are captured using functional methods, such as the IADL, rely on a combination of 

cognitive functions. For instance, within the DSM-5 in the FAQ, managing finances such 

as writing cheques, paying bills, and balancing a cheque book covers multiple cognitive 

domains including executive functions, memory, and complex attention. Currently, and 

despite such functional methods being a key part of screening and diagnosing AD, there 

is no ‘gold standard’ for measuring the functional activities defined in IADL 

(Loewenstein et al.,1989). More importantly, it is difficult to reduce the overlapping 

between daily functions defined in IADL and cognitive elements in neuropsychological 

assessments in terms of the cognitive domains defined in the DSM-5—only a small set is 

needed for screening assessment. Crucial for clinicians is a screening method that 

minimises overlapping between functional and cognitive activities retaining the non-

overlapping items only.    

The classification models of the proposed AD-CR algorithm are derived from distinctive 

subsets of cognitive and functional activities. One principle used to select these subsets 

is minimising the items’ overlapping in terms of the DSM-5’s criteria for neurocognitive 

disorders. Therefore, models derived by the AD-CR algorithm contain rules with 

antecedents that may reduce the similarity among cognitive and functional items.  

 

1.5.8 Mapping to DSM-5’s Domains and Cognitive Digital Tools Review      

There is a variety of cognitive diagnostic procedures that aim to measure a patient’s 

cognitive ability in different areas. While these procedures have been used successfully 

to demonstrate the presence of dementia, there is no clear consensus as to where these 

procedures fit into the process of dementia diagnosis (Sachdev et al., 2014; Baldwin & 

Farias, 2009). Therefore, one of this thesis’s aims is to critically analyse an array of 

commonly used cognitive diagnostic procedures to determine how they can be used 

specifically within the DSM-5 criteria for dementia diagnosis. We seek to identify the 

procedures that cover a wider range of diagnostic criteria based on the DSM-5 

neurological areas related to dementia. This involves mapping tasks or sub-sections of 
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cognitive diagnostic procedures to their corresponding neurological areas. This can be a 

difficult task since neurological domains are not strongly defined, are hard to quantify, 

and diagnostic tasks or subsections can often overlap when measuring aspects of multiple 

neurological domains.  

Additionally, since systematic reviews on digital tools for dementia cognitive methods 

are rare, we review digital tools that have utilised dementia diagnostic procedures with a 

focus on neuropsychological assessments built on a mobile platform. Currently, little 

research has been systematically conducted to evaluate the available tools with respect to 

inclusion criteria such as accessibility, fulfilment of DSM-5, and coverage of cognitive 

areas. The few available mobile-based review studies on dementia screening tools are not 

comprehensive, leaving an area which this research aims to address (e.g. Groppell  et al., 

2019; Berauk et al., 2017; Yamagata & Kowto, 2013). More importantly, we introduce a 

mapping between digital assessment tools and the neurocognitive domains to help 

clinicians identify the tools that cover multiple cognitive domains which will be more 

appropriate for dementia screening.   

 

1.6 Machine Learning: An Introduction  

With the advancements of computer networks, mobile applications, and web-based 

systems, access to massive data stored in various internal systems and cloud data storage 

necessitates smart methods of data exploration, for instance, innovative technologies such 

as Artificial Intelligence. Machine learning, the core of Artificial Intelligence, has 

emerged as a field of research which can discover new knowledge or organise information 

to not only make the computer intelligent to study human behaviour, but also to improve 

its own performance (Xue & Zhu, 2009). Consider, for example, image and text 

recognition applications where the system intelligently recognises a face or handwriting 

in an image or within text. In a stock trading application, predicting the volatility of a 

stock and the price affected by short-term movement, or the effectiveness of a treatment  

in healthcare can be assessed using machine learning.  

Using such techniques, models from historical datasets are built as decision-making 

systems, many of which facilitate predicting an outcome based on the available features 

of the problem (Choi et al., 2020). Machine learning technology is applied widely to 
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forecast probable results by unveiling the hidden trends and smartly deciphering from the 

historical data, whether structured or unstructured, to make data-driven decisions 

(Thabtah, 2018). For instance, a retail store can use this technique to derive models which 

help managers to organise stock and find correlations among purchased items. In the 

medical field, machine learning can be used to investigate the effectiveness of the 

treatment for any illness, predict the disease progression—such as for cases of AD, screen 

illness early, and enhance medical service accessibility in mobile-health and digital-

health systems. Usually, the process of training in a machine learning algorithm lifecycle 

requires minimal human intervention to produce desirable results from the historical 

datasets (Maglogiannis & Kotsiants, 2007). 

Machine learning techniques are generally categorised into two types of learning: 

supervised learning and unsupervised learning. The former involves predicting a special 

feature called the target class based on a classification model learnt from an historical 

dataset that comprises a number of characteristic features (Janiesch et al., 2021). The 

problem under consideration in supervised learning is called ‘classification’; loan 

approval, credit card scoring, and weather forecasting are examples of supervised 

learning problems. Unsupervised learning, which is not restricted to the target class, 

involves deriving useful information for decision-making from input datasets that have 

no target class. Tasks that are relevant to unsupervised learning include categorising 

customers based on demographics (cluster analysis), and discovering the correlations 

among items in transactional databases (association rule mining) (Gheware et al., 2014). 

Since this research focuses on predicting the progression of dementia, we limit the scope 

to supervised learning and in particular, classification. 

The lifecycle of the supervised learning algorithms consists of three phases (see Figure 

1.1):  

1. Data Preparation: In this phase, the dataset is pre-processed by applying necessary 

data preparation methods such as data cleansing, data normalisation, data 

balancing, data modelling, feature selection, etc. In addition, when enough data 

are available, the historical dataset can be divided into training and testing subsets 

with an option to include a validation data subset.  
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2. Training: The training data subset is processed by using a learning algorithm to 

find and then produce a classification model. Usually, the learning algorithm 

discovers the relationships between the characteristic independent features and the 

target class in the dataset to build the classification model. During the training 

phase, the learning algorithm always adjusts the model to reach the one that can 

be generalised in predicting test data instances when the model is utilised later in 

the classification phase. Thus, adjusting the model during learning is a critical 

procedure to ensure that, a) the model is effective in prediction and can be 

generalised, and b) the model does not overfit the training data subset (Janiesch et 

al., 2021). 

3. Testing (classification): The learnt model is assessed on an independent test data 

subset to check its performance using dissimilar evaluation metrics such as 

predictive accuracy, specificity, sensitivity, error date, precision, recall, etc. 

(Powers, 2011). When the performance of the learnt model shows good predictive 

power, then the model can be used by the end-user to assist in the decision-making 

process.  

 

1.6 Thesis Outline  

This thesis consists of six chapters; Chapter 2 introduces common dementia 

neuropsychological methods, critically analyses the literature, and reviews machine 

learning approaches related to dementia prediction. In Chapter 3, the proposed MLA-

ADP architecture is discussed and each of its components explained in detail. Chapter 4 

 

 

Figure 1.1: Supervised Learning Algorithm Lifecycle 
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demonstrates the data, the experimental settings, and the methods used. The experiments, 

results, and results analysis are discussed thoroughly in Chapter 5. Lastly, we conclude 

and highlight the future work and limitations of the thesis in Chapter 6. 
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Chapter Two 

 

Literature Review 

 
This chapter reviews dementia screening methods from a neuropsychological perspective, 

critically analyses related works on cognitive and functional elements of dementia besides 

their correlations, and considers mapping these elements into the DSM-5 framework. 

Digital screening methods of dementia are critically analysed, and machine learning 

studies on dementia prediction based on data-driven methodologies are reviewed. Most 

of this chapter’s content has been disseminated in the Journal of Biomedical Informatics, 

the Journal of Health and Technology, and the Journal of Behavioural and Healthcare 

Research. 

 

2.1 Introduction  

In this chapter, we study functional abilities and cognitive domains and their correlations 

from a psychological perspective and provide relevant recent literature on cognitive and 

functional abilities defined in neuropsychological assessment theories. More importantly, 

we critically analyse common cognitive diagnostic procedures, show their advantages and 

disadvantages, and their mapping to the DSM-5 framework. Another aim of this chapter 

is to review and critically analyse recent literature on the cognitive and functional areas 

of dementia using intelligent techniques, mainly machine learning. The focus is on 

classification methods used in AD progression such as decision trees, rule induction, 

artificial neural networks (ANNs), statistical approaches such as logistic and linear 

regression, and probabilistic approaches. Machine learning studies that cover dementia 

classification or diagnosis aside from cognitive assessments are excluded since they are 

out of the scope of this research. Section 2.6 provides more details. 

We have organised this chapter as follows: Section 2.2 sheds light on dementia and its 

diagnostic criteria. Sections 2.3 and 2.4 compare and critically analyse common dementia 

diagnostic methods in terms of the different criteria, and Section 2.5 reviews related 
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works on cognitive and functional elements within neuropsychological assessments, and 

the associations between cognitive domains and functional abilities. Section 2.6 explains 

recent research works of classification algorithms in dementia diagnosis with a narrow 

scope on cognitive assessments used in dementia diagnosis and screening. Section 2.7 

systematically reviews digital dementia assessment methods that are based on a mobile 

platform and presents a new comparison based on dissimilar criteria. Lastly, we 

summarise the chapter in Section 2.8. 

2.2 Dementia Diagnosis Process, and Requirements 

The American Psychiatric Association (2013) in the DSM-5 describes the criteria for 

diagnosing possible and probable AD. First, some level of dementia or neurocognitive 

disorder must be established. Major ND requires that the patient experiences a significant 

decline over time in at least one of the following six cognitive domains: complex 

attention, executive function, learning and memory, language, perceptual-motor, or social 

cognition. This can be reported either by the patient, an informant, or the clinician, and 

then corroborated by performing a cognitive procedure that is associated with the domain. 

Secondly, the cognitive deficits experienced by the patient must interfere with their 

independence during everyday activities. Alternatively, minor ND requires a moderate 

decline in cognitive domains over time and that the patient’s independence during 

everyday activities is not affected. Both Major ND and Minor ND also require that the 

cognitive defects are not only observed when the patient is delirious, and that the 

cognitive defects are not better explained by another mental disorder. 

Once Major ND or Minor ND has been demonstrated, the DSM-5 criteria can be used to 

determine if the observed disorder is being caused by AD. In addition to the above criteria, 

there must be a gradual progression of impairment in one or more of the six cognitive 

domains mentioned earlier. 

For a patient with Major ND, AD is probable if either there is evidence of AD from family 

history or genetic testing, or there is clear evidence of a decline in memory and learning 

as well as one other cognitive domain, and the cognitive decline must have a steady but 

gradual progression (see Tables 2.1 and 2.2). If either condition is not met in a Major ND 

patient, then AD is possible. 
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For a patient with Minor ND, AD is probable if there is evidence of AD from family 

history or genetic testing, otherwise AD is possible if there is clear evidence of a decline 

in memory and learning as well as one other cognitive domain, and the cognitive decline 

must have a steady but gradual progression. 

Typically, when AD diagnosis is needed for research purposes, a more rigorous diagnosis 

criteria is required. In the ADNI study (ADNI, 2021), AD subjects were diagnosed as 

having probable AD according to the Neurological and Communicative Disorders and 

Stroke (NINCDS) and the Alzheimer’s Disease and Related Disorders Association 

(NINCDS-ADRDA) criteria (McKhann et al., 1984). This involves a MMSE score 

between 20 and 26 and a CDR-SB of 0.5 or 1.0. 

Table 2.1: Major ND and Minor ND Description 

Major ND Significant cognitive 
decline in one or more 
cognitive domains. 

The cognitive deficits 
interfere with 
independence in 
everyday activities. 
 

The cognitive deficits 
do not exclusively 
occur in the context of 
delirium. 
 

The cognitive deficits are not 
better explained by another 
mental disorder. 
 

Minor ND Modest cognitive 
decline in one or more 
cognitive domains. 

The cognitive deficits 
do not interfere with 
independence in 
everyday activities. 

The cognitive deficits 
do not exclusively 
occur in the context of 
delirium. 

The cognitive deficits are not 
better explained by another 
mental disorder. 

 

Table 2.2: AD Diagnostic Criteria based on DSM-5 

   Major ND Minor ND 

Probable AD Major or Mild Neurocognitive 
Disorders criteria are met. 
 

Evidence of AD from family history or 
genetic testing 
Or:  
Clear evidence of decline in memory 
and learning and one other cognitive 
domain; 
steady gradual decline in cognition, 
and no evidence of other 
neurodegenerative disease. 
 

Evidence of AD from family 
history or genetic testing. 
 

Possible AD Major or Mild Neurocognitive 
Disorders criteria are met. 
 

None of the above. All three of the following: 
Clear evidence of decline in 
memory and learning and one 
other cognitive domain. 
Steady gradual decline in 
cognition. 
No evidence of other 
neurodegenerative disease. 
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2.3 Common Dementia Cognitive Assessment Methods  

2.3.1 Alzheimer’s Disease Assessment Scale - Cognitive Subscale (ADAS 

Cog) 

ADAS-Cog is a procedure designed to measure the level of a patient’s cognitive 

dysfunction (Rosen et al., 1984). While its use for monitoring pre-dementia and MCI have 

been criticised (Kueper et al., 2018), it is generally accepted as one of the commonly-

used procedures for assessing dementia. This test is typically administered by a 

professional and consists of structured and unstructured tasks: word recall, naming 

objects and fingers, commands, constructional praxis, ideational praxis, orientation, word 

recognition, language, comprehension of spoken language, word finding, and 

remembering test instructions. ADAS-Cog usually takes an hour to complete in a clinical 

setting and produces a score between 0 and 70, with 70 indicating the most severe 

cognitive dysfunction. In addition to the 11-question version, some variations exist: 

ADAS-Cog 13 additionally contains a delayed word recall section, a maze or number 

cancellation section, and is scored between 0 and 85 (Mohs et al., 1997). Monllau et al. 

(2007) tested the ADAS-Cog’s ability to diagnose AD on a sample of 451 subjects (of 

which there were 254 control subjects with normal cognition, 86 with MCI and 111 with 

AD). They found that the best cut-off score for describing AD was >=12 which had a 

sensitivity of 89.19% and a specificity of 88.53%. 

Mohs et al. (1997) deduced that the ADAS-Cog-11 did not assess attention and 

concentration, planning and executive function, verbal memory, nonverbal memory, and 

praxis. Therefore, the authors recommended to include, in addition to the ADAS-Cog-11 

items, a test for delayed word recall and number cancellation which became the ADAS-

Cog13. 

Kueper et al. (2018) determined that the ability of ADAS-Cog-13 to identify disease 

progression was better than that of ADAS-Cog-11, subsequently pinpointing the various 

versions of ADAS-Cog assessment available making it difficult for cross-comparison of 

validity and reliability. This was useful to us in that it brought to our attention the various 

versions available so we could understand their differences. For our research, we are 

interested in the findings of ADAS-Cog-13 (Mohs et al., 1997)—our dataset retrieved 

from the ADNI uses this version. 
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A frequently-used assessment in validation studies is the ADAS-Cog13, where for MCI 

patients the accuracy is 82–83%, sensitivity 58–61% and specificity 91–93%; and for AD 

patients, the accuracy is 90.5–99.6%, sensitivity 74–94% and specificity 92–98% 

(Nogueira et al., 2018; Yang et al., 2019).  

 

2.3.2 Clinical Dementia Rating Scale Sum of Boxes (CDR-SB) 

After extensive research, Hughes et al. (1982) were unable to produce an appropriate 

scale to separate the stages of dementia. To address the issue, the authors  introduced a 

new rating scale - the Clinical Dementia Rating Scale (CDR). The CDR consists of two 

sets of interrelated semi-structured interview guidelines/questionnaires, which 

incorporate an assessment of the following six cognitive domains: memory, orientation, 

executive (judging and problem solving), community affairs, home and hobbies, and 

personal care.  

In the CDR method, an informant is interviewed ahead of the subject to form a baseline 

understanding of the subject’s cognitive degradation level. The clinician validates the 

subject’s answers by comparing to the informant’s information, then assigns a score of 0 

(normal cognitive function), 0.5 (very mild cognitive impairment), 1 (mild cognitive 

impairment), 2 (moderate cognitive impairment) or 3 (severe cognitive impairment) for 

each category. The final sum of the scores (SB: Sum of Boxes) ranges from 0 (normal) 

to 18 (severe), where a score less than 4 will indicate very mild dementia or light cognitive 

degradation. A mildly-demented subject will likely score between 4.5 and 9, while a 

moderately-demented subject will score between 9.5 and 15.5; anyone scoring over 16 is 

considered severely demented (Mennella & Heering, 2015). Within the study, sensitivity 

and specificity have not been disclosed, however, in another validation study conducted 

by O’Bryant et al. (2010), 80% sensitivity and 69% specificity have been reported.  

2.3.3 Everyday Cognition (ECog) 

ECog (Farias et al., 2008) is a questionnaire which was created with the goal of increasing 

sensitivity, especially for the MCI group, over pre-existing cognitive diagnostic 

procedures. Based on input from domain experts such as clinicians and neurologists, the 

ECog initially had 138 potential questions which was reduced to a final total of 39 

questions with four possible responses to each question: 
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1 = better or no change compared to 10 years earlier  

2 = questionable/occasionally worse  

3 = consistently a little worse  

4 = consistently much worse.  

There are two versions of ECog: an informant-based version (ECogSP) where the 

questions are answered on behalf of the patient by their caregiver, and a patient-based 

version (ECogPT) where the subject answers the questions. 

The questions can be divided into six categories: Memory, language, semantic 

knowledge, visual spatial, planning, organisation and divided attention. All questions also 

count towards a general category, which is a function of all other categories. Each 

category is then rated on a scale of 1– 4, with 4 representing the most severe decline in 

everyday function. The authors reported that when targeting cut off points for a specificity 

of 80%, sensitivity was 93% in discriminating dementia from Cognitively Normal (CN), 

75% in discriminating MCI from dementia, and a 67% in discriminating MCI from CN. 

Recently, Thabtah et al. (2020) investigated the difference between ECog versions 

experimentally using correlation analysis with classification on data subjects from the 

Alzheimer’s Disease Prediction of Longitudinal Evolution (TADPOLE) challenge - 

ADNI dataset (Marinescu et al., 2019). The results derived by the authors using a few 

machine learning algorithms revealed that scores of the ECogSP for data subjects with 

AD at baseline showed an increase over the period when compared to those of the 

ECogPT. Moreover, classification results showed an increase in the detection rate of the 

AD progression when ensemble learners were used, and after the input dataset was 

resampled.  

2.3.4 Functional Activities Questionnaire (FAQ) 

To access the living independence level of elderly in a community setting, Pfeffer et al. 

(1982) considered Lawton and Brody’s (1969) IADL Scale, which was initially 

developed for the assessment of independent living for injured patients, to be relevant. 

Based on the foundation of IADL, the authors developed the FAQ which contains 

questions that are the grouped daily tasks for independent living. Each question is rated 
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on a scale of 0–3, where lower scores indicate better autonomy. Scores are then calculated 

for a total score between 0–30. The cut-off point is 9 for determining if one has impaired 

functioning. Within the study, FAQ reported 85% in sensitivity while IADL achieved 

only 57%, however, in regard to specificity, IADL achieved 92% when FAQ reported 

81%.   

Wessels et al. (2015), Podhorna et al. (2016), Marshall et al. (2015), and Battista et al. 

(2017) have consistently referenced their findings to cognitive domains, particularly 

executive function, memory, and attention, to provide the association to the DSM-5 

framework. 

2.3.5 Mini Mental State Examination (MMSE) 

Folstein et al. (1975) created the MMSE with a shorter administration time than other 

cognitive diagnostic procedures. MMSE consists of 11 questions to address the issue of 

a shorter period of mental concentration in elderly patients and is administered in a 

clinical setting. In comparison, other mental state tests usually assess the full mental state 

and take more than 30 minutes. The authors focused on assessing the cognitive functions 

of perception, visual, memory, language, and fine motor skills. MMSE has a total score 

of 30, and scoring less than 24 indicates some level of cognitive impairment.  

The authors validated the screening method on a sample of 269. Of these, 63 were healthy 

subjects and 206 were patients who exhibited various types of abnormal mental 

symptoms, including dementia. Within the initial publication of MMSE, there is no 

information on its sensitivity and specificity. However, in 2000, a validation study with 

151 subjects in Greece reported 90.8% sensitivity and 90.6% specificity with the cut off 

score 23/24 (Fountoulakis et al., 2000), as specified by Folstein et al. (1975).  

 

2.3.6 Montreal Cognitive Assessment (MoCA) 

MMSE is known for its insensitivity in separating MCI subjects from normal subjects (Ihl 

et al., 1992; Tombaugh & McIntyre, 1992; Wind et al., 1997), which is why Nasreddine 

et al. (2005) created MoCA as a screening instrument for detecting MCI and Mild AD. If 

a subject scores within normal ranges on the MMSE, but is still experiencing memory 

issues, further testing in MoCA can help determine if they have MCI or Mild AD. The 
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authors designed 12 structured and unstructured questions to complete, including 

activities of drawing a cube and trail making, to assess the subjects’ attention, abstraction, 

executive, memory, orientation, and visuospatial capabilities in a clinical setting. Within 

the study, MoCA was able to separate 90% of MCI subjects whereas MMSE only 

managed to separate 18% (Nasreddine et al., 2005). The impairment cut off score was set 

to 26 where the maximum score was 30; the study reported a specificity level of 87%, the 

sensitivity for discriminating MCI and Mild AD was 90% and 100%, respectively.  

 

2.3.7 Rey’s Auditory Verbal Learning Test (RAVLT) 

RAVLT (Rey, (1941); Schmidt, (1996)) is a test where the subject is given a set of 15 

nouns which they are asked to recall. They are given the nouns again and asked to recall 

these  a total of five times. Next, they are given a second set of 15 different nouns but 

asked to again recall the first set. The subjects are then given a 30 minute break and asked 

to recall the first set of nouns. Finally, the subjects are asked to identify the original 15 

nouns from a set of 50 nouns including the first and second sets.  

The RAVLT test produces a number of different summary scores, of which two are used 

in the ADNI dataset (Moradi et al., 2017; ADNI, 2017). RAVLT immediate is the total 

number of nouns recalled in the first five repetitions, giving a score that ranges from 0 to 

75. RAVLT percent forgetting is the proportion of nouns remembered in the 5th trial that 

are forgotten after 30 minutes (the score of the 5th repetition, minus the score after the 30 

minute break, divided by the score of the 5th repetition, and multiplied by 100). RAVLT 

percent forgetting can in theory range -1400 (assuming at least 1 is recalled in the 5th 

trial since you can’t divide by 0) and 100, with negative scores meaning the subject 

remembered more nouns after the break and 100 meaning the subject forgot all nouns 

after the break. RAVLT immediate is typically associated with learning memory 

and RAVLT percent forgetting with delayed memory. 

2.4 Dementia Assessment Methods Comparison  

In the cognitive diagnostic procedures selected (see Table 2.3), it is obvious that the 

intentions of each procedure are different, since the clinical researcher’s study focus 

varied. For instance, the MMSE has been used as a dementia screening tool since its 
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inception in 1975, and while MoCA is focused on differentiating MCI patients from AD, 

the MMSE is known for its insensitivity (Ihl et al., 1992; Tombaugh & McIntyre, 1992; 

Wind et al., 1997; Nasreddine et al., 2005). CDR-SB and ECog are considered as 

dementia diagnosis procedures, which segregate the subjects into different stages of 

dementia progression, such as mild MCI, MCI, moderate dementia, and severe dementia. 

RAVLT is unique in that it is not designed primarily for the screening of dementia 

however; it is an effective tool for measuring the cognitive domain associated with 

dementia: memory. As such, its use has been explored as a possible component of robust 

dementia screening toolkits (Ghafar et al., 2019). In the following subsections we 

critically analyse the dementia assessment methods in terms of DSM-5 coverage, 

performance, and accessibility among others. 

2.4.1 DSM-5 Fulfilment 

The DSM 5 criteria do not require that any specific cognitive diagnostic procedures be 

used in the process of AD diagnosis, however cognitive tests within these procedures can 

be used to measure decline in one or more of the six cognitive domains: complex 

attention, executive function, learning and memory, language, perceptual-motor, or social 

cognition. Decline in at least one of these domains is required by DSM 5 for a diagnosis 

of Major or Minor ND, and decline in learning and memory as well as at least one other 

domain is required for AD. The severity of decline can determine whether the 

neurocognitive disorder is Major or Minor and if AD is probable or possible. Therefore, 

it is beneficial to use cognitive tests which are quantified and equitable to measure decline 

in cognitive domains. Table 2.4 depicts which of the six cognitive domains is covered by 

each diagnostic procedures, and Table 2.5 depicts which sections/cognitive tests of each 

diagnostic procedure relate to each cognitive domain.  

We have used the definition of each cognitive domain according to the Johns Hopkins 

Psychiatry Guide (Peters & Rabins, 2017). Complex attention includes sustained, divided, 

and selective attention, ability to concentrate and to perform mental calculations. 

Executive function includes planning, decision making, and ability to organise. Learning 

and memory includes immediate, recent, and long-term memory. Language includes 

remembering names of objects or people and using correct grammar. Perceptual motor 

includes visual perception and ability to navigate familiar environments and perform 
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spatial tasks. Social cognition includes the recognition of emotions, theory of mind, and 

an awareness of social standards. 

RAVLT was the only cognitive test we reviewed that covers one cognitive domain only, 

being learning and memory, however it can be useful to individually measure different 

aspects of the learning and memory domain such as immediate recall and delayed recall. 

All other considered cognitive diagnostic procedures could be applied to more than one 

cognitive domain, although there were no cognitive diagnostic procedures that covered 

all six domains. ECog had the largest coverage including all domains apart from social 

cognition. In fact, CDR-SB was the only procedure found that could be considered to 

cover social cognition as part of the ‘community affairs’ test. While this assesses 

behaviours likely to relate to social cognition, such as reactions in social situations and 

consideration of others, it does not directly assess the socio-emotional or mentalising 

skills usually considered central to the social cognition domain. Nor does the CDR-SB 

cover complex attention or language. To cover all cognitive domains in DSM-5, you 

would need to combine CDR-SB with another cognitive diagnostic procedure such as 

ECog or alternatively ADAS-Cog, MMSE, or MoCA which each cover all cognitive 

domains apart from social cognition and executive function. 

It is worth highlighting that while some of the cognitive diagnostic procedures include 

cognitive tasks to measure functioning in DSM domains directly, others rely on 

descriptions of routine behaviours that we assume will be impacted by poor cognitive 

functioning. For example, the ADAS-Cog measures perceptual and motor skills directly 

by asking patients to copy geometric shapes. In contrast, the CDR-SB ‘home and hobbies’ 

test asks about the patient’s abilities to conduct chores and routine tasks and to use 

appliances. Functioning impairment in these tasks could indicate difficulties with 

perceptual and motor skills, but may also reflect issues in executive functioning. 

The cognitive domains required for diagnosing possible or probable AD according to the 

NINCDS-ADRDA criteria differ slightly: replacing social cognition with orientation and 

adding constructive abilities and problem solving. Therefore, a different set of cognitive 

diagnostic procedures is required. All cognitive diagnostic procedures mentioned here 

aside from RAVLT also cover orientation. ADAS-Cog covers constructive abilities and 

CDR-SB can evaluate a subject’s problem-solving ability. 
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2.4.2 Performance 

Table 2.3 shows the performance of cognitive diagnostic procedures in terms of 

sensitivity and specificity based on critical reviews. Sensitivity refers to the ability to 

correctly classify subjects with AD, specificity refers to the ability to correctly classify 

subjects without AD. In general, sensitivity and specificity are inversely proportional to 

one another as the cognitive procedure’s cut off point is changed. Therefore, cut off points 

are chosen carefully to maximise both measures as needed.  

The results below show that MoCA was the highest performing procedure, with a 

sensitivity of 90% towards MCI subjects and a sensitivity of near 100% towards AD 

subjects, as well as a specificity of 87% for both MCI and AD. For some of the original 

studies, there were no disclosed sensitivity, specificity, or cut off scores. In these cases, 

we have found validation studies or comparison studies which provide such information 

(O’Bryant et al., 2010; Hsu et al., 2017; Li et al., 2017). For RAVLT, we were unable to 

locate any studies specifically linked to dementia diagnosis with an overall sensitivity and 

specificity. The likely reason is that RAVLT was not comprehensive enough to use for 

dementia screening or diagnosis due to its narrow scope. For the rest, CDR-SB seems to 

perform worse with only 80% sensitivity and 69% sensitivity when the others were all 

above 85% sensitivity and 80% specificity. ECog performed better than CDR-SB in 

discriminating dementia from the control, with a 93% sensitivity and 80% specificity.   

2.4.3 Accessibility and Administration 

Most of these cognitive diagnostic procedures require clinicians or trained clinical 

professionals to administer; FAQ is the only cognitive test which can be performed in a 

community setting.  

Since most of these cognitive diagnostic procedures, except ECog and RAVLT, were 

constructed to have less than 15 items, the administration duration is reasonably short. 

The 11 tasks of ADAS Cog are usually administered over a period of 60 minutes—CDR-

SB usually takes 40 minutes. MMSE and MoCA are the quickest of the cognitive 

diagnostic procedures described in this thesis with an administration time of up to 15 

minutes.  
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Since demonstrating cognitive decline in memory and learning and one other cognitive 

domain is the requirement for possible and probable AD according to the DSM-5 criteria, 

it would be beneficial to begin testing with a quick cognitive diagnostic procedure such 

as MMSE or MoCA. This can be used to demonstrate impairment in memory and learning 

and three of the other cognitive domains and could be followed by use of ADAS-Cog13 

or CDR-SB if there is found to be an impairment of memory and learning but no 

impairment in complex attention, language and perceptual motor skill. 

2.4.4 Cognitive-Functional Diagnostic Procedures  

Research studies have shown that functional performance has been underrated within 

neuropsychological dementia tests which do not cover most of the functioning 

demonstrated in the ADL or IADL (Bossers et al., 2012; Brown et al., 2014; Jutten et al., 

2019). ADL regression often occurs in later stages of AD; thus it is less reliant on 

functions related to cognition. However, some cognitive elements are related to IADL 

decline as reported by multiple studies such as by Clemmensen et al. (2020), Allen et al. 

(2009) and De Paula and Malloy-Diniz, (2013). Despite the fact that these dementia 

diagnostic procedures can show clear cognitive impairment, they do not necessarily 

reveal deficits in functional activities (Mioshi, 2011). Therefore, there is a need to develop 

new dementia diagnostic procedures that measure both cognitive and functional sections. 

The next section reviews studies that investigate functional and cognitive elements 

together in dementia diagnosis research. 
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 Table 2.3: Cognitive Diagnostic Procedures Details 

Procedure Name Type 
No. of 

Questions 

Cut 
Off 

Score 

Min 
Score 

App. 
Time   

Max 
Score 

Sensitivity Specificity 
Administration 

Settings 
Activities 

 

ADAS 

Alzheimer’s 
Disease 
Assessment 
Scale 

Dementia 
Screening 

11 12 0 30 to 35 70 89.20% 88.50% Clinical Drawing  

CDR-SB 

Clinical 
Dementia 
Rating Scale 
Sum of Boxes 

Dementia 
Severity 

6 2* 0 30 18 80%* 69%* Clinical N/A  

ECog 
Everyday 
Cognition 

Dementia 
Severity 

39 
1.23* 
1.92* 

1 
Not 

reported 
4 

93% 
Dementia 

from 
Normal; 
75% MCI 

from 
Dementia; 
67% MCI 

from 
Normal 

80% Clinical N/A  

FAQ 
Functional 
Activities 
Questionnaire 

Dementia 
Screening 

10 9 0 8 to 10 30 85% 81% Community N/A  

MMSE 
Mini-Mental 
State Exam 

Dementia 
Screening 

11 23/24* 0 10 30 90.8%* 90.62%* Clinical Drawing  

MoCA 
Montreal 
Cognitive 
Assessment 

MCI 
Detection 

12 26 0 30 30 
90% MCI; 
100% AD 

87% Clinical 
Drawing 
& Trail 
making 

 

RAVLT 
Rey Auditory 
Verbal 
Learning Test 

Memory 8 Trials 
5  (20- 
to 30- 
delay) 

0 N/ A 75 N/A N/A Clinical N/A  

 

 



35 

 

  

Procedure 

Table 2.3: Cognitive Domain Coverage 

Social Cognition Complex Attention Learning and Memory  
Executive 
Function 

Language 
Perceptual 
Motor Skill 

Original Ref 

ADAS No Yes Yes No Yes Yes 
Rosen et al., 
(1984) 

CDR-SB Yes No Yes Yes No Yes 
Hughes et al., 
(1982) 

ECog No Yes Yes Yes Yes Yes 
Farias et al., 
(2008) 

FAQ No Yes Yes Yes No Yes 
Pfeffer et al., 
(1982) 

MMSE No Yes Yes No Yes Yes 
Folstein et al, 
(1975) 

MoCA No Yes Yes No Yes Yes 
Nasreddine et 
al., (2005) 

RAVLT No No Yes No No No Schmidt, (1996) 
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Procedure 

 
Table 2.4: Mapping of Procedure Sections to Cognitive Domains 

 

Social Cognition Complex Attention Learning and Memory  
Executive 
Function 

Language 
Perceptual Motor 
Skill 

Original Ref 

ADAS-Cog None Ideational Praxis 

Word recall, 
Orientation, Word 
recognition, 
Remembering test 
instructions 

None 

Commands, 
spoken 
language 
ability, naming 
objects/fingers, 
word finding 
difficulty, 
comprehension. 

Constructional Praxis 
Rosen et al., 
(1984) 

CDR-SB 
Community 
affairs 

None Memory, Orientation 
Judgment and 
problem 
solving 

None Home and Hobbies 
Hughes et al., 
(1982) 

ECog None Divided Attention Memory 
Planning, 
Organisation 

Language Visuospatial 
Farias et al., 
(2008) 

FAQ None Questions 1,2,4,7,8 Question 9 Questions 3,10 None Questions 5,6 
Pfeffer et al., 
(1982) 

MMSE None 
Attention and 
Calculation 

Orientation, 
Registration, Recall 

None Language Copying 
Folstein et al., 
(1975) 

MoCA None Attention. 
Memory/delayed 
recall, Orientation 

None 
Naming, 
Language, 
Abstraction 

Visuospatial/executive 
Nasreddine et 
al., (2005) 

RAVLT None None 
Immediate, 
Percent forgetting 

None None None Schmidt, (1996) 
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2.5 Recent Literature on Cognitive and Functional Abilities in Dementia 

Diagnosis and Screening   

Cipriani et al. (2020) reviewed research works related to functional elements for dementia patients 

to show how these elements change in the different stages of dementia. The authors aimed at 

understanding how functional disabilities vary in the dementia subgroups, and how these disabilities 

impact the progression of the disease. Using the Cochrane digital library and the PubMed database, 

207 research papers were retrieved by the authors using terms such as ‘functional activities’, 

‘instrumental activities of daily living’, and ‘daily functioning’ among others; 81 papers were 

retained and analysed in a qualitative manner. The findings of the review showed a correlation 

between cognitive domains such as executive function and certain functional activities. The findings 

of this study support previous conclusions such as the meta-analysis study conducted by Martyr and 

Clare (2012). Using a meta-analysis approach, their research investigated 49 studies with 3,663 data 

subjects with AD , using 17 different tests that included executive function cognitive domain to 

establish a relationship between executive function and ADL. The findings revealed a relationship 

between ADL including driving and executive function.  

The impact of cognitive and functional performance on ADL was studied by Clemmensen et al. 

(2020) on 185 data subjects with AD using MMSE, Stroop Color and Word test [Stroop] (Golden, 

1978), Symbol Digit Modalities Test [SDMT] (Smith, 1982), Timed Up & Go [TUG] (McGough 

et al., 2011), the Astrand Cycle test, and the Sit to Stand test [STS] (Eggermont et al., 2010) 

cognitive and functional performance tests. Results derived using Pearson Correlation analysis on 

the data collected from the patients revealed that the total scores of ADL and IADL were associated 

with executive functions, but no correlations were observed between other cognitive elements and 

physical performance with ADL or IADL for patients with mild to moderate AD.  

Yu et al. (2018) showed that neuropsychological assessments may be utilised to pinpoint some 

functional activities of daily living, particularly the ones that rely mainly on cognitive processes 

involving memory and reasoning. For example, memory and executive functions have shown 

correlations with some functional performance (De Paula & Malloy-Diniz, 2013; Cipriani et al., 

2020). Conversely, Lim et al. (2018) revealed in an applied study using 61 patients that in-depth 

neurological assessments are needed to use cognitive scores of neurological tests as predictors for 

functional deficiencies. In addition, De Paula and Malloy-Diniz (2013) showed that people at risk 

of dementia who exhibit impairment in executive functions are likely to have issues in complex 

activities such as managing their medications, organising finances, and preparing a meal with 

multiple recipes. Thus, inferring the level of which cognitive elements within neuropsychological 

assessments relate to the functional ability of patients is key information for clinicians treating 
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dementia patients since therapeutic plans can be developed early for the appropriate condition level 

to optimise resources and to prepare for the later progression. 

Jutten et al. (2019) investigated quality issues (clinical relevance, validity) in a previously designed 

composite battery test for mild dementia called cognitive-functional composite [CFC] (Jutten et al., 

2017). CFC comprises multiple cognitive tests and one functional ability questionnaire. A total of 

184 data subjects with different dementias and predementia (MCI, AD, Lewy body) along with 

baseline diagnosis have been analysed using linear regression and confirmatory factor analyses 

including variables such as CFC score, CDR-SB score, ADL-scale, ADAS-Cog13, age, education, 

disease severity, and sex, among others. The results showed that the CFC’s main components 

(executive functions, episodic memory, and Amsterdam IADL Questionnaire score (A-IADL)) are 

more correlated with the disease severity than conventional cognitive tests such as CDR-SB score 

and ADAS-Cog13 score, at least when using the statistical measures and the sample data considered. 

A longitudinal study conducted by Najar et al. (2019) evaluated the impact of functional and 

cognitive activities on the risk of dementia for women in their midlife. Cognitive, functional, and 

demographic data using different cognitive tests, as well as informant interviews and medical 

records of 800 different women with a mean age of 47, were followed between 1968 and 2012, and 

then archived. The Cox regression model was used to analyse the associations of cognitive-

functional activities at risk of dementia. The results showed independent associations of the 

cognitive and functional activities in midlife to dementia types for the women followed aged over 

44 years. To be specific, cognitive activities in midlife may reduce the risk of AD, and functional 

activities may reduce the risk of other dementia types including cerebrovascular and mixed 

dementia. Gender and age seem to be factors impacting the progression of dementia. This outcome 

supports the findings of another recent study by Qin et al. (2020) which showed that demographic 

features such as gender, age, and education influenced AD progression in a cohort of 2901 subjects 

with MCI, AD, and CN. 

Jutten et al. (2017) combined multiple battery tests for cognition and functions in a composite test 

they named CFC to measure any possible decline in early dementia and predementia stages (MCI). 

The authors concentrated on executive functions and memory based on the findings of the previous 

literature, particularly measuring the sensitivity to changes in the conditions in mild dementia and 

MCI, i.e., Vellas et al. (2008), Martyr & Clare, (2012), Harrison et al. (2013), which are the domains 

that show decline in early dementia. To clarify, CFC consists of a method that combines two 

episodic memory and three executive functions called cognitive composite which was initially 

reported by a data driven study by Harrison et al. (2013), and an everyday informant functional 

changes questionnaire called A-IADL (Sikkes et al., 2012). The A-IADL evaluates functional 
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abilities related to preparing meals, managing finances, and using technological devices, among 

others. 

Zucchella et al. (2017) investigated functional and cognitive relationships for patients diagnosed 

with mild dementia using the Disability Assessment for Dementia (DAD) functional performance 

method (Gelinas et al., 1999), and neuropsychological methods like MMSE. A cohort of 158 dyads 

(patients and informal caregivers) were used in which patients were screened using the MMSE for 

cognitive impairment and DAD for functional deficits; the clinicians used the CDR-SB method to 

measure the patients’ dementia severity, and the caregivers were interviewed to evaluate 

behavioural issues. Results obtained using statistical analysis showed that logical and executive 

functions were associated with functional status. 

Lim et al. (2018) examined 61 data subjects with cognitive impairment to determine the relationship 

between cognitive elements of the MoCA and functional results of the Modified Barthel Index 

(MBI) functional questionnaire (Nasreddine et al., 2005; Collin et al., 1988). The authors divided 

the patients into two groups based on their MoCA scores—a score of 11 was used to distinguish 

between the two groups with those scoring below 11 categorised as moderate to severe and those 

with MoCA scores above 11 considered mild. The results obtained using linear regression analysis 

demonstrated that MBI functional outcomes were improved when comparing between initial and 

final assessments; MBI outcomes showed more improvement for patients within the first group 

(MoCA scores of 11 and greater). More interestingly, there was a positive correlation between initial 

MoCA scores, and the functional improvement represented in the MBI outcomes—this correlation 

was not seen using the MMSE test scores. However, the MMSE’s improvement on MBI was 

established in the patients in the first group. The authors concluded that multiple and detailed 

neurological assessments are needed to evaluate whether cognitive elements can be used as 

predictors for functional abilities. 

Brown et al. (2014) investigated the association between MMSE scores and functional activities for 

patients with dementia. Thirty patients were recruited from three hospitals in the Melbourne 

(Australia) area in acute settings. The score of the MMSE test was adopted to measure cognitive 

areas and the Functional Independence Measure (FIM), one of the methods for measuring functional 

activities of self-care (Hall et al., 1993), was used to report the functional performance. The authors 

analysed the scores obtained for the participants using linear regression and Spearman’s correlation 

and discovered that the MMSE total score had some correlation with the FIM total score with a 

coefficient of determination of 0.405 for p < 0.05; the MMSE items’ sub-scores are not correlated 

with the FIM motor sub-score. Therefore, it is highly recommended that clinicians when assessing 
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individuals at risk of dementia do not generalise patients’ functional performance, especially motor 

skill abilities, and should include a functional performance questionnaire to measure IADLs.  

A number of previous research has shown that for dementia patients, cognitive decline may precede 

functional decline (Sperling et al., 2011; West et al., 2012; Yu et al., 2018); however, the 

relationship between the cognitive and functional changes is not well studied especially in the early 

dementia stage. Liu-Seifert et al. (2014) examined the cognitive and functional progression for 

patients with mild AD, i.e., MMSE baseline scores between 20 and 26. Cognitive and functional 

data were collected for different patients diagnosed with mild dementia using the AD Assessment 

Scale-Cognitive subscale (ADAS-Cog14) and the AD Cooperative Study-Activities of Daily Living 

(ADCS-ADL) (Rosen et al., 1984; Galasko et al., 1997). The results produced using regression 

models showed that cognitive impairments precede functional impairments. More importantly, the 

relationship between the scores obtained from ADAS-Cog14 and ADCS were low at baseline and 

then consistently increased slightly over a period of 80 weeks. A higher correlation score was 

observed between cognitive scores (ADAS-Cog14) and IDALs when compared with basic ADL 

functions.  

Mioshi (2011) pinpointed that those diagnostic methods for cognitive impairment of dementia 

would not give a clear indication of functional deficits because these methods contain scores of the 

cognitive elements based on the category dementia levels (mild, moderate, and severe). The author 

expressed a concern that neuropsychological methods that measure cognitive impairment of 

dementia should not be used in isolation of methods that measure functional activities. This is 

because cognitive methods are primarily dependent on the skills of language and memory and may 

not measure the degree of independence level presented in the IADLs. 

Allen et al. (2009) studied the correlation between cognitive methods such as MMSE, besides 

variations of the clock drawing, and learning new executive functions of the elderly and inhaler 

performance. The authors hypothesized that tests of executive functions such as drawing clocks or 

drawing the intersecting pentagons item of the MMSE can be better predictors for inhaler 

performance than MMSE total score. From a population of 83 inpatients, 63 women were recruited 

excluding patients with severe dementia (MMSE total score less than 11). Clock drawing tests 

[CLOX1 and CLOX2] (Royall et al., 1988), the MMSE intersecting pentagon item score, and 

MMSE total score were recorded for the subjects before the inhaler training accordingly. Then, a 

statistical analysis using Yates’ Chi-Square test was performed on the data collected; the results 

illustrated that the MMSE total score and the MMSE’s ideo-motor praxis (drawing pentagon score) 

were better predictors than CLOX1 and CLOX2 for inhaler performance, at least on the subjects 

considered in the study. One probable explanation for the results obtained is that learning to inhale 
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can be less determined by executive control function as the drawing test activities do not reflect the 

instruction provided within the inhaler training, rather it evaluates the executive function in a more 

real and uncertain situation. In conclusion, learning new functional skills for patients with dementia 

seems more dependent on general cognitive elements and ideo-motor praxis activities. 

Razani et al. (2009) showed that MMSE’s attention and orientation test scores are correlated with 

some functional activities, at least for the 61 data subjects used in the study and using the Direct 

Assessment of Functional Status (DAFS) questionnaire (Loewenstein et al., 1989). In addition, the 

authors determined that the language elements of the MMSE test have some sort of correlation with 

functional activities other than activities related to time orientation and shopping—this supports 

previous findings by Lecky and Beatty (2002). The time orientation and shopping activities of the 

DAFS have shown some correlation with the MMSE recall items. However, most of the items 

assessed in the MMSE are linked with orientation raising a question about the accuracy of the 

individual’s cognitive screening (Lim et al., 2018). 

Payne et al. (1998) studied the interaction between both cognitive and functional elements for 

dementia patients and their correlation with features related to depression. The authors sought to 

answer questions such as, ‘Are patients with cognitive deficits more likely to be depressed when 

they exhibit functional impairment?’ ‘Can the level of cognitive or functional impairment be used 

to predict depression?’ Data related to the Cornell Scale for Depression in Dementia [CSDD] 

(Alexopoulos et al., 1988), MMSE, and the Psychogeriatric Dependency Rating Scale, physical 

dependency subscale [PGDRS-P] (Wilkinson & Graham-White, 1980) from 569 patients were 

collected from two clinical sites in Maryland, USA—the data for just 259 patients were analysed 

using logistic regression after excluding patients with missing values or patients without a primary 

diagnosis. The results produced implied that there are no clear associations between the cognitive 

elements and depressive features for vascular dementia, and mixed dementia patients. In addition, 

depressive features seem to occur in all levels of vascular dementia, and AD patients may show 

depressive features in the early stages. More interestingly, early-stage AD patients with functional 

impairment are more likely to show symptoms of depression. The study had some limitations, such 

as the sample data subjects considered were healthier than the generation dementia population; 

additionally, the mixed dementia subgroup consists of multiple dementia types and thus the findings 

do not necessarily support each subtype in that group.  

A more recent study that investigated cognitive leisure activities associated with depression for a 

larger population was published by Kim et al. (2019). Data related to cognition and functional 

activities was measured using the NCGG Functional Assessment Tool [FAT] (Makizako et al., 

2013). Demographic information (age, gender, employment status, body mass index, education 
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level, alcohol use, etc) and cognitive activity scale was collected from 9,380 individuals. In addition, 

the 15-item Geriatric Depression Scale [GDS]’s (Friedman et al., 2005) data were also collected for 

the same individuals. In conducting the analysis, Pearson correlation and t-test statistical measures 

were derived from the considered data and the correlations between leisure activities and cognitive 

impairment were measured using logistic regression. A negative relationship was found between 

the frequency of leisure activities and cognitive impairments in the older adult population. The same 

negative correlation was noticed in older adults with depressive features. The results suggest a 

complex association between cognitive-functional impairments for dementia patients and 

depression. 

DiBenedetti et al. (2020) observed patient and caregiver perspectives on the stages of AD in terms 

of symptoms, impacts, and outcomes. Interviews of 60 participants reported qualitative results, often 

summarising that memory impairment was the largest concern in progressing AD. Other areas of 

concern from MCI caregivers seemed to be communication, language, and emotional changes. A 

common theme between the participants was the desire for memory restoration and preventing 

further cognitive decline. 

2.5.1 Discussion  

Most of the reviewed works that have tackled cognitive and functional assessments of dementia 

have focused on predicting dementia or MCI rather than detecting points when the disease is 

progressing (e.g. Weakley et al., 2017; McCombe et al., 2020). The latter is more challenging as 

some of the dementia levels and even precursors such as MCI can share common cognitive 

impairment traits, and the cognitive indicators have common cognitive domains as defined in the 

degenerative conditions of the DSM-5 framework. For example, individuals with MCI or mild 

dementia can share memory decline and thus could have close final scores when they are assessed 

using cognitive tests. Therefore, it is imperative not only for the clinicians to differentiate dementia 

level, but also to determine factors that may trigger advancements in the disease. This can be 

achieved by detecting cognitive indicators during a clinical assessment in which any change may 

signal the disease’s advancement. 

Most of the current memory and neuropsychological assessments related to dementia such as 

RAVL, ADAS-Cog-13, MoCA, and ECog, are mainly used by clinicians to predict MCI or dementia 

level using scoring functions—these methods do not detect the progression of dementia. To do so, 

the sequence of cognitive and medical assessments of the individual needs to be considered and the 

time elapsed between the assessments to capture any signs of change that may yield to disease 
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advancement,  no change, or even disease regression. Currently, most of the cognitive studies related 

to dementia use medical assessment datasets that do not capture dementia progression, rather they 

only capture the diagnostic class using the DSM-5 or NINCDS -ADRDA criteria. These challenges 

make it difficult for researchers to deal with the issue of dementia progression especially using data-

driven approaches.  

Most of the research studies that we reviewed had not considered integrating both cognitive and 

functional areas in a single clinical assessment for dementia despite the fact that these areas can be 

correlated. For example, studies by Clemmensen et al. (2020) and Liu-Seifert et al. (2015) reported 

that cognitive impairment may yield to functional impairment over time. Other researchers 

pinpointed that cognitive decline can be associated with minor functional decline that does not 

necessarily impact the individual’s independence of daily living (Winblad et al., 2004). Hence, 

integrating cognitive and functional elements in a single clinical assessment session could be 

advantageous to identify impactful elements and their associations to establish cognitive criteria 

related to degenerative conditions in the DSM-5’s frameworks.  

Research studies, for example by Brown et al. (2014), Zucchella et al. (2017), Lim et al. (2018) and 

Clemmensen et al. (2020), showed that discovering the associations between cognitive and 

functional elements can be useful to detect functional decline. However, according to Zuchella et 

al. (2017), measuring these correlations in dementia subgroups and dementia precursors is a difficult 

task as it is not well characterised, besides the difficulty of having real data observations for 

individuals that capture both functional and cognitive elements—most cognitive tests scores in 

neuropsychological assessments can partially detect the functional status only. Thus, it can be useful 

to study the associations between the cognitive and functional elements of individuals in the ageing 

community and at different dementia levels. This can assist clinicians in the early detection of a 

deterioration in functional activities caused by a cognitive decline. 

 

2.6 Review on Machine Learning Studies in Cognitive Dementia 

Assessment Methods  

In this section, we review common conventional machine learning techniques and their applications 

to cognitive assessments of dementia using data-driven methodologies. The choice of the machine 

learning techniques is based on their popularity in the medical research literature particularly 

dementia-related screening and diagnosis research, i.e. Bang et al., (2018),  Pereira at al. (2018), 

McCombe et al. (2020), Thabtah et al., (2020). and others. We focus on data-driven studies that 
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used statistical techniques including regression analysis, support vector machines, decision trees, 

probabilistic methods, artificial neural networks, rule-based techniques, among others. 

2.6.1 Decision Trees and Rule-based Classification  

Decision tree is a divide-and-conquer approach in machine learning in which a tree-based structure 

is built from the training dataset to represent the classification system (Witten & Frank, 2002). A 

decision tree algorithm such as C4.5 utilises information theory metrics to construct the tree in a 

recursive top-down fashion (Quinlan, 1986). The fundamental question is how to grow the tree and 

which attribute to choose for the data split. Common metrics to grow the tree and split the data 

quantitatively are information gain and Gini-Index (Quinlan, 1993; Ceriani & Verme, 2012). The 

former, which is more popular, employs Entropy (Shannon, 1948) to compute the degree of 

uncertainty of any data split using the attribute under consideration and the target class information 

as shown in Equations (2.1–2.2) and the latter is computed as per Equation 2.3. Usually, the decision 

tree algorithm selects the attribute that yields the maximum information gain after considering all 

independent attributes in the input dataset. 

Information Gain (D, y) = Entropy (D) -  ((|Dy| / | D |) * Entropy (y))  (2.1) 

where 

Entropy (D) =∑ −𝑃𝑦 𝑙𝑜𝑔2 𝑃𝑦       (2.2) 

Where 

D = the dataset 

𝑃𝑦 = the probability of a to belong to class y  

Dy = subset of D for that Y = y 

|Dy| = The number of instances in Dy, and |D| = Size of D 

 

 Gini = 1 − ∑ (𝑝𝑖
𝑛
𝑖=1 )2        (2.3) 

Where 𝑝𝑖 is the probability of an instance belonging to a specific target class. 

The decision tree algorithm keeps growing the tree until the termination condition is met (the tree 

cannot grow any further or the complete training data instances are used). When the decision tree is 

completed, then the algorithm trims unnecessary branches or sub-trees to minimise any chance of 

overfitting the training dataset. In the final decision tree, a rule denotes a path from the tree’s root 
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to any leaf. Common decision tree algorithms are C4.5, C5, and random forest (Quinlan, 1993; 

Quinlan, 1998; Breiman, 2001). 

Thabtah et al. (2020) investigated the problem of AD progression when using the Everyday 

Cognition (ECog) test based on real data subjects collected from ADNI (TADPOLE) (Marinescu et 

al., 2019). In particular, data subjects (diagnosed as CN, MCI, and AD) who participated in ECog’s 

two versions: the patient and study partner, were analysed using machine learning algorithms with 

a focus on rule-based classifiers. The results obtained using the machine learning algorithms showed 

that when the input dataset was balanced prior the training phase the classification performance in 

terms of accuracy was enhanced for the models derived. Moreover, rule-based classifiers such as 

RIPPER, PART (Frank & Witten, 1998) and C4.5-Rules, besides random forest, derived 

competitive classifiers for AD progression.  

Common rule-based classification algorithms are RIPPER, Multi-class Association Classification 

(MAC), CN2, Ripple Down Rule Learner (RIDOR), and Fuzzy Unordered Rule Induction 

Algorithm (FURIA) (Abdelhamid et al., 2012; Clark & Niblett, 1989; Gaines & Compton, 1995; 

Hühn & Hüllermeier, 2009). 

Das et al. (2019) introduced a rule-based machine learning approach called the Sparse High-Order 

Interaction Model with Rejection Option (SHIMR), to predict dementia. The authors utilised data 

subjects from the ADNI dataset with some proteomics features as well as cerebrospinal fluid-related 

features collected from 141 data subjects. A comparative analysis on the data subjects was 

conducted using the C4.5 algorithm (Quinlan, 1993) and the rule-based approach (SHIMR). Results 

derived based on classification accuracy revealed that the SHIMR approached was superior to C4.5 

by deriving classifiers with 84% accuracy on the data subjects. 

Bang et al. (2017) applied machine learning algorithms to clinical data to help physicians diagnose 

dementia more accurately. The authors applied their model to the CREDOS study consisting of data 

gathered by 37 universities in Korea from 2005–2013. The proposed model recognises the need for 

a diagnostic process that is made up of four steps or modules. First the proposer module: the kScale 

variable selection method is used because it provides flexibility by verifying various results from 

several methods. Next a classification model is built to determine dementia symptoms. This model 

uses the variable used by the proposed model as input and with the CDR-SB score as the class label. 

Machine learning algorithms including ANN, Decision Tree, and SVM are used to build the models. 

A descriptive analysis was then performed to describe the process of the classification of patients 

based on the classification model learnt by the classification algorithms. In this descriptive analysis, 

Decision Tree outcomes are transformed into easy-to-interpret knowledge. Finally, the visualisation 

model helps to seek useful characteristics of instances which are clustered in a descriptive step. It 
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uses contrasting colours so that the patients with normal, dementia, and other diagnostic indicators 

can be distinguished immediately. 

Weakley et al. (2015), used classification techniques for two datasets, each consisting of participants 

who were classified as exhibiting ‘normal ageing’ to dementia. The first dataset consisted of 310 

participants who were diagnosed according to clinical diagnosis criteria; the second dataset 

contained 272 participants who were diagnosed according to CDR scores: 0 for normal ageing, 0.5 

for MCI, and 1 and above for AD. Both datasets initially contained 27 variables related to various 

cognitive test scores, but this number was reduced using a wrapper feature selection method. To 

evaluate the generated models, 5-fold cross-validation was used. The main comments from the 

authors are that the classification techniques used showed no statistically different ability in 

classifying the data, with the most difficult (least successfully classified) group being the middle 

group, alternatively MCI, or CDR = 0.5.   

2.6.2 Support Vector Machines  

SVM is one of the classification approaches that can deal with both classification and regression 

problems in machine learning. The main idea of the SVM approach is choosing the best hyperplane 

(a decision boundary) that can segregate two target class values (Platt, 1998). The algorithm initially 

plots the data instances of the available n attributes in the training dataset in n-dimensional view for 

which each attribute denotes a specific coordinate. The SVM algorithm then classifies data instances 

by selecting the hyperplane that accurately distinguishes between the two target classes. One way 

to find the best hyperplane to differentiate between the classes is to compute the maximum margin 

(the maximum distance between the data instances of the classes) (Joachims, 1999).  

Stamate et al. (2018) investigated how to distinguish dementia and MCI diagnoses using feature 

selection with intelligent learning methods. The authors utilised ReliefF and Information Gain (Kira 

& Rendell; Quinlan, 1986) measures to select influential attributes from the ADNI’s Merge dataset 

(ADNI, 2021). Since a patient could have had multiple visits, this study limited each patient to their 

first visit to the research centre along with the diagnosis. This resulted in 49 attributes and 1851 

observations being included and one response variable (the diagnosis). The response variable has 

three possible values (CN, MCI, Demented). The dataset consists of attributes related to cognitive, 

brain areas, magnetic resonance imaging (MRI), and positron emission tomography (PET), among 

others. To produce classification models, a number of classification algorithms including random 

forest, SVM, Stochastic Gradient Boosting, eXtreme Gradient Boosting, and Gaussian Processes 

have been applied to differentiate between the three possible values of the response variable. Results 

using cross validation and Monte Carlo simulation as testing and validation methods respectively 



47 

 

reported that the eXtreme Gradient-Boosting algorithm was able to outperform the models derived 

by the remaining algorithms. Models derived by the eXtreme Gradient Boosting achieved 88% 

accuracy, 93% sensitivity, and 94% specificity in identifying dementia. The same algorithm was 

able to detect MCI with 86% sensitivity and 90% specificity for MCI. 

Battista et al. (2017) conducted a quantitative study to assess cognitive measures and their potential 

in reducing the amount of neuropsychological tests used to improve the classification of AD 

patients, and at an early stage of impairment. They aimed to explore using more subdomains that 

are concerned with long-term memory and recognition memory. While the study had also mapped 

the features to DSM-5 cognitive domains, each feature was only limited to one domain when certain 

tasks could involve more than one. It would have been helpful to understand the method they used 

to assign the domains. The study utilised neuropsychological tests and features obtained from the 

ADNI database. Two feature reduction approaches were used to improve computational 

performance: (a) a computational approach, and (b) a clinician’s understanding based on their 

expertise and experience. With the reduced set of features, a classification algorithm based on SVMs 

was used to train the dataset into predicting the likelihood of being diagnosed with AD. Overall, 

using the computational feature reduction approach, the best predictors were Q1, Q4, and Q8 in 

ADAS-Cog13. Similarly, using the clinician’s reduction approach, ADAS-Cog13: Q1, Q4,and Q8 

was found to be the best predictor, and due to the FAQ items having overlapping measures, they 

have been excluded.  

A study conducted by Lemoine et al. (2010), focused on the accuracy of classifying normal, MCI, 

and AD as an individual diagnosis. The authors studied the ADNI-Merge dataset, including both 

PET imagery and clinical data such as the assessment scores. While our research does not cover 

PET imagery and only focuses on the cognitive methods, their research presents useful information 

of data mapping, data integration, and feature selection techniques. SVM classifiers (Cortes & 

Vapnik, 1995) were fitted and derived the best accurate classification for detecting AD. It is 

interesting to note that in their findings based on the ADNI data analysis, they have classified the 

FAQ test as one of the top clinical methods, along with ADAS-Cog13 amongst five clinical 

assessments to have better weighting in diagnosing AD.  

2.6.3 Probabilistic Classification  

Probabilistic classifiers approximate a joint probability using product distribution (Friedman et al., 

1997). These algorithms compute the conditional probabilities of a target class, i.e. y, using a 

product of conditional probabilities of the attributes’ values of the test instance and their 

probabilities in the training dataset as shown in Equation 2.4. 
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𝑃 (𝑦|𝑋) =  
𝑃(𝑋|𝑦)𝑃(𝑦)

𝑃(𝑋)
      (2.4) 

Where 𝑋 is an instance of n attributes values to be classified (𝑋 =((𝑥1, 𝑥2,…..,𝑥𝑛)), and 𝑦 is a target 

class to be classified 

The Bayes-based classification algorithms assume that the features are independent from each other 

given the target class—not realistic in real applications (Hand & Yu, 2001). Common Bayes-based 

algorithms such as Naïve Bayes (Duda & Hart, 1973) predict the target class of test data using the 

computed product of the conditional probabilities and then assign the class that has the largest 

likelihood to the test data (Zhang, 2004). The Bayesian Network (Bayes Net) algorithm illustrates 

a set of variables and its conditional dependencies, and it searches the network that “best describes” 

the probability distribution over the training data (Friedman et al., 1997). 

McCombe et al. (2020) investigated the problem of a missing diagnosis in dementia classification 

using data subjects who had taken the CDR-SB cognitive assessment. The data subjects were 

adopted from the ADNI-Merge and the cohort containing 1185 cases and controls with various 

diagnostic class frequencies. The K-Nearest Neighbour method (Cover & Hart, 1967; Fix & Hodges, 

1951) was used to deal with the missing values in the input dataset. Classification algorithms 

including Naïve Bayes, random forest, and SVM (Duda & Hart, 1973; Cortes & Vapnik, 1995; 

Breiman, 2001) were then applied on the imputed dataset to derive dementia classification models. 

The results showed that models derived by random forest and SVM were superior in terms of the 

Area Under ROC curve when cross-validation was used as a testing procedure. 

Maheux et al. (2020) investigated the progression of AD based on data subjects from the ADNI, 

and other dementia data repositories, for individuals who had taken the MMSE cognitive 

assessment. The methodology followed by the authors is based on the Bayesian probabilistic method 

and the data used cover a timeframe of six years for each participant i.e., since their first diagnostic 

clinical assessment. Results obtained from the classification algorithm were compared with those 

produced by linear regression, logistic regression, and constant prediction (no change to the MMSE 

scores). The results pinpointed to a higher classification rate for the AD advancement early (within 

1–3 years) which is promising for early detection of the disease.  

Pereira at al. (2018) explored the different feature selection techniques in predicting the conversion 

from MCI to AD. The study aimed to derive subsets of vastly reduced features from 

neuropsychological tests, using a feature selection with ensemble learner technique that combines 

both stability and predictability. Pereira et al. (2018) combined seven feature selection methods 

based on different strategies to measure the impactful features, and then paired these with different 

classifiers to observe which combination attained the best classification performance. They found 
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that the Naïve Bayes algorithm was the strongest performer and Decision Tree the weakest in terms 

of predictive accuracy, at least on the dataset used. The training dataset was retrieved from ADNI 

and the Portuguese Cognitive Complaints Cohort, both achieving relatively good model 

performance at AUC above 87% and 82% respectively. For the ADNI dataset, the top selected 

features for ADAS were ADAS-Cog Total Score 13, ADAS-Cog Total Score 11, ADA-cog Q4, 

ADAS-Cog Q8, and ADAS-Cog Q1. The results were comparable to Battista et al. (2017), where 

the study had also identified Q4, Q1, and Q8 to be effective in identifying dementia. 

Jammeh et al. (2018) applied machine learning technology to identify dementia from the National 

Health Service (NHS) data. A total of 26,483 data instances of individuals aged over 65 years were 

collected from 18 general practitioner surgeries. Machine learning techniques such as random forest, 

SVM, Naive Bayes, and linear regression were utilised to build classification models that were then 

evaluated using cross validation testing methods with n=10 folds, in terms of specificity, accuracy, 

and sensitivity, among others. The dementia classification models derived by the machine learning 

algorithms pinpointed that the model derived by the Naïve Bayes algorithm produced the highest 

performance. The classification model of Naïve Bayes was able to detect 295 instances with 

dementia who had not received a clinical diagnosis.  

2.6.4 Artificial Neural Networks  

An ANN is a set of connected nodes that are normally called neurons, which capture the 

relationships between the available features and the target class in the input dataset using the same 

mechanisms as the human brain (Gardner & Dorling, 1998; Elyan et al., 2018). Usually, neurons 

communicate and receive data from each other, assign them weights, and then transmit the sum to 

other neurons. This mechanism of adjusting the weights of the input and passing them on can help 

in updating the network structure (the model) during the training phase (Grossberg, 1988). One of 

the common ANN algorithms is Backpropagation, which computes how much each neuron 

contributes to the current network’s error rate (Mohammad et al., 2013). The algorithm amends the 

weights to enhance the current predictive power of the network model backwards from the output. 

Nagaraj and Duong (2020) utilised ANN to differentiate between MCI and AD patients using the 

ADNI Merge dataset. To train the ANN algorithm, the authors prepared a subset of cognitive 

features related to the cognitive assessments reported in the ADNI-Merge in addition to features 

related to biomarkers and demographics. Once the input dataset was prepared, a few selection 

methods were applied on the dataset to isolate important features and discard those that were 

irrelevant. This yielded a small subset of features that were then processed by a Multi-layer 

Perceptron Neural Network algorithm to generate classification models. The results showed that 
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when processed by the classification algorithm, the accuracy of the CDR-SB score increased when 

compared with processing using other features.  

Albright (2019) set out to predict the progression of AD with a neural network model based on the 

ADNI dataset, using longitudinal analysis methodology where the data was pre-processed for 

missing values or misaligned data type, and sorted into three data sets (LB1, LB2, and LB4) based 

on criteria established by the TADPOLE Challenge. LB1 was used as a training and validation 

dataset, processed using the all-pairs technique, and then classified using various machine-learning 

classifiers. Each classifier was evaluated using 7-fold cross-validation. A receiver operating 

characteristic area under the curve (ROC-AUC) was also used to measure the effectiveness of each 

classifier. Albright (2019) found that multilayer perceptron (MLP) neural networks and recurrent 

neural networks had the best performance in cross-validation studies. This model was 86.6% 

effective at predicting the progression of AD, either from a state of clinically normal (CN) or MCI. 

While this study illustrated the success of predicting disease progression, it did not explain 

specifically how the three sets of the features training group were derived.  

Choi and Jin (2018) exploited ADNI data, aiming to predict longitudinal changes of cognitive 

decline in MCI patients by using FAQ; in their study they used data related to a biomarker known 

as PET. The authors obtained data about the PET images of 139 patients with AD, 171 with MCI, 

and 182 with a CN. They managed to achieve 84.2% accurate prediction using a convolutional 

neural network (CNN)-based approach (LeCun et al., 2015) for the conversion of MCI to AD. ROC 

analyses were carried out to reveal that the achieved performance was significantly higher than the 

conventional feature-based approaches. The authors used Pearson Correlation on subjects having 

MCI as a baseline diagnosis to seek FAQ score attribute behaviour. The results of the analysis 

showed that the FAQ score attribute is positively correlated with longitudinal changes, and the 

correlation was noticeably significant after three years following the initial MCI diagnosis, 

compared with one year following the initial MCI diagnosis. 

Youn et al. (2018) applied a machine learning model that was trained using the TensorFlow package 

for the detection of cognitive impairment (CI), the Korean Dementia Screening Questionnaire 

(KDSQ), and MMSE scores. Data was obtained from the South Korea Clinical Research Center for 

Dementia (Park et al., 2011). A total of 9,885 and 300 instances respectively from the dataset were 

randomly assigned to train and test the learning models. The algorithm was trained using 

TensorFlow and its predictive power evaluated on independent data. The performance of the model 

in detecting CI, based on KDSQ was 84.3%; based on MMSE was 88.3%; and based on a 

combination of both was 86.3%. For KDSQ, sensitivity for detecting CI was 91.50% and the 

sensitivity of MMSE was 94.35%. When KDSQ and MMSE were integrated, the sensitivity rate for 
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predicting CI was 91.5%. Accuracy of the algorithm predicting CI based on MMSE was much better 

than when using KDSQ. 

So et al. (2017) contrasted a number of classification algorithms such as Naive Bayes, Bayes Net, 

Bagging, logistic regression, random forest, SVM and MLP (Rish, 2001; Friedman et al., 1997; 

Quinlan, 1996; Hosmer et al., 2013; Liaw & Wiener, 2002; Kotsiantis, 2007; Gardner & Dorling, 

1998), to classify dementia aiming to improve classification accuracy. The authors used data 

collected from patients who visited the Gangbuk-Gu Dementia Centre in the Republic of Korea 

from 2008–2013 to receive dementia screening. During the data cleaning process, they removed all 

missing values and errors whilst incomplete or incorrect data were replaced. Chi-Squared and 

Information Gain (Liu & Setiono, 1995; Quinlan, 1986) methods were chosen to select influential 

features related to temporal order, memory function, and a language fluency test. The results showed 

that MLP and SVM achieved the best performance according to accuracy, at least on the dataset 

considered. 

2.6.5 Regression and Statistical-based Models  

One of the common ways to measure relationships between a pair of features in mathematics is by 

using the correlation coefficient (r) (Pearson, 1920) (See r Equation in Chapter 1). The correlation 

coefficient value of two attribute values (x, y) ranges from -1 to 1. Usually, regression analysis 

measures the degree of a relationship between input and output features by providing a linear model. 

This model reveals whether there is a relationship between the two features and the strength and 

direction of that relationship (Cox, 1968). The model is often obtained based on the linear equation 

(Equation 2.5) against the input dataset using methods such as Least Squares.  

 

 

y = B0 + B1*x               (2.5) 

where 

 x, and y are the input and output features respectively.  

When there are multiple x features, the linear line becomes a hyperplane. In addition, the logistic 

regression algorithm uses a logistic function to model a binary problem based on dependent 

variables and to predict the likelihood of an outcome using a linear combination of independent 

variables (Hosmer et al., 2013). This is often used as a classification model where the results are 

divided into specific categories. 
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Using the ADNI cohort data, Kemp et al. (2020) examined connections between statin use and 

cognitive decline in subjects with CN, MCI, and AD. The Linear Mixed Effects model and Cox 

Proportional Hazards model were used to examine cognitive change over time for 1629 individuals 

aged from 48–91. These statistical tests determined that statins may contribute to a reduced decline 

in memory, but there was no correlation between statin use and cognitive change.  

Correlations between lifetime occupation and late-life cognitive impairment were examined by Kim 

et al. (2020) on 1733 participants over 65 years old. These subjects, from the Korean Longitudinal 

Study of Aging, included people of different genders and socio-economic divisions. The study 

utilised the Korean version of the MMSE to obtain results showing that longer occupation time 

contributes to higher cognitive performance in later-life. Male participants showed no significant 

cognitive change in regards to socio-economic class, but female subjects showed significantly 

higher cognitive impairment if they held blue-collar occupations compared to white-collar jobs. 

A study by Wang et al. was conducted in 2020 to find connections between white matter 

hyperintensities (WMH) and cognitive decline in people with AD. A direct correlation between 

increased WMH and risk of cognitive impairment was observed through statistical models from 818 

individuals: 259 with normal conditions (NC), 448 with MCI, and 111 with AD. Subjects were 

found through ADNI datasets and tested by the following exams: MMSE, MoCA, CDR-SB, ADAS-

Cog13, RAVLT, FAQ, ADNI-EF (executive function test), and ADNI-Mem (memory function 

test). Researchers noted that the severity of WMH ultimately affects the progression of AD. With 

relation to AD, there were significant correlations between high WMH volume and high ADAS-

Cog13 scores. High WMH volume also correlated with lower ADNI-EF scores. The WMH change 

rate was greatly associated with CoCA score, where an increased change rate demonstrated 

decreasing MMSE, MoCA, ADNI-Mem, and ADNI-EF scores. 

Cognitive-functional Composite (CFC) has been researched in regards to progression of early 

dementia by Jutten et al. (2020). They used both longitudinal and cohort methods to measure 

changes in early dementia with developing CFC. Results from a group of 148 participants with MCI 

symptoms indicated that CFC shows sensitivity to clinical cognitive decline. Therefore, CFC can 

be considered a meaningful test for those with AD, and capable of monitoring the progression of 

disease in those with MCI. It is important to note though, that ADAS-Cog scores are not usually 

sensitive to changing cognition in MCI patients because they focus on language, practice, and 

factors that are often unpredictable. 

Moradi et al. (2017) created a model to predict the scores of the RAVLT (Schmidt, 1996) based on 

grey matter density features derived from MRI scans in the ADNI dataset. The authors removed all 

observations with missing RAVLT scores and several observations that had outlier scores. Elastic 
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net linear regression (enlr) (Zou, & Hastie, 2005) was then used to model RAVLT immediate and 

RAVLT percent-forgetting scores using whole brain grey matter density maps; these consisted of 

29,852 features for each participant. The models were evaluated using 100 runs of 10-fold cross 

validation (Picard & Cook, 1984). Across all runs, the averages of the correlation score (r), 

coefficient of determination (Q^2), and mean absolute error (MAE) were found to be: r=0.50, Q^2= 

0.25, MAE = 7.86 for RAVLT immediate, and r=0.43, Q^2= 0.185, MAE = 25.53 for RAVLT 

percent-forgetting. The author also considered data subsets that included only AD, or only MCI 

participants, as well as different combinations of the three categories. Interestingly, it was found 

that removing the MCI participants improved the performance of the model. 

Podhorna et al. (2016) compared the performance of the 3-, 5-, 11-, and 13-item ADAS-Cog variant 

subscales using ADNI data that could best detect cognitive decline. The original 11-item version of 

ADAS-Cog was to measure cognition in patients with mild to moderate AD, but lacked the 

capability to detect change and measure cognitive domains known to cause impairment in the early 

stages of AD. Thus, the creation of new ADAS-Cog variants such as the 13-item subscale to improve 

its properties for early AD screening with the use of additional tests such as digit cancellation and 

delayed word recall. As a baseline comparison, the authors assumed the ADAS-Cog 11 score of 10 

(out of 70) for subjects with MCI, and a score of 18 (out of 70) for subjects with mild AD. Based 

on their findings, the ADAS-Cog13 score of 15 (out of 85) was considered MCI, while a score of 

30 (out of 85) was considered mild AD. Overall, they concluded that the impact of expansion or 

reduction of the ADAS-Cog was subtle, but noted that in mild AD, adding rather than removing 

items appeared to provide more benefit. 

Wessels at al. (2015) aimed to identify a composite scale called the Integrated Alzheimer’s Disease 

Rating Scale (iADRS) that can measure the impactful domains of AD by combining cognition and 

function through the evaluation of existing scales. The datasets utilised to assess the iADRS were 

from the longitudinal studies of ADNI, and clinical trials of antidementia drugs such as 

Solanezumab, Semagacestat, and Donepezil. Due to the difference in various scales for total points 

relative to decline, signal-to-noise ratios (SNRs) were calculated for comparability. Principal 

component analysis (PCA) was used to establish the psychometric properties of the iADRS, 

assessing the contributions of the two scales’ total scores, and the contribution of individual item 

scores. Their results found that composites combining cognition and IADL items are better at 

detecting the disease than traditional cognitive-only or functional-only scales across MCI, mild AD, 

and moderate AD.  

Marshall et al. (2015) suggested that while there is cognitive assessment that has been useful in 

detecting IADL during the transition from MCI to AD, it has not been successful in detecting the 
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subtle functional changes in earlier stages when it progresses from CN to MCI. The authors decided 

to focus on this phase of the disease by investigating which of the FAQ items are sensitive in 

discriminating and identifying the progression from CN to MCI. In their study, the authors utilised 

data from two separate cohorts, the ADNI and the Massachusetts Alzheimer’s Disease Research 

Centre. In their methodology, the authors commented that there is no established cut-off score for 

IADL impairment on the FAQ, however they referred to a study where a score of ≥ 6 is suggestive 

of functional impairment (Teng et al. 2010). Using both datasets, a cross-sectional analysis was 

implemented. The results derived revealed that Personal Memory and Administration are the key 

features in distinguishing between CN and MCI. The authors also identified two additional features 

of the ADNI cohort, i.e., Engagement with media and Finance, and a single feature, i.e., ‘Heating 

water and turning off the stove’ in the MADRC cohort.  

Moradi et al. (2017) investigated the relationship between structural atrophy in the brain represented 

by MRI biomarkers, and a neuropsychological feature represented by RAVLT scores using machine 

learning (elastic netLR). The authors used a sample of 806 instances from the ADNI dataset which 

consisted of individuals with AD or MCI and others who were healthy. The authors’ key question 

to be answered was whether RAVLT scores can be predicted using MRI features. The focus was on 

two RAVLT attributes: RALVT immediate, and RAVLT Percentage Forgetting. The results obtained 

on the MRI data and the two RAVLT variables using elastic net logistic regression with ten-fold 

cross-validation showed a strong relationship between RAVLT variable scores and brain structural 

atrophy of AD. 

Balsis et al. (2015) studied the problem of mapping the scores of three different cognitive 

dysfunction methods for dementia particularly ADAS-Cog, CDR-SOB, and MMSE and (Rosen et 

al., 1984; Folstein et al., 1975). The aim of their research was to provide a meaningful way for 

clinicians to view how each cognitive dysfunction method corresponds to the other within a simple 

table. The authors used a real dataset downloaded in 2014 from ADNI with 1709 instances enrolled 

across all ADNI phases. Three variables corresponded to the scores of MMSE, CDR-SOB, and 

ADAS-Cog respectively which were modelled using the Item Response Theory approach (RTA) 

(Wright, 1992). The authors performed exploratory factor analyses to evaluate unidimensionality 

before conducting analysis on the considered variables. The reported results of the RTA analysis 

showed that scores obtained for CDR-SOB and ADAS-Cog are high at greater levels of cognitive 

dysfunction. More importantly, for a given MMSE score, multiple inflections have been observed 

for scores of both CDR-SOB and ADAS-Cog, suggesting consistency in measuring cognitive 

dysfunction for these two methods. This study can be extended to evaluate how CDR-SOB and 

ADAS-Cog differ in measuring AD severity besides using more advanced computational 
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intelligence or artificial intelligence methods to capture correlations between the scores of these 

methods and the progression of MCI and AD. 

Teng et al. (2010) investigated the capability of the FAQ test to clinically distinguish between MCI 

and very mild AD. They utilised the National Alzheimer’s Coordinating Centre (NACC) Uniform 

Data Set (UDS) (Beekly et al., 2007), a different cohort to ADNI and MADRC. In their study, they 

noted that only 66% of participants had completed all FAQ items, and thus the FAQ performance 

was evaluated using two separate methods to deal with incomplete data. One method had valid 

scores on all items, and the other used average scores across FAQ items with valid responses to 

allow for better analysis. The stepwise logistic regression method (Hosmer et al., 2013) was used in 

this study to determine which FAQ items were independently associated with an AD diagnosis. 

Their findings discussed the cut-off points for diagnosis indicating that a total FAQ score ≥ 6 is 

most consistent with a clinical diagnosis of AD - similar to the findings of Marshall et al. (2015). 

They identified that bill paying, shopping, tracking current events, and playing games were the FAQ 

items that distinguished AD from MCI. Apart from paying bills, the other FAQ items varied from 

other studies that used a different dataset, suggesting that their trial methods could be different.  

 

2.6.6 Discussion 

2.6.6.1 Advanced Learning Techniques for Diagnostic Decisions  

Most of the considered data-driven research studies used statistical and conventional machine 

learning techniques to investigate the various types of dementia indicators including pathology, 

neuroimaging, biomarkers, and neuropsychological, and their combinations, i.e. Balsis et al. (2015; 

Podhorna et al. 2016; Moradi et al. 2017; Choi and Jin 2018; Kim et al. 2020). However, data-driven 

studies that considered neuropsychological elements such as functional and cognitive are highly 

beneficial to the medical community as these could provide systems that are cost effective, and 

potentially can be run using technological platforms especially during a pandemic when resources 

are scarce.  

More importantly, machine learning techniques including support vector machines, artificial neural 

networks, rule induction, decision trees, random forest, statistical, and probabilistic, among others 

have shown good performance regarding predictive accuracy, sensitivity, and specificity when 

compared to conventional scoring functions used, particularly in the neuropsychological 

assessments research studies. However, limited attempts have been made to design and implement 

a computer-aided AD progression tool for medical assessments that assess functional and cognitive 

domains together, at least using a data-driven approach. While the reviewed research studies have 
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shown the potential performance (accuracy, sensitivity, specificity, etc.) of AD detection in terms 

of applying learning algorithms on datasets related to dementia, few of them have tackled the AD 

progression problem or have implemented a complete computer-aided diagnostic tool that has been 

tested and deployed. 

With the use of computational intelligence and artificial intelligence (AI) methods, medical systems 

can be equipped with the latest yet affordable technologies such as deep learning. These systems 

can discover useful concealed information within semi-structured and unstructured indicators 

related to MCI and dementia conditions that can be of high value during the clinical evaluations. 

For instance, conventional neural networks and the deep learning technique can deal with complex 

datasets related to dementia involving videos of a clinical session, PET scans, MRI, and audios to 

measure communication and language. 

Using AI and machine learning techniques, the dementia progression decision is based on search 

methods guaranteeing a non-biased outcome that in turn can be assessed by the clinician. The model 

will not replace the clinician in the medical assessment process of AD, rather with the rich 

knowledge that it provides it will serve as a complementary tool. Recently, since they provide 

accurate and reliable outcomes, AI methods such as deep learning have been used successfully in 

medical screening systems and computer-aided diagnostic tools.  

Operating within Industry 4.0, the role of machine learning and artificial intelligence is 

indispensable in increasing the effectiveness and efficiency of clinical diagnostics and prognostics. 

Currently, many clinicians and healthcare organisations rely on AI and machine learning 

applications to provide solutions in digital platforms to improve patients’ lives. The application of 

data-driven approaches to streamline clinical assessments is well-established across many areas in 

medicine, public health, and epidemiology. A proposed screening tool that represents a step forward 

in the establishment of clinically validated screening for AD progression. This endeavour is now 

available at a time when investment for improving the lives of the elderly global population is a 

pressing need.  

 

2.6.6.2 Dementia Data  

There is a limited number of databases related to dementia conditions available for scholars to 

investigate cognitive, functional, genetic, and neuropathological indicators such as the Cognitive 

Function and Ageing Studies (CFAS) (Wharton, et al., 2011), South Korea Clinical Research Centre 

for Dementia (CREDOS) (Park et al., 2011; Lee et al., 2016), ADNI (ADNI, 2021), and the Sydney 

Memory and Ageing Study (MAS) (Sachdev et al., 2010) among others. ADNI is the most popular 
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dataset among these since it has wider scope including data (cases and controls) related to genetics, 

pathology, biomarkers, neuropsychological, neuroimaging, etc.; additionally, it contains validated 

data observations that are sufficient for studies that involve data and experimental analyses.  

The ADNI project originated to collect, organise, analyse, validate, and use data related to dementia 

conditions (AD) for the early detection and tracking of AD (ADNI, 2021), particularly using 

technological solutions. ADNI is a longitudinal research project that was initiated in the United 

States in 2004 to collect clinical data related to CN, MCI, and AD. Examples of datasets in ADNI 

are: ADNI 1, ADNI 2, ADNI3, ADNI-GO, ADNI-Merge, ADNI-neuropsychological, ADNI-

MMSE, ADNI-MoCA, ADNI-ADAS-11, ADNI-ADAS-13, etc. The central dataset that contains 

the diagnostic and baseline diagnosis is the ADNI-Merge. This dataset consists of 2,361 individuals 

with over 14,600 data observations of which the individuals are diagnosed with three possible target 

classes: CN, MCI, or Dementia (AD) at baseline. The ADNI dataset is longitudinal in nature since 

each individual can be associated with multiple clinical visits during which multiple 

neuropsychological and pathological assessments are performed and recorded. The datasets are thus 

compatible with data-driven studies using machine learning besides longitudinal and cross 

functional studies. Currently scholars utilise the ADNI data repository to access datasets that fit their 

own scope of research and can integrate these datasets with ADNI-Merge to access the diagnosis as 

well as other useful clinical and demographic information. 

The key competency of ADNI is the availability of a large number of dementia indicators in a single 

repository; this enables multidisciplinary research collaboration among researchers from different 

disciplines including psychiatry, neurology, neuropsychology, artificial intelligence, psychology, 

computational intelligence, neuroimaging, behavioural science, etc., to perform applied projects that 

can be useful for the medical community and the stakeholders (patients, family members, clinicians, 

hospitals, etc.). Another advantage of using ADNI is that the process of accessing the data is quick 

and transparent if the research team provides a clear research proposal, and they accept to adhere 

with the data access, data ethics, and publication policies. These reasons help to explain the large 

number of published works by scholars from different research disciplines that have utilised ADNI-

related datasets. Examples of studies that are based on ADNI datasets are: Grueso and Viejo-Sobera 

(2021), Wang et al. (2020), Nagaraj and Duong (2020), Kemp et al. (2020), Albright (2019), Choi 

and Jin (2018), Moradi et al. (2017), Podhorna et al. (2016), Balsis et al. (2015), Marshall et al. 

(2015), Wessels at al. (2015), and many others. 

The CFAS is longitudinal dataset that concentrates on the pathology indicators of dementia 

conditions in the UK. The project has more than 500 participants who willingly donated their brains 

to the project after death so clinicians could conduct pathological investigations (Wharton et al., 
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2011). The dataset does not contain cognitive indicators related to neuropsychological assessments, 

but pathological indicators (biomarkers) including beta-amyloid (Aβ) and tauopathy features, which 

limits it use to just biomarker-related studies. In addition, the dataset is limited in size and in the 

number of features which reduces its use. More importantly, the process of obtaining the data can 

be lengthy and difficult.  

MAS was a 14-year project that was started in 2005 in Australia to investigate the predictors of 

ageing-related conditions, mainly MCI and dementia, and to provide descriptive analytics to 

Australians on the rates related to these conditions. The dataset related to MAS comprised cognitive, 

genetic, and neuroimaging indicators of healthy and cognitively impaired individuals for scholars 

to study to identify factors illness associated dementia. The participants were recruited from Eastern 

Sydney and every other year they were assessed cognitively using standard neuropsychological 

assessments besides pathological assessments—the MAS dataset consisted of N= 362 and their 

informants N = 358. There are published works on this dataset including Babiloni et al., (2021) and 

Reppermund (2021). Accessing the data involves contacting the research bank and completing an 

application process. 

The CREDOS data project aims to improve clinical assessments related to dementia by investigating 

MCI and AD cases in South Korea. Started in 2005 and completed in 2015, it had 800 participants 

from South Korea. The dataset included indicators related to dementia (AD), and MCI such as 

biomarkers, functional and structural neuroimaging, and neuropsychological tests. The criteria used 

to diagnose individuals with AD was based on the DSM-5 framework or NINCDS -ADRDA. The 

dataset has been associated with some research works such as Yoon et al. (2014), Lee et al. (2016), 

Bang et al. (2017), and Yoon et al. (2018). For instance, Bang et al. (2017) studied the performance 

of different machine learning algorithms using a sample of data related to the CREDOS dataset, 

while Yoon et al. (2018) investigated elements of the KDSQ and MMSE methods using artificial 

neural networks based on data samples of the CREDOS. So et al. (2017) compared different 

machine learning algorithms using samples from the Gangbuk-Gu Dementia Centre in Korea.  

Since the ADNI data repository has a large number of participants when compared with the available 

datasets, besides the fact that these participants had multiple visits (up to 22 for a single participants), 

enabling us to detect the disease advancement, we have selected ADNI for this research. For 

example, the assessments are recorded at ADNI for the functional and cognitive assessments per 

individuals every six months, whereas for MAS this happened every two years, which makes 

detecting the progression clearer in ADNI. Another significant reason for using ADNI is the fact 

that it contains detailed cognitive and functional assessments per participant visit unlike most of the 

available datasets. In addition, there are several publications on cognitive and functional 
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assessments, respectively, based on ADNI which was useful for comparison and critical analysis in 

the literature review. Lastly, since the ADNI process of obtaining the data observations was 

straightforward and easier than other data repositories, this was also a core advantage of adopting 

ADNI. 

 

2.7 Mobile Dementia Assessment Methods  

2.7.1 Single Assessment Methods   

MOBI-COG (Nirjon et al., 2014), a screening app based on the Mini-Cog Dementia Screening Test 

(Borson et al., 2000) aims to automatically identify dementia through three different tasks. This app 

can be administered by either the patient or the caregiver and the test takes 3–5 minutes to complete. 

It generates a score ranging from 1–10 and requires an expert to interpret the results. According to 

Nirjon et al. (2014), the app is capable of screening dementia and has a rating of 8.5/10 on the 

Android App Store. 

BrainTest® (BrainTest Inc, 2013) is based on the Self-Administered Gerocognitive Exam  (Scharre 

et al., 2010) and available in both Android and iOS operating systems. The app is designed to be 

administered by the patient or the caregiver and the test takes 10–15 minutes to complete. According 

to Scharre et al. (2017), BrainTest® is capable of discriminating AD with a sensitivity and 

specificity of 71% and 90%, respectively.  

ACE (Hodges & Larner, 2017) is an app developed to be administered specially by healthcare 

professionals and is the automated version of Addenbrooke’s Cognitive Examination-3 (ACE-3) 

medical examination (Noone, 2015). ACE supports iPads and evaluates the attention, memory, 

fluency, language, and visuospatial functioning capabilities of the individual then presents a score 

out of 100. According to Bruno and Vignaga (2019), ACE is capable of screening AD with a 

sensitivity of 93%–100% and specificity of 96%–100% and has a rating of 4+ on iTunes, despite 

some negative reviews regarding its functionality.  

CAIDE-DRS (Sindi et al., 2015) is an iOS app that uses the CAIDE risk score [cardiovascular risk 

factors, aging, and incidence of dementia] (Kivipelto et al., 2006) to evaluate an individual’s 

cognition based on their biographic information, systolic blood pressure (BP), body mass index, 

cholesterol level, and level of physical activity. CAIDE-DRS has a test that takes 5–10 minutes to 

complete and produces a score out of 15. Butcher (2007) revealed that CAIDE-DRS can determine 

the user’s risk of developing AD within the next 20 years with sensitivity and specificity of 77% 

and 63%, respectively. CAIDE-DRS gained a 4+ rating on iTunes. Similar to CAIDE-DRS, the 
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DRT app (Google, 2019b) is also based on the CAIDE risk score (Kivipelto et al., 2006) and is 

available in both Android and iOS formats making it more accessible than CAIDE-DRS. DRT has 

a rating of 4.8/5 on the Google Appstore with over 1000 recorded downloads.  

MoCA (Apple Inc., 2019b; Nasreddine et al., 2005) is an iOS app based on the Montreal Cognitive 

Assessment which evaluates executive functions, language, attention, memory recall, concentration, 

and time and place awareness of the individual, to diagnose many conditions including AD. The test 

presents a score out of 30, where score <26 is interpreted as normal cognition. MoCA is used 

diagnose AD and other types of MCIs with a sensitivity and specificity of 81% and 86%, 

respectively (Julayanont et al., 2015). It has gained 4+ a rating on App Store.  

eSLUMS (Chewy Logic, 2019) is the digital version of the SLUMS medical test and designed to 

be administered by a healthcare professional. The app evaluates the user’s brain health within 7–10 

minutes and generates a score out of 30 where score >27 indicates normal cognition and score <20 

indicates severe impairment. A study by Kansagara and Freeman (2010) revealed that SLUMS 

identifies AD traits with sensitivity and specificity ranging between 98–100%.  

Two Android apps: MMSE (Google, 2016), and the Dementia & Alzheimer’s Memory Diagnosis 

Test [DAMDT] (Google, 2017), have been developed based on the MMSE medical test. Both apps 

generate a score out of 30 where a score >25 indicates normal cognition and score <25 indicates 

limitations on certain cognitive areas. Both the apps have a 3+ rating on the App Store, and DAMDT 

has over 1000 recorded downloads. 

The 6CIT app is based on the Six Cognitive Item Test medical assessment (Callahan et al., 2002). 

This test takes 5–10 minutes to complete and produces a score out of 28 where score <7 indicates 

normal cognition and a score >8 indicates an abnormality in cognitive processing and behavioural 

changes of the individual. The 6CIT app has a sensitivity range from 78–90% and specificity of 

100% (Callahan et al., 2002). 

 

 

2.7.2 Multiple Assessment Methods 

DementiaScreener (Mundt et al., 2000) is an Android app based on the Symptoms of Dementia 

Screener [SDS] (Flaherty et al., 2019) and AD8 Dementia Screening Interview (Galvin et al., 2005) 

medical exams taking 5–10 minutes to complete. SDS generates a score based on the repetitive 

behaviours, memory capacity, emotions, attention, and problem-solving skills of the individual. A 

score <4 indicates low risk and a score >4 indicates a high risk of developing AD. AD8 evaluates 

the behavioural changes of the individual where a score of 0–1 indicates normal cognition, and a 
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score >2 indicates impairment. The app gained a 2.7 rating on the App Store with over 1000 

recorded downloads. 

CDD (Sangha et al., 2015) is a UK-NHS clinically accepted iOS app involving multiple medical 

assessment methods including the Confusion Assessment Method (CAM; Inouye et al., 1990), Six 

Cognitive Item Screener (Callahan et al., 2002), the AMT, MoCA, and MMSE to screen several 

MCIs and dementia conditions. The CDD app is specially designed to be practised on orthopaedic 

trauma patients and can be used in a clinical setup by clinicians. It has 4+ rating on the App Store. 

BrainCheck (Ehrensperger et al., 2014) is an iOS app that comprises three tasks: answering three 

questions (Holsinger et al., 2007), the Clock Drawing Test [CDT] (Friedman et al., 1994), and seven 

informant questions from the IQCODE medical method (Jorm et al., 1989). The test takes 10–15 

minutes to complete and has a sensitivity and specificity of 97.4% and 81.6%, respectively 

(Ehrensperger et al., 2014). 

ALZ (Berauk et al., 2017) is an iOS app that uses the: Mini-Cog Dementia Screening Test, Memory 

Impairment Screen [MIS] (Buschke et al., 1999), CDT, General Practitioner Assessment of 

Cognition [GPCOG] (Brodaty et al., 2002), MoCA, IQCODE, AD8 (Galvin et al., 2005); SLUMS, 

FAQ (Tappen et al., 2009), Geriatric Depression Scale (Yesavage et al., 1982), Hachinski Ischemic 

Score [HIS] (Johnson et al., 2014), and the Katz Index of Independence in activities of daily living 

as a functional assessment medical test (Aske, 1990) to screen for AD. This app is suitable for 

thorough medical screening and diagnosis of dementia in a clinical setup and can be administered 

by a clinician.  

DementiaTest (Thabtah et al., 2019) is an app based on the 6-item Cognitive Impairment (6-CIT) 

and the Structured Clinical Interview (SCIDS) medical tests (Callahan et al., 2002; Ouimette & 

Klein, 1995) and available in both Android and iOS formats. It consists of one self-administered 

questionnaire which produces a score out of 26 and a caregiver administered questionnaire which 

produces a score out of 36. Both questionnaires interpret a lower score as indicating a lower risk of 

developing AD, and a higher score as indicating a higher risk of developing AD. The test takes 5–

10 minutes to complete and has a rating of 3+ on the App Store. 

Cognitive Exams (Google, 2019a) is an Android app that uses MMSE, CDT, the Geriatric 

Depression Scale (Yesavage et al., 1982), Katz Examination, Walk Test of six minutes (Abbott et 

al., 2004) and Fluency Test (Caramelli et al., 2007) to evaluate various functional and cognitive 

capabilities of the patients. This test can only be administered by a medical professional, takes 45–

60 minutes to complete, and has a rating of 4.4 on the App Store with over 10,000 recorded 

downloads. 
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2.7.3 Non-conventional Assessment Methods  

DTRCT (Apple Inc., 2019a) is an iOS app that uses a self-administered questionnaire based on 

several neurological tests and interactive tools to evaluate the memory, attention, and logical 

thinking skills of the user. The test takes 5–10 minutes to complete and provides a few other disease 

management services other than screening (Comerford et al., 2002). 

BCI (BrainCheck, 2019) is a U.S. Food and Drug Administration (FDA) registered class III medical 

app available on iTunes. The app uses five games: Flanker Task (Fan et al., 2003), the Digit Symbol 

Substitution Task (Monte et al., 2010), the Stroop Task (Melara & Algom, 2003), the Trail Making 

Test [TMT] (Cicerone & Azulay, 2002), and balance and coordination (Greenwald et al., 2001), 

The Immediate and Delayed Recall Tests were developed based on gold-standard neurocognitive 

tests to evaluate cognitive processing, executive functions, visual attention, immediate recall and 

the delayed recall abilities of the user. This test takes 10–15 minutes and has a sensitivity and 

specificity of 83% and 87%, respectively. 

Cognity (Inoven, 2018) is the only app that uses artificial intelligence technology to screen for AD 

through analysing a photo of a clock drawing done by the user in conjunction with the Mental Status 

Examination [MSE] (ChewyLogic, 2019). A digital version of the St Louis (Snyderman and Rovner, 

2009) interactive tool. The test takes 10–15 minutes to complete and produces a score out of 30. It 

has pre-recorded videos to interpret the results and sensitivity and specificity ranges between 71–

92% and 52–96%, respectively, with a recorded rating of 3+.  

The DST (Google, 2019c) app is available on both Android and iOS formats and used in dementia 

screening to evaluate the executive functions, memory, verbal fluency, attention, and orientation 

skills of the user. The test takes 10–15 minutes to complete and generates a score out of 30. A score 

>29 indicates normal cognition whereas a score <28 indicates impairment in some cognitive areas. 

According to Google (2019c), this app has a sensitivity of 96% and 3+ rating on the App Store. 

Table 2.6 depicts the summary of the digital dementia screening methods that are built on a mobile 

platform  
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Table 2.5: Summary of all Considered Digital Dementia Screening Methods Available on a Mobile Platform 

   
Mobile Digital 

screening method  
Target Rating Downloads 

Apple 

iTunes 

Google 

play Store 
Video Image 

No of 

Questions 
Time Free/Paid Cost Language Reference 

 MOBI-COG Anyone 8.5/10 N/A X √ X √ 3 3-5  mins Paid N/A English Borson et al., (2000) 

BrainTest Anyone 4.5/5 N/A √ √ √ √ Unknown 10-15 mins Paid $39.99  English Scharre, et al.,  (2017) 

ACE 
Health care 

professionals 
4+ N/A √ √ X √ 24 5-10 mins Free N/A English Noone, (2015) 

 CAIDE-DRS Age 40 to 65 4+ 1 √ X X X 8 5-10 mins Free N/A 

English, Finnish, French, 

German, Russian, Spanish, 

Swedish 

Kivipelto et al., (2006) 

DRT Age 40+ 4.8 1000+ √ √ X X 8 2-5 mins Free N/A English Kivipelto et al., (2006) 

DementiaScreener  Anyone 2.7 1000+ X √ √ X 11 5-10 mins Free N/A English Galvin  et al., (2005) Flaherty et al., (2019)  

MoCA  Anyone 4+ 1 √ X X √ 11 10-15 mins Paid $10.00  

English, Danish, Dutch, 

Finnish, French, German, 

Italian, Polish, Portuguese, 

Spanish, Swedish 

Nasreddine et al., (2005) 

CDD   
Orthopaedic 

trauma Patients 
4+ N/A √ X X X 10 10-15 mins Paid N/A English 

Inouye et al., (1990), Callahan et al., (2002), 

Hodkinson, (1972),  Folstein et al., 1975) 

BCI 12 years + N/A N/A √ X X √ 5 10-15 mins free N/A English, Spanish 

Fan et al., (2003), Monte et al., (2010), Melara, & 

Algom, (2003), Cicerone & Azulay, (2002), 

Greenwald et al., (2001), Comerford et al., (2002) 

BrainCheck 17 years+ N/A N/A √ X X √ 10 10 mins Paid $4.99  
German, English, French, 

Italian, Spanish and 25 more 

Holsinger et al., (2007), Friedman et al., (1994) 

Jorm et al., (1989) 

ALZ 12 years + 5 N/A √ X X √ 100+ 45 -60 mins   Free N/A English 

Borson et al., (2000), Tariq et al., (2006), Tappen 

et al., (2009), Yesavage et al., (1982), Johnson et 

al., (2014), Buschke et al., (1999) 

eSLUMS  Anyone 3.9 N/A √ X X X 24 7-10 mins Free N/A English and Chinese Tariq et al., (2006) 
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DTRCD 12 years + 5 N/A √ X X X 11 5-10 mins Free N/A 

English, Czech, French, 

German, Portuguese, 

Spanish 

Torre, (2004) 

Cognity 12 years + 3+ 500+ √ √ √ √ 30 10-15 mins Paid $8.99  English and Turkish 
Snyderman & Rovner, 2009)  

Tariq et al., (2006) 

DST  Anyone 3+ 100+ √ √ √ √ 30 10-15 mins Paid $8.49  English No Reference available  

MMSE Anyone 3.4 5000+ X √ X X 10 5-10 mins Free N/A English Folstein et al., (1975) 

DementiaTest  Age 60+ 3+ 50+ √ √ X X 7 5-10 mins Free N/A English Callahan et al., (2002) Ouimette & Klein, (1995) 

MMSE Anyone 3+ 1000+ X √ X √ 13 5-10 mins Free N/A English Folstein et al., (1975) 

6 Cognitive Item 

Test (6CIT) App 
12 years + N/A N/A √ X X X 6 5-10 mins Free N/A English Callahan et al., (2002)  

CognitiveExams Age 45+ 4.4 10,000+ X √ X √ 68 45-60 mins Paid $3.59  English 
Folstein et al., (1975) 

Yesavage et al., (1982) 
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2.7.4 Discussion on Digital Assessment Methods    

2.7.4.1 DSM-5 Neurocognitive Domains Coverage   

There are scientific bodies that set the guidelines for screening and diagnosis of dementia and other 

types of MCIs, such as the NINCDS-ADRDA, and the American Psychiatric Association 

(McKhann et al., 1984; American Psychiatric Association, 2013). The NINCDS-ADRDA updated 

the diagnosis criteria of neurocognitive disorders in 2011 to enhance the medical diagnosis of AD 

and promote future research. The APA introduced the DSM-5 in 2013 by replacing the term 

‘dementia’ with Major ND focussing entirely on the clinical diagnosis of dementia and its types. It 

also addresses the severity levels of ND and presents guidelines for clinicians to differentiate 

between mild and major levels of impairment along with other neurocognitive disorders falling into 

the same category. Hence, in the DSM-5 guidelines, Major ND refers to dementia, and Mild ND 

refers to other types of MCIs. DSM-5 describes the six main domains where the impairment can be 

present for an individual to be diagnosed as a case of Major or Minor ND (American Psychiatric 

Association, 2013) including complex attention, executive functions, learning & memory, language, 

perceptual motor, and social cognition.  

If an individual is experiencing considerable deterioration in at least one of the above domain 

capabilities, a screening medical test reported by an informant, caregiver, or a clinician is required 

to establish the ND symptomatology. If the problem is serious enough to interfere with the 

independence of the individual’s daily operations, the diagnosis suggested by DSM-5 is Major ND; 

if the deterioration of domain capabilities is mild and has no impact on the individual’s daily 

operations, then the diagnosis would be Minor ND (Sachdev et al., 2014). To make a sound 

diagnosis, a medical test should be comprehensive enough to capture multiple domains described 

under the umbrella of DSM-5. 

In this thesis, the comprehensiveness of a medical test refers to how well it covers the domains listed 

under DSM-5 for neurocognitive disorders. To understand that, each dementia screening app 

discussed was downloaded and evaluated with respect to the six domains of DSM-5. This becomes 

more complex when looking more closely at the DSM-5 domains, and considering how performance 

in each domain can be measured. For example, is it possible to separate complex attention, a term 

used to describe processes such as selectively paying attention only to relevant stimuli in our 

environments, from executive functioning, a term used to describe processes that prevent 

interference from distracting stimuli? Such issues were recognised by the APA taskforce who 

developed the new criteria (Ganguli et al., 2011), but the consensus was to retain these categories 

for diagnostic purposes.  
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Furthermore, not only are there difficulties in delineating precise definitions of each domain, but 

many of the tasks that can be used to measure neurocognitive performance tap into multiple 

domains. For example, digit span has been proposed as a measure of complex attention, with 

forward recall requiring repetition of items in the same order they are presented to the patient. This 

also taps into memory, and when conducted orally, requires command of language. Moreover, 

because of the manipulation of items in memory demanded by the reverse digit span task (where 

items should be repeated in the reverse order to that in which they were presented), this variant of 

the task is often considered to measure working memory, which comes under the domain of 

executive functioning, but also requires complex attention and memory. As such, it may not always 

be clear from deteriorations in task performance precisely which domains are impaired. In terms of 

practical implications for screening, since referral only requires deterioration in one or more 

domains, despite issues with overlap, poor performance in any subtest will still result in referral for 

more in-depth assessment of the patient’s needs. If some domains are not covered there are concerns 

about the sensitivity of the screening tool. As a result, we took a pragmatic approach, whereby some 

of the subtests within the dementia screening digital methods were considered to tap into more than 

one domain (see Table 2.7 for details). 

In some cases, statistical analysis has been used to demonstrate a cognitive tests ability to measure 

specific cognitive domains, for example Guerrero‐Berroa et al. (2009) examination of MMSE. 

However, for less common cognitive tests, verification studies are not commonly available and so 

in such cases a test reported cognitive domain coverage has been determined based on the coverage 

stated by the test authors and our own discretion using the definition of each cognitive domain 

provided by the Johns Hopkins Psychiatry Guide (Peters & Rabins, 2017). 

Table 2.7 illustrates the number of domains covered by each considered digital screening method 

and shows that few existing apps cover most of the cognitive domains listed under DSM-5. Many 

of these apps fulfil 1–4 domains, and most of the apps essentially test the user’s memory. The 

MoCA, ALZ, BrainTest®, and CognitiveExams evaluate most of the cognitive areas defined in 

DSM-5 since they combine many medical tests in which each covers one or more cognitive domains. 

Therefore, these apps can be seen to be more comprehensive for clinical testing of MCI, and AD 

despite the complete cognitive domains of DSM, are not evaluated.  

One of the notable concerns of the available digital screening methods is that none of them evaluates 

the social cognition domain. Social cognition often involves behaviours that are not socially 

acceptable, decisions without considering safety, and insensitivity to social standards, and so by not 

covering this domain during the screening may lead to people who have deterioration in social 

cognition being undetected. The only screening apps that might partly cover social cognition are 
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ALZ and CognitiveExams using the Geriatric Depression Scale (GDS) test, which could indicates 

emotional behaviours by asking questions on life satisfaction, interests, perception towards life, 

hopefulness, happiness, problems, worries, social gatherings, etc. The DementiaScreener  app also 

contains the Symptoms of Dementia Screener (SDS) test, which has several questions that could 

indicate an issue linked with social cognition. However, the questions in the above tests would not 

allow for a quantifiable measure of social cognition and do not cover all areas of social cognition so 

a patient exhibiting a decline in social cognition may not be detected by these tests. 

 

 

Table 2.6: Number of Domains Covered by Digital Dementia Methods 

No Digital 

Screening 

Method 

Sub-Test Domains Covered No of 

Domains 
Covered Complex 

Attention 

Executive 

Function 

Learning 

and 
Memory 

Language Perceptual 

Motor 

Social 

Cognition 

1 MOBI-

COG 

Mini-Cog 

Dementia 

Screening Test 

X x 
 

x 
 

x 2 

2 Brain-Test Self-Administered 

Gerocognitive 

Exam (SAGE) 

     
x 5 

3 ACE Addenbrooke's 
Cognitive 

Examination -3 

(ACE-3) 

 
x 

   
x 4 

4 CAIDE-

DRS 

Memory 

Statement 

X x ~ x x x 0 

5 DRT Memory 

Statement 

X x ~ x x x 0 

6 Dementia-

Screener  

 All tests  
      

5 

Symptoms of 
Dementia 

Screener (SDS) 

      

AD8 Dementia 
Screening 

Interview  

   
x 

 
x 

7 MoCA  Montreal 

Cognitive 
Assessment 

(MoCA) 

 
x 

   
x 4 

8 CDD    All tests 
 

x 
   

x 4 

Confusion 

Assessment 

Method (CAM) 

~ x 
 

x 
 

x 

Six Item Screener X x 
 

x x x 

Abbreviated 

Mental Test 
(AMT) 

 
x 

  
x x 

Montreal 

Cognitive 

Assessment 
(MoCA) 

 
x 

   
x 

Mini-mental State 

Examination 
(MMSE)  

 
x 

   
x 

9 BCI  All tests 
   

x x x 3 

Flanker Task 
  

x x x x 



68 

 

  

 

Digit Symbol 

Substitution Task 

  
x x x x 

Stroop Task 
  

x x x x 

Trail Making Test 
(TMT) 

  
x x x x 

Recall tests X x 
 

x x x 

10 Brain-

Check 

 All tests X x 
 

x 
 

x 2 

Clock Drawing X x x x 
 

x 

7 questions from 
the Informant 

Questionnaire on 

Cognitive Decline 
in the Elderly 

(IQCODE) 

X x 
 

x x x 

11 ALZ  All tests 
     

~ 5 

Mini-Cog 

Dementia 
Screening Test 

X x 
 

x 
 

x 

Saint Louis 

University Mental 
Status Exam 

(SLUMS) 

 
x 

   
x 

Functional 

Activities 
Questionnaire 

(FAQ) 

   
x 

 
x 

Geriatric 
Depression Scale 

X x x x x ~ 

Memory 

Impairment 
Screen (MIS) 

X x 
 

x x x 

12 eSLUMS  Saint Louis 

University Mental 
Status Exam 

(SLUMS) 

 
x 

   
x 4 

13 DTRCD Dementia Risk 
Calculator 

 
x 

   
x 4 

14 Cognity  All tests X x 
 

x 
 

x 2 

Clock Drawing X x x x 
 

x 

Mental Status 

Examination 

X x 
 

x x x 

15 DST  Dementia 

Screening Test 

    
x x 4 

16 MMSE Mini-mental State 
examination 

(MMSE)  

 
x 

   
x 4 

17 Dementia 
Test  

6-item Cognitive 
Impairment Test 

(6CIT) 

 
x 

 
x x x 2 

          

18 6CIT 6-item Cognitive 

Impairment Test 
(6CIT) 

 
x 

 
x x x 2 

19 Cognitive 

Exams 

 All tests 
 

x 
   

~ 4 

Mini-mental state 

examination 

(MMSE) 

 
x 

   
x 

Clock Drawing X x x x 
 

x 

Geriatric 
Depression Scale 

X x x x x ~ 

Verbal Fluency 

Test 

X x x 
 

x x 

Katz Test X x x x ~ x 
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2.7.4.2 Validity and Reporting   

Validity defines the suitability of a dementia screening app for clinical and primary care settings. 

This section evaluates the validity of all the considered apps to determine those that are suitable for 

use in a clinical setting. Table 2.8 lists all the medical diagnostic procedures used in the considered 

apps along with their validity measures. The table shows two types of validation tools: those that 

are recommended by an accepted international body, and others that are validated through an 

exclusive experiment conducted in a clinical setting—most of the medical diagnostic procedures 

considered are validated through one or both methods. BrainCheck’s  patients’ questions, and the 

DST app are not validated by a medical body’s recommendation. Nevertheless, the complete 

BrainCheck app was validated in a study by Yang et al. (2019) using 30 patients, and 568 controls 

and showed acceptable performance (83% sensitivity and 87% specificity).  

Medical diagnostic procedures including MMSE, Mini-COG, AD8 Dementia Screening Interview, 

7-item version of the IQCODE, MIS, eSLUM, MoCA, e-SAGE, and GPCOG are recommended by 

the Alzheimer’s Association and American Academy of Neurology (AAN). This means MoCA, 

MMSE, ALZ, MOBI-COG, eSLUM and BrainCheck can be considered validated apps that can be 

used in clinical settings by clinicians. According to the Alzheimer’s Association’s guidelines, a 

patient should be assessed for the health risk and possible symptomatology before the annual 

wellness visit which can possibly occur in the primary care setting. Thus, most of the apps with tests 

that are brief (less than 10-15 minutes), can be administered in a clinical setting according to the 

Alzheimer’s Association and can be considered as valid screening tools for cognitive assessment 

(Cordella et al., 2013). The performance of these tools is validated in terms of sensitivity and 

specificity through several research studies (Foster et al., 2019; Arevalo-Rodriguez et al., 2015; 

Borson et al., 2006; Kansagara & Freeman, 2010; Brodaty et al., 2002). 

Reporting corresponds to providing meaningful results electronically to aid the clinician’s formal 

diagnosis. Out of all the considered dementia screening apps, MOBI-COG, DRT, 

DementiaScreener, DTRCD, DementiaTest, and 6CIT generate reports with scores. Sometimes, the 

score presented is briefly interpreted with basic recommendations such as the need for further 

medical assistance. Apps such as BrainTest®, ACE, MoCA, BCI, eSLUMS, Cognity, DST, ALZ, 

and CognitiveExams produce a formal medical report that can be printed and presented to the 

clinician during a medical follow up. Some apps have the option to share the reports immediately 

via e-mail or other electronic means. Most of the apps track the results history, and a few apps such 

as BCI and BrainTest® are capable of recording and tracking the results and progress of multiple 

patients. BrainTest® does not provide an interpretation of the score immediately or generate a 
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report, however, results interpreted by a physician within an instructional video will be e-mailed to 

the user within five working days of using the BrainTest® app.  

Usability, also known as user friendliness, can be defined as a tool’s ability to achieve a specified 

goal in an effective, efficient, and satisfactory manner within a specified context (Bolchini et al., 

2009; Douglas et al., 2011). But the question is, what makes a tool effective and efficient in 

achieving the specified goals? When it comes to biomedical science dementia screening tools, 

usability is an important parameter that can be used to evaluate their performance. Therefore, each 

tool needs to be followed by an exclusive usability study to demonstrate its user-friendliness, 

effectiveness, efficiency, and accessibility—merely a few of the above discussed tools have had 

usability studies carried out to test their user friendliness for both patient (case) and the clinician.  

Newman et al. (2018) used trainee clinical psychologists and post-graduate health science students 

as the sample population to administer the ACE app to evaluate the usability of the tool. The findings 

suggested that the ACE app had a considerable error in items pertaining to the language domain. An 

adjustment was made to remove the incorrect and confusing naming to enhance the usability of the 

app in a clinical setting. Similarly, Nirjon et al. (2014) conducted a study on eight healthy 

individuals (four males and four females) to demonstrate that the tool can perform all three tasks of 

remembering words, clock drawing, and recalling words effectively in a standard primary care 

setting. The authors used a separate questionnaire with a score range from 1–10 (10 indicating a 

high level of usability and 0 indicating a low level of usability) given to participants to evaluate the 

usability of the MOBI-COG app. The findings of the study revealed that the tool is suitable for 

dementia screening in both clinical and primary care settings.  
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Table 2.7: Validity Details of the Considered Dementia Digital Screening Methods 

No Digital Screening Method Medical Examination 

Validity 

Clinically 
Validated 

Recommended by Reference 

1  MOBI-COG Mini-COG dementia screening test   The Alzheimer’s Association Cordella et al., 2013) 

2 
Brain 

Test 
Self-Administrated Gerocognitve Exam (e-SAGE)  American Academy of Neurology (AAN) Foster et al., (2019) 

3 ACE Addenbrooke’s Cognitive Examination (ACE-III)   Department of Health and the Alzheimer’s Society in the 

UK. 
Bruno & Vignana, (2019) 

4  CAIDE-DRS 
Cardiovascular Risk factors, Aging and Incidents of Dementia 

risk score (CAIDE) risk score  

 _ Sindi et al., (2015) 

5 
Dementia 

Screener  

Symptoms of Dementia Screener (SDS)  
 _ Flaherty at al., (2019)  

AD8 Dementia Screening Interview  
 

The Alzheimer’s Association Cordella et al., (2013) 

6 MoCA  Montreal Cognitive Assessment  
 American Academy of Neurology (AAN) Foster et al., (2019) 

7 CDD   

Confusion Assessment Method (CAM)  _ Waszynsk, (2012) 

 Six item screener  _ Carpenter et al., (2011) 

Abbreviated Mental Test (AMT)  _ Jitapunkul et al., (1991) 

8 BCI 

Flanker Task 

 Registered as a Class II medical device with the U.S. Food 

and Drug Administration (FDA) 
BrainCheck Inc., (2019) 

The Digit Symbol Substitution Task  

The Stroop Task 

The Trail Making Test (TMT) 

 Balance and coordination 

The Immediate and Delayed Recall Tests  

9 
Brain 
Check 

3 patient questions (BrainCheck) X X X 

Clock drawing test (CDT)  The National Collaborating Centre for Mental Health (UK) 
National Collaborating Centre for 
Mental Health, (2007) 

7-item version of the Informant Questionnaire on Cognitive 

Decline in the Elderly (IQCODE) 
 The Alzheimer’s Association Cordella et al., (2013) 

10 ALZ Functional Activities Questionnaire (FAQ)   National Alzheimer’s Coordinating Center (NACC) Mayo, (2016) 
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Hachinski Ischemic Score (HIS)  X _ Gay et al., (2008) 

Memory Impairment Screen (MIS)   American Academy of Neurology (AAN) Foster et al., (2019) 

General Practitioner Assessment of Cognition (GPCOG)   The Alzheimer’s Association Cordella et al., (2013) 

11 eSLUMS  Saint Louis University Mental Status (SLUMS) Exam  American Academy of Neurology (AAN) Foster et al., (2019) 

12 DTRCD Mental Status Examination (MSE) tool   U.S. Preventive Services Task Force Snyderman & Rovner, (2009) 

13 DST Dementia Screening Test X X X 

14 MMSE Mini Mental State Examination  (MMSE)  American Academy of Neurology (AAN) Foster et al., (2019) 

15 
Dementia 

Test  

6CIT  Alzheimer's Society and the National Collaborating Centre 

for Mental Health (UK) 
Ballard et al., 2013) 

Structured Clinical Interview (SCIDS)  American Society of Addiction Medicine  Gerdner et al., (2014) 

16 
Cognitive 

Exams 

Geriatric Depression Scale   _ Mitchell et al., (2011) 

Katz basic activities of daily living as functional assessment   The Hartford Institute for Geriatric Nursing, New York 
University Rory Meyers College of Nursing 

McCab, (2019) 

Walk Test of 6 minutes   

Neurology section of American Physical Therapy 

Association's Multiple Sclerosis Taskforce (MSEDGE), 
Parkinson's Taskforce (PD EDGE), Spinal Cord Injury 

Taskforce, Stroke Taskforce, Traumatic Brain Injury 

Taskforce, and Vestibular Taskforce 

AbilityLab, (2019) 

Fluency Test  _ Herrera-García et al., (2019) 
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2.7.4.3 Performance   

There are many measures that are widely used to evaluate the performance of a medical screening 

tool, including sensitivity and specificity. These measures define the capability of a screening tool 

to recognise dementia-related symptomology and the degree to which it can distinguish dementia 

from other MCIs (Maxim et al., 2014). As discussed earlier, sensitivity defines the tool’s ability to 

classify an individual with the disease as positive; specificity defines the tool’s ability to classify a 

person without disease as negative (Goetzinger & Odibo, 2011).  

Several research studies have been conducted to evaluate the performance of dementia diagnostic 

procedures such as MMSE, Mini-COG, eSLUMS, CPCOG, and MIS, among others, for different 

populations (Borson et al., 2006; Cordella et al., 2013; Arevalo‐Rodriguez et al., 2015; Foster et al., 

2019; Kansagara & Freeman, 2010; Tsoi et al., 2015). In this research, reported sensitivity and 

specificity figures are considered using multiple research studies. Table 2.9 summarises 

performance measures along with the associated study from which these values are obtained. 

According to the information in Table 2.9, the Mini-COG assessment, ACE-III, CAM, and 

eSLUMS assessments are the highest performing tools with both sensitivity and specificity values 

over 90% (at least on the sample instances used in their corresponding research studies). Generally, 

it is not the norm to achieve very high values in both sensitivity and specificity simultaneously. The 

trade-off value between both measures is often considered as the best. 
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Table 2.8: Reported Sensitivities and Specificities of Medical Examinations used by the App 

Digital Screening 

Method 

Medical Examination Medical Exam Reference Sensitivity % Specificity % Study Performance Reference 

MOBI-COG Mini-COG dementia screening test  Borson et al., (2000) 95.00–100.00 92.00–98.00 Borson  et al., (2006) 

BrainTest Self-Administered Gerocognitve Exam (e-SAGE) Scharre et al., (2010)  71.00 90.00 Scharre et al., (2017) 

ACE Addenbrooke’s Cognitive Examination (ACE-III)  Noone, (2015) 93.00–100.00 96.00–100.00 Bruno & Vignaga, (2019) 

CAIDE-DRS Cardiovascular Risk factors, Aging and Incidents of 

Dementia risk score (CAIDE)  

Kivipelto et al., (2006) 77.00 63.00 Butcher, (2007) 

DementiaScreener  Symptoms of Dementia Screener (SDS)  Flaherty et al., (2019) 78.40 84.00 Flaherty et al., (2019)  

AD8 Dementia Screening Interview  Galvin et al., (2005)  
  

  

MoCA  Montreal Cognitive Assessment  Nasreddine et al., (2005 ) 81.00 86.00 Julayanont et al., (2015) 

CDD   Confusion Assessment Method (CAM) Inouye et al., (1990) 94.00–100.00 89.00–95.00 (Waszynsk, (2012) 

 Six item screener Callahan et al., (2002) 68.00–80.00 74.00–80.00 Carpenter et al., (2011) 

Abbreviated Mental Test (AMT)  Hodkinson, (1972) 70.00–80.00 74.00–90.00 Jitapunkul et al., (1991) 

BCI Flanker Task Fan et al., (2003) 81.00 94.00 Groppell et al., (2019) 

The Digit Symbol Substitution Task  Monte et al., (2010) 

The Stroop Task Melara & Algom, (2003) 

The Trail Making Test (TMT) Cicerone & Azulay, (2002) 

 Balance and coordination Greenwald et al., (2001)  

The Immediate and Delayed Recall Tests  Comerford et  al., (2002) 
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BrainCheck 3 patient questions (BrainCheck) Holsinger et al., (2007) 85.80 74.30 Ehrensperger et al., (2014)  

Clock drawing test (CDT) Friedman et al., (1994) 

7-item version of the Informant Questionnaire on 

Cognitive Decline in the Elderly (IQCODE) 

Jorm et al., (1989) 81.40 75.70 

ALZ Functional Activities Questionnaire (FAQ)  Tappen et al., (2009),   80.30 87.00 Teng et al., (2010) 

Hachinski Ischemic Score (HIS)  Johnson et al., (2014),  89.00 89.30 Moroney et al., (1997) 

Memory Impairment Screen (MIS)  Buschke et al., (1999)  68.00–86.00 84.00–96.00 Tsoi et al., (2015) 

General Practitioner Assessment of Cognition (GPCOG)  Brodaty et al., (2002) 85.00 86.00 Brodaty et al., (2002) 

eSLUMS  Saint Louis University Mental Status (SLUMS) Exam Tariq et al., (2006)  98.00–100.00 98.00–100.00 Kansagara & Freeman, (2010) 

Cognity Mental Status Examination (MSE) tool  Snyderman & Rovner, (2009) 71.00–92.00 52.00–96.00 Snyderman & Rovner, (2009) 

DST Dementia Screening Test Google (2019c) 96.00 N/A Developer's note on Appstore 

MMSE Mini Mental State Examination  (MMSE) Folstein et al., (1975) 23.00–76.00 40.00–94.00 Arevalo‐Rodriguez et al., (2015) 

DementiaTest  6-item Cognitive Impairment Test (6CIT)   Callahan et al., (2002)  78.00–90.00 100 Callahan et al., (2002)  

Structured Clinical Interview (SCIDS) Ouimette & Klein, (1995) 75.00–100.00 100 Gerdner et al., (2014) 

CognitiveExams Geriatric Depression Scale  Yesavage et al., (1982) 92.50 77.20 Mitchell et al., (2011) 

Katz basic activities of daily living as functional 

assessment  

Aske (1990) 38.00 N/A Hartigan (2006) 

Walk Test of 6 minutes  Abbott et al., (2004)  82.00 84.00 AbilityLab (2019) 

Fluency Test Caramelli et al., (2007) N/A N/A N/A 
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2.7.4.4 The Role of Intelligent Methods   

Machine learning is a hot topic that has a direct impact on the prognosis of dementia and other 

related MCIs. Machine learning is a process that allows medical systems using search techniques to 

automatically learn from data to improve the accuracy and efficiency of the screening with little 

human involvement (Gupta & Katarya, 2020; Sammut & Webb, 2017). The potential of these 

technologies in dementia prognosis is vast, yet few studies have been carried out to discover ways 

to integrate them with conventional assessment tests (Chua et al., 2019; Shankle et al., 2005; 

Bennasar et al., 2014). The accuracy of AD screening tools is paramount as it ensures that no patient 

is left undiagnosed, and it also facilitates the speedy implementation of treatment plans. Hence, 

assessment tools should be automated to yield better performance and accuracy and to offer rich 

knowledge for clinicians to make diagnostic-related decisions. Further, patients involved are often 

elderly and likely to have other physical, social, and accessibility issues, therefore using technology 

for screening instruments makes the entire process simple, accurate, and convenient for them as 

well as for the clinicians and caregivers. 

Out of all considered mobile screening apps, few employ artificial intelligence in dementia 

screening. According to Snyderman and Rovner, (2009), Cognity is the first mobile app to utilise 

artificial intelligence for dementia screening; this app analyses a photo of a clock drawing done by 

the user and then, based a large sample of patients, determines the probability of dementia risk. The 

ACE app also has an inbuilt mechanism for automated administration, scoring, and reporting using 

the human factor approach. Findings of Newman et al. (2018) suggest that the computerised version 

(ACE app) can capture measures more accurately than the original version of the ACE medical 

assessment. MOBI-COG, the digitalised version of the Mini-Cog test, is also a fully automated 

mobile app that uses machine learning techniques to recognise hand-written digits and characters. 

It uses a k-NN classifier (Gonzalez & Woods, 2002) to identify the characteristics of the clock 

drawing done by the individual being assessed. Findings of Nirjon et al. (2014) indicate that the 

automated mobile version is more capable of evaluating the correctness of a clock drawing to detect 

the presence of dementia and other types of MCIs than the conventional pen-and-paper based Mini-

Cog test, with an accuracy of 99.5%. 
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2.8 Chapter Summary  

The process of diagnosing dementia according to the DSM-5 criteria requires progressive 

impairment to be demonstrated in one of six cognitive domains. This is normally achieved by 

assessing the subject using a variety of cognitive diagnostic procedures, however the DSM-5 does 

not prescribe any specific test to be used, so when diagnosing AD according to the DSM-5, the 

clinician must use a selection of cognitive diagnostic procedures that cover the six domains. 

After looking at a selection of commonly used cognitive diagnostic procedures, we have mapped 

each procedure’s sub-sections or tasks onto the neurological domains specified in DSM-5 which the 

subsection or task aims to measure. We found that no one procedure covered all of the specified 

cognitive domains, and therefore cognitive and functional items would need to be considered with 

a medical procedure which included functional abilities as well as complex attention and language 

to cover most of the cognitive domains specified by the DSM-5. 

While this chapter does not definitively settle the issue of selecting which cognitive diagnostic 

procedure to use when diagnosing dementia, it does provide a foundation on which diagnosticians 

can compare some of the commonly used procedures to determine how they fit into the DSM-5 

criteria. Since no single medical procedure reviewed here covers all cognitive domains involved in 

diagnosis besides there being a certain unstructured activity that can cover multiple cognitive 

domains (overlapping of cognitive domains within the tests / activities of the cognitive diagnostic 

procedures), a selection of at least two procedures is required. Therefore, deciding which cognitive 

diagnostic procedures to use could be based on how many cognitive domains it covers besides 

sensitivity, specificity, or the time it takes to administer. 

In this chapter, we also reviewed machine learning studies focusing on the cognitive aspect of the 

dementia assessment work. We studied functional abilities and cognitive domains and their 

correlations from a psychological perspective and given relevant recent literature on cognitive and 

functional abilities defined in neuropsychological assessment theories.  

Lastly, although there are many digital assessment applications available to screen dementia, many 

of them just partly cover the neurocognitive domains defined in the DSM-5 gold standard. We 

filtered out the digital screening methods available on a mobile platform to 20 after excluding apps 

that are not used for dementia screening. We then introduced five new criteria: DSM-5 Coverage, 

Performance, Validity, and Reporting, and the Use of machine learning techniques, to critically 

analyse these digital methods. The literature review showed a lack of use of emerging technologies 

particularly the adaptation of intelligent techniques such as machine learning in developing digital 

dementia assessment methods. Therefore, to fill the gap, we introduce in Chapter 3 a new data driven 
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framework using machine learning that reveals insights of functional and cognitive elements and 

offer it to the clinicians within a digital platform to improve not only accuracy of the diagnosis but 

also accessibility and time. 
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Chapter Three 

 

 

A Machine Learning Architecture for Alzheimer’s Disease  

This chapter introduces the proposed data-driven architecture: Machine Learning Architecture for 

Alzheimer’s Disease Progression (MLA-ADP), and details its major components: data 

understanding, data preparation, data modelling, progression class labelling, classification system 

design, and validation. Most of this chapter’s content is being considered for publication in the 

Journal of Biomedical Informatics. 

 

3.1 Introduction  

This chapter proposes the MLA-ADP that consists of multiple important phases particularly 

• Modelled datasets with target class labels that have been constructed from multiple sources  

• A feature assessment phase to pinpoint influential features  

• A rule-based classification algorithm for learning rules that can be used by clinicians for 

decision making  

• A novel method for building classification models for predicting disease progression  

• A mobile platform for conducting assessments for individuals undergoing pre-diagnosis of 

any dementia stages or MCI. 

The new datasets integrate multiple features obtained from dissimilar datasets including cognitive, 

functional, and demographics within the ADNI data repository. After careful investigation of the 

ADNI data repository, we identified the required features and combined multiple datasets. We then 

modelled the new datasets by creating a new class label based on the disease progression. Further 

details on the datasets, features, data pre-processing, and data modelling are given in Section 3.3. 

The datasets have been integrated and loaded into a Google firebase database after data modelling 

and data sampling. 

The MLA-ADP contains a feature assessment phase in which multiple feature selection methods 

were employed to assess feature-feature and feature-class significance. We sought functional and 

cognitive features that could directly trigger the progression of AD, and any correlations. Section 

3.4 discusses the methods used for feature assessment. More importantly, we propose within MLA-

ADP a rule-based classifier called Alzheimer’s Disease Class Rules (AD-CR) to derive a knowledge 
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base of understandable If-Then rules, and more importantly to learn models for predicting the 

progression status of anyone undergoing pre-diagnosis. Section 3.5 provides details of the 

classification algorithm details.  

The MLA-ADP is designed and implemented on a cloud-based environment to enable easy and 

affordable access. Java has been used for the implementation of the AD-CR; the core data used for 

deriving the classification models was loaded into a Google firebase. The architecture partly can be 

accessed via a new proposed mobile application for dementia progression detection (Section 3.6 

gives more details on the mobile application components and design). 

This chapter is structured such that Section 3.2 sheds light on the MLA-ADP architecture and its 

main phases. In subsequent sections details on each phase are provided. Finally, a summary is 

presented in Section 3.7. 

 

3.2 Proposed Machine Learning Architecture for Alzheimer’s Disease 

Progression: MLA-ADP  

As discussed earlier, integrating technological advancements into traditional dementia assessments 

is a promising topic that is yet to gain the attention of the relevant research bodies. Further research 

that focuses on improving the accuracy and efficiency of dementia screening and diagnosis tools by 

using advanced intelligent technology is required. There has been limited research on adapting 

machine learning techniques for use in these digital systems (web and mobile systems) to enhance 

functionalities, performance, accuracy, and accessibility, hence our proposal.  

MLA-ADP consists of a cloud-based architecture comprised of multiple ADNI datasets (ADNI-

Merge, ADAS-Cog-sheet, and FAQ-sheet) (ADNI, 2021), a feature assessment, an intelligent 

algorithm based on rules discovery, and a mobile interface of medical assessment for dementia 

screening. MLA-ADP replaces conventional scoring functions used in traditional dementia medical 

screening and diagnosis methods with more advanced intelligent classification systems—potentially 

a great help for clinicians. MLA-ADP derives classification models using a classification method 

that are objectively learnt from functional and cognitive features besides features related to the cases 

and controls making the models and decisions less biased. These models can be exploited by the 

clinician to aid and improve the accuracy of the decision-making process.  

The main phases of the proposed architecture are depicted in Figure 3.1. The first involves forming 

a database that consists of dissimilar features of data collected from various datasets after careful 

investigation and analysis. In particular, we collected data related to cognitive, and functional areas 

besides patients’ characteristics and medical clinic visits. Since one of the aims of the research 
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project is to develop an intelligent method for dementia progression that learns models from both 

functional and cognitive areas, we have included functional and cognitive medical assessment 

methods. Further information on the data collection and data access is given in Section 3.3.1.  

Once the features (cognitive, functional, demographics, patients’ visits, etc.) have been identified, 

the second phase prepares the data in terms of missing values treatment, normalization, 

discretization, integration, balancing, and verification of the scores and answers from the medical 

assessments of the data subjects, among others. More importantly, we integrate the different data 

sources into a centralised dataset using the patient ID (RID) and visit code (VISCODE). The 

processed datasets after data modelling and balancing are stored in a Firebase database to ensure 

that the MLA-ADP is accessible and cost effective and can run in real-time when accessed via a 

web or mobile environment. Further details on data integration and cleansing are given in Section 

3.3.  

Prior learning the models against the integrated data, there was no disease progression attribute in 

the ADNI data repository, and only the medical diagnosis (DX attribute) was provided in the ADNI-

Merge dataset, and per the patient’s medical visit. Therefore, we modelled the data and created a 

new target class label for disease progression called (DX Progress) using a new method that we 

developed. Further details on data modelling and creating the new disease progression attribute are 

 
Figure 3.1: The Proposed Machine Learning Architecture for Alzheimer’s Disease Progression (MLA-ADP) 
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given in Section 3.3.4. The final database obtained after modelling was imbalanced and favoured 

the “no progression” target class value thus it required balancing to avoid deriving biased 

classification models as discussed in Section 3.3.4.   

One of the fundamental steps in the proposed architecture is to identify features that influence any 

sort of advancement of the disease and at any stage. Thus, in the MLA-ADP architecture, a feature 

selection phase on the processed data after data integration, modelling and balancing, is performed 

to identify the features that may trigger advancement of the AD. The features’ subsets that will be 

identified during feature selection are then processed by classification algorithms to derive 

classification models. The classification approach has been used is based on a rule-based 

classification algorithm to discover rules that are humanly interpretable. The reason for selecting 

rule-based classification particularly class association rule is due to that the generated rules can be 

easily used by the clinicians to clarify any diagnostic decision and reveal associations among 

cognitive and functional features.  Creating a rule-based knowledge foundation using the proposed 

rule algorithm provides clinicians with a digital information sheet to guide their decision-making 

process and so they can better understand each case’s context. More crucially, the knowledge base 

will offer the patient and other stakeholders explanations on cognitive and functional items that have 

contributed to the disease progression, if any. Providing the rules complies with the patient’s ‘right 

for an explanation’ as outlined in the General Data Protection Regulation (GDPR) regarding 

decision-making. Another reason is that class association rule approach derives higher predictive 

classification systems than most conventional classification techniques (Constantino et al., 2021; 

Ragab, 2019; Hadi et al., 2018; Abdelhamid, et al., 2012; Liu et al., 1998).  

 The training on the dataset uses ten-fold cross validation to minimise the chance of overfitting. 

Further details on the feature selection and the classification algorithm are provided in Sections 3.4 

and 3.5, respectively.  

In the proposed architecture, the clinician uses a mobile environment to record values related to the 

functional items in a questionnaire and activities-based scenarios. The design of the mobile interface 

follows the requirements required in designing mobile applications related to dementia (Kerkhof et 

al., 2017). Further details on the mobile interfaces are given in Section 3.6.  

Once the clinician records the patient’s information, the models learnt from the data stored in the 

Firebase on the cloud architecture are triggered, and a target class of whether there will be 

progression will be given and displayed on the mobile platform. The database gets updated 

periodically every three months and all classified cases become part of the training data subjects in 

the database. Communication between the classification algorithms, the dataset, and the mobile 

environment is implemented automatically on the cloud architecture. Lastly, various evaluation 
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measures that reveal the models’ predictive ability for individuals undergoing the screening process, 

are also derived to reveal true performance. In the next subsection, we explain all the phases of the 

MLA-ADP in more detail.  

3.3 Data Understanding, Access, Preparation, and Modelling  

In this section, we describe the processes of data preparation and modelling including data access, 

data understanding, medical methods items, and data pre-processing as depicted in Figure 3.2. The 

detail of each activity is given in the following sub-sections.  

3.3.1 ADNI Data Access  

Initially, the unprocessed datasets are obtained from the ADNI project data repository—a 

longitudinal research project in the United States that started in 2004. To obtain the final diagnosis 

of the data subjects, most of the existing dataset’s of ADNI link to a centralised dataset that 

combines the multi-phase project of ADNI (1, 2, 3, and GO) known as ADNI-Merge (ADNI, 2021). 

ADNI-Merge comprises a large number of features and 2,361 data subjects (cases and controls) who 

have been diagnosed with three possible target classes: CN, MCI, and AD. For each data subject, 

there could be multiple clinical visits, normally one every six months. Thus, each data subject is 

linked with at least one data instance (a visit) or multiple data instances. The total number of data 

instances (visits) in the ADNI dataset is 14,628. Further details on the ADNI project, its datasets, 

and data subject characteristics are provided in Chapter 4. 

 
 

Figure 3.2: Data Preparation Processes of the MLA-ADP 

 

 



84 

 

Initially, we obtained data access to ADNI’s data repository through a registration process that 

required relevant information about the researcher, the institution, the purpose of using the 

dataset(s), the research aims and objectives, and the research proposal details. The process is 

electronic, and the registration forms were completed online via ADNI’s website 

(http://adni.loni.usc.edu). We submitted the relevant details needed for the data access application 

of ADNI, then some weeks later were granted access to the data repository by the ADNI data control 

and access team. 

As part of this approval process we agreed to provide annual updates on the use of ADNI data in 

our research project. The ADNI team keeps track of applications that were approved; we can add 

additional information in regard to the progress of the research project including methodology, 

analysis, implementation, systems evaluation, and publications. The update process is conducted 

within the electronic workspace of the main researcher registered at the ADNI’s web management 

system. Publications, if any, that have explored datasets related to ADNI are recommended to be 

approved by the Data and Publication Committee prior to submission. 

3.3.2 Cognitive and Functional Data Understanding   

The project scope is to detect any possible progression points that may occur for individuals in 

relation to AD and using neuropsychological assessments. We therefore investigated the ADNI’s 

data repository thoroughly to determine features related to neuropsychological assessments 

including functional and cognitive, patients’ medical history and visits, patients’ demographics, and 

the diagnosis assigned by the clinicians, among others. These features were scattered over many 

datasets, posing a great challenge on which features are needed, and how the different features could 

be combined. Listed below are the challenges we encountered during the data understanding and 

data preparation:  

▪ Various medical diagnosis methods for AD that are related to neuropsychological 

assessments have dissimilar performance so which one(s) to choose 

▪ The medical diagnosis methods available cover partially cognitive criteria defined in the 

DSM-5 framework  

▪ The medical diagnosis methods may overlap in the cognitive criteria defined in the DSM-5 

▪ No dataset that contains all needed features is available  

▪ No dataset that contains cognitive and functional features together is available  

▪ No progression target class was found; the baseline and the final diagnoses only  per patient’s 

visit were available in the ADNI-Merge dataset  

▪ Many neuropsychological assessments’ datasets consist of a large number of missing values 
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▪ ADNI-Merge dataset contains the summative score of the neuropsychological methods and 

none of their features (items/activates) and values  

▪ The neuropsychological assessments vary in their usage in detecting dementia since they 

can be used in detecting different stages of the disease  

We have merged data subjects who participated in different phases of the ADNI project, in particular 

ADNI-1, ADNI-Go, ADNI-2 to obtain as many data subjects as possible to validate the proposed 

data-driven architecture. Chapter 2 facilitates domain understanding; besides understanding the 

items, familiarising ourselves with the metadata of the ADNI repository was vital to assist our data 

preparation processes. Three datasets: ADNI-Merge, ADAS-Cog-sheet, and FAQ-sheet datasets 

were retrieved from the ADNI database repository—these cover the scope of the research project 

and they include patients’ cognitive and functional information as well as visits (ADNI, 2021). The 

ADNI-Merge dataset has a cohort of 2,260 participants, mainly based in the United States and 

Canada, in which each participant is being monitored on a six-monthly basis to track and study their 

AD progression, with multiple observations per patient at different points in time. 

The ADAS-Cog-sheet dataset comprises cognitive tasks that assess learning and memory, language 

production, language comprehension, constructional praxis, ideational praxis, and orientation as 

discussed in Chapter 2. There are as many as 31 variants to the ADAS method; we will be analysing 

the ADAS-Cog13 version which is accessible in the ADNI data repository. It consists of 

approximately 120 attributes excluding the total score covering several activities with a few tasks 

having a slightly different scoring range. The total ADAS-Cog13 scores range from 0–85, with the 

largest score indicating significant impairment. Podhorna et al. (2016) suggested that a score of 15  

be considered MCI, while a score of 30 be considered as mild AD. Table 3.1 displays the ADAS-

Cog13 primary activities, their scores, and mapping to the DSM-5 framework.  

The FAQ-sheet dataset in the ADNI data repository is based on the FAQ method, which assesses 

functional capability to carry out daily living activities. The FAQ dataset consists of 23 attributes, 

10 of which are items with each assigned a 0–3 possible response: dependent = 3, requires assistance 

= 2, has difficulty but does by self = 1, normal = 0, never did the activity but could do now = 0, 

never did and would have difficulty now = 1. The total FAQ scores range from 0–30, with the largest 

score signalling significant impairment. According to Teng et al. (2010), the cut-off points for a 

total FAQ score < 6 is diagnosed as MCI, whereas ≥ 6 is most consistent with a clinical diagnosis 

of AD. FAQ items, their scores, their mapping to the DSM-5 platform, and the design and 

implementation of the FAQ within a mobile platform, are discussed in Section 3.6. 
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3.3.3 Data Integration   

Table 3.2 presents the description of the retrieved datasets before pre-processing. Further details on 

the datasets and their characteristics including descriptive analysis are given in the next Chapter. 

Features such as visit information related to the patient (PTID, VISCODE, SITE, COLPROT, 

ORIGPROT, etc) and biomarkers (AV45, ABETA, TAU, PTAU, etc) were removed from the 

ADNI-Merge dataset as they are out of the study’s scope. In addition, features related that describe 

items and activities within the neuropsychological assessments were also excluded from the datasets 

as we were only interested in their values. Further details on the data modelling are given in the next 

sub-section. 

All missing values such as incomplete individual task scores or missing diagnosis attribute (DX) 

values, were dropped. It was important to clean the datasets individually before integration to 

maintain decent computational performance. The reasons for ignoring missing values are: 

1) The sensitivity of the application under consideration, so good data quality was required 

Table 3.1: ADAS-Cog Items and their Associated DSM-5 Cognitive Domains 

Question 
No. 

Column in Dataset Tasks Scoring DSM-5 Cognitive domains 

1 WORDRECALL Word recall 0-10 Learning and memory 
Language  

2 COMMAND Commands 0–5 Language 
Executive function 

Perceptual motor function 

3 CONSTRUCT Constructional praxis 0–5 Learning and memory 
Executive function 

Perceptual motor function 

4 DELAYWORD Delayed word recall 0–10 Learning and memory 

5 NAMING Naming objects and fingers 0–5 Learning and memory 
Language 

6 IDEATIONAL Ideational praxis 0–5 Complex attention 
Learning and memory 

Executive function 
Perceptual motor function 

7 ORIENT Orientation 0–8 Learning and memory 

8 WORDRECOG Word recognition 0–12 Learning and memory 

9 RMBRTESTINSTR Remembering test instructions 0–5 Learning and memory 
Language 

10 LANGUAGE Comprehension of spoken language 0–5 Complex attention 
Language 

11 WORDFIND Word-finding difficulty 0–5 Learning and memory 
Language 

12 SPOKENLG Spoken language 0–5 Language 

13 NUMBERCANCEL Number cancellation (time limit: 45 
seconds) 

0–5 Complex attention 
Executive function 

Learning and memory  
 TOTAL 0–85 points 
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2) Ensuring that data is cleansed before feature selection and model training and thus the 

expected outcome(s) are genuine and are not based on data approximation.  

 

While the FAQTOTAL attribute in the FAQ-sheet dataset was within the 0–30 range, the scores of 

individual FAQ items in the same dataset ranged from -1–5, and when tallied, would exceed the  

 

maximum score of 30. We investigated the ADNI FAQ scoring procedure and identified that in the 

FAQ test used to execute the procedure in the ADNI study, there were six answers to choose from 

as given in Table 3.3. Each of the six answers has its own unique number labelled from 0–5, with -

1 representing missing or incomplete data. We learned that the numbers were in fact labels to 

distinguish the responses clearly and were not representative of the FAQ scale. This data entry 

method was probably used to reduce data entry error as some of the answers share similar FAQ 

scores. To deal with this discrepancy, we mapped the six answers from the FAQ-sheet dataset to 

their corresponding FAQ scale values within the FAQ medical method to check whether the 

FAQTOTAL matched. We then executed the mapping procedure and compared both FAQTOTALs 

and verified that the data subjects within the FAQ-sheet are accurate and within the FAQ-scale 

Table 3.2: General Statistics of the Datasets before Pre-processing 

Dataset Name # of Features # of Patients # of Data Observations 
(visits) 

Missing Values in Key Attributes 

ADNIMERGE  113 2,260 14,627 Class DX: 4,243 missing values 

ADAS-Cog 121 1,751 6,770 100 missing values: 91 across ADAS tasks 
and 9 in VISCODE2 attribute 

FAQ 23 2,267 10,905 FAQTOTAL: 131 invalid data (99 missing 
values; 32 incomplete data (-1)) 

 

Table 3.3: Mapping Scores in the FAQ Dataset and FAQ Scale Values 

ADNI FAQ Representation FAQ Scale 

-1 Missing or incomplete data n/a 

0 Normal 0 

1 Never did, but could do now 0 

2 Never did, would have difficulty now 1 

3 Has difficulty, but does by self 1 

4 Requires assistance 2 

5 Dependent 3 
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defined within the FAQ medical method. Data integration was performed to produce two datasets 

that would address cognitive (ADNI-Merge-ADAS) and functional (ADNI-Merge-FAQ) items 

individually. Once the relevant attributes were identified from the considered datasets in the ADNI 

study, we proceeded with data integration to create two new datasets. These new datasets combined 

ADNI-Merge with the ADAS-Cog-sheet and FAQ-sheet datasets, respectively. Since the ADAS-

Cog-sheet and FAQ-sheet datasets have fewer data instances in comparison to the ADNI-Merge 

dataset, some data instances may not have a match due to the medical test not being taken, and will 

thus result in further missing values, and additional cleansing being required. In Chapter 4, we 

evaluate the proposed MLA-ADP on additional subsets of data related to ADAS-Cog-sheet and 

FAQ-sheet datasets including the dementia sub-categories from CN to MCI and MCI to AD 

respectively (for up to three years). 

 There are two common attributes within each dataset that form the basis of the data integration: the 

patient ID (RID) and the visit code (VISCODE), that will act as a compound primary key reference 

for the merger. The aim of the merging process is to capture individual cognitive and functional 

items together from their respective datasets and the diagnostic class (DX) from ADNI-Merge for 

each visit per patient. A cross-check was done on the individual scores of the ADAS-Cog and FAQ 

items in the medical methods and tallied to their total scores ADASTOTAL and FAQTOTAL to 

find any mismatches. As discussed above, FAQ items were identified as having a different score 

range to the original FAQ scale and did not tally to the FAQTOTAL, thus validation was required 

to ensure the scores were correct. There were also instances where a patient observation in the 

ADNI-Merge dataset was not integrated due to the ADAS-Cog-sheet and FAQ-sheet datasets not 

having a corresponding RID and visit code. This could be due to the assessments not being 

performed for the patient during a visit for various reasons, thus no merging occurs, resulting in 

fewer observations in the new datasets.  

3.3.4 Data Modelling and Data Balancing  

As the main element of our research is the progression of the disease, the diagnosis (DX) attribute 

originating from the ADNI-Merge dataset is the key to our data modelling process. However, no 

dataset in the ADNI data repository contains any progression attribute. To deal with this crucial 

issue, two new attributes are created to establish a target class attribute that will capture the diagnosis 

progress for each patient and their subsequent visits. The process we followed and have called ‘DX 

Progress’ is described in Figure 3.3. 

Initially, we created an attribute called ‘DX Digit’ (Line #3) to encode the three possible diagnoses 

(CN:1, MCI:2, AD:3); this attribute will help us assign the appropriate values to the DX Progress. 
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The ‘DX Digit’ is filled based on the current diagnosis attribute (DX) in the original dataset (ADNI-

Merge). The process of data modelling starts by iterating over the data subjects after they are ordered 

by patient number (RID), and then iterating over the patients’ visits. We always set the new attribute 

‘DX Progress’ value to ‘0’ (no progression) for each patient’s first visit. The ‘DX Progress’ captures 

the change of diagnosis in a patient, establishing a new target class attribute.  

The DX Progress attribute will model the changes of the DX digit from the matching patient ID and 

their subsequent visit with three possible class values. When there was a progression of diagnosis 

from CN ‘1’ to MCI ‘2’, or MCI ‘2’ to Dementia ‘3’, we labelled the change as ‘1’ in the ‘DX 

Progress’ attribute (Lines 8-9). If there was no progression, it was labelled as ‘0’; regression as ‘-1’ 

 

 

 

 

 

 

 

 

(Lines 6-7). Once the new class (‘DX Progress’) was derived, we removed instances that had been 

assigned with regression ‘-1’ (Lines 11), as we focus only on classes that are either ‘1’ for 

progression or ‘0’ for no progression, with only two class values remaining.  

A brief analysis is conducted after data modelling to ensure that the updated dataset (D’) after 

creating the new target class is not imbalanced to avoid any biased classification models. The result 

of the brief analysis shows that modelled data is imbalanced with respect to the ‘DX Progress’ and 

that the class set ‘DX Progress’ is linked with a high number of no progression (‘0’) class versus 

progression (‘1’). Proceeding with an imbalanced dataset to learn classification models produces 

skewed results that favour the majority target class and ignore the minority class. The primary 

challenge of dealing with datasets that are imbalanced is that most of the classification algorithms 

tend to produce poor models in terms of predictive performance on the low frequency class, despite 

the fact that in medical applications, such as detecting AD progression, the models’ performance on 

minority class, i.e. ‘progression’, is fundamental. 

Input: D: a dataset of all patients’ information and visits    
Output: D’ : A dataset with the new target variable ‘Dx Progress’ 

 

1. D’ = D 
2. for each rid in D’ do     
3. D’.‘dx digit’  = 0    
4.        for each viscode2  in D do    
5.               D’.‘dx digit’  = d   
6.                if (dn = dn-1)    
7.                       D’.‘dx progress’ = 0 
8.               elseif (dn > dn-1)    
9.                     D’. ‘dx progress’ = 1 
10.               else 
11.                      D’.‘dx progress’ = -1 
12.          end 
13. end 
14. remove all data instances where ‘dx progress’ = -1 

 

 

 
Figure 3.3: Modelling Process of the Data 
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To deal with the imbalanced data situation, we oversampled the data by synthesized data 

observations of the low frequency class from existing data samples to add new information to the 

classification models that we expect to produce later via the classification algorithm. This approach 

of synthesizing data observations from existing data that belong to the minority class is based on an 

effective sampling approach in machine learning called Synthetic Minority Oversampling 

Technique (SMOTE) (Chawla et al., 2000). We arbitrarily generate new observations of the 

minority class to move the number of minority class items closer to the majority class. A 

randomisation technique is applied to ensure the minority class is randomly distributed throughout 

the dataset, and that the newly added data observations of 1s do not amalgamate in some of the 

folds. The choice of SMOTE is due to the fact that this data sampling method employs an intelligent 

machine learning algorithm, i.e. kNN (Aha, et al., 1991), to generate the synthetic data observations 

besides it has been utilised successfully for class data imbalance problems in dementia medical 

research, e.g. (El-Sappagh, et al., 2021; Yang et al., 2020). 

The process of generating synthesized data observations of the minority class is done by initially 

setting up the size of the oversampling data observation and choosing a feature vector of the minority 

data observation randomly, i.e. de. Then, using the k-NN algorithm, 5 neighbours of the ‘de‘ are 

identified, and X of these are used to create the synthetic data observation. Often, the sampling 

algorithm employs any distance function to measure the difference in distance between neighbours 

and the feature vector. We embedded the revised data oversampling method of SMOTE into the 

MLA-ADP architecture. The mathematical notation of the oversampling method we used is 

illustrated below in Equation (3.1) 

𝑆 = 𝑥 + 𝑢. (𝑥𝑟 − 𝑥), (3.1)   

with 0 ≤ 𝑢 ≤ 1, 

where u was randomly chosen from U(0,1), 

𝑥 is a set of variables, 

𝑥𝑟  is randomly chosen among the 5 minority class nearest neighbours of 𝑥  

 

3.4 Feature Selection  

One of the vital steps in supervised learning to identify relevant items in the dataset is feature 

selection. Feature selection for classification problems in machine learning involves finding features 

that have high correlation with the target class in an automated manner. The relevancy of the feature 

to the target class can be found mathematically in a class of methods that we normally call filters. 

The process of feature selection via filters can simplify the data analysis by not only reducing the 
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input data dimensionality but also by pinpointing influential items. More useful knowledge is 

thereby offered to the domain expert and the quality of the models derived is potentially improved.    

In the MLA-ADP architecture, a range of feature selection techniques including Information Gain 

(IG), Chi Squared Testing (CST), ReliefF, and Person Correlation (Mitchell, 1997; Liu & Setiono, 

1995; Kononenko, 1994; Pearson, 1920) were employed to detect corelations from the datasets 

considered. These methods employ dissimilar mathematical models to define feature relevancy and 

have been successfully applied in previous dementia-related studies such as Pereira et al. (2018), 

and Zhu et al. (2020). More importantly, there could be discrepancies in the scores of features 

produced by the feature selection methods. Various metrics are used in computing the scores, so to 

reduce the vitality in the results, we employ more than one feature selection method. The results 

obtained from the feature selection methods each produce a different scale of weightings, as such 

normalising the results is necessary to maintain a common scale and simplify the analysis. The 

assessment of features to keep or omit was based on different criteria as discussed in the 

experimental analysis of Chapter 4. 

Initially, we conducted a feature-to-feature assessment without the new target class attribute, to gain 

an understanding of the relationship between the cognitive and functional items. This is to establish 

their dependency towards the class attribute—a high correlation between two items will almost have 

the same effect on the dependent attribute, thus having the same properties towards the target class, 

so one of the two items can be removed. The cognitive and functional items are simultaneously 

referenced against their DSM-5 cognitive domains to understand their sensitivity towards AD 

diagnosis. This will further assist our analysis when performing feature selection to derive a variety 

of subsets that covers a mixture of DSM-5 cognitive domains.  

The Pearson Correlation Coefficient was used to measure the linear correlation among the items 

excluding the class variable and the results were presented in a matrix model. This indeed pinpoints 

which cognitive activities are similar, allowing us to suggest key items needed for the progression 

of AD. The correlation coefficient is calculated using Equation (3.2) deriving a value in the range 

of [-1, +1]. The closer the coefficient number towards -1 or +1, the higher the dependency between 

the features. 

 

𝑟 =
∑ (𝑋𝑖−�̅�)(𝑌𝑖−�̅�)𝑛

𝑖=1

√∑ (𝑋𝑖−�̅�)2𝑛
𝑖=1 √∑ (𝑌𝑖−�̅�)2𝑛

𝑖=1

 (3.2) 

Where 𝑟 = 𝑃𝑒𝑎𝑟𝑠𝑜𝑛 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡, 

𝑛 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 

𝑥𝑖 = 𝑡ℎ𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑥 − 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝑖𝑛 𝑎 𝑠𝑎𝑚𝑝𝑙𝑒 
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�̅� = 𝑡ℎ𝑒 𝑚𝑒𝑎𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑥 − 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 

𝑦𝑖 = 𝑡ℎ𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑦 − 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝑖𝑛 𝑎 𝑠𝑎𝑚𝑝𝑙𝑒 

�̅� = 𝑡ℎ𝑒 𝑚𝑒𝑎𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑦 − 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 

 

After identifying pairs of features that were highly correlated with each other in both cognitive and 

functional domains, we were able to proceed to identify feature-class corelations. For this purpose, 

we used three methods: IG, CST, and ReliefF, to produce scores based on the correlations between 

the features and the class label using mathematical models. IG employs Shannon’s Entropy to decide 

how informative the feature is based on Equations 3.3 and 3.4.  IG also can be used to decide the 

ordering of features while building classifiers such as decision trees.  

𝐼𝐺(𝑇, 𝑋) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑇) − 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑇, 𝑋)    (3.3) 

and 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑥) = − ∑ 𝑝(𝑥𝑖)log
2

𝑝(𝑥𝑖)
𝑛
𝑖=1 ,   (3.4) 

where 𝑝(𝑥𝑖) = probability of 𝑥𝑖  in 𝑇, 𝑇 is the input dataset, 𝑋 is a subset of T that belongs to a 

particular feature.  

CST is a statistical method that determines if two features are associated using the expected and 

actual frequencies in the dataset according to Equation (3.5)      

𝑥2 = ∑
(𝐴𝑖𝑗−𝐸𝑖𝑗)

2

𝐸𝑖𝑗

𝑛
𝑖=1        (3.5) 

Where: 

𝐴𝑖𝑗  = observed frequency;  no. patterns in the 𝑖𝑡ℎ interval, 𝑗𝑡ℎ class, 

𝐸𝑖𝑗 = expected frequency of  𝐴𝑖𝑗 =   𝑅𝑖 ∗   𝐶𝑗/𝑁  

𝑅𝑗  = no. patterns in the 𝑖𝑡ℎ interval = ∑ 𝐴𝑖𝑗
𝑘
𝑗=1 , 

𝐶𝑗  = no. patterns in the 𝑗𝑡ℎ class = ∑ 𝐴𝑖𝑗
2
𝑖=1 , 

𝑁 = total no. patterns = ∑ 𝑅𝑖
2
𝑖=1 , 

 

Lastly, ReliefF is a method that handles noisy data and detects correlated features in a dataset; it 

gives a higher importance value to features that lead to better class separability. The mathematical 

notation of ReliefF is given below. 

𝑊[𝐴] ≔ 𝑊[𝐴] −  ∑
𝑑𝑖𝑓𝑓(𝐴,𝑅𝑗,𝐻𝑗)

𝑚.𝑘
+𝑘

𝑗=1      

 (3.6) 

∑

[
𝑃(𝐶)

1 − 𝑃(𝑐𝑙𝑎𝑠𝑠(𝑅𝑖))
∑ 𝑑𝑖𝑓𝑓 (𝐴, 𝑅𝑖, 𝑀𝑗(𝐶))𝑘

𝑗=1 ]

𝑚. 𝑘
;

𝐶≠𝑐𝑙𝑎𝑠𝑠(𝑅𝑖)

 

Where set all weights 𝑊[𝐴] ∶= 0.0; 

For 𝑖 ∶= 1 𝑡𝑜 𝑚 𝑑𝑜 𝑏𝑒𝑔𝑖𝑛 
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Randomly select an instance 𝑅𝑖; 

Find 𝑘 𝑛𝑒𝑎𝑟𝑒𝑠𝑡 ℎ𝑖𝑡𝑠 𝐻𝑗; 

For each class 𝐶 ≠ 𝑐𝑙𝑎𝑠𝑠(𝑅𝑖)𝑑𝑜 

From class 𝐶 𝑓𝑖𝑛𝑑 𝑘 𝑛𝑒𝑎𝑟𝑒𝑠𝑡 𝑚𝑖𝑠𝑠𝑒𝑠 𝑀𝑗(𝐶); 

For 𝐴: 1 𝑡𝑜 𝑎 𝑑𝑜 

 

The reasons for choosing these feature selection methods include: 

• They use dissimilar models to define feature relevancy 

• They were used successfully in previous medical research related to dementia such as by So 

et al. (2017), Trambaiolli et al., (2017), and Zhou et al. (2018), among others 

• They are easy and efficient to implement  

• They are filter-based so when applied against classification datasets such as ours they tend 

to not peak into the classification results by devising classifiers to measure their 

performance—they are thus considered less biased yet more efficient when compared to 

wrapping feature selection methods. 

 

3.5 The Proposed Classification Algorithm  

In this section, we discuss the machine learning algorithm that we developed as part of the MLA-

ADP architecture: a knowledge-based algorithm consisting of If-Then rules and constructed using 

a class association rules approach, and it is used for prediction. Initially we introduce class 

association rule mining, and in the next two sub-sections we explain how the learning algorithm 

works. 

 

3.5.1 Class Association Rule 

Class association rule is a branch of classification methods which employs association rule mining 

to solve classification problems (Zhang, 2022). This method produces a classifier that comprises If-

Then rules similar to conventional rule induction, and decision tree approaches (Abdelhamid et al., 

2014). However, the way rules are discovered, trimmed, or produced is different in conventional 

rule-based induction approaches. For instance, a rule-based induction algorithm such as repeated 

Incremental Pruning to Produce Error Reduction (RIPPER) induces the rule and predicts the target 

class of test data in a multi-step process: rule discovery, rule pruning, and classification (Cohen, 

1995). RIPPER uses the divide-and-conquer approach in which once a rule is discovered, the linked 

training data instances are discarded, and the process is repeated until the input dataset empties. For 

each rule, the algorithm keeps appending the attribute values that yield to the least error against a 
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validation subset of data into the current rule until the rule is generated. For each formed rule, the 

algorithm evaluates whether removing such a rule is possible by measuring its effect on the 

performance of the classifier in terms of error rate. Once all discovered rules are evaluated, then 

those that are not pruned form the classifier.  

Most class association rule mining methods inherit from association rule mining the concepts of 

item support and rule confidence and use these during the process of rule discovery (definitions 6 

and 8) (Ragab, 2019; Abdelhamid, et al., 2016). The item support for a classification problem in 

data science represents the frequency of the item and the target class in which that item most 

occurred in the dataset. When the item support fails to pass the required minimum support 

(definition 7) set by the user, then the item will be discarded during the rule induction process. The 

rule’s confidence represents the fitness of the rule by capturing the proportion of the joint frequency 

of the item plus its largest occurring class label, and the frequency of the item by itself in the dataset. 

When the rule is associated with a confidence value greater than the minimum confidence value 

(definition 9) then it will be derived and become part of the classification system. 

Class association rule methods have advantages over conventional classification methods as they 

produce simple-to-understand rules which make them highly favourable in applications that require 

simple-to-interpret classification systems such as dementia screening and diagnosis (Abdelhamid & 

Thabtah, 2014). Class association rule methods normally produce more hidden knowledge from the 

dataset resulting in higher predictive classification models than other rule-based classification 

approaches such as rule induction and decisions trees (Padillo et al., 2019; Liu et al., 1998). 

Nevertheless, without proper rule pruning the number of rules produced can be large. 

Class association rule methods such as Classification-Based Association (CBA), Stock Market 

Associative Classification (SMAC), Active Pruning Rules (ARP), Hybrid Associative 

Classification (HAC), Multiclass Associative Classification (MAC) (Liu et al., 1998; Constantino 

et al., 2021; Ragab, 2019; Hadi et al., 2018; Abdelhamid, et al., 2012) often go through the number 

of steps below to learn the rules and produce the classification systems: 

1) Discovering the rules: In this step, the class association algorithm generates frequent items 

(sometimes called large items). These are items with greater than the minimum support. The 

definition of items in the class association rule differs to that of association rule. In the former the 

attribute and the class values are considered together as an item, whereas in the latter only the 

attribute value or the item name is considered during the process of counting the frequencies of 

items in the input dataset. Once all frequent items are found, then the algorithm uses them to generate 

rules starting with rules of length 1 (rules with number of items in their body equal to 1), then rules 

of length 2 and so forth until the complete set of rules is extracted. 
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2) Rule ranking and pruning: Rules may have different confidence and support values, so a 

ranking step is implemented by most class association rule algorithms in which rules with higher 

confidence are favoured. The rule-ranking process precedes the rule pruning in which the algorithm 

tries to reduce any chance of overfitting by removing redundant rules or rules that yield to incorrect 

classification. There are many types of pruning implemented by class association rule algorithms 

such as lazy pruning, greedy pruning, and information gain-based pruning, among others (Veloso 

et al., 2011; Padillo et al., 2019; Cao et al., 2020). Often, during the rule pruning procedure the 

algorithm checks the applicability of each available rule on the training dataset or a validation 

dataset and removes any rule that has not classified any data observation or rules that have high 

number of misclassifications.  

3) Classification: In this step, the rules retained after the rule pruning procedure are used to 

predict the target class labels in a test dataset. Usually, there are two known test data classification 

methods: one rule, and multi-rule. In the one rule classification method, one rule only is applied to 

the test case—usually the rule that has similar attributes to the test data and with the highest-ranking 

position. However, since more than one rule can be used to predict the class label, the one-rule 

approach has been criticised (Abdelhamid & Thabtah, 2014). For the multi-rule prediction methods, 

the class association rule algorithm employs more than one rule such as a voting approach in 

ensemble learning in which the class label belonging to the greatest number of rules is assigned to 

the test data. However, despite using more than one rule to predict the class these rules do not 

necessarily match the test data attribute values (Almnnaee et al., 2018). 

Unlike classic class association rule mining algorithms that utilise the entire dataset at once to 

generate the rules so that a single data observation can be used to generate multiple rules, the 

proposed algorithm (AD-CR) employs an incremental rule learning process that generates a rule, 

discards the rule’s data observation, and then generates the next rule from the updated training 

dataset. The algorithm ensures that each time a rule is derived the data observation of such rule is 

not to be used by the next rule during a pruning process therefore reducing the possible number of 

generated rules. The AD-CR algorithm’s learning process deals with an inherited problem from 

association rule: that of rules overlapping in the training data observations, by disallowing rules to 

share training data like rule induction methods. However, unlike greedy induction algorithms such 

as PRISM that requires a rule to have 100% expected accuracy, the AD-CR permits the generation 

of rules if such rules pass the user’s requirement of confidence and, without having to, continuously 

adds items to the rule’s body to increase the rule’s accuracy. By permitting the generation of these 

rules, the AD-CR algorithm minimises any chance of overfitting and allows each rule to have fewer 

items in its body hence cover a larger number of data observations. 
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The AD-CR algorithm presents a hybrid prediction method that initially considers the best rule when 

assigning the class label for a test data. However, when there is no rule matching the test data, the 

AD-CR algorithm invokes partial matching rules and then uses a voting mechanism for class 

prediction based on the class that belongs to the majority matching rules. Using this prediction 

method minimises the employment of the default class rule during the prediction phase and thus 

may improve the predictive power. The details on how the AD-CR algorithm generates the rules 

and predicts test data are explained in the next sub-sections.  

One potential advantage of the training algorithm of AD-CR is that fewer rules are formed due to 

the assurance that whenever a potential rule is added to the candidate rule list, all related data 

examples are discarded similar to rule induction algorithms. The training process also ensures that 

a training data example is restricted to one rule only, and its associated data examples cannot be 

considered for generating other rules therefore cutting down the search space of potential rules. This 

indeed may result in a concise set of classification models that can be easily controlled and used by 

the clinician unlike conventional class association rule algorithms.   

 

3.5.2 Class Association Terms   

The rule-based algorithm that we propose is called Alzheimer’s Disease Class Rules (AD-CR), 

which is based on a classification approach devised from association rule mining called class 

association rules. In AD-CR, the classification problem’s dataset is represented as distinct items 

along with their corresponding values. Each distinct item is associated with the largest target class 

label in the dataset with which the item has occurred and such <item, class> representation is called 

a ‘rule_item’. Below are the main definitions related to the AD-CR using D as an input classification 

dataset:  

1. Data Observation: A collection of features with their values plus a target class value represented 

as ([(𝑂1, 𝑣1), (𝑂2, 𝑣2), (𝑂3, 𝑣3). . . , (𝑂𝑘, 𝑣𝑘)], 𝐶𝑙𝑎𝑠𝑠𝑘) 

where 𝑂 is an attribute or column in a dataset, 𝑣 is the attribute value, and 𝐶𝑙𝑎𝑠𝑠 is the target 

attribute in the dataset. 

2. Training Dataset D: A combination of data observations each associated with a target class c   

3. Feature in D: An attribute that relates to the individual undergoing the screening process of 

dementia such as age, gender, visit code, etc. The feature can be categorical (linked with a 

predefined set of values) or continuous (numeric or decimal). The algorithm assumes that the input 
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attributes are discretized, so any continuous attribute gets discretized before the learning process 

initiates.   

4. Target Class in D: An attribute that represents the progression of AD stage presented in a multi-

class categorical form (0,1,-1). We limit the problem to progression (1) or no progression (0). 

5. 1-Rule_Item (1-RIk) in D: Is represented as ([(𝑂𝑘, 𝑣𝑘)], 𝐶𝑙𝑎𝑠𝑠).  

6. Support of the RIk, i.e. supp (RIk): Calculated from D as  
|([(𝑂1,𝑣1),(𝑂2,𝑣2),(𝑂3,𝑣3)…,(𝑂𝑘,𝑣𝑘)],𝐶𝑙𝑎𝑠𝑠𝑘)])|

|𝐷|
. 

When Supp (RIk) ≥ min_supp_threshold, the RI is considered frequent.   

7. Minimum Support Threshold: Denoted as min_supp and is employed to differentiate among 

frequent and infrequent RIs.  

8.Confidence of the rule_item (RIk), i.e. Conf (RIk): Calculated from D as 

|([(𝑂1,𝑣1),(𝑂2,𝑣2),(𝑂3,𝑣3)…,(𝑂𝑘,𝑣𝑘)],𝐶𝑙𝑎𝑠𝑠𝑘)])|

|[(𝑂1,𝑣1),(𝑂2,𝑣2),(𝑂3,𝑣3)…,(𝑂𝑘,𝑣𝑘)]|
. When Conf (RIk) ≥ min_conf_threshold, the RI is considered 

a potential rule.   

9. Minimum Confidence Threshold: Denoted as min_conf and employed to measure the strength of 

a RI.  

10. Potential Rule: Takes the form (I1  ̭ I2   ̭ … Ik) ⇾ Class.  

11. Test Dataset: A combination of data observations each is associated with a true class c   

 

3.5.3 Learning Phase  

The proposed rules algorithm pseudocode is depicted in Figure 3.4. The inputs of the AD-CR 

algorithm are the classification dataset, the min_supp (See 6 and 8 above). The AD-CR algorithm 

deals with both categorical and continuous attribute values in the training dataset; any missing 

attributes values are treated as any other values by the AD-CR algorithm. The min_supp threshold 

is employed to determine rule_items that have sufficient frequency in the training data and mainly 

used to pinpoint the best frequent rule_item in any iteration. In doing so, only the best rule_item in 

terms of frequency is chosen each iteration by the AD-CR algorithm to start building a new rule or 

to append into the current rule’s body. The algorithm keeps merging item(s)/attribute values into 

the rule until the current rule passes the min_conf threshold; when this happens, the current rule’s 

is added into the candidate rules list. The confidence of the rule is calculated according to definition 

10 and can be considered a key performance indicator that reflects the rule’s position during the 

learning phase. 
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In discovering the rules (first phase), the AD-CR algorithm iterates over the training data instances 

to discover the best one rule_item (1-rule_item) in terms of support. It should be noted that only the 

largest class label in the training data occurring with the attribute value of the rule_item is considered 

when counting the rule_item’s support. Once the 1-ruleitem is identified, the AD-CR algorithm 

starts building the first potential rule as Best_Item ⇾ C. The algorithm evaluates the current rule’s 

confidence, if the current rule has a confidence larger than the min-conf threshold then it will be 

added into the candidate rule list, and all data examples associated with it are removed from the 

training dataset. However, if the current rule’s confidence is less than the min-conf threshold, then 

the learning algorithm isolates its training examples into a data structure: DS.  

The learning algorithm then checks whether adding the best frequent item of DS into the current 

rule will improve its confidence value. If this check yields true, then the algorithm appends the 

frequent item found into the current rule’s body and repeats the same process of potentially adding 

frequent items into the rule’s body from DS, until the current rule’s confidence passes the min-conf 

threshold. When this occurs, the rule will be generated and added into the candidate rule list. More 

importantly, all the rule’s data examples will be removed from the original training dataset whenever 

the rule is generated ensuring that these examples are only used once during the training phase. The 

algorithm then starts creating the second potential rule from the updated training dataset after 

removing the first rule’s data examples and repeats the same process described above until either 

The Algorithm  

Input: A classification dataset CD, the min-supp and min-conf thresholds  

Output: CR: If-Then rules   
 

1. For each rule_item (RI), i.e. ([(𝑅𝐼, 𝑣𝑘)], 𝐶𝑙𝑎𝑠𝑠)) , in CD do    
2.    Best RI (BRI)  ← Max (supp (RI))        
3.    if conf (BRI) <= min_conf 
4.          exit          
5.     elseif conf (BRI) >= min-conf    
6.          DS ← 𝐷𝑎𝑡𝑎 𝐸𝑥𝑎𝑚𝑝𝑙𝑒𝑠′𝑜𝑓 𝐵𝑅𝐼    
7.          CR ← BRI             
8.          CD ←CD – DS 
9.     end //elseif 
10.     else 
11.         begin     
12.            DS ← 𝐷𝑎𝑡𝑎 𝐸𝑥𝑎𝑚𝑝𝑙𝑒𝑠′𝑜𝑓 𝐵𝑅𝐼        
13.            CRF = Candidate_Rule (DS, BRI) 
14.            UDS ←  Updated (DS, CRF) 
15.            CR ← CRF  
16.            CD ←CD – UDS      
17.        end // else 
18.   end for 
19. Repeat 1-16 
20. Exit when CD’ is empty / checked   
21. Produce the CR list  
22. end 
23. Order CDs by the confidence and support values      

    Figure 3.4: The AD-CR Algorithm 
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the training dataset empties, or no more potential rules can be discovered. Once all candidate rules 

are generated, they are sorted based on confidence and support values. 

One potential advantage of the training algorithm of AD-CR is that fewer rules are formed due to 

the assurance that whenever a potential rule is added into the candidate rule list all related data 

examples are discarded. The training process ensures also that a training data example is restricted 

to one rule only, and its associated data examples cannot be considered for generating other rules 

therefore cutting down the search space of potential rules. This indeed may result in a concise set of 

classification models that can be easily controlled and used by the clinician.  

Another possible advantage of the training algorithm is that it does not seek rules with 100% 

accuracy as found in classic Rule Induction and Covering classification algorithms such as PRISM, 

or for specific rules as found in enhanced rules algorithms. AD-CR permits the rules to be produced 

even when the rule’s accuracy is not perfect at good confidence level thus reducing the chance of 

any overfitted predictive models. It should be noted that models that are generated by the proposed 

algorithm will be used as a knowledge base and for predicting the class of test data. 

 

3.5.4 Classification Phase  

The AD-CR algorithm proposes a simple yet influential classification method which uses the most 

suitable rule to assign an appropriate class label to the test data during the classification phase. A 

rule used to assign the class normally meets two conditions:  

1) It has the best ranking among all other rules in terms of confidence and support values  

2) The attribute values in its body are all contained within the test data thus ensuring attributes’ 

values similarity. 

During the classification phase, when a test data example is to be classified, the AD-CR seeks in the 

final set the rule that fully matches the test data’s attribute values, allocates its class to the test data 

example, and then moves to the next test data example and so forth. However, if there is no rule in 

the final rules set that fully matches the test data example, then the AD-CR algorithm searches for 

a partially matching rule; such rules have at least one attribute data value similar to the test data 

example. The proposed algorithm then allocates the class linked with more partially matching rules 

to the test data example. In cases when no rules partially or fully match the test data example, the 

algorithm uses the default rule one which denotes the class label with most of the training data 

examples. 
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Using just one rule for classifying test data examples is not only a simple approach but it also 

provides good predictive power as seen later in Chapter 5 in the experimental analysis of the 

classification phase. In addition, the approach considers other rules that partially match the test data 

examples when no fully matching single rule is available rather than invoking the default class label. 

This reduces the number of arbitrary classifications and thus misclassifications.  

We summarise the primary characteristics of the AD-CR algorithm: 

1) Only rules with significant frequency and confidence are formed.  

2) Fewer rules are formed thus smaller models are produced  

3) Unlike association rule mining, no rules share data examples thus reducing the search 

space of items and potential rules     

4) Rules can be associated with some degree of error to minimise overfitting 

5) Simple and effective classification method is used in the prediction phase 

 

3.6 Mobile Application Design and Content  

A mobile application was designed to capture the necessary items related to IADLs for individuals 

undergoing the screening process. It is based on items collected from the FAQ and implemented 

according to the design requirements for dementia testing. We did not design mobile interface 

screens for the activities related to cognition since these activities require instructions, and detailed 

sub-activities that cannot be implemented on a mobile based platform so only these values are 

recorded by the user. Therefore, all detailed activities related to ADAS-Cog13 are recorded by the 

clinicians without a mobile medium. 

Unlike screening mobile applications, the interface of the mobile app of MLA-ADP architecture 

adheres to most of the design requirements needed for dementia-related screening. Therefore, 

careful attention to the design of interfaces and functionalities was followed including colour, visual 

layout, item size, buttons, output format, text size and font, and user navigation, among others. The 

MLA-ADP app incorporates functionalities related to invoking the models for predicting the 

individual’s possible progression. Table 3.4 displays the FAQ items in the app, their scores, and 

their mapping to the DSM-5 cognitive domains.  
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Table 3.4: FAQ Items and their Associated DSM-5 Cognitive Domains 

Question 

No. 

Column in Dataset Tasks Scoring DSM-5 Cognitive Domains 

1 FAQFINAN Writing cheques, paying bills, balancing 

cheque book 

0–3 Complex attention 

Executive functioning 
Learning and memory 

2 FAQFORM Assembling tax records, business affairs, 

or other papers 

0–3 Complex attention 

Executive functioning 

Learning and memory 

3 FAQSHOP Shopping alone for clothes, household 
necessities, or groceries 

0–3 Complex attention 
Executive functioning 

Learning and memory 

Perceptual motor function 

4 FAQGAME Playing game of skill, working on a 

hobby 

0–3 Complex attention 

Executive functioning 

Learning and memory 

Perceptual motor function 

5 FAQBEVG Heating water, making a cup of coffee, 

turning off stove after use 

0–3 Complex attention 

Executive functioning 
Learning and memory 

Perceptual motor function 

6 FAQMEAL Preparing a balanced meal 0–3 Executive functioning 

Perceptual motor function 

7 FAQEVENT Keeping track of current events 0–3 Learning and memory 

8 FAQTV Paying attention to, understanding, and 

discussing TV, book, magazine 

0–3 Complex attention 

Executive functioning 

Learning and memory 
Social cognition 

Language 

9 FAQREM Remembering appointments, family 

occasions, holidays, medications 

0–3 Learning and memory 

10 FAQTRAVL Traveling out of neighbourhood, driving, 

arranging to take public transportation 

0–3 Complex attention 

Executive functioning 
Perceptual motor function 

  TOTAL 0–30 points  

 



102 

 

The navigation diagram of the proposed mobile application is shown in Figure 3.5. After launching 

the app the clinician can access the information sheet from the landing screen; this gives clear 

consent on the app’s use. The ‘terms of use’ screen clearly states that the application is for research 

purposes only and any information or data collected during the pre-diagnosis process will be 

anonymous, and not shared with any party. The screen is available to the clinician before completing 

the pre-diagnosis in which he/she is required to agree to a disclaimer which elaborates on the aim 

of the app, use of the data, and privacy policy. We inform the user that data are collected  

Figure 3.5: The Proposed Dementia Pre-diagnosis Application Navigation 

anonymously and not shared—participants’ identities are anonymous. In addition, no information 

related to the device is used through the process. From the landing screen (Figure 3.6a), two data 

screens (Figures 3.6b and 3.6c) can be accessed to collect data related to gender, age, ethnicity, 

marital status, and education  level—similar to the demographic attributes that we used in the ADNI-

Merge while building the classification model. Once these data screens are filled by the clinician, 

then the items of the FAQ method will appear on a separate screen in a sequential manner. Samples 

of two items are displayed in Figures 3.6d and 3.6e, respectively. For each item, there will be six 

possible responses that the clinician can choose each of which is associated with a score as follows:  

dependent = 3, requires assistance = 2, has difficulty but does by self = 1, normal = 0, never did the 

activity but could do now = 0, never did and would have difficulty now = 1. 

The clinician can navigate through the app using ‘Next’ and ‘Back’ buttons. Once he/she completes 

the pre-diagnosis process then an output screen with either ‘No sign of dementia progression’ or 
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‘dementia progression’ will appear as shown in Figure 3.6f. The decision is based on models learned 

from a historical cases and controls that are stored within a database. The clinician also can have 

access to the knowledge base to access the rule produced by the AD-CR algorithm. The proposed 

app can be used in Android mobile applications or tablets.  

Once the clinician clicks ‘submit’, a process is triggered at the backend architecture that will pass 

the items’ answers, and the demographics information to the classification system as test data. The 

classification system then uses the predictive models to guess whether there will be progression 

based on the test data characteristics and using rules. Based on the model decision, then the label 

will be replaced with the appropriate text that will appear in the final screen for the user.  

 

 

For example, when the decision is ‘0’ a text stating that there is no dementia progression will 

appear in the results screen. 

  
 

 

 
 
 
 

 Figure 3.6a: Landing Screen Figure 3.6b: Information Screen 1 Figure 3.6c: Information Screen 2 
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Figure 3.6d: Sample Question A                   Figure 3.6e: Sample Question B                        Figure 3.6f: Output Screen 

                               

3.7 Chapter Summary  

One potential way to enhance the detection of AD progression and to empower clinicians is to use 

a data driven approach based on machine learning which is able to discover hidden patterns during 

screening. In this chapter, a new intelligent architecture called MLA-ADP has been proposed and 

implemented on a cloud-based environment—a mobile interface is provided for accessibility which 

is advantageous particularly during the difficult time of the Covid-19 pandemic. The proposed 

architecture comprises several major phases including data preparation and modelling, feature 

assessment, classification, and mobile application.  

During the data collection, a number of cognitive and functional datasets were collected from the 

ADNI data repository then processed and modelled to create a new target class. In feature 

assessment, a number of mathematical-based feature selection methods were used to analyse the 

correlations among the features themselves and features with the target class label. In the 

classification phase, we used rules to predict the progression of AD using subsets of the features 

within the firebase in an automated manner; the clinician uses an easy-to-access-and-use mobile 

interface. In the next chapter, we perform in-depth experiments to build classification models for 
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AD progression and compare the models derived by the proposed classification system with the 

MLA-ADP with other models generated by common machine learning algorithms. These results 

will reveal the true performance of the MLA-ADP. 
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Chapter Four 

 

Data, Methods Used, and Experimental Settings  

 
This chapter introduces the unprocessed data, its meta data, the processed data, and detailed 

descriptive analytics of the data considered. In addition, the experimental platform and the methods 

used like computational intelligence and classification, are discussed. Most of this chapter’s content 

is being considered for publication in the Journal of Biomedical Informatics, and Intelligent 

Decision Technologies. 

 

4.1 Introduction  

This chapter discusses the data, the classification methods, and platforms used in the experiments, 

and the experimental settings. The AD-CR algorithm was coded using high-level programming 

language (Java), and then integrated into Waikato Environment for Knowledge Analysis (WEKA) 

machine learning platforms prior to classification algorithms experiments being conducted to 

establish a fair comparison. The proposed AD-CR algorithm was embedded into the WEKA-

Classifier package under folder ‘Rules’—the algorithm generates rule-based classifiers in an ‘If-

Then’ format.  All experiments were conducted using ten-fold cross validation to ensure that any 

classifier derived was evaluated thoroughly. Additionally, we employed various evaluation 

measures (discussed later) including predictive accuracy, specificity, and sensitivity (see Equations 

4.1–4.3 in Section 4.3.1). 

In this chapter, we discuss the datasets used for the analysis and provide an in-depth descriptive 

analysis. The modelling process implementation is then highlighted and the revised datasets given 

the new class label ‘DX Progress’. Furthermore, we show how special group datasets related to 

cognitive and functional features are derived besides their purposes and relevant statistics. For 

example, we show cognitive and functional datasets for data subjects with a baseline diagnosis ‘CN’ 

and then at 36 months to indicate whether they remain at ‘CN’ or have progressed to ‘MCI’. We 

also show cognitive and functional datasets for other groups with a baseline diagnosis of ‘MCI’, and 

who for 36 months remained with ‘MCI’ or advanced to ‘AD’.  

Lastly, we describe the classification algorithms used in the experiments. 
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4.2 Datasets 

4.2.1 Unprocessed Datasets  

The unprocessed datasets used in this thesis were obtained from the ADNI project data repository. 

According to ADNI (2021), the primary aims of the ADNI project are:  

▪ To find effective methods to track the progression of AD 

▪ To identify potential cases early by developing affordable diagnostic methods using 

innovative technologies  

▪ To manage and support the intervention of AD 

▪ To support scholars and researchers worldwide by providing access to real subjects’ 

dementia-related data to promote solutions for the intervention and treatment of AD. 

The ADNI project is funded until 2022 (ADNI, 2021). Most of the participants have been recruited 

from various healthcare facilities in the USA and Canada, and represent a population with CN, MCI, 

and AD. They have completed several neuropsychological assessments and cognitive tests, besides 

clinical and pathological procedures when needed. There are several datasets in the ADNI data 

repository covering features related to genetics, neuroimaging, biomarkers, and neuropsychological 

and clinical methods, among others, as discussed earlier in Chapter 3. For example, for the 

neuropsychological section of the ADNI, there are cognitive assessments including, but not limited 

to, MoCA, Everyday Cognition study partner (ECogPT), Everyday Cognition patient reported 

(ECogSP), ADAS-Cog different versions, MMSE, CDR-SB, RAVLT different versions, etc. For 

neuroimaging, there are several brain-related features that can be captured through MRI and CAT 

images.  

Since the scope of this thesis is limited to building AD classification systems from cognitive and 

functional items, we focus on three related major datasets:   

• ADNI-Merge (a collection of multiple datasets: ADNI1, ADNI2, ADNI3, ADNI-GO) 

• ADAS-Cog-sheet  

• FAQ-sheet.  

In Chapter 3, Table 3.2 displays the basic statistics related to the ADNI-Merge, ADAS-Cog-sheet, 

and FAQ-sheet datasets. The ADNI-Merge dataset is an amalgamation of data from the ADNI-1, 

ADNI-Go, ADNI-2, and ADNI-3 studies. The merged dataset contained 14,627 data observations 

and attributes related to patients’ visits, cognitive tests, memory tests, functional questionnaires, 

genetics, demographics, and biomarkers, among others. There is one target class in the ADNI-Merge 

dataset, which is the diagnosis of the last examination visit (DX); another attribute that can be 
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considered important is the baseline diagnosis (DX_bl) which denotes the initial diagnosis given to 

the patient at the first visit. There are 10 and 4243 data subjects, respectively, with missing values 

for the DX_bl and DX attributes in the ADNI-Merge dataset. Table 4.1 gives data samples attributes 

of the ADNI-Merge dataset for four participants.  

 

Table 4.1: Sample of Three Data Subjects of ADNI-Merge with Diagnostic Class (DX) 

 

 

The age of the participants ranges from 54.4–94.4, and the average age is 73. Figure 4.1 depicts the 

age distribution of all participants—most are between 70 and 80 years of age. Figure 4.2 shows the 

frequency of the participants’ medical visits with at least one per participant and up to 22 visits. To 

be exact, most of the participants had 2 medical visits followed by 1, 5, and 7 medical visits, 

respectively.  

Initial descriptive analytics show that there are more males than females in the ADNI-Merge dataset 

with 1051 females and 1186 males. Figure 4.3 displays the number of data subjects in the ADNI-

Merge dataset with respect to the baseline diagnosis (DX_bl) and the diagnosis after the final 

examination visit (DX). Based on the figures, it seems that at baseline diagnosis, most of the 

 

RID VISCODE SITE COLPROT ORIGPROTEXAMDATE DX_bl AGE PTMARRY APOE4 ABETA TAU PTAU CDRSB ADAS11 ADAS13 ADASQ4 MMSE MOCA FAQ .. DX

2 bl 11 ADNI1 ADNI1 8/9/2005 CN 74.3 Married 0 0 10.67 18.67 5 28 0 .. CN

3 bl 11 ADNI1 ADNI1 12/9/2005 AD 81.3 Married 1 741.5 239.7 22.83 4.5 22 31 8 20 10 .. Dementia

3 m06 11 ADNI1 ADNI1 13/03/2006 AD 81.3 Married 1 6 19 30 10 24 12 .. Dementia

3 m12 11 ADNI1 ADNI1 12/9/2006 AD 81.3 Married 1 601.4 251.7 24.18 3.5 24 35 10 17 17 .. Dementia

3 m24 11 ADNI1 ADNI1 12/9/2007 AD 81.3 Married 1 8 25.67 37.67 10 19 14 .. Dementia

4 bl 22 ADNI1 ADNI1 8/11/2005 LMCI 67.5 Married 0 1501 153.1 13.29 1 14.33 21.33 6 27 0 .. MCI

4 m06 22 ADNI1 ADNI1 2/5/2006 LMCI 67.5 Married 0 0.5 17.33 25.33 7 28 0 .. MCI

4 m12 22 ADNI1 ADNI1 14/11/2006 LMCI 67.5 Married 0 1176 159.7 13.3 1 15 22 7 26 0 .. MCI

4 m18 22 ADNI1 ADNI1 14/05/2007 LMCI 67.5 Married 0 1 20.33 28.33 7 27 1 .. MCI

4 m36 22 ADNI1 ADNI1 18/11/2008 LMCI 67.5 Married 0 1 18 25 7 25 0 .. MCI

5 bl 11 ADNI1 ADNI1 7/9/2005 CN 73.7 Married 0 547.3 337 33.43 0 8.67 14.67 4 29 0 .. CN

5 m06 11 ADNI1 ADNI1 9/3/2006 CN 73.7 Married 0 0 11 15 3 29 0 .. CN

5 m12 11 ADNI1 ADNI1 5/9/2006 CN 73.7 Married 0 472.8 334.1 34.04 1.5 5.67 3 30 0 .. CN

5 m24 11 ADNI1 ADNI1 7/9/2007 CN 73.7 Married 0 0 7 11 3 29 0 .. CN

5 m36 11 ADNI1 ADNI1 10/9/2008 CN 73.7 Married 0 1 6.67 11.67 4 30 0 .. CN
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Figure 4.1: Age Distribution of the Participants 

 

participants were diagnosed as MCI and mainly with Late MCI (LMCI), and the least number of 

participants were diagnosed as AD. To be exact, 1331 participants were diagnosed with different  

 

 

 

 

 

Figure 4.2: Frequency of the Patients’ Visits 
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Figure 4.3: Class Labels’ Distribution at Baseline and at Last Examination Visit 

 

 

subcategories of MCI at baseline compared to 515 and 391 diagnosed with CN and AD, 

respectively. However, and for the final diagnosis (DX), the number of patients classified as CN or 

AD is larger than participants with MCI. To be exact, there are 763, 761, and 713 participants with 

a DX of CN, AD, and MCI, respectively, indicating that the data is somewhat balanced in terms of 

class distribution. 

We further investigated the baseline diagnosis and the final diagnosis attributes by taking ‘gender’ 

into account as shown in Figure 4.4. Based on the figure, there are more males associated with MCI 

and AD than female for both baseline and final visit attributes, respectively. However, there are 

more female than male participants in the CN class category for both baseline and final visit 

attributes. We further investigated the ‘age’ attribute with respect to baseline and final diagnosis 

scenarios as depicted in Figure 4.5. Most of the participants diagnosed at baseline or subsequently 

with AD tend to be older than the participants belonging to the other class categories in both 

scenarios. Specifically, most participants who received an AD diagnosis at baseline or at their last 

medical examination were aged between 70 and 80 years, whereas participants diagnosed as CN at 

the final examination visit were normally younger than 80 years old. 
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Figure 4.5: Age Distribution at Baseline Diagnosis and at Last Examination Visit Diagnosis 

 

 

Figure 4.6:  Gender and Age Distribution at Baseline Diagnosis and at Last Examination Visit Diagnosis Respectively 

 

 

Figure 4.4: Gender Distribution at Baseline Diagnosis and at Last Examination Visit Diagnosis 
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In addition, many of the participants diagnosed with early MCI (EMCI) or Significant Memory 

Concern (SMC) were in their late 60s to early 70s.  We added the ‘gender’ with ‘age’ to visualize 

the class distributions at baseline diagnosis, and at the last medical examination diagnosis as shown 

in Figure 4.6. The figure reveals a balanced number of participants in terms of gender aged 70–80, 

and with an AD diagnosis at their last medical examination. More male than female participants 

with dementia (AD) diagnosis. For baseline diagnosis, there was more male at MCI (EMCI and 

LMCI respectively) than female.  

The number of data subjects who progressed from CN to MCI or MCI to AD are depicted in Figure 

4.7a. The figure reveals that there were more data subjects with baseline diagnosis MCI who 

progressed to AD than those with baseline CN who progressed to MCI. We further investigated 

these data subjects as shown in Figure 4.7b and discovered that in both progression stages there 

were more male subjects than female. In addition, Figure 4.8 depicts that most of the disease 

advancements occur between the ages of 70–79 in both the CN to MCI and MCI to AD stages.  

There were 39 participants aged between 70–79 who progressed from CN to MCI, while 174 MCI 

participants moved to AD stages. These figures represent 61.90% and 52.72%, respectively,  of the 

total progression cases of all age categories and for both stages (CN to MCI and MCI to AD). There  

 

 

was a notable result for patients younger than 60 years of age— 13 participants with a baseline 

diagnosis MCI progressed to a final diagnosis of AD.  

The ADAS-Cog sheet dataset is based on the ADAS-Cog13 subscale used in the ADNI study, 

detailing the patient’s score in each task and the total scores attained during the assessment. It 

contained 6,770 observations and 121 attributes. Examples of the attributes in the ADAS-Cog sheet 

dataset are patient ID (RID), time of visit (VISCODE2), Examination date, and the 13 main tasks 

 

 

 

 

 
 

 

 

Figure 4.7b: Gender Distribution of the Data Subjects Progressed 
from CN to MCI or MCI to Dementia 

 

 

 

 
 

 

 
 

Figure 4.7a: Number of Data Subjects 
Progressed from CN to MCI or MCI to Dementia 
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Figure 4.8: Age Distribution of the Data Subjects Progressed from CN to MCI or MCI to Dementia 

 

 

along with their i.e.  Q1SCORE, Q2SCORE, Q3SCORE, Q4SCORE, Q5SCORE, Q6SCORE, 

Q7SCORE, Q8SCORE, Q9SCORE, Q10SCORE, Q11SCORE, Q12SCORE, and Q13SCORE 

besides the total score of the test. Table 4.2 describes a sample of ADAS-Cog13 items for only 16 

attributes.  

The FAQ dataset contained 10,905 observations and 23 attributes with data related to the patient’s 

information, individual FAQ item score, and total FAQ score attained during the assessment. 

Examples of the FAQ-sheet dataset attributes are the patient ID (RID), time of visit (VISCODE2), 

examination date, and the FAQ-items along with their answers of the ten items, i.e. FAQFINAN, 

FAQFORM, FAQSHOP, FAQGAME, FAQBEVG, FAQMEAL, FAQEVENT, FAQTV, 

FAQREM and FAQTRAVL. Table 4.3 shows a sample of two participants with 19 FAQ items. 
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Table 4.2: Sample of 3 Data Subjects from the ADAS-Cog-Sheet Dataset with 16 Attributes 

 

Table 4.3: Sample of 3 Data Subjects from the FAQ-Sheet Dataset with 19 Attributes 

 

 

Phase ID RID SITEID VISCODE VISCODE2 USERDATE USERDATE2 WORDLIST Q1UNABLE Q1TR1 Q1TR2 Q1TR3 Q1TRIT Q1TR2T Q1TRT

ADNIGO 108 2 8 m60 m60 9/24/2010 2/28/2011 1 0:1:2:8:9 2:4:6:8:9 0:2:5:7:8:9

ADNI2 386 2 8 v06 m72 9/20/2011 1 0:1:6:8 0:2:4:6:7:8:9 2:3:4:5:6:7:8

ADNI2 2808 2 8 v11 m84 9/28/2012 1 0:1:2:7:8:9 2:4:5:6:8:9 0:2:5:7:8:9

ADNI2 5254 2 8 v21 m96 9/12/2013 9/12/2013 1 0:1:7:8:9 2:4:5:6:8:9 1:2:5:6:7:8:9

ADNI2 8236 2 8 v41 m120 10/6/2015 7/31/2017 1 0:1:6:8 0:1:2:4:5:6:7:9 1:2:3:4:6:7:8:9

ADNI2 9154 2 8 v51 m132 9/29/2016 2/1/2019 1 0:1:6:8:9 0:2:4:6:8 0:1:2:4:5:6:7:8:9

ADNI3 16259 2 8 init m144 10/13/2017 10/13/2017 0 0|6|7|9 2|4|6|7|8|9 0|2|5|7|8|9 4 6 6

ADNIGO 130 8 8 m60 m60 10/4/2010 2/28/2011 1 0:1:3:6:7:8:9 0:1:2:4:6:7:8:9 0:1:2:3:4:5:6:7:8:9

ADNI2 422 8 8 v06 m72 9/29/2011 10/24/2011 1 3:5:6:7:8:9 0:1:2:4:6:8:9 0:1:2:3:4:5:7:8:9

ADNI2 2802 8 8 v11 m84 9/27/2012 1 0:3:5:6:7:8:9 0:1:2:4:6:7:8:9 0:1:2:3:4:5:6:7:8:9

ADNI2 5324 8 8 v21 m96 9/23/2013 1 0:1:5:7:9 2:4:5:6:7:8:9 0:1:2:3:4:5:7:8:9

ADNI2 8330 8 8 v41 m120 11/6/2015 1 0:3:4:6:9 0:1:2:3:5:6:7:8:9 0:1:2:3:4:5:7:8:9

ADNI2 598 15 40 v06 m72 11/3/2011 1 0:1:4:5:6 0:2:3:4:5:6:7:8:9 1:2:3:4:5:6:7:8:9

Phase ID RID SITEID VISCODE VISCODE2 USERDATE USERDATE2 EXAMDATE FAQSOURCE FAQFINAN FAQFORM FAQSHOP FAQGAME FAQBEVG FAQMEAL FAQEVENT FAQTV FAQREM

ADNI1 4 2 107 bl bl 9/8/2005 9/8/2005 1 0 0 1 0 0 1 0 0 0

ADNI1 214 2 107 m06 m06 3/7/2006 3/6/2006 2 0 0 0 0 0 0 0 0 0

ADNI1 5812 2 107 m36 m36 8/27/2008 8/27/2008 2 0 0 0 0 0 0 0 0 0

ADNIGO 86 2 8 m60 m60 9/22/2010 2 0 0 0 1 0 0 0 0 0

ADNI2 2830 2 8 v11 m84 10/1/2012 2 0 0 0 1 0 0 0 0 0

ADNI2 360 2 8 v06 m72 9/20/2011 10/24/2011 2 0 0 0 0 0 1 0 0 0

ADNI2 5276 2 8 v21 m96 9/11/2013 9/12/2013 1 0 0 0 1 0 0 0 0 0

ADNI2 7520 2 8 v31 m108 12/31/2014 1 0 0 0 1 0 0 0 0 0

ADNI2 8422 2 8 v41 m120 10/6/2015 2 0 0 0 1 0 1 0 0 0

ADNI2 9356 2 8 v51 m132 10/3/2016 2 0 0 0 0 0 1 0 0 0

ADNI3 18298 2 8 init m144 10/26/2017 10/26/2017 2 0 3 3 1 0 1 0 3 0

ADNI1 8 3 107 bl bl 9/13/2005 9/12/2005 1 2 3 2 3 1 1 4 3 3

ADNI1 234 3 107 m06 m06 3/13/2006 3/13/2006 1 4 4 2 4 0 0 3 3 3

ADNI1 1042 3 107 m12 m12 9/12/2006 9/12/2006 1 5 5 4 4 0 0 3 3 4

ADNI1 3818 3 107 m24 m24 9/12/2007 9/12/2007 1 3 5 5 3 0 0 3 3 3
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4.2.2 Processed Datasets  

To capture the progression of the disease in our datasets, we performed data modelling on the ADNI-

Merge dataset by creating two new attributes called ‘DX Digit’ to label the current diagnostic class 

(DX) as a numeric, and ‘DX Progress’ to track the change in diagnosis also using numerical labels. 

The process of how the ‘DX Progress’ attribute (change of the diagnosis) was allocated values has 

been described earlier in Chapter 3 (Section 3.3.4). Table 4.4 illustrates the number of data examples 

for each class representation we derived after data modelling. Since the scope of our research only 

focuses on whether there is progression (1) or no change (0), we filter out regression (-1) as these 

cases are out of the scope. We end up with four general datasets as follows:  

1) Processed ADNI-Merge  

2) Processed ADNI-Merge-ADAS-Cog   

3) Processed ADNI-Merge-FAQ   

4) Processed ADNI-Merge-ADAS-Cog-FAQ  (combined 3 datasets). 

The main reason for creating the ‘ADNI-Merge-ADAS-Cog sheet and ‘ADNI-Merge-FAQ-sheet’ 

datasets is two-fold:  

• To assess cognitive and functional items separately  

• Each of these datasets contains more data subjects than the ‘ADNI-Merge-ADAS-Cog-

FAQ’, which indeed benefits the learning algorithm during building of the classification 

models.  

The ‘ADNI-Merge-ADAS-Cog-FAQ‘ is an integrated dataset that captures cognitive, functional, 

demographic features, among others. Table 4.5 shows five participants from this integrated dataset 

with the two new modelled attributes (4th and 5th columns) and 16 attributes. It should be noted that 

the target class (DX Progression) is the 5th column in Table 4.5 in which ‘0’ denotes no progression 

Table 4.4: General Statistics after Data Pre-processing and Data Balancing 

 

 

Dataset 
Name 

# of 
Patients 
before 

Sampling 

# of Data 
Observations 

(visits) 

DX  Progress - Class 
Distribution before Data 

Balancing 

DX Progress - Class Distribution 
after Data Balancing 

ADNI-Merge-
ADAS-Cog 

dataset 

1,710 6,330 Total observations: 6,330 
‘0’: 6,020 (majority 95%) 

‘1’: 310 (5%) 

Total observations: 11,943 
‘0’: 6,020 (50.40%) 
‘1’: 5,923 (49.60%) 

ADNI-Merge-
FAQ dataset 

2,244 10,265 Total observations: 10,265 
‘0’: 9713 (majority 95%) 

‘1’: 552 (5%) 

Total observations: 18,545 
‘0’: 9,713 (52%) 
‘1’: 8,832 (48%) 

ADNI-Merge- 
ADAS-Cog-

FAQ dataset 

1,710 6,330 Total observations: 6,330 
‘0’: 6,020 (majority 95.10%) 

‘1’: 310 (48.90%) 

Total observations: 11,724 
‘0’: 6,020 (51.43%) 
‘1’: 5,704 (48.57%) 
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and ‘1’ denotes progression. Based on the DX class statistics presented in Table 4.5, there is a clear 

imbalance in class set with an overwhelming majority of 95% in the no change (0) class compared 

to 5% in the progression (1) class. Progressing with an imbalanced dataset would produce a skewed 

and biased result analysis, so to counter this issue, we implemented a sampling method based on 

SMOTE to randomly create additional minority class instances as we discuss in the next sub-section. 

The results of data balancing are presented in the final right-hand column of Table 4.5 earlier with 

a higher number of minority instances inserted to bring it closer to a 50-50 class ratio. There was 

111 cases of regression within the ‘ADNI-Merge-ADAS-Cog-FAQ‘ dataset, which we did not 

consider in the initial analysis. 

To obtain in-depth insight during data analysis, particularly feature assessment, and to differentiate 

between dementia stages we created four additional subsets of data from the integration of the 

ADNI-Merge, cognitive, and functional datasets as follows:  

1) ‘ADNI-Merge-ADAS-Cog CN to MCI for up to 3 years’  

2) ‘ADNI-Merge-ADAS-Cog MCI to AD for up to 3 years’  

3) ‘ADNI-Merge-FAQ  CN to MCI for up to 3 years’  

4) ‘ADNI-Merge-FAQ  MCI to AD for up to 3 years’.  

These datasets represent multiple medical visits within 3 years from the baseline diagnosis for 

groups of participants who had FAQ or ADAS-Cog medical assessments to monitor the 

advancement of their disease—any participant who in the baseline visit had not undergone FAQ or 

ADAS-Cog has been excluded from the 36 months datasets shown in Table 4.6. We specifically 

would like to determine if dementia-related features vary during the progression from one dementia 

group to another, and for a specific period of time, i.e. 36 months from the baseline diagnostic visit. 

Table 4.6 depicts statistical information about these datasets.  
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Obviously, and based on Table 4.6, all datasets are imbalanced in terms of the diagnostic class with 

many more instances linked with ‘No Progression’. To be exact and based on the figures in the third 

column of Table 4.6, there are just 73 and 14 instances in the ‘ADNI-Merge-ADAS-Cog’ and 

‘ADNI-Merge-FAQ’ datasets, respectively, linked with participants who progressed from CN to 

MCI during 36 months from the baseline diagnosis. These numbers constitute just 4.30% and 1.23%, 

respectively, when compared with instances linked with no progression in both datasets. However, 

the number of instances who progressed from MCI to AD in the ‘ADNI-Merge-ADAS-Cog’ and 

‘ADNI-Merge-FAQ’ datasets are 207 and 173, respectively, (6.32% and 7.25%, respectively, of the 

total). To treat the class imbalance issue we applied SMOTE sampling as shown in the last column 

of Table 4.6 to avoid biased classification systems in later stages of the analysis. We noticed some 

Table 4.6: General Statistics for the Groups of Participants within 36 months from the Baseline and  
for Different Dementia Stages 

Dataset 
Name 

# of 
Patients 
before 

sampling  

# of Data 
Observations 

(visits) 

DX Progress - Class 
Distribution before Data 

Balancing  

DX Progress - Class Distribution 
after Data Balancing  

ADNI-Merge-
ADAS-Cog CN 
to MCI  

 287 1,695  Total observations: 1,695 
‘0’: 1,622 (majority 95.70%) 
‘1’:  73 (4.30%) 
-1:20 

Total observations:  3,198 
‘0’: 1,622 (50.71%) 
‘1’: 1,576 (49.28%) 

ADNI-Merge-
ADAS-Cog 
MCI to AD 

 651 3,275  Total observations: 3,275 
‘0’: 3,068 (majority 93.68%) 
‘1’: 207 (6.32%) 
-1:16 

Total observations:  5,982 
‘0’:  3,068 (51.29%) 
‘1’: 2,914 (48.71%) 

ADNI-Merge-
FAQ    CN to 
MCI  

328 1,134 Total observations:  1,134 
‘0’: 1,120 (majority 98.77%) 
‘1’: 14  (1.23%) 
-1: 2 

Total observations:  2,177 
‘0’: 1,120 (51.45%) 
‘1’: 1,057 (48.55%) 

ADNI-Merge- 
FAQ    MCI to 
AD for  

693 2,386 Total observations:  2,386 
‘0’: 2,213 (majority 92.75%) 
‘1’: 173 (7.25%) 
-1:3 

Total observations:  4,358 
‘0’: 2,213 (50.78%) 
‘1’: 2,145 (49.22%) 
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Table 4.5: Sample of 5 Data Subjects from the Processed and Integrated Dataset with 16 Attributes 
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regression instances within the datasets derived; particularly, and for the ‘ADNI-Merge-ADAS-

Cog’ and ‘ADNI-Merge-FAQ’ datasets that contain ‘CN to MCI’ instances, there are 20 and 2 

regression instances, respectively. For the ‘ADNI-Merge-ADAS-Cog’ and ‘ADNI-Merge-FAQ’ 

datasets that contain ‘MCI to AD’ instances, there are 16 and 3 regression cases, respectively. 

4.3 Platforms, Experimental Setting, and Methods Used  

4.3.1 Platforms Used and Settings  

All experiments were conducted on a computing machine with an Intel® Core™ i7-6200U 2.8 Ghz 

with 8GB RAM, on a Windows 10 Home, 64-bit. The hyperparameters of all feature selection 

methods and classification algorithms remained unchanged in the Weka platform. Moreover, all 

experiments were conducted using open-sourced software—WEKA and Python, where all 

platforms have extensive data pre-processing, statistical and graphical tools, as well as machine 

learning algorithms for data analysis (Witten & Frank, 2002; Van Rossum & Drake Jr, 1995). 

Using Python’s Seaborn library, we assessed the feature-to-feature correlation within the datasets 

and to identify highly correlated items to derive influential features subsets from the ‘ADNI-Merge-

ADAS-Cog’ and the ‘ADNI-Merge-FAQ-Cog’ datasets. The Python Corr function plots the graph 

of the correlation matrix with coefficients to signal the strength between two items. The function 

identifies highly correlated features by calculating the largest mean absolute correlation between 

each item to remove any redundant features. We used Pearson Correlation as the default correlation 

method within the function to generate a correlation matrix of the data’s features as a vector of 

integers to reduce independent attributes’ correlations. When two attributes are highly correlated, 

the function evaluates the correlation of the mean absolute value for each attribute and drops the 

one with the greatest value. The suggested Cut-off = 0.60 (Akoglu, 2018).   

For the implementation of the rule-based classifier to feed in the knowledge base, we used Java and 

integrated the algorithm within WEKA version 3.8.4. The reason for selecting Java is that WEKA 

is implemented in Java and many of the functions used for rule generation and pruning can be re-

engineered to design and implement a new algorithm. More importantly, for comparing all other 

techniques including feature selection and classification, WEKA contains a massive number of 

algorithms making the process of comparison straightforward. Therefore, for all other computations, 

we used WEKA version 3.8.4 to perform data sampling techniques, feature selection methods to 

derive subsets for the input of the classification models and used various classification methods to 

predict a diagnostic class.  

Ten-fold cross validation was used during the experiments as a measure of testing to ensure less 

biased results. Using ten-fold cross validation, the input dataset is divided into 10 partitions arbitrary 
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with stratification (Witten & Frank, 2002). Nine partitions are then used for training and the 

remaining partition for testing; the procedure is repeated ten times to derive the performance 

measure results.  

We applied SMOTE to further sample the minority class labels in the dataset. As discussed in 

Chapter 3, SMOTE is a data sampling technique that adjusts the class distribution by taking the 

entire dataset as input increasing the minority class using K nearest neighbours (KNN) (Aha et al., 

1991). For feature selection, we used three implemented methods in WEKA: IG, CST, and ReliefF 

as these methods produce scores based on the correlations between the features and the class label 

using mathematical models.  

To measure the performance of the AD progression models derived by the classifiers against the 

subsets of functional and cognitive items we used a number of standard evaluation metrics in 

machine learning including predictive accuracy, sensitivity, and specificity (Nogueira et al., 2018; 

Teng et al., 2010) as shown in Equations 4.1–4.3, respectively. Sensitivity is the measure of the 

proportion of actual positive cases predicted as positive. Specificity is the measure of how well a 

test can identify the true negatives, whilst accuracy is the measure of the correct classification of the 

instances based on models and measures. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑁+𝑇𝑃

𝑇𝑁+𝐹𝑃+𝐹𝑁+𝑇𝑃
 (4.1) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (4.2) 

Specificity =  
𝑇𝑁

𝑇𝑁+𝐹𝑃
 (4.3) 

where 

TP (True Positive) = The model predicts a positive outcome among those with the positive class  

FP (False Positive) = The model predicts a positive outcome among those with the negative class  

TN (True Negative) = The model predicts a negative outcome among those with the negative class   

FN (False Negative) = The model predicts a negative outcome among those with the positive class   

4.3.2 Classification Methods Used  

To measure the effectiveness of the proposed AD-CR algorithm models in the classification step, 

besides cognitive and functional features subsets’ quality chosen by the feature selection methods, 

we used seven classification algorithms: Logistic Regression (LR), Multilayer Perceptron (MLP), 

Sequential Minimal Optimization (SMO), K-Nearest Neighbour (KNN; k=5), Naïve Bayes, Ripple-

Down Rule learner (Ridor), and Non-nested generalised exemplars (Nnge), (le Cessie & 
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Houwelingen, 1992; Rumelhart et al., 1986; Platt, 1998; Aha et al., 1991; John & Langley, 1995; 

Gaines & Compton, 1995; Martin, 1995). The reasons for choosing these classification methods are 

due to 

1) The dissimilar learning mechanisms used by these algorithms 

2) The different types of classifier formats they offer 

3) Many of them have been used in medical related research such as artificial neural network, 

SVM, statistical based classification, rule-based classification and KNN among others  

4) To obtain a general conclusion when we compare with the proposed algorithms in terms of 

performance measures  

MLP is a type of neural network that implements a feed forward mechanism in the way it models 

the problem; the structure of the MLP comprises three layers: input, output, and hidden. The input 

layer consists of a set of neurons that represent the features in the training dataset, and it receives 

the data input that require processing. The output layer performs the task of predicting the class 

label when the task is classification-based on computations made in the hidden layer. Thus, the 

heart of the neural network that is in charge with the computations is the hidden layers in which one 

or more hidden layers are created between the input and output layers to model and process the data 

input. Usually, the data are flowed from the input to the output later and the neurons are processed 

by a back propagation method during the training phase. The algorithm keeps adjusting the model 

derived by amending the weights of the neurons until it reaches a performance level that is 

acceptable  

LR is a statistical algorithm that in its simplest form can describe the relationship between two 

features of data. The first feature is called the independent variable and the second is the dependent 

variable (class label). In its general form, LR can deal with multi-class problems in which the input 

dataset contains three or more class labels. LR uses a logistic function as shown in Equation 4.4 to 

model a class label with two possible values. Unlike linear regression, LR’s range is restricted 

between 0 and 1, and it does not necessitate a linear relationship between the independent variables 

and the class label since it uses a nonlinear log conversion. In addition, unlike linear regression, LR 

employs a conditional probability loss function called ‘maximum likelihood estimation’. When the 

probability is less than 0.50, the test data’s class label will be predicted as 1; otherwise, 0.  

     (4.4) 

NB is a probabilistic-based algorithm which uses Bayes theorem to develop a strong feature-based 

assumption. The algorithm assumes that the target class is independent from all other features in the 
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dataset, and it computes the likelihood of each class given a test data based on the probabilities of 

the attributes’ values of the test data within the training dataset. The algorithm assigns the class with 

the largest likelihood to the test data. 

KNN is an instance-based learning algorithm in which for a test data to be classified the algorithm 

utilises the nearest neighbour’s class information to assign the test data the appropriate class. The 

algorithm does not learn a model from the training dataset and then uses that model for predicting 

the class label as in conventional classification algorithms rather the algorithm employs the training 

dataset to make the class assignment. The selected K nearest neighbours is often determined by 

KNN using distance functions such as Manhattan distance or Euclidean distance in which the 

algorithm selects the closest points to the test data point to make the prediction, therefore 

determining the ideal K and which distance function to use are crucial. In classifying a test data, the 

algorithm assigns a class label that belongs to the largest group of neighbours.  

Nnge is a generalisation of instance-based learning algorithms with an incremental function in 

which it utilises non-nested generalised hyperrectangles that can be represented as simple If-Then 

rules. Every time a new data instance is inserted into the training dataset, Nnge forms a 

hyperrectangle by integrating the new data instance with a group of neighbours with a similar class 

label. Nnge disallows hyperrectangles to overlap by using post-pruning based on heuristic. The 

algorithm employs a modified Euclidean distance function that processes the features, 

hyperrectangles, and weights.  

Ridor is a rule-based induction algorithm that initially produces a default rule and then all possible 

exceptions for that rule with the smallest expected error rates. Exceptions of the default rule are 

other rules that forecast the class labels which are dissimilar with that of the default rule. Afterward, 

the algorithm finds the ideal exceptions for each produced exception and repeats the process until it 

reaches the best performance. Ridor expands the search of exceptions like decision tree expansion.  

SMO is a support vector machine (SVM) type of algorithm disseminated to deal with an important 

issue that appears during the learning phase of SVM known as a quadratic programming problem. 

The SMO is a repetitive algorithm that reduces the problem into a set of optimisation tasks and 

solves each in an analytical manner.  

In all classification experiments these algorithms were run in WEKA and without amending the 

algorithms’ hyperparameters. We have used the settings provided in the literature for class 

association rule as well as some warming up experiments to establish the minimum support and 

confidence thresholds. Since the minimum support threshold controls the number of rules generated, 

for the AD-CR algorithm we used a minimum support of between 0.25% and 2% based on the 



122 

 

experimental analysis conducted and previous research studies (Zhang, 2022; Abdelhamid et al., 

2014; Liu et al., 1998; Li et al., 2001). These settings often balance between the classification 

system’s size in terms of the number of rules produced and the computing resources used during the 

learning phase. For the minimum confidence threshold, it has less impact on the performance, hence 

it has been set to 50% similar to previous studies (Zhang, 2022; Abdelhamid et al., 2014; Liu et al., 

1998; Li et al., 2001). 

 

4.4 Chapter Summary  

In this chapter, we have discussed the different datasets used for the experimental analysis, the 

classification methods, the experimental settings, and the evaluation measures used. We also 

performed in-depth descriptive analytics on the cognitive, functional, and ADNI-Merge datasets 

besides showing the statistics related to special groups of data subjects: those who progressed from 

CN to MCI and the ones who progressed from MCI–AD from the baseline diagnosis in a 36-month 

timeframe.  

In the next chapter, we show the feature selection experiments, the results of the classification 

algorithms, and the results analysis based on the evaluation measures discussed. Specifically, we 

compare the proposed classification algorithm with the common classification algorithms against 

the datasets discussed in this chapter. 
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Chapter Five 

 

Experiments and Results Analysis  

 
This chapter covers the implementation and experimental evaluation of the proposed algorithm with 

the data-driven architecture. To be exact, we show the results of the proposed algorithm and other 

dissimilar machine learning algorithms in terms of several evaluation measures and on the datasets 

we considered. In addition, the chapter discusses the experimental platform and the methods used 

including computational intelligence and classification. Most of this chapter’s content is being 

considered for publication in the Journal of Biomedical Informatics, and the Journal of Intelligent 

Decision Technologies. 

 

5.1 Introduction  

This chapter discusses the experiments, the results, and analysis of the AD-CR algorithm along with 

the selected classification algorithms used for real cases and controls of multiple datasets. All 

experiments related to feature selection methods were conducted and then specific subsets of 

features identified after analysing the results. To be more specific, we used three different feature 

selection methods to derive results on datasets related to dementia. We then conducted multiple 

experiments using a number of classification algorithms to derive dementia progression models that 

in turn are compared with the proposed AD-CR algorithm’s models in terms of predictive accuracy, 

specificity, and sensitivity measures.  

Furthermore, we reveal the performance of the predictive models obtained by AD-CR and the 

remaining classification algorithms on two dementia groups: data subjects with a baseline diagnosis 

of CN who for 36 months remained with CN or progressed to MCI, and data subjects with a baseline 

diagnosis of MCI, who for 36 months remained with MCI or advanced to AD. The analysis is from 

a neuropsychological item perspective to reveal if any of the cognitive and functional items change 

as the disease stage changes. 

5.2 Feature Selection Experiments  

Multiple major sets of experiments have been conducted using feature selection methods against the 

‘ADNI-Merge-ADAS’ and the ‘ADNI-Merge-FAQ’ datasets to evaluate and identify the cognitive 

and functional items that can be utilised to diagnose AD progression. The analysis criteria were to 
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ascertain potential effective subsets of cognitive and functional features that could trigger the 

progression of AD, and their association with the DSM-5 diagnostic areas related to dementia. The 

first subset of features in each component contains all medical test items to serve as a baseline for 

performance comparison against other subsets. Initially, we assessed cognitive and functional 

parameters separately to capture as many instances as possible per participants as each of these 

datasets contains more instances than an integrated version of both.  

We also assessed an integrated version of both cognitive and functional items (‘ADNI-Merge-

ADAS- FAQ’) to seek any possible correlations and to validate the results obtained against the 

‘ADNI-Merge-ADAS’ and the ‘ADNI-Merge-FAQ’ datasets. The classification results analysis 

details the predictive performance of the subsets and the process for selecting the best performing 

classification model. Each of the neuropsychological components is addressed separately 

concluding with an evaluation of whether AD progression is best assessed on cognitive or functional 

items, or whether a combination of both produces better results.  

In Section 5.3, we compare the results obtained from the ‘ADNI-Merge-ADAS’ and the ‘ADNI-

Merge-FAQ’ datasets and their combined set (‘ADNI-Merge-ADAS- FAQ’) for 36 months from 

the baseline diagnosis with those derived from specific groups of participants to seek any possible 

changes in the results. The feature assessment of the neuropsychological items to keep or omit was 

based on dissimilar criteria including: 

1. High-ranked features derived using the scores calculated by the feature selection methods 

2. Clusters identified by observing any large drops in % of the scores between subsequent 

features’ scores, from top to bottom ranking order as per the below mathematical formula: 

𝑆𝑐𝑜𝑟𝑒 𝐷𝑟𝑜𝑝 𝑖𝑛 % (𝑆𝑖, 𝑆𝑖 + 1) =  
(𝑆𝑖−𝑆𝑖+1)

𝑆𝑖
   (5.1) 

Where 𝑆𝑖 corresponds to the score of feature i, and 𝑆𝑖 + 1 denotes the score of the next in 

rank feature (feature i+1) 

3. Similarity of features is identified based on feature-to-feature assessment where a low 

intercorrelation is preferred. 

4. Common features and their position ranking among the results obtained by the feature 

selection methods 

Each experiment derived unique subsets of features using the approaches summarised in Table 5.1. 

The experiments evaluating the neuropsychological items each result in five unique subsets. More 

details on these selected features’ sets are given in Sections 5.3 and 5.4. We anticipate that the 
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derived subsets can provide clinicians an indication of the sensitive features and their association 

with the DSM-5 cognitive domains to assist in early screening of AD progression. 

 

 

 

 

 

 

 

 

 

 

5.3 Cognitive Feature Selection Results & Analysis 

 
Unique subsets of cognitive items were derived from the ‘ADNI-Merge-ADAS’ dataset (Table 5.2) 

using the methods and criteria described in Table 5.1. ‘Cog-subset2’ was derived based on the 

feature-feature coefficient matrix excluding the class label (Figure 5.1). Based on the correlation 

matrix figures, ‘word recall’, ‘word-finding’, and ‘language comprehension’ had the highest 

correlation against other features. For example, ‘word recall’ and ‘word delay’ had a strong 

correlation, both having the same influence on the diagnostic class attribute. Accordingly, one of 

the items could be ignored —for instance, ‘word recall’ has a larger mean absolute correlation than 

the other cognitive items and is thus it can be a candidate for removal.  

The properties of the ‘word recall’, ‘word-finding’, and ‘language comprehension’ have the highest 

contributing factor to a high correlation when compared with each cognitive item in the dataset. 

While these three features can be made redundant, the remaining features will still have the same 

effect on the class attribute. The removal of these items may reduce overlapping of feature 

properties. The redundant items also have overlapping DSM-5 cognitive domains which are learning 

and memory, language, and complex attention—the remaining items also cover these domains.  

Table 5.1: Summary of the Methods Used to Derive Each Neuropsychological Subset 

Feature 

Subset 
Analysis Approach Used  

1 All Items in each diagnosis method (ADAS, FAQ) 

2 Pearson correlation 

3 Cluster # 1 – A composite of normalised average scores of the feature selection methods 

4 Cluster #1 + #2 – A composite of normalised average scores of the feature selection methods 

5 Common features identified by the feature selection methods. 

 

 
 

Table 5.2: Summary of the Cognitive Items for Each Data Subset 

Subset Items Description  Criteria used  

Cog-subset1 All Cog items  - 

Cog-subset2 

COMMAND, CONSTRUCT, DELAYWORD, NAMING, 

IDEATIONAL, ORIENT, WORDRECOG, RMBRTESTINSTR, 

SPOKENLG, NUMBERCANCEL 

Remove highly correlated 

items based on the feature-

feature correlation matrix 

Cog-subset3 WORDRECALL, DELAYWORD, WORDRECOG 
Cluster analysis based on 

the drop score %  

Cog-subset4 
WORDRECALL, DELAYWORD, WORDRECOG, ORIENT, 

COMMAND, WORDFIND 

Cluster analysis based on 

the drop score % 

Cog-subset5 WORDRECALL, DELAYWORD, WORDRECOG 
Common items in the 

feature selection results 

 

 
Table 5.2: Summary of the Cognitive Items for Each Data Subset 

Subset Items Description  Criteria used  

Cog-subset1 All Cog items  - 

Cog-subset2 

COMMAND, CONSTRUCT, DELAYWORD, NAMING, 

IDEATIONAL, ORIENT, WORDRECOG, RMBRTESTINSTR, 

Remove highly correlated 

items based on the feature-
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However, ‘Cog-subset2’ has only three fewer features than the original cognitive items in ADAS, 

thus does not significantly reduce assessment and computational time. 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1: Correlation Coefficient Matrix of Cognitive Items 

 

‘Cog-subset3’ and ‘Cog-subset4’ are derived from a composite normalised average weighting of 

scores computed by the considered feature selection methods. The computed scores are normalised, 

then averaged as illustrated in Table 5.3a, and then ranked in Table 5.3b from highest to lowest to 

measure the % drop between the features. We then identified three clusters by observing a distinct 

drop pattern—in this case when there was a drop of >30% in the scores of two successive features. 

With the identified cluster groups, we utilise the features within cluster 1 as ‘Cog-subset3’, which 

consists of ‘word recall’, ‘delayed word recall’, and ‘word recognition’, covering the two DSM-5 

cognitive domains of learning and memory, and language. For ‘Cog-subset4’, we combined all 

features within clusters 1 and 2, bringing the subset to six items by adding ‘orientation’, ‘command’, 

and ‘word finding’. ‘Cog-subset4’ covers four out of six of the cognitive domains, which are 

learning and memory, language, executive function, and perceptual motor function. The remaining 

clusters were made redundant due to their lower effect on the class attribute. 
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‘Cog-subset5’ produced similar results to ‘Cog-subset3’, whereby the three feature selection 

methods individually ranked similar items in the top three when computed separately. Thus ‘Cog-

subset5’ will not be tested in the classification process.  

The feature selection methods used identified three items that occurred the greatest number of times 

within each of the derived subsets: ‘word recall’, ‘delayed word recall’, and ‘word recognition’, 

signalling their significant influence on predicting AD progression. These three items have the 

common association of retrieving words which requires a patient to read, remember, recall, and 

recognise, and thus taps into their learning and memory, and language cognitive domains. During 

an assessment, a clinician can pay attention to the performance of these tasks by the patient and 

determine whether there are signs of disease advancement and if the patient needs early intervention.  

We performed feature assessment on the cognitive items for specific dementia groups from baseline 

diagnosis up to 36 months: ‘Cog-CN-MCI’ – participants with a baseline diagnosis of CN who then 

advanced to MCI; ‘Cog-MCI-AD’ – participants with a baseline diagnosis of MCI who then 

advanced to AD. In the ‘Cog-CN-MCI’ group, we treated participants with CN who had not 

progressed to MCI as negative cases, and those who progressed to MCI as positive cases. For the 

‘Cog-MCI-AD’ group, participants with a baseline diagnosis of MCI who remained with this 

diagnosis were treated as negative cases, while those who progressed from MCI to AD were treated 

as positive cases. Figures 5.3a and 5.3b represent the correlations among cognitive items for the 

‘Cog-CN-MCI’ and ‘Cog-MCI-AD’ sub-groups, respectively.  

The results show a high correlation between ‘word recall’ and ‘delayed word recall’ with 

correlations of 70% or more in the ‘Cog-CN-MCI’ and ‘Cog-MCI-AD’ sub-groups. In addition, 

‘word recall’, and ‘delayed word recall’ have high correlations with ‘word recognition’ activity 

Table 5.3A: Cognitive Items with Computed Scores and Normalised Scores Derived by the Feature Selection 
Methods (ADAS-subset3 and ADAS-subset4) 

Feature 
IG CST ReliefF Average 

Scores Score Normalised Score Normalised Score Normalised 

WORDRECALL 0.135 1.000 1956.268 1.000 0.144 0.683 0.894 

COMMAND 0.049 0.246 699.447 0.242 0.026 0.100 0.196 

CONSTRUCT 0.032 0.093 475.613 0.107 0.030 0.121 0.107 

DELAYWORD 0.084 0.551 1327.623 0.621 0.208 1.000 0.724 

NAMING 0.032 0.101 472.299 0.105 0.022 0.080 0.095 

IDEATIONAL 0.038 0.150 534.736 0.143 0.015 0.047 0.113 

ORIENT 0.044 0.201 691.697 0.237 0.081 0.372 0.270 

WORDRECOG 0.062 0.364 975.468 0.408 0.172 0.826 0.533 

RMBRTESTINSTR 0.021 0.002 298.131 0.000 0.005 0.000 0.001 

LANGUAGE 0.028 0.059 389.760 0.055 0.009 0.016 0.043 

WORDFIND 0.042 0.182 629.659 0.200 0.035 0.147 0.176 

SPOKENLG 0.025 0.033 347.811 0.030 0.009 0.020 0.028 

NUMBERCANCEL 0.021 0.000 314.056 0.010 0.060 0.268 0.092 

 

 

 
Table 5.3a: Cognitive Items with Computed Scores and Normalised Scores Derived by the Feature Selection Methods 

(ADAS-subset3 and ADAS-subset4) 

IG CST ReliefF Average 
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pinpointing to overlapping of these activities. To be more specific, the correlations between ‘word 

recall’ & ‘word recognition’, and ‘delayed word recall’ & ‘word recognition’ derived from the ‘Cog- 

 

 Table 5.3B: Cognitive Clusters Identified Based on the % Drop Between the Ranked Items According to their Normalised 
Average Scores (ADAS-subset3 and ADAS-subset4) 

Feature By Rank 
Normalised 

Average Scores 

% Drop after 

Normalisation 

Cluster 

No. 

 

WORDRECALL 0.894   Cluster #1  

DELAYWORD 0.724 19.07% Cluster #1  

WORDRECOG 0.533 26.41% Cluster #1  

ORIENT 0.270 49.29% Cluster #2  

COMMAND 0.196 27.47% Cluster #2  

WORDFIND 0.176 10.17% Cluster #2  

IDEATIONAL 0.113 35.66% Cluster #3  

CONSTRUCT 0.107 5.45% Cluster #3  

NAMING 0.095 10.90% Cluster #3  

NUMBERCANCEL 0.092 3.13% Cluster #3  

LANGUAGE 0.043 53.22% Cluster #4  

SPOKENLG 0.028 36.03% Cluster #5  

RMBRTESTINSTR 0.001 97.89% Cluster #6  

 

 

CN-MCI’ and ‘Cog-MCI-AD’ sub-groups are 0.35 and 0.56, and 0.34 and 0.61, respectively thus 

signalling higher correlations in the participants who progressed from MCI to AD.  

Results derived by the feature selection methods (IG, CST, and ReliefF) against the dementia sub-

groups showed that ‘delayed word recall’, ‘word recognition’, and ‘word recall’ maintained high 

correlation with the diagnostic class. This supports earlier results obtained by the feature selection 

methods from the ‘ADNI-Merge-ADAS’ dataset in which these cognitive activities appeared to 

have high correlation with the class label (DX Progress), ranking top when compared with the 

remaining cognitive activities. Therefore, when one or more of these features is noticed by the 

clinicians during the diagnosis process of a patient, this should be taken into consideration.  

The results obtained on the ‘Cog-CN-MCI’ sub-group suggest that ‘ideational praxis’, ‘naming of 

objects’, and ‘commands’ cognitive features form a cluster since these have little overlapping with 

other cognitive features in the dataset. For example, ‘command’, which measures impairment in 

receptive speech, has low negative correlations with ‘word recall’, ‘delayed word recall’, ‘naming’,  
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Figure 5.2b: Feature-Feature Correlation Matrix of Cognitive Items for MCI to AD Group 

Figure 5.2a: Feature-Feature Correlation Matrix of Cognitive Items for CN to MCI Group 
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orientation’, ‘remembering instructions’, ‘spoken language comprehension’, and ‘number 

cancellation tasks’. In addition, ‘naming of objects’, which measures learning and memory besides 

language by asking patients to name 12 random objects besides the fingers on their dominant hand 

has low negative correlations with ‘command’, ‘constructional praxis’, ‘ideational praxis’, 

‘remembering instructions’, ‘language’ and’ number cancellation tasks’. While ‘ideational praxis’, 

which measures the ability of the participant in performing a complex sequence of actions, has very 

little negative correlations with all cognitive items except two: ‘command’ and ‘constructional 

praxis,’ making it the most different item. The three cognitive activities (‘command’, ‘naming of 

objects’, ‘ideational praxis’) cover five cognitive areas in the DSM-5 framework (language, 

executive function, perceptual motor skills, learning and memory, complex attention) making them 

good candidates for representing cognitive items in neuropsychological assessments including 

ADAS especially for individuals that exhibit MCI traits.      

Overall, the results on assessing the cognitive activities show non-overlapping features derived from 

the group of participants who had a baseline diagnosis of CN and progressed to AD, which are 

‘command’, ‘naming of objects’, and ‘ideational praxis’. These cognitive activities when considered 

as a group have very little correlations with all remaining cognitive items assessed. There was more 

overlapping among the features for the ‘Cog-MCI-AD’ sub-groups suggesting a difficult task to 

separate the participants who remained MCI from those who may advance to light dementia since 

feature-feature correlations were all above 14%. For example, the least correlation found from the 

sub-group of ‘Cog-MCI-AD’ was between ‘spoken language’ and ‘word recognition’, which 

supports previous finding from the ‘ADNI-Merge-ADAS’ dataset, possibly pinpointing that these 

two can be investigated further by the clinicians when clinically assessing patients with MCI. 

 

5.4 Functional Feature Selection Results Analysis 

 
From the ‘ADNI-Merge-FAQ’ dataset, five unique subsets of functional items were devised (Table 

5.4) using the feature selection methods based on criteria described in Table 5.1. Using the Pearson’s 

correlation matrix shown in Figure 5.3, six features including ‘finance’, ‘shopping’, ‘travel’, 

‘remembering an occasion’, ‘completing forms’ and ‘current events’ have been identified as having 

high correlation with other functional items, all scoring above the cut-off coefficient of 0.6. For 

example, ‘finance’ and ‘completing forms’ activities have a strong correlation thus one of the two 

items can be ignored. Both items have high mean absolute correlation against the rest of the items 

when the entire correlation matrix is analysed. This is also due to having overlapping DSM-5 



131 

 

domains with the remaining functional items (‘playing a game’, ‘making a beverage’, ‘watching 

TV’, ‘remembering an occasion’) which makes up ‘Func-subset2’. These four functional items 

tapped into all six of the prescribed DSM-5 criteria to diagnose AD, and therefore serve as a good 

measure to investigate if this subset when processed by a classification algorithm can provide 

models with the best prediction accuracy for AD progression. 

Func-subset3’ and ‘Func-subset4’ were also derived by identifying cluster groups using the 

composite normalised average weighting of the scores derived by the considered feature selection 

methods. ‘Func-subset3’, chosen using cluster #1 as shown in Table 5.5a, consists of ‘remembering 

an occasion’, ‘shopping’, ‘finance’, ‘completing forms’, ‘travel’, and ‘current events’ activities, 

covering four DSM-5 cognitive domains. ‘Func-subset4’ is a combination of both clusters 1 and 2, 

adding three additional functional items: ‘watching TV’, ‘playing a game’, and ‘preparing a meal’. 

‘Func-subset4’ covers more DSM-5 domains in comparison to ‘Func-subset4’ with two additional 

domains which are language and social cognition associated with ‘watching TV’ activity. However, 

‘Func-subset4’ has only one feature less than the original functional items, and while it may provide 

better performance, it does not dramatically reduce assessment time. Moreover, ‘Func-subset5’ was 

Table 5.4: Summary of the Derived Functional Items for Each Subset of FAQ 

Subset Functional Items FS Criteria 

Func-subset1 All FAQ items   
Remove highly correlated items based on 

the feature-feature correlation matrix 

Func-subset2 GAME, BEVERAGE, MEAL, TV 
Cluster analysis based on the drop 

score %  

Func-subset3 REMEMBER, SHOP, FINANCE, FORM, TRAVEL, EVENT 
Cluster analysis based on the drop 

score % 

Func-subset4 
REMEMBER, SHOP, FINANCE, FORM, TRAVEL, EVENT, TV, 

GAME, MEAL 

Common items in the feature selection 

results 

Func-subset5 REMEMBER, SHOP, FINANCE 
Remove highly correlated items based on 

the feature-feature correlation matrix 

 

 
Table 5.4: Summary of the Derived Functional Items for Each Subset of FAQ 

Subset Functional Items FS Criteria 

Func-subset1 All FAQ items   
Remove highly correlated items based on 

the feature-feature correlation matrix 

Func-subset2 GAME, BEVERAGE, MEAL, TV 
Cluster analysis based on the drop 
score %  

Func-subset3 REMEMBER, SHOP, FINANCE, FORM, TRAVEL, EVENT 
Cluster analysis based on the drop 

score % 

Func-subset4 
REMEMBER, SHOP, FINANCE, FORM, TRAVEL, EVENT, TV, 
GAME, MEAL 

Common items in the feature selection 
results 

Func-subset5 REMEMBER, SHOP, FINANCE 
Remove highly correlated items based on 

the feature-feature correlation matrix 

 

 

 
 

 

 

Figure 5.3: Correlation Coefficient Matrix of Functional  Items 
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derived based on the common top-ranked features derived by the feature selection methods’ scores 

as shown in Table 5.5b, i.e., ‘finance’, ‘shopping’, and ‘remembering an occasion’. The domains 

that these functional items tapped into are executive function, perceptual motor skills, complex 

attention besides learning and memory.  

Within each of the subsets derived, ‘remembering an occasion’, ‘shopping,’ and ‘finance’ are the 

functional activities that occurred the greatest number of times. They tapped into the cognitive 

domains of executive function, perceptual motor skills, complex attention besides learning and 

memory. Learning and memory is the only common domain that is covered across the three items, 

suggesting the significance of this domain on AD progression. During an assessment, a clinician 

can specifically focus on the patient’s performance of these tasks and determine whether early 

intervention is required.  

We further examined the correlation among functional features for two dementia sub-groups from 

baseline diagnosis up to 36 months: ‘Func-CN-MCI’ – participants with a baseline diagnosis of CN 

who then progressed to MCI or remained CN; and ‘Func-MCI-AD’ – participants with a baseline 

Table 5.5B: Cluster Items Identified Based on the % Drop Between the Functional  Items According to their 
Normalised Average Scores (Func-subset3 and Func-subset4) 

Feature by 

Rank 

Normalised 

Average 

Scores 

% drop after 

Normalisation 

Cluster 

No. 

 

REMEMBER 0.937  Cluster #1  

SHOP 0.930 0.79% Cluster #1  

FINANCE 0.881 5.28% Cluster #1  

FORM 0.844 4.23% Cluster #1  

TRAVEL 0.816 3.26% Cluster #1  

EVENT 0.809 0.88% Cluster #1  

TV 0.699 13.57% Cluster #2  

GAME 0.658 5.85% Cluster #2  

MEAL 0.632 3.96% Cluster #2  

BEVERAGE 0.000 100.00% Cluster #3  

 

 
Table 5.5b: Cluster Items Identified Based on the % Drop Between the Functional  Items According to their Normalised 

Average Scores (Func-subset3 and Func-subset4) 

Feature by 

Rank 

Normalised 

Average 

Scores 

% drop after 

Normalisation 

Cluster 

No. 

 

REMEMBER 0.937  Cluster #1  

SHOP 0.930 0.79% Cluster #1  

FINANCE 0.881 5.28% Cluster #1  

FORM 0.844 4.23% Cluster #1  

TRAVEL 0.816 3.26% Cluster #1  

EVENT 0.809 0.88% Cluster #1 

Table 5.5A: Functional Items with Computed Scores and Normalised Scores Derived by the Feature Selection 
Methods (Func-subset3 and Func-subset4) 

Feature 
IG CST  ReliefF Average 

Scores Score Normalised Score Normalised  Score Normalised 

FINANCE 0.064 0.968 1610.665 0.977  0.050 0.698 0.881 

FORM 0.061 0.905 1542.824 0.920  0.050 0.706 0.844 

SHOP 0.065 0.998 1618.804 0.984  0.053 0.808 0.930 

GAME 0.049 0.623 1229.347 0.654  0.050 0.698 0.658 

BEVERAGE 0.022 0.000 456.453 0.000  0.033 0.000 0.000 

MEAL 0.047 0.572 1168.080 0.603  0.051 0.722 0.632 

EVENT 0.054 0.738 1313.117 0.725  0.056 0.963 0.809 

TV 0.053 0.711 1289.698 0.705  0.050 0.682 0.699 

REMEMBER 0.065 1.000 1637.527 1.000  0.053 0.812 0.937 

TRAVEL 0.053 0.711 1328.007 0.738  0.057 1.000 0.816 

 

 
Table 5.5a: Functional Items with Computed Scores and Normalised Scores Derived by the Feature Selection Methods (Func-

subset3 and Func-subset4). 

Feature 
IG CST ReliefF Average 

Scores Score Normalised Score Normalised Score Normalised 

FINANCE 0.064 0.968 1610.665 0.977 0.050 0.698 0.881 

FORM 0.061 0.905 1542.824 0.920 0.050 0.706 0.844 

SHOP 0.065 0.998 1618.804 0.984 0.053 0.808 0.930 

GAME 0.049 0.623 1229.347 0.654 0.050 0.698 0.658 

BEVERAGE 0.022 0.000 456.453 0.000 0.033 0.000 0.000 

MEAL 0.047 0.572 1168.080 0.603 0.051 0.722 0.632 

EVENT 0.054 0.738 1313.117 0.725 0.056 0.963 0.809 

TV 0.053 0.711 1289.698 0.705 0.050 0.682 0.699 

REMEMBER 0.065 1.000 1637.527 1.000 0.053 0.812 0.937 

TRAVEL 0.053 0.711 1328.007 0.738 0.057 1.000 0.816 
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diagnosis of MCI who then progressed to AD or remained as MCI. The feature-feature correlations 

for the ‘Func-CN-MCI’ and ‘Func-MCI-AD’ sub-groups are depicted in Figures 5.4a and 5.4b, 

respectively.  

The results obtained from the ‘Func-CN-MCI’ reveal that there are positive correlations although 

less than the cut-off at 0.60 among five cognitive activities, which are ‘finance’, ‘completing forms’, 

‘playing a game’, ‘current events’, and ‘remembering an occasion’. A feature-feature correlation 

was observed although it was less than 0.60 between ‘current events ‘, and ‘playing a game’ as both 

activities overlap in the learning and memory cognitive domain. This correlation is more obvious 

for the participants who progressed to MCI or remained CN from a baseline CN when compared 

with the previous results of the original ‘ADNI-Merge-FAQ’ dataset. To be exact, the corelation 

between the ‘current events’ and ‘playing a game’ is 34.40% higher than the second highest 

correlations obtained among the functional items from the ‘Func-CN-MCI’ group. Additionally, 

‘current events’ has a 0.34 correlation with ‘preparing a meal’, and ‘remembering an occasion’ 

activities which aligns with previous findings derived from the ‘ADNI-Merge-FAQ’ dataset using 

 feature selection methods. 

 

The results derived by the correlation matrix show that despite that there are some associations 

among functional items in the FAQ method, these are limited to few functional items and often less 

than the cut-off score of 0.60, at least for participants in the ‘Func-CN-MCI’ group. For example, 

the ‘finance’ activity, which deals with preparing finances and involves cognitive domains including 

complex attention, executive functioning, and learning and memory has none to minimal 

  

 

 
 

Figure 5.4a: Feature-Feature Correlation Matrix of Functional Items for CN to MCI Group 
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associations with most functional  activities except ‘remembering an occasion’. The same pattern is 

observed for the ‘completing forms’ activity since such an activity involves similar cognitive 

functions. The least functional activity that has associations with other functional features is 

‘watching TV’ as although it covers five cognitive areas, the overlapping of such areas with the 

remaining functional items is not high with one exception which is its association with ‘travel’ 

activity. When we evaluated the subset of ‘Func-CN-MCI’ using a correlation feature subset (CFS) 

method, which considered both feature-feature and feature-class associations (Hall, 1999), 

‘watching TV’ was selected along with ‘remembering an occasion’—the latter was the top-ranked 

feature in IG, CST, and ReliefF feature selection results. 

The results obtained from the ‘Func-MCI-AD’ show that in general it is hard to distinguish cases of 

MCI from AD using just functional items, especially in the early stages up to 36 months from a 

baseline diagnosis of MCI. This is since the correlations obtained among the functional items are 

noticeable and with close proximities making the process of differentiating specific functional items 

that can trigger advancements to AD a difficult task. It seems that there is high overlapping in  

 

Figure 5.4b: Feature-Feature Correlation Matrix of Functional Items for MCI to AD Group 

 

functional activities and cognitive traits for participants with a baseline diagnosis of MCI who then 

advance to AD or remain MCI, at least when using functional and cognitive neuropsychological 

assessments. The fine lines that differentiate cases with MCI from AD, especially in the early stages, 
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are difficult to obtain at least using the data subjects and the medical assessment methods we 

considered.  

The top-ranked features obtained by the feature selection methods from the ‘Func-MCI-AD’ dataset 

are ‘finance’, ‘completing forms’, ‘shopping’, and ‘remembering an occasion’ (Func-subset5), 

which supports the results derived from the general functional data, i.e. ‘ADNI-Merge-FAQ’ 

dataset, by the same methods. The same features also appeared to be significant based on the 

correlation feature set results. 

5.5 Combined Cognitive-Functional Feature Selection Results Analysis 

 
Most of the existing data-driven approaches in cognitive-related studies have investigated cognitive 

domains in dementia screening and diagnosis, at least using the ADNI data repository or other scarce 

data repositories related to dementia conditions. Limited previous research works have shown the 

assessment of cognitive and functional items together in a single composite to seek the progression 

of AD, for instance Wessels et al. (2015). However, their approach to measure cognitive and 

functional items was primarily based on statistical visualisation with principal component analysis 

(PCA) over a period of time (longitudinal) and did not use advanced techniques such as 

computational intelligence and machine learning. Therefore, their study did not capture the 

similarity or dissimilarity of items in both domains, mapped these items to the degenerative domains 

defined in the DSM-5 manual, and constructed classification models based on data modelling and 

training processes to predict AD progression. Our research augmented previous research works, not 

only by measuring cognitive and functional domains separately, but also by assessing key 

performance indicators in both domains that may trigger advancements of the disease using feature 

selection with classification algorithms. The approach proposed may provide different stakeholders, 

such as the clinicians, with rich information related to the disease’s progression, and cognitive and 

functional areas that need more attention. 
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The relationships among functional and cognitive items together have been investigated using 

feature selection. Figure 5.5 displays cognitive and functional items correlations from the processed 

‘ADNI-Merge-ADAS-FAQ’ dataset, and for all baseline diagnostic class labels. This dataset 

combined ‘ADAS-sheet’, ‘FAQ-sheet’, and ‘ADNI-Merge’ retaining only the cognitive and 

functional items. The results obtained support the previous results derived by the feature selection 

 

methods and the correlation matrices’ results obtained from the ‘ADNI-Merge-ADAS’ and ‘ADNI-

Merge-FAQ’ datasets. 

5.6 Classification Results Analysis  

Using the derived distinct subsets of features from the ‘ADNI-Merge-ADAS’ and ‘ADNI-Merge-

FAQ’ datasets, we evaluated their goodness by building predictive models using dissimilar 

classification algorithms including Logistic Regression (LR), Multilayer Perceptron (MLP), 

Sequential Minimal Optimization (SMO), K-Nearest Neighbour (KNN; k=5), Naïve Bayes (NB), 

Ripple-Down Rule learner (Ridor), and Non-nested generalised exemplars (Nnge) (le Cessie & 

Houwelingen, (1992); Rumelhart et al., (1986);  Platt, (1998); Aha et al., (1991); John & Langley, 

(1995); Gaines & Compton, (1995); Martin, (1995)), besides the AD-CR. The reason for choosing 

 

 

 

 

Figure 5.5: Feature-Feature Correlation Matrix of Combined Cognitive and Functional Items for all Dementia Stages 

Figure 5.5: Feature-Feature Correlation Matrix of Combined Cognitive and Functional Items for all Dementia Stages 
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these algorithms is because they adopt different learning schemes, and they produce a various format 

of classification models. Other reasons have been discussed in Chapter 4. 

The difference in the number of features in each subset and their DSM-5 cognitive domain coverage 

will assist us when comparing the classification model performance measures such as predictive 

accuracy, sensitivity, and specificity. ‘Cog-subset1’ and ‘Func-subset1’ in Tables 5.2 and 5.3, 

respectively, act as a baseline performance guide for both cognitive and functional items, to assess 

the quality of the performance of the other subsets with reduced features. More importantly, we 

assess predictive models of data subjects that belong to specific dementia stages including the 

progression of the disease for up to 36 months for two sub-groups (CN-MCI) and (MCI-AD). 

 

5.6.1 Cognitive Classification Results Analysis 

Table 5.6 (left side) illustrates the performance of the classification algorithms against each 

cognitive subset using only the derived features and the class. The results from the feature 

assessment analysis and without using any demographic features showed the superiority of the 

proposed AD-CR algorithm. Specifically, the models derived by the AD-CR algorithm all have 

acceptable performance in terms of sensitivity, specificity, and predictive accuracy even when only 

three items were processed (‘Cog-subset3’). 

Moreover, the AD-CR algorithm was superior to the other algorithms when processing the baseline 

and ‘Cog-subset2’ in terms of predictive accuracy. For instance, it was able to produce predictive 

models from the baseline cognitive subset with a higher accuracy than these of LR, MLP, SMO, 

KNN, NB, Ridor, and Nnge with 13.12%, 7.36%, 14.18%, 0.87%, 23.93%, 2.56%, and 0.36%, 

respectively. In fact, the AD-CR algorithm was able to derive a model from just three cognitive 

items of the ‘Cog-subset3’ (word recall, delayed word recall, and word recognition) with 83.80% 

sensitivity rate which is relatively good. This rate is just 3.10% less than when the same algorithm 

processed the complete cognitive items (Cog-subset1). It seems that using three items only of ADAS 

that belong to the learning and memory and language DSM cognitive domains can indeed help 

clinicians in detecting possible disease progression, at least using models generated by the AD-CR 

and KNN algorithms. These three items also commonly appear in the other derived subsets, 

underlining their importance in predicting AD progression.  

Furthermore, the results revealed that albeit the KNN algorithm derived predictive models that were 

not the most accurate from the complete cognitive items and ‘Cog-seubset2’, it was able to derive 

models from ‘Cog-subset3’ and ‘Cog-subset4’ that were slightly better than the AD-CR. This 

supports the view that the cognitive items in these subsets are important for detecting any possible 
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disease advancement. Specifically, evaluating three additional cognitive items of ‘orientation’, 

‘command’, and ‘word finding’ in addition to the items of ‘Cog-subset3’ resulted in predictive 

models with a 3.10% and 4.24% increase in accuracy for the KNN and the AD-CR algorithms, 

respectively, when compared with models derived by the same algorithms from just three items 

(‘Cog-subset3’). In addition, the Ridor and Nnge algorithms, which produce classifiers with rules, 

were able to produce classification models for AD progression that were good in terms of accuracy 

Table 5.6: Performance of the Classification Methods from Different Subsets of the Cognitive Items 

Subset Algorithm 
Excluding Demographic Features Including Demographic Features 

Accuracy 
% 

Sensitivity 
% 

Specificity 
% 

Accuracy 
% 

Sensitivity 
% 

Specificity 
% 

Cog-subset1 
(baseline) 

LR 74.88 76.90 72.90 83.15 87.10 79.30 

MLP 80.64 83.60 77.80 87.03 87.70 86.40 

SMO 73.82 77.00 70.70 82.59 88.60 76.70 

KNN 87.13 92.10 82.30 88.78 93.50 84.10 

NB 64.07 94.40 34.30 70.54 94.50 35.18 

Ridor 85.44 79.70 91.10 90.32 86.10 94.50 

Nnge 87.64 86.90 88.40 92.22 91.60 92.80 

AD-CR 88.00 86.90 89.10 92.38 91.30 93.50 

  
       

Cog-subset2 

LR 71.28 69.90 72.70 90.26 93.30 87.30 

MLP 77.29 76.90 77.60 86.97 87.70 86.30 

SMO 69.72 63.00 76.30 81.81 88.30 75.40 

KNN 85.64 89.80 81.50 88.52 92.90 84.30 

NB 63.15 93.50 33.30 70.81 93.20 48.80 

Ridor 89.32 90.20 88.50 89.41 86.70 92.10 

Nnge 83.68 82.60 84.70 92.16 91.80 92.50 

AD-CR 85.21 83.80 86.60 91.90 90.80 93.00 

  
       

Cog-subset3 

LR 61.11 58.60 63.60 77.03 80.90 73.30 

MLP 62.42 64.60 60.30 83.78 85.30 82.30 

SMO 61.96 58.90 64.90 77.20 84.20 70.30 

KNN 82.81 88.90 76.80 89.10 91.90 86.30 

NB 59.59 61.90 57.30 78.51 85.90 71.30 

Ridor 79.46 77.30 81.50 88.59 82.90 94.20 

Nnge 77.01 76.80 77.20 91.77 91.50 92.00 

AD-CR 80.53 83.80 77.40 91.25 89.50 92.90 

  
       

Cog-subset4 

LR 79.40 84.10 74.80 90.35 93.10 87.60 

MLP 74.10 84.20 65.90 85.97 87.80 84.20 

SMO 68.26 66.90 69.60 80.80 88.10 73.60 

KNN 85.91 90.30 81.60 89.61 92.70 86.60% 

NB 68.78 93.20 44.80 77.63 90.50 65.00 

Ridor 83.06 75.80 90.10 89.63 86.30 92.90% 

Nnge 83.34 83.50 83.20 92.12 92.00 92.30 

AD-CR 84.77 85.40 84.20 91.93 90.70% 93.20 

 

 
Table 5.6: Performance of the Classification Methods from Different Subsets of the Cognitive Items  

Subset Algorithm 
Excluding Demographic Features Including Demographic Features 

Accuracy 
% 

Sensitivity 
% 

Specificity 
% 

Accuracy 
% 

Sensitivity 
% 

Specificity 
% 

Cog-subset1 
(baseline) 

LR 74.88 76.90 72.90 83.15 87.10 79.30 

MLP 80.64 83.60 77.80 87.03 87.70 86.40 

SMO 73.82 77.00 70.70 82.59 88.60 76.70 

KNN 87.13 92.10 82.30 88.78 93.50 84.10 

NB 64.07 94.40 34.30 70.54 94.50 35.18 

Ridor 85.44 79.70 91.10 90.32 86.10 94.50 

Nnge 87.64 86.90 88.40 92.22 91.60 92.80 

AD-CR 88.00 86.90 89.10 92.38 91.30 93.50 
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from all cognitive subsets except ‘Cog-subset3’. This suggests that rule-based classification is an 

appropriate machine learning approach for the problem of predicting AD progression.  

We investigated the confusion matrix results to understand how these classification models behave 

in terms of performance. For instance, for the AD-CR model produced from ‘Cog-subset1’, out of 

the 5,923 positive instances that were supposed to have AD progression, the AD-CR algorithm was 

able to correctly predict 5,147 instances (true positive) and misclassified 776 instances as ‘no 

progression’ (false negative), when these instances were in fact having AD progression. The ability 

of the model to predict AD progression correctly is significant especially in the medical field.  

While using the AD-CR algorithm, models derived from ‘Cog-subset1’ and ‘Cog-subset2’ produced 

the best accuracy measure; surprisingly, the NB probabilistic algorithm derived models from these 

two cognitive subsets with the highest sensitivity. NB algorithm derived models from the ‘Cog-

subset1’ and ‘Cog-subset2’ with 93.50% and 94.40%, respectively—superior to the remaining 

classification algorithms, at least on the sensitivity metric. Nevertheless, the specificity rates derived 

by the NB algorithm from these datasets were unacceptable at 33.30% and 34.30%, respectively. In 

other words, the NB algorithm can detect disease advancement but with a high number of false 

positives. For example, by analysing the confusion matrices of the NB model against ‘Cog-subset1’, 

we discovered that out of 5,923 positive instances, only 333 instances were misclassified by the NB 

algorithm as ‘no progression’. However, there were 3,957 false positives out of 6,020 cases which 

contributed to the low specificity rate. In general, the sensitivity rate of the models derived by NB 

deteriorated significantly to 61.90% when the number of cognitive items was reduced to just three 

(‘Cog-subset3’) as shown in Table 5.6. 

The proposed algorithm was able to balance between specificity and sensitivity rates across all 

models derived from the distinct cognitive feature subsets. Specifically, the AD-CR derived models 

with sensitivity and specificity rates of 86.90%, 89.10%, and 83.80%, 86.60%, respectively from 

the ‘Cog-subset1’ and ‘Cog-subset2’. When comparing the sensitivity rates of the models produced 

by the AD-CR algorithm it is evident that the model derived from the ‘Cog-subset1’ had the highest; 

the difference in percentages of AD-CR models across all other measures against ‘Cog-subset3’ is 

not significant, where only its specificity (77.40%) is below 80.00%. The fact that ‘Cog-subset3’ 

when processed by the proposed algorithm can produce good results with only three key cognitive 

items, means less assessment and computation time is required. Furthermore, models derived from 

‘Cog-subset3’ achieved this despite this subset of data covering only two DSM-5-prescribed 

cognitive domains, in comparison to ‘Cog-subset2’ and ‘Cog-subset4’ which cover five and four 

cognitive domains, respectively. Interestingly, the overall performance of the classification 

techniques produced similar results as other validation studies where the accuracy ranged from 
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82%–99.6%, sensitivity from 58%–74% and specificity from 91%–98% (Nogueira et al., 2018; 

Yang et al., 2019).  

Reducing the number of items in assessments related to dementia conditions, such as AD, can enable 

diagnosticians to evaluate specific elements related to a patient’s condition based on the state of the 

disease, the patient’s medical history, and the characteristics. Focus can then be on the important 

cognitive elements detected for the progression of the disease for individualised intervention and 

management plans to be designed to suit the patient and their family members. This will have 

positive impacts on their lives as well as on the healthcare system.  

We investigated the impact of adding demographic features (age, gender, level of education, race 

category, marital status) to the cognitive items (right side of Table 5.6). The performance across all 

classification algorithms improved immediately, particularly evident in the SMO, LR, and MLP 

algorithms with noticeable improvement across all performance measures. For example, the 

improvement in accuracy, sensitivity, and specificity rates of the LR models after considering 

demographics with cognitive items of ‘Cog-subset2’ increased 18.98%, 23.40%, and 14.60%, 

respectively, when compared with the model derived from ‘Cog-subset2’ without geographics. 

Overall, the performance metrics’ results improved for all the classification algorithms besides AD-

CR when including demographics in the cognitive subsets. 

While the AD-CR algorithm also improved, though not as significantly (at least when processing 

‘Cog-subset1’), it was still superior in comparison to the other algorithms overall as it further 

elevated reaching a performance above 92%, 92.38% accuracy, 91.30% sensitivity, and 93.50% 

specificity. The fact that the proposed algorithm derived classification models from all distinctive 

cognitive subsets with predictive accuracy above 90.00% is evidence that this algorithm is suitable 

for detecting dementia stage progression. The AD-CR algorithm produced models from all 

distinctive cognitive subsets with sensitivity and specificity rates of over 90.00%—except a 

specificity of 89.50% from ‘Cog-subset3’, which contains only three cognitive items plus 

demographics.  

In general, the Nnge algorithm derived competitive classification models on most cognitive subsets 

and above 90.00% accuracy rate. The AD progression models’ performance derived by the AD-CR 

and Nnge algorithms from just six features (‘Cog-subset4’) particularly their accuracy, sensitivity, 

and specificity, are close to those derived by the same algorithm from the complete cognitive items 

set (‘Cog-subset1’). One notable result was observed by the models produced by the LR algorithm 

from ‘Cog-subset4’ including demographics in which the accuracy, sensitivity, and specificity rates 

improved by 7.20%, 6.00%, and 8.30%, respectively, when compared with those derived by the 

same algorithm from ‘Cog-subset1’ with demographics. The same pattern was also observed on the 
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accuracy and specificity rates of the NB algorithm which improved by 7.09% and 29.82%, 

respectively, making the six cognitive items in ‘Cog-subset4’ significant, especially when 

investigated with demographic attributes such as age and gender. In fact, age was the highest-ranked 

feature among geographics that correlated with the class label followed by gender and education 

level, at least using the feature assessment results. 

Even though the AD-CR algorithm also improved when it processed ‘Cog-subset2’, the subset still 

involves more cognitive features and does not meet our aim of identifying key cognitive items that 

can predict disease progression, and will not result in time and resource saving for the clinicians. 

The model derived by the C4.5 algorithm from ‘Cog-subset4’ can achieve better performance with 

just six cognitive items covering four out of six of the DSM-5 cognitive domains which are learning 

and memory, language, executive function, and perceptual motor function. From the 5,923 positive 

instances that were supposed to have AD progression, the AD-CR algorithm was able to correctly 

predict 5,371 instances to have AD progression (true positive) and misclassified 552 instances as 

no progression (false negative), when these instances actually had AD progression. 

Overall, models produced from ‘Cog-subset4’ with additional demographic features by the machine 

learning algorithms generate good performance and save time by only requiring assessment in 6 

activities. While the AD-CR algorithm may not have produced the best results across all measures, 

its overall results are above 90%, falling within the performance range of other ADAS-cog 

validation studies (Nogueira et al., 2018; Yang et al., 2019) and required the use of fewer features, 

thus it can be classified as a good performing model. 

We investigated the predictive models generated by the classification algorithms from two subsets 

of participants for 36 months from the baseline diagnosis. Figure 5.6a depicts the accuracy, 

sensitivity, and specificity rates derived by the considered classification algorithms from the ‘Cog-

CN-MCI’ and ‘Cog-MCI-AD’ dementia sub-groups, respectively. The left side images in each of 

these two figures represent the performance metrics generated by the classification algorithm from 

the cognitive items without demographics, while the right side images represent the models derived 

with demographics.  

The performance metrics’ rates show that the AD-CR algorithm is superior to the remaining 

algorithms, at least for models derived from the ‘Cog-CN-MCI’, as it generated models with the 

best accuracy and specificity rates. To be exact, the AD-CR algorithm generated models from the 

‘Cog-CN-MCI’ dataset with 96.06% accuracy and 98.01% specificity. The results were (21.06%, 

20.11%, 15.95%, 16.61%, 20.30%, 21.60%, 8.48%) and (12.50%, 25.36%, 14.50%, 3.73%, 6.20%, 

12.39%, 19.90%) higher in accuracy and specificity rates than those of the LR, MLP, SMO, KNN, 

NB, Ridor, and Nnge algorithms, respectively.  
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The sensitivity rate, which denotes the proportion of visits that showed progression, is high for the 

models derived by the AD-CR algorithm from the ‘Cog-CN-MCI’ dataset at 94.90%; the Nnge 

algorithm alone produced models with slightly higher sensitivity than AD-CR. For the models 

produced, at least from the ‘Cog-MCI-AD’ dataset, rule-based algorithms particularly Ridor and 

ours produced better performance than the statistical, neural network, SVM, and probabilistic-based 

algorithms. Ridor produced predictive models with 95.23% accuracy, 1.25% higher than the AD-

CR algorithm. However, the sensitivity rate of the AD-CR’s algorithm models derived from the 

 

Figure 5.6a: Performance of the Classification Methods against CN-MCI Cognitive Groups with and without Demographics, 
Respectively 
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Figure 5.6b: Performance of the Classification Methods against MCI-AD Cognitive Groups with and without Demographics 
Respectively 
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‘Cog-MCI-AD’ dataset was 0.75% higher than Ridor making AD-CR better at detecting cases with 

positive class labels which are potentially progressing from the MCI stage to dementia (AD).  

The highest sensitivity rate of 95.70% was produced from the ‘Cog-MCI-AD’ dataset when 

associated with Nnge’s model; however, the specificity and accuracy rates of this algorithm are 

unacceptable at 61.50% and 78.14%, respectively. Despite the Nnge algorithm being able to detect 

positive cases correctly it has high numbers of false positives. To be specific, the Nnge algorithm 

misclassified 1,182 instances from 3068 to ‘AD progression’, which is relatively high. The AD-CR 

algorithm had only 102 cases of false positives for the same group of participants (MCI-AD). 

We further investigated the impact when demographic attributes are coupled with the cognitive 

items of the special groups; the results show little to no impact (see right side images of Figure 5.6a 

and 5.6b. Possible reasons are that the age ranges within these groups are limited, and the number 

of instances in these datasets is small when compared with the original cognitive dataset. 

We want to evaluate whether the results represented by the evaluation metrics (see Figure 5.6a) may 

deviate. Specifically, if the accuracy, sensitivity, and specificity results, which were obtained based 

on the mean evaluation, are real or due to statistical chance. This assumption can be achieved using 

the t-test, so we test the data sample of the CN-MCI dementia sub-group. Initially, and to determine 

whether these populations have equal variances, we conducted an F-test with alpha significant level, 

i.e.  α = 0.05, to identify the ideal t-test type. The results showed that there was a significant 

difference in the population variances between metrics, i.e., accuracy and sensitivity rates. as the 

two-tailed p-value was not large enough. The large difference explains the significance in the 

variance between the two populations of these metrics. We repeated the same F-test for pairs of the 

sensitivity + specificity, and accuracy + specificity populations, and the results were consistent and 

indicated that the two-tailed p value was not large enough, and hence there is a significant difference 

in population variances between sensitivity + specificity and accuracy + specificity, respectively. 

The results of the variance analysis led us to conduct a t-test for the considered metrics. The results 

of the t-test using the critical value show that the one-tailed p-value is larger than 0.05, so we cannot 

support the alternate hypothesis that the means of the metrics’ results have been created by statistical 

chance. Since the test statistics obtained are smaller than the critical value, there is no statistical 

evidence that these metrics’ results will deviate when different samples are used. We repeated the 

t-test on the other pairs of evaluation metrics’ results shown in the same figure and the results were 

consistent.  

Lastly, we show top rules produced by the AD-CR algorithm from the ‘Cog-subset1’, ‘Cog-MCI-

AD’, and ‘Cog-CN-MCI’ datasets in Table 5.7. The AD-CR algorithm generated 31 rules from the 
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‘Cog-subset1’ dataset including the default class Rule 7 (displayed at the top of Table 5.7). The 

number of rules derived by the models of AD-CR when 2% minimum support is used is smaller 

than those of the other rule-based classifiers (Ridor, Nnge). For instance, Ridor and Nnge derived  

57 and 2,772 rules, respectively from the ‘Cog-subset1’ making the Nnge an unsuitable algorithm 

for AD progression as the number of rules is large thus must be controlled by clinicians.  

The proposed algorithm was able to offer controllable-sized classification models that can be 

exploited during the screening process of dementia. The model of the proposed algorithm is 

equipped with interpretable classification rules that can easily be understood by clinicians and 

novice users. These models offer the patient, and their family answers as to which  components have 

triggered dementia progression. This is aligned with the patient’s right outlined in the General Data 

Protection Regulation (GDPR), particularly the section on decision-making using automated 

algorithmic methods and the “right for an explanation” (GDRP, n.d.; Goodman & Flaxman, 2016). 

The GDRP requires that for any data collected from a subject (the individual undergoing medical 

screening) in an automated decision process (the screening process using the machine learning) that 

the subject should have the right to be given the rationale behind the decision-making process. 

Consequently, having an intelligent and easy to understand screening system for the patients and 

their family members, besides clinicians, is valuable. The system can explain to the different 

stakeholders useful information answering questions such as: 

• What are the cognitive features that relate to the progression of AD? 

• What are the functional features that relate to the progression of AD? 

• Why does the output of the screening show no progression or potential progression? 

• Why is the patient being screened for AD, MCI, or CN? 

• What further assessment can be made based on the outcome? 

 

In addition, the AD-CR rules can be used by the clinicians during the clinical session to identify 

factors than may impact the disease or the disease advancement.  
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5.6.2 Functional Classification Results Analysis 

Similar to the models produced by the considered classification algorithms on the cognitive subsets, 

the AD-CR algorithm showed dominancy when processing the distinct functional subsets, 

generating the best performing classification model overall, at least from three functional subsets. 

For comparison against the complete functional item set of (‘Func-subset1’) excluding demographic 

features (left side of Table 5.7), the performance results of the models produced from ‘Func-subset4’ 

by the AD-CR algorithm, provide the closest predictive accuracy, sensitivity, and specificity 

measures, at 75.88%, 59.0%, and 91.20%, respectively. However, this is due to ‘Func-subset4’ 

having only one less feature.  

While the performance may be fair in terms of accuracy for the AD-CR algorithm, it does not serve 

our purpose of identifying key functional items to identify disease progression and save assessment 

Table 5.7: Sample Cognitive Rules Derived by the AD-CR Algorithm from the Cognitive Data Subsets 

The AD-CR rules derived from the ‘Cog-subset1’ 
(support, confidence) 

1. (241, 0.96) Label = 0 when  IDEATIONAL in (0.5, 3.4028235E38) , WORDRECOG in (-3.4028235E38, 6.5) , DELAYWORD in (-3.4028235E38, 8.5) 
2. (243, 0.98) Label = 1 when  DELAYWORD in (9.5, 3.4028235E38) , WORDRECOG in (3.5, 5.5) , NAMING in (-3.4028235E38, 0.5) , WORDFIND in (-3.4028235E38, 0.5) , 

NUMBERCANCEL in (-3.4028235E38, 2.5) , ORIENT in (0.5, 4.5) , COMMAND in (-3.4028235E38, 0.5) 
3. (566, 0.99) Label = 0 when  WORDRECALL in (1.165, 2.5) , DELAYWORD in (0.5, 2.5) , WORDRECOG in (-3.4028235E38, 9.5) 
4. (263, 0.96) Label = 0 when  WORDFIND in (0.5, 1.5) , WORDRECOG in (-3.4028235E38, 4.5) , WORDRECALL in (-3.4028235E38, 5.5) 
5. (408, 0.79) Label = 0 when  WORDRECALL in (0.165, 1.5) , DELAYWORD in (-3.4028235E38, 5.5) 
6. (261, 0.94) Label = 0 when  SPOKENLG in (0.5, 3.4028235E38) , WORDRECOG in (2.5, 3.4028235E38) , DELAYWORD in (7.5, 3.4028235E38) , WORDFIND in (-

3.4028235E38, 3.4028235E38) , LANGUAGE in (-3.4028235E38, 3.4028235E38) , RMBRTESTINST in (-3.4028235E38, 3.4028235E38) , IDEATIONAL in (-3.4028235E38, 
3.4028235E38) , COMMAND in (-3.4028235E38, 3.4028235E38) 

7. (253, 0.97) Label = 1 when  WORDRECALL in (5.835, 6.165) , WORDRECOG in (4.5, 5.5) , COMMAND in (-3.4028235E38, 0.5) , DELAYWORD in (6.5, 3.4028235E38) , 
WORDFIND in (-3.4028235E38, 0.5) , NAMING in (-3.4028235E38, 0.5) , NUMBERCANCEL in (-3.4028235E38, 2.5) , SPOKENLG in (-3.4028235E38, 3.4028235E38) , 
LANGUAGE in (-3.4028235E38, 3.4028235E38) , RMBRTESTINST in (-3.4028235E38, 3.4028235E38) , IDEATIONAL in (-3.4028235E38, 3.4028235E38) 

The AD-CR rules derived from the ‘Cog-CN-MCI’ without demographic attributes  
(support, confidence) 

1. (1016, 1.00) Label = 1 when  CONSTRUCT in (3.5E-6, 0.9999995) 
2. (176, 1.00) Label = 1 when  LANGUAGE in (4.755E-4, 0.994774) 
3. (122, 1.00) Label = 1 when  ORIENT in (5.0E-7, 0.998617) 
4. (77, 1.00) Label = 1 when  NUMBERCANCEL in (1.004509, 1.988689) 
5. (580, 0.99) Label = 0 when  DELAYWORD in (0.971643, 1.0146215) or DELAYWORD in (1.9801745, 2.006372) 
6. (156, 0.99) Label = 0 when  DELAYWORD in (-3.4028235E38, 3.0446) , WORDRECOG in (1.5, 3.4028235E38) , WORDRECALL in (1.835, 3.835) 
7. (77, 0.97) Label = 0 when  WORDRECALL in (-3.4028235E38, 1.432405) , WORDFIND in (-3.4028235E38, 0.5) 

The AD-CR rules derived from the ‘Cog-MCI-AD’ without demographic attributes  
(support, confidence) 

1. (1284, 1.00) Label = 1 when  NAMING in (1.0E-6, 0.9999325) 
2. (666, 1.00) Label = 1 when  CONSTRUCT in (7.0E-6, 0.9999985) 
3. (318, 1.00) Label = 1 when  ORIENT in (6.9E-5, 0.9998905) 
4. (181, 1.00 ) Label = 1 when  COMMAND in (0.0055745, 0.999991) 
5. (350, 0.99) Label = 0 when  WORDRECOG in (0.9589805, 1.0379485) , WORDRECALL in (-3.4028235E38, 5.5) 
6. (179, 1.00 ) Label = 0 when  WORDRECOG in (-3.4028235E38, 0.03653) , WORDRECALL in (1.5, 5.5) , COMMAND in (-3.4028235E38, 2.5) , NUMBERCANCEL in (-

3.4028235E38, 1.5) , DELAYWORD in (-3.4028235E38, 6.5) 
7. (165, 0.99) Label = 0 when  DELAYWORD in (4.911518, 5.005151) , WORDRECALL in (4.165, 7.5) , SPOKENLG in (-3.4028235E38, 2.5) 
8. (189, 0.95) Label = 0 when  DELAYWORD in (-3.4028235E38, 1.5) 
9. (165, 0.97) Label = 0 when  DELAYWORD in (2.967585, 3.0101662) , CONSTRUCT in (-3.4028235E38, 1.3679985) , WORDRECALL in (2.835, 3.4028235E38) , 

LANGUAGE in (-3.4028235E38, 0.5) 
10. (155, 0.95) Label = 0 when  DELAYWORD in (4.911518, 5.005151) , SPOKENLG in (-3.4028235E38, 0.5) , COMMAND in (-3.4028235E38, 3.0) , WORDRECALL in 

(1.665, 3.4028235E38) 
11. (144, 0.90) Label = 0 when  WORDRECOG in (7.981304, 8.0100975) 
12. (120, 0.87) Label = 0 when  WORDRECALL in (4.991171, 5.006675) , LANGUAGE in (-3.4028235E38, 1.5) , SPOKENLG in (-3.4028235E38, 2.5) 
 

 

 
 

 

 
 

 
Table.  5.7: Sample Cognitive Rules Derived by the AD-CR Algorithm from the Cognitive Data Subsets   

The AD-CR rules derived from the ‘Cog-subset1’ 
(support, confidence) 

8. (241, 0.96) Label = 0 when  IDEATIONAL in (0.5, 3.4028235E38) , WORDRECOG in (-3.4028235E38, 6.5) , DELAYWORD in (-3.4028235E38, 8.5) 
9. (243, 0.98) Label = 1 when  DELAYWORD in (9.5, 3.4028235E38) , WORDRECOG in (3.5, 5.5) , NAMING in (-3.4028235E38, 0.5) , WORDFIND in (-3.4028235E38, 0.5) , 

NUMBERCANCEL in (-3.4028235E38, 2.5) , ORIENT in (0.5, 4.5) , COMMAND in (-3.4028235E38, 0.5) 
10. (566, 0.99) Label = 0 when  WORDRECALL in (1.165, 2.5) , DELAYWORD in (0.5, 2.5) , WORDRECOG in (-3.4028235E38, 9.5) 
11. (263, 0.96) Label = 0 when  WORDFIND in (0.5, 1.5) , WORDRECOG in (-3.4028235E38, 4.5) , WORDRECALL in (-3.4028235E38, 5.5) 
12. (408, 0.79) Label = 0 when  WORDRECALL in (0.165, 1.5) , DELAYWORD in (-3.4028235E38, 5.5) 
13. (261, 0.94) Label = 0 when  SPOKENLG in (0.5, 3.4028235E38) , WORDRECOG in (2.5, 3.4028235E38) , DELAYWORD in (7.5, 3.4028235E38) , WORDFIND in (-

3.4028235E38, 3.4028235E38) , LANGUAGE in (-3.4028235E38, 3.4028235E38) , RMBRTESTINST in (-3.4028235E38, 3.4028235E38) , IDEATIONAL in (-3.4028235E38, 
3.4028235E38) , COMMAND in (-3.4028235E38, 3.4028235E38) 

14. (253, 0.97) Label = 1 when  WORDRECALL in (5.835, 6.165) , WORDRECOG in (4.5, 5.5) , COMMAND in (-3.4028235E38, 0.5) , DELAYWORD in (6.5, 
3.4028235E38) , WORDFIND in (-3.4028235E38, 0.5) , NAMING in (-3.4028235E38, 0.5) , NUMBERCANCEL in (-3.4028235E38, 2.5) , SPOKENLG in (-3.4028235E38, 
3.4028235E38) , LANGUAGE in (-3.4028235E38, 3.4028235E38) , RMBRTESTINST in (-3.4028235E38, 3.4028235E38) , IDEATIONAL in (-3.4028235E38, 3.4028235E38) 

The AD-CR rules derived from the ‘Cog-CN-MCI’ without demographic attributes  
(support, confidence) 

8. (1016, 1.00) Label = 1 when  CONSTRUCT in (3.5E-6, 0.9999995) 
9. (176, 1.00) Label = 1 when  LANGUAGE in (4.755E-4, 0.994774) 
10. (122, 1.00) Label = 1 when  ORIENT in (5.0E-7, 0.998617) 
11. (77, 1.00) Label = 1 when  NUMBERCANCEL in (1.004509, 1.988689) 
12. (580, 0.99) Label = 0 when  DELAYWORD in (0.971643, 1.0146215) or DELAYWORD in (1.9801745, 2.006372) 
13. (156, 0.99) Label = 0 when  DELAYWORD in (-3.4028235E38, 3.0446) , WORDRECOG in (1.5, 3.4028235E38) , WORDRECALL in (1.835, 3.835) 
14. (77, 0.97) Label = 0 when  WORDRECALL in (-3.4028235E38, 1.432405) , WORDFIND in (-3.4028235E38, 0.5) 

The AD-CR rules derived from the ‘Cog-MCI-AD’ without demographic attributes  
(support, confidence) 
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time and cost. The second-best performing models were generated from ‘Func-ubset3’ using the 

AD-CR algorithm, consisting of six functional items, which are ‘remembering an occasion’, 

‘shopping’, ‘finance’, ‘completing forms’, ‘travelling’ and ‘current events’. With four fewer items 

than the ‘Func-subset1’, the classification algorithm (AD-CR) did not sacrifice much in terms of 

performance, with 73.03% accuracy, 58.20% sensitivity, and 86.60% specificity. While these results 

are close, they are not ideal in terms of model performance to be applied in a medical setting, in 

particular for sensitivity where out of the 8,832 positive instances that were supposed to have AD 

progression, the AD-CR was able to correctly predict 5,1637 instances to have AD progression (true 

Table 5.8: Performance of the Classification Methods from Different Subsets of the Functional Items 

Subset Algorithm 
Excluding Demographics Features Including Demographics Features 

Accuracy 
% 

Sensitivity 
% 

Specificity 
% 

Accuracy 
% 

Sensitivity 
% 

Specificity 
% 

Func-
subset1 

(baseline) 

Logistic 71.29 61.5 80.1 77.22 77.7 76.8 

MLP 72.79 60.9 83.6 80.33 81.1 79.7 

SMO 65.75 49.2 80.8 73.24 76.6 70.2 

KNN 75.33 64.6 85.1 88.78 93.8 84.2 

NB 68.92 63.7 73.7 73.23 77.4 69.4 

Ridor 73.85 55.8 90.3 87.46 86.4 88.5 

Nnge 74.32 67.1 81 89.52 89.3 89.7 

AD-CR 76.07 58.6 92 89.74 88 91.4 

Func-
subset2 

Logistic 66.29 53.1 78.3 68.82 72.3 65.6 

MLP 66.06 46.4 83.9 76.84 75.9 77.7 

SMO 62.16 39.4 82.9 66.49 79.2 55 

KNN 67.41 52.4 81 87.53 92.6 83 

NB 51.64 92.1 14.9 65.12 85.7 46.4 

Ridor 66.96 50.3 82.1 85.6 83.8 87.3 

Nnge 57.89 57.2 58.5 89.24 89.4 89.1 

AD-CR 66.85 50 82.2 86.59 85.7 87.4 

Func-
subset3 

Logistic 64.71 52 76.2 70.78 72.6 69.2 

MLP 69.49 60.2 77.9 79.14 79.3 79 

SMO 62.1 46.9 76 70.5 75.7 65.9 

KNN 74.21 62.3 85.1 88.7 93.3 84.3 

NB 63.59 53.3 73 68.19 62.4 73.5 

Ridor 71.95 54.1 88.2 86.89 80.6 92.6 

Nnge 70.73 60.10% 80.4 88.89 88.9 88.9 

AD-CR 73.03 58.2 86.6 88.75 87 90.3 

Func-
subset4 

Logistic 70.56 60.7 79.5 72.1 73.6 70.7 

MLP 71.11 60.9 80.4 80.11 77.9 82.2 

SMO 64.15 45.8 10 71.91 75 69.1 

KNN 75.4 64.5 85.3 88.9 94 84.3 

NB 65.5 56.4 73.7 69.52 63.8 74.8 

Ridor 73.9 56.2 90 86.64 85 88.2 

Nnge 73.97 66.9 80.4 89.24 89.4 89.1 

AD-CR 75.88 59 91.2 89.88 88.3 91.3 

Func-
subset5 

Logistic 68.07 59.4 75.9 70.25 72.3 68.4 

MLP 67.22 56.2 77.2 77.06 78.1 76.1 

SMO 59.2 37.9 78.6 70.48 76.1 65.4 

KNN 69.04 58.1 79 88.13 92.2 84.4 

NB 62.09 46.7 76.1 69.98 67.4 72.3 

Ridor 68.51 57.7 78.3 86.16 81.1 90.7 

Nnge 57.98 56 59.8 87.22 86.9 87.5 

AD-CR 68.22 58.8 76.8 87.57% 86.7 88.3 

 

 
Table 5.8: Performance of the Classification Methods from Different Subsets of the Functional Items  

Subset Algorithm 
Excluding Demographics Features Including Demographics Features 

Accuracy 
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Sensitivity 
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Specificity 
% 

Accuracy 
% 

Sensitivity 
% 

Specificity 
% 

Func-
subset1 

(baseline) 

Logistic 71.29 61.5 80.1 77.22 77.7 76.8 

MLP 72.79 60.9 83.6 80.33 81.1 79.7 

SMO 65.75 49.2 80.8 73.24 76.6 70.2 

KNN 75.33 64.6 85.1 88.78 93.8 84.2 

NB 68.92 63.7 73.7 73.23 77.4 69.4 

Ridor 73.85 55.8 90.3 87.46 86.4 88.5 

Nnge 74.32 67.1 81 89.52 89.3 89.7 

AD-CR 76.07 58.6 92 89.74 88 91.4 

Func-
subset2 

Logistic 66.29 53.1 78.3 68.82 72.3 65.6 

MLP 66.06 46.4 83.9 76.84 75.9 77.7 

SMO 62.16 39.4 82.9 66.49 79.2 55 

KNN 67.41 52.4 81 87.53 92.6 83 

NB 51.64 92.1 14.9 65.12 85.7 46.4 

Ridor 66.96 50.3 82.1 85.6 83.8 87.3 
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positive) and misclassified 3,695 instances as no progression (false negatives), when these instances 

were in fact having AD progression.  

Based on the results generated from the functional item subsets by the considered classification 

algorithms, on the datasets used, it seems that evaluating solely the functional activities may not 

provide the clinicians with a comprehensive picture of all areas needed to predict the disease 

progression and hence measuring additional features like demographics and cognitive items using 

other cognitive assessments is useful for a detailed screening. 

The specificity measure also appears to perform much better than the sensitivity measure across 

most of the considered classification algorithms when processing functional subsets, with 

differences up to 32.20% in the case of processing ‘Func-subset2’, and ‘Func-subset4’ by the AD-

CR algorithm. This could be due to the data sampling technique performed during the data balancing 

process, whereby synthetic instances of the minority class (progression) were generated to minimise 

the gap to the majority class (no progression) within the dataset. As a result of this, the classification 

algorithms may encounter hardship in their ability to identify significant patterns, which ultimately 

caused them to predict a higher number of false positives and false negatives.  

Overall, the specificity rate produced by the AD-CR algorithm was good for all the functional 

subsets reaching more than 92.00% when processing ‘Func-subset2’, and ‘Func-subset4’, except 

models produced from ‘Func-subset5’ (‘remembering an occasion’, ‘shopping’, ‘finance’). The 

same pattern was also noticed by the models derived by the remaining classification algorithm 

concluding that more functional, demographic, and possibly cognitive activities are required to 

assess the patient’s probable disease progression during clinical assessments. 

To improve the AD progression models’ performance, we experimented by including demographic 

features (age, gender, level of education, race category, marital status), shown on the right side of 

Table 5.8, with the functional subsets. Immediately, the overall results improved significantly across 

the subsets and algorithms, particularly for the AD-CR algorithm where the model performance 

measures were all above 86.59%, meeting the benchmark of the study conducted by Teng et al. 

(2010), and others. The gap that previously caused the large difference between the sensitivity and 

specificity measures has also been substantially minimised and the differences now only range from 

1.60%–3.40.00% for the models generated by the proposed algorithm, suggesting the classification 

models are able to produce better results when demographic features are included.  

While the AD-CR algorithm was able to produce good results across the derived subsets, it is 

remarkable to note that when it processed ‘Func-subset5’ which only consists of three functional 

items, the algorithm was still able to generate close to identical results of the baseline subset (‘Func-
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subset1’) with a difference in sensitivity of 1.30%. These results, if limited, show that functional 

activities related to learning and memory, executive function, complex attention, and perceptual 

motor function when assessed with age, gender, and education level are the important items for 

dementia advancement, at least when using the dataset and the classification methods we 

considered. The results also show that choosing common features across the top-ranked features of 

the feature selection methods considered is impactful. By checking the confusion matrix produced 

by the AD-CR algorithm when processing the ‘Func-subset5’, out of the 8,832 positive instances 

that were supposed to have AD progression, the algorithm was able to correctly predict 7,660 

instances to have AD progression (true positive) and misclassified 1,172 instances as no progression 

(false negatives), when these instances were in fact having AD progression.  

The rule-based classification algorithms (Ridor, Nnge), KNN, and the proposed algorithm generated 

good performance from the ‘Func-subset2’ with demographics albeit using a different set of 

functional items (‘game’, ‘beverage’, ‘meal’, and ‘watching TV’). This shows that the criteria used 

to form ‘Func-subset2’, which is removing redundant features based on the feature-to-feature 

correlation matrix, is influential as only dissimilar functional features that have high correlations 

with the progression (the class label) are kept. With one item more than ‘Func-subset5’, the AD-CR 

algorithm was able to generate models from the ‘Func-subset2’ with demographics with good 

sensitivity, specificity, and accuracy. The functional items used to derive the classification models 

of the AD-CR algorithm cover all six of the DSM-5 cognitive domains, which may prove to be a 

more well-rounded model for clinicians in predicting AD progression. 

To ensure a better model performance, it is highly recommended that when using machine learning 

to assess functional or cognitive activities during the screening or diagnosis of dementia conditions 

such as AD to include demographic features. Functional activities when assessed with demographic 

features seem partly effective in detecting the disease progression, at least when a data driven 

approach is used such as machine learning. This is due to the good sensitivity obtained by the KNN, 

Nnge, Ridor and AD-CR classification algorithms. 

Overall, models generated from the ‘Func-subset2’ and ‘Func-subset5’ which comprise four and 

three activities, respectively, appear to meet the aim of identifying key functional items that can 

predict AD progression. This is achieved by reducing assessment time without sacrificing too much 

model performance. However, both subsets use different functional items for building the 

classification models of the machine learning algorithms. A suggestion for clinicians is that they 

trial both models in parallel and observe the results for further validation of which model will be 

more accurate. 
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A major advantage of having fewer functional or cognitive activities for measuring AD level or 

detecting AD, is minimising the time taken within a clinical setting for clinicians to perform any 

diagnostic or screening assessments. Medical assessments of function, cognition, or both can be 

time-consuming as multiple degenerative domains are assessed such as communication, memory 

and learning, orientation, and executive functions, among others. Thus, enhancing the time of the 

screening process of these assessments is crucial due to the resources needed, especially in low 

social economic nations or during the pandemic time when resources are limited.  

We further investigated the models derived by the classification algorithms from the functional 

items of ‘Func-CN-MCI’ and ‘Cog-MCI-AD’ dementia sub-groups over 36 months from the 

baseline diagnosis. Figures 5.7a and 5.7b show the accuracy, sensitivity, and specificity rates 

derived by the considered classification algorithms from these two sub-groups with and without 

considering demographic attributes. The images on the left side in these two figures represent the 

performance metrics generated by the classification algorithm from the functional items without 

demographics; the right side images represent the models derived with demographics. 

The models produced by the machine learning algorithm from the functional items of the ‘Func-

CN-MCI’ dementia sub-group indicate that the AD-CR algorithm is superior in terms of predictive 

accuracy and specificity. All the classification algorithms derived predictive models with good 

sensitivity, specificity, and accuracy rates from the ‘Func-CN-MCI’ sub-group. In fact, the AD-CR 

algorithm built predictive systems from the ‘Func-CN-MCI’ dataset and without considering 

demographic features produced 97.97% accuracy, 96.60% sensitivity, and 99.30% specificity. 

When demographic attributes were added to the functional items the predictive models produced by 

the AD-CR algorithm slightly enhanced by 0.92%, 1.70%, and 0.20% for accuracy, sensitivity, and 

specificity rates, respectively, showing that demographic features do not greatly impact the ‘Func-

CN-MCI’ sub-group. When analysing the confusion matrix of the classification models of the AD-

CR algorithm, we discovered that only 36 instances from 1,057 were misclassified into ‘not 

progressing’, minimising the false negatives. However, false positives numbered just 8 out of 1,120 

displaying the high ability of the proposed algorithm in distinguishing cases not progressing 

correctly, at least for participants with a baseline diagnosis of CN.  

The models derived from the ‘Func-MCI-AD’ revealed that rule-based classification algorithms 

including Ridor and AD-CR are superior in terms of sensitivity, accuracy, and specificity rates. 

These classification algorithms derived predictive models with measures above 90.00% from the 

‘Func-MCI-AD’. These rates did not improve when the demographic attributes were added into the 

‘Func-MCI-AD’ by the rule-based classifiers in addition to the Nnge algorithm’s model. However, 

the SVM (SMO), ANN (MLP), statistical (LR), and probabilistic (NB) models were improved when 
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demographic attributes were considered during the learning phase. Nevertheless, these algorithms’ 

general performance was below the required medical standard when processing the ‘Func-MCI-

AD’ dataset without demographic attributes except MLP, and KNN (at least for sensitivity and 

accuracy rates). 

 

 Figure 5.7a: Performance of the Classification Methods against CN-MCI Functional Groups with and without Demographics, 
Respectively 

 

 

 

Figure 5.7b: Performance of the Classification Methods against MCI-AD Functional Groups with and without Demographics, 
Respectively 

 

 

 

Figure 5.7b: Performance of the Classification Methods against MCI-AD Functional Groups with and without Demographics, Respectively  
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Lastly, we show the top-ranked rules produced by the proposed AD-CR algorithm from ‘Func-

subset1’, ‘Func-MCI-AD’, and ‘Func-CN-MCI’ in Table 5.9. The number of rules produced by the 

proposed algorithm when the min-support threshold is set to 2% is smaller than the other rule-based 

classifier. For example, the AD-CR algorithm was able to produce just 9 rules from the Func-

subset1’ dataset whereas Ridor generated a model with 77 rules which is difficult for the clinicians 

to manage during clinical assessments. The fact that the AD-CR algorithm generated models with 

far fewer rules, and with higher predictive accuracy than Ridor, reveals the effectiveness of such a 

classification algorithm not only in detecting progression, but also in providing clinicians valuable, 

easy-to-understand information. More importantly, a digital information sheet can be used by the 

clinician when conducting clinical sessions to pinpoint crucial functional factors than may impact 

Table 5.9: Sample Cognitive Rules Derived by the AD-CR Algorithm from the Cognitive Data Subsets 

The AD-CR rules derived from the ‘Func-subset1’ 
(support, confidence) 

1. (284, 0.98 ) Label = 0 when  FAQBEVG in (2.5, 3.4028235E38) , FAQGAME in (0.5, 3.4028235E38) , FAQTRAVL in (2.5, 3.4028235E38)  
2. (379, 0.92 ) Label = 0 when  FAQEVENT in (2.5, 3.4028235E38) , FAQFINAN in (2.5, 3.4028235E38) , FAQFORM in (0.5, 3.4028235E38) 
3. (46, 1.00 ) Label = 0 when  FAQTV in (2.5, 3.4028235E38) , FAQREM in (2.5, 3.4028235E38) , FAQTRAVL in (1.5, 3.4028235E38) , FAQGAME in (-

3.4028235E38, 2.5) 
4. (483, 0.93 ) Label = 1 when  FAQREM in (1.5, 2.5) , FAQMEAL in (0.5, 1.5) , FAQSHOP in (0.5, 1.5) , FAQTRAVL in (-3.4028235E38, 1.5) , FAQGAME in (-

3.4028235E38, 2.5) , FAQEVENT in (-3.4028235E38, 1.5) , FAQBEVG in (-3.4028235E38, 0.5) , FAQFINAN in (0.5, 3.4028235E38) , FAQTV in (-
3.4028235E38, 1.5) 

5. (390, 0.92 ) Label = 1 when  FAQFINAN in (1.5, 2.5) , FAQEVENT in (0.5, 1.5) , FAQSHOP in (0.5, 1.5) , FAQBEVG in (-3.4028235E38, 0.5) , FAQGAME in (-
3.4028235E38, 2.5) , FAQFORM in (0.5, 3.4028235E38) , FAQTV in (-3.4028235E38, 1.5) 

6. (748, 0.60 ) Label = 0 when  FAQFORM in (0.5, 2.5) , FAQTRAVL in (-3.4028235E38, 0.5) 
7. (620, 0.68 ) Label = 0 when  FAQBEVG in (0.5, 3.4028235E38) 
8. (47, 0.90 ) Label = 0 when  FAQTV in (2.5, 3.4028235E38) , FAQFORM in (1.5, 3.4028235E38) , FAQMEAL in (0.5, 3.4028235E38) 

The AD-CR rules derived from the ‘Func-CN-MCI’ without demographic attributes  
(support, confidence) 

1. ( 537 , 1.00 ) Label = 1 when  FAQMEAL in (4.5E-6, 0.999633) 
2. (460 , 1.00 ) Label = 1 when  FAQFORM in (5.82E-4, 0.99904597) or FAQREM in (1.00161, 1.9998425) or FAQREM in (0.2227545, 0.9999925) 
3. ( 1053 , 0.98 ) Label = 0 when  FAQREM in (-3.4028235E38, 0.5) , FAQMEAL in (-3.4028235E38, 0.5) , FAQTRAVL in (-3.4028235E38, 3.4028235E38) , 

FAQTV in (-3.4028235E38, 3.4028235E38) , FAQEVENT in (-3.4028235E38, 3.4028235E38) , FAQBEVG in (-3.4028235E38, 3.4028235E38) , FAQGAME in 
(-3.4028235E38, 3.4028235E38) , FAQSHOP in (-3.4028235E38, 3.4028235E38) , FAQFORM in (-3.4028235E38, 3.4028235E38) , FAQFINAN in (-
3.4028235E38, 3.4028235E38) 

4. ( 52 , 0.93 ) Label = 0 when  FAQREM in (-3.4028235E38, 1.5) , FAQGAME in (-3.4028235E38, 0.0398595) 

The AD-CR rules derived from the ‘Func-MCI-AD’ without demographic attributes  
(support, confidence) 

1. (1509 , 1.00 ) Label = 1 when  FAQMEAL in (2.5E-6, 0.999997) or FAQMEAL in (1.0000005, 1.999998) 
2. (210 , 1.00 ) Label = 1 when  FAQREM in (1.0003265, 1.9994905) 
3. (90 , 1.00 ) Label = 1 when  FAQTV in (1.27E-4, 0.98143554) 
4. (957 , 0.98 ) Label = 0 when  FAQREM in (-3.4028235E38, 0.0289375) , FAQSHOP in (-3.4028235E38, 1.5) , FAQMEAL in (-3.4028235E38, 1.5) , 

FAQTRAVL in (-3.4028235E38, 3.4028235E38) , FAQTV in (-3.4028235E38, 3.4028235E38) , FAQEVENT in (-3.4028235E38, 3.4028235E38) , FAQBEVG in 
(-3.4028235E38, 3.4028235E38) , FAQGAME in (-3.4028235E38, 3.4028235E38) , FAQFORM in (-3.4028235E38, 3.4028235E38) , FAQFINAN in (-
3.4028235E38, 3.4028235E38) 

5. (321 , 0.98 ) Label = 0 when  FAQFORM in (-3.4028235E38, 0.0956455) , FAQFINAN in (-3.4028235E38, 0.5) , FAQTRAVL in (-3.4028235E38, 2.5) , 
FAQREM in (-3.4028235E38, 2.5) , FAQTV in (-3.4028235E38, 3.4028235E38) , FAQEVENT in (-3.4028235E38, 3.4028235E38) , FAQMEAL in (-
3.4028235E38, 3.4028235E38) , FAQBEVG in (-3.4028235E38, 3.4028235E38) , FAQGAME in (-3.4028235E38, 3.4028235E38) , FAQSHOP in (-
3.4028235E38, 3.4028235E38) 

6. (103 , 0.87 ) Label = 0 when  FAQMEAL in (2.999885, 3.4028235E38) , FAQTRAVL in (-3.4028235E38, 3.4028235E38) , FAQFORM in (-3.4028235E38, 
3.4028235E38) 

7. ( 87 , 0.89 ) Label = 0 when  FAQFORM in (1.9882281, 2.0041676) , FAQEVENT in (-3.4028235E38, 0.192287) , FAQBEVG in (-3.4028235E38, 1.5) , 
FAQREM in (-3.4028235E38, 2.5) 

8. (88 , 0.87 ) Label = 0 when  FAQFINAN in (1.9883344, 2.0217185) , FAQMEAL in (-3.4028235E38, 1.5) , FAQBEVG in (-3.4028235E38, 1.5) , FAQREM in 
(0.5, 3.4028235E38) 

9. (88 , 0.81 ) Label = 0 when  FAQSHOP in (1.9508796, 2.0022464) , FAQMEAL in (-3.4028235E38, 2.2250066) , FAQTRAVL in (0.5, 3.4028235E38) 

 

 

 

 
 

 

 

Figure 2: Modelling Process of the DataTable  5.9: Sample Cognitive Rules Derived by the AD-CR Algorithm from the Cognitive Data 

Subsets   

The AD-CR rules derived from the ‘Func-subset1’ 
(support, confidence) 

9. (284, 0.98 ) Label = 0 when  FAQBEVG in (2.5, 3.4028235E38) , FAQGAME in (0.5, 3.4028235E38) , FAQTRAVL in (2.5, 3.4028235E38)  
10. (379, 0.92 ) Label = 0 when  FAQEVENT in (2.5, 3.4028235E38) , FAQFINAN in (2.5, 3.4028235E38) , FAQFORM in (0.5, 3.4028235E38) 
11. (46, 1.00 ) Label = 0 when  FAQTV in (2.5, 3.4028235E38) , FAQREM in (2.5, 3.4028235E38) , FAQTRAVL in (1.5, 3.4028235E38) , FAQGAME in (-

3.4028235E38, 2.5) 
12. (483, 0.93 ) Label = 1 when  FAQREM in (1.5, 2.5) , FAQMEAL in (0.5, 1.5) , FAQSHOP in (0.5, 1.5) , FAQTRAVL in (-3.4028235E38, 1.5) , 

FAQGAME in (-3.4028235E38, 2.5) , FAQEVENT in (-3.4028235E38, 1.5) , FAQBEVG in (-3.4028235E38, 0.5) , FAQFINAN in (0.5, 3.4028235E38) , FAQTV 
in (-3.4028235E38, 1.5) 

13. (390, 0.92 ) Label = 1 when  FAQFINAN in (1.5, 2.5) , FAQEVENT in (0.5, 1.5) , FAQSHOP in (0.5, 1.5) , FAQBEVG in (-3.4028235E38, 0.5) , 
FAQGAME in (-3.4028235E38, 2.5) , FAQFORM in (0.5, 3.4028235E38) , FAQTV in (-3.4028235E38, 1.5) 

14. (748, 0.60 ) Label = 0 when  FAQFORM in (0.5, 2.5) , FAQTRAVL in (-3.4028235E38, 0.5) 
15. (620, 0.68 ) Label = 0 when  FAQBEVG in (0.5, 3.4028235E38) 
16. (47, 0.90 ) Label = 0 when  FAQTV in (2.5, 3.4028235E38) , FAQFORM in (1.5, 3.4028235E38) , FAQMEAL in (0.5, 3.4028235E38) 

The AD-CR rules derived from the ‘Func-CN-MCI’ without demographic attributes  
(support, confidence) 

5. ( 537 , 1.00 ) Label = 1 when  FAQMEAL in (4.5E-6, 0.999633) 
6. (460 , 1.00 ) Label = 1 when  FAQFORM in (5.82E-4, 0.99904597) or FAQREM in (1.00161, 1.9998425) or FAQREM in (0.2227545, 0.9999925) 
7. ( 1053 , 0.98 ) Label = 0 when  FAQREM in (-3.4028235E38, 0.5) , FAQMEAL in (-3.4028235E38, 0.5) , FAQTRAVL in (-3.4028235E38, 3.4028235E38) , 

FAQTV in (-3.4028235E38, 3.4028235E38) , FAQEVENT in (-3.4028235E38, 3.4028235E38) , FAQBEVG in (-3.4028235E38, 3.4028235E38) , FAQGAME in 
(-3.4028235E38, 3.4028235E38) , FAQSHOP in (-3.4028235E38, 3.4028235E38) , FAQFORM in (-3.4028235E38, 3.4028235E38) , FAQFINAN in (-
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the progression. Such information can be articulated to the patients and their families so that they 

can understand the reasons behind the screening decision. 

 

 5.7 Chapter Summary  

This chapter discussed the experiments conducted related to features assessment, classification, and 

provided in-depth results analysis and discussion from two neuropsychological perspectives: 

cognitive and functional. We evaluated the cognitive and functional items for multiple subsets of 

real data obtained by thorough analysis using the results obtained from three feature selection 

methods. The ADAS13-Cog and FAQ complete activities were used as a baseline during the 

experiments of the dissimilar classification algorithms including ANN, SVM, statistical, 

probabilistic, instance-based learning, and rule-based induction. 

 We showed the empirical analysis on cognitive and functional items and the predictive models 

derived from these subsets of items by the considered classification algorithms. The bases of 

comparison of the classification algorithms are sensitivity, accuracy, and specificity besides 

classification rules. We also investigated empirically specific dementia sub-groups of cognitive and 

functional items including participants who progressed from CN to MCI and others who progressed 

from MCI to AD using the feature selection and classification algorithms. The analysis aimed to 

determine whether neuropsychological items change from one stage of dementia to another.  

The results derived by the feature selection and classification algorithms, including ours, pinpointed 

that the proposed AD-CR algorithm was able to build classification systems for AD progression that 

are highly competitive with the considered classification algorithms and from most of the cognitive 

and functional subsets. In addition, we were able to identify influential cognitive and functional 

subsets that are uniquely associated with certain dementia stages. More importantly, we showed that 

the AD-CR algorithm was able to derive models with easy-to-interpret rules which can be exploited 

by clinicians during the process of dementia assessment and when using neuropsychological tests. 

These models align with the GDPR standard and the patients’ right to know the reason behind the 

diagnosis, especially when using automated decision-making systems as described. 

This chapter showed that the proposed architecture, equipped by the AD-CR classification 

algorithm, derived competitive classification results for detecting AD advancement. In the next 

chapter, conclusions, future works, and the study limitations are discussed. 
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Chapter Six 

 
This chapter discusses the conclusions of the thesis including the response to the research questions 

raised in Chapter 1. In addition, the major findings are highlighted and how these are useful for the 

medical community. Lastly, the chapter sheds light on the thesis’s limitations, and possible future 

works. Some of this chapter’s content is under consideration for publication in the Journal of 

Biomedical Informatics, and others have been disseminated in the Journal of Health and 

Technology, the Journal of Behavioural and Healthcare Research, and the Journal of Intelligent 

Decision Technologies. 

 

Conclusions and Implications  
 

The primary dementia condition is AD, which is typically diagnosed by a specialised physician or 

clinician based on a set of criteria including factors such as: cognitive decline reported by a patient 

or their family members, a patient’s or their family’s medical history, and the scores of 

neuropsychological assessments that are designed to measure the patient’s cognitive abilities. One 

of the challenging problems related to dementia is determining the points when the disease advances 

and the cognitive items that may trigger such an advancement. This thesis investigated this problem 

based on real data related to neuropsychological assessments’ items by using machine learning to 

identify functional and cognitive items that influence the progression of AD—this to produce fast, 

accurate, and accessible classification models.  

The thesis proposes a Machine Learning Architecture called Alzheimer’s Disease Progression 

(MLA-ADP) that has been implemented in a cloud-based environment to make operation more 

sustainable and cost effective. The MLA-ADP contains an Alzheimer’s Disease Class Rules (AD-

CR) algorithm that derives predictive models that can be exploited by clinicians during the dementia 

screening process. The AD-CR algorithm is used to predict the progression of the disease for 

individuals undertaking a neuropsychological assessment based on intelligent models consisting of 

‘If-Then’ rules that have been derived from real data (cases and controls). These classification 

models are easy to interpret by the clinicians as they indicate associations among assessed items. 

They can thus be utilised as a digital information sheet to guide clinicians in the diagnostic-related 

decisions such as disease advancement. More specifically, the models are aligned with the patient’s 

right outlined in the GDPR since they offer stakeholders information about items that may advance 

AD.  
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Empirical results obtained by dissimilar classification and feature selection techniques against 

combinations of datasets related to cognitive and functional items from the ADNI repository 

revealed that the AD-CR algorithm produced classification models that are competitive in terms of 

accuracy, specificity, and sensitivity rates. Moreover, models derived by the classification 

algorithms from different dementia sub-groups (CN-MCI or MCI-AD) reveal that the AD-CR 

algorithm’s models are highly competitive to ANN, SVM, statistical, rule induction, and 

probabilistic approaches.  

The results demonstrated that both cognitive and functional assessments are needed to predict AD 

progression; using just functional elements, irrespective of the cognitive elements, do not provide a 

clear distinction between progression or no progression of AD. Thus, functional elements should be 

used alongside cognitive items as the criteria to diagnose disease progression in patients. The results 

suggest that integrating influential cognitive elements and functions of IADLs in a single composite 

assessment may, a) improve the prediction of AD progression, and to b) fulfil the DSM-5 

framework’s diagnostic criteria for Major/Minor neurological disorder.  

After carefully analysing the classification models derived, there were some associations, albeit low, 

between cognitive items and functions of IADL that can be captured during the progression of AD. 

For example, orientation and delayed word recall, which are related to memory and learning 

cognitive domains, have low correlations with functional activities. In addition, there are 

associations between cognitive elements, for example, word recall, word delay, word-finding, and 

language comprehension. These correlations can be utilised within neuropsychological methods to 

retain fewer cognitive items with the least overlapping—beneficial for clinicians conducting clinical 

assessments for dementia progression. 

Analysing the classification models in regard to the impact of demographics attributes revealed that 

age contributes the most critical factor followed by gender and then education level. When age and 

education level were combined with cognitive or functional items, the AD progression models 

derived by the machine learning algorithms improved. The results showed that younger individuals 

possibly will show signs of disease progression quickly since cognitive decline and the initiation of 

MCI often unfold in the early stages of the disease.  

In assessing dementia sub-groups (CN to MCI or MCI to AD) based on cognitive items, the results 

obtained by the feature selection methods were similar to those obtained from the general population 

(ADNI-Merge-ADAS), i.e. regardless of the dementia-subgroups. The results indicate that delayed 

word recall, word recognition, and word recall maintain good correlation with the diagnostic class. 

Further, results on the ‘Cog-CN-MCI’ sub-group revealed that ideational praxis, naming of objects, 

and commands cognitive features make a good cluster since these have low overlapping with other 
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cognitive elements. However, the results obtained on the ‘Cog-MCI-AD’ sub-group reveal that there 

was overlapping among the cognitive features revealing that it is a difficult task to isolate subjects 

who remain MCI from those who may progress to early dementia. However, for the functional items 

of the dementia sub-groups, the results obtained by the feature selection methods were in general 

similar to those obtained from the general population (ADNI-Merge-FAQ). Specifically, the results 

on the ‘Func-MCI-AD’ dataset show that finance, completing forms, shopping, and remembering 

an occasion activity are significant.  

The proposed approach is one of the rare models that has attempted to not only capture the 

advancement of AD, but also to map responsible items into their degenerative areas as defined in 

the DSM-5 framework. We identify a few, yet impactful, cognitive and functional items, while 

maintaining a high DSM-5 domain coverage if possible. The observed findings carry significant 

practical implications in DSM-5 mapping of degenerative dementia domains. For instance, in the 

cognitive items (word recall, delayed word recall, and word recognition) demonstrating adequately 

reliable results when processed by the AD-CR algorithm, and only two cognitive domains featured 

relevance: learning and memory, as well as language. Regarding the functional items, remembering, 

shopping, and finance appeared to cover four domains of the DSM-5 concerning degenerative 

dementia: learning and memory, executive function, complex attention, and perceptual motor 

function. Note that the three functional features need to be considered in conjunction with 

demographic attributes for the machine learning algorithms to generate reliable results.  

There are a few cognitive tests available online for detecting dementia-related conditions however, 

the availability of AD progression systems in a digital platform such as mobile to detect AD 

progression is scarce. The proposed approach can improve healthcare accessibility around the 

world; at a time when healthcare costs have skyrocketed, especially during the COVID-19 global 

pandemic, accessible, and validated medical screening tools such as ours are imperative. Face-to-

face interactions have dwindled because of the pandemic, so virtual medical assessments have 

proliferated globally. Virtual-assisted clinical evaluations have proved effective, as well as being 

efficient at serving those in highest need. The availability of these tools on mobile applications with 

certified translations make them accessible to the clinicians in the neediest populations worldwide. 

Clinicians in the developing world, or even in industrialised nations, can readily access validated 

tools to help screen people with AD and MCI advancements so as to provide them with health care 

access to improve their daily lives.  

Providing the clinicians with a simple to use, accurate, and validated model using a few functional 

and cognitive items can indeed be useful for AD assessments as it provides rapid access, a secure 

environment, and accurate results. This model can serve clinicians with a knowledge-based system 
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(when models are used) as described earlier, providing the clinicians with key information. Since 

the AD-CR provides a concise set of rules with just a few cognitive items, the clinicians could utilise 

some of the rules in Cognitive Behavioural Therapy (CBT) interventions for their patients, 

especially in the early dementia stages. Most patients with MCI or AD (mild/severe) are impacted 

at some time during the disease progression by neuropsychiatric signs. Understanding the patient’s 

cognitive, emotional, and functional status can assist the therapists in understanding the patients 

thus to form individualised treatment plans to make them feel better and to slightly adjust their 

behaviour and daily functions so they can become their own therapists.  

While there was no single cognitive or functional item that stood out, our research was able to 

identify sets of key cognitive and functional items within neuropsychological assessments. Our 

research discovers few effective cognitive items for AD progression that cover learning and 

memory, and language. On the other hand, and for functional items, demographic features must be 

included when using machine learning to build models for AD progression. Cognitive items appear 

to be more impactful seeing that when they are processed the AD-CR algorithm generates models 

within the standard medical research. This can partly be attributed to that patient with dementia risks 

exhibit cognitive decline at an early stage (pre-dementia such as MCI and mild dementia) and before 

they experience deficiencies in daily functioning. 

Models derived by machine learning techniques such as AD-CR can reduce time, especially when 

the neuropsychological assessment for dementia is lengthy—this can be a burden for the patients 

and possibly cause a loss of concentration and fatigue. Additionally, these models can be embedded 

in a mobile platform to ease the interaction with the patient in a clinical setting, especially in the era 

of pandemics. These benefits are aligned with the European Task Force which concentrated on a 

few cognitive and functional activities that could potentially trigger the progression of AD in the 

early stages.  

One of the limitations of this research project is transforming the cognitive tasks into a mobile-based 

environment; automating the process of scoring is challenging and may require decomposing the 

tasks such as Constructional Praxis, Naming, etc. into subtasks and then hard coding each within 

the digital platform. In addition, cognitive tasks such as Ideational Praxis may not be suitable to 

decompose, model, and code within a digital platform such as mobile. Another possible challenge 

in the data is some participants have not taken the neuropsychological assessments during medical 

visits which creates a challenge, especially during data modelling to record the progression of the 

disease, if any, between two subsequent clinical visits. More importantly, data in which a participant 

‘X’ has 15 medical visits where he/she undertakes cognitive assessment ‘A’ from which he/she 

undertakes assessment ‘B’ in just 8 visits may be obtained. So, when the items of both assessments 
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are merged many fields will contain null values—this would demand further pre-pre-processing. 

Lastly, one of the challenges observed in the datasets we considered is the imbalanced ratio between 

the positive and the negative class labels. There were more instances associated with negative class 

labels in which without designing a proper treatment, the results derived would be biased towards 

the majority class. This class imbalance problem was clearly observed when dealing with the 

dementia sub-categories datasets. 

One of the challenging tasks in detecting progression for the different dementia conditions such as 

AD involves considering the time elapsing between two or more consecutive medical assessments 

for every participant. Since AD is a progressive disease in which patients usually exhibit a decline 

in cognitive abilities, it is imperative for the diagnosticians and clinicians to be able to approximate 

the likely deterioration in terms of time based on cognitive indicators. Discovery of the disease’s 

progression is difficult especially in the early stages of dementia, or its precursors such as MCI, 

since early dementia traits can be vague, and people wrongly assume that they are exhibiting normal 

signs of ageing.  

The problem becomes more difficult when the clinicians aim to identify the ideal period to predict 

the dementia progression as this requires collecting data related to the individual’s medical history 

and their cognitive scores for each medical visit over a specific time window, i.e. 2 years, 3 years, 

5 years, etc. A longitudinal data analysis using computational intelligence is then conducted to 

examine any changes in the collected attributes’ values and their impact on the diagnostic class. In 

other words, questions such as, ‘Has the cognitive score increased or decreased in certain cognitive 

activities or areas?’ will result in a target class change (the dementia diagnosis). In addition, features 

from different periods can be contrasted in terms of their change values when the target class 

changes and to determine the best features set. In this thesis, we have investigated the feature-class 

changes for three years and for two types of dementia sub-groups—adding more time periods could 

be a future research direction that may reveal more interesting information on how cognitive features 

correlate with the diagnostic class for all visits of patients within multiple time windows. Cognitive 

elements are recorded during each episode using neuropsychological assessments such as the ones 

we considered in this thesis (ADAS-Cog, FAQ), so machine learning based on longitudinal data 

analysis can provide potential solutions when time periods are considered between patients’ 

multiple medical episodes. 

Another future work direction would be integrating neuropsychological elements and 

neuropathological indicators besides biomarkers together before applying machine learning 

techniques to seek any impact on dementia detection or progression. There are large numbers of 

pathological indicators that can be captured for cases and controls through invasive medical 
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procedures to pinpoint to signs of dementia. Examples of pathological features related to dementia 

conditions such as AD are tauopathy (tau) pathology, cerebral amyloid angiopathy (CAA), the 

Consortium to Establish a Registry for Alzheimer’s Disease (CERAD) assessments including Beta-

Amyloid deposition (Aβ), neocortical neuritic plaques, Braak neurofibrillary tangle (NFT) stage, 

Thal phase, and primary age-related tauopathy (PART) among others (Wharton et al., 2019). 

Analysing these features by neuropathologists and clinicians can reveal indicators of dementia. 

However, it will be difficult to capture most of these pathological features during the progression of 

dementia because of resource availability including cost and personal factors. For example, some 

of the above pathological procedures may require hospitalisation, and others are not cost effective 

to conduct such as PET scans and MRI, which require expensive equipment. Thus, determining 

affordable biomarkers related to dementia is vital, especially in countries that have a shortage of 

resources.  

Some research has considered elements of biomarkers or cognitive assessments to reveal whether 

these indicators would improve the prediction of dementia or dementia level, i.e. Mattsson-Carlgren 

et al. (2016), Hadjichrysanthou et al. (2020), Vasanthakumar et al. (2020), and Chang et al. (2021). 

However, little research has been directed to integrating cognitive and cost-effective biomarkers to 

deal with the problem of dementia progression. Examples of pathological features that can be 

measured during the AD progression are tau-related biomarkers such as phosphorylated tau (P-tau), 

and total tau (T-tau). These have been shown to be good dementia indicators in recent 

neuropathological research studies such as by Wharton et al. (2019; 2011) as they correlate with 

dementia higher than other pathological procedures like CERAD. P-tau is a more specific indicator 

since it can be measured by the levels of the tau protein in the neurofibrillary tangles using 

cerebrospinal fluid (CSF) or PET scans. The former is cheaper to conduct if the individual does not 

require hospitalisation. Other pathological indicators related to dementia conditions that are now 

available in ADNI and other datasets for participants are Aβ, CAA, Hippocampus, and others. 

 

In the near future, we will also investigate ways to integrate both classification and feature 

assessments into a single phase using deep neural networks (DNN). Initially, we will investigate 

DNN through the Keras library as a python interface to Tensorflow backend. These algorithms are 

powerful as they provide feedforward models where information flow from the input layer into the 

last layer (output layer) without iterating back. Initially, the DNN algorithm can generate several 

logical neurons and allocate weights (numerical values) in an arbitrary manner to link them together. 

Then, weights and input variables are multiplied to produce an output value ranging between 0–1, 

that sequentially will be returned. If the DNN is unable to identify the outcome with some degree 

of accuracy, then it will reconfigure the network by amending the weights until it reaches a 
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termination condition. The input data items can be modelled by the DNN, and then encoded using 

a method such as ‘one-hot’ to ensure that the learning algorithm can process and correlate these 

variables with the target class correctly. Then, the data items are fed into the DNN algorithm, which 

is composed of several hidden layers with many filters plus a pooling layer for sampling the maps 

of the variables after each layer. We can configure hyperparameters of the DNN using a 

conventional grid search algorithm after evaluating multiple models’ configurations and 

hyperparameters statistically.  
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