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Abstract

The aim of this thesis is to use computer simulation techniques to model the

bulk structure and low index Miller surfaces of green rust 1 and green rust 2,

along with uranyl minerals which could form in the interlayers of green rust,

and thus provide a potential mechanism to sequester uranium from polluted

groundwater in the environment. The intention is that transferable potential

models be developed that can be used in further studies or alternative works.

In Chapter 1 the historic use of nuclear material and its subsequent repro-

cessing and storage is introduced. The aqueous contamination of groundwa-

ter by uranium is discussed, changing the oxidation state of the uranyl ion is

examined and possible methods of remediation are investigated. Laboratory

synthesis of green rust is reviewed along with the techniques used in experi-

mentally determining the structure of green rust. The natural occurrence of

green rust is explained and potential uses of the material are described, with

a discussion of the difficulties involved in working with green rust; this leads

on to a review of the benefits of computer simulation at an atomistic level,

and the drawbacks associated with such techniques. Finally the questions

which drive the objectives of this work are stated.

Chapters 2 and 3 discuss the methodologies applied in this work and

describe the theory behind them. Chapter 2 introduces computational mod-

elling techniques and the theoretical methods which underpin them; the use

of the potential model, which is key to this work, is described in detail. En-

ergy minimisation and molecular dynamics are the theoretical methods used

in this thesis and they are described in Chapter 3. Chapter 3 also introduces
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surfaces, which are critical in the aims of this work, and describes different

methods of surface energy calculation.

Chapter 4 describes the work on testing and refining the interatomic po-

tential models for Fe(OH)2 and goethite. While Fe(OH)2 has few experimen-

tally reported structures, the ones which are documented were reproduced

with excellent results using the potential model; the potential model outper-

formed density functional theory (DFT) in its ability to match the structural

parameters of the cell. Five low index Miller surfaces of Fe(OH)2 were mod-

elled and the (0 0 1) proved to be the most stable. The potentials were

then used in similar modelling of goethite; again the potential model was

able to better reproduce experimentally determined structures than was the

DFT model, with cell dimensions within 1% of reported structures. This

demonstrated the viability of the potential sets to be used interchangeably

in modelling larger systems and that sophisticated fitting procedures were

not necessary.

Chapter 5 documents the work on atomistic modelling of uranyl minerals.

The need for a reliable set of interatomic potentials for a range of uranyl min-

erals is introduced. Existing potentials are fitted to known mineral structures

from the International Crystal Structural Database (ICSD) and compared to

the results of DFT calculations; the methods used to develop these potentials

are described in detail. Results show that the set of potentials produced are

capable of working successfully and that these potentials can be validated by

reference to empirical data or DFT calculations.

In Chapter 6 the potentials developed in Chapters 4 and 5 are developed

further and used to model one example of each of green rust 1 and green

3



rust 2. It was shown that sulfate green rust 2 could successfully be modelled

using interatomic potentials and that the sulfate group, with respect to the

oxygen atoms, takes up a tridentate orientation toward the hydroxide layer.

Modelling low index Miller surfaces of sulfate green rust 1 showed the (0

0 1) surface to be the most stable of those modelled. The bulk structure

of chloride green rust 1 was modelled without water in the interlayers but

when water was added there was some dissociation of the H atoms from the

hydroxide layers; resolution of this dissociation and progression to surface

modelling was prevented by the research period coming to an end.

Lastly, Chapter 7 summarises the results presented in this thesis and the

conclusions that can be drawn, with a suggestion of further work that could

be carried out built upon these results and the potentials developed therein.
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1 Introduction

Historic use of nuclear material for weapons and power production means that

there is a need for reprocessing of spent nuclear fuel and decommissioning

of nuclear facilities [1]. Decommissioning of a nuclear facility must facilitate

a situation where radioactive protection measures are no longer required;

any radioactive material may require transport off site, further processing

and it will need a safe manner of storage [2]. Decommissioning plans have

time frames in decades with the decommissioning taking place in stages [3],

which means that radioactive material is present, and must be processed

and stored, over these periods of time. Decommissioning projects in the

UK include historic civil nuclear legacy sites such as first generation power

reactors and research sites; at Sellafield there are a number of reprocessing

plants which require decommissioning [4].

There are several needs for, and types of, nuclear reprocessing. Nuclear

reprocessing was originally undertaken in the UK to extract plutonium from

spent nuclear fuel so as to provide fissile material for atomic weapons produc-

tion [5]. All the UK Magnox power reactors are closed down, with the final

one shut down in 2015; defueling was completed in 2019 when the last fuel

was removed from Wylfa power station [4]. Magnox fuel has a magnesium-

aluminium alloy casing around a metallic uranium bar; Magnox fuel needs

to be reprocessed as it corrodes if stored underwater and no method of dry

storage has been established [4]. All future Magnox reprocessing in the UK

will be undertaken at Sellafield in the Magnox Reprocessing Plant [6]. Ad-

vanced Gas-Cooled Reactors (AGR’s) followed on from Magnox reactors in
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the UK; the Windscale Advanced Gas-Cooled Reactor in the UK, which was

shut down in 1981, is sited within the Sellafield complex and is undergoing

decommissioning. AGR’s use uranium dioxide pellets in stainless steel tubes

as fuel and used AGR fuel is held in ponds until it is dismantled, with the

fuel pins being consolidated to reduce the storage volume. This waste from

AGR’s is currently reprocessed, but this reprocessing is scheduled to cease in

2018 and fuel which has not been reprocessed will be placed into wet storage

for around 60 years until it can be geologically disposed of [4]. When repro-

cessing of the AGR fuel ceases the remaining AGR fuel, and any produced

in the future, will be stored in existing wet storage facilities rather than any

new facility.

Because spent fuel is stored on decommissioning sites for such a long time

the storage facilities must be monitored for leaks to the groundwater; surveys

need to be made of the grounds, structures and components to determine the

nature and the location of any radioactive contamination. In the USA, for

example, the federal government has licenced over 100 nuclear power reactors

but has not licenced a single storage site for the tens of thousands of tons of

highly radioactive waste produced by these sites. Thus decommissioned sites

in the USA often have storage areas of highly radioactive waste with nowhere

to dispose of it [3]. In the UK the high level waste is vitrified and stored in

stainless steel canisters at Sellafield in Cumbria. They are stored for at

least 50 years, to cool and allow some of the radioactivity to decay, with the

intention of later being transported to a geological disposal site for permanent

disposal. However, these permanent disposal sites do not yet exist and the

UK government has still to develop a safe disposal route for high level waste.
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It has also been noted that there is a requirement for geochemically reducing

conditions to be maintained for the required timescale so that uranium is

maintained as the more insoluble uranium (IV), such that oxidation to the

more soluble uranium (VI) is prevented [7].

Aqueous uranium contamination of groundwater is a widespread prob-

lem at sites where reprocessing of uranium for nuclear fuel takes place, for

example it is estimated that over 13 million cubic metres of soil at Sellafield

is radioactive waste [5], being classed as very low level or low level [8]. The

surface contamination is carried downward by infiltrating surface water until

it reaches the aquifer, forming a contaminant plume as shown in Figure 1.

The Sellafield nuclear reprocessing site in the UK has the largest area of

contaminated land in the estate of the UK Nuclear Decommissioning Author-

ity [5] and uranium is present as a contaminant in Sellafield groundwater [8].

Uranium is mobile in the aqueous phase as the uranyl ion, UO2
2+, though

if the oxidation state is reduced from U(VI) to U(IV) then it is insoluble; it

can thus be contained and the spread through groundwater halted. There

are other causes of uranium pollution, including the use of depleted uranium

weapons in warfare. Depleted uranium is extensively used in military appli-

cations due to its low cost and high density; it is used in the manufacture of

armour-piercing bombs, tank armour and incendiary devices [9]. Uranium can

potentially lead to long-term harm with regard to mammalian reproduction

and development; it can reduce fertility and cause slow or abnormal devel-

opment of the embryo due to its metabolic and chemical toxicity [10]. Large

scale pollution over the long term also produces risks to ecology. Mining and

processing of uranium-containing minerals in the south east of Siberia, where
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Figure 1: Contaminant movement through groundwater at the Sellafield
site [8]

uranium has been mined for over 30 years, has resulted in the surrounding

soil on the prairies having a uranium concentration which is approaching 600

times the background value. A 2003 study by Gongalsky found the concen-

tration of uranium to be 2.6 mg kg-1 in a soil sample taken at 0-10 cm depth

from a control site; in one of the test sites affected by mining operations the

uranium concentration was 1474.0 mg kg-1 from a soil sample taken at the

same depth. This has caused a reduction of biodiversity and wildlife abun-
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dance of between 3 and 37 times in macroinvertebrates [11]. Naturally occur-

ring uranium is found as uranium-238 (the most common isotope, accounting

for almost 99.3% of uranium), uranium-235 (around 0.7%) and uranium-234

(a very small fraction, around 0.005%). Uranium has an extremely long half-

life, meaning it will remain in the environment for a long time, and so poses

a long-term health risk; the half-life of uranium-238 is around 4.47 billion

years and the half-life of uranium-235 is approximately 704 million years [12].

In a 2012 review by Li et al, current remediation technologies for environ-

ments polluted with uranium were separated into three categories; physical,

chemical and biological [13]. Chemical methods are experimental at present

and have yet to be developed for any large scale application. An example of

the method is the use of zero valent iron to remove uranium from contam-

inated water, as proposed by Noubactep et al [14], where co-precipitation of

iron corrosion products and uranium is shown to be the initial mechanism of

uranium removal.

Biological methods involving bacterial and fungal micro-organisms have

been used to remove uranium pollution from the environment [15,16]. In 2002

it was demonstrated by Malekzadeh and co-workers that pseudomonas MGF-

48 can absorb uranium ranging from 50 to 200 mg/l; one gram of bacterial

biomass was able to take up 174mg of uranium [17]. Phytoremediation of low

concentrations of uranium has been demonstrated using sunflower and Indian

mustard, where the roots uptake uranium even though it has not yet been

shown to be a nutrient for the plants [18]. Sunflowers have been used in pilot

studies [19] whilst other experiments have shown the efficacy of willow moss,

celery and small duckweed [20]. Absorption and accumulation of uranium has
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also been demonstrated using cabbage, tumbleweed, mustard, sunflowers and

reeds in other studies [21,22,23], with results suggesting the aerial parts of the

plants accumulate the most uranium [24]. These categories of remediation can

be combined, which has been demonstrated by Zhou et al, utilising zero valent

iron and sulfate-reducing bacteria to remove uranium from waste water [25].

Physical remediation methods such as precipitation, coagulation, evapo-

ration and membrane separation can be used on a very small scale, but they

are too expensive to use on large scale pollution [26]. Synthetic hydroxyap-

atite (Ca5(PO4)3OH), which is a naturally occurring mineral form of cal-

cium apatite, has been demonstrated to adsorb 95% of uranium from waste

water [27]; neutral to acidic conditions were shown to be favourable for this

adsorption. It is the potential use of naturally occurring minerals, namely

green rusts, for uranium pollution remediation that is the overarching tenet

of this work; if this is found to be viable then the possibility of using green

rust for long-term nuclear waste storage or contaminant remediation can be

further investigated.

Layered double hydroxides (LDH) include the group know as green rusts,

which have a structure of stacked layers of edge-sharing metal octahedra;

the metal ions are a mixture of divalent and trivalent cations and the layers

are separated by anions within the interlayer spaces. LDHs have a limited

composition range and the nature of the anions in the interlayer is often the

main difference [28]. They have the general formula:

[Me2+(1–x) Me3+x (OH)2]
x+[(A)x/n · yH2O]x –

where Me2+ could for example be Fe2+, Ni2+ or Mg2+ and Me3+ could be
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Fe3+, Al3+ or Cr3+ [29].

All sites within the layer are occupied so each formula unit exhibits a nett

positive formula charge of x. This charge is balanced by the negative charge

from the anions in the interlayer, such as Cl– , Br– or CO3
2– . The interlayers

also contain water molecules; the typical structure is shown in Figure 2.

Figure 2: Structure and stacking arrangement of green rust 1 (a) and green
rust 2 (b) [30]

LDH preparation in the laboratory is usually by oxidation of hydroxy-

lated Fe(II) species or by the co-precipitation of dissolved species [31,32]. De-

lamination (or top-down) methods and controlled nucleation (or bottom-up)

methods of LDH nanosheet preparation are described in detail in the work

of Wang and O’Hare [33], with the latter method also discussed and utilised

by Lv and co-workers [34]. Applications for LDHs include reduction of an-

ionic pollutants and degradation of organic pollutants [31]. LDH synthesis

and chemistry is an important area of study because of the use of LDHs in,

for example, fire retardant additives [35,36], as cement additives [37], as drug

delivery media [38], as ion exchange hosts [39,40,41], as polymer/LDH nanocom-

posites [42], as catalysts [43] and as precursors for CO2 adsorbents [44,45,46,47,48].
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Green rust (GR) compounds (iron(II)-iron(III) hydroxy-salts) are mem-

bers of the family of layered double hydroxides (LDH) [49]. Within their

structure, positively charged, Fe(II)/Fe(III), hydroxide layers alternate with

negatively charged inter-layers of water molecules and anions. They can be

represented with the general formula:

[Fe2+(6–x) Fe3+x (OH)12]
x+[(A)x/n · yH2O]x –

where x = 0.9 - 4.2, A is an n-valent anion (typically CO3
2– , Cl– or SO4

2–

and y denotes the varying amounts of interlayer water (typically y = 2 to 4

for most GRs) [50].

Figure 3 shows a snapshot of the equilibrium structure of hydrotalcite

(Mg2 Al(OH)6Cl · 2 H2O) derived from an NPT (particle number, pressure

and temperature are constant) molecular dynamics simulation at 300 K and

1 bar; this is a good example of a LDH and is isostructural with green

rust. The simulation cell is composed of 18 crystallographic unit cells. The

blue polyhedra represent octahedral magnesium and the pink ones indicate

aluminium octahedra. The green spheres represent interlayer chloride ions

with water molecules represented by bent cylinders. Oblique view slightly

offset from the [100] [51]

Two distinct forms are known to exist, namely GR1 and GR2 [52]. GR1 has

a dark blue-green colour and has analogous structure to the Mg(II)-Al(III)

LDHs hydrotalcite (Mg6 Al2CO3(OH)16·4 H2O) and pyroaurite (Mg6 Fe2(OH)16CO3·

4 H2O). It is the favoured form of chloride and carbonate GRs. When the

interlayer anions are SO4
2– , the favoured structure is GR2, in which the na-

ture of the hydroxide layers is more closely related to that of Fe(OH)2. GR2
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Figure 3: Image of a typical LDH [51]

Key: octahedral magnesium, blue; octahedral aluminium, pink; chlorine,
green; water molecules, bent red and white cylinders.

exhibits a slightly dulled dark green colouration.

Green rusts can be synthesised in the laboratory; Kim and co-workers

used polypyrrole as a conducting polymer to facilitate crystal growth of GR

via controlled electron transfer [54]. In 2018 Usman et al reviewed several

methods of GR synthesis, including biotic and abiotic pathways along with

methods of characterisation [55]. Fredrickson et al demonstrated that biogenic

iron mineralisation was viable to produce GR, though poorly crystalline, us-
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Figure 4: Microscope image of green rust [53]

ing iron-reducing bacteria in a buffer solution of piperazinediethanesulfonic

acid to reduce hydrous ferric oxide; the solid compounds were characterised

using X-ray diffraction, scanning electron microscopy, transmission electron

microscopy with energy-dispersive X-ray spectroscopy and selected area elec-

tron diffraction [56]. Microbially induced corrosion of steel, resulting in the

formation of GR2, has also been studied by Génin et al, using Mössbauer

spectroscopy and X-ray diffraction to investigate the rust products [57]. Co-

precipitation by mixing solutions of iron (II) and iron(III) salts in a solution

of NaOH was effective in producing iron (II-III) hydroxysulfate precipitates

(GR2), as exhibited by Géhin et al; the precipitates were characterised using

Mössbauer spectroscopy, X-ray diffraction, transmission electron microscopy

and atomic force microscopy [58].

Under anaerobic conditions GR can form naturally in hydromorphic soils [59];

however in the presence of air GRs will oxidise quickly (a time of less then
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10 seconds was determined by Drissi et al [60]) and precautions must be

taken. The presence of Fe(II) means that GR is chemically reactive; Génin

et al measured the electrode potential (E h) of carbonate GR as approach-

ing 300mV [61]. The redox potential of GR offers interesting environmental

applications; GR particles can reduce many contaminants to create insol-

uble and less mobile forms. This can prevent the spread of contaminants

and thus reduce their bioavailability. An example is municipal waste dumps,

where contaminants can be encapsulated to prevent the escape of radioac-

tive waste into the environment [62] Previous work with synthetic GR, incor-

porating SO4
2– , has demonstrated an ability to reduce pollutants such as

nitrites [63] and heavy metal ions [64,59]; as the GR is oxidised the pollutants

are either immobilised or degraded. Whilst the composition and structure

of GR has been established by this previous work [52], the mechanisms by

which these redox processes occur are still little understood, whether occur-

ring on the surface or within the bulk structure. The reason is that although

GR is relatively easy to synthesise, when it is exposed to air it oxidises to

normal brown rust within minutes; this makes it very difficult to study via

experiment without using expensive controlled atmosphere facilities or a syn-

chrotron radiation source; a GR intermediate in the formation of magnetite

(Fe3O4) is reported under O2-free conditions at pH 9, followed by corrosion

of the GR as magnetite formation occurs. At pH 7 the stable phase was re-

ported as sulfate GR. These results were identified using synchrotron-based

time-resolved energy dispersive X-ray diffraction. [65] An alternative method

of investigation of such processes is to use computer modelling at an atom-

istic level; this allows study of the structure, stability and reactivity of the
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materials under a variety of conditions, whilst removing the timescale prob-

lems associated with physical experiment. Such a modelling study forms the

basis of this project.

All theoretical approaches to modelling have their drawbacks. Ab ini-

tio methods using quantum mechanical (QM) techniques, such as density

functional theory (DFT) [52], are accurate but they are slow and expensive;

as such they are often limited to modelling a few hundred or so atoms and

thus the scale of some processes can be difficult to model. QM calculations

will however be used to gain understanding of the fundamental nature of the

system and to test the atomistic model for accuracy.

Mesoscale modelling can produce useful data but may lack detail for direct

atomic interactions and the chemistry therein.

A molecular mechanical (MM) model uses interatomic potentials (also

known as force fields) and can model larger systems than DFT, of many

thousands or millions of atoms, simulating each atom as one particle. The

MM calculations are quicker to execute, though they require the derivation

of a reliable and robust set of potential parameters that can model the atom-

level interactions. The potentials must be able to do this for the minerals,

molecules and solvent (which is water in this case) and must do so for the

interactions between them all. The potential model describes the interac-

tions in a system between two or more species using parameterised potential

functions. These are simulations at the atomistic level and they allow mod-

elling of larger systems than DFT. To make sure that variations in geometry

still provide accurate interactions in the model, the parameterisation requires

care. There are also methods such as dissipative particle dynamics where the
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particle is more than one atom (such as an amino acid) or where the particle

is less than one atom, such as in the shell model of an atom or the TIP4P

water model [66].

Using existing potential sets where possible is sensible as much work has

already been done in their development; there will however be a need to de-

velop potentials where they do not already exist. Where mixing of Lennard-

Jones (LJ) potentials is required to produce new potentials the Lorentz-

Berthelot mixing rules would seem an ideal starting point, though as can be

seen in the methodology of Chapter 5 there are occasions when the type of

potential being used necessitates a variation in method.

Whilst atomistic simulation packages have been previously used by other

research groups in similar areas they have not been used for the research de-

scribed in this project. Cooke, Redfern and Parker used atomistic simulation

to study the segregation of ten isovalent impurities (such as Al3+ and La3+)

to the (0 1 1 2) and the (0 0 0 1) surfaces of haematite (α-Fe2O3)
[67]; they

showed that segregation was energetically favourable in virtually every case,

with the (0 1 1 2) surface showing the most favourable surface concentration

of the impurity to be 33.33%. If the (0 0 0 1) surface was terminated by

iron atoms the energy minimum was also found to be at 33.33% impurity

coverage, though if the (0 0 0 1) surface was terminated by oxygen atoms

the energy minimum was between 16.67 and 33.33% coverage, depending on

which cation was being considered.

Chroneos et al, whilst examining the significance of hydroxide-containing

systems to materials science, modelled a number of hydroxides and oxyhy-

droxides, including iron hydroxide (Fe(OH)2 and Fe(OH)3 and iron oxyhy-
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droxide (FeO(OH)), and were able to report two internally consistent trans-

ferable atomic scale models that were capable of modelling such systems [68].

In further work, building on this study, Chroneos and co-workers addressed

the problem of X-ray diffraction having difficulty in identifying hydrogen

atom positions due to hydrogen scattering X-rays only very weakly [69]; they

used two models to predict the hydrogen atoms positions, one based on ionic

potentials and one based on DFT. They demonstrated the effectiveness of

these approaches by comparison to experimental data for minerals whose

hydrogen positions are already known.

Kerisit et al investigated interfaces of the hydroxide terminated (1 0 0)

surface of goethite (FeO(OH)) with aqueous solutions of sodium chloride and

were able to demonstrate that classical models of the electrical double layer

are not accurate in their description of ions near the surface [70]; they found

that to adequately describe the effects of the surface on the liquid phase

the solvent molecules needed to be treated explicitly. The group performed

similar simulations of sodium chloride solutions in contact with the (1 0 1 4)

surface of calcite (CaCO3) and the (0 1 1 2) surface of haematite (Fe2O3) and

demonstrated the same principles, suggesting the nature of the observations

is not dependent on the nature of the mineral surface. This demonstrated

the ability of atomistic simulations to consider and extend phenomenological

models to provide more in-depth insight into the solid-liquid interface.

The interaction between the surfaces of polar solids and aqueous solutions

was also investigated by Spagnoli et al when considering the (1 0 1 4) surface

of calcite (CaCO3) and the (0 0 1 1) surface of haematite (Fe2O3) in contact

with aqueous electrolyte solutions of NaCl, of varying concentration [71]. They
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found the two surfaces showed different bonding mechanisms with the water

but that both produced particular layering of the water; this modified some

surface behaviours such as diffusivity and charge distribution. The charge

distribution within the solvent generally provided greater control of the dis-

solved ion arrangement than ionic strength or surface charge. A double layer

was demonstrated at neutral surfaces and the charge distribution was shown

to oscillate into the bulk of the water. Atomistic simulation based on the

Born model of solids was used in the study [72], with potentials derived by

reproducing the structure and energetics from ab initio calculations.

The hydration of surfaces of white rust (Fe(OH)2), goethite (α-FeO(OH))

and haematite (α-Fe2O3) were investigated using surface simulations by de

Leeuw et al using energy minimisation techniques based on the Born model

of solids [73]. A potential model, polarisable via the shell model of Dick and

Overhauser [74], was developed and initially tested by reproducing the bulk

structures of eight iron oxides and oxyhydroxides, before being used to model

the surfaces of the minerals under investigation. It was shown that the major

interaction at the surfaces was between the oxygen atoms of adsorbing water

molecules and surface iron ions, followed by hydrogen bonding of the water

hydrogen atoms with surface oxygen ions. The atomistic models were shown

to be in good agreement with experimental results for the thermodynamic

morphologies of the minerals. The (0 0 1) surface of Fe(OH)2 was shown to

be the most stable surface by a considerable margin, the (0 1 0) surface was

the most stable goethite surface and the (0 0 0 1) surface of haematite was

studied (along with other surfaces) having previously been shown to be one

of the most stable surfaces of haematite [75,76,77,78,79]. These results proved
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the viability of the derived iron oxyhydroxide interatomic potential model

in aqueous environment and its suitability for transfer to other iron oxide

phases.

During the investigation of jarosite (KFe3(SO4)2(OH)6) dissolution at pH

2 and pH 8, Smith and co-workers used batch experiments on aqueous and

residual solid and computational modelling [80]; the modelling was used to

study the mechanism and specific product formation of the conversion of

jarosite to goethite (FeO(OH)); it was also utilised as a means to elucidate

dissolution mechanisms at the atomic level. Atomistic simulation based on

the Born model of solids was used, utilising interatomic potentials which were

derived by fitting to experimental data such as structure, elastic constants

and vibrational spectra. Energy minimisation of the lattice was then used

to determine the equilibrium position of the ions in the structure, and the

potentials refined to better reproduce experimental data.

Wander et al explored structure and charge hopping dynamics in green

rust, using periodic slab models and cluster representations [81]; Fe(OH)2 was

used as a structural analogue for reduced green rust. They were able to

provide a first-principles assessment of the valence interchange reaction rate

for Fe2+-Fe3+. The modelling used Hartree-Fock calculations to provide ab

initio optimisations of the periodic slab structure. Small clusters were then

used for calculation of reorganisation energies, due to the high computational

overhead of ab initio methods. The results suggested that solid state charge

transport in green rust is facile, meaning that charge redistribution could

have a major influence in directing electron transfer from green rust and into

adsorbed redox-active species.
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There are key questions which are as yet unanswered when considering

computational modelling in the investigation of green rust as a tool for reme-

diation of nuclear pollution and storage of nuclear waste, such as; can reliable

potential sets be derived to model the bulk structure of green rust 1 and green

rust 2, can atomistic modelling be used to determine the stability (thus most

likely to form) of different Miller surfaces of green rust, can interatomic po-

tentials be used to model the counter-ions and associated uranyl compounds

present in the interlayers of green rust (there has been limited modelling of

the uranyl ion; this is discussed in Chapter 5), can existing potential sets be

used to allow simplified modelling of larger systems without complex fitting

procedures, could interchangeable potential models be derived which would

allow the investigation of the adsorption and absorption of actinyl ions onto

and into the interlayers of green rust? The work presented in this thesis ad-

dresses these questions; however, before describing the work it is necessary

to consider the theoretical methods and computational techniques utilised in

the research.
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2 Theoretical Methods and Computational Tech-

niques

When performing computer modelling, the chosen method must adequately

describe the system being modelled at the appropriate level of theory. This

project uses both quantum mechanical (QM) and molecular modelling (MM)

methods; this allows consideration of systems ranging from tens of atoms to

thousands of atoms. The length scales involved range from the Angstrom

level (0.1nm) to around 100nm in periodicity.

Figure 5: Chart of length-scale vs. simulation techniques [82]

Exact solutions for solving the Schrödinger equation exist only for single

electron systems, the equation cannot be solved for multi-electron systems.

This means that a numerical approach is necessary; this can be a quantum

mechanical approach such as DFT or a classical approach using interatomic

potentials.

Whilst atomic simulation methods are used for the main parts of this

project, quantum calculations are used as an aid to verifying the results.
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2.1 Periodic Boundary Conditions

Periodic boundary conditions are used in all simulations in this project. This

method assumes that the simulation cell is surrounded on all sides by an

infinite number of identical cells. The system is periodic and when any

particle leaves the simulation cell, it simultaneously enters the same cell at

the opposite side.

Figure 6: Illustration of the periodic boundary condition principle [83]

The maximum inter-atomic distance rcut which is taken into account in

the calculations is therefore equal to half of the edge of the simulation box

(this applies to MD simulations, where the atoms move):

rcut =
L

2
(1)
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The surface or finite model size effects would therefore be small, if any.

In general, the larger the simulation box and the number of molecules/atoms

in it, the smaller the surface or size effects will be. This method is excellent

for crystalline solids and can be used for liquids if the simulation cell is large

enough. Because of the infinite periodicity there is no surface to the system;

this enables the simulation of bulk crystals. If a liquid is being modelled, it

prevents the presence of outer molecules that could boil off and leave the sim-

ulation. Where the simulation requires a surface to be present there are two

methods to achieve this. The first is to have periodicity only in two directions,

which means that the simulation would have no periodicity perpendicular to

the surface (this method can be utilised in the METADISE code [84]). The

second, known as the slab method, is to still use three-dimensional period-

icity but make the simulation cell very large; this results in the interactions

between the cell and its periodic images being very small. In both surface

and bulk calculations, this project will use energy minimisation techniques.

2.2 Electronic Structure Calculations

Electronic structure calculations endeavour to solve the Schrödinger equation

for all the electrons in the system. However, an exact solution can only

be obtained for one electron and so computer simulation is used for larger

systems.
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Solving the Schrödinger equation, (equation 2), is impossible for an N-

body system.

HΨ = ih̄
∂Ψ

∂t
(2)

where i is an imaginary number, h̄ is the Planck constant, Ψ is the state

vector of the system, t is time and H is the Hamiltonian.

The Born-Oppenheimer approximation is most often used to simplify

solving the equation; the electronic and nuclear degrees of freedom are sep-

arated from each other and the ground state of the electrons determines the

energy of a given system [85]. This approximation is based on the fact that the

same forces act on the nuclei and electrons, but because they are so different

in mass to each other, the electrons’ response to the motion of the nuclei is

immediate. The equation to be solved is therefore:

HΨ = EΨ (3)

where Ψ is the many-body wave function for the N electronic eigenstates and

E is the total energy. The Hamiltonian operator, H, is defined as:
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H =
∑
i

− h̄2

2me

∇2ri + VEXT ({RI}) + Ve−e({ri}) (4)

where the first term represents the kinetic energy of the electrons, VEXT is the

external potential imposed by the nuclear configuration RI and Ve−e denotes

the Coulombic electron-electron interaction.

2.2.1 Density Functional Theory

The computer code CASTEP (Cambridge Serial Total Energy Package) [86]

was used to perform DFT calculations in this work. CASTEP is a materials

modelling code based on a first-principles quantum mechanical description

of electrons and nuclei. It uses the robust methods of a plane-wave basis set

and pseudopotentials [52]. DFT investigates the ground state electronic struc-

ture of many-body systems. It is particularly useful for condensed phases,

as studied in this project, though difficulties are encountered if using it to

model dispersion systems or intermolecular interactions such as van der Waals

forces as these are not included in the standard DFT model [87]. DFT uses

functionals (functions of another function) to determine system properties.

In DFT the functional is the electron density, which is a function of space

and time. The electron density is used in DFT as the fundamental property,

whereas Hartree-Fock theory [88] deals directly with the many-body wavefunc-

tion. Using the electron density significantly speeds up the calculation; the
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many-body electronic wavefunction is a function of 3N variables (the coordi-

nates of all N atoms in the system) but the electron density is only a function

of 3 spatial coordinates, x, y and z. The Hohenburg-Kohn [89] theorem states

that all ground-state properties of the system can be determined from the

density of any system; here the total ground state energy of a many-electron

system is a functional of the density; if the electron density functional is

known, the total energy of the system can be determined. The total energy

is therefore expressed as a functional of the total electron density, dependent

upon the atomic positions:

E = E[ρ(r), Rα] (5)

where Rα is the position of all atoms α in the system. The total energy

is written as:

E[ρ] = T0[ρ] + U [ρ] + Exc[ρ] (6)

T0[ρ] is the kinetic energy of non-interacting electrons; these are defined

as having an analogous one-particle wave function which produces the same

density as the interacting many-electron system.
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T0[ρ] =
∑
i

ni −
∫

Ψ∗i (r)

[
− h̄2

2m
∇2

]
Ψi(r)dr (7)

and

ρ(r) =
∑
i

ni|Ψ(r)|2 (8)

The second term in equation 6 is the Coulombic energy; it is the total

electrostatic energy from the Coulombic attraction between electrons and

nuclei, the repulsion between nuclei and the repulsion between electrons; it

is the sum of all the Coulombic forces in the system.

U [ρ] = Uen + Uee + Unn (9)

or

U [ρ] =
∑
α

Zα

∫
ρ(r)

|r −Rα|
dr +

∫ ∫
ρ(r)ρ(r

′
)

|r − r′ |
drdr

′
+
∑
αα′

ZαZα′

|Rα −Rα′ |
(10)
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where Zα is the atomic number of atom α at positionRα. The summations

extend over all the atoms in the system and the integrations extend over all

space.

The final term of equation 6 is the exchange-correlation energy (XC);

this consists of all the remaining electronic contributions to the energy of the

system. XC energy is usually less than 10% of the total energy of the system.

XC energy represents the activities of electrons among each other in a multi-

electron system. Because the Schrödinger equation can only be solved exactly

for a single electron system the XC energy in DFT is an approximation

of the energies; the quality of the DFT results depends upon the quality

of the approximation. The exchange interactions change the expectation

value of the distance between identical particles, such as electrons of parallel

spin. The correlation energy is a measure of how much the movement of one

electron is influenced by all the other electrons in the system.

Local-density approximations (LDA) [90] are one method used as approxi-

mations to the XC energy in DFT; they depend only on the electronic density

at each point in space. The assumption is made that electrons see the overall

electronic landscape in the same way as they see it locally. The complex

larger system can then be broken down into many pieces of uniform electron

densities, each with different values. Thus the XC energy can be calculated

for each electron using the assumed constant electron density in the area sur-

rounding it. The local density elements can then be summed to provide the
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total XC energy for the system. This is represented in Figure 7; the actual

electron density distribution on the left is represented by the four areas of

uniform electron density on the right.

Figure 7: Schematic of LDA in two dimensions [91]

The XC energy thus depends only on the local electron density around

each volume element dr.

Exc[ρ] =

∫
ρ(r)εxc[ρ(r)]dr (11)

where εxc is the XC energy density for a homogeneous electron gas of

density ρ(r).

The homogeneous electron gas is a model within which electrons are

evenly distributed, with a uniformly distributed positive potential preserving

the overall charge neutrality. This is a highly simplified system but it does

allow convenient identification of energy terms with reasonably accurate de-

termination. Considering that the homogeneous electron gas model is far
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from the reality of actual systems, the LDA is most accurate when describ-

ing covalent systems and simple metals, where the charge density only varies

relatively slowly. LDA typically underestimates Ec and overestimates Ex

and the cancellation effect of these errors is partly responsible for the overall

result often proving satisfactory, even though the individual exchange and

correlation values do not. Significant errors and problems begin to occur

when the system deviates from the LDA model; typical problems presented

by LDA functionals include:

• The lattice parameters are underestimated resulting in over-binding;

this results in overestimation of the cohesive energy and bulk modulus

of solids.

• Spin and orbital moments are underestimated.

• Band gaps are underestimated or even absent.

• Adsorption energy values are calculated too high.

• It does not work well for materials with van der Waals attractions or

weak hydrogen bonds.

• It cannot describe transition metals or their oxides which have narrow

d and f bands with strongly localised electrons; for example it predicts

non-magnetic ground states for some ferromagnetic and antiferromag-

netic materials.

Because real systems are not homogeneous and they have varying elec-

tronic density around electrons, there is a need for more accurate XC func-

tionals. The generalised gradient approximation (GGA) [92,93] is able to utilise
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local information and semi-local information i.e. at a given point it can ap-

proximate both the electron density and its gradient. Figure 8 shows a

schematic representation of how LDA and GGA function. Thus the GGA

method should, in principle, produce better results with the use of an addi-

tional variable for density gradient:

EGGA
xc [ρ(r)] =

∫
ρ(r)εGGAxc [ρ(r),∇ρ(r)]dr (12)

where ∇ρ(r) is the gradient of the electron density.

Figure 8: Schematic of local and semi-local density approximation by LDA
and GGA [91]

The general form of GGA in practice is therefore based on the LDA but

with an additional factor which modifies the LDA energy. This enhancement

60



factor is fitted to different physical constraints and there are many different

expressions of GGA, such as PW91 [93] and PBE [92]; these functionals are in-

corporated into available pseudopotential files. PW91 has been very widely

used because of its broad applicability and reasonable accuracy. It uses data

from the uniform electron gas to provide the physics and constraints of the

XC hole, but it can produce inaccuracies in the XC potential at high and

low electron densities. PBE is based on PW91 but is improved and has no

empirical composition. It includes local electron density and the gradient

and has been shown to be accurate and computationally efficient. It does

not suffer the same inaccuracies as PW91 at high and low electron densi-

ties. However, PBE almost always overestimates the lattice constants of

solids (the LDA consistently underestimates the volume); typical errors are

in the region of 1-2% [94]. Alternative functionals have been developed for

use with solids such as PBEsol [95] and WC [96]; both of these were shown to

yield lattice constants in excellent agreement with experimental results by

Haas et al, though they concluded that neither could be considered as good

as PBE for all the investigated solids [97]. By contrast, He and co-workers

found that PBEsol and WC functionals reproduced most closely the struc-

tural properties of a wide variety of materials including a semiconductor

(silicon), a metal (copper), and various insulators [94]. Weck et al compared

the measured elastic constants of zirconium tungstate (α-ZrW2O8) and found

that PBE reproduced these to around 6% accuracy and PBEsol to around

2% [98]. GGA does exhibit the underestimation of band gaps, similarly to

LDA. PBE pseudo D pseudopotentials incorporate functionals that include

damped atom-pairwise Grimme dispersion corrections, to mitigate for the
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lack of dispersion modelling in DFT [99]. Further development of accounting

for van der Waals interactions by empirical method, termed DFT-D, is dis-

cussed by Grimme et al [100], and a broader discussion of dispersion-corrected

methods is undertaken by Grimme et al to assess the properties, advantages

and disadvantages of these methods [101]; a more detailed discussion here is

beyond the scope of this work.

2.2.2 Kohn-Sham Equations

Minimising the energy of a system can be achieved by determining a self-

consistent solution to a set of one-electron Kohn-Sham (KS) equations, where

the orbitals are subject to constraints of the fixed number of electrons. To

achieve self-consistency the KS orbitals calculate the electron densities, the

electron densities calculate the KS Hamiltonian and the KS Hamiltonian will

calculate the new electron densities and KS orbitals - the solution will be the

KS orbitals that were started with, when self-consistency is achieved. The

Hamiltonian operator corresponds to the sum of the kinetic energies plus

the potential energies for all the particles in the system. The Kohn-Sham

equations map the one-electron non-interacting system onto an n-electron

interacting system. It is necessary to determine the set of wave functions Ψi

which minimise the total energy functional, given by the solutions to equation

13.

HΨi(r) = εiΨi(r) (13)
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where Ψi is the wave function of electronic state i and εi is the Kohn-Sham

eigenvalue.

2.2.3 K-point Sampling

The periodic boundary conditions means that the system is considered as

infinite, so the number of electrons is also infinite and a wave function must

be calculated for each one. This cannot be achieved; Bloch’s theorem allows

a plane wave to be multiplied by a periodic function and so overcomes this

problem [102]. This allows calculation of a finite number of electronic wave

functions, though at an infinite number of k-points. K-points are points in

k-space (the reciprocal lattice of the crystal). A finite number of electronic

states are occupied at each k-point. The infinite number of k-points would

require an infinite number of calculations to determine the electronic poten-

tial, but the electronic wave functions of k-points that are close together will

be practically identical. Thus, a region of k-space can be represented by a

wave function at a single k-point. It follows that a finite number of k-points

can then be used to calculate the electronic potential and so deduce the to-

tal energy of the system [103]. The density of k-points is proportional to the

volume of the system. As the density of k-points increases, the energy values

calculated for the system will begin to converge. For reasons of computa-

tional efficiency, the minimum number of k-points to achieve convergence is

desired. Convergence tests were used in this work for the systems of interest.
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2.2.4 Plane Wave Basis Sets and Pseudopotentials

The use of plane waves and pseudopotentials is reviewed by Segall, Lin-

dan et al in their discussion of first-principles simulations and the CASTEP

code [104]. Bloch’s theorem states that, at each k-point, the electronic wave

function can be expanded in terms of a discrete plane-wave basis set. How-

ever, these plane wave basis sets would need to be infinite at each k-point

to expand the electronic wave functions. This can be overcome by using a

cut-off energy so that only the plane waves with energies less than a partic-

ular value are considered; this thereby creates a finite basis set. Similarly

to k-point sampling, the cut-off energy value is increased until the minimum

required for energy convergence is achieved. Expanding electronic wave func-

tions using plane waves is problematic due to the very large numbers of plane

waves required; these are to account for rapid fluctuation of valence electron

wave functions and the expansion of core orbitals that are very firmly bound.

Pseudopotentials allow the use of far fewer plane wave basis states. Pseu-

dopotentials use approximations which utilise the fact that physical prop-

erties of solids are much more dependent on valence electrons than those

bound in the core. The core electrons and ionic potential are removed from

the calculation and replaced with weaker pseudopotentials; these behave ac-

cording to pseudo wave functions, not true valence wave functions. This is

demonstrated in Figure 9.
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Figure 9: Comparison of a wavefunction in the Coulomb potential of the
nucleus (blue) to the one in the pseudopotential (red). The real and the
pseudo wavefunction and potentials match above a certain cut-off radius, rc
.

2.3 The Potential Model - Theory and Derivation

For a simulation to produce reliable results there must be a good descrip-

tion of all interactions between all species in the system. This means that

methods such as DFT, which use a high level of theory, may seem the ideal

type of approach to use in this project. In fact DFT has been used in this

project using the computer simulation package CASTEP, but the compu-

tational overhead of DFT means that it can be a very expensive approach;

thus the system size and number of simulations studied using this technique
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are limited. There is a need for MD when water is the solvent as it is likely

to be mobile. QM/MD methods could be used but these would be so slow

that nanosecond timescales could not be studied. Also the dispersive in-

teractions are likely to be significant; these interactions are present in MM

simulations but not in QM simulations. Where simulations need to be on a

large scale and involve phenomena such as temperature dynamical methods,

these limitations mean an alternative approach must be used.

The potential model is molecular mechanical and provides just such an

alternative; to describe the interactions in a system between two or more

species it uses parameterised potential functions. These are simulations at

the atomistic level where the atoms are only considered as charged particles,

removing any explicit effect of the electrons, and they allow modelling of

larger systems than DFT. To make sure that variations in geometry still

provide accurate interactions in the model the parameterisation requires care.

The potential model must describe the total energy of the system by

summing all the intramolecular and intermolecular interaction energies, as

shown in equation 14.

Usystem = Uinter + Uintra (14)

The intramolecular interactions are themselves the sum of the energies

required in bond stretching, bending and torsion between adjacent atoms:
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Uintra = Ubonds + Uangles + Utorsions (15)

Each of these intramolecular forces is defined by a set of paramaterised

equations.

The intermolecular interactions are comprised of long-range Coulombic and

short-range van der Waals interactions:

Uinter = UCoulombic + Uvdw (16)

This model is of the type utilised in the Born Model of Ionic Solids [72].

2.4 The Born Model of Ionic Solids

Where atomistic simulation techniques are used in this project, they are

based on the Born model of ionic solids. The Born model represents the

atoms of a system as point-charge particles; they interact via short-range

interactions and long-range electrostatic forces as described in the potential

model. The interaction energy between two ions is defined as:

Uij =
1

4πε0

qiqj
rij

+ Φ(rij) (17)
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The first term represents the long-range Coulombic interactions; ε0 is

the permittivity of a vacuum, qi and qj are the ionic charges and rij is the

interatomic distance between the ions. The second term, Φ(rij) , represents

the short-range interactions between the ions; these include repulsive forces

between the charged electron clouds and attractive forces caused by van der

Waals interactions.

For a system, all the pairwise interactions between all ions i and j must

be summed. Many-body terms are utilised where appropriate, for example

to account for deviation from equilibrium bond angles. The atomic positions

can be used to express the overall interaction energy of the system:

USY STEM =
1

2

N∑
i

N∑
j
j 6=i

1

4πε0

qiqj
rij

+
1

2

N∑
i

N∑
j
j 6=i

Φij(rij) +
1

6

N∑
i

N∑
j
j 6=i

N∑
k
k 6=i
k 6=j

Φijk(rijk)

(18)

Summing all the pairwise electrostatic interactions cannot be used to

determine the first term in equation 18 (the Coulombic energy of the system);

the contribution to the electrostatic potential of the point charges decays as 1
r

which results in the Coulombic term being poorly convergent at best (it can
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be shown to be conditionally convergent). Summation methods such as the

Ewald sum are therefore utilised to calculate the electrostatic interactions.

The second and third terms of equation 18 are short-range interactions; these

converge much quicker than the electrostatic interactions and can normally

be calculated using simple summation.

The ionic charges qi and qj are usually assigned as partial charges rather

than the full charge values associated with the ion (such as the formal charge

of -1 for a chloride ion, for example). For fully ionic systems, formal charges

have been used successfully for binary systems [105,106] but generally require

the use of strong, repulsive Born-Mayer potentials and are often paired with

a Shell model. For more complex materials, especially those containing an

element of covalency, the large charges associated with formal charges can

prove unrealistic and partial charge models are more commonly used. Key to

their success is determining what charges should be used. Quantum mechan-

ics shows that electron density is smeared out and the associated charges are

shared among nearby atoms, so there is no exact way to assign electrons to

atoms; this means that the partial charge method is a useful approximation

rather than an accurate representation. Because partial atomic charge is not

a quantum mechanical observable there is no single way to measure partial

atomic charge or to assign electron density to each atom of a molecule or

solid; thus various charge models give significantly different partial atomic

charges [107,108,109]. Wang et al investigate such variation in their study of a

number of different charge models [110]. There are methods of assigning par-

tial charges such as the restrained electrostatic potential approach (RESP)

and RESP2 [111], which use a quantum mechanical method to approximate
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charges, albeit with a tuneable parameter in RESP2. However it remains the

case that there is no unified system to achieve consistent values for partial

charges across different force field models. This means that transferability

between models can be problematic, though where there are identical atoms

with different charges between models there is the possibility of scaling partial

charges from one or both models and testing the results; these scaled charges

can then be refined and retested. Partial charge scaling has been tested and

validated as a method in studies such as that of Chaudhari et al [112]. This

work utilises existing partial charge models where available, such as those

in the CLAYFF potential model [51], and also uses charge scaling to adjust

partial charges from different models.

2.5 Coulombic Summation

As stated in section 2.4, Coulombic summation converges poorly due to the

1
r

term and a quicker, but still reliable, summation method is required; the

Ewald sum is the method employed in this project.

2.5.1 Ewald Summation

Ewald summation was developed by Paul Peter Ewald to calculate long-range

interactions in periodic systems, in the field of theoretical physics [113]. The

method was first employed in molecular dynamics during the 1950’s [114,115];

since the 1970’s its use has become widespread in computer simulations of

systems where the particles interact via inverse square force laws such as

gravity or, in the case of this project, electrostatics [116,117]. The long-range
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interaction energies are divided into two parts; the near-interactions can be

calculated quickly in real space as their sum quickly converges. At larger

distances the interactions are calculated by summing their Fourier transforms

in reciprocal space; this allows rapid convergence of the energies, which does

not happen when using direct summation. The method tacitly assumes the

system is infinitely periodic, to allow the use of the Fourier sum.

Figure 10: Fourier transformation summation [118]

Figure 10 demonstrates how a set of point charges may be considered as

a set of screened charges, minus the smoothly varying screening background.

The poor convergence of equation 17 is because the contribution of the

electrostatic potential due to the point charge decays as 1
r
. The Ewald

method assumes that every particle i, with a charge of qi, is surrounded

by a diffuse cloud of charge of the opposite sign, which exactly cancels the

charge qi. This means that the electrostatic charge due to particle i is com-

pletely due to the unscreened fraction of qi. This fraction quickly tends to 0

at long distances; the rate at which this occurs is due to the functional form
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of the screening charge distribution. Gaussian distributions of the form in

equation 19 are used to represent the cloud of screening charge.

ρi(r) = −qi
(α
π

)3/2
exp(−αr2) (19)

α, the arbitrary parameter, determines the width of the distribution and

r is the position relative to the centre of the distribution.

The total contribution of the screened Coulombic interactions to the in-

teraction energy, UREAL, can be written as:

UREAL =
1

2

(
1

4πε0

) ′∑
n

N∑
i=1

N∑
j=1

qiqj
|rij + nL|

erfc(
√
α|rij + nL|) (20)

where erfc(x) is the complementary error function, shown as:

erfc(x) = 1− 2√
π

∫ x

0

exp(−t2)dt (21)
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As x increases, this tends to zero. Thus n = 0 is the only term which

contributes to the sum in real space, if α is large enough.

The electrostatic potential due to a screened charge is a rapidly decaying

function of r, meaning that the electrostatic potential due to a set of screened

charges at point ri can be computed by direct summation. But the poten-

tial due to point charges is the quantity of interest, not the potential due to

screened charges. Thus the added screening charge must be removed from

every particle in the system, as represented visually in Figure 10. The com-

pensating charge distribution varies smoothly in space; it has the same sign

as the original charge qi and the same shape as the distribution ρi(r). The

Fourier transforms of these charge distributions can be summed in reciprocal

space and their contribution to the electrostatic potential calculated.

The electrostatic potential at a point ri, due to a charge distribution ρi(r),

consisting of a periodic sum of Gaussians can be represented by Poisson’s

equation:

−∇2φ1(r) =
1

ε0
ρ1(r) (22)

where

ρ1(r) =
∑
n

N∑
j=1

qj

(α
π

)3/2
exp[−α|r− (rj + nL)|2] (23)
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Poisson’s equation in Fourier form becomes:

k2φ1(k) =
1

ε0
ρ1(k) (24)

A Fourier transformation of ρ1, the charge density, gives:

ρ1(k) =
1

V

∫
V

ρ1(r)exp(−ik · r)dr (25)

If ρ1(r) in equation 25 is replaced by its form in equation 23, equation 25

becomes: [118]

ρ1(k) =
1

V

N∑
j=1

qjexp(−ik · rj)exp(−k2/4α) (26)

Combining equations 24 and 26 gives:

φ1(k) =
1

k2ε0

1

V

N∑
j=1

qjexp(−ik · rj)exp(−k2/4α) (27)
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The electrostatic potential in real space is given by:

φ1(r) =
∑
k 6=0

φ1(k)exp(ik · r)

=
1

V

∑
k 6=0

N∑
j=1

qj
k2ε0

exp[ik · (r-rj)]exp(−k2/4α)

(28)

Therefore the contribution of φ1 to the interaction energy is:

URECIP =
1

2

∑
i

qiφ1(ri)

=
1

2

∑
k 6=0

N∑
i=1

N∑
j=1

qiqj
V k2ε0

exp[ik · (ri − rj)]exp(−k2/4α)

=
V

2

∑
k 6=0

1

k2ε0
|ρ(k)|2exp(−k2/4α)

(29)

where

ρ(k) =
1

V

N∑
i=1

qiexp(ik · ri) (30)
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But equation 29 includes the interaction of qi with its own Gaussian

charge cloud; this self-interaction requires correction. The contribution to

the overall interaction energy of this charge distribution is given by:

USELF =
1

4πε0

√
α

π

N∑
i=1

q2i (31)

The USELF term remains constant throughout the simulation as it is

independent of the particle’s position in space. The total contribution to the

potential energy is therefore:

UCOUL = UREAL + URECIP − USELF (32)

which can be written:

UCOUL =
1

2

(
1

4πε0

)∑
n

′
N∑
i=1

N∑
j=1

qiqj
|rij + nL|

erfc(
√
α|rij + nL|)

+
V

2

∑
k 6=0

1

k2ε0
|ρ(k|2exp(−k2/4α)− 1

4πε0

√
α

π

N∑
i=1

q2i

(33)
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α can be chosen to optimise the simulation speed as it is present in the

sums of both real space and reciprocal space.

Thus, the Ewald method allows high accuracy and reasonable time-scale

when computing long-range interactions. The molecular system must be

charge neutral for this method (although GULP and DL POLY do allow

charged cells, the method is less accurate).

2.5.2 Smooth Particle Mesh Ewald Summation

A modification of the Ewald summation technique is the Smooth particle

mesh Ewald method; the resultant technique is commonly quicker than the

Ewald method. The Gaussian charge distribution is approximated using a

gridded distribution and a 3D fast Fourier transform (FFT) is applied to the

grid. Where the Ewald sum scales as N
3
2 , the SPME method usually scales

as N log(N).

2.6 Parry Summation

Parry summation [119,120] is a variation of the Ewald sum but is measured in

two dimensions rather than three. This makes it useful for simulations of

crystal surfaces which are periodic in two dimensions. The method takes

crystal surfaces to be a series of charged planes of infinite size, rather than

as an infinite lattice. When the electrostatic interactions are summed the

vectors are separated into those which are in the plane and those which are

perpendicular to it; this means that the sum of plane charges cannot be
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presumed to be zero and the reciprocal space term requires evaluation. A

detailed derivation of the reciprocal space term is given by Heyes et al [121].

2.7 Short-range Potentials

A number of different interactions contribute to the short-range potentials.

At short interatomic distances, the electron clouds of each atom will strongly

interact and repel each other. At these same distances, the fluctuating dipoles

on each ion will cause dipole-dipole interactions and so result in Van der

Waals attractive forces. This project utilises parameterised potential func-

tions to describe the short-range repulsive and attractive interactions. The

parameters for these potentials can be derived in one of two ways; they can

be fitted to more accurate simulations such as DFT or they can be derived

empirically from experimental data such as crystallographic positions. The

Lennard-Jones potential, also known as the L-J potential or 12-6 (or 9-6, 12-

10 etc.) potential, is a mathematical model approximating the interaction

between a pair of neutral molecules or atoms. [122]

Figure 11 is a graph of energy vs. distance for the 12-6 Lennard-Jones

potential; rm is the distance at which the potential reaches its minimum.

There are several ways of expressing the Lennard Jones potential, one of

which is shown in equation 34

V (r) =
A

rn
− B

rm
(34)
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Figure 11: The Lennard-Jones potential [122]

A = 4εσn

B = 4εσm

ε is the depth of the potential well

σ is the finite distance at which the inter-particle potential is zero

r is the distance between the particles

r−n is the repulsive term

r−m is the attractive term

An alternate expression of the Lennard Jones potential is shown in equa-

tion 35

V (r) = 4ε

[(
σ

r

)n

−

(
σ

r

)m]
(35)
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ε is the depth of the potential well

σ is the finite distance at which the inter-particle potential is zero

r is the distance between the particles

r−n is the repulsive term

r−m is the attractive term

A third expression of the Lennard Jones potential is shown in equation

36

V (r) = ε

[(
r0
r

)n

− 2

(
r0
r

)m]
(36)

r0 (sometimes written as Rmin) = m
√

2σ

ε is the depth of the potential well

σ is the finite distance at which the inter-particle potential is zero

r is the distance between the particles

r−n is the repulsive term

r−m is the attractive term
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More accurate potentials exist but L-J potentials are widely used in mod-

elling as they offer computational simplicity. When the value of r is small

the inter-particle force caused by the electron clouds is repulsive, so at short

distances the repulsive term r−n, dominates. However, the r−n term has

no theoretical validation; it approximates the Pauli repulsion and is compu-

tationally efficient as the square of rm. At larger distances the r−m term

dominates; this models the van der Waals forces and is the attractive part of

the potential. Common values of n and m are 12 and 6, though values other

than 12 and 6 can be used depending what works best for the system being

modelled, such as 9-3 or 9-6.

Buckingham potentials (exp-6 rather than 12-6) replace the repulsive term

with an exponential function. [123] This allows more effective convergence of

the value for the repulsive term.

VB = Aexp

(
−r
ρ

)
− C

r6
(37)

A, C and ρ are constants

r is the distance between the particles

−r
ρ

is the repulsive term

r−6 is the attractive term
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This thesis has generally used the Lennard-Jones potential to facilitate

easier mixing of potentials, on occasion recasting established Buckingham

potentials as Lennard-Jones potentials to do this. Atomistic and molecular

modelling studies are only useful if the potentials used are good, therefore the

testing of existing potentials and the validation of new ones is a significant

focus of this work.

2.8 Intramolecular Interactions

Besides intermolecular forces there may be covalent forces within a molecule;

this means that intramolecular terms must be included in the simulation to

describe these forces. This is demonstrated by example in Chapter 5. The

intramolecular potentials describing bond bending, bond vibrations and bond

twisting (torsion) must be included. These can be written as:

Uintra = Uangles + Ubonds + Utorsions (38)

2.8.1 Bonding Interactions

The simplest way to describe bond oscillations is to assume the vibrations are

purely harmonic. The vibrations can then be described as a simple harmonic

oscillator as shown in equation 39

Urij =
1

2
k(rij − r0)2 (39)
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Plotting the energy versus the interatomic distance results in a parabolic

curve as shown in Figure 12.

Figure 12: Harmonic oscillator curve of energy versus interatomic distance;
in a true vibration system the lowest energy the bond can have is E0 = 1

2
hv

The minimum of the curve represents r = r0, where r0 is the equilibrium

distance, i.e. the bond length. Any higher energy levels, such as E2, are

a result of extension or compression of the bond, which is similar to the

behaviour of a spring. When the attractive and repulsive forces are balanced

the two atoms will remain at the mean distance apart from each other; this

is the point where the energy of the system is at a minimum. The attractive
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forces resist the atoms being pulled apart and the repulsive forces resist

them being moved closer together, thus energy is required if the bond is to

be distorted in either way. Considering the oscillator curve shown in Figure

12, it could be taken that one atom is static at point r0; the other atom

would then oscillate laterally along the horizontal line at each energy level,

extending and reducing the bond length. It can be seen that as energy

levels increase, say from E1 to E2, there is greater scope for the oscillation to

extend to the left or right and the variations in bond length become greater.

However experimental observation shows that molecules do not completely

obey the laws of harmonic motion, and bonds can break when they are

extended far enough. Small bond distortions can be said to obey harmonic

motion, but once the variations in bond length exceed around 10% a more

complex behaviour, requiring a more complex potential, is observed. The

Morse potential, [124,125] developed by Philip Morse, is often used in such

cases. The energy is exponentially related to the interatomic spacing (rij)

and the equilibrium distance r0. The Morse potential takes the form:

U(rij) = Aij(1− exp[−Bij(rij − r0)])2 − Aij (40)

where Aij is the bond dissociation energy, r0 is the equilibrium bond

distance and Bij is a function of the slope of the potential energy well and

can be determined from spectroscopic data. [118]
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A comparison of the energy versus interatomic distance curves, for the

harmonic oscillator and the Morse potential, is shown in Figure 13.

Figure 13: Comparison of energy versus interatomic distance curves for the
harmonic oscillator and the Morse potential

An advantage of the harmonic oscillator model is that atoms which are

a long way from their equilibrium positions will quickly equilibrate without

risk of the bond breaking.

2.8.2 Three-Body Potentials

Where a covalent molecule consists of more than two atoms the bonds will

have directionality i.e. there will be a bond angle and this must be accounted

for. Deviations from the equilibrium value of the bond angle result in an

energy penalty and the three-body potential is added to account for this; the

potential describes the angle between a central ion, i, and two adjoining ions,

j and k. The potential is described in equation 41.
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U(θijk) =
1

2
kijk(θijk − θ0)2 (41)

where kijk is the three-body force constant and θ0 is the equilibrium angle.

2.8.3 Four-Body Potentials

Four-body potentials are used to account for the effect of torsional angles

deviating from their equilibrium value. They take the form:

U(φijkl) = kijkl(1− cos(nφijkl)) (42)

where kijkl is the four-body force constant, n is equal to 2 and φijkl is the

torsion angle.

2.9 Polarisability

At short interatomic distances there is the possibility of polarisation of the

atoms in the system. When an ion comes into close proximity with an electric

field a dipole can be induced in the electron charge cloud of the ion. This ionic

polarisability can affect the short-range interactions between ions. Rigid ion

models consider each ion as a formal point charge and ignore this polarisation.
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One method of incorporating the ionic polarisability into the model is to use

the shell model, which was developed in 1958 by Dick and Overhauser. [74]

2.9.1 The Shell Model

The shell model is a simple mechanical model which considers an ion to be

represented by two components; these are a positively charged core which

contains all the mass of the ion and a negatively charged massless shell.

These components are connected by a harmonic spring as represented in

Figure 14.

Figure 14: Representation of the shell model. (a) shows an unpolarised ion
where the centre of the core and the shell are at the same point. (b) shows
a polarised ion where an asymmetric field causes the core and shell to be
centred on different points.

The total charge of the ion is the sum of the core and shell charges. The

harmonic core-shell potential models the interaction of the positively charged

nucleus and negatively charged electron cloud of an ion, as shown in equation

43:

U(rc−s) =
1

2
kr2c−s (43)

87



where r is the distance between the core and the shell and k is the spring

constant.

The polarisability of the ion is represented as:

α =
Y 2

k
(44)

where α is ion polarisability, Y is the shell charge and k is the spring

constant.

Comparisons of the rigid ion model and shell model have been made in a

number of studies. [126,127,128] Despite the simplicity of the rigid ion model

it has been shown to produce successful results in a wide range of sim-

ulations, [129,130,131] although the shell model often shows better results in

comparison. However, the shell model significantly increases the number of

particles in the simulation with the result that computational costs can be

greatly increased; thus molecular dynamics simulations still very often use

the rigid ion model. The rigid ion model is used in this work. The potential

parameters used in this work are detailed in each of the results chapters.

Chapter 3 builds on the techniques discussed in this chapter by describing

how they can be incorporated into MM energy minimisation techniques and

used to calculate relevant information for the system being examined.
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3 Energy Minimisation

The computer simulation packages METADISE [84] and GULP [132] are used

both to perform initial MM energy minimisation on the bulk structures and

on surfaces of compounds under consideration. They also enable the gen-

eration of inputs that can be used by MD packages such as DL POLY [133]

and plane-wave DFT codes such as CASTEP [86]. METADISE also allows

manipulation of post-process output from these other simulation packages to

produce files for graphical visualisation.

The potential model described in Chapter 2 can be combined with these

simulation techniques and used to calculate information of interest regarding

the system under investigation. Energy minimisation is a technique to min-

imise the interaction energy of a system and thus determine that system’s

equilibrium configuration. It is a quick method and has been used to study

mineral structures for many years. The method does not take account of

temperature; calculations are effectively carried out at zero Kelvin without

the zero-point (ground state) energy.

MD simulations include kinetic energy; the system is allowed to evolve

over time and can be studied dynamically. This is a very useful technique for

modelling liquids and liquids in contact with mineral surfaces, both of which

are critical in this particular project. Solid systems are periodic i.e. their

structure is regular and repeating; this means the size of the problem being

computationally modelled can be reduced by using the periodic boundary

condition.
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3.1 Energy Minimisation

This project calculates surface and bulk structures and energies using en-

ergy minimisation methods. The interaction energy calculated for a system

should be the minimum such energy of the system; the system should be at

mechanical equilibrium with no residual stress. When setting up a simula-

tion cell this is not usually the case, so energy minimisation routines must

be used on the cell. This can be done at constant volume, where the cell

dimensions are fixed but the ionic positions can be altered, or it can be done

at constant pressure, where ionic positions can be altered and the cell dimen-

sions can change. This can be indicated as the ions being at the positions

with minimised energy when all the forces are zero:

∂U

∂r
= 0 (45)

where ∂U is the change in energy and ∂r is the change in the ionic posi-

tion.

Two methods of achieving the energy minimum in equation 45 are dis-

cussed here.

3.1.1 Conjugate Gradients

Conjugate gradient minimisation is an augmentation of the method of steep-

est descent [134]. Each minimisation step is directed using information on the
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forces from the previous step. Each new position in the steepest descent

method is calculated using the formula in equation 46:

rn+1 = rn − αnSn (46)

where rn is the coordinate at time n, αn is a constant at each iteration

(chosen to optimise efficiency of minimisation) and Sn is the displacement

vector. Sn is given by:

Sn = −gn (47)

where:

gn =
∂U

∂rn
(48)

The search direction (or displacement vector) in this method is deter-

mined from information regarding the previous gradient values:
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Sn = −gn + γnSn−1 (49)

where:

γn =
gTn · gn

gTn−1 · gn−1
(50)

where T is the transpose of the vector and:

S1 = g1 (51)

When Sn reaches zero, or a value within parameters determined as close

enough to zero for accuracy, the minimisation is achieved. This method only

uses the first derivative of the energy with respect to the ionic positions and

so each iteration is very swift. However, a large number of iterations are

required as the algorithm is less effective than matrix techniques such as

the Newton-Raphson method. [135] Even though more steps are required, the

conjugate gradient method is usually quicker than matrix methods. DFT

codes use the conjugate gradient method, or newer methods derived from it.
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3.1.2 Newton-Raphson Method

The Newton-Raphson method is an iterative procedure and struggles for

computational cost-effectiveness with large systems. It utilises the second

derivative of the energy, Ur, using a Taylor expansion to expand to second

order:

U(rn+1) = U(rn) + gn · δrT +
1

2
δrT ·Wn · δr (52)

where δr is the displacement of a given ion:

δr = rn+1 − rn (53)

and Wn is the second derivative matrix:

Wn = −∂
2U

∂r2n
(54)

Therefore, assuming the energy change with strain to be zero, when the

system is at equilibrium:
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∂U

∂r
= 0 = gn + Wn · δr (55)

which gives:

δr = −W−1
n · gn (56)

and hence:

rn+1 = rn − gnHn (57)

where Hn is the Hessian matrix and is equivalent to W−1
n .

The minimum system energy could be obtained in a single step if the sys-

tem were absolutely harmonic in r, but if it is anharmonic the displacement

will give rise to a lower energy configuration and an iterative process must

be used to determine the lowest energy configuration. Because the Newton-

Raphson method necessitates the calculation of both derivatives of displace-

ment energy, and the inversion of the matrix of the second derivative of the
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energy, it is computationally demanding. Some methods, such as Davidon-

Fletcher-Powell (DFP) [136] or the Broyden-Fletcher-Goldfarb-Shanno algo-

rithm (BFGS), [137] only work out this matrix at intervals, but they are still

computationally taxing; for potential based codes computer speeds have

negated the cost to a large extent, but the full Newton-Raphson method

would still be prohibitively expensive for DFT methods. The updated ap-

proximation of the Hessian matrix is given as:

Hn+1 = Hn +
δr · δrT

δrT · δg
− Hn · δg · δgT ·Hn

δgT ·Hn · δg
(58)

Because energy minimisation techniques do not take account of tempera-

ture effects it is necessary to employ other modelling techniques to allow for

these, such as molecular dynamics.

3.2 Molecular Dynamics

As mentioned previously, molecular dynamics simulations involve kinetic en-

ergy and are allowed to evolve over time. The simulation requires the solv-

ing of Newton’s laws of motion for all the particles in the system, over the

time allowed. The method was first used in the late 1950’s by Alder and

Wainwright to study the interactions of hard spheres. [114,115], whilst the first

studies of a realistic system were done in 1974 by Rahman and Stillinger [138]

who simulated liquid water.
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At the start of the simulation, the particles are assigned random velocities

so that the initial temperature of the system is that required, and so that

the cell has no translational momentum. These initial conditions are defined

by:

N∑
i=1

mi · v2i = 3NkBT (59)

and

N∑
i=1

mi · vi = 0 (60)

where N is the number of particles, mi is the mass of particle i, vi is the

velocity of particle i, kB is the Boltzmann constant and T is temperature.

Next the forces acting on each particle are calculated by solving Newton’s

equations of motion; the forces allow calculation of accelerations and veloc-

ities and thus the position of each particle can be updated for an infinitely

small time-step. The time-step must be small enough to capture molecu-

lar vibrations and not allow significant movement of atoms between steps.

Newtons’ equations of motion are solved by:

ai(t) =
Fi(t)

mi

(61)
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vi(t+ δt) = vi(t) + ai(t)δt (62)

ri(t+ δt) = ri(t) + vi(t)δt (63)

where Fi are the forces on particle i and ai is the acceleration of particle

i.

After each step, the run time properties are calculated e.g. temperature

or potential energy. The whole process is then repeated iteratively over the

simulation time, involving thousands or millions of iterations. The early part

of the simulation involves equilibration of the system, scaling the particle’s

velocities to obtain equilibrium at a given temperature and pressure, so as

to hold the temperature at the desired level for the simulation; typically

this takes a few tens of thousands steps. Once equilibration is achieved the

particle velocities are no longer scaled and the simulation is run for as long

as possible, to achieve converged values for the properties of interest. MD
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simulations facilitate the calculation of a number of system properties, both

static and dynamic, as well as free energy. The computer code DL POLY [133]

was used to perform the MD simulations in this project.

In practice, the errors due to the size of the time step, δt, need to be

combated. A large time step would miss molecular vibrations but a short

time step can mean too many iterations are needed, thus the simulation time

becomes too long and too expensive. Integration algorithms are an effective

compromise to offset the time step length against the total simulation time.

3.2.1 Integration Algorithms

The potential energy of a system is a function of the 3N coordinates of all the

atoms in the system; because of the complex nature of this function there

is no analytical solution for Newton’s equations of motion and they must

be solved numerically. Computer modelling codes use integration algorithms

to solve Newton’s equations of motion over a finite time-step; an integra-

tion algorithm should be able to achieve the desired level of accuracy whilst

computing forces at finite time steps as large as possible. The algorithms dis-

cussed here use a Taylor expansion to describe the atomic positions, velocities

and accelerations:

r(t+ δt) = r(t) + v(t)δt+
1

2
a(t)δt2 +

1

6
b(t)δt3 + ...

v(t+ δt) = v(t) + a(t)δt+
1

2
b(t)δt2 + ...

a(t+ δt) = a(t) + b(t)δt+ ...

b(t+ δt) = b(t) + ...

(64)

98



where r is the position of the particle, v is the velocity of the particle,

a is the acceleration of the particle and b is the third time derivative of r.

Equation 64 can be used to calculate the particle position about a position

r(t) before and after a time step δt:

r(t+ δt) = r(t) + v(t)δt+
1

2
a(t)δt2 +

1

6
b(t)δt3 + ϑ(δt4) (65)

r(t− δt) = r(t)− v(t)δt+
1

2
a(t)δt2 − 1

6
b(t)δt3 + ϑ(δt4) (66)

where ϑ(x) is the order of accuracy. Adding together equations 65 and

66 gives:

r(t+ δt) + r(t− δt) = 2r(t) + a(t)δt2 + ϑ(δt4) (67)
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which leads to:

r(t+ δt) = 2r(t)− r(t− δt) +
δt2

m
f(t) + ϑ(δt4) (68)

which is the underlying basis of the Verlet algorithm. [139] The Verlet al-

gorithm uses the previous and current positions of a particle, along with the

current forces acting on the particle, to determine the new position of the

particle; this is shown in Figure 15. Velocities are used to estimate the ki-

netic energy. The velocities can be calculated by subtracting equation 66

from equation 65, to give:

r(t+ δt)− r(t− δt) = 2v(t)δt+ ϑ(δt3) (69)

which gives:

v(t) =
r(t+ δt)− r(t− δt)

2δt
+ ϑ(δt2) (70)
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This means that r(t + δt) must be known before velocities can be cal-

culated and that the velocities are subject to error in the order δt2. The

method can be imprecise due to the addition of the small term ϑ(δt2) to the

difference of larger terms ϑ(δt) in equation 68.

Figure 15: Implementation of the Verlet scheme, showing the successive steps
in the method

A modification of the Verlet technique is the Verlet leapfrog algorithm, [140,141]

which considers velocity at half a time step behind. This is shown in equa-

tions 71 and 72:

v(t+
1

2
δt) =

r(t+ δt)− r(t)
δt

(71)
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v(t− 1

2
δt) =

r(t)− r(t− δt)
δt

(72)

which means that equation 68 can be defined as:

r(t+ δt)− r(t)
δt

=
r(t)− r(t− δt)

δt
+
δt

m
f(t) + ϑ(δt3) (73)

then from equations 71 and 72:

v(t+
1

2
δt) = v(t− 1

2
δt) +

δt

m
f(t) + ϑ(δt3) (74)

and:

r(t+ δt) = r(t) + v(t+
1

2
δt)δt+ ϑ(δt4) (75)
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The leapfrog algorithm requires positions and forces for the particles at

time t and the velocities of the particles at half a time step behind. Equa-

tion 74 is used to calculate the new velocities, at which point the velocities

”leapfrog” over the coordinates to produce the values for the next half time

step velocities, v(t+ 1
2
δt). This is illustrated visually in Figure 16.

Figure 16: Verlet leapfrog velocity sampling [142]

The current velocities can be calculated using equation 76:

v(t) =
1

2

[
v(t+

1

2
δt) + v(t− 1

2
δt)
]

(76)

Once the velocities have advanced, the positions of the particles can be

advanced using equation 75. Because the Verlet leapfrog method does not

take the difference of two large quantities to obtain a small one, it has im-

proved numerical precision over the Verlet algorithm.

3.2.2 Ensembles

Ehrenfest’s theorem of 1927 has been interpreted in terms of ensembles [143],

as has the work of Boltzmann in 1866 [144]. Allen et al [145] developed a method
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to incorporate certain conditions when addressing variables such as temper-

ature, pressure and volume. The conditions of the simulation are known as

the ensemble. There are several common variants:

The NVE ensemble – the number of particles, the volume and the

energy of the system are kept constant. This is also known as the

microcanonical system.

The NVT ensemble – the number of particles, the volume and the tem-

perature of the system remain constant. Also known as the canonical

ensemble.

The NPT ensemble – this is also termed the isobaric-isothermal ensem-

ble. The number of particles, the pressure and the temperature of the

system are kept constant.

The µVT ensemble – also known as the grand canonical ensemble, this

is where the chemical potential, the volume and the temperature of the

system remain constant. This ensemble is mainly used in Monte Carlo

simulations.

The microcanonical (NVE) ensemble has a constant number of particles,

volume and total system system energy and the Hamiltonian of the system

is given by:

HNV E = U +K.E. (77)
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where U is the potential energy and K.E. is the kinetic energy.

The canonical (NVT) ensemble, with constant number of particles, vol-

ume and temperature, maintains the temperature using a Nosé-Hoover ther-

mostat, [146] which acts as a heat bath. The Nosé-Hoover algorithm modifies

Newton’s equations of motion to include a friction coefficient X :

dv(t)

dt
=

f(t)

m
−X (t)v(t) (78)

The friction coefficient is controlled by the first order differential equation:

dX (t)

dt
=

1

T 2
T

[
T

Text
− 1

]
(79)

where TT is an arbitrary time constant for variations in temperature, Text

is the temperature of the heat bath and T is the instantaneous temperature.

The Verlet leapfrog algorithm can therefore be modified as:

X (t+
1

2
δt) = X (t− 1

2
δt) +

δt

T 2
T

[
T

Text
− 1

]
(80)
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X (t) =
1

2

[
X (t− 1

2
δt) + X (t+

1

2
δt)

]
(81)

v(t+
1

2
δt) = v(t− 1

2
δt) +

[
f(t)

m
−X (t)v(t)

]
δt (82)

v(t) =
1

2

[
v(t− 1

2
δt) + v(t+

1

2
δt)

]
(83)

r(t+ δt) = r(t) + v(t+
1

2
δt)δt (84)

Because v(t) is required to calculate T , which in turn is required to cal-

culate v(t) itself, several iterations are necessary to achieve self-consistency.
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The iteration number is set as three within DL POLY and the initial predic-

tions of v(t) and T are made using the standard Verlet leapfrog algorithm.

The conserved quantity in NVT, derived from the Hamiltonian for the system

is given by:

HNV T = HNV E + fkBText

(
T 2
T X 2(t)

2
+

∫ t

0

X (s)d(s)

)
(85)

The isobaric-isothermal (NPT) ensemble, with constant particle number,

pressure and temperature, can be isotropic or anisotropic. Isotropic allows

the cell dimensions to change but not the cell shape, anisotropic allows both

the cell dimensions and cell shape to change. A barostat to control the

pressure is introduced into DL POLY by adjusting the Hoover algorithm

with the Melchionna modification; [147] which calculates the velocities as:

dv(t)

dt
=

f(t)

m
−
[
X (t) + η(t)

]
v(t) (86)

where η is the friction coefficient of the barostat:

dη(t)

dt
=

1

NkBTextT 2
p

V (t)[P − Pext] (87)
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where Tp is an arbitrary time constant for variations in pressure, P is the

instantaneous pressure, Pext is the pressure of the barostat and V (t) is the

volume of the system at time t, where:

dV(t)

dt
= [3η(t)V (t)] (88)

The Verlet leapfrog algorithm can therefore be modified as:

η(t+
1

2
δt) = η(t− 1

2
δt) +

V (t)δt

NkBTextT 2
p

[P − Pext] (89)

η(t) =
1

2

[
η(t− 1

2
δt) + η(t+

1

2
δt)

]
(90)

v(t+
1

2
δt) = v(t− 1

2
δt) +

[
f(t)

m
−
[
X (t) + η(t)

]
v(t)

]
δt (91)
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v(t) =
1

2

[
v(t− 1

2
δt) + v(t+

1

2
δt)

]
(92)

because:

dr(t)

dt
= v(t) + η(t)[r(t)−R0] (93)

where R0 is the centre of mass of the system. So:

r(t+ δt) = r(t) +
(

v(t+
1

2
δt) + η(t+

1

2
δt)
[
r(t+

1

2
δt)−R0

])
δt (94)

where:

r(t+
1

2
δt) =

1

2

[
r(t) + r(t+ δt)

]
(95)
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As with the NVT ensemble, several iterations are required to achieve

self-consistency. This iteration number is set to four in DL POLY and initial

estimates for P , T , v(t) and r(t + 1
2
δt) are made using the standard Verlet

leapfrog algorithm. The new cell volume can be obtained from:

V(t+ δt) = V(t)exp
[
3δtη(t+

1

2
δt)
]

(96)

The new cell vectors can be obtained from:

H(t+ δt) = H(t)exp
[
η(t+

1

2
δt)δt

]
(97)

where H is the cell matrix with columns that are the three vectors of the

cell. In the isotropic situation the conserved quantity for the NPT ensemble

is:

HNPT = HNV T + PextV(t) +
3NkBText

2
η(t)2T 2

p (98)
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If anisotropic conditions are used the cell shape is allowed to change by

defining η as tensor η, which enables the isotropic algorithm to be adjusted.

3.3 Surfaces

Interactions at the surface of green rust and other minerals are a key part

of this project and so surface generation must be used. The computer code

METADISE was used for the generation of two-dimensional surfaces in this

work; it has been used to calculate surface energies using energy minimisation

to determine the lowest energy states of each surface.

3.3.1 Mineral Surface Types

Crystal surfaces can be considered as a stack of planes which are periodic in

two dimensions. This work uses Miller indices to describe the direction of

cut at mineral surfaces. [148] However, when describing surfaces it is not only

the direction of cut which is important, the location of the surface is also

crucial. Work by Bertaut showed that when there is a dipole moment in the

unit cell which is perpendicular to the surface, the surface energy diverges

with increasing depth. [149] Tasker showed that this divergence to infinity only

occurs on certain charged surfaces and described the different surface types

that can be generated from different cut locations. [150] These surfaces are

represented in Figure 17.

Surface type 1 consists of neutral planes which contain both anions and

cations, there is no dipole perpendicular to the surface. Surface type 2 has

charged planes in a symmetrical arrangement with no dipole perpendicular to
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Figure 17: The three types of stacking surface described by Tasker [151]

the surface. The type 3 surface has a neutral repeat unit but there is a dipole

perpendicular to the surface; the surface energy diverges and is infinite which

means this type of surface is naturally unstable. Therefore if type 3 surfaces

are to be simulated the dipole must be removed. When a polar surface is

cut it reconstructs to form a non-polar surface. This could be facilitated by

adsorption of other atoms or a redox process, or it could involve faceting of

the polar surface. The faceting produces small stable surfaces as shown in

Figure 18, where a polar (1 1 1) surface of MgO has reconstructed to form a

non-polar surface. This faceting is represented schematically in figure 19.

Similar faceting can be achieved in modelling by removing half of the ions

from the top layer of the surface and transferring them to the bottom of the

unit cell, a method developed by Oliver et al [153] and shown in Figure 20.
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Figure 18: Scanning electron microscope image showing faceting of the polar
(1 1 1) MgO surface to produce neutral (1 0 0) surfaces [152]

Figure 19: Schematic showing how faceting produces a non-polar surface
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Figure 20: Type 3 surface reconstructed to remove the dipole [154]
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3.3.2 Surface Energy Calculations - Two-dimensional Approach

As previously stated, surface simulations consider a crystal to consist of a

series of charged planes which are parallel to the surface and periodic in two

dimensions. Building up many of these planes forms the crystal. However it

is computationally expensive to simulate each of these planes so METADISE

uses the two-region approach developed by Tasker. [150] The crystal is made

up of two blocks, each of which is constituted of two regions; these blocks

are periodic in two dimensions.

Region 1 contains the atoms near the surface of the crystal and these can

be mechanically relaxed. Region 2 represents the bulk of the crystal and the

atomic positions are not relaxed here, they remain at the positions of bulk

equilibrium. Two blocks together represent a bulk crystal, but removal of one

of the blocks can be used to represent a crystal surface. This is illustrated

in Figure 21.

Figure 21: Schematic representation of the two-region approach used by
METADISE for surfaces and interfaces [84]
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The total energy of a block consists of the sum of the energy in region 1

and that in region 2. The energy in region 1 can be subdivided into two parts;

the interaction energy between all the ions in region 1 and the interaction

energy between the ions in region 1 and the ions in region 2. The same is

true in region 2, but because the ions in region 2 are held in fixed positions,

the interactions between them in this region are taken to be zero. The energy

of a block is calculated by summing all the interaction energies of the atoms

within that block:

US = (ES
I−I + ES

I−II) + (ES
II−I + ES

II−II) (99)

where the first term represents the atoms in region 1 and the second term

represents the atoms in region 2. For example, ES
I−II is the energy of the

atoms in the surface of region 1 interacting with the atoms in the surface

of region 2. A similar method can be applied to calculate the energy of the

bulk:

UB = (EB
I−I + EB

I−II) + (EB
II−I + EB

II−II) (100)

The slab method can also be used; the method for calculating the surface

energy is to evaluate the total energy of a slab of the material of interest
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(generally with a thickness between 5 to 15 layers) and to subtract from that

the bulk energy obtained from a separate calculation. This procedure singles

out the total energy contribution due to the presence of the surface [155].

The Coulomb sum is only provisionally convergent for a 2-D slab, so an

analogous approach to the Ewald sum is frequently taken, originally devised

by Parry [120,119]; the METADISE code contains the Parry sum.

The surface energy is the excess energy of the surface compared to the

energy of the bulk for the same number of atoms, per unit area. It is given

by:

γ =
US − UB

A
(101)

US is the energy of the surface block, UB is the energy of the bulk crystal

containing the same amount of atoms as the surface block, A is the surface

area. METADISE allows relaxation of the surface, cut along Miller indices,

to produce the surface with the most energetically favourable arrangement.

3.3.3 Surface Energy Calculations - Three-dimensional Approach

The three-dimensional Ewald method is very quick and efficient in compar-

ison with the two-dimensional Parry method, so when undertaking surface

molecular dynamics calculations using DL POLY a particular application of

the three-dimensional periodic boundary condition is used. The system is

first allowed to relax to the bulk structure, then is it orientated so that two
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of the lattice vectors are parallel to the surface. This means the third lattice

vector is perpendicular to the surface; this vector is increased in size, which

introduces a vacuum gap into the crystal structure and results in repeating

crystal slabs. The system, including the vacuum gap, is treated as a 3-D

periodic system. The chosen surfaces are therefore on opposite sides of the

slabs and so the thickness of the slab and the vacuum gap must be sufficient

that the periodic images do not interact with each other. Once convergence

testing has been used to determine suitable dimensions for the vacuum gap

and slab, energy minimisation can be used to relax the surfaces in the system.

This method takes advantage of the efficiency of summing Coulombic energy

for a three-dimensional system. When simulating a crystal slab in vacuum

DL POLY can utilise either the NVT or NVE ensemble as the volume must

be kept fixed; if it were not, the slabs would reform the more energetically

favourable bulk structure.
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4 Iron (II) Hydroxide and Goethite

Green rust is a complex mineral to model so this project begins by first

modelling the simpler minerals iron (II) hydroxide (Fe(OH)2) and goethite

(FeO(OH)). Iron (II) hydroxide is a layered double hydroxide (LDH), though

simpler in structure than the LDH green rust. LDH’s have a generic sequence

of layers [AcB Z AcB]n where c is the metal cation layer, Z is a layer of

anions and neutral molecules (such as water) and A and B are hydroxide

layers either side of the metal cation layer. Goethite is a naturally occurring

mineral and can be formed by the oxidation of green rust. The aim of this

chapter is to investigate the bulk and low index surfaces of these minerals

using plane wave DFT and a variety of potential models to develop potential

parameters which will form the basis of further study in chapter 6. The

bulk structure and five different surfaces of Fe(OH)2 were investigated, with

varying vacuum gap size above the surface, and the results presented. Next,

the results from investigating the bulk and seven different surfaces of goethite

were considered.

4.1 Iron (II) Hydroxide Crystal Structure

Iron (II) hydroxide is a LDH (see Figure 22) with the brucite (Mg(OH)2) or

portlandite (Ca(OH)2) configuration whose pure form is not found in nature;

its closest natural analogue is the rare mineral amakinite (Fe, Mg)(OH)2.

Under anaerobic conditions it can be oxidised by water protons to form mag-

netite (Fe3 O4), and under aerobic conditions it can oxidise to form green rust,

before further oxidising to form goethite (FeO(OH)). However, it has been
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produced under experimental conditions, [33,156,157,158,159] which has allowed

the reporting of a hexagonal structure, [160,161,162]as represented in Figure 23,

with space group P 3̄m1.

Figure 22: Layered double hydroxide typical structure. In the a and b direc-
tions are planes of Fe(OH)2, in the c direction the structure is dominated by
weaker hydrogen bonds from the OH groups in the gaps between the layers.

The oxides and hydroxides of iron were studied by Bernal et al [162] using

X-ray diffraction and their results for Fe(OH)2 are shown in Table 1.
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Figure 23: Schematic of a hexagonal Bravais lattice, where a = b 6= c and
α = β = 90° and γ = 120°

Table 1: Fe(OH)2 experimentally determined cell parameters [162]

Fe(OH)2 cell parameters

a (Å) 3.26

b (Å) 3.26

c (Å) 4.60

α (°) 90

β (°) 90

γ (°) 120

To verify and compare existing potential models and DFT calculations the
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experimentally determined cell configuration was taken and the METADISE

code used to generate DFT input files for use in CASTEP. PBEsol pseudopo-

tentials [95] were used for convergence testing of the DFT final free energy

results; PBEsol is a revised Perdew-Burke-Ernzerhof GGA [92] that improves

equilibrium properties of densely-packed solids and their surfaces. It was de-

termined that a 4 4 4 k-point grid with a 650eV cut-off value was acceptable,

giving convergence to within 0.02eV as shown in Table 2.

Table 2: Fe(OH)2 convergence testing of DFT calculations

Final free energy (eV)

plane-wave cut-off energy (eV)

k-point grid 300 400 500 600 650 750

3 3 3 -1753.19 -1762.80 -1767.04 -1766.23 -1766.30 -1766.31

4 4 4 -1751.20 -1762.84 -1765.64 -1766.25 -1766.30 -1766.32

5 5 5 -1751.18 -1762.83 -1765.76 -1766.25 -1766.30 -1766.31

6 6 6 -1753.16 -1763.35 -1765.76 -1766.25 -1766.30 -1766.32

A graphical representation of the convergence is shown in Figure 24.

The converged values were used to run a full DFT geometry optimisa-

tion; different potential sets were used to determine the best set to use going

forward. PBEsol, on-the-fly (OTF), PBE recpot and PBE pseudo D poten-

tial parameters were tested and showed that the PBE pseudo D potential set

was able to most closely reproduce the experimental cell sizes; the cell angles

were reproduced to within 0.02% and the a, b and c parameters to within

0.87%, 4.56% and 2.17% respectively. The next closest results were produced
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Figure 24: Graphical representation of convergence testing for the bulk struc-
ture of Fe(OH)2

from the PBE recpot potentials with a, b and c parameters reproduced to

within 3.68%, 3.68% and 2.61% respectively, though the cell angles were all

around 2.3% different to experimental results. Whilst the PBEsol potentials

were able to exactly reproduce the cell angles, the a, b and c parameters were

6.44%, 6.44% and 9.35% away from experimental values respectively. The

results from testing these different parameters are shown in Table 3. The

Hubbard value in the DFT cell file, which affects the movement of the d and

f electrons, was found to give a marginally better result if set to 4.4 for the d

electrons of iron, so this value was retained alongside the PBE pseudo D po-

tential; this value could be considered practically arbitrary as it only affected

the c parameter of the cell, improving the value compared to experimental

by 1.9× 10−5Å.
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Table 3: Fe(OH)2 experimentally determined cell parameters compared to
DFT modelling results (experimental: a = b 6= c and α = β 6= γ)

Results from Cell dimensions (Å) % difference to experiment Cell angles (°) % difference to experiment

a b c a b c α β γ α β γ

Experiment 3.26 3.26 4.60 - - - 90.00 90.00 120.00 - - -

PBEsol 3.05 3.05 4.17 -6.44 -6.44 -9.35 90.00 90.00 120.00 0.00 0.00 0.00

PBE recpot 3.14 3.14 9.32 -3.68 -3.68 102.61 92.04 87.96 122.67 2.27 -2.27 2.23

PBE pseudo D 3.11 3.11 4.56 -0.87 4.56 -2.17 90.02 89.98 120.01 0.02 -0.02 0.01

OTF 3.08 2.67 4.26 -7.39 -18.10 -2.61 90.03 89.97 120.02 -0.03 -0.03 0.01

The experimentally determined structure was optimised in METADISE

using the rigid ion CLAYFF potentials, [51] a rigid ion model based on the

work of Baram and Parker [163] which was modified and refitted [71,70,164] and a

shell model based from the work of Lewis and Catlow [106], which also comes

from the Baram and Parker work [163]. The ionic charges and potential pa-

rameters were varied slightly from the original values on the CLAYFF, rigid

and shell models. The CLAYFF potential parameters used are detailed in

Tables 4 to 6.

Table 4: Partial charges (qu) on ions used in the testing and development of
interatomic potentials for Fe(OH)2, CLAYFF potentials

Species

Ion Charge (e)

Iron (Fe) 1.330

Hydroxide Oxygen (Oh) -1.090

Hydrogen (H) 0.425
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Table 5: Lennard-Jones potentials for Fe(OH)2, CLAYFF potentials

Lennard-Jones potentials Aijr
−12
ij −Bijr

−6
ij

Ion pair (ij) Aij (eV Å12) Bij (eV Å6) Reference

Fe-Fe 225.1652853 0.018779573 [51]

Oh-Oh 27290.95482 27.12256792 [51]

Fe-Oh 3195.83262 0.810345514 [51]

Table 6: Harmonic potentials for Fe(OH)2, CLAYFF potentials

Harmonic potentials kij/2(rij − r0)2

Species (ij) kij (eV Å−2) r0 (Å) Reference

Oh-H 48.059 1.00 [51]

Tables 7 to 10 show the shell model potentials based on the work of Lewis

and Catlow.

Table 7: Partial charges (qu) on ions used in the testing and development of
interatomic potentials for Fe(OH)2, based on the shell model of Lewis and
Catlow

Species

Ion Charge (e)

Iron (Fe) 2.00

Hydroxide Oxygen (Oh) core 0.90

Hydroxide Oxygen (Oh) shell -2.30

Hydrogen (H) 0.40
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Table 8: Buckingham potentials for Fe(OH)2, based on the shell model of
Lewis and Catlow

Buckingham Potentials Aij exp(−rij/ρij)− (Cij/r
6
ij)

Ion pair (ij) Aij (eV) ρij (Å) Cij (eV Å6) Reference

Fe (core)-Oh (shell) 530.00 0.3399 0.00 [70]

H (core)-Oh (shell) 311.97 0.2500 0.00 [70]

Oh (shell)-Oh (shell) 22764.30 0.1490 6.97 [70]

Table 9: Morse potentials for Fe(OH)2, based on the shell model of Lewis
and Catlow

Morse potentials Dij[{1− exp(−αij(rij − r0))}2 − 1]

Ion pair (ij) Dij (eV) αij (Å−1) r0 (Å) Coul.Sub (%) Reference

H (core)-Oh (shell) 7.0525 3.1749 0.9258 0.00 [70]

Table 10: Harmonic potentials for Fe(OH)2, based on the shell model of
Lewis and Catlow

Harmonic potentials kij/2(rij − r0)2

Species (ij) kij (eV Å−2) r0 (Å) Reference

Oh (core)-Oh (shell) 74.92038 0.00 [106]

Tables 11 to 13 show the rigid ion potentials based on the work of Baram

and Parker.
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Table 11: Partial charges (qu) on ions used in the testing and development of
interatomic potentials for Fe(OH)2, based on the rigid ion model of Baram
and Parker

Species

Ion Charge (e)

Iron (Fe) 2.00

Hydroxide Oxygen (Oh) -1.40

Hydrogen (H) 0.40

Table 12: Lennard-Jones potentials for Fe(OH)2, based on the rigid ion model
of Baram and Parker

Lennard-Jones potentials Aijr
−12
ij −Bijr

−6
ij

Ion pair (ij) Aij (eV Å12) Bij (eV Å6) Reference

Fe-Oh 517.50 0.3399 [163]

Oh-Oh 22764.00 0.1490 [163]

H-Oh 311.97 0.2500 [163]

Table 13: Morse potentials for Fe(OH)2, based on the rigid ion model of
Baram and Parker

Morse potentials Dij[{1− exp(−αij(rij − r0))}2 − 1]

Ion pair (ij) Dij (eV) αij (Å−1) r0 (Å) Coul.Sub (%) Reference

H-Oh 7.0525 3.1749 0.9258 0.00 [163]

Table 14 compares the results of the optimisations and also includes the
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closest DFT result for comparison.

Table 14: Fe(OH)2 experimentally determined cell parameters compared to
interatomic potential modelling results (experimental: a = b 6= c and α =
β 6= γ)

Results from Cell dimensions (Å) % difference to experiment Cell angles (°) % difference to experiment

a b c a b c α β γ α β γ

Experiment 3.26 3.26 4.60 - - - 90.00 90.00 120.00 - - -

CLAYFF rigid ion 3.25 3.25 4.63 -0.31 -0.31 0.65 90.00 90.00 120.00 0.00 0.00 0.00

Rigid ion 3.25 3.25 4.50 -0.31 -0.31 -2.17 90.00 90.00 120.00 0.00 0.00 0.00

Shell model 3.26 3.26 4.48 0.00 0.00 -2.61 90.00 90.00 120.00 0.00 0.00 0.00

PBE pseudo D 3.11 3.11 4.56 -0.87 4.56 -2.17 90.02 89.98 120.01 0.02 -0.02 0.01

Although there is limited experimental data for pure Fe(OH)2 the poten-

tial parameters used were all able to reproduce reported structures with a

and b parameters between 0% and 0.31% difference to experiment and the c

parameter from the CLAYFF potentials was within 0.65% difference (other

potentials produced c parameters of between 2.17% and 2.61% difference to

experiment). The DFT results using the PBE pseudo D potential set were

unable to obtain as close a match to experiment as the interatomic potential

method, with a, b and c parameters varying from experimental by 0.87%,

4.56% and 2.17% respectively. Having determined the suitability of CLAYFF

potentials for modelling the bulk structure of Fe(OH)2 they were then used

for modelling Fe(OH)2 surfaces.

4.2 Iron (II) Hydroxide Surfaces

The low index planes investigated were of Miller indices (0 0 1), (0 1 0), (0 1

1), (1 1 0) and (1 1 1). These surfaces were generated from the DFT relaxed

cell using METADISE. Once the surfaces were generated METADISE was
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again utilised to prepare DFT input, so that slabs terminating in each of the

surface types could be modelled and investigated. The first investigation for

each slab was to optimise the vacuum gap above the surface using convergence

testing. A slab of 4 unit cells thickness was taken for each surface and the

vacuum gap varied from 20Å to 35Å in 5Å increments; the results for total

energy (corrected for finite basis set) were then compared for convergence

and are shown in Table 15.

Table 15: Vacuum gap convergence testing for the low index Miller surfaces
of Fe(OH)2

Vacuum gap (Å)

20 25 30 35

Surface Total energy (-eV)

(0 0 1) 5962.54 5962.51 5962.51 5962.51

(0 1 0) 5962.53 5962.51 5962.51 5962.51

(0 1 1) 10429.24 10429.22 10429.23 10429.23

(1 1 0) 14902.11 14902.10 14902.10 14902.10

(1 1 1) 16392.81 16392.79 16392.78 16392.78

Convergence to less than one hundredth of an electron volt was observed

for the (0 0 1), (0 1 0), (1 1 0) and (1 1 1) surfaces at a 25Å vacuum gap;

similar convergence was seen for the (0 1 1) surface with a 30Å vacuum gap.

To compare surface energy trends for the different Miller indices the thick-

ness of region 1 in the two region system, as discussed in Chapter 3, must be

optimised for a relaxed system; testing was carried out to find the converged
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value of γmin as the size of region 1 was varied for each different surface under

investigation. This was done by running a geometry optimisation of each slab

using METADISE, with the value for region 1 initially set to a thickness of

3 unit cells. This produced a surface energy value in eV/Å2 which was then

manually converted to J/m2. As also discussed in Chapter 3, the surface

energy is the excess energy of the surface compared to the energy of the bulk

for the same number of atoms, per unit area. It is given by equation 101.

Because the surface energy was for a region 1 thickness of 3 unit cells

the bulk energy which was calculated earlier must also be multiplied by 3,

so that it is for the same number of atoms as the surface energy. The bulk

energy value is subtracted from the surface energy value and the resultant

value divided by the surface area of the particular cut through the unit cell.

This process was then repeated using METADISE, with the value for region 1

increased by an integer of 1, for values of 4, 5 and 6; the overall slab thickness

was increased by the same amount each time to maintain a constant value for

region 2. Each time the slab was increased in thickness the vacuum gap above

the surface was increased by 5Å to allow for the extra unit cell that was added

to the slab thickness since vacuum gap convergence testing. The resultant

figures could then be compared for each surface to investigate surface energy

trends; the actual energy values are not important as they vary depending

upon potential sets and software used, but the trends of the values are useful

indicators of relative surface stability. The DFT convergence testing results

for the thickness of region 1 are shown in Tables 16 to 20.
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Table 16: Region 1 thickness convergence testing for the (0 0 1) Miller surface
of Fe(OH)2

(0 0 1) Miller surface

Thickness of Region 1

(unit cells)

Energy difference between

surface and bulk (J/m2)

3 0.14

4 0.14

5 0.14

6 0.14

Converged value for

Region 1 thickness (unit cells)
3

Table 17: Region 1 DFT thickness convergence testing for the (0 1 0) Miller
surface of Fe(OH)2

(0 1 0) Miller surface

Thickness of Region 1

(unit cells)

Energy difference between

surface and bulk (J/m2)

3 0.08

4 0.08

5 0.08

6 0.08

Converged value for

Region 1 thickness (unit cells)
3
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Table 18: Region 1 DFT thickness convergence testing for the (0 1 1) Miller
surface of Fe(OH)2

(0 1 1) Miller surface

Thickness of Region 1

(unit cells)

Energy difference between

surface and bulk (J/m2)

3 1.44

4 3.70

5 1.44

6 1.44

Converged value for

Region 1 thickness (unit cells)
3

Table 19: Region 1 DFT thickness convergence testing for the (1 1 0) Miller
surface of Fe(OH)2

(1 1 0) Miller surface

Thickness of Region 1

(unit cells)

Energy difference between

surface and bulk (J/m2)

3 2.53

4 2.43

5 2.10

6 2.05

Converged value for

Region 1 thickness (unit cells)
6
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Table 20: Region 1 DFT thickness convergence testing for the (1 1 1) Miller
surface of Fe(OH)2

(1 1 1) Miller surface

Thickness of Region 1

(unit cells)

Energy difference between

surface and bulk (J/m2)

3 2.40

4 1.99

5 2.00

6 1.98

Converged value for

Region 1 thickness (unit cells)
4

The energy value for the (0 1 1) Miller surface in Table 18, where Region

1 is 4 unit cells thick, appears anomalous when compared to the other results

in the table; this was checked and repeat testing produced the same energy

value. The reason for this anomaly was not determined.

Using the region 1 thickness values from the DFT convergence testing,

the same Miller surfaces were relaxed to their minimum energy states using

METADISE; the previously tested rigid ion and shell model potentials were

utilised and the energy trends for the different surfaces compared. These

trends are displayed in Table 21.

133



Table 21: Surface energy trend comparison for the low index Miller surfaces
of Fe(OH)2. Figures in square brackets represent the lowest to highest energy
trends within each set of results.

Energy difference between surface and bulk (J/m2)

Parameter set

Miller surface Shell model Rigid ion CLAYFF rigid ion DFT PBE pseudo D

(0 0 1) 0.08 [1] 0.07 [1] 0.29 [1] 0.14 [2]

(0 1 0) 0.43 [3] 0.40 [2] 0.55 [3] 0.08 [1]

(0 1 1) 0.41 [2] 0.40 [2] 0.49 [2] 1.44 [3]

(1 1 0) 0.71 [5] 0.73 [5] 0.80 [5] 2.05 [5]

(1 1 1) 0.68 [4] 0.70 [4] 0.56 [4] 1.98 [4]

As mentioned earlier in this chapter, the numerical values are less critical

than the trend of the values; the latter is the more useful information when

comparing the likely stability of different surfaces. The lower the value in

Table 21, the more stable the Miller surface is, relative to the other surfaces

using the same potentials.

It can be seen that the (0 0 1) surface of Fe(OH)2 is the most stable for

each of the interatomic potential sets. The (0 0 1) surface using the CLAYFF

potentials is shown in figure 25.

The next most stable are the (0 1 0) and (0 1 1) surfaces, with the results

for these two surfaces being very close to each other for the interatomic

potential sets. The (0 1 1) surface using the CLAYFF potentials is shown as

an example in figure 26.
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Figure 25: Fe(OH)2 (0 0 1) surface, perpendicular to lattice vector a, gener-
ated from CLAYFF potentials. The spacing between the layers of Fe is 4.63
Å

The DFT results vary slightly for these first three surfaces, showing the

(0 1 0) surface to be the most stable, marginally more so than the (0 0 1);

the (0 1 1) result from DFT suggests this to be the third most stable of the

surfaces investigated. Images of the (0 0 1) and (0 1 1) surfaces generated

from DFT are shown in figures 27 and 28 respectively.

The reason for the difference in the stability ordering of the DFT results

is unclear and would require further investigation beyond the scope of this

chapter, but one possible reason could be that DFT has no direct mecha-

nism to account for dispersive van der Waals forces and must rely on best-fit

potentials to try and recreate the effects without the mechanism. The re-

laxation of the structures when cutting surfaces appear similar when using

potentials or DFT, with DFT generally having a slightly smaller spacing be-

tween the layers of Fe(OH)2. Physical studies of brucite (isostructural with

Fe(OH)2) show that the preferred surface is the (0 0 1) [165,166]; this, along
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Figure 26: Fe(OH)2 (0 1 1) surface, perpendicular to lattice vector a, gener-
ated from CLAYFF potentials. The spacing between the layers of Fe is 4.97
Å

Figure 27: Fe(OH)2 (0 0 1) surface, perpendicular to lattice vector a, gener-
ated from DFT. The spacing between the layers of Fe is 4.57 Å

with the known difficulties that DFT has in modelling layered structures,

validates the results of the interatomic potential model in determining the

(0 0 1) surface as the most stable.

The results for the (1 1 0) surface show this to be the least stable for

all the interatomic potential sets and the DFT calculations, with the (1 1 1)

surface more stable than the (1 1 0) by between 0.03 and 0.14 J/m2 in each

case.

It has been shown that interatomic potentials can successfully be used
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Figure 28: Fe(OH)2 (0 1 1) surface, perpendicular to lattice vector a, gener-
ated from DFT. The spacing between the layers of Fe is 4.90 Å

to model the bulk and low index Miller surfaces of Fe(OH)2, with greater

accuracy than DFT calculation allows for bulk modelling, when compared

with experimental data. For ease of mixing potentials in further investiga-

tion of green rust it would be ideal to utilise existing potential sets where

possible; the modelling of the bulk and low index Miller surfaces of Fe(OH)2

has demonstrated that the CLAYFF interatomic potentials are suitable for

use in these investigations.

4.3 Goethite Crystal Structure

Following modelling of Fe(OH)2 the interatomic potential sets were tested

further by the modelling of goethite (see Figure 29). This was pertinent

because green rust has Fe2+ and Fe3+ in its structure and the modelling

of Fe(OH)2 involved only Fe2+; thus modelling to test Fe3+ potentials was

required. Goethite is a relevant mineral to test the potentials because in an

oxidising environment green rust usually turns into the Fe3+ oxyhydroxides

goethite (α-FeOOH) and lepidocrocite (γ-FeOOH). [167]
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Figure 29: Goethite structure. The planes of Fe are linked by bonds to
oxygen atoms. Weaker hydrogen bonds from the OH groups are present in
the structure.

Goethite has an orthorhombic structure, represented in Figure 30, with

space group Pbnm.
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Figure 30: Schematic of an orthorhombic Bravais lattice, where a 6= b 6= c
and α = β = γ = 90°. An orthorhombic lattice may be either primitive
or centred in one of three different ways: C-face centred, body-centred, or
all-face centred

The cell parameters of goethite have been reported in several experimen-

tal studies. [168,169,170,171] The reported experimental cell parameters from the

Handbook of Mineralogy [166] were used for comparison to simulation results

and are shown in Table 22.
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Table 22: Goethite (α-FeOOH) experimentally determined cell parame-
ters [166]

α-FeOOH cell parameters

a (Å) 4.608

b (Å) 9.956

c (Å) 3.0215

α (°) 90

β (°) 90

γ (°) 90

Similar procedures were followed to those when using Fe(OH)2, to test the

potentials by comparing their results to experimental data and the results

of DFT calculations. The experimentally determined cell configuration was

taken and the METADISE code used to generate DFT input files for use in

CASTEP. After determining the PBE pseudo D potentials to be the most

suitable when testing with Fe(OH)2 these were the chosen set for use with

goethite. These potentials were used with and without a Hubbard d value

of 4.4 for comparison; a full DFT geometry optimisation was run using each

of these parameter sets, with a 4 4 4 k-point grid and 650eV cut-off energy,

and no difference in the results was noted, so the Hubbard value was left

unamended moving forward. These results are shown in Table 23.
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Table 23: Goethite experimentally determined cell parameters compared to
DFT modelling results, for amended and unamended Hubbard d values, using
PBE pseudo D potentials (experimental: a 6= b 6= c and α = β = γ)

Results from Cell dimensions (Å) % difference to experiment Cell angles (°) % difference to experiment

a b c a b c α β γ α β γ

Experiment 4.61 9.96 3.02 - - - 90.00 90.00 90.00 - - -

Unamended Hubbard d value 4.40 9.53 2.94 -4.23 -4.09 -2.47 90.00 90.00 89.99 0.00 0.00 -0.01

Hubbard d value 4.4 4.40 9.53 2.94 -4.23 -4.09 -2.47 90.00 90.00 89.99 0.00 0.00 -0.01

Convergence testing of the PBE pseudo D potentials showed that a 4 4

4 k-point grid with a 650eV cut-off energy value was acceptable, as shown in

Table 24.

Table 24: Goethite convergence testing of DFT calculations

Final free energy (eV)

plane-wave cut-off energy (eV)

k-point grid 600 650 700

3 3 3 -5898.94 -5898.96 -5898.96

4 4 4 -5899.01 -5899.03 -5899.03

5 5 5 -5899.04 -5899.06 -5899.06

A graphical representation of the convergence is shown in Figure 31.
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Figure 31: Graphical representation of convergence testing for the bulk struc-
ture of goethite

As with Fe(OH)2, the experimentally determined bulk structure was opti-

mised in METADISE using the rigid ion CLAYFF potentials [51] and the mod-

ified refitted potentials [71,70,164] based on the work of Baram and Parker. [163]

The shell model tested for Fe(OH)2 was not used, having already determined

the rigid ion potentials to be suitable for this modelling, and easier for future

mixing of potentials. The goethite structure determined by Zepeda-Alarcon

et al [171] was used as the starting point for these optimisations for expediency,

as the cell input file was available on the International Crystal Structural

Database. The potential parameters and ionic charges used for the CLAYFF

modelling are those detailed earlier in this chapter in Tables 4 to 6. The

rigid ion potentials and charges based on the rigid ion model of Baram and

Parker are those detailed in Tables 11 to 13.

The results of these geometry optimisations are shown in Table 25 and

include the DFT result for comparison.
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Table 25: Goethite experimentally determined cell parameters compared to
interatomic potential modelling results (experimental: a 6= b 6= c and α =
β = γ)

Results from Cell dimensions (Å) % difference to experiment Cell angles (°) % difference to experiment

a b c a b c α β γ α β γ

Experiment 4.60 9.94 3.01 - - - 90.00 90.00 90.00 - - -

CLAYFF rigid ion 4.56 9.84 3.02 -0.73 -1.04 0.22 90.00 90.00 90.00 0.00 0.00 0.00

Rigid ion 4.71 9.87 3.18 2.53 -0.75 5.63 90.00 90.00 90.00 0.00 0.00 0.00

PBE pseudo D 4.40 9.53 2.94 -4.30 -4.14 -2.43 90.00 90.00 89.99 0.00 0.00 -0.01

The CLAYFF potential parameters tested were able to adequately re-

produce reported structures. The a and b parameters were not quite as

accurately reproduced as the c parameter but they were within acceptable

limits for this work. The rigid ion model based on that of Baram and

Parker was slightly worse, with the c parameter, for example, being over

5% different from experimental observations. The DFT modelling using the

PBE pseudo D potential set was unable to produce a result as accurate as

those from the interatomic potential sets; again this could be because of the

difficulty DFT faces in having no direct mechanism to account for dispersive

van der Waals forces, though that is not the focus of this project. Having

established that the CLAYFF potentials were suitable in modelling the bulk

structure of goethite they were then used for modelling surfaces of goethite.

4.4 Goethite Surfaces

The Miller index surfaces investigated were the (0 0 1), (0 1 0), (0 1 1), (1 1

0), (1 1 1), (1 0 0) and (1 0 1). These were the same surfaces investigated for

Fe(OH)2, with the addition of the (1 0 0) and (1 0 1) surfaces; these two addi-
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tional surfaces were modelled because the goethite cell structure is a 6= b 6= c

whereas Fe(OH)2 is a = b 6= c. This meant that in both cases all the unique

low index surfaces based on 1 and 0 were investigated. The aforementioned

experimentally determined cell of Zepeda-Alarcon et al, relaxed using DFT,

was taken as the starting structure. The surfaces were generated from the

DFT relaxed cell using METADISE. Once generated, METADISE was used

to prepare DFT inputs so that slabs terminating in each surface type could

be modelled and investigated. DFT single point calculations were run and

the vacuum gap above each surface varied for convergence testing. A slab

of 20 unit cells thickness was taken for each surface and the vacuum gap

varied, starting from 20Å and increased in 5Å increments until convergence

was achieved. The results for total energy (corrected for finite basis set) were

compared to test for convergence and are shown in Table 26.
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Table 26: Vacuum gap convergence testing for the low index Miller surfaces
of goethite

Vacuum gap (Å)

20 25 30

Surface Total energy (-eV)

(0 0 1) 35384.22 35384.84 35384.84

(0 1 0) 11794.83 11794.75 11794.75

(0 1 1) 35376.74 35376.59 35376.60

(1 1 0) 23590.66 23590.59 23590.60

(1 1 1) 41276.88 41276.65 41276.66

(1 0 0) 29488.55 29488.32 29488.32

(1 0 1) 47182.71 47182.63 47182.63

Convergence for each surface, within one hundredth of an electron volt,

was observed for each of the surfaces at a vacuum gap of 25Å. The thick-

ness of region 1, of the two region system, was optimised using the same

method described for Fe(OH)2. The region values were different than those

for Fe(OH)2 due to the orthorhombic structure of goethite, where a 6= b 6= c,

meaning that the unit cell thickness for goethite differs greatly depending

upon the orientation of the cell. Once the region 1 values were converged to

a minimum value the surface energy trends could be compared. As previ-

ously, the trend is more important than the absolute values as this can be

used to predict relative stability of the different surfaces. The results from

this DFT convergence testing for the thickness of region 1, for each surface,

145



are shown in Tables 27 to 33.

Table 27: Region 1 DFT thickness convergence testing for the (0 0 1) Miller
surface of goethite

(0 0 1) Miller surface

Thickness of Region 1

(unit cells)

Energy difference between

surface and bulk (J/m2)

5 2.69

6 2.69

7 2.69

8 2.69

Converged value for

Region 1 thickness (unit cells)
5

Table 28: Region 1 DFT thickness convergence testing for the (0 1 0) Miller
surface of goethite

(0 1 0) Miller surface

Thickness of Region 1

(unit cells)

Energy difference between

surface and bulk (J/m2)

2 2.82

3 2.81

4 2.82

Converged value for

Region 1 thickness (unit cells)
2
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Table 29: Region 1 DFT thickness convergence testing for the (0 1 1) Miller
surface of goethite

(0 1 1) Miller surface

Thickness of Region 1

(unit cells)

Energy difference between

surface and bulk (J/m2)

5 4.47

6 6.00

7 4.47

8 4.47

Converged value for

Region 1 thickness (unit cells)
5

Table 30: Region 1 DFT thickness convergence testing for the (1 1 0) Miller
surface of goethite

(1 1 0) Miller surface

Thickness of Region 1

(unit cells)

Energy difference between

surface and bulk (J/m2)

3 2.06

4 2.06

5 2.06

6 2.06

Converged value for

Region 1 thickness (unit cells)
3
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Table 31: Region 1 DFT thickness convergence testing for the (1 1 1) Miller
surface of goethite

(1 1 1) Miller surface

Thickness of Region 1

(unit cells)

Energy difference between

surface and bulk (J/m2)

6 3.53

7 4.78

8 3.53

9 3.53

Converged value for

Region 1 thickness (unit cells)
6

Table 32: Region 1 DFT thickness convergence testing for the (1 0 0) Miller
surface of goethite

(1 0 0) Miller surface

Thickness of Region 1

(unit cells)

Energy difference between

surface and bulk (J/m2)

4 3.69

5 3.68

6 3.69

Converged value for

Region 1 thickness (unit cells)
4
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Table 33: Region 1 DFT thickness convergence testing for the (1 0 1) Miller
surface of goethite

(1 0 1) Miller surface

Thickness of Region 1

(unit cells)

Energy difference between

surface and bulk (J/m2)

7 2.86

8 2.86

9 2.86

Converged value for

Region 1 thickness (unit cells)
7

Using the region 1 values from the DFT convergence testing, METADISE

was used to relax each of the Miller surfaces to their minimum energy state.

Having previously established the suitability of the CLAYFF rigid ion po-

tential set these were the only set used; the energy trends for the different

surfaces were then compared. These energy trends are shown in Table 34.
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Table 34: Surface energy trend comparison for the low index Miller surfaces
of goethite. Figures in square brackets represent the lowest to highest energy
trends within each set of results

Energy difference between surface and bulk (J/m2)

Parameter set

Miller surface CLAYFF rigid ion DFT PBE pseudo D

(0 0 1) 1.09 [3] 2.69 [2]

(0 1 0) 0.67 [1] 2.82 [3]

(0 1 1) 1.52 [6] 4.47 [7]

(1 1 0) 1.18 [4] 2.06 [1]

(1 1 1) 1.39 [5] 3.53 [5]

(1 0 0) 1.79 [7] 3.69 [6]

(1 0 1) 0.85 [2] 2.86 [4]

Similarly to the Fe(OH)2 results, the numerical values are less important

than in noting their trends, with a lower value indicating a likely more sta-

ble surface in relative terms. Whilst there is a difference in energy values

between DFT and CLAYFF potential results, (the DFT energy values are

around twice the CLAYFF values), this is not key in this investigation of en-

ergy trends; in fact a difference in magnitude would be expected when taking

into account the difficulty DFT has with layered structures and in view of

the better agreement with experimental data achieved by interatomic poten-

tial modelling when considering relative surface stability. The energy value

results in Table 34 were, for each parameter set, divided by the lowest value;
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this provides energy ratios rather than values for comparison and is shown

in Table 35. Once converted to ratios it can be seen that the energy trends

between CLAYFF and DFT results vary in their order but not greatly in

their magnitude.

Table 35: Surface energy ratio comparison for the low index Miller surfaces
of goethite. Figures in square brackets represent the lowest to highest energy
trends within each set of results

Surface energy ratios

Parameter set

Miller surface CLAYFF rigid ion DFT PBE pseudo D

(0 0 1) 1.63 [3] 1.31 [2]

(0 1 0) 1.00 [1] 1.37 [3]

(0 1 1) 2.27 [6] 2.17 [7]

(1 1 0) 1.76 [4] 1.00 [1]

(1 1 1) 2.07 [5] 1.71 [5]

(1 0 0) 2.67 [7] 1.79 [6]

(1 0 1) 1.27 [2] 1.39 [4]

The CLAYFF potential sets showed the (0 1 0) to be the most stable

surface, followed by the (1 0 1). The (0 0 1) and (1 1 0) surfaces appeared

next most stable, quite close to each other in relative terms. Next in order

were the (1 1 1) and (0 1 1) with the (1 0 0) surface appearing the least stable

of those investigated. The results from DFT suggested the (1 1 0) surface

to be the most stable, then the (0 0 1), (0 1 0) and (1 0 1) all relatively
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close to each other. Following this the (1 1 1) and (1 0 0) surfaces were quite

close to each other and finally the (0 1 1) appeared the least stable. The (0

0 1) surfaces of goethite produced from the CLAYFF potentials and from

DFT are shown as examples in figures 32 and 33 respectively; the respective

spacing between the Fe atoms of 3.46 Å and 3.11 Å replicate the trend from

the Fe(OH)2 surfaces, where the DFT results produced a relaxed structure

with the Fe atoms slightly closer together than the CLAYFF potential results.

Figure 32: Goethite (0 0 1) surface, perpendicular to lattice vector a, gener-
ated from CLAYFF potentials. The spacing between the Fe atoms in adjacent
layers is 3.46 Å

As with results for Fe(OH)2 surfaces, experimental observations support

the results of the CLAYFF modelling in determining the most stable surface

of goethite, which is shown to be the (0 1 0) surface [172,173]. There are al-

ternative DFT studies of goethite surfaces, though none addressing the full

range of surfaces undertaken in this work and none showing comparative en-

ergies to determine the order of likely surface stabilities; Martin et al studied

surfaces of hematite, magnetite and the (0 1 0) surface of goethite [174] and

Kubicki et al note that the (0 1 0) surface is one of the most stable surfaces

of goethite [175]. Zhou et al investigated the energy of water molecules on the
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Figure 33: Goethite (0 0 1), perpendicular to lattice vector a, surface gener-
ated from DFT. The spacing between the Fe atoms in adjacent layers is 3.11
Å

(0 1 0) surface of goethite using DFT calculations, though they quote water

molecule energy and do not give energy values for the goethite surface [176].

Whilst there are differences in the two sets of results in terms of absolute

relative stabilities it can be concluded that surfaces most likely to occur

naturally could be (0 1 0), (1 0 1), (0 0 1) and (1 1 0), which are the four most

stable surfaces investigated using interatomic potentials or DFT calculations.

Surfaces which appear less likely to occur naturally would include (1 0 0),

(0 1 1) and (1 1 1); in both the case of DFT and interatomic potential

investigations these were the three least stable low index surfaces.

4.5 Conclusions

There is a need for transferable reliable potentials when modelling large sys-

tems where DFT cannot be used because of the system size. Similarly to

Fe(OH)2, the results for the modelling of goethite demonstrate that inter-
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atomic potentials can be used successfully to model the bulk and the low

index Miller surfaces of goethite. These potentials are from existing poten-

tial sets which removes the need for expensive fitting procedures. Comparison

of results has been made to DFT calculations and empirically obtained data;

the potential sets have shown good agreement with these results and demon-

strated their interchangeability for use in modelling larger systems without

the need for fitting procedures. As was the case for Fe(OH)2, the interatomic

potentials achieve a closer match to experimental data than DFT modelling

can produce, for the bulk structure of goethite. Taken in combination with

the results from modelling of Fe(OH)2, the modelling of the bulk and of

the low index Miller surfaces of goethite adequately demonstrates that the

CLAYFF interatomic potentials are suitable for mixing and use in the mod-

elling and investigation of green rust.

Having established suitable potentials for later use in the bulk modelling

of the layered elements of green rust, the next stage was to develop suitable

potentials for modelling uranyl compounds which may be formed within the

interlayers of green rust. This work is detailed in the following chapter.

154



5 Uranyl Minerals

The section of the project discussed in the first section of this chapter in-

volves the development of an effective set of interatomic potentials for a range

of previously observed uranyl minerals, formed from the uranyl ion UO2
2+

and various counterions, namely Cl2
2– , CO3

2– , FeO2
2– , (OH)2

2– and SO4
2– ,

which are the main components of green rust. The second part of this chap-

ter investigates the uranyl ion UO2
2+ in an aqueous environment and the

coordination of water molecules.

Fitting any parameterised model to experimental data is by its nature

subjective and there is no single method which can be applied to all situa-

tions. When considering ionic systems, the method developed by Gale and

implemented in the GULP code is widely used [177]. However, Read et al note

that that the method does not guarantee a global minimum and the results

can be sensitive to the initial configuration provided; they instead favour an

approach based on scanning a range of possible parameters and observing

the discrepancy between predicted and observed structural properties [178].

Molecular systems also require the development of intramolecular terms and

are therefore by their nature more complex. Traditionally, libraries of poten-

tials have been developed in tandem with simulation software or as a dedi-

cated project and not by individual users, for example in the Amber [179,180]

and CHARMM [181] molecular dynamics codes.

The need to mix molecular and ionic potential parameters creates another

level of subjectivity. One approach is to use an average potential based on

mixing rules [182]. However, such an approach is known to fail when the
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potential forms of the two models differ significantly. An alternative method

which also incorporates an element of fitting has been proposed by Schröder

et al [183] and further refined by Freeman et al [184]. The complex nature of

the green rust system, combined with the desire to use existing potential

models where possible, has meant that in this work a combination of the

methods described above have been used; the exact approach is detailed at

the appropriate stages of the discussion in this chapter.

5.1 Methodology

Details of uranyl compounds were taken from the Inorganic Crystal Struc-

tural Database (ICSD) [185] for each of those being investigated. It should be

noted that not all of these compounds exist as minerals in the field; some

have been synthesised as crystals in the laboratory purely for characterisation

and so no great description can be given.

UO2Cl2 (uranyl chloride) is bright yellow in colour. It is unstable and

decomposes under exposure to light [186]. It forms highly soluble (in alcohols,

ethers and water) crystals which have the appearance of grains of sand. It

has three sources of structural information on the crystal database.

UO2CO3 (uranyl carbonate) has two structural sources in the crystal

database [187]. It forms yellow crystals and is a constituent of a number

of uranyl mineral species, which include andersonite (Na2Ca(UO2)(CO3) ·

6 H2O) and rutherfordine (UO2CO3); the latter is the only known mineral to

contain purely uranyl and carbonate.
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UO2FeO2 has one entry on the crystal database from 1967 and is not

widely reported upon [188]; the work in this paper addressees U6+Fe2+O4

rather than the uranyl ion.

UO2(OH)2 (uranyl hydroxide) has had the location of hydrogen atoms in

the alpha and beta forms investigated previously by Taylor et al [189]. It can

precipitate as a yellowcake at near neutral pH when hydrated. There are

eight sources of structural information in the crystal database.

UO2SO4 (uranyl sulfate) has one source of structural data in the crystal

database. The crystalline form is pale yellow and appears like sand.

Whilst the crystal database contains valuable information there are some

structures which have not been validated by replication and some studies

are, for example, over fifty years old. Thus to provide additional valida-

tion of structural information this project uses DFT, using the computer

simulation package CASTEP [86]; the Perdew-Burke-Ernzerhof (PBE) pseu-

dopotentials [92] used for the exchange-correlation functions are calculated on

the fly in the CASTEP code. The results from the crystal database and the

DFT calculations are used to empirically fit, test and validate the potentials

used for the MM calculations.

5.1.1 Development of Potentials

It may be possible to specifically refit potentials and try and achieve a

better fit to experimental or ab initio results [190], such as by using the

GULP [132] computer code; GULP can use the Broyden-Fletcher-Goldfarb-

Shanno (BFGS) algorithm, which is a hill-climbing optimisation technique.

It produces an arbitrary solution to the problem then iteratively attempts
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to find better solutions by making incremental changes; the Hessian ma-

trix is approximated then gradually improved using approximate gradient

evaluations of a function. Alternatively, GULP may fit multiple structures

concurrently or use gas-phase cluster information; it can combine free-energy

minimisation with empirical fitting based on displacements rather than gra-

dients. More recently, genetic algorithms have been utilised for optimisation

problems. These use an iterative process where a population of randomly

generated solutions (a generation) is evaluated; the better suited individu-

als from the populations are selected and may be combined or mutated to

form the next generation of solutions. This process continues until the best

solution is found.

However the purpose of this work is to use a method which can produce

reliable potentials in general cases, whilst at the same time being transparent

and less of a “black box” type of potential generation.

The use of existing potentials for the uranyl compounds is desirable where

possible. Where reliable potentials are not available they should be derived

by a method which is standardised, as far as possible. The algorithm used is

similar to that used by Freeman, Harding, Cooke et al for deriving CaCO3-

organic interactions from existing potential sets [184]; the method used is sum-

marised below:

(1) Existing Lennard-Jones potentials were taken from the literature and

used to run a MM structural optimisation in the GULP computer simulation

package. The results were compared to the structure from the ICSD and the

results from the DFT calculations.

(2) If potentials in the literature were only available as Buckingham po-
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tentials these were recast as Lennard-Jones potentials in the first instance

and a structural optimisation and results comparison run as above. This is

to try and standardise the potential type for easier mixing of potentials.

(3) Where potentials were not available these were created from existing

Lennard-Jones potentials using the standard Lorentz-Berthelot mixing rules.

This method was also used to mix potentials that were recast as Lennard-

Jones from Buckingham potentials.

(4) If the results from existing or recast Lennard-Jones potentials were

outside of acceptable values, the ε and R0 parameters were varied systemat-

ically about the literature value (or value produced from mixing) to try and

attain a better fit.

(5) If none of the above, using solely Lennard-Jones potentials, produced

acceptable results then Buckingham potentials (where available) were incor-

porated into the input data.

(6) Mixing of Buckingham potentials, which is a more complex procedure

than mixing of Lennard-Jones potentials, was undertaken where necessary

to try and refine results further and achieve values within acceptable limits.

To demonstrate the methodology an example of potential development

will be used, namely uranyl chloride (UO2Cl2).

5.1.2 Example: Uranyl Chloride

The unit cell of uranyl chloride, as defined by Taylor and Wilson [191] is shown

in Figure 34
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Figure 34: Uranyl chloride, UO2Cl2, a = 5.725Å, b = 8.409Å, c = 8.720Å
α = β = γ = 90°

Key: uranium, blue; oxygen, red; chlorine, green.

The potential used for the UO2
2+ was one already tested and validated

by Guilbaud and Wipff [192]. The initial Cl– potential used was an aqueous

chloride potential used by Cygan et al [51] when developing the CLAYFF

general force field. These parameters are shown in Table 36

Table 36: Nonbond Parameters for the CLAYFF Force Field

species charge (e) ε (eV) R0 (Å)

aqueous chloride ion -1.0 0.00434 4.9388

A 12-6 LJ potential was used for the GULP calculations using the input

form shown in Equation 102:
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ELJ =
A

r12
− B

r6
(102)

The values for the A and B parameters are shown in Table 37:

Table 37: Lennard-Jones 12-6 parameters, with CLAYFF chloride potential

A (eV Å12) B (eV Å6)

U-U 5999.46965 11.17488

U-O 13420.70013 18.99050

O-O 29307.47496 31.88601

Cl-Cl 914001.69930 125.96455

These potentials were mixed using the Lorentz-Berthelot standard mixing

rules to provide interatomic potentials, i.e.

ε =
√
ε(1)ε(2) (103)

and

R0 =
R0(1) +R0(2)

2
(104)
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The MM structural optimisation using these parameters resulted in a

cell with dimensional errors in the region of 40% in the c direction, thus an

alternative potential was tested. The Buckingham potential used by Spagnoli

et al [71], shown in Table 38, was recast as a Lennard-Jones potential to allow

mixing using the Lorentz-Berthelot rules.

Table 38: Buckingham Potentials - Spagnoli et al

ion pair Aij (eV) ρij (Å) Cij (eV Å6)

Cl-Cl 1227.200 0.3214 29.06000

The recasting was done by plotting the Buckingham potential to deter-

mine the minimum value of ε and the associated R0 value, then using these

values to plot the Lennard-Jones potential. This allowed checking of the

fit of curve for both potentials and determination of the A and B parame-

ters for the Lennard Jones potential. Figure 35 shows that a good fit was

achieved for the recast Cl-Cl potential and so the Lennard-Jones parameters

were determined for this potential.
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Figure 35: Graph of recast Buckingham potential for Cl-Cl as a Lennard-
Jones 12-6 potential

Key: Buckingham potential, blue; Lennard-Jones 12-6 potential, orange.

The revised Lennard-Jones parameters are shown in Table 39:

Table 39: Lennard-Jones 12-6 parameters, revised with chloride potentials
from Spagnoli et al

A (eV Å12) B (eV Å6)

U-U 5999.46965 11.17488

U-O 13420.70013 18.99050

O-O 29307.47496 31.88601

Cl-Cl 91583.35321 31.52473

These potentials were again mixed using the Lorentz-Berthelot standard

mixing rules to provide interatomic potentials. The results were improved
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though the a dimension of the cell still had an error in the region of 18%.

A systematic variation of the ε and R0 values around the minimum energy

value did not achieve an improved result so Buckingham potentials were

tried instead of Lennard-Jones potentials. This necessitated recasting the

U-U Lennard-Jones potential as a Buckingham potential, then mixing the

UO2
2+ and Cl– Buckingham potentials to produce the interatomic terms.

When recasting the potential it was decided to keep the attractive term

value the same in the Buckingham potential (term C) as it was in the

Lennard-Jones potential (term B), i.e. 11.17488 eV Å6. This then left two

variables, A and ρ to solve. Two points were taken from the Lennard-Jones

potential; the first point was E = 0, r = σ from the 4ε form of the potential,

the second point was E = ε, r = R from the nm form of the potential. Using

A and B values taken from the Lennard-Jones potential in Table 37, values

were calculated for:

E = 0 (105)

R =

(
A

B

) 1
6

(106)
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and for:

E =

(
A

R12

)
(107)

R =

(
2A

B

) 1
6

(108)

This allowed a pair of simultaneous equations to be solved and determine

that ρ = 0.2507 Å. This ρ value could then be substituted into either of the

equations to determine that A = 1806.057 eV.

The O-O potentials were retained as their existing Lennard-Jones 12-6

potentials. This meant that the derivation of a U-Cl Buckingham potential

was required.

Using the Spagnoli Cl-Cl and Cl-O potentials and the recast U-U potential

gave a set of Buckingham potential parameters as shown in Table 40:

Table 40: Buckingham potential parameters

A (eV) ρ (Å) C (eV Å6)

U-U 1806.057 0.2507 11.17488

Cl-Cl 1227.200 0.3214 29.06000

O-Cl 1272.249 0.2352 34.99827
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The method of derivation for mixed Buckingham potentials is founded on

the soft sphere model presented by Gilbert [193].

If the final term of Equation 17 is considered, in the Buckingham potential

this term is represented as:

Φ(rij) = Aij exp

(
−rij
ρij

)
− Cij
r6ij

(109)

Φ(rij) is the short range interaction between the ions, rij is the ionic

separation. Aij, ρij and Cij are empirical parameters which are derived to fit

each ion pair.

Gilbert demonstrated that the repulsive term of the Buckingham poten-

tial, Aij, could be replaced by a distance, Rij, which is the distance between

two ions which are acting against repulsive forces only, and are being pushed

together by an arbitrary force, f :

Rij = ρij ln

(
Aij
fρij

)
(110)

Gilbert also used spectroscopic data to show that the hardness parameter,

ρij, and the soft sphere radii, Rij, obeyed the additivity rules, i.e. ρij = ρi+ρj

and Rij = Ri +Rj, where ρi = ρii
2

and Ri = Rii

2
.
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Therefore the Born-Mayer repulsive potential, Uij, can be written as:

Uij(R) = f(ρi + ρj) exp

(
Ri +Rj

ρi + ρj

)
exp

(
−Rij

ρij

)
(111)

Thus determining the ρ value was straightforward:

ρU−Cl = ρCl−Cl

2
+ ρU−U

2
= 0.2861 Å

To determine the A value, consideration of the Cl-Cl repulsive interaction

in Equation 111 means it can be written as:

UCl−Cl(R) = f(ρCl + ρCl) exp

(
RCl +RCl

ρCl + ρCl

)
exp

(
−RCl−Cl

ρCl−Cl

)
(112)

Equation 110 can be rearranged and written as:

ACl−Cl = fρCl−Cl exp

(
RCl−Cl

ρCl−Cl

)
(113)

So:
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ACl−Cl = f(0.3214) exp
(
RCl

0.1607

)
Taking ln of both sides gives:

ln 1227.200 = ln f + ln 0.3214 + RCl

0.1607

Which gives:

RCl = 0.1695408197− 0.1607 ln f

Following the same procedure for RU gives:

RU = 0.1402037827− 0.12535 ln f

Using these values in Equation 110, for the repulsive part of the equation

only (i.e. not including the final exponential term), produces:

AU−Cl = f(0.2861) exp

(
0.3097446024− 0.2861 ln f

0.2861

)
(114)

Finally, taking ln of both sides allows evaluation of:

AU−Cl = 1440.069148 eV

Thus the final set of Buckingham potential parameters are shown in Table

41. This method was previously used to derive potentials for FeCl2, which

are the potentials used in work by Spagnoli et al [71].
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Table 41: Buckingham potential parameters

A (eV) ρ (Å) C (eV Å6)

U-U 1806.057 0.2507 11.17488

Cl-Cl 1227.200 0.3214 29.06000

O-Cl 1272.249 0.2352 34.99827

U-Cl 1440.069 0.2861 11.17488

The C parameter for the U-Cl potential was determined simply by fixing

the value at that of the U-U Lennard-Jones 12-6 potential, so can be varied

when testing the potential. It is in fact often taken to be 0 in value as the

attractive forces are dominated by the Coulombic term of the Born-Mayer

potential.

The methodology described above was used, in full or in part as appro-

priate, to produce or refine potential sets for each of the minerals under

investigation. The testing of these potential sets is discussed in the following

results section.
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5.2 Results

5.2.1 Uranyl Chloride

The experimentally determined structure of Taylor and Wilson [191](shown in

Figure 34) was used as the starting point for this work. Reference was also

made to DFT calculations using the CASTEP code [86] using the generalised

gradient approximation (GGA) basis sets; a 600 eV cut-off was used with a

k-point grid of 4 4 4.

The methodology and sequence of potential trials for uranyl chloride is

detailed in section 5.1.2. The partial charge, qu, on the chloride ion was -1.0

eV which is shown in Table 42 along with the other partial charges used.

Table 42: Partial charges (qu) on ions used in the testing and development
of interatomic potentials

Species

Ion Charge (e)

Uranium (U) 3.2500

Uranyl Oxygen (Ou) -0.6250

Chlorine (Cl) -1.0000

The ClayFF potential for the chloride ion is for the aqueous form; as

the results using the ClayFF potentials [51] were around 40% larger than the

experimental unit cell size in the c dimension the potentials used by Spagnoli

et al [71] were tested. These provided a better match to experimental cell

parameters, improving the c dimension by around 33%. The results using

these potentials and the results of the DFT calculations are shown in Table
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43.

Table 43: UO2Cl2 simulation results comparing experimental data with re-
sults generated from CASTEP (DFT) and GULP (using interatomic poten-
tials)

UO2Cl2 Experimental data DFT output % difference MM output (Spagnoli et al pots) % difference

a (Å) 5.725 5.759 0.590 4.692 18.047

b (Å) 8.409 8.350 0.705 8.009 4.756

c (Å) 8.720 8.709 0.125 9.327 6.965

alpha (°) 90 90 0.000 90 0.000

beta (°) 90 90 0.000 90.125 0.139

gamma (°) 90 90 0.000 90 0.000

The recasting of uranyl Lennard-Jones potentials as Buckingham poten-

tials and mixing of these with the chloride Buckingham potentials, as detailed

in 5.1.2, did not have a beneficial effect on cell sizes from those obtained with

the Spagnoli et al potentials; thus the results in Table 43 are currently the

best obtained. Further refinement to obtain values closer to the experimental

cell sizes are desirable, particularly the a dimension of the cell. The work

of Spagnoli et al from which the chloride potentials were taken does not in

fact use a rigid ion model, such as this work attempts to produce, instead it

uses a polarisable shell model; they derive potentials by fitting to reproduce

the structure and energetics of chloride-water clusters from ab initio calcula-

tions. They do not directly model uranyl chloride but model sodium chloride

in aqueous solution and its interaction with various solid surfaces. In the

absence of rigid ion models of uranyl chloride in the literature it is better to

compare results with empirical data and DFT calculations.
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5.2.2 Uranyl Carbonate

The experimentally determined unit cell of uranyl carbonate is shown in

Figure 36.

Figure 36: Uranyl carbonate, UO2CO3, a = 4.840Å, b = 9.273Å, c = 4.298Å
α = β = γ = 90°

Key: uranium, blue; oxygen, red; carbon, grey.

Similarly to the chloride, an experimental structure was used as a starting

point and reference for the uranyl carbonate structure, namely that of Finch
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et al. [187] The DFT calculations run in the CASTEP code used a 600 eV

cut-off with a 3 3 3 k-point grid.

The potential parameters and ionic charges used were those detailed by

Kerisit and Liu [194], using Lennard-Jones potentials for all but the Oc –Oc

interactions, which are Buckingham potentials. These are shown in Tables

44 to 46.

Table 44: Partial charges (qu) on ions used in the testing and development
of interatomic potentials

Species

Ion Charge (e)

Uranium (U) 3.2500

Uranyl Oxygen (Ou) -0.6250

Carbon (C) 1.1350

Carbonate Oxygen (Oc) -1.0450

Table 45: Lennard-Jones potentials for UO2CO3

Lennard-Jones potentials Aijr
−12
ij −Bijr

−6
ij

Ion pair (ij) Aij (eV Å12) Bij (eV Å6) Reference

U-U 5999.46965 11.17488 [194]

U-Ou 13420.70013 18.99050 [194]

U-Oc 35000.00000 22.00000 [194]

Ou-Ou 29307.47496 31.88601 [194]

Ou-Oc 27290.95482 27.12257 [194]
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Table 46: Buckingham potentials for UO2CO3

Buckingham Potentials Aij exp(−rij/ρij)− (Cij/r
6
ij)

Ion pair (ij) Aij (eV) ρij (Å) Cij (eV Å6) Reference

Oc-Oc 16372.0 0.2130 3.47 [194]

The Morse, harmonic, three-body and four-body potentials are shown in

Tables 47 to 50; these are also taken from the same work of Kerisit and Liu.

Table 47: Morse potentials for UO2CO3

Morse potentials Dij[{1− exp(−αij(rij − r0))}2 − 1]

Ion pair (ij) Dij (eV) αij (Å−1) r0 (Å) Coul.Sub (%) Reference

C-Oc 4.71 3.80 1.18 0.00 [194]

Table 48: Harmonic potentials for UO2CO3

Harmonic potentials kij/2(rij − r0)2

Species (ij) kij (eV Å−2) r0 (Å) Reference

U-Ou 43.36 1.80 [194]
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Table 49: Three-body potentials for UO2CO3

Three-body potentials kijk/2(θijk − θ0)2

Species (ijk) kijk (eV rad−2) θ0 (deg) Reference

Ou-U-Ou 13.01 180.00 [194]

Oc-C-Oc 1.69 120.00 [194]

Table 50: Four-body potentials for UO2CO3

Four-body potentials kijkl[1 + cos(2θijkl − θ0)]

Species (ijkl) kijkl (eV rad−2) θ0 (deg) Reference

C-Oc-Oc-Oc 0.1129 180.00 [194]

Initial results from the MM calculations were promising with all unit cell

angles at 90o and both the a and c dimensions reproduced to within 1% of

experimental results. However the b value was overestimated by around 12%.

The U–Oc potential value in the Kerisit and Liu paper does not appear

to be derived from any standard mixing rules and its derivation is not given.

Systematic variation of the ε and R0 values did not yield improvement in the

b value. Thus the Oc –Oc potential was recast as a Lennard-Jones potential

and similar variation of the ε and R0 values carried out. Improvement in

any one cell dimension was always to the detriment of another and so no

improvement could be made. To test a U–Oc Buckingham potential, the

U–U Lennard-Jones potential was recast as a Buckingham potential then

mixed with the Oc potential using the worked example methodology. Using
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the GULP MM code with these potentials produced a, b and c values which

were overestimated by between 10% and 12%. Thus the initial potentials

of Kerisit and Liu produce the closest fit to experimental results obtained;

the difficulty with these potentials is the use of non-standard mixing rules or

potentials with no given derivation, meaning their incorporation into larger

mixed systems at a later time could be difficult.

Table 51 summarises the experimental, DFT and GULP MD results.

Table 51: UO2CO3 simulation results comparing experimental data with
results generated from CASTEP (DFT) and GULP (using interatomic po-
tentials)

UO2CO3 Experimental data DFT output % difference MM output (Kerisit-Liu pots) % difference

a (Å) 4.840 4.857 0.351 4.788 1.081

b (Å) 9.273 9.026 2.663 10.459 12.785

c (Å) 4.298 4.288 0.236 4.340 0.976

alpha (°) 90 90 0.000 90 0.000

beta (°) 90 90 0.000 90 0.000

gamma (°) 90 90 0.000 90 0.000

Kerisit and Liu do use a rigid ion model for uranyl carbonate, though

in this and their earlier supporting works they use uranyl and carbonate

potentials from different sources and do not test the structure of uranyl

carbonate before incorporating these potentials into a wider aqueous system;

thus there are no computational structures to compare to other than those

generated in this study using DFT techniques.

176



5.2.3 Uranyl Iron Oxide

The experimental structure, shown in Figure 37, determined in 1967 by Bac-

mann and Bertaut [188] was used as a starting point and reference for simula-

tions. The DFT reference calculations were run in the CASTEP code with

a cut-off of 650 eV and a k-point grid of 3 3 3.

Figure 37: Uranyl iron oxide, UO2FeO2, a = 4.888Å, b = 11.937Å, c =
5.110Å α = β = γ = 90°

Key: uranium, blue; oxygen, red; iron, purple.
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Whilst this project aims to use Lennard-Jones potentials where possible,

for simple mixing of potentials using the Lorentz-Berthelot rules, the uranyl

iron oxide at this point has only been simulated using Buckingham potentials.

These are potentials from the work of Kerisit et al [195] and are shown in Table

53. The partial charges are shown in Table 52; these charges are different to

those for the uranyl uranium and oxygen ions in the other simulations so do

not suit combination into a wider system with these other simulation values.

Table 52: Partial charges (qu) on ions used in the testing and development
of interatomic potentials

Species

Ion Charge (e)

Uranium (U) core -1.3500

Uranium (U) shell 7.3500

Uranyl Oxygen (Ou) core 0.2100

Uranyl Oxygen (Ou) shell -2.2100

Iron (II) (Fe) core 2.0000

Table 53: Buckingham potentials for UO2FeO2

Buckingham Potentials Aijexp(−rij/ρij)− (Cij/r
6
ij)

Ion pair (ij) Aij (eV) ρij (Å) Cij (eV Å6) Reference

O shell - O shell 22764.300 0.14900 27.88 [188]

U shell - O shell 3428.870 0.33415 43.89 [188]

Fe core - O shell 816.105 0.32990 0.00 [188]
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The results from the MM calculations show a better fit with experimen-

tal values than the DFT calculations, with both a and b dimensions being

within 0.1% and the c dimension being only 2.2% underestimated. No fur-

ther refinement of potentials was attempted due to the very close fit of values

and because the potentials and ionic partial charges do not particularly suit

development into the broader system with the other compounds simulated.

Table 54 summarises the simulation results.

Table 54: UO2FeO2 simulation results comparing experimental data with
results generated from CASTEP (DFT) and GULP (using interatomic po-
tentials)

UO2FeO2 Experimental data DFT output % difference MM output (Kerisit-Felmy-Ilton pots) % difference

a (Å) 4.888 4.881 0.149 4.883 0.094

b (Å) 11.937 11.264 5.636 11.928 0.076

c (Å) 5.110 5.064 0.902 4.996 2.240

alpha (°) 90 90 0.000 90 0.000

beta (°) 90 90 0.000 89.990 0.011

gamma (°) 90 90 0.000 90 0.000

Kerisit et al compare their results only to the empirical results of Bacmann

and Bertaut as there are no available computational studies to compare to;

they do not test and compare to any DFT calculation results. Their only

stated comparison for uranyl iron oxide with U(VI) / Fe(II) is that their

result compared poorly with experiment, with the supporting information

showing that the a, b and c parameters varied by +3.5%, -10.2% and -5.3%

respectively.
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5.2.4 Uranyl Hydroxide

Figure 38 shows the unit cell of uranyl hydroxide as determined by Taylor

and Hurst [189].

Figure 38: Uranyl hydroxide, UO2(OH)2, a = 5.644Å, b = 6.287Å, c =
9.937Å α = β = γ = 90°

Key: uranium, blue; oxygen, red; hydrogen, white.

The experimental structure of Taylor and Hurst [189] was used as a starting

point. The DFT calculations were run in the CASTEP computer code with
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a cut-off of 600 eV and a k-point grid of 3 3 3. Table 55 details the partial

charges on the ions in the MM simulation. The partial charges for O and H

given by Cygan et al gave an overall charge of -0.525e for the hydroxide ion

(OH–) so these charges were divided by 0.525 to produce an overall charge

of -1.0 e.

Table 55: Partial charges (qu) on ions used in the testing and development
of interatomic potentials

Species

Ion Charge (e)

Uranium (U) 3.2500

Uranyl Oxygen (Ou) -0.6250

Hydrogen (H) 0.4000

Hydroxide Oxygen (Oh) -1.4000

Initial MM calculations were performed using the hydroxide potential of

Cygan et al [51]. The results were poor, for example the a parameter of the

unit cell was underestimated by around 46%. An alternative OH– potential

was sought and it was decided to try that developed by Baram and Parker [163],

used in other work such as that of de Leeuw and Cooper [73]. The partial

charges in the shell used by Baram and Parker were combined to suit the

rigid ion model used in this work. The hydroxide potential was recast from

the Buckingham form to the Lennard-Jones form to allow use of the Lorentz-

Berthelot mixing rules. A slight improvement in results was observed, but the

a, b and c parameters of the cell were still -28.37%, -20.47% and +7.97% away
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from experimental values respectively, which was considered unacceptable.

Potentials for the Oh-H and H-H interactions were added using values for the

water potential in the work of Kerisit and Parker [196]; this had a detrimental

effect on the results. The Lennard-Jones potentials used are given in Table

56.

Table 56: Lennard-Jones potentials for UO2(OH)2

Lennard-Jones potentials Aijr
−12
ij −Bijr

−6
ij

Ion pair (ij) Aij (eV Å12) Bij (eV Å6) Reference

U-U 5999.46965 11.17488 [163]

U-Ou 13420.70013 18.99050 [163]

U-H 745.21960 6.45295 [163]

U-Oh 1493.51526 11.12339 [163]

Ou-Ou 29307.47496 31.88601 [163]

Ou-H 1948.12756 11.85460 [163]

Ou-Oh 3938.45768 20.26157 [163]

H-H 31.79701 2.18393 [163]

The Buckingham potentials of Baram and Parker were then utilised in-

stead of their recast Lennard-Jones version for the hydroxide ion. (It was

noted that de Leeuw and Cooper were also unable to obtain a good match

to experimental unit cell sizes in their work utilising the Baram and Parker

hydroxide potentials [73], though they were able to reproduce some of the cell

dimension ratios to good effect. The Baram and Parker potentials tested are

detailed in Tables 57 to 60).
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The hydroxide Buckingham potentials of Fleming and Rohl were also

considered [197], though as these would not recast as Lennard-Jones potentials

they were not investigated further at this stage.

Table 57: Buckingham potentials for UO2(OH)2

Buckingham Potentials Aijexp(−rij/ρij)− (Cij/r
6
ij)

Ion pair (ij) Aij (eV) ρij (Å) Cij (eV Å6) Reference

Oh-Oh 22764.0 0.1490 6.97 [163]

H-Oh 311.97 0.2500 0.00 [163]

Table 58: Morse potentials for UO2(OH)2

Morse potentials Dij[{1− exp(−αij(rij − r0))}2 − 1]

Ion pair (ij) Dij (eV) αij (Å−1) r0 (Å) Coul.Sub (%) Reference

H-Oh 7.0525 3.1749 0.9258 0.00 [163]

Table 59: Harmonic potentials for UO2(OH)2

Harmonic potentials kij/2(rij − r0)2

Species (ij) kij (eV Å−2) r0 (Å) Reference

U-Ou 43.36 1.80 [163]
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Table 60: Three-body potentials for UO2(OH)2

Three-body potentials kijk/2(θijk − θ0)2

Species (ijk) kijk (eV rad−2) θ0 (deg) Reference

Ou-U-Ou 13.01 180.00 [163]

The MM calculations failed to optimise with an energy minimum not

being reached; this is reflected in Table 61.

Table 61: UO2(OH)2 simulation results comparing experimental data with
results generated from CASTEP (DFT) and GULP (using interatomic po-
tentials)

UO2(OH)2 Experimental data DFT output % difference MM output (Baram & Parker pots) % difference

a (Å) 5.644 5.621 0.407 unresolved 0.000

b (Å) 6.287 6.161 2.001 unresolved 0.000

c (Å) 9.937 9.796 1.422 unresolved 0.000

alpha (°) 90 90 0.000 unresolved 0.000

beta (°) 90 90 0.000 unresolved 0.000

gamma (°) 90 90 0.000 unresolved 0.000

5.2.5 Uranyl sulfate

The experimentally determined structure of Brandenburg and Loopstra [198]

as shown in Figure 39 was taken as a starting point. DFT calculations were

run in the CASTEP computer code with a cut-off of 600 eV and a k-point

grid of 3 3 3. The partial charges on the ions are shown in Table 62. The

charges and Lennard-Jones potentials are those of Williams et al [199], the

potentials are detailed in Tables 63 to 65.
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Figure 39: Uranyl sulfate, UO2SO4, a = 6.760Å, b = 5.711Å, c = 12.824Å
α = γ = 90°, β = 102.91°

Key: uranium, blue; oxygen, red; sulfate, yellow.
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Table 62: Partial charges (qu) on ions used in the testing and development
of interatomic potentials

Species

Ion Charge (e)

Uranium (U) 3.2500

Uranyl Oxygen (Ou) -0.6250

sulfur (S) 2.3000

sulfate Oxygen (Os) -1.0750

Table 63: Lennard-Jones potentials for UO2SO4

Lennard-Jones potentials Aijr
−12
ij −Bijr

−6
ij

Ion pair (ij) Aij (eV Å12) Bij (eV Å6) Reference

U-U 5999.46965 11.17488 [199]

U-Ou 13420.70013 18.99050 [199]

U-S 31035.71070 28.88050 [199]

U-Os 15373.18604 19.08056 [199]

Ou-Ou 29307.47496 31.88601 [199]

Ou-S 65459.70305 47.65667 [199]

Ou-Os 33199.97434 31.85959 [199]

S-S 139015.97340 69.45360 [199]

S-Os 72969.31917 47.23536 [199]

Os-Os 37416.43460 31.75140 [199]
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Table 64: Harmonic potentials for UO2SO4

Harmonic potentials kij/2(rij − r0)2

Species (ij) kij (eV Å−2) r0 (Å) Reference

U-Ou 43.36 1.80 [199]

S-Os 22.79 1.49 [199]

Table 65: Three-body potentials for UO2SO4

Three-body potentials kijk/2(θijk − θ0)2

Species (ijk) kijk (eV rad−2) θ0 (deg) Reference

Ou-U-Ou 13.01 180.00 [199]

Os-S-Os 6.07 109.47 [199]

The initial results from the MM simulation gave excellent accord with

experimental results,with the a parameter underestimated by 1.2% and the

b and c parameters less than 1% different. Unit cell angles were repro-

duced to less than 0.02% of experimentally determined angles. The results

suggest that this sulfate potential will be suitable for incorporation into a

larger mixed system without the need for modification. Simulation results

are summarised in Table 66.
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Table 66: UO2SO4 simulation results comparing experimental data with re-
sults generated from CASTEP (DFT) and GULP (using interatomic poten-
tials)

UO2SO4 Experimental data DFT output % difference MM output (Williams et al pots) % difference

a (Å) 6.760 6.777 0.245 6.677 1.230

b (Å) 5.711 5.575 2.377 5.743 0.556

c (Å) 12.824 12.909 0.659 12.787 0.290

alpha (°) 90 90 0.000 90 0.000

beta (°) 102.91 103.13 0.214 102.930 0.019

gamma (°) 90 90 0.000 89.999 0.001

The work of Williams et al did not model uranyl sulfate but did model

the sulfate anion in aqueous solution. Their work used the results of DFT

calculations as a reference for testing the potentials, which is the same ap-

proach as used in this work. They set bond lengths and angles to match the

DFT results and used literature values for the force constants of SO4
2– . The

optimised SO4
2– parameters produced by Williams et al, and used in this

work, are very similar to to other classical force fields [200], thus suggesting

the development approach is logical.

5.3 Water and UO2
2+

Molecular dynamics simulations were carried out to investigate the uranyl

ion (UO2
2+) and the coordination of water molecules in an aqueous envi-

ronment. The investigations were undertaken using the DL POLY Classic

MD simulation package [133]. This was to investigate and refine the poten-

tial parameters, particularly the partial charges on the ions in the system.

Empirical data has shown there to be five water molecules in the first co-
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ordination sphere around the UO2
2+ with a U—OW distance of 2.42 Å;

this was a study using X-ray diffraction and 1H NMR to characterise a 1

M aqueous solution of uranyl perchlorate (UO2(ClO4)2 · 7 H2O) [201], showing

the presence of [UO2(H2O)5]
2+. Rogers et al investigated the reactions of

UO2(ClO4) · nH2O with 15-crown-5 and 18-crown-6 ether in acetonitrile; each

of the complexes formed were characterised and contained [UO2(H2O)5]
2+,

confirming five water molecules in the first hydration shell of the uranyl

ion [202]. In a study of the crystal and molecular structure of uranyl diper-

chlorate heptahydrate (UO2[ClO4]2 · 7 H2O), using single-crystal X-ray meth-

ods, Alcock et al showed the crystal contained [UO2(H2O)5]
2+, 2 [ClO4]

–

and 2 H2O; the U–O(aqua) bond length was 2.45 Å [203]. All of these stud-

ies found the uranyl ion and the five water molecules to be arranged with

a pentagonal-bipyramidal geometry i.e. with the five water molecules ar-

ranged equatorially around the uranyl ion. A molecular dynamical study of

the hydrated ion model of [UO2]
2+ in water by Pérez-Conesa et al showed

five water molecules in the first hydration shell, [UO2(H2O)5]
2+, with an av-

erage U–O distance of 2.46 Å; this work also showed the water molecules in

an equatorial arrangement around the uranyl ion [204].

Previously, Guilbaud and Wipff developed a set of potential parameters

compatible with the AMBER force field and TIP3P water model, to model

UO2
2+(aq) [205,192]. They investigated the effect of varying the charge on the

component ions whilst maintaining an overall charge of +2 on the uranyl ion.

They found that in order to maintain a coordination number of five water

molecules around the central uranium ion, charges smaller than +6 and -2

were required [205], though they concluded that a charge of +3 on the uranium
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ion led to the uranyl oxygen ions being associated with a charge too low

(-0.5) when compared to that of the oxygen of the TIP3P water molecules (-

0.834) [66]. In subsequent work, Guilbaud and Wipff produced results working

with a charge of +2.5 on the uranium ion, where they accepted the need for

the charge on the uranyl oxygen ions to be as low as -0.25, though the

parameters quoted in the text of this paper do not match those presented

in the tables of the same paper [192]. These results from Guilbaud and Wipff

were able to replicate the five H2O ligands in the equatorial plane with a

U—OW distance of 2.4 Å, in accordance with experimental results. Further

investigation using quantum mechanical (QM) calculations has subsequently

confirmed this result [206], although this calculation was performed using a

small gas phase complex. It was decided that the uranyl ion parameters

from this later work of Guilbaud and Wipff would be taken as a starting

point and the partial charges on the ions varied. These parameters, and

those for the TIP3P water model, are shown in Tables 67 to 70.

Table 67: Partial charges (qu) on ions used in molecular dynamics modelling
of the uranyl ion in water, using potentials as Guilbaud and Wipff [192].

Species

Ion Charge (e)

Uranyl Uranium (U) 2.5000

Uranyl Oxygen (Ou) -0.2500

Water Oxygen (Ow) -0.834

Water Hydrogen (Hw) 0.417
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Table 68: Lennard-Jones potentials used in molecular dynamics modelling of
the uranyl ion in water, using potentials as Guilbaud and Wipff [192]

Lennard-Jones potentials Aijr
−12
ij −Bijr

−6
ij

Ion pair (ij) Aij (eV Å12) Bij (eV Å6)

U-U 1.465064 0.174649

U-Ou 1.972697 0.214274

U-Ow 482.488500 3.362343

Ou-Ou 2.648686 0.262517

Ou-Ow 605.935063 3.984181

Ow-Ow 25246.059000 25.805200

Table 69: Harmonic potentials used in molecular dynamics modelling of the
uranyl ion in water, using potentials as Guilbaud and Wipff [192]

Harmonic potentials kij/2(rij − r0)2

Species (ij) kij (eV Å−2) r0 (Å)

U-Uo 21.682127 1.8000

Ow-Hw 23.990700 0.9572
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Table 70: Three-body potentials used in molecular dynamics modelling of
the uranyl ion in water, using potentials as Guilbaud and Wipff [192]

Three-body potentials kijk/2(θijk − θ0)2

Species (ijk) kijk (eV rad−2) θ0 (deg)

Ou-U-Ou 6.504638 180.00

Hw-Ow-Hw 4.338300 104.52

Firstly the TIP3P water model, using a box of 390 water molecules, was

optimised using DL POLY at temperatures of 300K, 350K, 400K and 450K.

The NPT ensemble with a Hoover thermostat was used, with a timestep of

0.001 picoseconds. The 300K result is shown as an example in figure 40.

Figure 40: TIP3P water model at 300K.

Secondly a single uranyl ion was optimised in DL POLY, run as a gas
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phase molecule at 300K using the NVT ensemble with a Hoover thermostat

and a timestep of 0.001 picoseconds. The uranyl ion is shown in figure 41.

Figure 41: Uranyl ion at 300K. The U—O bond length is 1.81 Å

The uranyl ion was then combined with a box of TIP3P water containing

527 water molecules and optimised at 300K. Similar simulations were run

but with the partial charges on the oxygen and uranium of the uranyl ion

altered; the values are shown in Table 71.
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Table 71: Varied partial charges (qu) on uranyl ion used in molecular dynam-
ics modelling of the uranyl ion in water, using potentials as Guilbaud and
Wipff [192]

Species

Ion Charge (e) Ion Charge (e)

Uranyl Uranium (U) 2.000 Uranyl Oxygen (Ou) 0.000

Uranyl Uranium (U) 2.500 Uranyl Oxygen (Ou) -0.250

Uranyl Uranium (U) 3.000 Uranyl Oxygen (Ou) -0.500

Uranyl Uranium (U) 4.000 Uranyl Oxygen (Ou) -1.000

Uranyl Uranium (U) 5.000 Uranyl Oxygen (Ou) -1.500

Uranyl Uranium (U) 6.000 Uranyl Oxygen (Ou) -2.000

Only the first two variations in Table 71 ((qu) of 2.000 and 2.5000 on the

uranyl uranium) ran successfully. The higher value charges may have failed

to optimise because of the greater coulombic attraction between oppositely

charged ions, resulting in them being too tightly bound to each other; a

greater repulsive force between ions of the same charge may also prevent

optimisation. The difference in charge on the oxygen atoms of water and

the uranyl ion may also contribute to the failure, mirroring the findings of

Guilbaud and Wipff and Jorgensen et al. [205,66].

The U – Owater radial distribution function (RDF) for the system where

the charge on the uranium atom is +2.5 e is shown in Figure 42. The sharp

peak at 1.78 Å, which falls to zero, indicates that water is strongly coordi-

nated to the complex and there is no transfer of water out of this adsorption

layer once it forms. Integration of this peak reveals that it contains 4 water
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molecules, as opposed to 5 suggested by previous studies [192,206]. However,

there is a smaller peak in the RDF when r ≈ 3 Å. This peak is, nevertheless,

broad and does not drop fully to zero as the separation is increased, sug-

gesting that this fifth water molecule is less strongly bound and the actual

molecule present at this U – O separation varies throughout the simulation.

Figure 42: The U—O radial distribution function for a Uranyl ion in water
using the potential parameters of Guilbaud and Wipff with a charge of +2.5
e on the central uranium ion. g(r) (solid line) is the RDF, n(r) (dotted line)
is the integrated value showing the number of water molecules

To further probe the mobility of the water molecule associated with the

peak at 3 Å we note that according to statistical thermodynamics the free

energy of a system is given by:

A = −RTlnQ (115)
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where R is the gas constant and Q is the total partition function. Since

the RDF provides a description of all the atoms in the system, it can be

shown to be a good approximation of the partition function and because the

RDF converges to 1 at large r, then the free energy will become zero at in-

finite separation of the ions. Thus, transforming the RDF in this way, gives

a measure of the change in free energy as a water molecule is brought from

infinity towards the hydration shell [207,208]. (The rate of observed exchange

in water molecules in a long simulation is an indication of the size of energy

barriers that are present for adsorption and desorption. It is therefore rea-

sonable that an estimate of the energy barriers can be used estimate the rate

of exchange. The approach is at best semi-quantitative but does give a good

indication of the energy barriers present in the system). Such a plot is shown

in Figure 43 where a large activation barrier is noted at around 15 kJ mol−1

(≈6 RT), calculated for a molecule from the bulk solution moving into the

innermost hydration layer, with a barrier of around 22 kJ mol−1 (≈9 RT)

corresponding to a molecule desorbing from this layer. Both these values

are significantly larger than the kinetic energy possessed by the molecules,

clear when the energy is expressed in units of RT, and hence explains why

there is no observed exchange of the four most tightly bound molecules in

the hydration layer at ambient temperatures.
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Figure 43: The change in free energy as a water molecule approaches the
hydration layer of the uranyl ion

The activation barriers for the fifth molecule moving from the bulk to a

U—O separation of 3 Å is far smaller as is illustrated in Figure 44. Here, the

activation barrier for a water molecule moving from the bulk solution into

this level is 1.66 kJ mol−1 and 1.12 kJ mol−1 for it to move back into the bulk

solution. As both of these values are smaller than RT = 2.49 kJ mol−1 @ 300

K it is clear that there will be a fast transfer of water molecules in and out

of this layer. Estimates based on the sizes of the activation barriers quoted

in this section suggest that the residence time of the fifth water molecule is

100 times smaller than that of the four innermost water molecules.
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Figure 44: The change in free energy as a water molecule approaches the
hydration layer of the uranyl ion

Increasing the simulation run time to almost 20 ns showed the average

coordination number of water molecules around the uranyl ion to be 5 (for

99.97% of the time), with a coordination number range of 4 (0.01% of the

time) to 6 (0.02% of the time); this gives support to there being 1 less strongly

bound water molecule. The converged residence time for a water molecule

in the first coordination sphere was shown to be 3006.33 ps.

Figure 45 shows the arrangement of the water molecules which, as in

experimental results, are arranged equatorially around the uranyl ion. The

U—OW bond distance ranges between 1.76 Å and 1.84 Å.
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Figure 45: Uranyl ion in water at 300K, showing four coordinated water
molecules and an exchange of the fifth coordinated water molecule (adjacent
water molecules removed for clarity). Potentials as Guilbaud and Wipff.

Interatomic potential parameters for actinyl ions were also developed by

Rai et al [209], so it was decided to test these parameters in the same way as

those of Guilbaud and Wipff. These parameters are shown in Tables 72 to

75.
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Table 72: Partial charges (qu) on ions used in molecular dynamics modelling
of the uranyl ion in water, using potentials as Rai et al [209]

Species

Ion Charge (e)

Uranyl Uranium (U) 2.5000

Uranyl Oxygen (Ou) -0.2500

Water Oxygen (Ow) -0.834

Water Hydrogen (Hw) 0.417

Table 73: Lennard-Jones potentials used in molecular dynamics modelling of
the uranyl ion in water, using potentials as Rai et al [209]

Lennard-Jones potentials Aijr
−12
ij −Bijr

−6
ij

Ion pair (ij) Aij (eV Å12) Bij (eV Å6)

U-U 1.464714 0.174608

U-Ou 1.972461 0.214249

U-Ow 15544.053630 13.190587

Ou-Ou 2.648686 0.262517

Ou-Ow 23794.632530 32.640100

Ow-Ow 25246.059000 25.805200
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Table 74: Harmonic potentials used in molecular dynamics modelling of the
uranyl ion in water, using potentials as Rai et al [209]

Harmonic potentials kij/2(rij − r0)2

Species (ij) kij (eV Å−2) r0 (Å)

U-Uo 43.364254 1.8000

Ow-Hw 23.990700 0.9572

Table 75: Three-body potentials used in molecular dynamics modelling of
the uranyl ion in water, using potentials as Rai et al [209]

Three-body potentials kijk/2(θijk − θ0)2

Species (ijk) kijk (eV rad−2) θ0 (deg)

Ou-U-Ou 13.009276 180.00

Hw-Ow-Hw 4.338300 104.52

The uranyl ion was again combined with a box of TIP3P water containing

527 water molecules and optimised at 300K using the NPT ensemble with a

Hoover thermostat and a timestep of 0.001 picoseconds. Similar simulations

were run but with the partial charges on the oxygen and uranium of the

uranyl ion altered; the values are shown in Table 76.
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Table 76: Varied partial charges (qu) on uranyl ion used in molecular dynam-
ics modelling of the uranyl ion in water, using potentials as Rai et al [209]

Species

Ion Charge (e) Ion Charge (e)

Uranyl Uranium (U) 2.000 Uranyl Oxygen (Ou) 0.000

Uranyl Uranium (U) 2.500 Uranyl Oxygen (Ou) -0.250

Uranyl Uranium (U) 3.000 Uranyl Oxygen (Ou) -0.500

Uranyl Uranium (U) 4.000 Uranyl Oxygen (Ou) -1.000

Uranyl Uranium (U) 5.000 Uranyl Oxygen (Ou) -1.500

Uranyl Uranium (U) 6.000 Uranyl Oxygen (Ou) -2.000

As with the Guilbaud and Wipff potentials, only the first two variations

in Table 76 ((qu) of 2.000 and 2.5000 on the uranyl uranium) were modelled

successfully.

The U – Owater radial distribution function (RDF) for the system where

the charge on the uranium atom is +2.0 e is shown in Figure 46. There is

again a sharp peak, in this case at 2.03 Å, indicating an adsorption layer

which is strongly coordinated; this peak is a little further away from the

central uranium atom than when using the potentials developed by Guilbaud

and Wipff, but the sharpness of the peak is similar, though it does not drop

fully to zero which indicates that some water transfer from this layer may

occur. Integration of the area under this peak indicates there are 4 water

molecules, which is in agreement with the number when using the potentials

of Guilbaud and Wipff. Once more there is a smaller peak in the RDF when
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the n(r) ≈ 3 Å. This peak is again broad and does not drop fully to zero as

the separation is increased, suggesting that this fifth water molecule is less

strongly bound and the actual molecule present at this U – O separation

varies throughout the simulation, in agreement with the result shown when

using the Guilbaud and Wipff potentials.

Figure 46: The U—O radial distribution function for a Uranyl ion in water
using the potential parameters of Rai et al with a charge of +2.0 e on the
central uranium ion. g(r) (solid line) is the RDF, n(r) (dotted line) is the
integrated value showing the number of water molecules

Transforming the RDF as before, to give an approximate measure of the

change in free energy as a water molecule is brought from infinity towards the

hydration shell, is shown in Figure 47. The activation barrier calculated for

a water molecule moving from the bulk solution to the innermost hydration

layer is much lower in this case, around 1 kJ mol−1, with a barrier of around

5 kJ mol−1 (≈2 RT) corresponding to a molecule desorbing from this layer.

Thus with the potentials of Rai et al, in terms of RT, the energy requirement
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is such that desorption from the innermost hydration layer remains unlikely;

if and when it does occur, another water molecule will be adsorbed rapidly.

Figure 47: The change in free energy as a water molecule approaches the
hydration layer of the uranyl ion

The activation barrier for the fifth molecule moving from the bulk to a

U—O separation of 3 Å is smaller as is illustrated in Figure 48. Here, the

activation barrier for a water molecule moving from the bulk solution into

this level is 1.38 kJ mol−1 and 3.68 kJ mol−1 for it to move back into the

bulk solution. As the adsorption value is smaller than RT = 2.49 kJ mol−1

@ 300 K there will be a fast transfer of water molecules into this layer. The

desorption value is greater than RT, thus desorption from this layer will be

slow.

204



Figure 48: The change in free energy as a water molecule approaches the
hydration layer of the uranyl ion

Figure 49 shows the arrangement of the water molecules which are again

arranged equatorially around the uranyl ion. The U—OW bond distance

ranges between 1.73 Å and 1.80 Å. This places the first hydration shell a

little closer (around 0.03 Å) than when using the potentials of Guilbaud and

Wipff.
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Figure 49: Uranyl ion in water at 300K, showing four coordinated water
molecules and, where the bond is elongated, an exchange of the fifth co-
ordinated water molecule (adjacent water molecules removed for clarity).
Potentials as Rai et al.

As noted by Bardin et al when conducting an NMR study of the hydration

of the actinyl ion, there are few comparative studies analysing the exchange

of water molecules between hydration shells, in either experiment or mod-

elling of [UO2(H2O)5]
2+ [210]. However, of the studies available, Wahlgren et

al investigated uranyl complexes in alkaline solution with a combined theo-

retical and experimental approach and found, similarly to this work, that

the four-plus-one coordination (along with five-coordinated systems) was

present, involving a combination of water molecules and hydroxide ions [211].

Using X-ray scattering on the coordination environment of the uranyl ion

in acidic aqueous solution allowed Neuefeind et al to determine that the

dominant species was the uranyl coordinated to five water molecules, but
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that a small percentage of the uranyl ions were coordinated to four water

molecules [212]. They conclude that this is consistent with a dynamic equilib-

rium which favours five coordinating water molecules; they produced radial

distribution functions similar to those in this work, showing peaks at 1.77 Å

and 2.42 Å which correspond to four and one water molecules respectively.

5.4 Conclusions

Transferable, reliable potentials are clearly required for modelling large sys-

tems which are beyond the scope of DFT because of their size. This chapter

describes and uses a methodology for generating, testing and refining these

potentials without the need for computationally expensive fitting procedures.

The methodology uses existing potential sets where these are available as a

starting point for testing. Because computational studies have not been used

previously to model many of the compounds investigated, comparison of re-

sults has been made to empirical data from physical studies and to the results

of DFT calculations. The potential sets have been demonstrated to show

good agreement with these results, for the purpose of producing a general

and interchangeable set of potentials to use in larger mixed systems without

the need for systematic fitting.

A summary of the results from this chapter, showing the cell parameters

achieved when using each of the potential sets compared to experimentally

determined cell parameters, is shown in Table 77:
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Table 77: Summary of cell parameters for uranyl minerals, comparing the
results from potential sets with experimentally determined values

Mineral

Cell parameters UO2Cl2 UO2CO3 UO2FeO2 UO2(OH)2 UO2SO4

a (Å)
Experimental 5.725 4.840 4.888 5.644 6.760

MM output 4.692 4.788 4.883 N/A 6.677

b (Å)
Experimental 8.409 9.273 11.937 6.287 5.711

MM output 8.009 10.459 11.928 N/A 5.743

c (Å)
Experimental 8.720 4.298 5.110 9.937 12.824

MM output 9.327 4.340 4.996 N/A 12.787

α (°)
Experimental 90.000 90.000 90.000 90.000 90.000

MM output 90.000 90.000 90.000 N/A 90.000

β (°)
Experimental 90.000 90.000 90.000 90.000 102.910

MM output 90.125 90.000 89.990 N/A 102.930

γ (°)
Experimental 90.000 90.000 90.000 90.000 90.000

MM output 90.000 90.000 90.000 N/A 89.999

The focus of the second part of this chapter was to use molecular dynamics

to model the uranyl ion in water and to test existing interatomic potential

sets against empirical results. It was shown that the potential sets used could

replicate the coordination of water molecules in the equatorial plane of the

uranyl ion, with partial charges on the uranium of the uranyl ion of +2.0

and +2.5. Partial charges of +3.0 and above were unsuccessful in producing

a viable model. The potentials of Guilbaud and Wipff appear to produce a

marginally better result than those of Rai et al, based on the slightly longer

U—OW bond distance. The U—OW bond distance in the models created
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was shorter than that suggested by experimental observation; further work

could involve a range of smaller incremental partial charge values and possible

refinement of the Lennard-Jones parameters of the model.

Having already established potentials suitable for modelling the layers of

green rust, and subsequently for uranyl compounds using counterions which

may be found in the interlayers of green rust, the next area to investigate was

the modelling of green rust; this would involve combining potentials from the

work undertaken in chapters 4 and 5. This work is detailed in the following

chapter.
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6 Modelling Green Rust 1 and 2 Using DFT

and Interatomic Potentials

The modelling of green rust builds on the work in the previous chapter,

where the less complex minerals iron (II) hydroxide (Fe(OH)2) and goethite

(FeO(OH)) were successfully modelled using interatomic potentials. It was

decided that a green rust 1 (GR1) and a green rust 2 (GR2) compound

would be modelled using the potentials developed in chapter 4 and the re-

sults compared to those from experiment and from DFT calculations. DFT

calculations were particularly desirable in this case due to the lack of experi-

mental data available for green rust compounds. Initial work was undertaken

with GR2 and the results from this subsequently used to develop a model for

GR1.

6.1 Green Rust 2

The anions in the interlayers of GR2 are 3D in their molecular arrangement,

such as the tetrahedral arrangement of the sulfate ion SO4
2– (they are planar

in their molecular arrangement in GR1, for example the simple chloride anion

Cl– or the flat arrangement of the trigonal planar carbonate ion CO3
2– ). The

sulfate anion was chosen to model GR2, which has previously been identified

as having a hexagonal crystal structure with a = b 6= c and cell angles of

90°, 90° and 120°. [162,167,213]. Reference was made to the International Crystal

Structural Database (ICSD) to review experimentally determined structures

of sulfate GR2 which may be suitable as a starting point for the geometry of
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a computational model. There proved to be numerous structures composed

of the desired elements though not necessarily green rust structures.

The green rust structure published by Simon et al [214] (ICSD code 98534)

has a = b 6= c and cell angles of 90° 90° 120° and a hexagonal struc-

ture; this was an XRD study and so did not show hydrogen atom posi-

tions. This study suggested the ideal formula for sulfate green rust to be

Fe2+4 Fe3+2 (OH)12 SO4 · ∼ 8H2O with a P3m1 space group and a trigonal

structure. Figure 50 shows a representation of this structure on the (0 0 1)

plane.
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Figure 50: Projection of the lattice of sulfate GR2 on the (0 0 1) plane [214]

The view in Figure 51 shows that Simon et al determined that there were

two planes of sulfate anions and water in the interlayers between the planes

of double hydroxide. They believed the oxygen atoms of the sulfate groups

to be pointing toward the hydroxide layers in a monodentate fashion, with

the other three oxygen atoms in a plane parallel to the hydroxide layers and

nearer the centre of the interlayer space.
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Figure 51: General view of the ordered representation of the crystal structure
of sulfate GR2 [214]

Fanfani et al published the structure of Butlerite, Fe(SO4)(OH)(H2O)2

(ICSD code 15199) [215] and there were numerous structures for Jarosite such

as those determined by Basciano et al [216] (ICSD codes 157710 and 157720).

Johansson, Yhland et al [217] published the structure of FeOHSO4 though

this has cell angles of a = b = c = 90° (ICSD code 24079). Ventruti et

al used XRD and spectroscopy to determine the structure of fibroferrite,

FeOH(SO4) · 5H2O
[218] (ICSD code 252892).

Ruby & Abdelmoula made a study of the structure and formation of

aluminium substituted iron (II - III) layered double hydroxides [219]; they had
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the same general formula as the proposed ideal GR2 formula of Simon et

al, namely Fe2+4 Fe3+(2–6y)Al3+6y (OH)12 SO4 · 8H2O. This structure was also of

P3m1 space group

Unlike Simon et al, Ruby & Abdelmoula determined the oxygen atoms of

the sulfate to be tridentate in their orientation toward the hydroxide layers.

This can be seen in Figure 52. This orientation of the sulfate groups was

supported by the findings of Chen et al [220].

Figure 52: Projection along the (1 1 0) plane of sulfate GR2 showing sulfate
tetrahedrons orientated down toward Fe3+ [219]
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The layered double hydroxysulfate structure published by Ruby & Ab-

delmoula (ICSD code 246125) for (Fe2+2 Fe3+)(OH)6(SO4)0.5(H2O)3.85, which

is shown in Table 78 and Figure 53, was taken as a starting point, to develop

and produce a model of green rust. This structure was chosen rather than

that of, for example, Simon et al, as the sulfate group orientation would ap-

pear more likely to be correct, although both sulfate group orientations were

modelled for comparison.

Table 78: Layered double hydroxysulfate cell parameters [219]

Layered double hydroxysulfate cell parameters

a (Å) 5.50683

b (Å) 5.50683

c (Å) 10.9664

α (°) 90

β (°) 90

γ (°) 120
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Figure 53: Layered double hydroxysulfate,(Fe2+2 Fe3+)(OH)6(SO4)0.5(H2O)3.85
[219]

Key: iron, brown; oxygen, red; sulfur, yellow.

The coordinates given by Ruby & Abdelmoula were used to generate a

METADISE input file. Because the unit cell contained only half a sulfate

group the cell was grown 2x2x1 (i.e. in the x and y planes only) to provide

enough charge to accommodate two SO4
2– groups within the cell. The pub-

lished structure on the ICSD did not contain water or the hydrogen atoms

of the hydroxide groups, so it was necessary to add the hydroxide hydro-

gen atoms. Because these H atoms point in toward the interlayer they were
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positioned with the same x and y coordinates as the O atoms they were

to be associated with, but with a z coordinate placing them 1Å further to-

ward the centre of the interlayer. The expectation was that once potentials

were applied the H atoms would adjust to the most energetically favourable

position.

Initial positioning and orientation of the SO4
2– groups was such that that

the oxygen atoms of the sulfate group would be monodentate in their ori-

entation toward the hydroxide layer. Simon et al determined the S atoms

to be positioned directly below Fe3+ atoms so this was replicated when con-

structing the model, whilst retaining the other cell parameters of Ruby &

Abdelmoula. CASTEP was used to run a DFT geometry optimisation and

the results can be seen in Table 79.

Table 79: sulfate green rust DFT modelling results for monodentate sulfate
orientation, using PBE pseudo D potentials

Results from Cell dimensions (Å) % difference to experiment Cell angles (°) % difference to experiment

a b c a b c α β γ α β γ

Experiment [219] 5.51 5.51 10.97 - - - 90.00 90.00 120.00 - - -

PBE pseudo D 5.13 5.13 9.29 -6.90 -6.90 -15.31 77.77 77.77 117.84 -13.59 -13.59 -1.80

It was noted that the monodentate sulfate orientation changed such that

the oxygen atoms were closer to bidentate in their orientation toward the

hydroxide layer, which can be seen in Figure 54. The OS –H bond lengths

were all 1.682Å after optimisation, in the bidentate orientation, having been

1.655Å for the closest OS –H bond length in the monodentate orientation

prior to optimising the cell.
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Figure 54: sulfate GR2 from DFT calculation from monodentate orientation,
showing sulfate tetrahedron orientation towards hydroxide layer

Initial modelling results are for cells with no water present and are com-

pared to experimental results which contain water. Even so, because the cell

angles had changed significantly from the experimental values, optimisation

of the same cell but with all the angles constrained was attempted. The

geometry optinisation failed to converge with constrained angles, Table 80

shows the cell parameters at the time the calculations were suspended. The

change in energy was 7.81x10−5 eV, the cut-off value was 2.00x10−5 eV, the

maximum distance moved by any atom was 1.23x10−3 Å, the cut-off value
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was 1.00x10−3 Å and the overall stress on the system was 3.72x10−1 GPa

with a cut-off value of 1.00x10−1 GPa. The factor furthest from convergence

was the maximum force acting on any atom which was 2.46x10−1 eV/Å com-

pared to a cut-off value of 5.00x10−2 Å. This structure was also energetically

unfavourable when compared to the tridentate or unrestrained monodentate

structures (398.25 kJ/mol and 456.55 kJ/mol respectively).

Following the monodentate modelling, the sulfate groups were inverted to

produce a tridentate orientation of the oxygen atoms toward the hydroxide

layer. Running a DFT optimisation in CASTEP produced the structure

detailed in Table 80.

For comparison, the same DFT calculation was submitted but with the

cell angles constrained. The results from this are shown in Table 80. How-

ever, as for the monodentate structure, the geometry optimisation failed to

converge for constrained angles and the table reflects the structure at the

time the calculations were halted.

Table 80: sulfate green rust DFT modelling results for monodentate, triden-
tate and tridentate (with constrained cell angles) sulfate orientation, using
PBE pseudo D potentials. Tridentate with constrained cell angles did not
optimise.

Results from Cell dimensions (Å) % difference to experiment Cell angles (°) % difference to experiment

a b c a b c α β γ α β γ

Experiment [219] 5.51 5.51 10.97 - - - 90.00 90.00 120.00 - - -

Monodentate 5.22 5.22 11.43 -5.26 -5.26 4.19 90.00 90.00 120.00 0.00 0.00 0.00

Tridentate 5.10 5.10 8.55 -7.44 -7.44 -22.06 91.76 91.76 117.27 1.96 1.96 -2.28

Tridentate (con.) 5.20 5.20 10.71 -5.63 -5.63 -2.37 90.00 90.00 120.00 0.00 0.00 0.00

The monodentate structure was not investigated further as the cell angles

changed so much when unconstrained, and the structure was energetically
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much less favourable than the tridentate orientation when angles were con-

strained.

The next step was to take the unconstrained tridentate structure from

the DFT calculations and add water into the interlayer; this structure had

twice the formula units of the ideal cell, so 4 water molecules were to be

added. The paper of Ruby & Abdelmoula did not detail the water within

the structure so could not be used for reference as a starting point. Neither

was detail of the water molecule positions given in the work of Abdelmoula et

al [221]. Simon et al did show the water molecules in their structure, although

the ideal structure they determined had 8 water molecules and, at variance

with this project and other investigations, a monodentate orientation of the

sulfate groups towards the hydroxide layer. However, they did indicate that

there were two distinct layers of sulfate and water in the interlayer, as shown

in Figure 51. Thus it seemed logical to introduce 2 water molecules into each

of the respective z planes within the interlayer, matching the z coordinate of

each sulfur atom. The oxygen atoms of the water molecules were positioned

so as to avoid being centred over an iron atom, as per the findings of Simon

et al. One water hydrogen atom was positioned in the same z plane as the

oxygen, with the x coordinate altered, and the other pointing towards the

centre of the interlayer.

CASTEP was used to run the DFT optimisation and the cell parameters

from this are shown in Table 81.
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Table 81: sulfate green rust DFT modelling results for tridentate sulfate
orientation with water, using PBE pseudo D potentials

Results from Cell dimensions (Å) % difference to experiment Cell angles (°) % difference to experiment

a b c a b c α β γ α β γ

Experiment [219] 5.51 5.51 10.97 - - - 90.00 90.00 120.00 - - -

PBE pseudo D 5.14 5.14 8.88 -6.72 -6.72 -19.05 88.48 87.62 117.82 -1.69 -2.64 -1.82

The optimised DFT structure with water present is shown in Figure 55.

Movement of the sulfate groups from their tridentate starting position can

be observed, one group more so than the other. The OS –H bond lengths

ranged from 1.655Å to 1.870Å for the H of the hydroxide layer; they ranged

from 1.647Å to 1.881Å for the H of the water molecules.

Figure 55: sulfate GR2 with water, from DFT calculation
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Following the successful optimisation and addition of water using DFT,

the atomic coordinates from the DFT structure were used and the model

was tested using interatomic potentials. Initially the structure was modelled

without water present; the charges and potentials used are shown in Tables

82 to 85.

Table 82: Partial charges (qu) on ions used in the testing and interatomic
potential modelling of sulfate green rust (Fe6(OH)6 SO4)

Species

Ion Charge (e)

Iron (Fe) 1.2250

Hydroxide Oxygen (Oh) -0.9500

Hydrogen (H) 0.4250

sulfur (S) 1.2075

sulfate Oxygen (Os) -0.5644
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Table 83: Lennard-Jones potentials for sulfate green rust (Fe6(OH)6 SO4),
modified CLAYFF potentials

Lennard-Jones potentials Aijr
−12
ij −Bijr

−6
ij

Ion pair (ij) Aij (eV Å12) Bij (eV Å6)

Fe-Fe 304.642804 0.021844

Oh-Oh 27290.954820 27.122570

S-S 34754.089510 34.726882

Os-Os 9355.219594 15.877562

Fe-Oh 3836.983420 0.887919

Fe-Os 2549.975919 0.723792

Fe-S 4335.012030 1.005296

S-Oh 30797.314761 30.690119

S-Os 18243.437141 23.619090

Oh-Os 16170.266760 20.876022

Table 84: Harmonic potentials for sulfate green rust (Fe6(OH)6 SO4), modi-
fied CLAYFF potentials

Harmonic potentials kij/2(rij − r0)2

Species (ij) kij (eV Å−2) r0 (Å)

Oh-H 48.059 1.000

S-Os 22.788 1.487
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Table 85: Three-body potentials for sulfate green rust (Fe6(OH)6 SO4), mod-
ified CLAYFF potentials

Three-body potentials kijk/2(θijk − θ0)2

Species (ijk) kijk (eV rad−2) θ0 (deg)

Os-S-Os 6.07 109.47

GULP was used to optimise the structure, initially at constant volume;

the parameters of the resultant structure are shown in Table 86, with exper-

imental and DFT results for comparison.

Table 86: sulfate green rust experimentally determined cell parameters com-
pared to interatomic potential modelling results, for tridentate sulfate orien-
tation

Results from Cell dimensions (Å) % difference to experiment Cell angles (°) % difference to experiment

a b c a b c α β γ α β γ

Experiment [219] 5.51 5.51 10.97 - - - 90.00 90.00 120.00 - - -

CLAYFF rigid ion 5.10 5.10 8.55 -7.44 -7.44 -22.06 91.76 91.76 117.27 1.96 1.96 -2.28

PBE pseudo D 5.10 5.10 8.55 -7.44 -7.44 -22.06 91.76 91.76 117.27 1.96 1.96 -2.28

The structure is shown graphically in Figure 56. The OS –H bond lengths

ranged from 1.753Å to 2.037Å. It was notable that the tridentate orientation

of the sulfate molecules was preserved much more than when using the DFT

model; the reason for this may be that the lack of a dispersive term in the

DFT model can lead to under-binding of the OS –H.
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Figure 56: sulfate green rust with tridentate oxygen orientation toward hy-
droxide layer

Key: iron, brown; oxygen, red; sulfur, yellow; hydrogen, white.

This potential model was then tested at constant pressure and Lennard-

Jones potentials for the hydrogen atoms were added. The first potential

added was a H-Os potential, which was a 9-6 potential as shown in Table

87; this potential was previously used by Kerisit whilst investigating water

structure at hematite-water interfaces [222]. 9-6 potentials had also been tested

previously by Kerisit, Cooke Marmier et al [70], so the potentials were initially

tested in this form. The partial charges on the ions and the Lennard-Jones

12-6 potentials remained unaltered, as did the harmonic and three-body po-

tentials.
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Table 87: Lennard-Jones potentials for sulfate green rust (Fe6(OH)6 SO4),
modified CLAYFF potentials

Lennard-Jones potentials Aijr
−9
ij −Bijr

−6
ij

Ion pair (ij) Aij (eV Å12) Bij (eV Å6)

H-Os 24.000000 6.000000

The structure did not optimise and was visually distorted; the structure

when calculations were halted is shown in Table 88.

Table 88: sulfate green rust experimentally determined cell parameters com-
pared to interatomic potential modelling results, for tridentate sulfate orien-
tation with LJ 9-6 H-Os potential added

Results from Cell dimensions (Å) % difference to experiment Cell angles (°) % difference to experiment

a b c a b c α β γ α β γ

Experiment [219] 5.51 5.51 10.97 - - - 90.00 90.00 120.00 - - -

CLAYFF rigid ion 5.65 5.64 9.75 2.54 2.36 -11.12 91.60 91.63 117.59 1.78 1.81 -2.01

PBE pseudo D 5.10 5.10 8.55 -7.44 -7.44 -22.06 91.76 91.76 117.27 1.96 1.96 -2.28

Because the 9-6 potentials did not produce an acceptable structure the

next method tested was to add a H-H (12-6) potential, based on the modified

Baram & Parker potential previously referred to in chapter 5 [163], and try the

optimisation again; the H-Os (9-6) potential was converted to a H-Os (12-6)

potential to make the mixing of potentials simpler. Again the ionic partial

charges, harmonic and 3-body potentials remained unaltered. The Lennard-

Jones potentials are listed in Table 89.
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Table 89: Lennard-Jones potentials for sulfate green rust (Fe6(OH)6 SO4),
modified CLAYFF potentials with H-H added

Lennard-Jones potentials Aijr
−12
ij −Bijr

−6
ij

Ion pair (ij) Aij (eV Å12) Bij (eV Å6)

Fe-Fe 304.642804 0.021844

Oh-Oh 27290.954820 27.122570

S-S 34754.089510 34.726882

Os-Os 9355.219594 15.877562

Fe-Oh 3836.983420 0.887919

Fe-Os 2549.975919 0.723792

Fe-S 4335.012030 1.005296

S-Oh 30797.314761 30.690119

S-Os 18243.437141 23.619090

Oh-Os 16170.266760 20.876022

H-H 31.797010 2.183930

H-Fe 635.357101 0.554944

H-S 2182.884081 12.549301

H-Oh 1937.905220 11.100685

H-Os 956.511266 7.798234

The optimisation was successful and the structure parameters are shown

in Table 90.
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Table 90: sulfate green rust experimentally determined cell parameters com-
pared to interatomic potential modelling results, for tridentate sulfate orien-
tation with H-H potential added

Results from Cell dimensions (Å) % difference to experiment Cell angles (°) % difference to experiment

a b c a b c α β γ α β γ

Experiment [219] 5.51 5.51 10.97 - - - 90.00 90.00 120.00 - - -

CLAYFF rigid ion 5.80 5.83 8.70 5.26 5.81 -20.69 77.93 100.07 119.29 -13.41 11.19 -0.59

PBE pseudo D 5.10 5.10 8.55 -7.44 -7.44 -22.06 91.76 91.76 117.27 1.96 1.96 -2.28

Whilst the optimisation completed, the cell angles in particular showed

deviation from ideal (the α, β and γ angle values deviating from experimental

results by -13.41%, +11.19% and -0.59% respectively) so further refinement

of the H-H potential was carried out. As the (12-6) H-Os potential had begun

as a (9-6) potential, a revised (12-6) H-H potential was also derived from the

(9-6) potential and then mixed with the other potentials. These potentials

are listed in Table 91. Ionic partial charges, harmonic and 3-body potentials

were retained unaltered.
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Table 91: Lennard-Jones potentials for sulfate green rust (Fe6(OH)6 SO4),
modified CLAYFF potentials with H-H derived from 9-6 potential added

Lennard-Jones potentials Aijr
−12
ij −Bijr

−6
ij

Ion pair (ij) Aij (eV Å12) Bij (eV Å6)

Fe-Fe 304.642804 0.021844

Oh-Oh 27290.954820 27.122570

S-S 34754.089510 34.726882

Os-Os 9355.219594 15.877562

Fe-Oh 3836.983420 0.887919

Fe-Os 2549.975919 0.723792

Fe-S 4335.012030 1.005296

S-Oh 30797.314761 30.690119

S-Os 18243.437141 23.619090

Oh-Os 16170.266760 20.876022

H-H 4888.303112 0.415580

H-Fe 1221.797622 0.095336

H-S 16756.942628 4.307416

H-Oh 14832.906484 3.804625

H-Os 9786.992487 3.090231

The optimisation was successful and the results are shown in Table 92.

This structure is shown in Figure 57
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Table 92: sulfate green rust experimentally determined cell parameters com-
pared to interatomic potential modelling results, for tridentate sulfate orien-
tation with H-H derived from 9-6 potential added

Results from Cell dimensions (Å) % difference to experiment Cell angles (°) % difference to experiment

a b c a b c α β γ α β γ

Experiment [219] 5.51 5.51 10.97 - - - 90.00 90.00 120.00 - - -

CLAYFF rigid ion 5.94 5.94 10.64 7.80 7.80 -3.01 90.09 90.06 119.55 1.00 0.07 -0.38

PBE pseudo D 5.10 5.10 8.55 -7.44 -7.44 -22.06 91.76 91.76 117.27 1.96 1.96 -2.28

Figure 57: sulfate green rust with tridentate oxygen orientation toward hy-
droxide layer, with H-H derived from 9-6 potential

Key: iron, brown; oxygen, red; sulfur, yellow; hydrogen, white.

The next step was to add water into the structure; as with the DFT model,

four water molecules were added. This was because the formula determined

by Ruby & Abdelmoula has two water molecules per sulfate group. The water

molecule positions were determined in a similar fashion to that employed
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when inserting water into the DFT model. The hydrogen and oxygen atoms

of the water molecules had different partial charges to those in the hydroxide

and sulfate and are shown in Table 93. Harmonic and three-body bonding

terms were added for the water molecules and these are detailed in tables 95

and 96 respectively. The (12-6) Lennard-Jones potentials for the hydrogen

and oxygen of the water molecules were mixed with the other potentials and

are listed in Table 94

Table 93: Partial charges (qu) on ions used in the testing and interatomic
potential modelling of sulfate green rust with water (Fe6(OH)6 SO4 · 0.5 H2O)

Species

Ion Charge (e)

Iron (Fe) 1.2250

Hydroxide Oxygen (Oh) -0.9500

Hydroxide Hydrogen (H) 0.4250

sulfur (S) 1.2075

sulfate Oxygen (Os) -0.5644

Water Oxygen (Ow) -0.8200

Water Hydrogen (Hw) 0.4100

Table 94: Lennard-Jones potentials for sulfate green rust (Fe6(OH)6 SO4),
modified CLAYFF potentials with H-H derived from 9-6 potential, with water

Lennard-Jones potentials Aijr
−12
ij −Bijr

−6
ij

Ion pair (ij) Aij (eV Å12) Bij (eV Å6)

Fe-Fe 304.642804 0.021844
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Continuation of Table 94

Ion pair (ij) Aij (eV Å12) Bij (eV Å6)

Oh-Oh 27290.954820 27.122570

S-S 34754.089510 34.726882

Os-Os 9355.219594 15.877562

Fe-Oh 3836.983420 0.887919

Fe-Os 2549.975919 0.723792

Fe-S 4335.012030 1.005296

S-Oh 30797.314761 30.690119

S-Os 18243.437141 23.619090

Oh-Os 16170.266760 20.876022

H-H 4888.303112 0.415580

H-Fe 1221.797622 0.095336

H-S 16756.942628 4.307416

H-Oh 14832.906484 3.804625

H-Os 9786.992487 3.090231

Ow-Ow 27290.954820 27.122570

Ow-S 30797.314761 30.690119

Ow-Os 16170.266760 20.876022

Ow-Oh 27290.954820 27.122570

Ow-Fe 3836.983420 0.887919

Ow-H 14832.906484 3.804625

Ow-Hw 14832.906484 3.804625

Hw-Hw 4888.303112 0.415580
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Continuation of Table 94

Ion pair (ij) Aij (eV Å12) Bij (eV Å6)

Hw-H 4888.303112 0.415580

Hw-Oh 14832.906484 3.804625

Hw-Os 9786.992487 3.090231

Hw-S 16756.942628 4.307416

Hw-Fe 1221.797622 0.095336

Table 95: Harmonic potentials for sulfate green rust with water
(Fe6(OH)6 SO4 · 0.5 H2O), modified CLAYFF potentials

Harmonic potentials kij/2(rij − r0)2

Species (ij) kij (eV Å−2) r0 (Å)

Oh-H 48.059 1.000

Ow-Hw 48.059 1.000

S-Os 22.788 1.487

Table 96: Three-body potentials for sulfate green rust with water
(Fe6(OH)6 SO4 · 0.5 H2O), modified CLAYFF potentials

Three-body potentials kijk/2(θijk − θ0)2

Species (ijk) kijk (eV rad−2) θ0 (deg)

Os-S-Os 6.07 109.47

Hw-Ow-Hw 3.97 109.47

The structure optimised successfully and the cell parameter results are

233



shown in Table 97. This structure is shown in Figure 58

Table 97: sulfate green rust experimentally determined cell parameters com-
pared to interatomic potential modelling results, for tridentate sulfate orien-
tation with H-H derived from 9-6 potential and water added

Results from Cell dimensions (Å) % difference to experiment Cell angles (°) % difference to experiment

a b c a b c α β γ α β γ

Experiment [219] 5.51 5.51 10.97 - - - 90.00 90.00 120.00 - - -

CLAYFF rigid ion 5.95 5.94 10.77 7.99 7.80 -1.82 90.67 86.83 119.81 0.74 -3.52 -0.16

PBE pseudo D 5.10 5.10 8.55 -7.44 -7.44 -22.06 91.76 91.76 117.27 1.96 1.96 -2.28

Figure 58: sulfate green rust with tridentate oxygen orientation toward hy-
droxide layer, with H-H derived from 9-6 potential and water added

Key: iron, brown; oxygen, red; sulfur, yellow; hydrogen, white.

This model of the bulk structure of sulfate green rust 2 was within rea-

sonable limits of the experimentally determined structure and thus provided
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a suitable basis to move on to the investigation of green rust 2 surfaces.

6.1.1 Green Rust 2 Surfaces

Having demonstrated it to be viable to model the bulk green rust 2 structure

using a potential model the next stage of the project was to try and model

surfaces, so these could be used to investigate interactions at the surface and

thus at interlayers within the bulk structure. It was decided to start by mod-

elling the simple low index (1 0 0), (0 0 1) and possibly the (0 1 0) surfaces,

then move onto other surfaces if these were successful and time allowed. The

(1 0 0) surface is perpendicular to the layers of the bulk structure (as is the

(0 1 0) surface, which is rotated through 90° from the (1 0 0) surface) and

the (0 0 1) surface is parallel to these layers. METADISE would be used to

cut the surfaces and these surfaces would then be relaxed using GULP. The

bulk structure modelled in section 6.1 was taken and the desired Miller index

surface generated using METADISE.

Using the (1 0 0) surface as an example, the methodology was as described

below:

The output from the bulk structure was used to provide the Cartesian

lattice vectors and fractional coordinates for the cell. The atomic charges re-

mained the same as those in the bulk structure and terms were input to iden-

tify bonded atoms (such as the Ow and Hw atoms). Running METADISE to

generate the (1 0 0) surface produced no results, meaning no cut producing

the (1 0 0) surface without a dipole could be found. Permitting a dipole al-

lowed METADISE to generate a number of surfaces; the lowest dipole value

in this case was 0.495468eV so a dipole tolerance value of 0.5eV was added
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and METADISE re-run to generate to generate the surface cuts falling within

this limit, producing a shorter list of surfaces which was more easily man-

ageable. The cut with the lowest dipole was run through METADISE three

times to produce three different outputs; a bulk, a surface and a slab. These

files could then be used to create input files for GULP, which would be used

to relax the structures. The METADISE output for the bulk structure was

used to generate a GULP input; this input ran and optimised successfully.

The structure from the GULP output is shown in Figure 59.

Figure 59: sulfate green rust bulk structure from (1 0 0) surface

Key: iron, green; oxygen, red; sulfur, yellow; hydrogen, white.

Once the bulk structure had been tested the (1 0 0) surface was gen-

erated using METADISE and GULP was used to relax the structure; this

successfully optimised and is shown in Figure 60.
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Figure 60: sulfate green rust (1 0 0) surface structure

Key: iron, green; oxygen, red; sulfur, yellow; hydrogen, white.

Because the surface was successfully modelled using this method, the slab

was not generated.

The (0 0 1) surface was run using the same methodology and produced

the bulk structure as shown in Figure 61.
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Figure 61: sulfate green rust bulk structure from (0 0 1) surface

Key: iron, green; oxygen, red; sulfur, yellow; hydrogen, white.

Going on to generate the (0 0 1) surface produced the structure shown in

Figure 62.
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Figure 62: sulfate green rust (0 0 1) surface structure

Key: iron, green; oxygen, red; sulfur, yellow; hydrogen, white.

At the point of addressing the (0 1 0) surface the project was halted due

to time restrictions.

The energies and surface area for the (1 0 0) and (0 0 1) surfaces are

shown in Table 98.

Table 98: sulfate green rust surfaces: surface areas and energies

Surface Surface area (Å2) Surface energy (J/m2)

(1 0 0) 127.930448 0.219905

(0 0 1) 122.574620 0.056578

The equilibrium morphology will likely be dominated by the surface with

the lower surface energy, which in this case is the (0 0 1) surface; given how
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much more stable than the (1 0 0) surface this is, it would be the surface

observed in most cases. However this cannot yet be compared to the other

surfaces which were not successfully modelled.

The more stable (0 0 1) surface is parallel to the channels between the

double hydroxide layers of sulfate green rust; this should result in ready

formation of the channels and a more easy absorption of the uranyl ion into

the interlayer.

6.2 Green Rust 1

The structure of chloride GR1 was investigated using X-ray diffraction by

Génin et al during their study of the structure of fougerite minerals [223],

finding the space group to be R3m with cell parameters a = b 6= c and cell

angles of 90° 90° 120°. Comparison is made to the chloride GR1 structure

determined by Refait et al when investigating mechanisms of formation and

structure of GR1 [224]; this structure is shown in Figure 63.
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Figure 63: Crystal structure of chloride GR1. (a) Stacking sequence. (b)
Disposition of chloride ions and water molecules in interlayer, viewed along
(0 0 1) One interlayer, one OH– and one Fe layer below shown. [224]

The cell parameters determined by Refait et al are shown in Table 99.

The ideal chloride GR1 formula suggested is Fe2+3 Fe3+(OH)8 Cl · nH2O, with

n≈2, though it was reported that as the Cl– concentration increases this

can vary to Fe2+2.2Fe3+(OH)6.4 Cl · nH2O. No structural change is reported but

there is an oxidation of Fe2+ to Fe3+. The structure was found equivalent

to that of iowaite, which is [Mg2+
3 Fe3+(OH)8]

+ [Cl · 2H2O]– . The ideal for-

mula stated, with n=2, was corroborated by Abdelmoula et al in a study

of fougerite mineral occurrence and transformation in hydromorphic soil [221].

Whilst Refait et al suggested the ideal chloride GR1 formula already men-
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tioned, they also noted that the sample they studied was close to that of

Abdelmoula and co-workers.

Bernal, Dasgupta and Mackay studied the oxides and hydroxides of iron

and their topotaxy using X-ray diffraction and ascertained cell parameters

for chloride GR1 as shown in Table 99, which compare closely with those

found by Refait et al.

Table 99: Layered double hydroxychloride (GR1) cell parameters as reported
by Refait et al and by Bernal et al using X-ray diffraction studies

Cell parameter Refait et al [224] Bernal et al [162]

a (Å) 3.190 3.22

b (Å) 3.190 3.22

c (Å) 2.385 2.60

α (°) 90 90

β (°) 90 90

γ (°) 120 120

The changes in Fe2+:Fe3+ ratios have been noted to occur in chloride GR1

only [225], likely due to the unique spherical electrical charge which permits

a gradual in-situ intercalation, which is forbidden for larger divalent anions

such as SO4
2– or CO3

2– .

Refait et al were able to show the presence of chloride GR1 under varying

pH using electrochemically induced corrosion of iron in KCl solutions. Their

results are shown in Figure 64. Taking potential values between around -

0.54V and 0V, chloride GR1 was shown to be present in the pH range of

5.5 to 12.5; this demonstrates that chloride GR1 is able to exist under both
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basic and acidic conditions.

Figure 64: E -pH equilibrium diagram of the system Fe/chloride containing
solution at 25°C for an activity α[Cl−] = 0.55, corresponding to a 1 M KCl
solution [226]. Chloride GR1 was taken at Fe4(OH)8Cl · nH2O

[224]

The cell parameters of Refait et al were used as comparative values to

evaluate the potential model, but rather than using their cell structure (ICSD

code 56286) as a starting point, the GR2 potential model already developed

was used, and the sulfate anions in the interlayer substituted with chloride

anions. Because the anions in GR1 are planar rather than 3D, the chlo-

ride ions were introduced centrally in the interlayers, equidistant from each

hydroxide layer.
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DFT was used to optimise the structure, using PBE pseudo D potentials

as previously, and resulted in the interlayers closing by around 1Å; this re-

duced interlayer dimension was anticipated due to the chloride anions being

smaller than the sulfate anions they replaced. The structure is shown in

Figure 65.

Figure 65: Crystal structure of chloride GR1 from DFT, with 2 chloride ions.

The atomic quantities in this structure were all three times the value of

the ideal formula with the exception of the chloride ions, which were twice

the ideal formula. In order to compare the cell with the ideal formula ratio

of Refait et al it was therefore necessary to add a third Cl– to this structure.

The two Cl– already present in the cell had been positioned as the two SO4
2–

in sulfate GR2 as previously stated, so would not be correctly positioned for

a structure with three Cl– . The CASTEP input was generated with the Cl–

ions at the fractional coordinates shown in Table 100. All three chloride ions
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were placed centrally in the interlayer, thus all fractional coordinates for the

z-axis were 0.50.

Table 100: Chloride ion fractional coordinates used to generate Cartesian
coordinates for chloride GR1

Chloride ion Fractional coordinates

x-axis y-axis z-axis

Cl1 0.00 0.00 0.50

Cl2 0.33 0.66 0.50

Cl3 0.67 0.34 0.50

The structure was optimised at constant pressure using DFT, again with

PBE pseudo D potentials. The resultant structure is shown in Figure 66.

Figure 66: Crystal structure of chloride GR1 from DFT, with 3 chloride ions.

The crystal structure in Figure 66 is a hexagonal structure whereas the

structure of Refait et al is rhombohedral, with space group R3m. To compare
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the DFT model and experimental structures it was necessary to divide the

model structure dimensions along the x and y axes by 2, as the original cell

had been grown 2x2x1; once this was done the modelled cell needed to be

converted from hexagonal to a rhombohedral structure. The CRYSCON [227]

general crystallographic conversion utility was used to convert the structure

and the cell parameters are detailed in Table 101.

Table 101: Chloride green rust DFT modelling results using PBE pseudo D
potentials

Results from Cell dimensions (Å) % difference to experiment Cell angles (°) % difference to experiment

a b c a b c α β γ α β γ

Experiment [224] 3.19 3.19 2.39 - - - 90.00 90.00 120.00 - - -

PBE pseudo D 3.96 3.85 3.92 24.14 20.69 64.02 84.28 82.85 83.96 -6.36 -7.94 -30.03

The difference in cell dimensions suggested further refinement may be

required, though water was to be added to the structure so this was not

considered a significant concern at this stage. Indeed the c parameter in

particular is one which changes greatly in layered structures and can prove

problematic for physical measurement as it may change during measuring

procedures.

Before adding water to the DFT model, the structure with three Cl–

counterions was modelled using interatomic potentials. The atomic coordi-

nates from the DFT model were used as a starting point for the potential

model, with a -1.0 charge on the Cl– ion, as used in the CLAYFF potentials.

The potential parameters used are listed in Tables 102 to 104.
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Table 102: Partial charges (qu) on ions used in the testing and interatomic
potential modelling of chloride green rust (Fe4(OH)8 Cl)

Species

Ion Charge (e)

Iron (Fe) 1.3000

Hydroxide Oxygen (Oh) -0.9500

Hydrogen (H) 0.4250

Chlorine (Cl) -1.0000

Table 103: Lennard-Jones potentials for chloride green rust (Fe4(OH)8 Cl),
modified CLAYFF potentials

Lennard-Jones potentials Aijr
−12
ij −Bijr

−6
ij

Ion pair (ij) Aij (eV Å12) Bij (eV Å6)

Fe-Fe 304.642804 0.021844

Oh-Oh 27290.954820 27.122570

Cl-Cl 914162.129100 125.986666

H-H 31.797010 2.183930

Fe-Oh 3836.983420 0.887919

Fe-Cl 16987.462370 1.673741

Fe-H 635.357101 0.554944

Cl-Oh 185709.578409 63.384691

Cl-H 25161.283311 35.834031
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Table 104: Harmonic potentials for chloride green rust (Fe4(OH)8 Cl), mod-
ified CLAYFF potentials

Harmonic potentials kij/2(rij − r0)2

Species (ij) kij (eV Å−2) r0 (Å)

Oh-H 48.059 1.000

GULP was used to relax the structure, the result of which is shown in

Figure 67.

Figure 67: Crystal structure of chloride GR1 using modified CLAYFF po-
tentials, with 3 chloride ions.

This relaxed structure produced cell angles of 90°, 90° and 120° for α, β

and γ respectively, matching experimental results. The a and b parameters

of the cell increased slightly, though by less than 0.1Å in each case; the c

parameter, already noted to be highly variable, decreased by 0.47Å (a change

of around 5% from the original value).
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The Cl– ions, having been introduced with a fractional coordinate of 0.5

to position them on the centreline of the interlayer, shifted slightly off the

centreline, but to maximum fractional value of 0.51. Because the c parameter

of the cell was slightly reduced after relaxation it might be expected that the

H - Cl separations would also be reduced; this was the case, though the

reduction was from 2.84Å to 2.81Å in the largest example.

To add water to the DFT model required 6 water molecules; the ideal

formula contains 2 water molecules and all other atomic quantities in the

DFT model were three times the ideal formula. METADISE was used to

insert oxygen atoms, using the fractional coordinates in Table 105, and the

structure run with no potentials.

Table 105: Oxygen atom initial fractional coordinates used to generate Carte-
sian coordinates for chloride GR1 with water

Oxygen atom Fractional coordinates

x-axis y-axis z-axis

O1 0.50 0.67 0.50

O2 0.67 0.50 0.50

O3 0.50 0.33 0.50

O4 0.33 0.50 0.50

O5 0.25 0.25 0.50

O6 0.75 0.75 0.50

Visual inspection of the structure showed adjustment of some oxygen

atoms was required as they were too close to the chloride ions. Iterative

refinements were made this way until the final fractional coordinates shown
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in Table 106 were determined. This structure is shown in Figure 68.

Table 106: Oxygen atom refined fractional coordinates used to generate
Cartesian coordinates for chloride GR1 with water

Oxygen atom Fractional coordinates

x-axis y-axis z-axis

O1 0.20 0.80 0.50

O2 0.80 0.20 0.50

O3 0.00 0.50 0.50

O4 0.50 0.00 0.50

O5 0.25 0.25 0.50

O6 0.75 0.75 0.50
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Figure 68: Chloride GR1 with oxygen atom positions refined in METADISE,
without potentials.

The next step was to add two hydrogen atoms to each of these oxygen

atoms to create the water molecules. The same method was used to position

the first of the hydrogen atoms for each oxygen; the y and z coordinates

were kept the same as the oxygen atom and the x coordinate was increased

by 0.9Å. To position the second hydrogen atom, using trigonometry and a

water molecule bond angle of 109°, the y coordinate was kept unaltered and

the x coordinate was decreased by 0.29Å. The z coordinate was altered by

0.85Å; it was decided to begin by having half of the z coordinates in either

direction (i.e. with the half the hydrogen atoms pointing up and half pointing

down, from the centre of the interlayer), so the 0.85Å was added to three of

the hydrogen atom z coordinates and subtracted from the other three. This
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resulted in the structure shown in Figure 69.

Figure 69: Chloride GR1 with oxygen and hydrogen atom positions refined
in METADISE, without potentials.

This structure was used to generate a CASTEP input file and DFT was

used to optimise the cell at constant pressure using PBE pseudo D potentials.

The orientation of the water molecules changed, as expected, and can be seen

in Figure 70.
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Figure 70: Crystal structure of Chloride GR1 from DFT, with 3 chloride ions
and water added.

The three Cl– ions again remained close to the centreline of the interlayer,

with just one of them shifting to a fractional position of 0.49 (the other two

remained on the centreline, with a fractional coordinate of 0.50). The position

of the six water molecules changed, though in quite a uniform fashion; three

moved slightly above the centreline of the interlayer and three moved slightly

below (the range of the fractional coordinates was between 0.46 and 0.54).

Each of the water molecule oxygen atoms formed a hydrogen bond to a

hydrogen atom in the hydroxide layer. These hydrogen bonds can be seen in

Figure 70, which also shows which side of the centreline each water molecule
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shifted to. This hydrogen bonding would appear the most likely reason for

the shifting of each water molecule from the centreline of the interlayer.

The orientation of the water molecules changed, producing a consistent

arrangement with both H atoms shifted to the same side of the interlayer

centreline as the O atom. However, each of the H atoms was pointing toward

the centreline of the interlayer, relative to the O atom of the water molecule.

The fractional coordinates of the H atoms ranged from 0.47 to 0.53, though

each pair (associated with one water molecule) were always slightly different

to each other in regard to this coordinate i.e. the orientation was never

exactly planar in relation to the centreline plane of the interlayer. This

would seem logical as the attractive charges between the O of each water

molecule and the H of the hydroxide layer would also mean there would

be a repulsive force between the H of the water molecules and the H of

the hydroxide layer. There was also some hydrogen bonding between water

molecules in the interlayer, which is shown in figure 70.

This cell was converted to rhombohedral using CRYSCON to allow the

comparison to experimental cell parameters, as shown in Table 107.

Table 107: Chloride green rust DFT with water modelling results using
PBE pseudo D potentials.

Results from Cell dimensions (Å) % difference to experiment Cell angles (°) % difference to experiment

a b c a b c α β γ α β γ

Experiment [224] 3.19 3.19 2.39 - - - 90.00 90.00 120.00 - - -

PBE pseudo D 4.32 4.06 3.84 35.42 27.27 60.67 86.21 85.74 119.60 -4.21 -4.73 -0.33

Following the DFT modelling of chloride GR1 with water, the interatomic

potential model with water was tested. The final coordinates of the DFT
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structure were used as the basis for the potential model. The potential

parameters used are shown in Tables 108 to 110.

Table 108: Partial charges (qu) on ions used in the testing and interatomic
potential modelling of chloride green rust with water (Fe4(OH)8 Cl · 2 H2O)

Species

Ion Charge (e)

Iron (Fe) 1.3000

Hydroxide Oxygen (Oh) -0.9500

Water Oxygen (Ow) -0.820

Hydroxide Hydrogen (oH) 0.4250

Water Hydrogen (Hw) 0.410

Chlorine (Cl) -1.0000
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Table 109: Lennard-Jones potentials for chloride green rust
(Fe4(OH)8 Cl · 2 H2O), modified CLAYFF potentials

Lennard-Jones potentials Aijr
−12
ij −Bijr

−6
ij

Ion pair (ij) Aij (eV Å12) Bij (eV Å6)

Fe-Fe 304.642804 0.021844

Oh-Oh 27290.954820 27.122570

Ow-Ow 27290.954820 27.122570

Cl-Cl 914162.129100 125.986666

oH-oH 31.797010 2.183930

Hw-Hw 31.797010 2.183930

Fe-Oh 3836.983420 0.887919

Fe-Ow 3836.983420 0.887919

Fe-Cl 16987.462370 1.673741

Fe-oH 635.357101 0.554944

Fe-Hw 635.357101 0.554944

Cl-Oh 185709.578409 63.384691

Cl-Ow 185709.578409 63.384691

Cl-oH 25161.283311 35.834031

Cl-Hw 25161.283311 35.834031

Oh-Ow 27290.954820 27.122570

Oh-oH 1937.905220 11.100685

Oh-Hw 1937.905220 11.100685

Ow-oH 1937.905220 11.100685

Ow-Hw 1937.905220 11.100685

Hw-oH 31.797010 2.183930
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Table 110: Harmonic potentials for chloride green rust (Fe4(OH)8 Cl · 2 H2O),
modified CLAYFF potentials

Harmonic potentials kij/2(rij − r0)2

Species (ij) kij (eV Å−2) r0 (Å) e

Oh-oH 48.059 1.000

Ow-Hw 48.059 1.000

Table 111: Three-body potentials for chloride green rust
(Fe4(OH)8 Cl · 2 H2O), modified CLAYFF potentials

Three-body potentials kijk/2(θijk − θ0)2

Species (ijk) kijk (eV rad−2) θ0 (deg)

Hw-Ow-Hw 3.97 109.47

GULP was used to relax the structure at constant pressure and initial

results were problematic. Some interactions between Cl and Fe appeared too

strong and pulled both atoms out of position, one hydrogen atom dissociated

from the relative hydroxide oxygen and the cell angles and dimensions became

overly distorted. Optimising the cell at constant volume produced similar

problems. An example of the H dissociation and Fe layer distortion can be

seen in Figure 71.
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Figure 71: Crystal structure of Chloride GR1 with water, showing H disso-
ciation and Fe layer distortion.

Fixing the a, b and c parameters of the cell whilst allowing the angles to

change prevented the dissociation and distortion, as shown in Figure 72, but

this was not a structure which had been fully relaxed.
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Figure 72: Crystal structure of Chloride GR1 with water, with fixed cell
dimensions.

Because the potential model of chloride GR1 with water began with cell

parameters from the DFT output, which had distorted already when com-

pared to experimental measurements,it was decided to run the DFT calcula-

tions again but with constraints applied to fix certain aspects of cell geome-

try; this would provide alternative input cells to re-investigate the potential

model. Two DFT inputs with fixed cell angles were prepared, one allowing

a, b and c to relax independently and one allowing a, b and c to relax but

with a equal to b.

At this point in the project the research time came to an end so further

modelling could not be undertaken.
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6.3 Conclusions

The work in this chapter set out to model green rust 1 and 2, using and

developing the potentials already tested with iron hydroxide and goethite

in chapter 4. DFT modelling was utilised for an additional comparison to

experimental data.

A sulfate green rust was chosen to be modelled as an example of green rust

2; it was demonstrated that the potentials used could successfully model the

bulk structure of GR2 (without water) and that the orientation of the sulfate

molecules towards the hydroxide layer was most likely to be tridentate, with

regard to the oxygen atoms of the sulfate group. Adding water to the model

demonstrated that the potential model was able to produce a structure closer

to experimentally determined measurements than was DFT, particularly with

respect to the c parameter and also the α and γ angles. Cutting the bulk

structure to model some of the low index surfaces of GR2 did not produce

a viable representation of the (0 1 0 ) surface, but was able to successfully

model the (1 0 0) and (0 0 1) surfaces; the (0 0 1) appeared to be the more

stable of these two surfaces. The (0 0 1) surface is parallel to the interlayers

of sulfate green rust which could be expected to aid formation of the channels

and assist absorption of the uranyl ion into the interlayer.

For a green rust 1 example the chloride was chosen. Modelling in DFT

was able to produce a chloride GR1 structure without water and a structure

with water added; conversion of the cell from hexagonal to rhombohedral

allowed comparison with experimental results. The potential model without

water presented problems when water was added to the cell; there was some
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dissociation of the H atoms from the hydroxide layer and the Fe layer suffered

some distortion. There were plans for refinement using alternative input cells

and further investigation of the results from modelling these cells, but at this

point the research time came to an end and the project had to be halted.

261



7 Conclusions

The work in this thesis has used a combination of electronic structure calcu-

lations and atomistic simulation using interatomic potentials. The aim was

to develop interatomic potential models, which do not currently exist, for

green rust and a range of uranyl minerals, to enable the study of interactions

with uranyl ions at surfaces and interlayers of green rust. Furthering knowl-

edge of such interactions will lead to a better understanding of the potential

for green rusts to be used as remediation or long-term storage options with

regard to uranyl ions, for example by reducing U(VI) to U(IV). It was in-

tended that reliable, transferable potential models be developed so that they

could additionally be used in alternative or further studies.

Chapter 4 focused on modelling Fe(OH)2 and goethite to test and refine

the CLAYFF interatomic potential sets that would later be developed to

model the more complex structure of green rust. These potential sets are

required to model larger systems, which are beyond the reach of DFT cal-

culation due to their computational expense. There are few experimentally

reported structures for pure Fe(OH)2 but those documented were reproduced

with excellent results using the potential model, with a, b and c parameters

all within 0.7% of experimental results and the cell angles an exact match.

Results from the DFT calculations, which used the PBE pseudo D poten-

tials, were also very good, though they could not match experimental data

quite as well as the potential model; cell dimensions were within 5% and cell

angles within 0.1%. The CLAYFF potentials were demonstrated suitable for

modelling the bulk structure of Fe(OH)2 so were then used to model five of
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the low index Miller surfaces of the same compound. Following convergence

testing for the slab thicknesses each surface was relaxed to the minimum

energy state to allow the surface energy trends to be compared. The DFT

results presented anomalies, perhaps due to the inability of DFT to account

for van der Waals forces, but the potential sets tested all revealed the (0 0

1) surface to be the most stable, followed by the (0 1 0) and (0 1 1) surfaces

which were closely matched. The (1 1 0) surface was found to be the least

stable of those investigated using potentials. It was demonstrated that inter-

atomic potentials can model the bulk of Fe(OH)2 with greater accuracy than

DFT calculation, and that they can successfully model the low index Miller

surfaces of Fe(OH)2. The results showed that existing CLAYFF potential

sets can be used in this modelling; this is ideal for ease of mixing potentials

later in the project, where uranyl compounds and green rust are investigated.

The second part of chapter 4 involved further testing the potentials in the

modelling of goethite, a mineral formed from green rust in an oxidising en-

vironment; the results were compared to experimental data and results from

DFT calculations. The results confirmed that interatomic potentials based

on the CLAYFF potential set were transferable to the modelling of the bulk

and low index Miller surfaces of goethite. For the bulk structure of goethite

the interatomic potential results again produced a closer match to experimen-

tal data than DFT was able to produce, with cell dimensions within around

1% of empirical measurements and cell angles an exact match. When viewed

alongside the results from the modelling of Fe(OH)2 this demonstrated that

the potential sets investigated show good interchangeability for use in the

modelling of larger systems, such as green rust, and that complex fitting
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procedures are not required.

Chapter 5 continued the development of interatomic potentials based on

the CLAYFF potential set by developing potentials for a range of uranyl

minerals, namely the chloride, carbonate, iron oxide, hydroxide and sulfate.

Existing Lennard-Jones potentials were used where possible; if potentials

were only available as Buckingham potentials these were initially recast as

Lennard-Jones potentials to make mixing of potentials easier. If no existing

potentials could be found for testing then they were created from other poten-

tials using standard Lorentz-Berthelot mixing rules. These potentials were

systematically adjusted and refined as required; if no acceptable result was

attained using Lennard-Jones potentials then Buckingham potentials were

used, mixed where necessary. Many of the compounds investigated had not

been previously modelled in computational studies so the potential model re-

sults were compared to experimental data and to DFT calculation results; it

was demonstrated that the potential sets showed good agreement with these

results. This established further the viability of the potential sets used, to

produce a general and interchangeable set of potentials which could be used

in modelling larger mixed systems without the need for systematic fitting.

Chapter 6 focused on using the potentials developed in chapter 4 and

chapter 5 to model the more complex structure of green rust, using a sulfate

green rust and a chloride green rust as examples of a GR2 and GR1 structure

respectively. DFT calculations were also run to provide an additional com-

parison to experimental data. It was demonstrated that the bulk structure

of sulfate green rust 2, without water, could be successfully modelled. Some

experimental studies concluded that the sulfate groups in the interlayer were
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monodentate in their orientation towards the hydroxide layer, with regard

to the oxygen atoms; the work in this study disagreed with those findings

and found a tridentate orientation to be the more likely arrangement. Once

water was added to the bulk structure the potential model produced cell

parameters closer to experimental measurements than DFT could achieve.

Modelling low index Miller surfaces of sulfate green rust produced successful

models of the (1 0 0) and (0 0 1) surfaces, with the (0 0 1) surface the lowest

in energy and therefore, of the surfaces modelled, the most stable and most

likely surface to form. A chloride green rust was modelled, both with and

without water, as an example of GR1. Conversion of the resultant cell to

a rhombohedral structure allowed comparison with experimental data and

showed that the cell without water could successfully be modelled using the

potential sets developed. Addition of water to the cell caused some hydro-

gen atom dissociation from the hydroxide layers and some distortion in the

Fe layer of the GR1 model, though the energy minimisation was successful

which suggested refinement of the potentials may well produce a structure

without such artefacts. The refinement of this structure and the investiga-

tion of alternative input cells was halted by the research time coming to an

end.

The work in section 5.3 of chapter 5 investigated the use of molecular

dynamics in modelling the aqueous uranyl ion. Two different potential sets

were tested and their results evaluated. The potentials developed by Guil-

baud and Wipff were demonstrated to be the better of those tested and

produced satisfactory results when compared with experimental data. The

possibilities for future development and refinement of these potentials were
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identified and could form part of further study.

This work has investigated interatomic potential modelling of green rust

systems which are too large and complex to be practically investigated using

DFT calculations. The work has demonstrated that these potential models

are effective and useful tools and has developed models of green rust sys-

tems not previously modelled using interatomic potentials. This work has

been done by using and refining existing potential sets, which negates the

need for expensive fitting procedures and greatly aids the mixing of poten-

tials to form larger and more complex systems. Whilst effective potential

models have been developed using partial charges on ions, it should be noted

that no consistent pattern could be determined concerning the value of these

charges in different systems. There are pitfalls in the process of fitting po-

tentials when attempting to develop a potential model; it is a challenging

process trying to fit to a range of properties that have either been calculated

from a QM method or measured experimentally. There are parameter sets

for a large number of materials in the scientific literature which can often

be used as a starting point, though if these are transferred into a different

system they may not work well without refinement. They may work for

certain properties of a system but not for others, so could be described as

partially transferable. To better fit the potentials to the system of interest

may involve varying only the partial charges but, as in this work, may also

require a systematic variation of the Lennard-Jones or Buckingham potential

parameters. Even then, there may not be an easily attainable set of param-

eters to produce an effective potential model, such as with the chloride GR1

model at the point reached in this project. The fitting process in this work
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focused primarily on reproducing the unit cell parameters a, b, c, α, β and

γ; additional considerations could be to fit other parameters such as thermal

expansion, cohesion and elastic properties. The more parameters that are

fitted, the more the likelihood that the potential model will be transferable,

but the more complex the fitting process becomes. If it is not for a sim-

ple model, sophisticated optimisation or machine learning methods may be

necessary to produce useful potentials.

The work in this thesis can be taken further by refining the potential sets

to produce an acceptable bulk model of chloride GR1 and modelling the low

index Miller surfaces of this structure. This would finalise the modelling of

all the components of the green rust systems under investigation. The system

could then be studied using molecular dynamics to determine the adsorption

and absorption behaviour of the uranyl ion onto and into green rust, as a

function of chemical conditions and concentration. Whilst the work in this

project has focused on the development of potentials using rigid ion mod-

els, primarily for the simplicity of potential mixing and time constraints, it

would be worthwhile developing shell models to investigate the effects of ionic

polarisability on the interactions between species. The mechanical stability

of the models could be investigated and compared to results from physical

experiment and alternative models; this could involve properties such as the

bulk modulus, Young’s modulus and elastic constants of the system. Indeed

in this project a good deal of work was undertaken in determining elastic

constants from the DFT results for the uranyl minerals modelled in chap-

ter 5, so that these could be compared with the results available from the

potential models; however, this was a lengthy process and time constraints
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prevented completion and inclusion in this thesis.

The relationship between structure and properties of uranyl based min-

erals, and thus the potential for the immobilisation of uranium, can be in-

vestigated using the methods described, and is an area with great potential

for contribution to knowledge.
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