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Abstract 

This thesis is set in the context of the large volume of work directed to improving the overall 
equipment effectiveness (OEE) of manufacturing machines. Of the three OEE factors, 
performance receives much research attention since it provides simple metrics of parts per hour 
produced. However, availability and quality, which are the other two factors, can play an 
equally important role.  In the past, high availability has been achieved by time-based or 
preventive maintenance techniques, which can be expensive and wasteful due to needless 
repairs and replacement of useful parts. This research aims to develop a cost-effective strategy 
for machine tool maintenance that improves availability and accuracy by adopting a condition-
based or predictive maintenance approach.  

The approaches under investigation use both machine learning and deep learning techniques to 
analyse continuous time-series signals to assess a machine tool's condition. For this research, 
the focus is on applying the techniques to the ball screw assembly of axis feed drives. This is 
one of the most common machine tool parts whose degradation can affect its availability and 
positional accuracy. This research data is obtained from experiments on a gantry-type machine 
tool with two ball screws, where one is good, and the other is worn. 

In the machine learning approach, wavelet and fast Fourier transforms are employed for data 
processing on time-series vibration readings before extracting useful features for model 
training. These extracted features consistently show better accuracy across several machine 
learning algorithms than those obtained via classical methods. Deep learning is then 
investigated as an alternative method of analysing time-series data. The chosen approach 
utilises a pre-trained deep learning neural network based on convolution, which had been 
successfully used to learn from image files. The novelty in this research arises from the use of 
convolution-based deep learning on time series data. It does this by the conversion of the 
vibration signals to image files. The method of converting time-series data streams to images 
relevant for this analysis has been established and verified.   

Test results show that the wavelet and fast Fourier transform (FFT) features used in the machine 
learning approach can outperform the statistical features in classifying the condition of the ball 
screw. With at least a 98 % accuracy across the examined machine learning networks compared 
to a range of 87 % (support vector machine) to 96 % (k nearest neighbour). On the other hand, 
the deep learning technique can achieve at least 98 % or 100 % accuracy when trained with 
raw and processed data, respectively. The deep learning approach has the advantage of 
requiring less data processing and better accuracy than the machine learning approach. 

This research project will contribute to the manufacturing industry by improving the overall 
equipment effectiveness at a low cost. Furthermore, it can lead to real-time online condition 
monitoring with less overhead since there is no need for a data processing stage. This research's 
natural progression would be applying this approach to other parts of a machine tool or 
equipment. Furthermore, investigating and identifying specific faults and their progression 
would lead to a more sophisticated system for widespread deployment.  
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Chapter 1 Introduction 

1.1 Background 

The industrial need for this research was identified as a direct offspring of a collaborative 

research and development (CR&D) project1 that focused on the “servitisation” of machine 

tools. Servitisation of machine tools is a business model where instead of a manufacturer 

procuring a machine tool as a capital asset, they procure the useful time available on the 

machine tool [4]. The concept of servitisation has been successfully applied in one form or 

another in different sectors of the economy by several companies, including Alstom (transport 

sector) and Rolls-Royce (aviation sector) [5]. For example, Rolls-Royce developed a 

servitisation model where the service buyers purchase a fixed warranty and operating charge 

based on an hourly rate for the effective running of jet engines [6].  

The rationale for the project was that by adopting the business model on machine tools, 

manufacturers would be contractually provided with machines with high overall equipment 

effectiveness (OEE) [7] metrics of quality, performance, and availability. If the machines do 

not meet these metrics, then the service provider bears the cost of rectifying the machine. 

Machine tool users, who are not experts in machining strategies, thus relinquish the 

responsibility of maintaining the machine tool to the experts, who are machine tool builders or 

service companies. The model also enhances the ability of small and medium-scale enterprises 

to get access to expensive, cutting-edge machine tool technology since they do not need to 

commit to high up-front costs. Case in summary, the business model means that the 

manufacturer can focus all of their energy on the machine tool's effective and productive usage 

with the least possible downtime risk due to breakdown. This implies that the machine OEE is 

 
1 An innovate UK funded project – Metrology and Digital Manufacturing for Servitisation of Manufacturing 
Machines (grant number: 102787). 
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professionally and competently achieved through the machine tool experts, with advanced 

technological support, while the manufacturer accomplishes the production of high-value 

goods.  

However, the machine tool service industry is currently established on contractual agreements 

that allow for scenarios where equipment operation and availability are achieved through 

preventative [8]  or reactive [9] maintenance. In preventive maintenance, machines have parts 

replaced on a timed basis to avoid unplanned breakdowns. This can lead to waste since 

components with remaining lifespan can be taken out of service prematurely. In reactive 

maintenance strategy, machines are mended when components fail, which usually 

compromises availability and performance. Often, the machine tool has been running at 

reduced performance and lower accuracy for some time before a consequential failure occurs. 

This means that maintenance is delayed and is only undertaken when a breakdown occurs, 

which is inefficient and costly. Neither of these approaches is suitable for a servitisation service 

provider, who needs to guarantee performance without incurring the unnecessary cost of 

needless preventative actions.  

The third maintenance paradigm which is often promoted in research articles is predictive 

maintenance [10]. With the enormous interest in the interconnectedness of systems offered by 

the “industry 4.0” initiative [11], there is significant interest in what condition and performance 

monitoring can be achieved within manufacturing [12]. Current automated "condition 

monitoring" schemes are mostly focused on what "can" be measured by applying available 

sensors in convenient locations in preference of what "should" be measured. This ultimately 

could lead to two problem scenarios that eliminate trust:  

1. the machine can fail irrespective of the sensor output or;  

2. the sensors indicate a problem, but the OEE is unaffected.  



3 
 

The servitisation project addressed this by applying the "condition monitoring" approach in the 

most logical method, from sensor selection to determining appropriate data processing. The 

level of monitoring is then tailored to the specific needs of the customer, and more specifically, 

the contract. Taking the sensor data in tandem with measurement information from the quality 

department, analysing it and using the results to determine the actions needed to maintain and 

improve the OEE would be the ultimate goal of the technical solution to support this business 

model. Since many components and subsystems of a CNC machine tool are not directly 

observable, the detail of the internal construction of the system is unknown. Therefore, there is 

the need to develop a system that is able to detect a fault even though the exact nature of the 

fault is not known. The ball screw drive system is one such example, where the geometry of 

the screw, internal working of the nut, etc. may not be known by the end-user. The machining 

spindle is similarly supplied as a sealed part of the machine, often without detailed drawings 

to indicate location and magnitude of important elements, such as the bearing arrangement. In 

each case, the cause of any damage from wear, impact, etc. may not have been monitored, and 

the effect is not deterministic. Therefore, the project is driven by manufacturers and machine 

suppliers' desire to improve their machine tools' overall control and longevity while not 

suffering from the loss of accuracy that would cause production losses and scrap. 

Manufacturing processes will become more efficient and flexible due to technical innovations 

in the manufacturers' mechanical conversion and capability development within the supply 

chain for machine tool products and services. 

1.2 Motivation 

1.2.1 Servitisation of machine tools 

Servitisation has been described as an evolution from the sale of a product to the sale of a 

system that offers services for the use of its product [13, 14]. It is seen as an approach focused 

on the product by providing availability contracts and maintenance services with the product 
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[15, 16]. There is a continuous requirement in the manufacturing industry to improve 

production quality, performance, and machine tools availability [17]. This is due to the 

competitiveness of the manufacturing sector, customer desire, and increasing technological 

progress. A useful technique to achieve this is to allow experts with a good understanding of 

the machine tool characteristics to be responsible for their maintenance activities. This is the 

premise upon which the servitisation business plan is built. The responsibility to guarantee 

machine availability and high-performance integrity in this business plan is left to the machine 

tool manufacturer. 

The servitisation model helps diversify the component manufacturer approach to machining, 

creating room for experimentation into novel means of advanced manufacturing technology to 

meet and perhaps even surpass customer requirements. This style of professional 

manufacturing support is ground-breaking for component manufacturers. It challenges the 

present state of affairs - which is based mainly on predictive maintenance to achieve machine 

availability and reliability. It could increase output, boost manufacturing sustainability across 

supply chains, and retain manufacturing technology in line with technological progress [18, 

19]. Adopting servitisation would create a profound change in granting small and medium scale 

enterprises (SMEs) access to computer numerical control (CNC) machines with cutting-edge 

technology. This improves machine tool control and robustness, decreases losses and scraps in 

production, reduces carbon footprint, and increases overall energy consumption during 

production, which gives SMEs a chance to compete in the global market [13]. It also creates 

an environment that aids machine tool manufacturers to develop relationships with their 

customers and increases their profitability [20-22]. Although servitisation for manufacturing 

companies is an attractive strategy, it also has specific challenges or risks. These risks range 

from financial to technical in nature [23] and can be borne by both the service provider and the 

manufacturer. It can also be challenging to define the product-service parameters since services 
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are fuzzy by nature [24]. The definition of the product-service parameters determines how the 

problem of which party bears the burden is handled. While the benefits to the end-user have 

been explained, the problem that remains to be addressed is how to minimise the risk to the 

service provider since the customer is operating the machine in a remote site [25, 26] according 

to their manufacturing processes. The machine tool manufacturer needs to be able to establish 

if a machine tool malfunction or loss of accuracy is due to misuse or normal machine 

degradation to determine which party is responsible. More importantly, for a successful 

business model, is to predict any future loss of accuracy or availability, to minimise disruption 

by correcting future faults before they adversely affect the OEE. To do this requires putting in 

place an advanced technology to perform condition monitoring and predictive analytics on the 

machine tool operation. 

1.2.2 Modes of failure for machine tool 

Modes of failure for machine tools or indeed any device can be investigated using failure mode 

and effect analysis (FMEA). FMEA was originally developed and standardised in the late 

1940s by the US military, and its procedure was described in the USA Department of Defence, 

MIL-P-1629 [27]. Although originally developed by the military, FMEA is applied in many 

other industries like automotive [28], health [27], and manufacturing [29, 30] as a reliability 

study tool. FMEA is a valuable methodology used in evaluating different levels of a system to 

access risk, availability, and reliability to identify critical failure mode [31]. Applying this 

methodology to machine tools, components and subsystems with critical failure modes can be 

identified. Generally, FMEA combines qualitative (expert knowledge) and quantitative data 

(mean time to failure (MTTF) and mean time to repair (MTTR)) to develop a highly structured, 

systematic technique for failure mode analysis [32]. An FMEA can be carried out on a machine 

tool by adhering to the guidance detailed in the MIL-STD-1629A. The process is documented 

for a CNC turning centre by Patil and Kothavale [31]. The FMEA evaluates all components 
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and subsystems of a machine tool, including mechanical, electrical, and electronics. Patil and 

Kothavale [31] observed that even though the electrical and electronics subsystem has a higher 

failure probability than the mechanical subsystems, they are not classified as critical 

subsystems. The identified critical subsystems are mainly subsystems that are engaged in 

continuous motion (rotational, translational and linear) during the operation of the machine tool 

like the main transmission, axes, and spindle subsystems. The criticality of a component or 

subsystem is determined based on their risk priority number (RPN). An RPN is the product of 

the severity of failure ranking, likelihood of occurrence of failure ranking and, the likelihood 

of detection of failure ranking [31]. These rankings range from 1 to 10, hence the RPN will 

range from 1 to 1000. In term of criticality, the higher RPN score the more critical the 

subsystem or component. 

1.2.3 Failure modelling techniques 

There are many different methods and strategies for investigating failure in machine tools, 

some of which are discussed in the following subsections: 

1.2.3.1 Vibration analysis 

Vibration analysis is the most commonly used method of failure investigation technique, 

especially in commercially available condition monitoring systems [33, 34]. It is mainly used 

for diagnosing mechanical faults in moving and vibrating components like gearbox, ball screw, 

shaft, bearing, and rotor [35]. In order to be effective, the vibration sensor is placed as close as 

possible to the source of vibration or the faulty components. There are different types of 

vibration sensors like accelerometers, velocity sensors, position sensors and displacement 

sensors. Out of all the vibration sensors, the accelerometer is the most widely used because it 

has the widest frequency response range, typically 1 to 30 kHz [33]. In terms of application, 

vibration analysis has been effectively used with good results for the condition monitoring of 

machine components like gearbox [36], bearing [37], and rotor [38]. However, vibration 
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signals typically have noise content and are not particularly viable for detecting faults at their 

early stages [33]. Due to the fact that vibration sensors are required to be installed as close as 

possible to the source of vibration, access to the sensor could be a problem during machine 

operation, especially in bulky machines. Also, in rotor fault analysis, it is required to have 

detailed knowledge of the frequency response function at different sensor positions making the 

fault identification process quite complex [39]. 

1.2.3.2 Acoustic emission analysis 

Acoustic emissions (AE) are ultrasonic sound waves emitted when metallic materials are 

altered or subjected to stress [40]. AE signals, unlike vibration signals, have a high signal-to-

noise ratio, making them suitable for incipient fault detection. AE sensors have also been 

applied, just like vibration sensors, has been effectively used with good results for the condition 

monitoring of machine components like gearbox [41], bearing [42], and rotor [43]. However, 

this method typically requires the use of multiple AE sensors, with each sensor having a 

dedicated data acquisition system [33]. This makes the installation and setup to be tedious and 

unnecessarily complicated due to wiring complexity. It also makes the setup to be quite 

expensive since multiple data acquisition kits are required. This method is affected by external 

environmental noise from the surrounding, making it unsuitable for most practical applications. 

It may also suffer from signal attenuation, so the sensor must be close to the signal source [44]. 

1.2.3.3 Temperature analysis 

Many components or subsystems of a machine (especially those that move or vibrate) typically 

would experience temperature rise during operation. This rise in temperature is expected to 

stay within a certain range for a component or subsystem in good condition. Any temperature 

deviation above this normal working range is an indication of a fault in that component or 

subsystem. Hence, temperature measurement can be used in this way for condition monitoring 

[33]. Temperature measurements can be collected by means of a thermal camera or by 
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installing temperature sensors. Temperature analysis has successfully been used for the 

condition monitoring of generators [45] and geared systems [46]. However, this approach may 

be easily prone to systematic error in condition monitoring of gear systems as there is no clear 

correlation between the gear system change in temperature and its fault state [46]. Also, it may 

be difficult to identify the actual source of temperature rise as the sensor might be detecting 

heat from another component or subsystem via heat transfer.  

1.2.3.4 Oil analysis 

Oil analysis is the process of analysing samples of the lubricating oil of a machine (typically 

off-line) for contamination, viscosity, moisture, pressure or temperature [34]. The particular 

characteristics of this parameter indicate the condition of the monitored component or 

subsystem of a machine. This method is effective in detecting early signs of a fault and faults 

from components with little or no moving parts. Oil analysis finds application in gearbox 

condition monitoring [47] and remaining useful life prediction with promising results [48]. 

However, since this method is mostly off-line, samples can be taken too far apart, which leads 

to potentially late detection of a fault. This situation can be overcome by performing the 

analysis on-line but this can be quite expensive as additional instrumentation and sensors is 

required [33].  

1.2.3.5 Electrical signal analysis 

Electrical signal analysis is the use of voltage, current and resistance analysis for the condition 

monitoring of electric equipment like motors, generators and accumulators. It is effective for 

the detection of mechanical and structural faults and also the early detection of electrical faults. 

This is demonstrated by Lu et al. [49] in the diagnosis of gear tooth in gearboxes and Gong et 

al. [50] in the early detection of bearing fault. This method is often easy and cheap to implement 

as the required signals are usually already built into the control system of the machine [33]. 

Hence, there might be a requirement for additional instrumentation, sensors, or data acquisition 
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kits. Also, this method is suited for online analysis and consequently the early detection of 

faults. However, it suffers from the disadvantage that it can only be used for electrical 

equipment.  

1.2.4 Summary of motivation 

This research is geared toward providing a technique that improves the accuracy and 

availability of a machine tool using intelligent condition monitoring. The technique can be used 

to predict catastrophic failure by analysing input data from a machine using artificial 

intelligence. The analysis of existing FMEA for Machine Tool use (section 1.2.2) led to the 

identification of the ball screw assembly as a critical subsystem and hence the concentration 

on the ball screw feed drive as a major cause of failure. A significant cause of concern for a 

servitisation company would be how to model and predict the failures on a wide variety of 

machines without onerous testing regimes on every ball screw. 

Although the work in this thesis was motivated by a larger project working towards 

“servitisation” of machine tools, this is just a more stringent requirement for remote, automated 

monitoring since the servitising company does not have direct access to the machine assets 

during everyday operation. The techniques derived in this work would be equally applicable 

for companies undertaking predictive maintenance of their machines. 

1.3 Thesis structure 

The thesis structure is arranged into chapters, from chapter one to chapter seven, plus abstract, 

references, and appendices. A synopsis of all the chapters is given here. Detailed information 

will be found in the specific chapters.  

1.3.1 Chapter 1 Introduction 

This chapter introduces the PhD research work by giving its background and general overview. 

It also establishes the main motivation of the PhD project and provides details of the thesis 
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structure, including chapters preview. The chapter is concluded with a summary of the content 

discussed in chapter one.   

1.3.2 Chapter 2 Literature review 

This chapter presents a review of literature relating to condition monitoring, artificial 

intelligence and deep learning. Topics such as machine tool maintenance strategies, modelling 

techniques and the different types of deep learning techniques were discussed. It also 

establishes the specific aim, objectives and scope of the PhD project. An overview of the 

contribution of this research to industry is highlighted. This is followed by the research 

methodology, which details the processes undertaken to achieve the final results and 

conclusions. The chapter is concluded with a summary of the content discussed in chapter two. 

1.3.3 Chapter 3 Machine learning 

This chapter analyses feature extraction for machine learning and the process of achieving it as 

utilised in this research. It focuses on fast Fourier transform (FFT) and wavelet transform-based 

signal processing for feature extraction. It includes details of machine learning algorithms like 

decision tree, support vector machine, K – nearest neighbour, and artificial neural network. 

This is followed by a presentation of the proposed algorithm that is based on machine learning. 

The chapter is concluded with a summary of the content discussed in chapter three. 

1.3.4 Chapter 4 Deep learning 

This chapter presents the proposed deep learning algorithm that will be used in this thesis. It 

focuses on its structure, types of activation functions, models, inputs, hidden layer and output. 

The chapter is concluded with a summary of the content discussed in chapter four.   

1.3.5 Chapter 5 Experiments and analysis 

This chapter details the design of experiment, which includes the pre-test activities, test setup, 

and the test procedure. It also introduces the datasets used for this research and details the 
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process of applying the proposed algorithms of chapters four and five on the datasets. An 

analysis of the collected datasets from the experiment was highlighted. The chapter is 

concluded with a summary of the content discussed in chapter five.     

1.3.6 Chapter 6 Results and validations 

In this chapter, the results of the analysis conducted are presented. The validation of the 

algorithms and models is also made, which includes the validation of the wavelet transform, 

the extracted feature for machine learning and the deep learning model used in this research. 

The chapter is concluded with a summary of the content discussed in chapter six. 

1.3.7 Chapter 7 Conclusions and future work 

This chapter summarises the research work in this thesis. It also details the conclusion derived 

in order of importance, the contributions of this research to knowledge, and then presents 

further work that are direct offshoots of this project.   

1.4 Chapter summary 

This research is as a result of the need to achieve machine tool servitisation. Servitisation of 

machine tools is a business model where a manufacturer procures the useful time available on 

the machine tool instead of the capital assets. The implication of this is that highly skilled 

personnel with the right resources are responsible for the machine tool maintenance.  This will 

lead to improved productivity and increased accuracy in production and granting SMEs access 

to CNC machines with cutting-edge technology. This should improve machine tool control and 

robustness, decreases losses and scraps in production, reduces carbon footprint, and increases 

overall energy consumption efficiency. However, since the machine will be used in a remote 

location, the problem arises of how to effectively monitor the machine tool such that 

availability and accuracy are guaranteed. That is the problem that this research aims to address 

by using vibration analysis and artificial intelligence (AI) to monitor the condition of ball 
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screws used in CNC machine tool feed drive systems. The next chapter delves into the literature 

review, aim, objectives, scope and methodology of the PhD research. 
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Chapter 2 Literature review 

This chapter presents the review and critical appraisal of literature of methods of condition 

monitoring applied to machine tools and other similar systems where the techniques could be 

transferable. It starts by providing an overview of the different techniques used for 

investigating condition monitoring. This is followed by a discussion of the application of 

artificial intelligence (AI) techniques to obtaining an accurate predictive model. This review 

synthesises the important ideas, claims, arguments, and conclusions mentioned in previous 

research to identify the important issues and establish a theoretical basis for the proposed 

prediction model. Materials used for this review include journals, conference papers, and 

textbooks. 

2.1 Machine tool maintenance and condition monitoring 

2.1.1 Maintenance strategies 

Machine tools are designed to operate under many different conditions. However, within these 

operating conditions, it is desired that the performs optimally. Optimal performance implies 

that the machine tools perform as per their designed and installed capacity. However, due to 

heat, misalignment, and wear and tear, this is not the case. Herein comes the subject of machine 

tool maintenance strategy. Machine tool maintenance strategies are designed to optimise the 

accuracy and availability of a machine tool. The type of maintenance strategy adopted usually 

depends on cost and company size. There are mainly three machine maintenance strategies 

used in the manufacturing industry [51, 52]. They are namely:  

1. Operate-to-failure or reactive maintenance strategy. 

2. Time-based or preventive maintenance strategy. 

3. Condition-based or predictive maintenance strategy. 
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2.1.1.1 Operate-to-failure or reactive maintenance 

Operate-to-failure or reactive maintenance (also known as corrective maintenance) strategy 

does not take any preliminary actions to detect the initiation or prevention of failure. As long 

as the machine tool remains operational and functioning, all repair activities are put on hold. 

The need for maintenance or repair work will usually occur without warning. This type of 

maintenance strategy has the following characteristics; 

1. It has a high mean time to fail (MTTF). 

2. In general, the failure is catastrophic. 

3. It has a high cost of maintenance 

4. It is usually accompanied by a lengthy period of machine unavailability. 

5. It results in revenue loss and production time. 

6. It reduces the waste of spare parts due to preventive maintenance activities. 

7. It can only be beneficial for machines; (a) that are low-cost and not critical to 

production, (b) whose effect of failure is negligible in terms of production losses, (c) 

whose cost of repairing after failure is considerably less than that required in the case 

of implementing a different maintenance strategy, (d) whose failure is severe and 

critical but the consequences are not immediate hence required repairs can be effected 

in this time. 

2.1.1.2 Time-based or preventive maintenance 

Time-based or preventive maintenance strategy, as the names imply, implements a schedule of 

maintenance activities fixed at regular intervals based on manufacturers' recommendations and 

past experiences. The idea is to replace, maintain or service a machine tool before it fails. This 

type of maintenance strategy has the following characteristics; 

1. It allows for the scheduling of maintenance actions in advance. 
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2. It can result in the needless repair and replacement of parts that still have a long useful 

life. 

3. It can result in wastage of spare parts, man-hours, manpower, and revenue. 

4. It does not guarantee availability as certain failures can still occur between maintenance 

activities. 

5. It can reduce the occurrence of critical failure. 

6. It is highly beneficial in situations where the MTTF can be estimated reasonably 

accurately. 

2.1.1.3 Condition-based or predictive maintenance 

Condition-based or predictive maintenance is defined by Davies [53] as "the performance of 

periodic or continuous comparative measurement on parameters which are suspected of 

reflecting the condition of a component, sub-assembly or system with the object that on 

analysis, the measurements may indicate the items current condition and the future trend of its 

possible deterioration." It guarantees that all decisions are based on reliable, independently 

verified diagnostic data. Thus, presenting a foundation for cost-effective and coherent decision-

making by assisting in the planning of upcoming maintenance activities. Sensors and 

transducers are used to collect data from the machine, which is then analysed and interpreted 

using suitable technology to determine the machine's condition. This type of maintenance 

strategy has the following characteristics; 

1. It requires a high initial setup cost. 

2. It enables maintenance activities to be performed at the optimum time 

3. It leads to efficient use of resources: spare parts, man-hours, manpower, and revenue. 

4. It helps to prevent unnecessary machine tool downtime. 

5. It helps reduce the cost of machine tool maintenance. 

6. It increases machine tool useful life. 
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7. Implementation on smaller machines could be economically disadvantageous. 

8. It is beneficial for large machines that are critical to production. 

9. It requires a reliable and consistent condition monitoring technique and tools. 

2.2 Vibration analysis 

Vibration analysis is concerned with dynamic events like force and displacement as functions 

of time. All machines, even in good condition, are characterised by these dynamic events as a 

result of the movements of their parts. These events can be referred to as the vibration signature, 

which changes depending on the machine's working state. This may include a change in speed, 

load, cutting force, and nature of the workpiece. Hence a faulty machine will exhibit a vibration 

signature, which can be related to the fault. Likewise, a non-faulty machine will display a 

vibration signature, which can be related to its non-fault state [54]. The change in the vibration 

signature is due to the changes in the amplitude and frequency of the generated signal (wave) 

from cracks and other forms of permanent deformations as the machine operates. In order to 

measure vibration, sensors measure physical parameters in which vibration can be expressed, 

such as displacement, velocity, and acceleration [54]. Typical instruments for measuring 

vibration signals include proximity probes, velocity transducers, accelerometers, dual vibration 

probes and laser vibrometers. Some of the advantages of vibration analysis that make it suitable 

for machine tool condition monitoring include [54] 

1. Its reaction time is instant in terms of response to machine component structural and 

physical change. 

2. It easily isolates the source component of the fault. 

3. It can easily be adapted for real-time online condition monitoring 

4. It can be used with signal processing tools to detect weak fault signals before they 

become more prominent. 
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A secondary effect of vibration is acoustic emission (AE), which are high-frequency solid-

borne vibration signals. These signals are collected by placing the AE sensor on the metallic 

component's surface closest to the source of the vibration. Hence the reason why many 

researchers are equally focused on investigating acoustic emission [55-57]. 

2.3 Ball screw 

There are several methods of realising translation motion of the spindle of a CNC machine, 

and they include ball screw and ballnut, rack and pinion, leadscrew, and belt drive. 

Nevertheless, most high-precision machine tools utilize ball screw and ballnut drive systems. 

This is due to its high accuracy and efficiency in converting rotary motion to linear motion, 

resulting in good dynamic performance and minimal backlash [58]. This makes them well 

suited for applications that require accurate positioning and levelling, like in aeroplanes [59]. 

They are also widely used in applications that require a high number of cycles due to their high 

mechanical endurance capability [60]. However, ball screws can wear out their raceways and 

ball bearings (especially if poorly or not lubricated), generating heat as a result of contact 

between metal surfaces which causes geometric and thermal deformation of the machine tool. 

If not corrected or compensated for, these deformations will have a negative impact on the 

precision of the machine tool [61]. Ball screw degradation is often caused by wear from 

unbalanced forces, friction, or misalignment during installation. In recent times, most condition 

monitoring applications for the detection of degradation of ball screws are based on vibration 

or Acoustic Emission (AE) characteristics. This is because there is a significant correlation 

between vibration and noise levels as it relates to increasing bearing degradation [62]. Figure 

2.1 shows a typical ball screw structure and its ballnut. 
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Figure 2.1 Typical ball screw structure (Adapted from [63]) 

2.4 Ball screw faults 

Ball screws can develop certain faults or failures due to material, installation, usage and 

maintenance [64]. Some of the faults of ball screws include: 

2.4.1 Fatigue 

This refers to the weakened condition in the material makeup of the ball screw exhibited as 

cracks due to the repeated stress. Fatigue in ball screw drive systems is load and cycle-

dependent and is caused by many different factors like misalignment, overtight fittings, ovality, 

axial thrust, and overloading [65, 66]. Fatigue in ball screws can be prevented by lubrication, 

routine maintenance, and the use of materials with high fracture toughness. 

2.4.2 Cracks  

These are long narrow openings or fissures that develop in the ball screw material. Ball screw 

cracks are caused by overloading, vibrations, misalignment, and substandard materials [64]. 

Ball screw cracks can be prevented by proper installation of ball screw, use of seals to damp 

vibrations, use of standard materials, and routine maintenance.  



19 
 

2.4.3 Fretting 

Fretting is caused by the rubbing contacts in oscillatory motion under load [64]. The resulting 

surface degradation is accompanied by the transfer of material and then the oxidation of the 

exposed surface and the metallic debris. This oxidation forms much harder deposits than the 

original material that was oxidised, which then acts as an abrasive agent, causing more fretting. 

Fretting can be overcome by lubrication, using material combination with good friction 

behaviour (less likely to fret when rubbed together), and using seals to damp vibrations and 

prevent access to oxygen. 

2.4.4 False brinelling 

False brinelling is a type of surface degradation that is similar to fretting. It occurs when the 

stationary ballnuts of a ball screw drive system is induced to oscillate or vibrate by an external 

force [67]. This oscillation causes the ballnuts to rub against each other and other contact 

surfaces, creating wear and debris. This debris, just like in the case of fretting, gets oxidised 

and form deposits that are much harder than the original material that was oxidised, which then 

acts as an abrasive agent, causing more false brinelling. False brinelling can be combated 

overcome by proper lubrication, routine maintenance, and the use of seals to damp vibrations 

and prevent access to oxygen. 

2.4.5 Corrosion 

This usually occurs in storage for new ball screws or during an extended period of inactivity 

for ball screws already in service. It is caused by water or moisture getting into the ballnuts of 

the ball screw and deteriorating the ball screw material by chemically reacting with it [68]. 

Corrosion can be prevented by proper storage, lubrication, routine maintenance, and putting a 

protective cover on an in-service ball screw to protect against moisture.  



20 
 

2.4.6 Wear 

Wear in ball screws is due to misalignment and lack of or inadequate lubrication. Wear is 

characterised by deformation and surface material removal caused by frictional forces when 

multiple surfaces rub against one another [66]. This may result in vibration when moving, 

which could cause the ball screw to bend. These vibrations could initiate fretting and 

consequently false brinelling resulting in even more damage to the ball screw. To avoid wear 

in ball screws, it is important to ensure that there is no misalignment during installation. Other 

ways to prevent wear in ball screws include lubrication, routine maintenance, and proper 

protective covering to prevent dirt from entering the ball screw. 

2.5 Artificial intelligence 

Artificial intelligence (AI) continues to grow in usage among researchers as it meets their need 

for accuracy and practicality. It has already been applied to many different fields like in the 

financial sector for risk analysis [69], in the tourism industry to forecast arrivals [70], in the 

medical industry for medical imaging applications [71], in the agriculture industry for digital 

mapping of carbon fractions in soil [72], in the music industry for predicting hit songs [73], in 

international relations for detecting provocation patterns in the military [74], in engineering for 

condition monitoring [75] and many more. In all of the above research, the solution does not 

depend upon an expert agent in the final decision making in the process. The proposed model 

in all of these cases seeks to deskill the classical approach, which is heavily reliant on an expert 

agent. This approach is particularly advantageous for situation where there is a lot of 

uncertainty about the physical and mechanical make-up of the concerned system or when the 

system experiences poorly defined perturbations. The literature therefore indicates that such 

AI techniques would be suitable in the many situations where mechanical systems and 

subsystem are sealed by the manufacturer. It also reduces the influence of personal biases and 

misconception that could influence the output of the model. AI generally refers to machine 
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learning and deep learning. One of the many AI methods already being applied to condition 

monitoring is artificial neural network (ANN). Ozel and Karpat [76] used ANN for tool wear 

condition monitoring and surface roughness prediction for varied cutting conditions. The 

developed model has the capacity to describe more complicated non-linearities and interactions 

especially compared to regression models (linear and exponential), which make its predictive 

performance better. Others include support vector machines (SVM) , Lim et al. [77] used SVM 

analysis on thermal image data for fault diagnosis in rotating machines. This method provides 

an alternative contactless approach to condition monitoring of machine components or 

subsystems to cases where it may be impossible or harmful to implement a direct contact 

approach. This research shows that this method achieves good accuracy of up to 96 % and 

compares favourably with vibration analysis, especially in detecting incipient faults.  

Muralidharan et al. [78] establish a decision tree methodology for the condition monitoring of 

a self-aligning carrying idler. The self-aligning carrying idler is a critical subsystem of a belt 

conveyor that consists of the bearing, shaft, labyrinth seal, and outer roller. The self-aligning 

carrying idler was analysed under five different conditions, this includes: good, bearing fault, 

shaft fault, labyrinth fault and outer roller fault. The developed method used eleven features to 

train the decision tree with kurtosis as the root feature and achieved an accuracy of 99.52 %. 

However, this strategy is highly prone to over-fitting, which means that the proposed model is 

likely not to perform as well when presented with a new dataset. 

Abdulshahed [79], in his research, used ANFIS for the compensation of thermal errors on CNC 

machine tools. Two predictive models were designed based on grid and c-means clustering 

methods, and grey theory was used for optimal temperature sensor selection. This approach 

was able to develop an ANFIS and c-means clustering model with superior predictive ability 

but with fewer rules by achieving 94 % improvement in thermal error compensation. However, 

the temperature data used to train the network was instantaneous rather than continuous. Hence, 
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the obtained results were for a particular point in time with no influence from the past 

temperature data.  

Gunerkar and Jalan [80] developed a novel approach that combines vibration and acoustic 

emission data for fault diagnosis of bearings. This combines the advantages offered by 

vibration and acoustic emission sensors to achieve improved results compared to when either 

sensor is used. The process involves multiple data acquisition, signal analysis, feature 

extraction, feature classification with KNN, high-level data fusion, and domain-specific expert 

decision-making knowledge. The result obtained indicates that the proposed method 

outperforms situations where vibration or acoustic emission sensors are used. However, this 

method may be more prone to systematic error as the level of expert knowledge required is 

high.  

These AI methods offer good accuracy, real-time analysis and generally outperform classical 

methods of condition monitoring with the added advantage of reduce expert agent influence on 

the final decision making of the models.  

Creating reliable models is a major challenge in the engineering field (as well as in any other 

field) due to the problem of causation, correlation, and coincidence. All models aim to relate 

an effect to a cause; this will make the model accurate. A model that unwittingly relates an 

effect to a correlation or a coincidence would be inaccurate. In some cases, it might be evident 

that an effect is attributed to a correlation or coincidence, and in others, it might not. For 

example,  

1. The crow of a rooster causes daybreak 

2. Citrus fruit cures scurvy  

In example 1, we know that the typical sequence of dawn, morning, afternoon, evening, and 

night will still occur even if the rooster does not crow for some reason. There are also situations 

where roosters crow during the day. So, relating the rooster crow to daybreak is clearly a case 
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of correlation or coincidence at best. In the second example, though, it is not so clear that the 

assertion that citrus fruit curse scurvy is a correlation or a coincidence. Based on the 

observation that scurvy patients taking citrus fruit are cure tends to point to a causal 

relationship. However, from more research and randomised controlled trial (RCT), it was 

established that ascorbic acid or vitamin C (a constituent of citrus fruit) is the cure for scurvy. 

Hence example 2 shows a correlation, not a cause. The correlation and coincidence problem 

can be significantly minimised and ultimately eliminated by performing RCTs and removing 

confounders from the experimentation process. 

Another modelling challenge is the non-linear nature of real-world problems, making it 

problematic to represent with an adequate mathematical or statistical model. The best scientists 

and engineers can do is create a model that comes as close as possible to characterising the 

problem, making the analysis somewhat subjective as opposed to being truly objective. There 

are typically three broad modelling methods (1) white-box, (2) black-box, and (3) grey-box. 

2.5.1 White-box modelling 

In white-box modelling, mathematical equations representing the analogous physical law are 

used to characterise the problem in question [81]. In formulating these equations, certain 

assumptions are made based on experience, knowledge, and logic. The solution to these 

equations, using analytic or numerical analysis, gives a realistic and tangible representation of 

the problem. Hence this model is more clearly open for understanding and clarification from 

an observer and a proposer point of view. Nevertheless, this modelling approach suffers from 

problems of accuracy. This could be as a result of; (a) system complexity, (b) the analogous 

physical law does not adequately correspond to the problem, (c) the assumptions made either 

oversimplifies the system, which changes the system characteristics or is wrong for the system. 

Models in mathematics, statistics, and physics mainly employ this approach, and some 

examples are regression analysis, correlation analysis, and fuzzy logic. 



24 
 

2.5.2 Black-box modelling 

Black-box modelling is a data-driven modelling process [82, 83]. This implies that the model 

parameters are defined by or dependant on data collection and analysis. This modelling method 

relies on the principle of cause and effect to establish a dependence between inputs and outputs. 

The main advantage of this approach is that it does not require expert knowledge of the physical 

process to be modelled. It also provides better accuracy in contrast with the white-box method 

[76, 84]. However, it is susceptible to the problem of correlation and coincidence, which cannot 

be tested for in any given data. It is also not open for clear understanding and clarification from 

an observer and a proposer's point of view. It can be noted that the accuracy of this approach, 

by its nature, is based heavily on the accuracy of the data used. Any error associated with the 

sensor, data collection process, experiment procedure, and confounders will be accounted for 

by the model. This modelling approach can be seen in artificial neural networks (ANN) and 

deep learning. 

2.5.3 Grey-box modelling 

Grey-box modelling seeks to positively combine certain white-box and black-box methods [85-

87]. This implies that it combines the advantages of the white-box and the black-box approach. 

The Adaptive Neuro-Fuzzy Inference System (ANFIS), which is a combination of ANN 

(black-box modelling) and fuzzy logic (white-box modelling), are examples of a grey-box 

modelling method. The three modelling techniques are illustrated in Figure 2.2 
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Figure 2.2 Diagrammatic depiction of modelling techniques 

2.6 Deep learning 

Deep learning is a subset of machine learning which involves the use of multiple hidden layers 

in an ANN. These multiple hidden layers constitute what is referred to as deep architecture, 

hence the name 'deep learning' [88]. Deep learning as a concept was originally proposed as a 

concept in the early 1940s but suffered some major setbacks due to lack of sufficient data, 

computer resources, and training efficiency [88, 89]. However, with the advancement in 

science and technology in terms of computing resources and the availability of 'big' data and 

highly efficient training algorithms [90], the stage was set for deep learning to thrive. Deep 

learning uses representative learning to perform multiple levels of abstraction on raw data using 

its multiple hidden layers. This method of learning enables deep learning to reveal intricate 

structures in large datasets and compute the representation in each layer from the representation 

of the previous layer [91]. Unlike conventional machine learning, which was limited in 

processing raw data and requires a domain expert to perform signal processing and feature 

extraction from the original data, deep learning can utilise raw data for training and 

classification (as illustrated in Figure 2.3). Many aspects of modern life have been greatly 

influenced by deep learning. These include; cell phones, internet search engines, smart devices, 

social media, speech to text transcription, voice command, and match news items. Recently, 

many researchers have contributed to the body of knowledge of deep learning by adapting the 
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technology to solve problems that otherwise would be difficult to solve using other methods in 

diverse fields of study. 

Hinton [92] developed a breakthrough concept of efficiently teaching individual neurons, 

thereby introducing Deep Belief Networks (DBN). It achieves this by taking advantage of the 

restricted Boltzmann machine (RBM), a learning algorithm that greedily trains one layer at a 

time. The proposed DBN achieved considerably high precision in phonetic categorization for 

automatic voice recognition than the conventional machine learning approach and was the first 

large commercial use of deep learning. On the other hand, Alex Krizhevsky [93] achieved a 

massive breakthrough in image recognition in 2012 when his team won first place at the world 

competition of image recognition called ImageNet scale visual recognition challenge 

(ILSVRC). Their algorithm, also known as AlexNet, achieved a low error rate of 15.3 % 

compared to 26.2 % achieved by its closest competitor. Researches by Graves et al. [94] and 

Pascanu [95] shows that recurrent neural network (RNN) stacked in a deep architecture 

produces significantly better performance (achieving an error rate of about 17.7 %) than its 

conventional counterpart. Other fields of application of deep learning include image 

recognition [96, 97], speech recognition [98, 99], medicine [100, 101], engineering [88, 102], 

natural language analysis [103-105], social media [106, 107]. These deep learning approaches 

further reduce the influence of an expert agent, while offering good accuracy, in the decision 

making as there is no need for feature extraction. This makes the black-box approach (machine 

learning and deep learning) good candidates to investigate the particular problem scenario for 

this thesis. Which is, the ball screw assembly is not directly observable and the detail of the 

internal construction of the system is unknown. Also, the exact fault condition is unknown, this 

make it impossible to design a white-box model based on physical properties that are not 

known. Hence, the decision to use machine learning and deep learning for this research.    
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Figure 2.3 Machine learning versus Deep learning block diagram 

2.7 Aim and objectives of the research 

This research aims to develop an intelligent condition monitoring system for machine tools 

balls screw feed drives based on sensor data and directed by artificial intelligence. The 

proposed solution will lay the technical foundation upon which the machine tool servitisation 

business model can be supported by condition monitoring technology. The solution would 

perform early and accurate fault detection such that maintenance activities are scheduled before 

catastrophic failure occurs. 

The aim is addressed by the following research questions: 

1. What method of sensing is most appropriate for monitoring degradation in ball screw 

feed drive systems? 

2. What method of AI provides the best balance between efficiency and accuracy when 

detecting a damaged ball screw?   

The following project management objectives represent the step-by-step method of how these 

research questions were answered: 
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1. Conduct a detailed literature review of the historical and current state of condition 

monitoring and the methods used to determine the most suitable sensors or signals to 

be used for this condition monitoring problem domain. 

2. Conduct a detailed literature review of the historical and current state of feature 

extraction, machine learning, and signal analysis. 

3. Develop a feature extraction method based on the most suitable technique identified in 

the literature review to obtain valuable information from continuous data suitable for 

machine learning algorithms. 

4. Validate and optimise the proposed machine learning algorithm. 

5. Define and develop an appropriate architecture for the deep learning model to detect 

the faulty ball screw. 

6. Validate the proposed deep learning algorithm. 

7. Critically appraise the machine learning and deep learning algorithms used for 

monitoring the degradation of the ball screw through testing on a machine tool test rig. 

2.8 Scope 

The scope of this work is to perform condition monitoring of the ball screw of a CNC machine 

tool under two states (good and worn) using artificial intelligence and signal processing. The 

focus is on using machine learning and deep learning methodology to accurately predict the 

state of the ball screw, rather than traditional frequency and mathematical analysis that can be 

prone to bias and preconceptions. This process involves literature review, design of experiment, 

signal processing, data analysis to obtain results, and validation of the results. Vibration and 

acoustic emission sensors were used to collect continuous time-series data from the ball screws 

of a gantry-type CNC machine tool, which is then analysed with machine learning and deep 

learning. The validation test is also conducted on the same machine by performing several 

experiments with varying conditions. 
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The scope does not include the investigation of the progressive degradation of the ball screw 

through the accelerated wear on a test rig.  This was as a result of time and logistical constraints 

due to the covid pandemic; this could not be achieved. Instead, it has been included as further 

work. The results from this thesis have laid the foundation for a larger project to quantify 

degradation at different stages of wear.   

2.9 Novelty of the research and contribution to knowledge 

This research investigates the application of AI to condition monitoring in machine tools, 

which includes comparing machine learning and deep learning. Systems applying AI to 

condition monitoring have been a source of extensive research in the past decade. The over-

arching novelty in the thesis is the use of a deep learning algorithm based on convolution 

analysis for the assessment of the health condition of a ball screw assembly in a machine tool. 

The main contribution to knowledge derives from critically comparing this technique with 

optimised machine learning models to provide guidance for future application and research in 

this area. 

Other novelties that arose from delivering this outcome include the method of signal processing 

employed to pre-process the data in the machine learning models, whereby wavelet transform 

and FFT are utilised in preparing the data for effective feature extraction. The results are 

compared with existing methods to show their benefit, and other researchers could investigate 

whether they would be suitable for different applications.  

The second supplementary novelty is the method of formatting the time-series data into image 

files, making it suitable for use in the convolution deep learning model and analysing the 

influencing factors when undertaking this pre-processing. It is anticipated that this approach 

could be applied to other time-series signals in manufacturing or other problem domains. 
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2.9.1 Potential impact of the research on industry 

This research, as it fits into the servitisation model, presents several potential contributions to 

knowledge and industry that are highlighted below: 

1. Its approach will improve manufacturing industries' in-service support, which will 

boost efficiency, improve technological advancement, and enhance manufacturing 

sustainability across the supply chain. 

2. Companies, especially SMEs, will gain access to cutting-edge CNC machines with 

guaranteed quality, performance, and availability. This will lead to a more productive 

and sustainable manufacturing facility, which will lead to an increase in the company's 

market share. 

3. It supports the simple manufacturing infrastructure and is therefore applicable to all 

sectors where precision machining is necessary (aerospace, automotive, and power 

generation). 

4. It could help lower maintenance costs as there will be no overheads in supporting a full 

maintenance department. This will lead to savings in service cost, reduced average 

machine downtime, and an increased throughput volume without any increase in labour 

costs. 

5. It could lead to improved data management and analysis techniques that can be used in 

other fields where long-term monitoring is necessary. 

6. The improved maintenance resulting from this project will improve maintenance 

culture, including reducing intensity and type of repair actions, materials and spares 

use, rate and amount of failure, and waste from scrap. This will lead to low energy 

consumption levels and an even lower carbon footprint. 

7. It has the potential to improve the health and safety benefits for companies since it 

reduces the risk of catastrophic failures that might be injurious to workers. 
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2.10 Methodology 

The methodology of this research involves the use of two AI algorithms for detecting and 

distinguishing the vibration signature of different states of a machine tool in order to adequately 

represent the condition of the machine tool at any given time. The first of these is machine 

learning, while the other is deep learning. In the machine learning process, wavelet transform 

and FFT are used for signal processing, followed by feature extraction. The extracted features 

are then processed with several machine learning algorithms to assess the quality of extracted 

feature in representing the condition of the machine tool. In the deep learning process, an 

intelligent image processing algorithm capable of detecting and distinguishing vibration 

signatures based on predetermined classes is developed. It uses the principle of convolution 

analysis for image processing, feature identification, and extraction.  

The datasets used for the research were obtained from experiments performed on-site at the 

Centre Precision Technology (CPT) machine workshop at the University of Huddersfield. The 

experiment was performed on a gantry-type 5-axis CNC machine tool with two similar ball 

screws. One ball screw assembly had been starved of lubrication due to a fault. This allowed a 

good and a worn balls screw to be compared for a single test, i.e., reducing uncertainty from 

doing good/bad tests on different machines. The datasets were collected under various 

conditions, including different feed rates and thermal perturbation (see Chapter 5 for full 

detail). The datasets were used for developing, testing, and validating the AI models proposed. 

For the purpose of preventing overfitting in the proposed AI models during training, a portion 

of the datasets is designated as the validation set. The validation set is used to determine the 

epoch of training required such that overfitting does not occur.    
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2.11 Chapter summary 

There are three different approaches to machine maintenance: operate-to-failure or reactive 

maintenance, time-based or preventive maintenance, and condition-based or predictive 

maintenance. Among these three, condition-based maintenance is arguably the best because it 

offers the machine tool user a good balance between maintenance cost and availability (and 

accuracy). To implement an effective condition monitoring strategy, different modelling 

techniques can be explored. AI techniques like machine learning and deep learning are always 

often used. The popularity of these techniques extends beyond condition monitoring and 

engineering, with applications in politics, agriculture, medicine, tourism, finance, and many 

more. The next chapter delves into machine learning, signal analysis, and feature extraction. 
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Chapter 3 Machine learning 

This chapter provides a more detailed literature review and appraisal of machine learning as it 

applies to this research, leading to the proposed methods that are most likely to produce good 

results for this problem domain. 

It starts by providing a review of the methods of signal analysis commonly used for data 

preparation. This is followed by a description and appraisal of some machine learning 

algorithms and their applications and their relation to this thesis's problem domain. Next is a 

description of the extraction of statistical features often used in machine learning applied in 

this research. This chapter highlights all the important concepts that make machine learning 

achievable for condition monitoring of ball screw feed drive systems. Materials used for this 

chapter include journals, conference papers, and textbooks.  

3.1 Signal pre-processing  

Typically, there must be some form of signal processing after data acquisition before the data 

can be utilised. This is done in most cases because of the need to reduce the amount of data, 

the noise that accompanies the data, or in other instances, to rearrange or reorganise the dataset. 

In general, signal processing aims to improve signal components in noisy measurements or 

transform measured datasets so that new features are available. Hence, data processing serves 

as a significant prerequisite for feature extraction. However, the viability of the features that 

can be extracted from a given signal depends on the quality of the signal processing technique 

used. There are several techniques for signal processing, and they include wavelet transform 

[108, 109], Fourier analysis [110], short-time Fourier transform (STFT) [111], correlation 

[112], and Hilbert-Huang [113, 114]. 
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3.1.1 Fast Fourier transform (FFT) 

The Fourier transform of a continuous signal 𝑥(𝑡) decomposes the signal into its constituent 

frequency components over the analysis window, is given by (3.1). It provides a quick insight 

into a given signal's frequency content, which is important for certain applications. However, 

it has a major flaw (which is remedied in STFT), which is, it has no information on time-

domain localisation. 

𝑋(𝑓) = න 𝑥(𝑡)

ஶ

ିஶ

𝑒ିଶ௝గ௙௧𝑑𝑡 
(3.1) 

Where 𝑓 is frequency and 𝑡 is time. 

STFT tries to achieve both time localisation information and frequency constituent with a fixed 

window. Unfortunately, due to the uncertainty principle, it is not possible to accurately 

determine the time localisation and the frequency localisation information simultaneously in 

the time-frequency plane. In order to accurately determine the time localisation information, 

the time analysis window has to be short. Whereas to accurately determine the frequency 

localisation information, the time analysis window has to be long. This results in a trade-off 

between the time and frequency localisation information [115]. Mathematically, the STFT of 

a continuous signal 𝑥(𝑡) is given by (3.2), which shows that the signal is multiplied by a 

nonzero window function 𝑔(∙) for a short time 𝜏. Then the Fourier transform of the resultant 

signal is taken as the window moves across the time axis. This results in a time-frequency 

representation of the signal. 

𝑆𝑇𝐹𝑇(𝜏, 𝑓) = න 𝑥(𝑡)

ஶ

ିஶ

𝑔(𝑡 − 𝜏)𝑒ିଶ௝గ௙௧𝑑𝑡 
(3.2) 

Fast Fourier transform (FFT) is a collection of several fast discrete Fourier transform (DFT) 

computation methods. DFT is a descriptive mathematical method used to investigate the 

correlation between the time domain and the frequency domain representation of discrete data. 
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DFT can generally be defined as the transformation of discrete signals from the time domain 

to the frequency domain and vice versa. Typically, the original signal is in the time domain, 

and it is required to convert to the frequency domain for analysis. Such frequency constituents 

are the sinusoidal composition of the original signal in its particular amplitude and frequency 

value. FFT analytical methodology was first used in the 1960s and steadily increased in 

popularity [116]. Many FFT algorithm depends on the fact that 𝑒ି௝ଶగ/ே will yield unity when 

raised to power 𝑁 and hence, can be applied to comparable transforms over any Galois Field 

(a field that contains a finite number of elements). The DFT is mathematically denoted as [116]; 

𝑋ത௞ = ෍ 𝑥௠

ேିଵ

௠ୀ଴

𝑊௠௞ 
(3.3) 

Where 𝑋ത௞ is the DFT of sequence 𝑥௠ with 𝑁 consecutive samples, 𝑊 =  𝑒ି௝ଶగ/ே, 𝑗 = √−1 

and 𝑘 = 0, … , 𝑁 − 1. The inverse transform 𝑦௟ is mathematically denoted as [116]; 

𝑦௟ =  
1

𝑁
෍ 𝑋ത௞

ேିଵ

௞ୀ଴

𝑊ି௟௞ 
(3.4) 

Where 𝑙 = 0, … , 𝑁 − 1. 

To verify the validity of (3.4), substitute (3.3) into it. This implies that; 

𝑦௟ = ෍ 𝑥௠

ேିଵ

௠ୀ଴

1

𝑁
෍ 𝑊(௠ି௟)௞

ேିଵ

௞ୀ଴

 
(3.5) 

Since 𝑊ே = 1, 𝑚 − 𝑙 is defined as modulo 𝑁.  

For 𝑚 − 1 ≡ 0 (mod 𝑁),  

𝑆 =  ෍ 𝑊(௠ି௟)௞

ேିଵ

௞ୀ଴

= 𝑁 
(3.6) 

For 𝑚 − 𝑙 ≢ 0 (mod 𝑁), 

𝑆 =
ൣ𝑊ே(௠ି௟) − 1൧

𝑊௠ି௟ − 1
 

(3.7) 

and since 𝑊௠ି௟ ≠ 1, 𝑆 = 0. 
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Therefore, the only nonzero case occurs when 𝑙 ≡ 𝑚, which results in 𝑦௟ = 𝑥௠.  

3.1.2 Wavelet transforms 

Wavelets were first introduced during the early 1980s by a French geophysicist named J. 

Morlet as a mathematical tool for analysing seismic data [117]. Wavelet transform is a method 

of spectral approximation that can be used to express set functions as an infinite series of 

wavelets [118]. This is done by scaling (dilating and contracting) and shifting a function as a 

linear combination of a specific set of functions (wavelets) with the help of a mother wavelet, 

scaling parameter, and translation parameter. The original signal can be reconstituted by an 

algebraic summation of the wavelet functions weighted by their corresponding wavelet 

coefficients. Wavelet transform is quite similar to DFT and STFT in terms of signal theory. 

However, wavelets offer time-frequency localisation of a signal [119, 120]. This means that 

wavelet transform has a high-frequency resolution at low frequencies while also having a high 

time resolution at high frequencies, unlike STFT, which offers a constant frequency resolution 

based on predefine window size at low frequencies and high frequencies [121]. On the other 

hand, DFT can only provide analysis in the frequency domain over the analysis window and, 

as such, does not provide any information on time-domain localisation. Figure 3.1 shows an 

illustration of this phenomenon. 

 

Figure 3.1 Frequency vs time resolution for (a) DFT, (b) STFT, and (c) DWT [121]. 
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Gao and Yan [122] assert that the signal-to-noise ratio of data can be improved by employing 

wavelet transform. This is realised by letting the change in time (∆𝑡) and change in frequency 

(∆𝑓) resolution vary in the time-frequency plane in order to achieve a multi-resolution analysis. 

In other words, it allows the frequency responses of the analysis filter to be regularly spread on 

a logarithmic scale. A significant advantage of wavelet transform over fast Fourier transform 

(FFT) or short-time Fourier transform (STFT) is that it can capture and expose frequencies 

otherwise hidden from FFT and STFT. Also, it can adequately analyse and construct filters for 

stationary and non-stationary signals [123]. Mathematically, a wavelet must satisfy the 

following conditions: 

න |𝜓(𝑡)|ଶ𝑑𝑡 < ∞

ஶ

ିஶ

 
(3.8) 

And 

න 𝜓(𝑡)𝑑𝑡 = 0

ஶ

ିஶ

 
(3.9) 

There are many different wavelet families; some of them are shown in Table 3.1. with their 

corresponding abbreviations. 

Table 3.1 Wavelet families and abbreviations 

Wavelet family Abbreviation 

Haar   haar 

Daubechies db 

Symlets           sym 

Coiflets        coif 

BiorSplines      bior 

ReverseBior rbio 

DMeyer         dmey 

Fejer-Korovkin    fk 
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They are two broad types of wavelet transform analysis; continuous wavelet transforms 

(CWT), and discrete wavelet transform (DWT). 

3.1.2.1 Continuous wavelet transforms 

For a given input signal x(t), the CWT is a product of the convolution of the signal x(t) and a 

complex conjugate of the mother wavelets 𝜓(𝑡), this is expressed mathematically as; 

𝑐𝑤𝑡(𝑠, 𝜏) =
1

√𝑠
න 𝑥(𝑡) 𝜓∗ ൬

𝑡 − 𝜏

𝑠
൰ 𝑑𝑡 

(3.10) 

where the symbols s represents the scaling parameter, τ represents the shifting parameter, the 

term  𝜓∗(∙) represents the complex conjugate of the scaled and shifted mother wavelet. From 

(3.10), it can be observed that the CWT is analogous to the Fourier transform. The difference 

is that the sine and cosine functions are replaced by the mother wavelet function, which 

contains two parameters (scaling and shifting parameters). The implication of the mother 

wavelet is that the signal will be projected into a two-dimensional plane, a time-frequency 

plane, instead of one, as in the case of Fourier transform. In the frequency domain, (3.10) is 

mathematically expressed as; 

𝐶𝑊𝑇(𝑠, 𝑓) = 𝐹{𝑐𝑤𝑡(𝑠, 𝜏)}

=
1

√𝑠2𝜋
න ൭ න 𝑥(𝑡)𝜓∗ ൬

𝑡 − 𝜏

𝑠
൰ 𝑑𝑡

ஶ

ିஶ

൱ 𝑒ି௝ଶగ௙ 𝑑𝜏

ஶ

ିஶ

= √𝑠𝑋(𝑓)Ψ∗ (𝑠𝑓) 

(3.11) 

where the symbol 𝐹 represents the Fourier transform operator, 𝑋(𝑓) represents the Fourier 

transform of 𝑥(𝑡) and Ψ∗(𝑓) represents the Fourier transform of 𝜓(𝑡). This results in a two-

dimensional transform in which the scaling and shifting parameters are changed continuously. 

By taking the inverse Fourier transform of (3.11) in the time domain results in; 

𝑐𝑤𝑡(𝑠, 𝑡) = 𝐹ିଵ{𝐶𝑊𝑇(𝑠, 𝑓)} = √𝑠𝐹ିଵ{𝑋(𝑓)Ψ∗(𝑠𝑓)} (3.12) 
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where the symbol 𝐹ିଵ represents the inverse Fourier transform operator. This will technically 

require an infinite number of coefficients which makes it computationally tedious and 

inefficient. 

3.1.2.2 Discrete wavelets transform 

The problem of high computationally overhead and inefficiency associated with the CWT can 

be reduced by discretizing the CWT [124]. This can be achieved by using dyadic scaling and 

shifting parameters. This implies that 𝑠 and 𝜏 from (3.10) are replaced by 2௝ and 2௝𝑘 

respectively. The resulting equation is the DWT and it is given by; 

𝑤𝑡(𝑗, 𝑘) = 〈𝑥(𝑡), 𝜓௝,௞(𝑡)〉 =
2

√2௝
න 𝑥(𝑡)𝜓∗ ቆ

𝑡 − 𝑘2௝

2௝
ቇ

ஶ

ିஶ

𝑑𝑡 
(3.13) 

Where 𝑗 is the depth of decomposition, 𝜓௝,௞(𝑡) is the wavelet function in the time domain, 𝜓∗ 

is the complex conjugate of the wavelet function in this equation, also 𝑗 ∈ ℝ, 𝑘 ∈ ℝ, 𝑡 ∈ ℝ 

[122, 125]. The DWT decomposes the original signal 𝐴଴ into approximations 𝐴ିଵ and details 

𝐷ିଵ, then the approximation  𝐴ିଵ is further decomposed into approximations  𝐴ିଶ and details 

𝐷ିଶ, and so on until the desire level is attended. This is illustrated in Figure 3.2 and (3.14) 

gives the mathematical expression for the coefficients of the approximation component 𝐴௝,௞ 

and the coefficients of the detail components 𝐷௝,௞  

𝐷𝑊𝑇௙(௡) = ቊ
𝐴௝,௞(𝑛) = ∑ 𝑓(𝑛)𝐺௝

∗൫𝑛 − 2௝𝑘൯௡

𝐷௝,௞(𝑛) = ∑ 𝑓(𝑛)𝐻௝
∗(𝑛 − 2௝𝑘)௡

 
(3.14) 



40 
 

 

Figure 3.2 Wavelet transform breakdown of a signal [122] 

From the diagram in Figure 3.2, G is a high pass filter, and H is a low pass filter. The impulse 

response of the high and low pass filters g(k) and h(k) respectively is related by (3.15) [125] 

𝑔(𝑘) = −1ଵି௞ℎ(1 − 𝑘) (3.15) 

3.2 Machine learning algorithms 

Machine learning is a part of artificial intelligence that can learn and predict outcomes 

automatically from data input without being explicitly programmed. It identifies patterns 

within data structures and their relationships to particular outcomes, using it to learn and predict 

outcomes from future datasets from the same process. Machine learning is broadly divided into 

two; supervised and unsupervised. The major difference between the two is that supervised 

learning will have its outcome predefined, whereas unsupervised learning will not. Machine 

learning is becoming more common among researchers and particularly amenable to modelling 

varied systems, from the stock market to complex engineering processes. This is due to its 

demonstrable superior predictive ability compared to traditional (statistical) methods [81, 84]. 

However, before machine learning can occur, a process known as feature extraction must have 
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been done on the data. This helps to facilitate the pattern identification and inference ability of 

the machine learning algorithm. Figure 3.3 shows the block diagram of the machine learning 

process.  

 

Figure 3.3 Block diagram of a machine learning process 

There are several machine learning algorithms, and some of the ones that have shown to give 

good results for intelligent fault diagnosis of rotating machines [126] include; decision tree, 

support vector machine, neural network, k - nearest neighbour,  

3.2.1 Decision tree 

Decision trees are a supervised machine learning algorithm that is mostly used for classification 

problems. It is a classifier algorithm that asks a question and then makes classification decisions 

based on the answer to those questions. They start at the top, and each answer progresses along 

a path until a point is reached where the path ends, and there are no further questions. The 

questions' responses can be numerical, ranked, multiple-choice, or simple “yes/no” answers. 

Figure 3.4 shows a typical decision tree; the top of the tree (A) is referred to as the root node 

(or root), B, C, D, and E are called nodes (they have arrows pointing to them and away from 

them), F and G are the leaves (they have arrows pointing to them, just like the nodes, but no 

arrows pointing away from them).  
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Figure 3.4 Decision tree structure 

Decision trees have a flowchart structure in which each node represents the criteria for 

classification. Each branch represents the criteria' attribute, each leaf represents a class, and the 

topmost nodes represent the root [127]. Decision trees can be used for regression and 

classification type problems. Regression trees are used when the dependent variable is 

continuous, and classification (or splitting) is determined using the mean values. 

On the other hand, classification trees are used when the dependent variable is continuous, and 

classification (or splitting) is determined using the modal class of values. This splitting process 

is continued until a user-defined stopping criterion is reached; this results in a fully grown tree. 

A fully grown tree can be computationally costly because of the number of nodes. In order to 

counter this, the number of nodes can be reduced by a process called pruning. Pruning is the 

process of terminating nodes on a decision tree with negligible additional information. The 

process is aimed at reducing the size and hence complexity of the tree without compromising 

accuracy. 

3.2.1.1 Decision tree splitting rules 

Decision trees use several splitting rules (or attribute selection measures) to split a node into 

two or more sub-nodes. The sub-nodes are split according to the homogeneity of the data. A 
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splitting rule is a heuristic for the splitting criterion to achieve the best data homogeneity within 

a class out of the number of specified classes. The commonly used splitting rules are gain ratio, 

Gini index, chi-square, information gain, reduction variance, Gini impurity. 

3.2.1.1.1 Information gain 

This splitting rule uses the attribute with the highest information gain as the node for splitting 

attributes. The information gain is given by [127] 

𝐺𝑎𝑖𝑛(𝐴) = 𝑖𝑛𝑓𝑜(𝐷) − 𝑖𝑛𝑓𝑜஺(𝐷) (3.16) 

Where 

𝑖𝑛𝑓𝑜(𝐷) = − ෍ 𝑝௜ logଶ(𝑝௜)

௠

௜ୀଵ

 
(3.17) 

And 

𝑖𝑛𝑓𝑜஺(𝐷) = ෍
ห𝐷௝ห

|𝐷|

௩

௝ୀଵ

× 𝐼𝑛𝑓𝑜(𝐷௝) 
(3.18) 

Where 𝐷 is the tuple of 𝐴 attributes having 𝑣 number of classes, 𝑝௜ is the probability that a 

random tuple in 𝐷 fits in class 𝐶௜ and is given by the expression ห𝐶௜,஽ห |𝐷|⁄ , 𝑚 represents the 

total number of distinct leaf nodes and 𝐷௝  represents the group of homogeneous data within a 

node.  

The attribute with the highest gain becomes the node. This process proceeds recursively on 

each of the child nodes until each partition is pure (with homogenous data), and the node 

becomes a leaf node. The process is similar when considering continuous data; however, it 

occurs at a higher computational cost. 

3.2.1.1.2 Gain ratio 

The gain ratio of a dataset  𝐷, of 𝐴 attributes having several classes, is given by  
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𝐺𝑎𝑖𝑛𝑅𝑎𝑡𝑖𝑜(𝐴) =
𝐺𝑎𝑖𝑛(𝐴)

𝑆𝑝𝑙𝑖𝑡𝐼𝑛𝑓𝑜஺(𝐷)
 

(3.19) 

Where 

𝑆𝑝𝑙𝑖𝑡𝐼𝑛𝑓𝑜஺(𝐷) = − ෍
ห𝐷௝ห

|𝐷|
× logଶ ቆ

ห𝐷௝ห

|𝐷|
ቇ

௩

௝ୀଵ

 
(3.20) 

The attribute that has the highest gain ratio becomes the node. This process proceeds 

recursively on each of the child nodes until each partition is pure (or until all attributes have 

been examined), and the node becomes a leaf node. Note that as the denominator in (3.19) 

tends to zero, the gain ratio becomes unstable. This is mitigated by introducing a constraint in 

which the information gain of the attribute selected as node must be larger than the average 

gain from all attributes. 

3.2.1.1.3 Gini index 

The Gini index is a measure of the impurity in the tuple 𝐷 and is given as  

𝐺𝑖𝑛𝑖(𝐷) = 1 − ෍ 𝑝௜
ଶ

௠

௜ୀଵ

 
(3.21) 

The Gini index is used for examining the binary partitioning of attribute A. if the tuple D of 

attribute A is to be partitioned into subsets D1 and D2, then the Gini index A is  

𝐺𝑖𝑛𝑖஺(𝐷) =
|𝐷ଵ|

|𝐷|
𝐺𝑖𝑛𝑖(𝐷ଵ) +

|𝐷ଶ|

|𝐷|
𝐺𝑖𝑛𝑖(𝐷ଶ) 

(3.22) 

This is a weighted sum of the impurities in each partition. The weighted sum is used because 

typically 𝐷ଵ and 𝐷ଶ are impure, and |𝐷ଵ| ≠ |𝐷ଶ| ≠ |𝐷ଷ|. The attribute with the lowest Gini 

index 𝐺𝑖𝑛𝑖஺(𝐷) becomes the node. This process proceeds recursively on each of the child 

nodes until a point is reached where 𝐺𝑖𝑛𝑖(𝐷) is less than all examined 𝐺𝑖𝑛𝑖஺(𝐷). At this point, 

the current node becomes a leaf node, and the class is determined by voting. Note that this will 

be an impure leaf node. 
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3.2.1.2 Tree pruning 

The goal of decision trees is to have leaf nodes without impurities. However, this compromises 

the decision tree's accuracy as any new data that does not match the pattern in the data used to 

design the decision tree will be misclassified. This phenomenon is known as overfitting. 

Overfitting is when a decision tree (or any other machine learning algorithm) performs well for 

the training data but poorly on independent test data. This problem can be addressed by pruning 

the decision tree. Pruning is the process of removing less reliable branches from a decision tree 

in order to generalise it for unseen data. Figure 3.5 and Figure 3.6 show diagrams of an 

unpruned tree versus a pruned decision tree. A pruned tree is less complex but computationally 

efficient with the added advantage that it is not overfitting on the training data; hence it has 

better accuracy than its unpruned version. Pruning is achieved by imposing stoppage criteria 

such that if those criteria are met during the building of the tree at a specific node, that node 

becomes a leaf node. Even though pruning trades accuracy for simplicity at its core, its 

objective is to create an adequately accurate and compact model that is not overfitted [128, 

129]. 

 

Figure 3.5 An unpruned decision tree 
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Figure 3.6 A pruned decision tree 

There are many different ways of achieving pruning, and they include; cost complexity 

pruning, reduced error pruning, minimum error pruning, and pessimistic pruning [128]. The 

cost complexity pruning (or weakest link pruning) uses the lowest apparent error rate increase 

per pruned leaf as the criteria for pruning branches, given by: 

𝛼 =
𝜀(𝑝𝑟𝑢𝑛𝑒𝑑(𝑇, 𝑡), 𝑆) − 𝜀(𝑇, 𝑆)

|𝑙𝑒𝑎𝑣𝑒𝑠(𝑇)| − |𝑙𝑒𝑎𝑣𝑒𝑠(𝑝𝑟𝑢𝑛𝑒𝑑(𝑇, 𝑡))|
 

(3.23) 

Where 𝜀(𝑇, 𝑆) is the error rate of the tree T over the sample S, |𝑙𝑒𝑎𝑣𝑒𝑠(𝑇)| is the number of 

leaves in the tree, and 𝑝𝑟𝑢𝑛𝑒𝑑(𝑇, 𝑡) is the tree obtained after pruning a node 𝑡 on tree 𝑇. All 

the trees 𝑇଴, 𝑇ଵ, … , 𝑇௞ (where 𝑇଴ is the initial tree before pruning and 𝑇௞ is the root node) 

obtained from the different instances of pruning is accessed. Then the tree with the lowest 

generalization error is selected as the pruned tree.  

Reduced error pruning is a pruning strategy that analysis the nodes of a tree from the bottom 

up to determine whether replacing it with a leaf node will reduce its accuracy. If the accuracy 

is not reduced, the tree is pruned. If not, the node is left unpruned. A pruning set is typically 

required to achieve this. 
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The minimum error pruning involves using (3.24) to access the error rate 𝜀ᇱ before and after 

pruning a particular internal node, the node is pruned if the error rate before pruning is greater 

than the error rate after pruning.  

𝜀ᇱ(𝑡) = 1 − max
௖೔∈ௗ௢௠(௬)

ቚห𝜎௬ୀ௖೔
𝑆௧หቚ + (𝑙)𝑝(𝑦 = 𝑐௜)

|𝑆௧| + 𝑙
 

(3.24) 

Where 𝑝(𝑦 = 𝑐௜) is the a-priori probability of 𝑦 having the value 𝑐௜, 𝑙 is the weight of 𝑝(𝑦 = 𝑐௜) 

and 𝑆௧ is the instances that have reached a leaf 𝑡. 

Pessimistic pruning advocates the use of the continuity correction for binomial distribution, 

given by: 

𝜀ᇱ(𝑇, 𝑆) = 𝜀(𝑇, 𝑆) +
|𝑙𝑒𝑎𝑣𝑒𝑠(𝑇)|

2|𝑆|
 

(3.25) 

An internal node is pruned if the error rate satisfies the following condition: 

𝜀ᇱ(𝑝𝑟𝑢𝑛𝑒𝑑(𝑇, 𝑡), 𝑆) ≤ 𝜀ᇱ(𝑇, 𝑆) + ඨ
𝜀ᇱ(𝑇, 𝑆)(1 − 𝜀ᇱ(𝑇, 𝑆))

|𝑆|
 

(3.26) 

Where 𝑇 is a subtree with root node 𝑡 and 𝑆 is the part of the training data that refers to the 

node 𝑡. 

3.2.2 Support vector machine  

Support vector machine (SVM) is a supervised machine learning algorithm that uses decision 

boundaries for classification and regression analysis. It was first discovered in 1992 by a 

mathematician named Vladimir Vapnik and his colleagues [130]. SVM achieves classification 

analysis by transforming the input dataset into an n-dimensional space (where n corresponds 

to the number of features) and separating them by class with an optimal hyperplane. In order 

to separate two classes of data points, several possible hyperplanes can be drawn (see Figure 

3.7). SVM's goal is to find a hyperplane with the maximum distance between the support 

vectors (the data points that lie closest between the two classes) [131]. This is illustrated in 
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Figure 3.8. The simplest form of SVM is used for linear classification and is based on the idea 

of maximising margins. However, more complex forms can be applied to non-linear 

classifications by using kernels [132]. Given a set of input-output pair of training data 

൛൫𝑣௝ , 𝑦௝൯ ∶ 𝑗 = 0,1, … , 𝑛 − 1ൟ; where the class label is indicated by  𝑦௝ ∈ {+1, −1} in an n-

dimensional space 𝑅௠, the two classes can be separated by a number of possible hyperplanes. 

The most efficient separation is achieved by maximising the margins of the support vector. The 

hyperplane at this instance is the optimal hyperplane; it a parallel to the two planes defined by 

the support vector called the positive and negative hyperplane, as shown in Figure 3.8. The 

positive and negative hyperplane satisfies the (3.27) and (3.28) [132]. 

𝑤்𝑣௝ + 𝑏 ≥ 1 (3.27) 

for  

𝑦௜ = +1 

and  

𝑤்𝑣 + 𝑏 ≤ 1 (3.28) 

for 

𝑦௜ = −1 

Where W and b are the weight vector and bias, respectively. Equations (3.27) and (3.28) can 

be combined to form; 

𝑦௝(𝑤்𝑣௝ + 𝑏) ≥ 1 (3.29) 

for 

𝑗 = 0,1, … , 𝑛 − 1. 
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Figure 3.7 SVM algorithm in an n-dimensional space 

 

Figure 3.8 A maximal margin hyperplane with its support vectors 

The positive, negative, and optimal hyperplane can be described by (3.30), (3.31), and (3.32), 

respectively. 

𝑤்𝑣 + 𝑏 = 1 (3.30) 

𝑤்𝑣 + 𝑏 = −1 (3.31) 

𝑤்𝑣 + 𝑏 = 0 (3.32) 

The distance from a point (𝑥଴, 𝑦଴) to a line, 𝐴𝑥 + 𝐵𝑦 + 𝑐 = 0 is given by 
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|𝐴𝑥଴ + 𝐵𝑦଴ + 𝑐|

√𝐴ଶ + 𝐵ଶ
 

(3.33) 

Hence the distance 𝛾 between two corresponding margins in an SVM multidimensional space 

is 

𝛾(𝑤, 𝑏) = min
{௩|௬ୀାଵ}

𝑤்𝑣

‖𝑤‖
− max

{௩|௬ୀିଵ}

𝑤்𝑣

‖𝑤‖
=

1

‖𝑤‖
 

(3.34) 

Hence the maximum distance 𝛾௠௔௫ between the positive and the negative hyperplane is given 

by 

𝛾(𝑤∗, 𝑏∗) =
2

‖𝑤‖
 

(3.35) 

Where 𝑊∗ is the optimal weight and 𝑏∗ is the optimal bias. It is evident from (3.34) and (3.35) 

that in order to maximize the margin of separation of the positive and the negative hyperplane, 

the term ‖𝑤‖ must be minimised. To solve this optimisation problem, the Lagrange function 

is introduced; 

𝐿௣(𝑤, 𝑏, 𝛼) =
1

2
𝑤்𝑤 − ෍ 𝛼௝൫𝑦௜൫𝑤்𝑣௝ + 𝑏൯ − 1൯

௡ିଵ

௝ୀ଴

 
(3.36) 

Where 𝛼௝ ≥ 0 are Lagrange multipliers. The solutions can be found by differentiating the 

Lagrange function with respect to W and b, imposing stationarity, to obtain (3.37) and (3.38) 

[133] 

𝑤∗ = ෍ 𝛼௝𝑦௝𝑣௝

௡ିଵ

௝ୀ଴

 
(3.37) 

෍ 𝛼௝𝑦௝ = 0

௡ିଵ

௝ୀ଴

 
(3.38) 

 

Substituting (3.37) and (3.38) into (3.36) gives;  
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𝐿௣(𝑤, 𝑏, 𝛼) = ෍ 𝛼௜

௡ିଵ

௜ୀ଴

−
1

2
෍ ෍ 𝛼௜𝛼௝𝑦௜𝑦௝𝑣௜

்𝑣௝

௡ିଵ

௝ୀ଴

௡ିଵ

௜ୀ଴

 
(3.39) 

Among the solutions of maximising the Lagrange function will exist points located on the two 

optimal margins with nonzero coefficients. These vectors are referred to as support vectors and 

are responsible for influencing the SVM classifier. The bias is calculated from (3.40). 

𝑏∗ = −
1

2
൬ min

௩ೕ|௬ೕୀାଵ
𝑤∗்𝑣௝ + max

௩ೕ|௬ೕୀିଵ
𝑤∗்𝑣௝൰ 

(3.40) 

Consequently, the decision function can be written as; 

𝑓(𝑥) = ෍ 𝛼௝𝑦௝𝑣௝
்𝑣

௡ିଵ

௝ୀ଴

+ 𝑏∗ 
(3.41) 

The above solution is for situations where the problem is linearly separable. In order to find 

the decision boundary for non-linear problems, SVM transforms the input data to suitable 

higher-dimensional space. However, this strategy poses a problem of substantial computational 

overhead. SVM fixes this by the use of kernel functions to systematically find classifiers in the 

higher dimension. Kernel function (𝐾) calculate the relationship between every pair of points 

as if they are in a higher dimension without actually transforming them to a higher dimension. 

This phenomenon is known as the kernel trick. In this way, the kernel trick helps reduce the 

amount of computation required for SVM. Table 3.2 gives some examples of kernel function 

and their formulas. 

Table 3.2 kernel functions 

Kernel name  Kernel function 

Linear 𝐾൫𝑣௜ , 𝑣௝൯ = 𝑣௜
் ∙ 𝑣௝  

Gaussian 

𝐾൫𝑣௜, 𝑣௝൯ = 𝑒
൭

ିฮ௩೔ି௩ೕฮ
మ

ଶఙమ ൱

 

Polynomial 𝐾൫𝑣௜ , 𝑣௝൯ = ൫1 + 𝑣௜
்𝑣௝൯

ௗ
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In Table 3.2, 𝜎 represents the Gaussian noise, and 𝑑 represents the order of the polynomial. 

The Gaussian kernel is arguably the best because of its computational efficiency, flexibility, 

and adaptability in handling complex parameters [134-136]. This is achieved by the use of a 

set of linear equations for its training instead of the computationally tasking quadratic 

programming problem used by the others. 

This implies that for non-linear boundaries, (3.39) becomes (3.42). 

𝐿௣(𝑤, 𝑏, 𝛼) = ෍ 𝛼௜

௡ିଵ

௜ୀ଴

−
1

2
෍ ෍ 𝛼௜𝛼௝𝑦௜𝑦௝𝐾൫𝑣௜ , 𝑣௝൯

௡ିଵ

௝ୀ଴

௡ିଵ

௜ୀ଴

 
(3.42) 

Also, (3.40) becomes (3.43). 

𝑏∗ = −
1

2
ቌ min

௜:௬ೕୀାଵ
ቌ෍ 𝛼௝𝑦௜𝐾൫𝑣௜𝑣௝൯

௡ିଵ

௝ୀ଴

ቍ + max
௜:௬ೕୀିଵ

ቌ෍ 𝛼௝𝑦௝𝐾൫𝑣௜ , 𝑣௝൯

௡ିଵ

௝ୀ଴

ቍቍ 
(3.43) 

Furthermore, (3.41) becomes (3.44). 

𝑓(𝑥) = ෍ 𝛼௝𝑦௝𝐾൫𝑣௜ , 𝑣௝൯

௡ିଵ

௝ୀ଴

+ 𝑏∗ 
(3.44) 

3.2.3 K – nearest neighbour 

k-nearest neighbour (KNN) is a fundamental and straightforward technique for data 

classification. It uses the distance of an object within a feature space to classify it. Objects that 

are close together (or nearest neighbour) are classified together. KNN is typically referred to 

as a ‘lazy learner’ because it does not learn a discriminatory function from the training set. It 

is a memory-based classifier and typically will not undergo a training phase [137]. The “K” in 

KNN is a parameter that represents the number of nearest neighbours used by the classify for 

classifying data. Low values of K can be noisy and easily affected by outliers. Large values of 

K will result in higher computational overhead as each distance must be calculated. Figure 3.9 

shows an illustration of KNN; when K = 3, the star belongs to class 2 (2 to 1 vote), but when 

K = 5, the star belongs to class 1 (3 to 2 vote).  
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Figure 3.9 KNN algorithm 

In order to find an appropriate value of K, a trial-and-error approach can be used. In this 

approach, a certain amount of the known dataset is randomly set aside for reclassification; the 

value of K that gives the best result is selected. The value for K chosen should be odd and not 

a multiple of the number of classes to avoid ties during voting. The proximity metrics d used 

for decision-making in KNN is generally the Euclidean distance [138]. However, others like 

Hamming distance, Manhattan or city block distance, Camberra distance, Minkowsky distance, 

and Chebychev distance can also be used (see Table 3.3). 

Table 3.3 Proximity metrics 

Proximity 

metrics  

Formula 

Euclidean  

𝑑(𝑥, 𝑦) = ඩ෍(𝑥௜ − 𝑦௜)ଶ

௡

௜ୀଵ

 

Camberra  
𝑑(𝑥, 𝑦) = ෍ ฬ

𝑥௜ − 𝑦௜

𝑥௜ + 𝑦௜
ฬ

௡

௜ୀଵ

 

Chebychev  𝑑(𝑥, 𝑦) = 𝑚𝑎𝑥௜{|𝑥௜ − 𝑦௜|} 

Manhattan/ 

City block 
𝑑(𝑥, 𝑦) = ෍|𝑥௜ − 𝑦௜|

௡

௜ୀଵ

 

Minkowsky 

𝑑(𝑥, 𝑦) = ൭෍|𝑥௜ − 𝑦௜|௥

௡

௜ୀଵ

൱

ଵ
௥ൗ
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The Minkowsky distance has a value of r that can range from 1 to ∞. If r = 1, the Minkowsky 

distance resembles the Manhattan distance. If r = 2, the Minkowsky distance resembles the 

Euclidean distance. If r = infinity, the Minkowsky distance resembles the Chebychev distance. 

3.2.4 Artificial neural network 

Artificial neural networks (ANN) are inspired by the biological nervous system [139]. It had 

its origins in the field of computing and neuroscience [140]. It is a layered arrangement of 

neurons that can be trained to predict an output from inputs based on the training data. Neural 

networks take in data, train on the data to recognise the pattern in the data, and then predict the 

output for a new set of similar data based on the earlier recognised pattern. Figure 3.10 shows 

the structure of an ANN. 

 

Figure 3.10 ANN structure 

The network is divided into three parts; the input, the hidden layer, and the output [141]. The 

input layer takes in the input data, and the output layer predicts the output. The hidden layer is 

where all the computation in the network takes place. All of the three layers are made up of 
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neurons that are interconnected. Each of the connections has a weight value 𝑤 while each 

neuron in the hidden layer has a bias value 𝑏. The ANN functions by multiplying the input with 

a weight 𝑤 and adding it a bias 𝑏, then the sum is tested against a threshold to determine if the 

neuron is activated or not. The thresholding function is known as a transfer function or 

activation function. The most commonly used transfer function is the sigmoid given by:  

𝑧 =
1

1 + 𝑒ି(∑ ௪೔௫೔ା௕೙
೔సబ )

 
(3.45) 

Where 𝑧 is the output, 𝑤௜ is the weight corresponding to the input 𝑥௜, 𝑛 is the number of inputs. 

Figure 3.11 shows the neuron model structure from input through the hidden layer to the output 

 

Figure 3.11 Neuron model structure 

There are many other activation functions like the step function, tanh, rectified linear unit 

(ReLU), and linear. Typically, the initial weights and biases are selected at random. The 

process of fine-tuning the weights and biases such that the network can make an accurate 

mapping of the input to the output is called training [142]. In order to train an ANN, the network 

is feed with inputs of known outputs. After every iteration of the network's training, the weights 

and biases are adjusted based on the accuracy of the prediction. This process is continued until 

a predetermined condition is met. 

Generally, the available data is split into two: the training set and the testing set. The training 

set is used to train the network, while the testing set is used to access the network's performance 

[143]. A network is said to have good generalisation if it performs well on the training data. 
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However, a network could perform well on the training data and poorly on the test data. This 

phenomenon is caused by over-fitting or over-training. Over-fitting occurs when the network 

is trained to perfectly model the training data such that its accuracy on any other similar but 

previously unseen data is poor. A subset of the training data (called validation data) is used to 

determine when training should stop to prevent over-fitting. During training, the error in the 

training data reduces, the error in the validation data will also reduce. Until a point is reached 

when the error in the validation data starts to rise while the error in the test data continues to 

fall. This is the point where training is stopped, as shown in Figure 3.12. 

 

Figure 3.12 Training and validation error during training in ANN 

Two critical functions affect training in ANN; they are learning rate and momentum. The 

learning rate is how much the output error affects the network's internal weights, while 

momentum determines how much the previous weight affects the current weights [139, 142].  

∆𝑤 = 𝜂𝛿𝑥 (3.46) 

(∆𝑤)௡ାଵ = 𝜂𝛿𝑥 + 𝛼(Δ𝑤)௞ (3.47) 

The learning rate and momentum values are selected through a trial and error approach [139]. 

Learning too slowly takes too much time to train the network; learning too fast increases errors 

in network predictions.  
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3.3 Feature extraction 

In order to use machine learning effectively, it is likely that feature extraction has to occur first. 

While binary, categorical, or discrete data may not require feature extraction, reviewed 

literature indicates that continuous data benefits from feature extraction [144]. This is because 

it helps reduce the dimensionality of the data by eliminating redundant ones and reduces the 

computational cost of processing the data. Feature extraction is particularly required for this 

research because of the cyclic nature of the continuous vibration data produced by the rotating 

ballnuts in the ball screw feed drive assembly when the machine is in operation. For such a 

signal, it is necessary to access information from the last n number of rotations rather than just 

instantaneous values. Features that numerically summarise the current and recent behaviour of 

the system can be extracted for analysis. Machine learning using such a feature is expected to 

give better results from learning this representation of the cyclic data than an instantaneous 

point in time, which will be less relevant. 

3.3.1 Types of extracted features 

Feature extraction is a process of extracting valuable information that is representative of the 

initial raw continuous data and presenting it to the machine learning algorithm as inputs. Some 

of the commonly used features found in literature are mean (𝑥̅), root mean square (𝛽), standard 

deviation (𝜎), kurtosis (𝐾), skewness (𝑆), and peak to peak (𝑃) [145]. The review of the 

literature showed that most authors do not specify why any particular feature is chosen and are 

often simply provided as a menu of options. However, in the context of the research problem 

in this thesis, each is being considered for the reason presented below. 
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3.3.1.1 Mean 

The mean (average) of a continuous data signal is expressed as the summation of all the 

individual data points divided by the size of the data [146]. The mean is calculated as shown  

[75, 147]: 

𝑥̅ =
1

𝑇
න 𝑥(𝑡)𝑑𝑡

்

଴

=
1

𝑛
෍ 𝑥௜

௡

௜ୀଵ

 
(3.48) 

Where 𝑛 is the number of samples, 𝑇 is periodic time, 𝑥 is the dataset, and 𝑖 = 1,2, … , 𝑛. 

The mean is often used because it is relatively easy to calculate and gives a value that is 

representative of the centre of gravity of a given dataset. For a pure sine wave, centred around 

zero, the mean value is zero for every complete cycle. However, an irregular waveform, or one 

composed of several sine waves with a different mean value, will likely have spurious data 

points and altered symmetry such that the mean moves below or above zero. Even where a 

non-zero mean exists on a healthy system, the change in value can be an indication of a change 

in condition. For the ball screw system, it is anticipated that a change in condition would cause 

superposition of cyclic features and inclusion of random artefacts that would cause the mean 

value to deviate from the benchmark (baseline) value. However, it is clear that if a change in 

condition does not increase the amplitude of the vibration, then the mean value would not alter, 

so it would not provide a useful indicator. 

3.3.1.2 Standard deviation 

Standard deviation gives the degree of variation of the data points within a signal. The standard 

deviation is calculated as shown  [75, 147]: 

𝜎 = ඨ
∑ (𝑥௜ − 𝑥̅)ଶ௡

௜ୀଵ

𝑛 − 1
 

(3.49) 

Where 𝑛 is the number of samples, 𝑥̅ is the mean, and 𝑖 = 1,2, … , 𝑛. 
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Whereby a high value for the standard deviation is indicative of a highly disperse signal while 

a low value means a less disperse signal [148]. This increase in dispersion to a signal is brought 

about by the additional superimposed content as well as noise. This could potentially cause the 

signal from a worn ball screw to have a higher standard deviation than that from a good ball 

screw, especially if the superimposed signal or noise has frequencies with significantly high 

peaks compared to those of the original signal. However, if this is not the case (particularly 

with noise signals that are often high-frequency signals with low magnitude), then the standard 

deviation value would not provide a useful indicator. 

3.3.1.3 Kurtosis  

Kurtosis is a measure of the degree of outliers or spurious data points within a signal [146, 

149]. The kurtosis is calculated as shown  [75, 147]: 

𝐾 =
1

𝛽ସ𝑇
න 𝑥ସ

்

଴

(𝑡)𝑑𝑡 

= ൝
𝑛(𝑛 + 1)

(𝑛 − 1)(𝑛 − 2)(𝑛 − 3)
෍ ൬

𝑥௜ − 𝑥̅

𝜎
൰

ସ௡

௜ୀଵ

ൡ −
3(𝑛 − 1)ଶ

(𝑛 − 2)(𝑛 − 3)
 

(3.50) 

Where 𝑛 is the number of samples, 𝑇 is periodic time, 𝑥 is the dataset, 𝑥̅ is the mean, 𝜎 is the 

standard deviation, 𝛽 is the RMS value, and 𝑖 = 1,2, … , 𝑛. 

A good ball screw is expected to produce regular repeating cyclic signals if the speed is 

nominally constant. However, a fault on the ball screw or ballnut will cause interruption to the 

regularity of the signal. These interruptions are likely to be represented as spurious data points 

compared to the original signal. This implies that kurtosis could be able to differentiate faulty 

from good ball screws with high values indicating the former and low values indicating the 

latter. This parameter is therefore chosen for the investigation to pick up any non-cyclic faults. 
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3.3.1.4 Skewness  

Skewness is a measure of the degree of asymmetry in a dataset [146, 149]. The skewness is 

calculated as shown  [75, 147]: 

𝑆 =
1

𝛽ଷ𝑇
න 𝑥ଷ(𝑡)𝑑𝑡

்

଴

=
𝑛

(𝑛 − 1)(𝑛 − 2)
෍ ൬

𝑥௜ − 𝑥̅

𝜎
൰

ଷ௡

௜ୀଵ

 
(3.51) 

Where 𝑛 is the number of samples, 𝑇 is periodic time, 𝑥 is the dataset, 𝑥̅ is the mean, 𝜎 is the 

standard deviation, 𝛽 is the RMS value, and 𝑖 = 1,2, … , 𝑛. 

Kurtosis and skewness have been shown to effectively indicate the accurate position of 

epileptogenic zones from magnetoencephalography [149]. Marcell et al. were able to show that 

skewness features accurately indicate fatigue damage in random loading processes [150]. 

Furthermore, they combined the two features (skewness and kurtosis) to achieve improved 

results in each case. Even though the particular applications are not the same, there is reason 

to investigate skewness for ball screw systems. As with kurtosis, the degree of asymmetry 

resulting from the motion of a faulty ball screw drive is expected to be more compared to that 

from a good ball screw in situations where there is a mechanical bias.  

3.3.1.5 Root mean square 

The root mean square (RMS) value can be used to quantify dynamic signals so as to distinguish 

one from another [151]. It is the square root of the mean square averaged over T second and is 

calculated as shown  [75, 147]: 
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(3.52) 

Where 𝑛 is the number of samples, 𝑇 is periodic time, 𝑥 is the data value under consideration, 

and 𝑖 = 1,2, … , 𝑛. 
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The RMS value is especially relevant in vibration applications as it indicates the energy content 

of the vibration signal. It is expected that a change in condition will change the energy in the 

ball screw feed drive. For example, lack of lubrication or change in its viscosity means that the 

friction changes, requiring different energy levels to produce the same linear motion. Similarly, 

misalignment or eccentricity means that energy that should have gone into linear motion is 

instead expended on translation vibrations, which are measured by the vibration transducer; 

more misalignment leads to more energy spent in this way. This will result in superimposed 

content as well as noise being introduced to the original signal. Therefore, RMS is a good 

candidate for detecting this additional signal content via its energy level. 

3.3.1.6 Peak-to-peak value 

The peak-to-peak value is the difference between the maximum (positive peak) and the 

minimum value (negative peak) of a signal. It is calculated as shown  [75]: 

𝑃 = 𝑋௠௔௫ − 𝑋௠௜௡ (3.53) 

Where 𝑋௠௔௫ and 𝑋௠௜௡ represents the highest and lowest values of the data, respectively. 

This calculation provides a raw value for the maximum amplitude without the attenuation that 

comes from processing through standard deviation and RMS. However, this feature heavily 

depends on just two points per cycle, while the standard deviation and RMS use all the points, 

making it less sensitive to measurement noise. Therefore, categorising based on this feature is 

likely to emphasise changes in the amount of energy from the ball screw drive being measured. 

3.3.2 Combination of features 

All the features discussed in section 3.3.1 have their strengths and weaknesses in terms of how 

well they represent signals. Hence the reason why in most cases, multiple features are used to 

train machine learning networks. Xiang et al. [149] and Marcell et al. [150] have shown that 

skewness and kurtosis complement each other well to achieve improved results compared to 

their individual performance. This is reasonable because those two features measure the 
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deviation in a signal from a regular repeating pattern. However, as the papers show, in some 

instances, these deviations are not evident in the value of the skewness or kurtosis alone. That 

is why their individual performance is not as good as when they are combined. It is also possible 

that even in their combination, some instances still occur where their value does not show a 

deviation from a regular repeating pattern. Since the mean, RMS, standard deviation, and peak-

to-peak values all measure some form of deviation of a signal from a regular repeating pattern, 

there is potential for improved results if these features are also combined with skewness and 

kurtosis. This research will investigate how Xiang’s and Marcell’s proposal for the 

combination of skewness and kurtosis features perform with vibration data from ball screw. 

This will lead to investigating whether combining all the features from section 3.3.1 can 

provide further improvements.    

3.3.3 Choice of signal processing for feature extraction 

Feature extraction can be performed on the raw data [152], the output of the FFT of the raw 

data [153, 154], or the output of the wavelet of the raw data [75]. However, the past research 

that describes these operations seems to focus more on the improvement and optimisation of 

the machine learning algorithm and not on the critical review of the feature extraction process, 

which serves as the input to these algorithms. Ideally, developing an efficient and highly 

effective machine learning strategy should necessarily involve both the improvement and 

optimisation of the machine learning algorithm and the feature extraction method. 

This research proposes a feature extraction method that combines wavelet and FFT to process 

the raw data before feature extraction occurs. This procedure combines the positives of both 

wavelet transform and FFT as described in section 3.1. They are: (1) the temporal localisation 

of data by wavelet transforms and (2) the conversion of the data into spectral components by 

FFT.  These two pre-processing methods combined with the statistical features described above 

were explored in this research, and the results will be presented in chapter 6. The different sets 
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of extracted features were used to train and test different machine learning algorithms. 

However, the question remains as to which is the most appropriate wavelet transform to use 

for the application of monitoring ball screw condition since there are many different wavelet 

families with different characteristics and many different levels of decomposition that can be 

achieved on each wavelet. One solution, which is difficult to justify, is to select the wavelet 

transform randomly in terms of the family and decomposition level. It is likely that a more 

successful strategy is to perform an analysis on a subset of wavelet transforms based on the 

type of data and characteristics of the wavelet in order to assess which performs best.  

Literature was examined to find what approaches had been used by other researchers. In some 

cases, the authors simply do not specify the wavelet transform they have used [124, 155]. In 

other cases, a wavelet transform is specified, but there is no justification given for such 

specification. For example, Daubechies wavelet [75] and Haar wavelet [156] were used by 

Hong et al. and Lee respectively in research literature without any discussion on why they have 

been used. Of the twenty papers reviewed on wavelet analysis, six (30 %) stated that a 

particular form of wavelet transform is used without specifying which one, seven (35 %) 

specified which wavelet transform it has utilised without explicitly justifying the choice. The 

remaining seven (35 %) did both specify and justify their choice of wavelet transform. 

However, only four (20 %) can be characterized as justification for technical reasons driven by 

the problem domain. The other three (15 %) only referring to usage by other researchers as 

justification and thus possibly simply promulgating an earlier error. 

This research will more thoroughly perform an analysis to justify the selected wavelet 

transform for the given problem domain using matrix laboratory (MATLAB) software as a tool 

to achieve this. The two broad wavelet classifications of orthogonal (Symlet and Daubechies) 

and biorthogonal (biorthogonal and reverse-biorthogonal) wavelet will be considered even 

though studies suggest that for this particular application, the biorthogonal wavelets can be 
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discounted. This is because the biorthogonal wavelets are more suited for image processing, 

while the orthogonal wavelet is more suitable for processing continuous signals [157]. 

However, research also shows that many different wavelets, regardless of the classification, 

can be good for various applications, and no particular wavelet can be considered “the best” 

for any problem [158]. Daubechies [159] advocates that the best method for selecting wavelets 

is by comparative tests and validation. This analysis will be performed and presented in chapter 

6, with a final selection made from the best performing set based on robustness to machine 

learning and the current problem domain. However, it is worth noting that “the best performing 

set” might be different for another problem domain. The flow diagram of the proposed 

methodology is shown in Figure 3.13. 

 

Figure 3.13 Flow diagram of the proposed methodology 

3.4 Chapter summary 

Machine learning is one of the AI techniques utilised for condition monitoring; some examples 

of machine learning include decision tree, SVM, KNN, and ANN. One major characteristic of 

machine learning is that it requires features extracted from the raw data to train the network, 
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especially if the raw data is continuous. This necessarily requires some form of signal process 

to be able to identify useful features. This research proposes using wavelet transform and FFT 

for signal processing and feature identification such that effective feature extraction can be 

done. The extracted feature is then trained and evaluated with machine learning. Performance 

is based on how well the proposed strategy can identify the condition of the ball screw from 

the extracted features. The next chapter delves into deep learning, activation functions, and 

deep learning models. 
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Chapter 4 Deep learning 

This chapter presents a detailed analysis of deep learning by providing a general overview of 

the topic. Then a comprehensive look at the internal structure and activation functions used in 

a typical deep learning algorithm. This is followed by a discussion of the types and applications 

of some of the most commonly used deep learning algorithms for accurate predictive models. 

This chapter highlights all the essential concepts that make machine learning achievable for the 

process of condition monitoring. Materials used for this chapter include journals, conference 

papers, and textbooks. 

4.1 Deep learning overview 

In the establish problem area where the particular fault and the internal mechanics of the system 

is unknown, even though machine learning is able to provide an analytical method that deskills 

some activities in the classical approach. It still retains the involvement of an expert agent to 

design feature extraction which could be prone to biases and preconceptions. This also reduces 

its ease of adaptation for real-time online analysis. The above-mentioned challenges can be 

resolved with deep learning since it reduces the involvement of an expert agent as the feature 

extraction occurs with the deep learning network. Hence, making it easier to adapt the deep 

learning model for real-time online analysis.  

Deep learning is a subset of machine learning, and machine learning is a subset of AI; this is 

illustrated in Figure 4.1. AI is the ability of a robot to replicate intelligent human behaviour. 

Machine learning is an application of AI in which a predictive system can learn automatically 

and improve accuracy based on the input data and corresponding output. On the other hand, 

deep learning is an application of machine learning that uses a complex algorithm with multiple 

hidden layers to train a model. It learns hierarchical structures, levels of representations, and 

levels of abstractions in order to be able to map the patterns in a dataset to predetermined 
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outputs. It differs from machine learning in that it does not require independent feature 

extraction. Rather it performs automatic feature representation at multiple levels of abstraction, 

which is then used for training the network [160].  

 

Figure 4.1 Artificial intelligence hierarchy 

This allows the deep learning network to perform complex mapping of an input space to the 

corresponding output space without the intervention of an expert agent. Deep learning networks 

are data-driven; hence their performance is much dependent on the quality and quantity of data. 

Figure 4.2 shows a block diagram of a deep learning network. 

 

Figure 4.2 Block diagram of a general deep learning network 
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4.2 Structure of deep learning algorithms 

Generally, a deep learning algorithm is divided into three layers, similar to machine learning. 

These layers include; the input layer, the output layer, and the hidden layer. However, the 

hidden layer in deep learning is more complex, with multiple hidden layers at a time. Whereas 

machine learning typically has one or two hidden layers with multiple neurons. 

4.2.1 Input layer 

The input layer is the layer that receives the raw input data. This data can be in any form, like 

image data in the form of pixel value, time-series data in the form of continuous numbers, and 

text data in the form of words. The number of input neurons is determined by the defined size 

of the input parameter. 

4.2.2 Output layer 

The output layer is the layer of the network that presents the output value. The output value is 

typically presented as a classification or a regression based on the initial problem setting. The 

number of neurons in the output layer is defined by the number of outputs expected. The output 

layer uses a softmax function to compute the confidence level of each output. The confidence 

level is the probability of the output belonging to each class. The highest probability determines 

the output class. For an 𝑖th training example out of the total training example m and the 𝑗th 

class out of the total number of classes 𝑛, the softmax function is given by the probabilistic 

expression 

𝑃൫𝑦(௜) = 𝑛|𝑥(௜); 𝑊൯ =
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⎢
⎢
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(4.1) 

Where 𝑥 is the input, 𝑦 is the output, 𝑊 is the weight, and 𝑖 = 1,2, … , 𝑚. 
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4.2.3 Hidden layer 

The hidden layer is the layer between the input and output layers. It consists of multiple layers 

performing different mathematical functions.  These layers include the convolution layer, 

activation layer, pooling layer, fully connected layer, sequence layer, normalisation layer, and 

dropout layer. Each of these layers may belong to one or more hidden layers. Each hidden layer 

is referred to as a class and performs a task within the network [160]. 

4.2.3.1 Convolution layer 

It is the core building block of any convolution neural network (CNN). It functions by applying 

sliding convolutional filters to the input data. This is achieved by performing a dot product 

multiplication between a subarray of the input and a receptive field (convolution filters) with 

randomised weights. The size of the output reduces after each step of convolution and is given 

by [102] 

𝑂 =
𝐼 − 𝑅

𝑆
+ 1 

(4.2) 

Where 𝑂 is the output size, 𝐼 is the input size, 𝑅 is the filter size, and 𝑆 is the stride size. The 

optimum values for 𝑆, 𝑅, and weights of the filter are obtained after training the network. Figure 

4.3 shows an example of convolution. 

 

Figure 4.3 An illustration of the Convolution process [102] 

The stride defines the amount of shift on the input data required to obtain the next subarray. 

The larger the stride, the smaller the output size. For an input size of 6 × 6, the output size is 

4 × 4 when the stride is 1, and 2 × 2 when the stride is 2. 
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4.2.3.2 Pooling layer 

The pooling layer typically comes after the convolution layer in CNNs. It performs progressive 

down-sampling of its input along both spatial dimensions of height and width. It does this by 

dividing its input into pooling regions. The down-sampling can be achieved by computing the 

maximum or mean value in each pooling region. Hence the two types of pooling layers are; 

max-pooling layer and average-pooling layer, respectively. Max-pooling generally gives better 

accuracy than average-pooling in practical cases and is more widely used [1,3]. The size of the 

output of the pooling layer is given by [102] 

𝑂 =
𝐼 − 𝑃

𝑆
+ 1 

(4.3) 

Where 𝑂 is the output size, 𝐼 is the input size, and 𝑆 is the stride size. The optimum values for 

𝑆 and 𝑃 are obtained after training the network. Figure 4.4 shows an example of pooling.  

 

Figure 4.4 An illustration of the Pooling process [102] 

The fully connected layer (or dense layer) is often the final layer in the hidden layer of CNNs.  

It fully connects all activations in its input neurons to the output neurons. In each of the 

connections, inputs are multiplied by a certain weight and then added to a bias value. Both 

values (weight and bias) are determined during training. The output of this layer is typically 

the class score, and the number of classes determines the number of neurons. 
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4.2.3.3 Sequence layer 

The sequence layer is the core building block of recurrent neural networks (RNN) or long short-

term memory (LSTM), as it is sometimes referred to as. Its function is to learn long-term 

relationships between time steps and the time series in continuous data. The fully connected 

layer typically follows this layer in an LSTM network. 

4.2.3.4 Dropout layer 

The dropout layer in deep learning networks is used to overcome overfitting and long training 

time [161]. It does this by dropping all units along with all of its inbound and outbound 

connections based on a probability criterion. If the probability associated with a particular unit 

is lower than the set threshold 𝑝, then that unit and all of its connections are dropped. This 

results in a thinner network, as shown in Figure 4.5. The value of p can be selected using a 

validation set or set at 0.5, as this is often close to the optimum value for most networks [161]. 

 

Figure 4.5 Example of before and after dropout [161] 

The model description for a standard neural network, as shown in Figure 4.5, is given by;  

𝑧௜
(௟ାଵ)

= 𝑊௜
(௟ାଵ)

𝑦(௟) + 𝑏௜
(௟ାଵ) (4.4) 

𝑦௜
(௟ାଵ)

= 𝑓(𝑧௜
(௟ାଵ)

) (4.5) 
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For 𝑙 ∈ {0, … , 𝐿 − 1} and any hidden unit 𝑖, 𝑊(௟) and 𝑏(௟) are the weights and biases at layer 𝑙. 

Where 𝐿 is the number of hidden layers, 𝑧 is the input, 𝑦 is the output, and 𝑓 is an activation 

function. With dropouts as illustrated in Figure 4.5, the expression becomes [161]; 

𝑟௝
(௟)

 ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝) (4.6) 

𝑦෤(௟) =  𝑟(௟) ∗ 𝑦(௟) (4.7) 

𝑧௜
(௟ାଵ)

= 𝑊௜
(௟ାଵ)

𝑦෤(௟) + 𝑏௜
(௟ାଵ) (4.8) 

𝑦௜
(௟ାଵ)

= 𝑓(𝑧௜
(௟ାଵ)

) (4.9) 

Where ∗ represents the dot product, 𝑟(௟) is a vector of independent random Bernoulli variable, 

each with a probability of 𝑝 in layer 𝑙 and 𝑦෤(௟) is the thinned output from layer 𝑙.  

4.2.3.5 Normalisation layer 

The normalisation layer typically comes after the rectified linear unit (ReLU) activation 

function in deep learning networks. Even though ReLUs do not need normalisation in order to 

avoid saturation. However, they are widely used because they improve network generalisation. 

The model description for the activity in the normalisation layer is given by the expression 

[93]; 
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(4.10) 

Where 𝑏௫,௬
௜  represents the normalised response, 𝑎௫,௬

௜  represents the computed neuron activity 

of kernel 𝑖 at position (𝑥, 𝑦), 𝑁 is the amount of kernel and 𝑛 is the number of kernel maps at 

the same spatial location. The constants 𝑘, 𝑛, 𝛼, and 𝛽 are hyper-parameters whose values are 

2, 5, 10-4, and 0.75. These values are defined during training with the help of a validation 

set [93]. 
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4.2.3.6 Activation layer 

The activation layer uses the activation function to determine which neuron is turned on or off 

during training to achieve the best network generalisation and accuracy. More information 

about the activation layer is described in section 4.3. 

4.3 Activation function 

The activation function 𝜎 is used to perform thresholding operations on the input elements 𝑥 

such that all input values less than the set threshold are set to m, and those above the threshold 

are set to p. where m and p are determined based on the particular activation function used. A 

critical characteristic of an activation function is that it should have a derivative 𝜎ᇱ. This is 

because neural networks use errors and backpropagation to adjust the weights and biases during 

training. These weights and biases are adjusted at a “rate of change,” depending on the change 

in error for each training iteration [160]. There is potentially an infinite number of activation 

functions; however, some of the widely used ones in research literature include step, sigmoid, 

hyperbolic (tanh), and ReLU. 

4.3.1 Step function 

The step function is an activation function that performs a threshold operation on each input 

element such that values that are less than zero are set to zero, and all other values are set to 

one. The step function is given by the expression;   

𝜎(𝑥) = ቄ
0,   𝑛 < 0,
1,   𝑛 ≥ 0,

 (4.11) 

𝜎ᇱ(𝑥) = ቄ
0,   𝑛 ≠ 0,
? ,   𝑛 = 0,

 (4.12) 

Furthermore, the graphical representation is shown in Figure 4.6. 
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Figure 4.6 Plot of Step activation function 

4.3.2 Sigmoid function 

The sigmoid function performs threshold operation on input elements such that their 

corresponding output elements range from 0 to 1. The expression for the sigmoid function is 

given by; 

𝜎(𝑥) =
1

1 + 𝑒ି௫
 

(4.13) 

𝜎ᇱ(𝑥) = 𝜎(𝑥)(1 − 𝜎(𝑥)) (4.14) 

Furthermore, the graphical representation is shown in Figure 4.7. 

 

Figure 4.7 Plot of Sigmoid activation function 

4.3.3 Hyperbolic function 

The hyperbolic function performs threshold operation on input elements such that their 

corresponding output elements range from -1 to 1. The expression for the hyperbolic function 

is given by; 
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𝜎(𝑥) =
𝑒௫ − 𝑒ି௫

𝑒௫ + 𝑒ି௫
 

(4.15) 

𝜎ᇱ(𝑥) = 1 − 𝜎(𝑥)ଶ (4.16) 

And the graphical representation is shown in Figure 4.8 

 

Figure 4.8 Plot of Hyperbolic activation function 

4.3.4 ReLU function 

The ReLU function is an activation function that performs a threshold operation on each input 

element such that any value less than zero is set to zero and all other values remain constant. It 

is computationally efficient and simple. This is because it has a linear and non-saturated form 

that converges six times faster than most other activation functions [93], making it commonly 

used for deep learning networks. The ReLU function is given by the expression;  

𝜎(𝑥) = ቄ
𝑥,   𝑥 > 0
0,   𝑥 ≤ 0

 (4.17) 

𝜎ᇱ(𝑥) = ቄ
1,   𝑥 > 0
0,   𝑥 ≤ 0

 (4.18) 

And the graphical representation is shown in Figure 4.9 
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Figure 4.9 Plot of ReLU activation function 

4.4 Deep learning models 

As deep learning becomes increasingly popular, many different models exist. However, some 

of the more commonly used versions include convolution neural network (CNN), deep-belief 

network (DBN), and recurrent neural network (RNN) [1,7].  

4.4.1 Recurrent neural network 

In the recurrent neural network, unlike other feed-forward neural networks, the information 

path progresses through a series of mathematical operations performed on the nodes with 

feedback loops. Hence, the output will be dependent on the order of the input signal. This 

implies that this type of network is suitable for handling sequential input or time-series data. 

This network type is used for applications that require time-series data like stock market price 

prediction, text prediction, speech recognition [162, 163]. In these examples, it is not only the 

order of the data sequence that matters; the future values are also significantly correlated to the 

recent past values. Hence, for an RNN, the current output is determined by the current input 

and the previous output. Figure 4.10 shows the structure of an RNN; it is a chain of repeating 

cells performing their function in the time dimension. Where 𝑥, ℎ, 𝑡𝑎𝑛ℎ, 𝑡 − 1, 𝑡 and 𝑡 + 1 are 

the input signal, output signal, activation function, past time, current time, and future time 

respectively. The number of cells or layers of an RNN is determined by the time step's length 
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under consideration [160]. The RNN uses the same backpropagation method as other 

feedforward networks for adjusting the weights of the network's internal nodes based on its 

error during training. However, in this case, the process is referred to as backpropagation 

through time (BPTT) since the series of layers in a feedforward network has been swapped 

with a series of similar cells in a timeline. 

The issue with RNN is that it is affected by vanishing gradient [93, 160]. Vanishing gradient 

is a phenomenon where if a network is significantly deep, a situation arises where the partial 

derivative of the error with respect to the weight during backpropagation in certain layers is so 

small that it does not affect the previous weights. This problem was resolved by long short-

term memory (LSTM), a variation of the RNN. This is achieved by utilising memory blocks in 

their recurrent connection to store the network's temporal state. Meaning, the network does not 

forget its initial inputs when new ones are available. Hence, for an LSTM network, the current 

output is determined by the current input, the previous output, and the previous state. The 

structure of the cell of an LSTM network is shown in Figure 4.11. Each cell comprises the 

forget gate, the input gate, and the output gate. 

 

Figure 4.10 RNN structure [160] 
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Figure 4.11 An LSTM network with three gates [160] 

The forget gate, also known as the select memory gate, is responsible for deciding which part 

of the previous output should feedback to influence the current input. The input gate, also 

known as the update memory gate, is responsible for updating the current memory value by 

adding the previous output to the current input. It uses an activation function, like the 𝑡𝑎𝑛ℎ to 

select which input value to update. The output gate, also known as the select gate, is responsible 

for making three decisions: what part of the current cell state will be hidden, what part will be 

feedback back to the forget gate, and what part will be set as the output. 

The learning process of an LSTM is calculated at every time step 𝑡 between 1 and 𝜏, and the 

neuron parameter at layer 𝑙 is given by the following equations [88]; 

𝑎ଵ
(௧)

= 𝑏ଵ + 𝑊ଵ ∙ 𝐶ଵ
(௧ିଵ)

+ 𝑈ଵ ∙ 𝑥(௧) (4.19) 

𝐶௟
(௧)

= tanh (𝑎ଵ
௧) (4.20) 

𝑎௟
(௧)

= 𝑏௟ + 𝑊௟ ∙ 𝐶௟
(௧ିଵ)

+ 𝑈௟ ∙ 𝐶௟ିଵ
(௧)  (4.21) 

ℎ(௧) = 𝑏ே + 𝑊ே ∙ 𝐶ே
(௧ିଵ)

+ 𝑈ே ∙ 𝐶ே
(௧) (4.22) 
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Where 𝑎 is the input value of a given layer at a particular time step, 𝑏 is the bias, 𝑊 is the 

weight, 𝐶 is the cell state, 𝑈 is the recurrent connection, 𝑥 is the input, and 𝑁 is the total number 

of layers. 

4.4.2 Deep-belief Network 

Deep-belief networks are neural networks formed by stacking restricted Boltzmann machine 

(RBM), one on top of another. The RBM is a simple neural network with just two layers, 

namely, hidden and visible layers. They are termed ‘restricted’ because they do not have any 

intra-layer connections, as shown in Figure 4.12. 

 

Figure 4.12 Basic RBN structure [160] 

The RBM is an energy-based model; its energy function 𝐸 produces a scalar value, which 

specifies the model's probability in that configuration. 

𝐸(𝑣, ℎ) = −𝑎்𝑣 − 𝑏்ℎ − 𝑣்𝑊ℎ (4.23) 

Where 𝑊 is the weight associated with the connections between the units in the visible layer 𝑣 

and the hidden layer ℎ, 𝑎 is the bias of the units in the visible layer, and 𝑏 is the biases of the 

units in the hidden layer. The probability 𝑃 between each pair of the visible and hidden vector 

is given by [162]; 

𝑃(𝑣, ℎ) =
𝑒ିா(௩,௛)

𝑆
 

(4.24) 

Where 𝑆 is a partition function and is defined as the summation of 𝑒ିா(௩,௛) over every possible 

configuration. Figure 4.13 shows a DBN with three hidden layers and one visible layer. 
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Figure 4.13 DBN structure [163]. 

4.4.3 Convolution neural network 

A convolutional neural network (CNN or convNet) is a feedforward neural network that can 

be effectively used in visual imagery analysis and classification type problems. The CNN 

revolution was set in motion by Alex Krizhevsky, who won first place in the 2012 ImageNet 

competition with his CNN called AlexNet [93]. AlexNet achieved a classification error 

reduction of 11 %, building on previous works like Yann LeCun’s LeNet, which was mainly 

used for character recognition tasks [164]. The CNN comprises four fundamental layers: 

convolution layer, activation layer, pooling layer, and fully connected layer. Typically, a 

functional CNN consist of groups of convolution, activation, and pooling (Conv-ReLU-Pool) 

layers stacked together, followed by the fully connected layers, as shown in Figure 4.14. 

 

Figure 4.14 A typical CNN with two stacked set of convolution, activation, and pooling layers 
and two fully connected layers [160] 
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The convolution layer performs a dot product multiplication of the input image and a 

randomised weight matrix. The weight matrix is technically referred to as the convolution filter. 

The action of the filter is shown in Figure 4.15. 

 

Figure 4.15 Convolution example with a stride of 2 [160] 

The filter performs convolution across the input image from left to right and up to down. The 

number of pixels the filter moves at a time during convolution is called the stride. Convolution 

results in a matrix of smaller size compared to the original input image. Typically, the larger 

the stride, the smaller the result. In order to regain the original image size after convolution, a 

technique of introducing zeros to replace the missing cells is used; this is illustrated in Figure 

4.16. 
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Figure 4.16 Zero padding for convolution [160] 

The filter size is typically smaller than the input image size, and the weight is adjusted in 

training using stochastic gradient descent (SGD) with momentum technique. Mathematically, 

the SGD with momentum is given by [102]; 

𝐿 =
1

𝑚
቎෍ ෍ 1൛𝑦(௜) = 𝑗ൟ log

𝑒ௐೕ
೅௫(೔)

∑ 𝑒ௐ೗
೅௫(೔)௡

௟ୀଵ

௡

௝ୀଵ

௠

௜ୀଵ

቏ +
𝜆

2
෍ 𝑊௝

ଶ

௡

௝ୀଵ

 
(4.25) 

∇ௐ𝐿൫𝑊; 𝑥(௜), 𝑦(௜)൯ =
1

𝑚
෍ൣ𝑥(௜)൛1൫𝑦(௜) = 𝑗൯ − 𝑝൫𝑦(௜) = 𝑗|𝑥(௜); 𝑊൯ൟ൧ + 𝜆𝑊௝

௠

௜ୀଵ

 
(4.26) 

𝑣 ⟵ 𝜀𝑣 − 𝛼∇ௐೕ
𝐿(𝑊; 𝑥(௜), 𝑦(௜)) (4.27) 

𝑊௝ାଵ ⟵ 𝑊௝ + 𝑣 (4.28) 

The loss function 𝐿 is first evaluated from the deviation between the actual class and the 

predicted class given initial random weights 𝑊. the term 1൛𝑦(௜) = 𝑗ൟ returns the value one 

when a predicted class of the 𝑖th term input is true for 𝑗 class; otherwise, it returns a zero. The 

hyperparameter 𝜆 is a regularization parameter used to penalise wrong weights and therefore 

help to prevent overfitting [165, 166]. Secondly, the gradient of the loss function ∇ௐ𝐿 is 

evaluated with respect to the weight as a function of the input 𝑥 and output 𝑦. The expression 

𝑝൫𝑦(௜) = 𝑗|𝑥(௜); 𝑊൯ is a probabilistic SoftMax function of the 𝑖th training epoch out of a total 
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of 𝑚 training epochs. Thirdly, the hyperparameters momentum 𝜀 and learning rate 𝛼 are used 

to update ⟵ the velocity 𝑣. Finally, the velocity is used to update the weight. 

The pooling layer is directly after the ReLU activation function in the Conv-ReLU-Pool stack 

and generates feature maps by down sampling the input image. The number of features is 

determined by the number of input neurons in the layer it precedes. Max-pooling is the most 

commonly used in CNN's as it shows better performance over other types like mean-pooling. 

Max-pooling involves taking the maximum value in the filter area, while mean-pooling takes 

the average value in the filter area. Figure 4.17 shows a 2 × 2 max pooling with a stride of 2, 

and Figure 4.18 shows a 3 × 3 max pooling with a stride of 1 and overlapping. 

 

Figure 4.17 2x2 max-pooling without overlapping [160] 

 

Figure 4.18 3x3 max pooling with overlapping [160] 

The fully connected layer makes up the last few layers of CNN with a softmax activation 

function, which is used to output the prediction class in terms of probability. The class with the 

highest probability wins the vote and is therefore taken as the predicted class. A technique 

termed ‘dropout’ is also implemented in this layer. Dropout involves setting a threshold 
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probability, such that any inputs with a probability less than that threshold are set to zero. This 

is achieved by the random break-up of the co-adaptations typically generated in a standard 

backpropagation neural network. This has been found to improve robust feature learning and 

reduce overfitting in CNNs [93]. On the other hand, the use of dropout will result in the model 

spending more time in the training phase as it takes more time to converge. 

4.5 The deep convolution neural network algorithm  

A deep convolution neural network (DCNN) is a CNN with multiple hidden layers 

(convolution, activation, pooling, and fully connected layers). Its invention, along with the 

development of large database visualisation systems (ImageNet, which consists of more than 

20000 categories of numerous images), enables the capability for a rich and wide-ranging 

feature summary from a broad spectrum of images [167]. These summarised features make an 

accurate pattern recognition technique that typically performs better than other classification 

techniques for a diverse set of image data [167]. This implies that DCNN supports inter-domain 

transfer learning and its summarised features are general, even when the quantity of available 

data is limited [168]. This research adapts the DCNN obtained from the ImageNet pre-trained 

network called AlexNet. It is a deep learning network with twenty layers (eighteen hidden 

layers), as shown in Table 4.1. 

Table 4.1 DCNN layers 

Layer Description Neurons Dimension 

1 Input 2 227X227X3 

2 – 4 Conv-ReLU-Pool 1 96 11x11x3 

5 - 7 Conv-ReLU-Pool 2 256 5x5x48 

8 – 10 Conv-ReLU-Pool 3 384 3x3x256 

11 - 13 Conv-ReLU-Pool 4 384 3x3x192 

14 - 16 Conv-ReLU-Pool 5 256 3x3x192 

17 Fully connected 1  4096 - 
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18 Fully connected 2 4096 - 

19 Fully connected 3 2 - 

20 Output 2   

 

Layer 1 represents the input layer. It is designed such that it can only accept image files. It has 

two neurons with sizes set as 227 × 227 × 3. The number of neurons is set by the number of 

prediction classes. 

Layer 2 to layer 9 represents the hidden layers, which is the engine room of the algorithm. It 

consists of five stacks of Conv-ReLU-Pool layers. Each of these stacks performs convolution, 

applies the ReLU activation function, and then performs maximum pooling in that order to 

each input before sending it to the next layer. The ReLU activation is used because it has been 

proven to make DCNNs at least six times more efficient at the training stage and reduce 

operational overhead [93]. A 3 × 3 pooling with a stride of 2 is used for summarising the 

feature in this network. This down sampling technique reduces overfitting and the error rate by 

at least 0.3 % [93, 161]. Figure 4.19 portrays a summarised structure of the DCNN. 

 

Figure 4.19 DCNN architecture 

Channel-wise normalization is performed in advance of the ReLU activation layer as it helps 

feature vector generalization among the input data. The response-normalised output 𝑦 for every 

individual input element 𝑥 and channel window size 𝑛 is given by the expression; 
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𝑦 =
𝑥

ቀ1 +
𝑠

10000𝑛
ቁ

ଷ
ସ

 (4.29) 

Where s is the sum of the squares of the elements in the normalized window. The constant 

terms were set during training using a validation set with a window channel size of 5. Layer 17 

to layer 19 represents the fully connected layers. They perform supervised learning based on 

the identified classes, on the features extracted in the Conv-ReLU-Pool layers. Layer 17 and 

layer 18 have 4096 neurons; each performs arbitrary dropouts by setting to zero all input 

elements with a probability of 0.5 or less.  

Layer 20 represents the output layer. This is where the final classification result is presented 

based on the accuracy of the DCNN algorithm. The output has two neurons, which is defined 

by the number of prediction classes of the network. The network utilises the cross-entropy 

function for a 1-of-2 coding scheme for error evaluation, which is expressed as; 

𝐸(𝜃) = − ෍ ෍ 𝑡௜௝ ln 𝑦௝(𝑥௜, 𝜃)

ଶ

௝ୀଵ

௡

௜ୀଵ

 
(4.30) 

Where 𝑡௜௝ shows that the 𝑖th sample belongs to the 𝑗th class, 𝑦௝(𝑥௜, 𝜃) represents the output for 

sample 𝑖, 𝑛 indicates the number of observations, and 𝜃 represents the parameter vector. 

Preliminary analysis of the time-series data collected from the experiment and the results were 

first published in the proceeding of the Euspen international conference and exhibition [2], 

with more information provided in chapter 5. The results shows that using the numeric data 

directly as an input to the deep learning network gives poor results, only achieving 51 % 

accuracy [2]. This was done by arranging the time-series data into mini-batches [169] , after 

being sorted for even distribution of the mini-batches. Another approach used was the 

conversion of the time-series data to image files such that the image serve as input to the deep 

learning network using the advantage of image convolution for the analysis [170] . This 

approach of utilising image files has been shown to give good results [93]. It was able to 
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achieve an accuracy of 94 % [2] when used with the image file of the vibration data, which is 

very promising. Hence, it is the approach that will be employed in this thesis. 

4.6 Chapter summary 

Deep learning is an aspect of AI that uses a complex algorithm with multiple hidden layers to 

train a network. It learns the hierarchical structures within a dataset and performs complex 

mapping of an input space to a predetermine output space without an expert agent's 

intervention. This is also how it differs from conventional machine learning, which will require 

an expert agent to perform feature extraction. There are many different types of deep learning 

networks like the recurrent neural network, deep-belief network, and deep convolution neural 

network. The proposed deep learning model for this research is the deep convolution neural 

network (DCNN). It has an input layer, five convolution layers, five ReLU layers, five max-

pooling layers, three fully connected layers, and an output layer (see section 4.5). A stack of 

the convolution, ReLU, and max-pooling layers is responsible for the feature extraction, while 

the fully connected layer is responsible for classification. The next chapter delves into the 

experimentation and analysis of the dataset from the experiments. 
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Chapter 5 Experiments and analysis of the dataset 

This chapter presents an insight into the experimental setup and procedures for this project and 

the corresponding data collected. It starts by providing an overview of the design of the 

experiment as it applies to this research. Next, it discusses particular experiments that generate 

each dataset. This is followed by an evaluation of a test dataset with the proposed algorithms. 

This chapter checks the viability of the proposed strategies in terms of their strengths and 

weaknesses regarding classification problems. It also accesses the practicality with which the 

proposed strategies are adaptable to condition monitoring of ball screws assembly. Materials 

used for this chapter include journals, conference papers, datasheets, and textbooks. 

5.1 Design of experiment 

As with every research project, the design of experiment is instrumental in achieving the 

research aims. This is because a poorly designed experiment will lead to erroneous results and, 

consequently, wrong conclusions. Hence it is crucial to carefully and properly plan research 

experiments to fit the requirement. The design of experiment for this research will be discussed 

under three sections, namely: pre-test, test set-up, and test procedure. 

5.1.1 Pre-test  

The pre-test activities involve all the preparatory activities that precede setting up the 

experiment. It includes selecting the appropriate hardware and software to be used for the test. 

5.1.1.1 CNC machine   

The CNC machine used in this study is a five-axis gantry-type milling machine (Figure 5.1). 

A computer-aided design (CAD) representation of the machine without guarding is provided 

in Figure 5.2. The five-axis machine comprises three linear axes: X, Y, Z, and two rotary axes, 

namely B and C. The machine tool spindle, on which the tool is fitted, is mounted on the rotary 
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B-axis, and all axes move to position the tool. The maximum feed rate of the X-axis, Y-axis, 

and Z-axis are 75000 mm/min, 75000 mm/min, 70000 mm/min, respectively. The travel spans 

along the same axis are 2500 mm, 1200 mm, 700 mm, respectively. The maximum rotational 

speed of the spindle is 3200 rev/min.  

The experiments are all performed on the Y-axis of the machine. This is the “gantry” axis, 

which is a system of two independent closed-loop ball screw drives. The left side ball screw is 

Y1, while Y2 is on the right (Figure 5.2). This axis was chosen for this work because the 

performance of the two ball screws can be compared during a single test without introducing 

additional influencing factors; for a given test, each screw moves the same nominal distance, 

with the same loading, the same acceleration, and jerk (rate of change of acceleration), the 

same nominal temperature conditions, and the same overall life cycle. Both Y1 and Y2 have a 

fixed ball screw and a rotating ballnut. The nominal pitch for the ball screw is 32 mm in each 

case. To enable comparison between “good” and “worn” ball screws, Y1 is in a good state, 

while Y2 has been damaged from accelerated wear through increased friction. The damage on 

ball screw Y2 was inadvertently generated when a fault meant that the normal lubricant flow 

to its ballnut was restricted. 

 

Figure 5.1 The 5-axis gantry-type CNC machine used in this study 
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Figure 5.2 A CAD model of the 5-axis gantry-type CNC machine 

5.1.1.2 Accelerometer 

An accelerometer is an electromechanical instrument used for measuring vibration. It does this 

by measuring proper acceleration and then converts it to electrical signals, which are 

representative of the vibration in the body being monitored. Proper acceleration refers to the 

rate at which the velocity of a body changes with respect to its real-time rest frame. This is 

unlike conventional acceleration, otherwise known as coordinate acceleration, which is the rate 

at which the velocity of a body changes in a fixed coordinate system. Accelerometers are 

typically calibrated by comparison to a known acceleration level. For this research, a 

piezotronics accelerometer sensor, model 629A11, is used (see Figure 5.3). It is a triaxial sensor 

with a response frequency range of 2.4 to 2000 Hz. This falls within the range of vibration 

signal, which makes this sensor suitable for use in this application. The size is 31.1 mm x 

38.1 mm x 20.8 mm (length x width x height), ideal for mounting on a relatively small surface 

area. 

Y2 

Y1 
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Figure 5.3 Tri-axial accelerometer used for model calibration and testing 

5.1.1.3 Acoustic emission sensor  

Acoustic emission (AE) sensors are sensors used in non-destructive testing applications to 

detect and measure high-frequency signals or ultrasonic stress waves released from localised 

sources when a material deforms or vibrates under the influence of an active force. For this 

research, a piezoelectric type with an integrated amplifier (model VS150-RIC) is used. The 

size is 28.6 mm x 31.5 mm (diameter x height), suitable for mounting on a relatively small 

surface area. The AE sensor has a large frequency response range of 100 kHz to 450 kHz. This 

makes it suitable for detecting possible high-frequency ultrasonic stress waves that could be 

released from the ball screws in motion. Figure 5.4 shows the AE sensor kit, which consists of 

the sensor, a mounting holder, and an analogue to digital converter (ADC), and Figure 5.5 

shows the AE sensor mounted on a ball screw assembly.  
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Figure 5.4 Acoustic emission sensor kit 

 

Figure 5.5 AE sensor mounted on a ball screw assembly during a test 

Mounting holder 

AE sensor 

Ball screw assembly  
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5.1.1.4 Data acquisition kit 

Data acquisition is an essential aspect of conducting experiments as, without it, the experiment 

is useless. It is the process of converting sampled analogue waveforms that are a measure of 

real-world conditions into digital numeric values that can be worked on using a personal 

computer. The type of data acquisition kit employed will largely depend on its compatibility 

with the sensor used. In this research, a national instrument (NI) data acquisition kit (NI 

compact data acquisition (NI-cDAQ) – 9174 and NI – 9234) is used to capture the 

accelerometer data. The NI-cDAQ – 9174 is a compact four-slot universal serial bus (USB) 

chassis that houses the NI – 9234. The NI – 9234 is a four-channel dynamic signal input module 

that performs condition monitoring functionalities like frequency analysis and order tracking. 

It can also perform signal coupling, signal conditioning, and anti-aliasing filtration for 

automatic sample rate adjustment. Figure 5.6 shows how the data acquisition equipment setup.  

 

Figure 5.6 Data acquisition kit as wired for the experiment 

Sensor cable 

NI – 9234  

NI cDAQ – 9174  

Power cable 

Data cable 
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5.1.1.5 Laboratory Virtual Instrumentation Engineering Workbench 

The Laboratory Virtual Instrumentation Engineering Workbench (LabVIEW) is a NI-

developed, graphical programming language for representing applications and processes. It is 

a high-level and system-level design platform for test, measurement, and control applications 

that demand quick access to hardware and data insights. It offers a visual approach to analysing 

every aspect of an application, from the hardware configuration to measured data. It does this 

by creating intuitive flowchart-like blocks called virtual instruments (VI), which are integrated 

within the graphical framework to form a complete design [121]. VIs in LabVIEW are modular, 

which implies that each VI can run independently as long as data flows into it. This 

characteristic of VIs makes it possible for a LabVIEW program to perform multiple operations 

in parallel as task execution is based on the flow of data rather than the sequence of lines of 

code [121]. In this research, LabVIEW is used for accelerometer data visualisation and logging. 

Figure 5.7 shows the front panel of the LabVIEW software. 

 

Figure 5.7 Front panel of LabVIEW software 
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This LabVIEW VI was created by the researcher for the efficiency of acquisition and checking 

data quality using NI hardware. However, the main analysis is performed in MATLAB because 

of the greater flexibility of MATLAB. 

5.1.1.6 Temperature sensor 

A temperature sensor is a device that can be used to the temperature of a surface or body. This 

research uses a DS18B20 digital thermometer [171]. It is used to monitor the change in the 

temperature of the machine structure and the environment. These sensors have been previously 

mounted on several locations on the CNC machine under investigation [81]. Figure 5.8 shows 

a short section of the DS18B20 temperature loom attached to the frame of the CNC machine 

to monitor any general increase in temperature during the series of experiments.  

 

Figure 5.8 Three DS18B20 temperature sensors mounted on the CNC machine frame. 

Similar sensors are located within the ball screw drive to provide direct information on any 

heating of the ball screw and ball nut but are currently inaccessible for photographing. The 

DS18B20 temperature sensors communicate over a 1-wire bus to a central microprocessor, 

thus allowing the sensors mounted on the machine to be wired using only a single 
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communication wire plus two power wires in series. This is a significant advantage over other 

sensor types, which require between two and four wires per sensor. The operating temperature 

of the sensor is between -55 °C and +125 °C, which comfortably accommodates the expected 

changes in temperature on the machine of 10 °C ambient and up to 50 °C on machine heat 

sources, such as motors. 

A software application called WinTcal (version 2.4.0) is used to display and log the 

temperature data. WinTcal is an in-house developed software by the Centre for Precision 

Technology (CPT) research group of the University of Huddersfield. Figure 5.9 shows a picture 

of the WinTcal display. The software can identify all the temperature sensors on the CNC 

machine tool and capture the temperature of the contact surface. It logs these temperatures in 

a file specified by the user. The logged data can be displayed in real-time as a line graph and 

instantaneously beside the pre-set sensor name. All subsequent analysis was carried out in 

MATLAB. 

 

Figure 5.9 WinTcal interface 
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5.1.1.7 Personal computer 

Personal computers (PC) are used to facilitate data logging and processing. It is also where the 

mentioned software is installed. For this research, three PCs are used, PC-1 for monitoring the 

experiments (on which LabVIEW is installed), PC-2 for monitoring temperature (on which 

WinTcal is installed), and PC-3 for data processing and running of simulations. Table 5.1 

shows the specifications of the PCs. 

Table 5.1 PC specifications 

  PC-1 PC-2 PC-3 

Processor speed 2.8 GHz 3.1 GHz 3.6 GHz 

RAM 12 GB 12 GB 16 GB 

Processor Intel core i5 AMD Intel core i7 

Operating system Windows 7 Windows 7 Windows 10 

System type  64-bit OS 64-bit OS 64-bit OS 

 

Ideally, all data would be captured using a single software application on a single PC to ensure 

common timing and synchronisation. However, for this PhD project, using separate software 

and PCs is acceptable since the temperature change is relatively slow, so synchronisation is 

only needed on a per-experiment basis. 

5.1.2 Test setup 

The test setup describes all the activities involved in setting up the hardware and software 

required for the experiment. These activities are list below in the sequence they were carried 

out; 

1. Turn on the CNC machine energise all drives, and perform the homing sequence to 

ensure the correct coordinate frame is used. 

2. Position the ram of the CNC machine such that it is mid-way from either ball screw. 

This was done to ensure that its weight is evenly supported on both ball screws, not 
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giving either ball screw more load, which could lead to forced degradation on that ball 

screw during the test. 

3. Attach the sensor to the machine tool ball screw. The sensor is attached to the rotating 

ballnut of the machine tool via magnets. This is as close as physically possible to the 

ball screw the sensor can get based on the machine tool structure. The sensor is 

positioned such that its X-axis aligns with the direction of motion of the CNC machine 

tool axis, as illustrated in Figure 5.10. This is done to minimise the noise on the data by 

eliminating the influence of yaw error.  

 

Figure 5.10 Accelerometer on ballnut with axes aligned with the machine axes (plan view) 

4. Set up the program on the CNC machine control panel that will run the machine tool's 

gantry at different feed rates, from front to back through the entire length of the ball 

screw (about 1500 mm). The data captured during a run over the entire ball screw length 

is an entry in a dataset. The different speeds chosen for the test are 10000 mm/min, 

1000 mm/min, 9000 mm/min, 2500 mm/min, 7500 mm/min, 3000 mm/min, and 

y-axis 

x-axis 
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5000 mm/min, in that order. The reason for this is to maintain a steady temperature rise 

in the ball screw.  

5. Run the WinTcal for several hours (at least 8 hours) before the test. This is done to 

check that the temperature on the CNC machine components has saturated (without 

trends) before the test starts to eliminate the possibility of spurious data. 

6. Setup the data acquisition kit. 

7. Setup LabVIEW for data capture. 

5.1.3 Test procedure 

The test involves the movement (at different feed rates) of the axis along the span of the ball 

screw, Y1 and Y2, as shown in Figure 5.2. Each movement is performed in both the positive 

and negative directions of travel to identify any differences. The considerations for the test are 

expressed as follows: 

1. The feed rates were selected quasi-randomly but within the normal operating range of 

the machine during operation. 

2. The five-axis production machine (see Figure 5.1) used for the test was selected because 

it has a gantry of two closed-loop horizontally aligned ball screw drive mechanisms. 

Y1 is in good condition, and Y2 is noisy during operation. On further investigation, it 

was discovered that the lubrication system to Y2 was faulty, which had stopped the 

flow of lubrication to Y2. This is likely to have resulted to accelerated wear due to 

movement of the horizontal axis and the absence of lubrication in the ballnut for a long 

period of time. The sensor is then placed on the ball screw assembly as physically close 

to the source of vibration as possible.  

3. The temperature data of the ball screws and surrounding atmosphere (ambient) was 

logged to monitor the thermal condition of the ball screws before, during, and after the 
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test. In order to remove bias in the datasets from the heating of the axis, the order of the 

feed rates in the experiments is also randomised. 

The test procedure includes the following steps; 

1. Log the ambient temperature and the temperature of the ballnuts. 

2. Perform any initial thermal perturbation as specified for each test. 

3. Run the LabVIEW ready for data capture. 

4. Set the CNC to the start position; this coincides with the 0.0 mm point on the Y-axis 

(rear). 

5. Set the feed rate of the CNC machine tool axis to 10000 mm/min. 

6. Move the axis to -1200 mm (front) then back to rear fifteen (15) times and capture the 

data from the sensor. Include a 3 s dwell at each extreme of travel to allow for easy 

detection of reversal of the direction in the signal during signal processing.  

7. Change the CNC machine axis speed to 1000 mm/min, 9000 mm/min, 2500 mm/min, 

7500 mm/min, 3000 mm/min, and 5000 mm/min in that order. For each speed, repeat 

steps 5 and 6.  

This procedure generates a dataset of 420 samples for the ‘good’ and ‘worn’ ball screw, giving 

a good sample size to train machine learning and deep learning networks.  

5.2 Description of conditions for each dataset 

The datasets used in this thesis were obtained from different instants of the experiment 

conducted in the university of Huddersfield CNC machine workshop. They were nine 

experiments/tests resulting in nine datasets, dataset_1 (baseline test dataset) was used to test 

and develop the algorithms used in this thesis, and the rest were used for validation. Table 5.2 

shows the summary of the experimental activities.  



101 
 

Table 5.2 Summary of experimental activities 

Dataset/ 

Test 
Sensor Initial thermal condition 

Sensor 

alignment 

Set of feed 

rates 

1 Accelerometer Room temperature Aligned Centuple 

2 Accelerometer Room temperature Misaligned Centuple 

3 Accelerometer 5°C thermal perturbation Aligned Centuple 

4 Accelerometer 10°C thermal perturbation Aligned Centuple 

5 Accelerometer 15°C thermal perturbation Aligned Centuple 

6 Accelerometer 20°C thermal perturbation Aligned Centuple 

7 Accelerometer 25°C thermal perturbation Aligned Centuple 

8 Accelerometer Room temperature Aligned Non-centuple 

9 Acoustic emission Room temperature Inapplicable Centuple 

 

The following subsections describe the conditions under which each dataset was obtained and 

the rationale for designing the test in each case. The analysis of the data sets follows in Section 

5.3 

5.2.1 Baseline test dataset 

This dataset is obtained from experiment_1, which is performed as described in section 5.1.3, 

except that there is no thermal perturbation for this test. The temperature profile of the ballnut 

during the test is presented in Figure 5.11. Where A represents the ambient temperature, letters 

B, C, D, E, F, G, and H represent the temperature profile during the 10000 mm/min, 

1000 mm/min, 9000 mm/min, 2500 mm/min, 7500 mm/min, 3000 mm/min, and 

5000 mm/min feed rate respectively. A simpler version of the same profile is presented in 

Figure 5.12. Each bar indicates the final temperature at the particular feed rate and the ambient 

temperature indicated by the 0 mm/min feed rate. The profile shows that the temperature of 

both ball screws steadily rises from 24.2 °C to 26.8 °C during the experiment after an initial 

1 °C rise during the 10000 mm/min feed rate test.  
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The offset between the temperature sensors in Y1 and Y2 is due to the uncertainty of 

measurement and the fact that they are physically separated from each other, so will have a 

slight difference in environmental condition. This is indicated in the 0.3 °C temperature 

difference between Y1 and Y2, which is inconsequential as the temperature trends are identical. 

 

Figure 5.11 Temperature profile of the ballnut for the entire duration of baseline test 

 

Figure 5.12 Temperature of the ballnut after each feed rate during baseline test 
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5.2.2 Misaligned sensor axis test dataset 

This dataset is obtained from experiment_2, which is performed as described in section 5.1.3, 

except that there is no thermal perturbation for this test, and the sensor is mounted as shown in 

Figure 5.13. In this instance, the sensor axis does not align with the direction of travel of the 

machine axis. This was done to investigate the effect of misalignment of the axes of the sensor 

with those of the machine, specifically in the direction of travel of the axis. The temperature 

profile of the ballnut during the test is similar to that of experiment_1. 

 

Figure 5.13 Accelerometer on ballnut with sensor X- and Y- axes not aligned with the 
machine axes (Plan view) 

5.2.3 Thermal perturbation test datasets 

These datasets are obtained from experiment_3 to 7, which are performed as described in 

section 5.1.3. The value of the thermal perturbation introduced in the ball screw for these 

experiments is as stated in Table 5.2. This was achieved by running the Y-axis at a feed rate of 

40000 mm/min until the temperature rise, for the set thermal perturbation, above the ambient 

temperature is reached. The introduction of the thermal perturbation is to assess the impact of 

the possible associated thermal error on the accuracy of the proposed methodologies. Figure 

5.14 shows the temperature of the ballnut after each feed rate for the 5 °C thermal perturbation 

Y-axis 

X-axis 
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test. The chart shows that the temperature of the ball screws was initially raised from about 

21 °C to 26 °C before starting the experiment. During the experiment, the temperature fell 

slightly (during the 10000 mm/min and 1000 mm/min feed rate test) until it stabilised at about 

24 °C (at the 9000 mm/min feed rate test) for the rest of the experiment. The temperature charts 

for the 10 °C, 15 °C, 20 °C and 25 °C thermal perturbation test are shown in appendix V. 

 

Figure 5.14 Temperature of the ballnut after each feed rate during the 5 °C thermal 
perturbation test   

5.2.4 Non-centuple feed rates test dataset 

The natural tendency is for experiments to have values set to multiples of the decimal system 

in which we normally work. ISO 230-2:2014 [172] notes that choosing a step size that is a 

multiple of the pitch of the ball screw for positional targets will result in aliasing. It solves this 

problem by requiring that each step size be quasi-random within the nominal step size. This 

test randomises the feed rates in a similar way. 

This dataset is obtained from experiment_8, which is performed as described in section 5.1.3, 

except that there is no thermal perturbation for this test and the feed rate is set to 

10126 mm/min, 1932 mm/min, 9213 mm/min, 2674 mm/min, 7507 mm/min, 3658 mm/min, 

and 5819 mm/min. These non-centuple feed rates were quasi-randomly selected (within the 
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persist undetected because its frequency is a multiple of the decimal feed rate. The temperature 

chart of the ballnut during the test is shown in Figure 5.15. It shows that the temperature 

steadily rises from about 20 °C to 24 °C during the experiment. 

 

Figure 5.15 Temperature of the ballnut after each feed rate during the non-centuple feed 
rates test  

5.2.5 AE sensor test dataset 

This dataset is obtained from experiment_9, which is performed as described in section 5.1.3, 

except that there is no thermal perturbation for this test, and an AE sensor is used instead of 

the accelerometer. The temperature chart of the ballnut during the test is shown in Figure 5.16 

and is similar to that of experiment_1. The AE sensor is mounted, as indicated in Figure 5.5. 

 

Figure 5.16 Temperature of the ballnut after each feed rate during the AE sensor test 
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5.3 Analysis of datasets 

5.3.1 Temperature sensor data 

The different datasets collected during the experiments include the temperature, vibration, and 

acoustic emission measurements. The temperature data has been presented for each test in 

section 5.2 above. The purpose of this data is to monitor the temperature response as the ball 

screw goes through its duty cycle during the tests, such that if abnormal behaviour is detected 

in the sensor data, then the corresponding temperature could be analysed. Also, a conscious 

effort was made to keep the temperature nominally constant by minimising the amount of heat 

generated from the chosen cycles and reducing any potential for thermally-induced trends to 

affect the interpretation of results. This was achieved by alternating between cycles with high 

and low feed rates during the test experiments, rather than building sequentially from low to 

high feed rate, which would likely have induced heat into the ball screw through friction, 

causing a temperature-induced bias in the later results. The temperature over the whole test 

duration was monitored and checked for changes before proceeding to the next stage. The 

temperature data for these tests show that both ballnuts rose steadily and consistently for the 

experiments that started from ambient (experiments 1, 2, 8, and 9). In contrast, experiments 3, 

4, 5, 6, and 7 fell steadily and consistently after the initial forced temperature rise (thermal 

perturbation). This indicates that there is no significate temperature signature that indicates if 

a ball screw is good or worn for the given condition. Hence the temperature information was 

not included as inputs to the proposed strategies for applying artificial intelligence. 

5.3.2 Accelerometer data 

Samples of the sensor data from the good and worn ball screws at two different feed rates 

(1000 mm/min and 10000 mm/min) are shown in Figure 5.17, and their corresponding FFT 

spectrums are shown in Figure 5.18.  
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Figure 5.17 Accelerometer data of worn and good ball screw at 1000 and 10000 mm/min 

 

Figure 5.18 FFT of accelerometer data of worn/good ball screw at 1000 and 10000 mm/min 
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This gives a first glance at the vibration signal in the time and frequency domain, respectively, 

with both axes (of the plot) set to auto-scale to allow the shape of the features to be seen. The 

FFT spectrum shows that there is more high-frequency content in the worn ball screw data. 

The same FFT spectrum is presented in Figure 5.19, with the vertical axis all fixed to the same 

value to allow the magnitudes to be directly compared. It shows that the frequency content in 

the 1000 mm/min feed rate data is not as prominent as it initially appeared in Figure 5.18. 

 

Figure 5.19 FFT of accelerometer data of worn and good ball screw with fixed axes 

Further analysis of the collected data is presented in Figure 5.20 and Figure 5.21 for both the 

good and the worn ball screw, respectively, at all the test feed rates. In this case, the graph's 

axes are fixed for all the FFT spectrums for both ball screws data. It can be seen that the 

spectrum is not the same across all feed rates in terms of both frequency and magnitude. In the 

good ball screw, the amount, magnitude, and frequency of the significant peaks across the 

different feed rates are not consistent. For example, the 10000 mm/min feed rate data has two 
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significant peaks, one at 200 Hz and the other just above 400 Hz, while the 9000 mm/min feed 

rate data has one significant peak at 400 Hz.  

 

Figure 5.20 FFT of vibration signals at different feed rates for good ball screw. 
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Figure 5.21 FFT of vibration signals at different feed rates for worn ball screw 

The situation persists even when the frequency axis is normalized to reflect the cyclic nature 

of the signal (Figure 5.22). This can be a problem when using classical methods for assessing 

ball screw conditions, as it will be difficult, or maybe impossible, to set a baseline or threshold 

on the good data. For this reason, this research has proposed machine learning and deep 

learning strategies for evaluating the condition of CNC machine tool ball screw since they are 

more suited to identifying patterns within random datasets.  
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Figure 5.22 FFT of vibration signals at different feed rates for good ball screw with 
normalized frequency 

5.3.3 AE sensor data 

The AE sensor data from the good and worn ball screws at two different feed rates 

(1000 mm/min and 10000 mm/min) are shown in Figure 5.23, and the corresponding FFTs 

shown in Figure 5.24. This gives a first glance at the AE signal in the time and frequency 



112 
 

domain, respectively, with both axes set to auto-scale. A zoomed-in version of the FFT diagram 

is presented in Figure 5.25 that shows the first 2 kHz frequency range for the AE sensor data 

of a good ball screw at 10000 mm/min feed rate. The FFT diagrams show that the AE sensor 

is not able to detect frequency components in the low-frequency range. This is probably 

because the sensor's frequency response is in the frequency range of 100 kHz to 450 kHz. The 

FFT diagrams also show that there is no significant high frequency detected. The AE sensor 

data will therefore not be investigated any further in this research since its frequency response 

is higher and far removed from the frequency of vibration of the good and worn ball screws 

under investigation. This is not to say that these sensors cannot be used to detect other faults. 

Further research is recommended to identify the most suitable sensors for different types of 

faults to apply the analysis methods in this thesis.    

 

Figure 5.23 AE sensor data of worn and good ball screw at 1000/10000 mm/min 
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Figure 5.24 FFT of AE sensor data of worn and good ball screw at 1000/10000 mm/min 

 

Figure 5.25 FFT of AE sensor data of good ball screw at 10000 mm/min for the first 2 kHz 
frequency range 
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5.4 Chapter summary 

The datasets used in this research were obtained from experiments carried out at the CPT 

machine tool workshop at the University of Huddersfield. In all, a total of nine datasets were 

acquired from nine experiments for use in this thesis. Each experiment varied in set-up to 

accommodate the different parameters and factors being tested. Experiment_1 was the baseline 

test, and every other test was altered slightly from this baseline. Experiment_2 had the sensor 

axes misaligned with those of the machine tool. Experiments 3 to 7 had initial thermal 

perturbations of between 5 °C and 25 °C. This was done to investigate the influence of external 

disturbance on the system. Experiment _8 had quasi-random feed rates, similar to the initial 

feed rate of experiment_1 to avoid any aliasing of data. Finally, experiment_9 used an AE 

sensor in place of the vibration sensor to investigate whether this would provide additional data 

for analysing the particular fault. The next chapter delves into the discussion and validation of 

the obtained results of the PhD research. 
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Chapter 6 Results and validations 

This chapter presents the results and validation of the proposed concepts and algorithms used 

in this research. It starts by selecting an optimum wavelet transform used for data processing 

by examining all the available mother wavelets in MATLAB using a brute force approach. 

Next, the validation of the wavelet and FFT features by comparing against other more 

commonly used but less robust feature types. This is followed by the implementation of the 

proposed machine learning and deep learning approaches. Then the validation of the deep 

learning algorithm using different datasets. 

6.1 Selection of optimal wavelet 

In order to achieve the proposed process of machine learning described in section 5.4, wavelet 

transform was used. There are many different types of wavelet transform, as shown in Table 

3.1. The number after the wavelet name represents the number of vanishing moments [173, 

174]. It means that db1 is a Debauchies wavelet with one vanishing moment and so on. The 

vanishing moment is significant because it indicates the points of a signal where the wavelets 

coefficients are zero. This occurs in the interval where the signal exhibits behaviours consistent 

with a polynomial of degree N, and the wavelet has N vanishing moments. All the wavelets are 

assessed on their first-level detail coefficients. To justify the choice of wavelet to use, each 

wavelet transform is used to process dataset_1 before training and testing with machine 

learning, and the results are shown in Table 6.1.  The results in this table are the accuracy that 

each machine learning algorithm has achieved after training and testing when a particular 

wavelet transform is applied for data processing before feature extraction. The wavelet 

transform used is the coefficient is the first level detail coefficient (D1), and the extracted 

features were: mean, maximum, minimum, root mean square (RMS), kurtosis, and skewness. 
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After extracting the features, 85 % were used to train the network and 15 % to test the trained 

network. 

Table 6.1 Wavelet validation results 

Wavelet 

features 

Fine 

Tree 

Medium 

Tree 

Linear 

SVM 

Quad 

SVM 

Cubic 

SVM 

Coarse 

Gaussian 

SVM 

Fine 

KNN 

Medium 

KNN 

Cubic 

KNN 

bior11 95 95 95 95 98 74 99 96 95 

bior13 95 95 95 95 98 70 99 97 95 

bior15 96 96 96 97 97 72 98 96 94 

bior22 98 98 98 92 95 69 100 100 100 

bior24 99 99 99 96 97 67 100 99 99 

bior26 98 98 98 95 97 69 100 100 99 

bior28 98 98 98 93 97 70 100 100 100 

bior31 97 97 97 94 97 71 98 96 94 

bior33 99 99 99 94 97 67 97 95 92 

bior35 97 97 97 93 96 73 97 96 94 

coif1 96 96 96 92 97 66 100 100 100 

coif2 97 97 97 96 96 70 100 100 99 

coif3 98 98 98 90 97 71 99 99 99 

coif4 99 99 99 91 96 68 100 100 99 

coif5 99 99 99 96 97 69 100 100 99 

db1 97 97 97 95 96 72 97 95 94 

db2 99 99 99 88 97 71 99 99 99 

db3 98 98 98 99 97 67 100 99 99 

db4 99 99 99 93 93 68 100 100 100 

db5 100 100 100 94 96 67 100 99 99 

db6 98 98 98 97 97 66 100 99 99 

db7 96 96 96 89 96 69 100 100 99 

db8 96 96 96 92 97 68 100 100 99 

db9 98 98 98 91 97 70 100 98 98 

db10 97 97 97 89 97 68 100 100 100 

Dmey 98 98 98 95 98 69 100 99 98 
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fk14 99 99 99 94 98 71 100 99 99 

fk18 97 97 97 95 96 73 100 99 100 

fk22 98 98 98 89 96 70 100 99 98 

fk4 99 99 99 98 95 69 100 100 99 

fk6 99 99 99 98 99 71 100 100 100 

fk8 98 98 98 88 99 69 100 100 99 

Haar 98 98 98 97 98 72 99 97 95 

rbio11 98 98 98 96 97 75 99 97 97 

rbio13 98 98 98 91 97 72 97 95 93 

rbio15 97 97 97 94 96 74 98 96 95 

rbio22 98 98 98 94 97 69 100 100 100 

rbio24 97 97 97 91 97 67 100 100 100 

rbio26 98 98 98 95 96 70 100 100 100 

rbio28 99 99 99 95 97 67 100 100 100 

rbio31 97 97 97 95 96 72 98 97 94 

rbio33 96 96 96 96 97 69 98 97 96 

rbio35 96 96 96 95 97 75 99 96 96 

sym2 99 99 99 91 97 72 100 100 99 

sym3 99 99 99 93 96 69 100 99 98 

sym4 99 99 99 94 97 71 99 100 99 

sym5 98 98 98 97 99 72 100 99 98 

sym6 98 98 98 88 97 71 99 99 99 

sym7 99 99 99 94 98 71 100 100 99 

sym8 99 99 99 96 93 65 100 99 99 

 

Table 6.2 shows the best-performing wavelet features that consistently perform across all the 

tested machine learning algorithms in the top 50 percentile. The results show that wavelet 

performance is independent of their family or its vanishing moments for this particular problem 

domain. So unlike other papers [75, 156], it is not recommended to use one without proper 

assessment arbitrarily. The same analysis can also be used to generate the worst-performing 
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wavelet features, as shown in Table 6.3. The criteria for this are if there are at least four results 

with accuracy less than the threshold. These are highlighted in red. 

Table 6.2 Best performing wavelet features 

Wavelet 

features 

Fine 

Tree 

Medium 

Tree 

Linear 

SVM 

Quad 

SVM 

Cubic 

SVM 

Coarse 

Gaussian 

SVM 

Fine 

KNN 

Medium 

KNN 

Cubic 

KNN 

fk14 99 99 99 94 98 71 100 99 99 

fk6 99 99 99 98 99 71 100 100 100 

haar 98 98 98 97 98 72 99 97 95 

rbio11 98 98 98 96 97 75 99 97 97 

sym4 99 99 99 94 97 71 99 100 99 

sym5 98 98 98 97 99 72 100 99 98 

sym7 99 99 99 94 98 71 100 100 99 

 

Table 6.3 Worst performing wavelet features 

Wavelet 

features 

Fine 

Tree 

Medium 

Tree 

Linear 

SVM 

Quad 

SVM 

Cubic 

SVM 

Coarse 

Gaussian 

SVM 

Fine 

KNN 

Medium 

KNN 

Cubic 

KNN 

bior11 95 95 95 95 98 74 99 96 95 

bior13 95 95 95 95 98 70 99 97 95 

bior15 96 96 96 97 97 72 98 96 94 

bior33 99 99 99 94 97 67 97 95 92 

coif1 96 96 96 92 97 66 100 100 100 

db8 96 96 96 92 97 68 100 100 99 

 

Also, by visual inspection, it can be observed that the accuracy score for entries in Table 6.3 is 

mostly equal to or above 94 % except for the coarse gaussian machine learning algorithm and 

a few others. This implies that most of the wavelet transforms shown in Table 6.1 will satisfy 

the proposed machine learning algorithm. However, wavelets shown in Table 6.2 are most 

highly recommended because they show consistently better performance. For this research, 
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sym5 is selected even though any of the other candidates from Table 6.2 are equally viable. 

This selection is because the symlet wavelet family has three entries in Table 6.2, which implies 

that it might have more stability than the other tested wavelet families. Among the three symlet 

entries, sym5 performs better than the other two in coarse Gaussian SVM, where they all 

performed poorly. On the other hand, rbio11 can be selected since it outperforms the rest in 

coarse Gaussian SVM, where all seven entries performed poorly. 

Similarly, an analysis was performed to determine the level of decomposition of sym5 that 

would give the best overall feature performance. This was done by assessing the first three 

levels of detail coefficients of sym5 wavelet transforms. The result is shown in Table 6.4 and 

presented in a bar chart (Figure 6.1) for more straightforward visualisation. It is clear that the 

detail coefficient from level 1 is more robust than that of levels 2 and 3 since it consistently has 

a higher accuracy for all of the tested algorithms.  This could be because more of the lower 

frequency content is lost as the level of decomposition increases. Although the lower frequency 

content is dominated by a lower signal-to-noise ratio, it also contains useful signals. So, at 

decomposition levels 2 and 3, more of the useful signals will have been lost than level 1. 

Table 6.4 Accuracy of level 1,2 and 3 detail coefficients of sym5 

ML Algorithm D1 Wavelet-FFT 

Features 

D2 Wavelet-FFT 

Features 

D3 Wavelet-FFT 

Features 

Fine Tree 98.5 97.7 98.8 

Medium Tree 98.5 97.7 98.8 

Linear SVM 97.9 70.5 86.1 

Quad SVM 99.2 98.7 99.8 

Cubic SVM 98.5 91.4 99.2 

Coarse Gaussian 98.5 70.9 69.5 

Fine KNN 99.2 100.0 99.8 

Medium KNN 98.5 99.8 99.4 

Cubic KNN 98.8 99.8 99.2 
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Figure 6.1 Bar chart of the accuracy of levels 1,2 and 3 detail coefficients of sym5 

6.2 Validation of wavelet and FFT features 

Another set of features was extracted using direct statistics (kurtosis, mean, mode, skewness, 

variance) from the original raw data to assess the performance of the wavelet and FFT features. 

These features are used with several machine learning algorithms (see Table 6.5) to classify 

the healthy and worn ball screws. In the machine learning algorithms, 85 % of the extracted 

features were used to train the network and 15 % to test the trained network. The results are 

presented in Table 6.5, comparing wavelet and FFT features against traditional statistical 

features corresponding to different machine learning algorithms. 

Table 6.5 Machine learning classification accuracy 

Machine Learning 

Algorithms 

Statistical Features 

Accuracy (%) 

Wavelet and FFT 

Features Accuracy (%) 

Fine Tree 94.8 98.5 

Medium Tree 94.8 98.5 

Linear SVM 87.6 97.9 

Quadratic SVM 93.9 99.2 

Cubic SVM 94.8 98.5 

Coarse Gaussian SVM 88.2 98.5 
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Fine KNN 96.6 99.2 

Medium KNN 92.4 98.5 

Cubic KNN 91.8 98.8 

 

It can be observed from Table 6.5 that higher classification accuracies were achieved with 

wavelet and FFT features (above 97 %) compared to the statistical features, which were mostly 

below 95 %. This result is reflected in the scattered diagram when two variables from both 

feature sets are plotted against each other (for example, kurtosis vs mean). It can be observed 

that the two variables have a lot less discrimination between them in Figure 6.2 compared to 

Figure 6.3, hence leading to better separation in the latter than the former. 

 

Figure 6.2 Wavelet and FFT features scatter plot of Kurtosis vs mean 
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Figure 6.3 Wavelet and FFT features scatter plot of Kurtosis of magnitude vs Average of 
magnitude 

Further analysis is done by comparing the first level decomposition of wavelet and FFT 

features (D1 wavelet-FFT features) with features derived from traditional methods (statistical 

features), wavelets alone (D1 Coefficient features), and FFT alone (FFT features). The result 

is presented in Table 6.6. The same result is presented in a bar chart for easy visualisation in 

Figure 6.4. It can be observed that the wavelet-FFT features remain stable or robust across 

different machine learning algorithms, unlike the rest. Statistical features perform reasonably 

well, as in most cases outperform the other two. Wavelets alone appear to be the least robust, 

with FFT alone just outperforming them. Figure 6.4 clearly shows the need to compliment 

wavelets with FFT features for this application to develop an algorithm that will perform better 

than the traditional statistical method. 
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Table 6.6 Classification accuracy from multiple feature type 

ML Algorithm Statistical 

Features 

D1 Wavelet-

FFT Features 

D1 

Coefficients 

Features 

FFT 

Features 

Fine Tree 94.8 98.5 86.7 93.3 

Medium Tree 94.8 98.5 86.7 93.3 

Linear SVM 87.6 97.9 62.9 71.4 

Quad SVM 93.9 99.2 62.9 85.3 

Cubic SVM 94.8 98.5 52.8 82.0 

Coarse Gaussian 88.2 98.5 62.9 83.2 

Fine KNN 96.6 99.2 66.7 100.0 

Medium KNN 92.4 98.5 70.5 100.0 

Cubic KNN 91.8 98.8 71.4 100.0 

 

 

Figure 6.4 Bar chart of classification accuracy from multiple feature type 

6.3 Application of machine learning 

In order to apply machine learning, the data is first processed with wavelet and FFT, and then 

useful features are extracted for the machine learning process. The wavelet transform used is 
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the sym5 wavelet, and the coefficient is the first level detail coefficient (D1). The extracted 

features were: mean, maximum, minimum, root mean square (RMS), kurtosis, and skewness. 

After extracting the features, 85 % were used to train the network and 15 % to test the trained 

network; a split was recommended to ensure good quality in the validation phase [84]. This is 

set up using the classification learner application in MATLAB [175]. The results obtained are 

shown in Table 6.7, using dataset_1. On the one hand, the former shows the results when only 

the kurtosis and skewness features are used. In this instance, some machine learning algorithms 

perform very well (fine KNN and fine tree), while others perform not so well (coarse Gaussian 

SVM and quadratic SVM). 

On the other hand, the latter shows the results when all the extracted features are used. It can 

be observed that the accuracy is a lot more consistent and around the range of 98 % to 99 %. 

This shows robustness across multiple machine learning algorithms. A comparison of the 

results from Table 6.7 is presented in Figure 6.5.      

Table 6.7 Machine learning algorithms accuracy for Kurtosis and skewness features 

Machine Learning 

Algorithms 

Kurtosis and skewness 

Features Accuracy (%) 

All Features Accuracy 

(%) 

Fine Tree 99.0 98.5 

Medium Tree 99.0 98.5 

Linear SVM 90.5 97.9 

Quadratic SVM 90.5 99.2 

Cubic SVM 95.2 98.5 

Coarse Gaussian SVM 89.5 98.5 

Fine KNN 100.0 99.2 

Medium KNN 96.2 98.5 

Cubic KNN 95.2 98.8 
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Figure 6.5 Comparison of results for kurtosis/skewness vs all features. 

6.4 Application of the DCNN 

A convolution neural network works by utilising feature maps, which are generated by filters 

in the convolution layers. Each filter is responsible for convolving a specific section on the 

feature map from a previous convolution layer or the input (in the first convolution layer). The 

first convolution layer is responsible for capturing edges, corners, and colours. The second 

convolution layer is responsible for capturing texture and mesh patterns. These patterns are 

combined and populated in the feature space by the subsequent convolution layer (fully 

connected) to form a complex invariance of the input image.  

In order to apply time-series data to DCNN, it is required to present the data in such a format 

that it is acceptable by the DCNN. Also, it is necessary to optimise the format in which the data 

is presented to obtain the best possible result. The steps taken to achieve this is discussed in the 

next section.    



126 
 

6.4.1 Data processing for DCNN 

Applying DCNN to dataset 1, the raw dataset is first converted to image files, which is the 

input format for DCNNs. A sample plot is shown in Figure 6.6 of the vibration data of the worn 

ball screw at 1000 mm/min feed rate. The plot includes the axes and grids that account for the 

magnitude and the feed rate as additional input features to the DCNN. Figure 6.7 shows the 

other feed rates (2500, 3000, 5000, 7500, 9000, 10000 mm/min) and how they compare to one 

another.  

Another sample plot is shown in Figure 6.8, and it does not contain axes or grids. This is another 

possible way to format the input image data. This implies that the magnitude of vibration and 

the feed rate is not part of the input features. Figure 6.9 and Figure 6.10 show a contrast between 

vibration data at 10000 mm/min and 1000 mm/min with and without fixed grids and axes, 

respectively. Figure 6.11 and Figure 6.12 show the same contrast but at all the selected 

experimental feed rates. Both formats give similar results, with the former having better 

prediction capability (Appendices J to N). This shows that adding the grids and axes as part of 

the input feature does improve the results compared to when not included (this is discussed 

further in section 6.5). 

 

Figure 6.6 Vibration data at 1000 mm/min feed rate with axes and grids 
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Figure 6.7 Vibration data at different feed rates with axes and grids 

 

 

Figure 6.8 Sample plot of a vibration signal without axes and grids 
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Figure 6.9 Vibration signal with fixed axes and grids 

 

Figure 6.10 Vibration signal without axes and grids 
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Figure 6.11 Vibration signal of all feed rates with fixed axes and grids 
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Figure 6.12 Vibration signal of all feed rates without fixed axes and grids 

6.4.2 Results from training with DCNN 

The convolution and fully connected layers of the DCNN algorithm are used to extract features 

internally. The first convolution layer initiates the feature extraction by detecting edges and 
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colours from various angles. Later convolution layers and the fully connected layer perform 

advanced combinations of the features learnt in the preceding layers. The last feature extraction 

activity, which is utilised for classification, is carried out in the third fully connected layer. 

The DCNN network is trained with 80 % of the data, and 20 % is used for validation. This 

results in an accuracy of 94 % (see Figure 6.13) [2]. 

 
Figure 6.13 DCNN confusion matrix showing 94 % accuracy 

On further improvement of the DCNN algorithm (Appendix A) by making the partitioning into 

training and validation dataset more random, the DCNN is able to attain an accuracy level of 

98.8 %. This is due to the fact that there is a lot more homogeneity across the different datasets. 

Less homogeneity across the datasets will result in the DCNN overfitting on the training set, 

which would affect the test set's accuracy. The training progress and the confusion matrix are 

shown in Figure 6.14 and Figure 6.15, respectively.  
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Figure 6.14 Training progress for raw data 

 

Figure 6.15 DCNN confusion matrix showing 98.8 % accuracy 

The input to the DCNN could also be processed to remove the noise by presenting it in the 

frequency domain as a plot of the Fourier transform (Appendix O). For this, the normalised 

version of the FFT plot is used to train the DCNN network. This is able to achieve an accuracy 

of 100 %, as shown in the training progress (Figure 6.16) and confusion matrix (Figure 6.17). 

This shows an improved performance compared to when the raw data is used. It is also clear 
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from the training process (Figure 6.16) that the trained network converges quicker than when 

unprocessed data is used (Figure 6.14), indicating that the network does not over-train on the 

input data. Further tests will be conducted in section 6.5 using all the different datasets collected 

in section 5.2. 

 

Figure 6.16 Training progress for processed data 

 

Figure 6.17 DCNN confusion matrix showing 100 % accuracy 



134 
 

6.5 Validation of DCNN 

6.5.1 Comparing the different datasets 

Validation of the DCNN is done by accessing the robustness (consistency) of the algorithm’s 

performance on varied datasets. These datasets used were described in section 5.2, and they 

were developed under different conditions. These conditions include misaligned axes 

(dataset 2), the introduction of thermal perturbations (dataset 3 to dataset 7), and random feed 

rates (dataset 8). The reasons for these conditions are highlighted below; 

1. Misalignment: to evaluate the effect of sensor orientation.  

2. Thermal perturbation; since heat accounts for about 70 % of errors in a machine tool 

[176, 177], the ability of DCNN to perform accurately within this environment will 

demonstrate its robustness and practicality as heat is a necessary by-product of a 

machine tool in operation.  

3. Random feed rates: to ensure that there is no harmonic effect on the results due to the 

feed rate being a perfect round number. 

The results obtained from the datasets are shown in Table 6.8 (see appendices B to I for the 

training progress and confusion matrix). 

Table 6.8 DCNN results from several datasets to classify good and worn ball screw 

  
Training set 

(%) 
Test set 

(%) 
Accuracy 

(%) 
Number of 

misclassifications 

 Misaligned 
sensor axis 

test 
  

90 10 100.0 0 
85 15 98.3 1 
80 20 98.8 1 
70 30 97.6 3 
60 40 100.0 0 

 5 °C 
thermal 

perturbation 
test 

  

90 10 97.6 1 
85 15 98.3 1 
80 20 100.0 0 
70 30 98.4 2 
60 40 98.2 3 
90 10 100.0 0 
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 10 °C 
thermal 

perturbation 
test  

85 15 98.3 1 
80 20 100.0 0 
70 30 97.6 3 
60 40 99.4 1 

 15 °C 
thermal 

perturbation 
test  

90 10 100.0 0 
85 15 100.0 0 
80 20 97.6 2 
70 30 99.2 1 
60 40 98.2 3 

 20 °C 
thermal 

perturbation 
test  

90 10 100.0 0 
85 15 100.0 0 
80 20 100.0 0 
70 30 99.2 1 
60 40 97.6 4 

 25 °C 
thermal 

perturbation 
test  

90 10 100.0 0 
85 15 100.0 0 
80 20 98.8 1 
70 30 99.2 1 
60 40 98.8 2 

 Non-
centuple 
feed rate 

test  

90 10 100.0 0 
85 15 98.3 1 
80 20 100.0 0 
70 30 99.2 1 
60 40 100.0 0 

   

The training progress charts and the confusion matrices for the results in Table 6.8 are shown 

in appendices B to H. Also, the analysis done in Table 6.8 is repeated with the processed data 

(Appendix O), and the result obtained in all the above scenarios was 100 %. The training 

process and confusion matrix of all the scenarios are presented in appendices P to U.  

6.5.2 Comparing the effect of fixed axes and grids 

Furthermore, an analysis is done on the experiment data to assess the impact of using input 

data that are plotted on fixed axes and grids compared to those without fixed axes and grids. 

To do this, a fixed section of each input data is used to classify the data according to the feed 

rate. This implies seven output classes since there are seven different feed rates. The use of the 

section as opposed to the entire signal was to remove any indication of the feed rate from the 
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input data since the signal span is consistent across all the inputs. The sample plot at different 

feed rates of the data with and without grids and axes is shown in appendix J. The choice to 

assess machine tool feed rate (instead of ball screw condition) is to show that the DCNN 

algorithm is robust in terms of classification problems. A summary of the results is presented 

in Table 6.9 (see appendices K to N for the training progress, confusion matrix, and comparison 

of the results for different datasets). 

Table 6.9 DCNN results to classify feed rates of different datasets 

  

Training set 
(%) 

Test set 
(%) 

Accuracy – 
fixed 

axes/grids 
(%) 

Accuracy – no 
axes/grids (%) 

 Baseline 
test 

90 10 97.6 80.9 
80 20 95.2 86.9 
70 30 91.2 86.5 
60 40 89.2 75.6 

 Misaligned 
sensor axis 

test 
  

90 10 95.2 76.1 
80 20 97.6 88.1 
70 30 94.4 80.9 
60 40 90.4 77.3 

 5 °C 
thermal 

perturbation 
test  

90 10 92.8 90.4 
80 20 89.2 82.14 
70 30 88.9 76.1 
60 40 89.8 73.2 

 Baseline 
testdatabase 

  

90 10 91.7 86.5 
80 20 92.5 77.6 
70 30 92.5 88.3 
60 40 93.2 84.5 

 

6.6 Chapter summary 

The datasets collected from the experiments were used to develop, test, and validate the 

proposed methodologies. Dataset_1 was used to develop and test the proposed machine 

learning and DCNN methodologies. While all the other datasets were used to validate the 
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proposed models. Different aspects of the methodologies were validated. These include 

selecting the optimal wavelet, the feature extraction process, and the DCNN accuracy. 

From the machine learning model, at least 98.0 % accuracy is obtained when assessed with 

some machine learning algorithms like decision tree, SVM, and KNN. Form the DCNN model, 

the accuracy obtained when tested on the raw data with no data processing is 98.8 %. This is a 

positive result as it shows the potential of this model and its suitability for automation and 

online real-time applications. However, with processed data, an accuracy of 100 % is obtained. 

The next chapter discusses the research conclusions and possible future work that could be 

embarked on to build on the outcome of this research. 
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Chapter 7 Conclusions and future work 

7.1 Summary of the research work 

This research is focused on the condition monitoring of the ball screw of a CNC machine tool 

using artificial intelligence. The input data used is vibration signals, and the output is a binary 

classification of “good” and “worn.” This vibration signal was collected from the two ball 

screws on a gantry-type CNC machine - one is good, and the other is worn. This was as a result 

of faulty lubrication system which resulted in the restriction of the normal lubrication to one of 

the ball screws. During the data collection process, the gantry was made to travel along the Y-

axis at different feed rates within the normal working condition of the machine tool. Both 

machine learning and deep learning were used to classify the condition of the ball screws. The 

machine learning approach implemented an optimised feature extraction technique, whereas 

the deep learning approach implemented convolution-type deep learning where the inputs are 

image data taken from measurement signals. The exploration of this use of the image data, 

rather than raw data signals, has not previously been used for this type of engineering 

application. 

The validation process was initiated by selecting and confirming the choice of wavelet 

transform to be used in the data processing for the machine learning-based technique through 

MATLAB simulation (see section 6.1). This led to the comparison (based on machine learning 

algorithms) of the wavelet and FFT features against those based upon wavelet alone, FFT 

alone, and statistical features. The DCNN was validated using multiple datasets with varied 

conditions that included axes misalignment and the introduction of thermal perturbation of 

varied magnitude. It was also shown to perform well on noisy time-series data achieving greater 

than 95 % classification accuracy. 
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This research has shown that DCNN can accurately predict the condition of a ball screw 

assembly in a binary condition (good/bad) scenario using image data taken from measurement 

signals. It also showed that similar results could be obtained with a machine learning approach 

on the time-series data using wavelet and FFT for data processing before feature extraction. 

However, the DCNN approach has potential advantages because less overhead is required since 

there is no need for data processing and feature extraction to achieve similar results as the 

machine learning approach. There is also reduced potential for human error, bias or 

preconceptions, in the feature selection process and data processing technique which would 

result in low classification accuracy. This advantage would mean that using the DCNN 

approach would not require a domain expert. Therefore, the method, tested on a binary 

condition in this thesis, could perhaps be applied to different fault conditions with relatively 

little human intervention. DCNN can also be easily adapted to in-line, real-time applications 

that further enable automation. Finally, this research showed that thermal perturbations, noise, 

or harmonic frequencies do not adversely affect the accuracy of the DCNN model. 

7.2 Conclusions  

The conclusions reached in this thesis are limited to the problem area and data type that could 

be obtained during the project. That is: 

1. Vibration data from an accelerometer. 

2. Ball screw condition monitoring based on the given binary classification. 

The conclusions may, however, also be used as a foundational hypothesis for similar or broader 

problem areas or datasets. It is recommended that a detailed analysis, similar to what has been 

done in this thesis, be carried out before applying any of its conclusions to other domains. 

These conclusions, in order of importance, are: 



140 
 

1. While traditional condition monitoring has been achieved using statistical and analysis 

tools, it has been shown that, for the given fault condition, DCNN can be used to 

classify the binary (good/bad) classes from an accelerometer from images of the raw 

time-series alone, with better than 95 % accuracy. 

2. Ensuring that the images used in DCNN training and testing are of consistent scale 

improves the classification accuracy. Adding a grid and fixing the maximum and 

minimum values of the axis of the plot of the vibration data preserves information that 

the DCNN uses in its learning. This was tested by taking a section of the vibration data 

to classify the feed rate of the machine tool. The results (Table 6.9) show that when the 

feature of relative size is included in the input, the obtained classification accuracy is 

on average 10 % better than when this feature is excluded. 

3. When DCNN is applied to images in the frequency domain, by using images of the 

FFT, it can achieve slightly higher classification accuracy (sections 6.4 and 6.5). While 

the results are improved, this approach does lose some of the benefits of being able to 

work on data that does not have to be pre-processed. Nevertheless, it strongly indicates 

that the method will be more generally applicable to other faults or problem domains. 

4. The DCNN proves to be robust in application, as the classification accuracy did not 

dimmish progressively with reduced size of the training data. This is presented in Table 

6.8, which shows that the results are consistent regardless of the size of the training 

dataset between 60 % to 90 %. 

5. The machine learning methodology used in this thesis can give classification results 

with similar accuracy to that of deep learning (with raw data). This is presented in Table 

6.8 and Table 6.9. Both methods are able to achieve accuracy levels of 97 % and above. 

However, the machine learning approach is susceptible to human error during the 

feature extraction stage. This stage requires a domain expert, and any error, 
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preconceptions, or bias introduced at this stage will affect the quality of the result (Table 

6.7, Table 6.8 and Figure 6.5).   

6. The optimal choice of wavelet for machine learning is dependent on the type of data. 

This research showed that many different wavelets are suited for processing the 

vibration data presented in this thesis. This includes fk4, fk6, Haar, rbio11, sym4, sym5, 

and sym7 (see Table 6.2). This is contrary to Anoh et al. [165] that biorthogonal 

wavelets are more suited for image processing while the orthogonal wavelet is more 

appropriate for processing continuous signals. It is apparent from Table 6.1 that many 

biorthogonal wavelets like bior22, bior24, bior28, rbio11, rbio26, and rbio28 compare 

favourably to their orthogonal counterparts in processing the vibration data from ball 

screws of machine tools. Hence the best approach to selecting a wavelet for processing 

a particular signal would be adequate analysis of the results from different wavelets on 

the signal. 

7. Condition classification for this failure mode is unaffected by temperature. Table 6.8 

shows that even with the introduction of thermal perturbation of 5 °C, 10 °C, 15 °C, 

20 °C, and 25 °C in experiments 3, 4, 5, 6, and 7 respectively, the results are still 

consistent with those of experiment_1(the baseline test).  

8. There is no discernible change in the temperature of the ballnut during operation for 

this failure mode. The temperatures of the ballnuts were monitored during the 

experiments (see Figure 5.11, Figure 5.14 to Figure 5.16) to observe if there was any 

differential deviation in the temperature of the worn and good ball screws.  These 

figures show that the deviation in the temperature of the ball screw is minimal and 

relatively constant as both temperature rises (experiments 1, 2, 8, and 9) and falls 

(experiments 3, 4, 5, 6, and 7) uniformly and consistently. The temperature differs by 

0.3 °C and is negligible in the context of the measurement uncertainty. 
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9. The sensitivity of alignment of the axes of the measuring sensor (accelerometer) with 

respect to the machine axes has a negligible effect on the DCNN results. This is 

illustrated in experiment 1 (baseline test with aligned axes) and experiment 2 (the same 

test as experiment 1, but with misaligned axes). The results from both tests indicate that 

there is no significant change in accuracy when the axes are misaligned (98.8 % 

accuracy when training dataset to test dataset ratio is 4:1). This could be because the 

orientation of the sensor does not affect its functionality, even though the amplitude 

might be reduced since it is less sensitive in the direction of interest. This is important 

because when replacing a sensor, there is no need to create a new training dataset even 

if the exact alignment of the original sensor cannot be replicated. Nonetheless, it is 

recommended to keep the axes of the accelerometer aligned to those of the machine 

tool within ±5 degrees, which is achievable without using any specialist equipment.  

7.3 Contribution to knowledge 

This research has shown that DCNN can be used on image representation of continuous time-

base signals as a method for generating condition monitoring models. The method works with 

raw data and is further improved when the FFT spectrum is used. The thesis also proves that 

the methodology is further enhanced by including the size (magnitude) information as one of 

the input features, which is done by fixing the scale of the plot. Other researchers can apply 

this technique in other domains where time-series data constitute a substantial part of their 

analysis. It also provides an opportunity for a deeper investigation into whether other aspects 

of image conversion (such as colour maps) might enhance the system further. 

Thermal effect influences on machine tools justifiably have widespread attention because of 

its impact on manufacturing. This research has shown that for this fault condition, the effect of 

temperature is negligible. Researchers in this domain in the future can therefore concentrate 

their efforts on other aspects of their research rather than repeating the process of investigating 
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the temperature effect during their tests. This will be a significant saving in terms of efficiency 

and cost of doing the testing. It is recommended that temperature still be monitored, but the 

full measurement regime could be reduced by up to a fifth with this knowledge. 

This research also showed that, in this problem area, the axis of the vibration sensor does not 

necessarily have to be closely aligned with that of the machine. Hence, it is not required to 

specialised equipment for sensor-to-axis alignment. This is important if deployed in working 

machines; since a model trained with one sensor alignment has been shown to be viable for a 

misaligned sensor, there is no costly constraint when replacing damaged sensors. This will 

result in savings in the cost of maintenance. 

7.4 Limitations of research work 

Some of the limitations of this research are stated below: 

1. This research was performed on a fixed ball screw so the results obtained may not apply 

for applications where a rotating ball screw is used. 

2. Since the approach employed in this research is data driven, the results obtained are 

largely dependent on the quality of data collected.  Poor data collection will give poor 

results. Therefore, work is required to quantify the sensitivity of the approach to the 

uncertainty of the input data. 

3. DCNNs are quite slow to train and would require a GPU to improve its training time. 

Also increasing the hidden layers of the DCNN will increase its training time. The work 

in this thesis did not seek to optimise network performance for speed, which would be 

required for a real-time system. 

4. There could be a class imbalance in the in the input data. This is a situation in machine 

and deep learning where the total of samples in a given class of data is significantly 
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different from that of another class. This could occur since the particular fault scenario 

is unknown and the vibration data is taken from the entire length of the ball screw. 

5. This research concentrated on one element of a machine and, it is assumed, one fault 

on that subsystem. The DCNN approach for detecting multiple faults from a single ball 

screw has therefore not been validated. Further work would be needed to investigate 

the efficacy in detecting multiple faults at a time. 

7.5 Further work 

This research work has answered several questions; however, further work arising from the 

study should include: 

1. Investigation of the efficacy of the DCNN and machine learning methods for 

different failure modes and types. This research was focused on creating and 

appraising the methods for identifying a worn ball screw assembly and a good one 

and tested on the rig available at the University. A ball screw assembly could be 

worn due to many different reasons. These include overloading, misalignment, lack 

of or improper lubrication, and the presence of dirt. All these factors could result in 

different failure modes of the ball screw, which need to be measured and 

investigated. This will lead to a possible classification database to allow for the 

identification of the actual fault scenario on a particular ball screw. 

2. Similarly, the methods need to be applied on different machines to understand how 

much benchmarking is needed and how transferable the trained model is to other 

ball screws. An important question is whether the method can be applied to 

deviations from the benchmark rather than absolute vibration characteristics. This 

would make mass deployment on different machines much more efficient. 
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3. Investigate the effectiveness of the DCNN and machine learning methods to detect 

wear progression from initiation to failure. Further research should be done to 

investigate the degree of wear in a ball screw assembly and at what point the models 

can detect a change has occurred. This can be done by running a new ball screw 

until it breaks or is severely worn. The data from this test can be used to train the 

proposed models developed in this research to be able to predict wear onset.  

4. Application of the DCNN technique to other problem domains. This is the most 

obvious next step, as this research has shown that the proposed models effectively 

classify worn and good ball screws from vibration data converted to images. This 

could be in similar problem domains like tool wear, gearbox fault analysis, surface 

detection, and other similar problem areas in engineering. It could also be applied 

to diverse problem domains that are quite different from those focused on in this 

thesis, like medicine, computer science, archaeology, and many more.  
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Appendices 

Appendix A: MATLAB code 

The MATLAB codes that were used in this thesis have been adapted from the MATLAB 

documentation version R2020a [178]. 

A1: DCNN code _ improved version 
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A2: DCNN code _ original version 

 

A3: Helper function for DCNN 
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Appendix B: DCNN results for misaligned sensor axis test 

B1: Training progress for 9:1 ratio on training and test set 

 

B2: Confusion matrix for 9:1 ratio on training and test set 
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B3: Training progress for 8.5:1.5 ratio on training and test set 

 

B4: Confusion matrix for 8.5:1.5 ratio on training and test set 
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B5: Training progress for 4:1 ratio on training and test set 

 

B6: Confusion matrix for 4:1 ratio on training and test set 
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B7: Training progress for 7:3 ratio on training and test set 

 

B8: Confusion matrix for 7:3 ratio on training and test set 
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B9: Training progress for 3:2 ratio on training and test set 

 

B10: Confusion matrix for 3:2 ratio on training and test set 
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Appendix C: DCNN results for 5 °C thermal perturbation test 

C1: Training progress for 9:1 ratio on training and test set 

 

C2: Confusion matrix for 9:1 ratio on training and test set 
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C3: Training progress for 8.5:1.5 ratio on training and test set 

 

C4: Confusion matrix for 8.5:1.5 ratio on training and test set 
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C5: Training progress for 4:1 ratio on training and test set 

 

C6: Confusion matrix for 4:1 ratio on training and test set 
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C7: Training progress for 7:1 ratio on training and test set 

 

C8: Confusion matrix for 7:1 ratio on training and test set 
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C9: Training progress for 3:2 ratio on training and test set 

 

C10: Confusion matrix for 3:2 ratio on training and test set 
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Appendix D: DCNN results for 10 °C thermal perturbation test 

D1: Training progress for 9:1 ratio on training and test set 

 

D2: Confusion matrix for 9:1 ratio on training and test set 
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D3: Training progress for 8.5:1.5 ratio on training and test set 

 

D4: Confusion matrix for 8.5:1.5 ratio on training and test set 
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D5: Training progress for 4:1 ratio on training and test set 

 

D6: Confusion matrix for 4:1 ratio on training and test set 
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D7: Training progress for 7:3 ratio on training and test set 

 

D8: Confusion matrix for 7:3 ratio on training and test set 
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D9: Training progress for 3:2 ratio on training and test set 

 

D10: Confusion matrix for 3:2 ratio on training and test set 
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Appendix E: DCNN results for 15 °C thermal perturbation test 

E1: Training progress for 9:1 ratio on training and test set 

 

E2: Confusion matrix for 9:1 ratio on training and test set 
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E3: Training progress for 8.5:1.5 ratio on training and test set 

 

E4: Confusion matrix for 8.5:1.5 ratio on training and test set 
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E5: Training progress for 4:1 ratio on training and test set 

 

E6: Confusion matrix for 4:1 ratio on training and test set 
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E7: Training progress for 7:3 ratio on training and test set 

 

E8: Confusion matrix for 7:3 ratio on training and test set 
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E9: Training progress for 3:2 ratio on training and test set 

 

E10: Confusion matrix for 3:2 ratio on training and test set 
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Appendix F: DCNN results for 20 °C thermal perturbation test 

F1: Training progress for 9:1 ratio on training and test set 

 

F2: Confusion matrix for 9:1 ratio on training and test set 
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F3: Training progress for 8.5:1.5 ratio on training and test set 

 

F4: Confusion matrix for 8.5:1.5 ratio on training and test set 
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F5: Training progress for 4:1 ratio on training and test set 

 

F6: Confusion matrix for 4:1 ratio on training and test set 
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F7: Training progress for 7:3 ratio on training and test set 

 

F8: Confusion matrix for 7:3 ratio on training and test set 
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F9: Training progress for 3:2 ratio on training and test set 

 

F10: Confusion matrix for 3:2 ratio on training and test set 
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Appendix G: DCNN results for 25 °C thermal perturbation test 

G1: Training progress for 9:1 ratio on training and test set 

 

G2: Confusion matrix for 9:1 ratio on training and test set 
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G3: Training progress for 8.5:1.5 ratio on training and test set 

 

G4: Confusion matrix for 8.5:1.5 ratio on training and test set 
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G5: Training progress for 4:1 ratio on training and test set 

 

G6: Confusion matrix for 4:1 ratio on training and test set 
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G7: Training progress for 7:3 ratio on training and test set 

 

G8: Confusion matrix for 7:3 ratio on training and test set 
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G9: Training progress for 3:2 ratio on training and test set 

 

G10: Confusion matrix for 3:2 ratio on training and test set 
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Appendix H: DCNN results for non-centuple feed rates test 

H1: Training progress for 9:1 ratio on training and test set 

 

H2: Confusion matrix for 9:1 ratio on training and test set 

 



191 
 

H3: Training progress for 8.5:1.5 ratio on training and test set 

 

H4: Confusion matrix for 8.5:1.5 ratio on training and test set 
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H5: Training progress for 4:1 ratio on training and test set 

 

H6: Confusion matrix for 4:1 ratio on training and test set 
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H7: Training progress for 7:3 ratio on training and test set 

 

H8: Confusion matrix for 7:3 ratio on training and test set 
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H9: Training progress for 3:2 ratio on training and test set 

 

H10: Confusion matrix for 3:2 ratio on training and test set 
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Appendix I: DCNN results for baseline test database 

I1: Training progress for 9:1 ratio on training and test set 

 

I2: Confusion matrix for 9:1 ratio on training and test set 
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I3: Training progress for 8.5:1.5 ratio on training and test set 

 

 

I4: Confusion matrix for 8.5:1.5 ratio on training and test set 
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I5: Training progress for 4:1 ratio on training and test set 

 

I6: Confusion matrix for 4:1 ratio on training and test set 
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I7: Training progress for 7:3 ratio on training and test set 

 

I8: Confusion matrix for 7:3 ratio on training and test set 
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I9: Training progress for 3:2 ratio on training and test set 

 

I10: Confusion matrix for 3:2 ratio on training and test set 
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Appendix J: Sample data for DCNN speed classification for baseline test 

J1A: 1000 mm/min with fixed grid and axis 

 

J1B: 1000 mm/min without grid and axis 
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J2A: 2500 mm/min with fixed grid and axis 

 

J2B: 2500 mm/min without grid and axis 
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J3A: 3000 mm/min with fixed grid and axis 

 

J3B: 3000 mm/min without grid and axis 
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J4A: 5000 mm/min with fixed grid and axis 

 

J4B: 5000 mm/min without grid and axis 
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J5A: 7500 mm/min with fixed grid and axis 

 

J5B: 7500 mm/min without grid and axis 
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J6A: 9000 mm/min with fixed grids and axis 

 

J6B: 9000 mm/min without grids and axis 
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J7A: 10000 mm/min with fixed grids and axis 

 

J7B: 10000 mm/min without grids and axis 
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Appendix K: DCNN results on speed classification on baseline test 

K1A: Training progress for 9:1 ratio on training and test data (with grid/axis) 

 

K1B: Confusion matrix for 9:1 ratio on training and test data (with grid/axis) 
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K1C: Training progress for 9:1 ratio on training and test data (no grid/axis) 

 

K1D: Confusion matrix for 9:1 ratio on training and test data (no grid/axis) 
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K2A: Training progress for 4:1 ratio on training and test data (with grid/axis) 

 

K2B: Confusion matrix for 4:1 ratio on training and test data (with grid/axis) 
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K2C: Training progress for 4:1 ratio on training and test data (no grid/axis) 

 

K2D: Confusion matrix for 4:1 ratio on training and test data (no grid/axis) 
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K3A: Training progress for 7:3 ratio on training and test data (with grid/axis) 

 

K3B: Confusion matrix for 7:3 ratio on training and test data (with grid/axis) 
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K3C: Training progress for 7:3 ratio on training and test data (no grid/axis) 

 

K3D: Confusion matrix for 7:3 ratio on training and test data (no grid/axis) 
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K4A: Training progress for 3:2 ratio on training and test data (with grid/axis) 

 

K4B: Confusion matrix for 3:2 ratio on training and test data (with grid/axis) 
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K4C: Training progress for 3:2 ratio on training and test data (no grid/axis) 

 

K4D: Confusion matrix for 3:2 ratio on training and test data (no grid/axis) 
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K5: Comparing results between grid/axis and no grid/axis. 

 

Appendix L: DCNN results on speed classification on misaligned sensor axis test 

L1A: Training progress for 9:1 ratio on training and test data (with grid/axis) 

 



216 
 

L1B: Confusion matrix for 9:1 ratio on training and test data (with grid/axis) 

 

L1C: Training progress for 9:1 ratio on training and test data (no grid/axis) 

 



217 
 

L1D: Confusion matrix for 9:1 ratio on training and test data (no grid/axis) 

 

L2A: Training progress for 4:1 ratio on training and test data (with grid/axis) 
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L2B: Confusion matrix for 4:1 ratio on training and test data (with grid/axis) 

 

L2C: Training progress for 4:1 ratio on training and test data (no grid/axis) 
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L2D: Confusion matrix for 4:1 ratio on training and test data (no grid/axis) 

 

L3A: Training progress for 7:3 ratio on training and test data (with grid/axis) 
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L3B: Confusion matrix for 7:3 ratio on training and test data (with grid/axis) 

 

L3C: Training progress for 7:3 ratio on training and test data (no grid/axis) 
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L3D: Confusion matrix for 7:3 ratio on training and test data (no grid/axis) 

 

L4A: Training progress for 3:2 ratio on training and test data (with grid/axis) 
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L4B: Confusion matrix for 3:2 ratio on training and test data (with grid/axis) 

 

L4C: Training progress for 3:2 ratio on training and test data (no grid/axis) 
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L4D: Confusion matrix for 3:2 ratio on training and test data (no grid/axis) 

 

L5: Comparing results between grids/axis and no grid/axis 
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Appendix M: DCNN results on speed classification on baseline test database 

M1A: Training progress for 9:1 ratio on training and test data (with grid/axis) 

 

M1B: Confusion matrix for 9:1 ratio on training and test data (with grid/axis) 
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M1C: Training progress for 9:1 ratio on training and test data (no grid/axis) 

 

M1D: Confusion matrix for 9:1 ratio on training and test data (no grid/axis) 
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M2A: Training progress for 4:1 ratio on training and test data (with grid/axis) 

 

M2B: Confusion matrix for 4:1 ratio on training and test data (with grid/axis) 
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M2C: Training progress for 4:1 ratio on training and test data (no grid/axis) 

 

M2D: Confusion matrix for 4:1 ratio on training and test data (no grid/axis) 
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M3A: Training progress for 7:3 ratio on training and test data (with grid/axis) 

 

M3B: Confusion matrix for 7:3 ratio on training and test data (with grid/axis) 
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M3C: Training progress for 7:3 ratio on training and test data (no grid/axis) 

 

M3D: Confusion matrix for 7:3 ratio on training and test data (no grid/axis) 
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M4A: Training progress for 3:2 ratio on training and test data (with grid/axis) 

 

M4B: Confusion matrix for 3:2 ratio on training and test data (with grid/axis) 

 



231 
 

M4C: Training progress for 3:2 ratio on training and test data (no grid/axis) 

 

M4D: Confusion matrix for 3:2 ratio on training and test data (no grid/axis) 
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M5: Comparing results between grid/axis and no grid/axis 

 

Appendix N: DCNN results on speed classification on 5 °C thermal perturbation 

test 

N1A: Training progress for 9:1 ratio on training and test data (with grid/axis) 
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N1B: Confusion matrix for 9:1 ratio on training and test data (with grid/axis) 

 

N1C: Training progress for 9:1 ratio on training and test data (no grid/axis) 
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N1D: Confusion matrix for 9:1 ratio on training and test data (no grid/axis) 

 

N2A: Training progress for 4:1 ratio on training and test data (with grid/axis) 
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N2B: Confusion matrix for 4:1 ratio on training and test data (with grid/axis) 

 

N2C: Training progress for 4:1 ratio on training and test data (no grid/axis) 
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N2D: Confusion matrix for 4:1 ratio on training and test data (no grid/axis) 

 

N3A: Training progress for 7:1 ratio on training and test data (with grid/axis) 
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N3B: Confusion matrix for 7:1 ratio on training and test data (with grid/axis) 

 

N3C: Training progress for 7:1 ratio on training and test data (no grid/axis) 
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N3D: Confusion matrix for 7:1 ratio on training and test data (no grid/axis) 

 

N4A: Training progress for 3:2 ratio on training and test data (with grid/axis) 
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N4B: Confusion matrix for 3:2 ratio on training and test data (with grid/axis) 

 

N4C: Training progress for 3:2 ratio on training and test data (no grid/axis) 

 



240 
 

N4D: Confusion matrix for 3:2 ratio on training and test data (no grid/axis) 

 

N5: Comparing results between grid/axis and no grid/axis 
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Appendix O: Normalized FFT data for baseline test with fixed axis 

O1A: Normalized FFT at 10000 mm/min for good ball screw 

 

O1B: Normalized FFT at 10000 mm/min for bad ball screw 

 



242 
 

 

O2A: Normalized FFT at 9000 mm/min for good ball screw 

 

O2B: Normalized FFT at 9000 mm/min for bad ball screw 
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O3A: Normalized FFT at 7500 mm/min for good ball screw 

 

O3B: Normalized FFT at 7500 mm/min for bad ball screw 
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O4A: Normalized FFT at 5000 mm/min for good ball screw 

 

O4B: Normalized FFT at 5000 mm/min for bad ball screw 
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O5A: Normalized FFT at 3000 mm/min for good ball screw 

 

O5B: Normalized FFT at 3000 mm/min for bad ball screw 
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O6A: Normalized FFT at 2500 mm/min for good ball screw 

 

O6B: Normalized FFT at 2500 mm/min for bad ball screw 
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O7A: Normalized FFT at 1000 mm/min for good ball screw 

 

O7B: Normalized FFT at 1000 mm/min for bad ball screw 
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Appendix P: DCNN results for normalized FFT of  baseline test 

P1: Training progress for 9:1 ratio on training and test set 
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P2: Confusion matrix for 9:1 ratio on training and test set 

 

P3: Training progress for 4:1 ratio on training and test set 
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P4: Confusion matrix for 4:1 ratio on training and test set 

 

P5: Training progress for 7:3 ratio on training and test set 
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P6: Confusion matrix for 7:3 ratio on training and test set 

 

P7: Training progress for 3:2 ratio on training and test set 
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P8: Confusion matrix for 3:2 ratio on training and test set 

 

Appendix Q: DCNN results for normalized FFT of misaligned sensor axis test 

Q1: Training progress for 9:1 ratio on training and test set 
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Q2: Confusion matrix for 9:1 ratio on training and test set 

 

Q3: Training progress for 4:1 ratio on training and test set 
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Q4: Confusion matrix for 4:1 ratio on training and test set 

 

Q5: Training progress for 7:3 ratio on training and test set 
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Q6: Confusion matrix for 7:3 ratio on training and test set 

 

Q7: Training progress for 3:2 ratio on training and test set 
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Q8: Confusion matrix for 3:2 ratio on training and test set 

 

Appendix R: DCNN results for normalized FFT of 5 °C thermal perturbation test 

R1: Training progress for 9:1 ratio on training and test set 
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R2: Confusion matrix for 9:1 ratio on training and test set 

 

R3: Training progress for 4:1 ratio on training and test set 
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R4: Confusion matrix for 4:1 ratio on training and test set 

 

R5: Training progress for 7:3 ratio on training and test set 
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R6: Confusion matrix for 7:3 ratio on training and test set 

 

R7: Training progress for 3:2 ratio on training and test set 
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R8: Confusion matrix for 3:2 ratio on training and test set 

 

Appendix S: DCNN results for normalized FFT of 10 °C thermal perturbation test 

S1: Training progress for 9:1 ratio on training and test set 
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S2: Confusion matrix for 9:1 ratio on training and test set 

 

S3: Training progress for 4:1 ratio on training and test set 
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S4: Confusion matrix for 4:1 ratio on training and test set 

 

S5: Training progress for 7:3 ratio on training and test set 
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S6: Confusion matrix for 7:3 ratio on training and test set 

 

S7: Training progress for 3:2 ratio on training and test set 
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S8: Confusion matrix for 3:2 ratio on training and test set 

 

Appendix T: DCNN results for normalized FFT of 15 °C thermal perturbation test 

T1: Training progress for 9:1 ratio on training and test set 
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T2: Confusion matrix for 9:1 ratio on training and test set 

 

T3: Training progress for 4:1 ratio on training and test set 
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T4: Confusion matrix for 4:1 ratio on training and test set 

 

T5: Training progress for 7:3 ratio on training and test set 
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T6: Confusion matrix for 7:3 ratio on training and test set 

 

T7: Training progress for 3:2 ratio on training and test set 
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T8: Confusion matrix for 3:2 ratio on training and test set 

 

Appendix U: DCNN results for normalized FFT of 20 °C thermal perturbation test 

U1: Training progress for 9:1 ratio on training and test set 
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U2: Confusion matrix for 9:1 ratio on training and test set 

 

U3: Training progress for 4:1 ratio on training and test set 

 



270 
 

U4: Confusion matrix for 4:1 ratio on training and test set 

 

U5: Training progress for 7:3 ratio on training and test set 
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U6: Confusion matrix for 7:3 ratio on training and test set 

 

U7: Training progress for 3:2 ratio on training and test set 
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U8: Confusion matrix for 3:2 ratio on training and test set 

 

Appendix V: Temperature chart for thermal perturbation test 

V1: Temperature chart for 10 °C thermal perturbation test 
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V2: Temperature chart for 15 °C thermal perturbation test 

 

V3: Temperature chart for 20 °C thermal perturbation test 
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V4: Temperature chart for 25 °C thermal perturbation test 
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