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Abstract

Widespread adoption of smart Internet of Things (IoT) devices is accelerating research

for new techniques to make IoT applications scalable, energy-efficient, and capable of

working in mission-critical use cases. IoT devices are characterised by limited resources,

such as power consumption and memory storage, which is a fundamental challenge of IoT

applications. Distributed Intelligence (DI) is an area of research within the field of IoT and is

seen as a practical route towards the decentralisation of IoT architectures. Enabling DI is a

challenging task in IoT because it needs to ensure scalability, and energy-efficiency due to

resource constraints. These challenges requires a new solutions to be investigated. There is a

wide body of literature about DI in the IoT. These approaches are dealing with a particular

challenge and identified as an effective and efficient in achieving that challenge. However,

there are few attempts to enable DI in IoT. The aim of this thesis is to develop a scalable,

and energy efficient solution for enabling DI in the IoT. This aim is achieved through the

development of high-level and low-level intelligence techniques to support DI. This thesis

contributes towards the design of a new framework that ensures scalability and energy-

efficiency of IoT applications. The developed hybrid Mobile-Agent Distributed Intelligence

Tangle-Based framework (MADIT) represents the novel contribution of the work. The aim

of which is to offer low-level and high-level intelligence for IoT applications. The low-level

intelligence along with IOTA Tangle-based intelligence form the distributed intelligence

in the IoT domain. The low-level intelligence is achieved through the use of multi-mobile

agents to collect transactions data and high-level intelligence is achieved through the use of



xvi

Tangle-based architecture. The framework evaluates a Proof-of-Work computation offloading

mechanism that performs costly computations on behalf of constrained IoT devices for

efficacy with regard to energy efficiency and transaction throughput. The Proof-of-Work

offloading computation mechanism improves efficiency and speed of processing, while

saving energy consumption. In addition, this thesis proposes a new energy efficient Graph-

based Static Mutli-Mobile Agent Itinerary Planning approach (GSMIP). The GSMIP applies

Directed Acyclic Graph (DAG) related techniques and divides sensor nodes into different

groups based on the routes defined by mobile agents itineraries. Mobile agents follow the

predefined routes and only collect data from the groups they are responsible for. The proposed

solution can be easily generalised to different application domains, and is less complex than

many other existing approaches. The simplicity of the solutions neither demands great

computational efforts nor large amounts of energy consumption. The experimental findings

demonstrate the effectiveness and superiority of the proposed approach compared to the

existing approaches in terms of energy consumption and task delay (time).
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Chapter 1

Introduction

1.1 Research Background

The Internet of Things or the IoT is an emerging world-wide network of interconnected

physical-heterogeneous smart objects (e.g., wearable-sensors, environmental sensors, and

connected devices) that are uniquely addressable and are available through networking

technologies such as WiFi, Bluetooth, and others [1]. By 2030, the study predicts that

the IoT will rise exponentially, for example, by about 125 billion connected devices to the

Internet [2–4]. As a result, this poses several challenges in terms of providing timely delivery,

data volume, speed, confidentiality, and scalability [5, 6].

There are several features available for IoT applications: First, sensing the environment;

Second, communication between objects for efficient data transfer; and Third, computation

typically carried out to produce necessary raw data information.

The advent of the IoT enables a new paradigm that binds the physical objects on the

Internet to form pervasive networks that allow sensing and medicating environments to

respond to dynamic stimuli [1], often known as Cyber-Physical Systems (CPS) [7]. The IoT

was also demonstrated by the Auto-ID centre that immediately recognises physical objects in

the supply chain via Radio-Frequency Identification RFID technology and Electronic Product
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Code (EPC). Such systems have already demonstrated the potential to enhance the quality of

life by turning cities into smart cities [8], homes into smart homes [9] and campuses into

smart campuses [10].

Despite the fast adoption of IoT in industry, scalability, resilience, energy efficiency, and

security are the main challenges of adopting IoT [11]. In fact, the researchers reported in [12]

that security is one of the top ten IoT challenges.

Enhancing CPS capabilities to schedule, analyse, and solve goal-directed issues allows

complex IoT systems to be managed and ultimately optimised [13]. Such systems often

require significant computational power.

Distributed Ledger Technology (DLT) is an emerging technology that allows the ledger to

be shared, replicated, and synchronized in a distributed manner among participant nodes [14].

It allows a huge number of nodes in the distributed ledger network to be able to agree on

adding new transactions and recording transactions without requiring a central entity. One

example of DLT is the IOTA technology which relies on a new architecture called the tangle

that indicates high scalability, no transaction fees developed for the IoT.

Wireless Sensor Networks (WSN) are a group of spatially distributed sensors deployed

over an area of interest to monitor environmental conditions such as temperature, humidity

and sound [15]. Sensor nodes are mainly concerned with sensing and transmitting data to

central locations for further processing. WSN is considered as one of the most important

enabling technologies of the IoT [1]. Sensor nodes are characterised by limited resources

such as power consumption, processing capabilities, and memory storage. The usage of

WSNs has been approved in several application areas such as military applications, healthcare,

and monitoring system.

Mobile Agent (MA) technology has been put forward to cope with the resource constraints

of WSNs such as energy consumption since it allows mobile agents to be dispatched to

collect data from sensor nodes rather than sensor nodes transmit their data, which consumes
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energy of sensor nodes. However, the way in which mobile agents are routed among sensor

nodes must be intelligently planned to reduce energy consumption and improve information

accuracy. The main issue of WSN is how to create an itinerary plan for MAs to collect

data [16]. Itinerary planning can be specified as the route of the MAs when visiting sensor

nodes. It displays the sequence of the source nodes to be visited through the MAs migrations

trip.

1.2 Research Objectives

This research project aims to develop a scalable and energy-efficient distributed intelligence

framework for the IoT. The framework adopts the IOTA tangle architecture and multi-mobile

agents in order to enable distributed intelligence whilst minimising energy- consumption

and ensuring scalability. Also, the framework develops a new multi-mobile agent itinerary

planning approach that is scalable and energy-efficient.

The objectives are summarised as follows:

1. To examine and identify common requirements of existing distributed intelligence

approaches in IoT.

2. To develop a distributed intelligence framework using multi-mobile agents and IOTA

technology as an efficient architectural technique to facilitate local interaction, collec-

tion, aggregation of transactions data and it enables the deployment of IoT applications

that are scalable and energy efficient.

3. To evaluate an existing Proof of Work (PoW) offloading mechanism for efficacy with

regard to energy efficiency and transaction throughput.
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4. To develop a new energy-efficient multi-mobile agent itinerary planning mechanism

by partitioning Directed Acyclic Graph (DAG) into groups and allowing mobile agents

to visit a particular group.

1.3 Research Motivation and Challenges

The problem of enabling distributed intelligence imposes significant challenges. This is

due to the fact that it is distributed in nature, involves both processing and communication,

energy-efficiency and placing distributed functionality through multiple layers in the IoT

architecture. Another challenging problem related to distributed intelligence with current IoT

networks is that of scalability and this is because the number of devices connected through an

IoT network is expected to reach billions of devices. Therefore, current centralised systems

to deal with connecting different nodes in the network will turn into a bottleneck. This would

require a large investments into servers that will handle the large amount of information and

the entire network can turn down if the server becomes unavailable.

Several techniques have been developed over the past few years to support distributed

intelligence; however, some techniques rely on cloud computing architecture, which would

result in a system failure due to a central point of control. In addition, a cloud based

distributed intelligence architecture poses additional challenges. The application is deployed

in an untrusted environment and data can be tampered with. The nature of deployment in the

cloud is inefficient due to bandwidth usage and not suitable for time critical applications that

requires fast response e.g., target tracking. An ideal solution should shift from the central

point of control and be decentralised.

To address the above-mentioned problems, developing a distributed intelligence frame-

work that is suitable for various IoT applications is the main motivation of this research.

The developed framework aims at enabling distributed intelligence at both high and low

levels of the architecture. At the high level, a tangle-based architecture is adopted to handle
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transactions in an efficient way, while the low level employs multi-mobile agents to cater

for node level communications. The framework integrates several features into a single

model including; scalability, eliminating redundant data, and facilitating cooperation among

various IoT devices. Integrating these features into a distributed intelligence architecture

would ensure scalability, energy-efficiency and provide a promising way of overcoming the

above-mentioned obstacles.

Although, reasonable results have been obtained from the mobile agent itinerary planning

techniques in WSNs, however, it is important to note that the problem of itinerary planning

for mobile agent is the most challenging issue in multi-mobile agent, mainly due to the

fact that mobile agent efficiency depends on the itinerary planning, determining the optimal

number of mobile agents and partitioning the sensor network into groups. It has been proved

that planning itineraries for mobile agent is an NP-hard problem [17–21]. Therefore, in

this study, a new multi-mobile agent itinerary planning approach is proposed to address the

shortcomings of the existing multi-mobile agent itinerary planning approaches and enhance

the overall performance of the network by extending the network lifetime.

1.4 Contributions

Aiming at enabling distributed intelligence in the IoT with less resource usage, the research

is focused on the development of a scalable framework that supports distributed intelligence

at two levels including: high-level and low-level. In addition, the research proposes a new

multi-mobile agent itinerary planning approach that is scalable and energy-efficient. The

main contributions of the thesis are summarised as follows:

1. A new distributed intelligence framework called the Mobile-Agent Distributed In-

telligence Tangle-Based Approach (MADIT) has been developed that can effectively

overcome the issues of scalability, high energy consumption and redundant data. The
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framework uses a tangle based architecture to handle transactions data and employs a

multi-mobile agent to cater for node level communications to collect transactions data.

2. A new source grouping technique has been developed based on a Directed Acyclic

Graph (DAG). It applies DAG related techniques and partitions the network into several

groups efficiently based on the routes defined by mobile agents itineraries. Mobile

agents follow the predefined routes and only collect data from the groups they are

responsible for.

3. Multi-mobile agents itinerary planning technique has been developed for scheduling

mobile agents to collect data from sensor nodes in an intelligent way. The proposed

itinerary planning mechanism has shown outstanding performance and outperforms

the most widely used mobile agent itinerary planning mechanisms.

4. As a result of the above contributions, enabling distributed intelligence by adopting

the IOTA tangle and mobile agent as an efficient technique becomes possible. This

claim was thoroughly evaluated and supported by an experimental study that used

real-life parameters. Experimental results show that the work outperforms its best rival

in the literature.

1.5 Research Methodology

The methodology that is used in this thesis is a pure computer science research method [22].

The original contributions are developed through a new framework, theory and distributed

algorithms. The way in which the approach was developed is split into four working packages.

The first package addresses the research background and the requirements of the project.

Two are technical working packages. The final working package is concerned with writing

up the thesis.
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• Work Package 1: Background of the Research.

Initially, the research started by reviewing the state of the art distributed intelligence

approaches in IoT and the problem domain to be understood. The literature review

described the strengths and limitations of each distributed intelligence approach and

used the following database digital libraries: ACM Digital library, IEEE Xplore,

ScienceDirect and Springer-Link.

• Work Package 2: Distributed Intelligence Framework.

This particular working package is mainly concerned with the design of the framework.

It clearly describes the main components of the proposed framework and how these

components will interact with each other to accomplish the objectives of the research.

This working package consists of four phases as follows:

1. Defining the role of each component in the proposed framework.

2. Multi-Mobile agent for collecting transaction data at low-level.

3. Tangle based architecture to deal with transactions data.

4. A Proof of Work computation offloading mechanism for efficacy with regard to

energy efficiency and transaction throughput.

• Work Package 3: Multi-Mobile Agent Itinerary Planning Approach.

This working package is concerned with the development of a new energy-efficient

mobile agent itinerary planning approach. This work package is composed of two

phases as follows:

1. A new approach to multi-mobile-agent itinerary planning that manages resources

in terms of energy efficiency and scalability.
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2. It uses a Directed Acyclic Graph (DAG) related techniques to generate mobile

agent itinerary planning by dividing the DAG into groups and allocating mobile

agents to each group.

• Work Package 4: Thesis Writing Up.

This working package is concerned with writing up the thesis that is based on the

results of all of the above working packages.

1.6 Thesis Outline

In addition to the introduction chapter, this thesis consists of five other chapters, each

described as follows:

1. Chapter 2: Literature Review

This chapter reviews existing distributed intelligence approaches in the IoT focusing

on their advantages and disadvantages. It also defines the inspiration and obstacles

that underlie the use of distributed intelligence in the IoT. Furthermore, it presents

a summary of several representative distributed intelligence research deployments

according to the following categorisation: Cloud-Computing, Mist-Computing, Dis-

tributed Ledger Technology (DLT), Service Oriented Computing and Hybrid, followed

by an evaluation of distributed intelligence approaches. In addition, it presents the

state-of-the-art mobile agent itinerary planning approaches. Finally, possible future

research directions are presented in this chapter followed by a summary.

2. Chapter 3: IOTA Distributed Ledger Technology

This chapter presents the background of distributed ledger technology. It presents the

theories and components of IOTA technology and describes the features and working

principles of the IOTA tangle. This chapter also presents the suitability of the IOTA



1.6 Thesis Outline 9

tangle for the IoT. In addition, it provides three different application scenarios showing

the benefits of IOTA for the IoT. Finally, it presents the lessons learned followed by a

summary of the chapter.

3. Chapter 4: A Distributed Intelligence Framework for the IoT with IOTA and

Mobile Agents

This chapter presents a new distributed intelligence framework for the IoT, which

integrates the IOTA tangle and mobile agents. Then, it presents the use of mobile

agents to assist in enabling distributed intelligence. This chapter also describes the

proposed framework along with the developed distributed algorithms, followed by

an implementation of the framework. In addition, it evaluates the framework and

compares it with the baseline method, followed by a summary of the chapter.

4. Chapter 5: An Energy Efficient Multi-Mobile Agent Itinerary Planning Approach

This chapter presents a new multi-mobile agent itinerary planning approach that is

scalable and energy efficient. It also describes the anatomy of a mobile agent. Then, it

presents the proposed multi-mobile agent itinerary planning approach. In addition, it

provides the benefits of the proposed approach and a comparison against alternative

approaches followed by a summary of the chapter.

5. Chapter 6: Conclusion and Future Work

This chapter presents a summary of all of the contributions presented in this thesis.

It provides conclusions on the overall research and outlines potential future research

directions to extend and enhance the work further.





Chapter 2

Literature Review

Widespread adoption of smart IoT devices is accelerating research for new techniques to

make IoT applications secure, scalable, energy-efficient, and capable of working in mission-

critical use cases that require the ability to function offline. In this context, the novel

combination of Distributed Ledger Technology (DLT) and Distributed Intelligence (DI) is

seen as a practical route towards the decentralisation of IoT architectures. This chapter

surveys DI techniques in IoT and commences by briefly explaining the need for DI, and

proposing a comprehensive taxonomy of DI in IoT. This taxonomy is then used to review

existing techniques and to investigate current challenges that require careful attention and

consideration. Based on the taxonomy, IoT DI techniques can be classified into five categories

based on the factors that support distributed functionality and data acquisition: Cloud-

Computing, Mist-Computing, Distributed-Ledger-Technology, Service-Oriented-Computing

and Hybrid. Existing techniques are compared and categorised mainly based on related

challenges, and the level of intelligence supported. This chapter evaluates more than thirty

current research efforts in this area. It defines many significant functionalities that should be

supported by DI frameworks and solutions. The work assists system architects and developers

to select the correct low-level communication techniques in an integrated IoT-to-DLT-to-

cloud system architecture. The benefits and shortcomings of different DI approaches are
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presented, which will inspire future work into automatic hybridisation and adaptation of DI

mechanisms. Finally, open research issues for distributed intelligence in IoT are discussed.

The research presented in this chapter was published in [23, 24].

2.1 Introduction

Given the potential benefits of Distributed Intelligence (DI), a number of issues related

to general DI approaches, such as distrust, lack of scalability, energy-efficiency and poor

identification of potential participants, where the privacy of the participants still needs to be

solved [25]. Traditional approaches to DI, e.g., those using Cloud Computing, are inadequate

for dynamic IoT environments. The vague clauses in Cloud Computing service agreements

and unclear technical specifications may result in consumers of cloud services to be unable

to discover trustworthy cloud services. Consequently, DI in conjunction with DLT, has been

proposed to address these kinds of issues.

DI technology support for IoT applications can be categorised into five broad categories:

Cloud-Computing, Mist-Computing, Distributed- Ledger-Technology, Service-Oriented-

Computing and Hybrid. The major differences among these categories are described as

follows. In cloud computing, DI processing functionality and data is controlled by single

entities and only sent to the cloud for further processing. With mist computing, part of DI

processing functionality and data is processed at the extreme edge of a network that typically

consists of micro-controllers and sensors. By working at the extreme edge, mist computing

can harvest resources such as computation and communication capabilities available on

sensor nodes. With distributed ledger technology, the processing functionality and data

is distributed among all participant nodes. With service oriented computing, processing

components are provided as services and distributed at all levels of the system. Eventually,

the hybrid method is a combination of two or more of the four categories listed above.
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2.2 Distributed Intelligence in the IoT

This section outlines Distributed Intelligence (DI) and illustrates the need for DI in the

IoT by identifying a number of the critical factors that determine the challenges of the

IoT. Furthermore, DI approaches are categorised into five broad categories, and cast these

categories in a detailed taxonomy. Fig. 2.1 graphically illustrates the dimensions that have

been identified. Note that, DI is one of the most critical efforts to use the ever-increasing

amount of data brought back by IoT nodes deployed with sensors to achieve a detailed and

expensive task of finding, analysing and identifying the information needed.

According to [13] distributed intelligence is defined as “Cooperation between devices, in-

termediate communication infrastructures (local networks, access networks, global networks)

and/or cloud systems in order to optimally support IoT communication and IoT applications”.

This chapter expands the concept of distributed intelligence in a border perspective, which in-

cludes data management, device management, resource constraints management, optimising

communication and computation and scalability. Therefore, distributed intelligence can be

defined as a set of techniques that allows processing functionality to be distributed, enables

collaboration between smart objects and mediates data exchange to optimise communication

for IoT applications. This is a description of consciousness in which the term distributed

intelligence is used throughout this chapter.

It is required that intelligence should be optimally distributed and activated in order to be

able to invoke functions such as processing, security, quality of service (QoS) and to build the

communication infrastructure. Distributed intelligence involves offloading some computation

and data processing to devices in which less data is transmitted to central collection points.

Thereby, reducing bandwidth requirements and increases throughput. Through distributed

intelligence, the right communication and processing functionality will be available at the

right place and at the right time [13]. There are a number of factors that are required in order
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to enable distributed intelligence such as resource constraints, scalability, security, privacy,

offline capability, and interoperability. These factors are discussed in detail in Section 2.3

Distributed intelligence has the potential to overcome many of the IoT technical chal-

lenges, such as scalability, resource constraints, security, privacy and offline capability [26].

DI involves the distribution of processing functionality, cooperation among IoT devices and

is concerned with identifying where functionality should be invoked.

Additional intelligence is required to optimally service a range of IoT applications and

user requirements. This intelligence applies not only to data processing, but also to security,

privacy, network configuration, quality of service and many more. There is therefore no

single reliable place where this intelligence is triggered or placed. It can spread from the same

devices to the Cloud/DLT/Fog according to the situation. It is expected that intelligence will

be distributed through various locations to achieve maximum performance or functionality.

In addition, this involves both in-network processing and networking elements.

The organisation of nodes plays a crucial role in DI as it defines, along with other factors,

including (1) cost, which is the amount of energy needed to collect raw data, (2) accuracy,

which is the level of coverage, and (3) reliability, which includes timeliness. The organisation

of nodes may be either centralised or hierarchical, data gathered by all nodes is forwarded to

a gateway (e.g., Raspberry Pi, Arduino) utilising single-hop or multi-hop communication in

the centralised approach [27]. Nonetheless, there is lack of scalability in this approach, which

is a critical concern for IoT applications. It is unreliable, and creates traffic bottlenecks and

delays in transmission or congestion, particularly in areas across gateway nodes [8, 27]. In

order to overcome the problems of centralised approaches, IOTA tangle has been introduced

as a promising solution to achieve a longer network lifetime and to provide better scalability

[25].

A taxonomy of distributed intelligence approaches in IoT is described in Fig. 2.1, which

depicts the whole taxonomy that describes the IoT challenges. Then, it presents DI intelli-
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gence levels as low-level and high-level focusing on processing functionality and data. Finally,

distributed intelligence approaches are classified into five broad categories. The following

paragraphs provide a full description about the dimensions that have been identified.

Fig. 2.1 A taxonomy of DI challenges, intelligence levels and Classifications in IoT

– Challenges: Connected IoT devices in the coming future lead to a number of fundamen-

tal challenges, e.g., resource constraints, poor scalability, security, offline capability,

privacy and interoperability [28–30] as well as the massive amount of data produced

by IoT. These also create large demands upon network resources [30].

– Intelligence Levels: is classified into two parts, including low-level and high-level.

The former refers to node level communications in which processing functionality is

distributed among nodes in the network and data processing occurs within the network,

i.e., in-network processing. The latter uses high level nodes in the architecture, i.e.,

nodes with rich resources to process and handle data.
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– Classifications: DI technology support for IoT applications is classified into five

broad categories: Cloud-Computing, Mist-Computing, Distributed-Ledger-Technology

(DLT), Service-Oriented-Computing and Hybrid technology.

2.3 The Need for Distributed Intelligence in the IoT

2.3.1 Resource Constraints

Resource Constraints are referred to IoT devices that are specifically designed with limited

power, limited storage capabilities, and limited processing. These limited resources makes

DI a challenging distributed task. IoT systems generate large quantities of data, generating a

high demand for network resources [30]. IoT devices tend to be small and equipped with

batteries to maintain the balance between the effective span of their lifetime and the potential

costs of device replacement.

As a result, these devices are typically subject to strict constraints on their power con-

sumption and available hardware resources. Efficient use of IoT devices energy would

maintain a prolonged network lifetime. Energy harvesting [31], computation offloading

mechanism [32] and management of the wake-up-sleep cycle [33] are important techniques

that are effective in saving energy-consumption of constrained IoT devices.

2.3.2 Scalability

Scalability can be defined as the ability of the network to meet the increasing demands of the

network. It is a fundamental requirement of any IoT system to handle the capability of the

growing amount of work. It can be categorised as Vertical Scaling and Horizontal Scaling.

The former is intended to upgrade the existing network devices by including more (e.g.,

power, RAM, CPU) [34]. The latter, is concerned with expanding the network by introducing

more nodes.
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In line with the predictions made in [3, 4] IoT is continually changing and growing to

meet ever-increasing demands. Therefore, future technologies should be very flexible in

dealing with billions of things or smart objects that are inevitably connected to the Internet.

2.3.3 Security

Security refers to the act of securing IoT devices and the networks they are connected to. The

aim is to protect the entire system, which represents an IoT installation [35]. Authentication

is concerned with identifying users and devices in a network and granting access to authorised

people, whereas confidentiality ensures that data is protected by preventing the unauthorised

disclosure of information. Availability guarantees that an IoT system and data can be accessed

by authenticated users whenever needed [36].

Security remains one of the most fundamental challenges [37–41]. This is believed to

be the most challenging and crucial obstacle to IoT. In addition, device security is another

fundamental challenge that determines the successful implementation of IoT applications [42].

In such circumstances, authentication is especially of great concern, given the harm that

could occur from a possibly malicious processing device and unauthenticated device attacks

(Referred to outside device attacks)in an IoT system [43]. Ensuring the robustness of any

IoT system against hacking is critical.

2.3.4 Privacy

Privacy can be defined as the ability of the system to properly ensure that any data/information

is protected and remains confidential. IoT devices must have capability to send their data over

the network. Hence, some IoT devices may capture private and disclose sensitive information

so that they may pose a risk for the system [44]. According to [45] private information can be

further categorised as follows: 1) personal information: Such as National Security Number.
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2) Sensitive information: Such as salary. It should be ensured that these two types of data are

private so that individual’s information cannot be revealed without appropriate permission.

One main application that requires careful design of privacy is the healthcare, where

patient information is delicate, and user privacy is concerned. In addition, the privacy leakage

of user data is usually the ultimate concern, in particular with regard to sensitive data (e.g.,

the location and movement trajectory information) [46]. A possible solution would be to

define who can access that data and in what form the data should be.

2.3.5 Offline Capability

It is also referred to as resilience. It can be defined as the system’s ability to operate effectively

in mission-critical scenarios. For example, all capabilities do not change if the Internet is not

available. Consequently, in case if the system cannot connect to the internet, offline capability

remains extremely important. IoT applications that place the intelligence in a cloud based

system will ultimately become unavailable upon the shutdown of the Internet connectivity.

Creating a distributed intelligence approach that handles and processes data in the cloud

is inefficient if the cloud becomes unavailable, the system should have the ability to function

offline in this critical situation. Therefore, the main functionality of any IoT system should

be placed within the network. This results in using simple local processing, which is still

possible to have an operational system with less functionality. Hence, the distribution of

intelligence is desirable and should be supported.

2.3.6 Interoperability

Interoperability can be defined as the ability of software to communicate with one another

for effective exchange and process of information [47]. It should be tackled through multiple

layers of services to enable software and devices to interact seamlessly with each other. This

ensures straightforward integration.
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Interoperability is the outcome of a range of critical problems, including vendors lock-in,

the difficulty of developing IoT applications that work directly in cross-domains and or

cross-platforms and also the challenges of IoT communication for non-interoperable IoT

devices. Also, several manufacturers provide a wide selection of technology in its devices,

and these devices on the market are unlikely to be directly compatible.

2.4 State-of-the-Art of Distributed Intelligence in IoT

In this part, a review of the recent approaches on distributed intelligence is presented. These

approaches are summarised and compared using the challenges presented in Section 2.2. As

aforementioned, there are five categories of distributed intelligence approaches.

2.4.1 Cloud Computing DI

In cloud computing approaches to DI, generally two layers are considered: the cloud and the

end devices. Data is processed in the cloud (high-level intelligence) and devices equipped

with sensors, are responsible for sensing the environment (low-level intelligence). In the

simplest form, data is stored, processed and transferred to the cloud for further processing

rather than connected devices [48]. The cloud is driven by a centralised design architecture

and the functionality is managed in the cloud.

This is inefficient for the application that requires real time-decisions. For example, for

autonomous vehicles, real-time decisions are critical. To overcome some of the inherent

problems, [49] have adopted Amazon Web Services (AWS) and introduced a framework for

smart traffic control. The framework is based on a public cloud AWS IoT. The components

of the system include: AWS IoT, lambda, dynamoDB, kinesis, and cloud watch [49]. To be

specific, AWS IoT is responsible for collecting data from the environment. The dynamoDB

is responsible for collecting and storing data. This ensures what is beyond the endpoints is
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updated in a timely manner. The cloud watch is a platform for monitoring AWS services

and is responsible for debugging AWS services in run-time. The proposed framework is

energy-efficient with the use of MQ Telemetry Transport (MQTT) protocol and is scalable

and secure. However, privacy and offline capability are not supported.

Similarly, a distributed intelligence approach that leverages the AWS IoT platform is

proposed in [50] for connected vehicles. The approach authenticates data according to five

business rules. It deploys six unique Amazon services that store various details about cars

health, trip and owners. The approach is energy efficient and achieves privacy. However, it

lacks support for offline capability.

A distributed intelligence architecture that consists of three components is proposed by

the CARMA project [51]. Each components of the architecture is responsible for a specific

task. In carma vehicle, various sensors are connected together to collect data. The carma

edge is responsible for processing of the data via one or two machines. Finally, the CARMA

core is a cloud-based backend system that is based on public cloud resources and supports

services and information storage. The proposed framework is not suited for time-critical

applications, and lacks scalability.

In [52], the author proposes a cloud-based solution with the benefits of fog computing.

The key concept is to introduce two more security features on fog gateway devices, such

as Decoys and user behavior Profiling. The Decoys features involve putting the legitimate

user in highly prominent locations in order to identify the dubious entry. Therefore, two

of the new features are being added on top of the existing features of cloud security. The

proposed approach achieves better security. However, other IoT related challenges such as

energy consumption and offline-capability are not well supported.

A distributed intelligence solution, called PROTeCt-privacy architecture for IoT has

recently been proposed in [53]. The architecture improves user privacy by implementing

privacy enforcement at the IoT devices instead of at the gateway. Consequently, the proposed
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approach improves both system security and fault tolerance, since it removes the single point

of failure (gateway). It also decreases the amount of data that must be encrypted in order

to secure the data transmitted by IoT devices. Therefore, the amount of data that must be

transmitted also decreases. The architecture is energy efficient because less amount of data is

transmitted to a gateway node. However, it lacks scalability and offline capability.

Similarly, the authors of [54] proposed Cloud-IoT distributed intelligence architecture,

using an efficient and secure data acquisition scheme. The data collected through the

terminals is divided into blocks, sequentially encrypted and processed with the corresponding

access subtree until it is forwarded to the cloud in parallel. The proposed approach reduces

the time, cost and security. However, the approach does not take into consideration the power

usage of IoT devices, lacks offline capability, and scalability.

2.4.2 Mist Computing DI

In Mist Computing approaches to DI, part of DI functionality and data is processed at the

extreme edge of a network that consists of sensors and micro-controllers. By working

at the extreme edge, mist computing can harvest resources with the help of computation

and communication capabilities available on the sensors [55]. In its simplest form, the

gateway applies functionalities and rules for monitoring the health of local nodes, execution

of computationally extensive tasks and filtering application parameters [56].

The authors in [57] recently proposed a heterogeneous five-layer mist, fog, and cloud-

based architecture that is responsible for managing and routing (near-real-time) effectively.

Data processing from offline / batch mode is also supported. In this framework, mist com-

puting is responsible for checking if the data needs to be processed or not by applying

certain-basic rules and the offloading mechanisms when needed. Software-defined network-

ing (SDN) and link adaption-based load balancing are used in the heterogeneous framework.

The framework ensures efficient resource utilisation while achieving optimal resource al-
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locations. The proposed framework is energy efficient, can eliminate redundant data and

provides a fast-response to certain events. However, the offline capability mechanism is not

well supported. Furthermore, the framework does not include how scalability is achieved in

the perception layer.

A framework based on mist computing is proposed by the authors of [58]. The frame-

work consists of four layers: the layer of data abstraction, the layer of data extraction, the

transmission layer and the layer of aggregation/integration, where each layer is dedicated

to performing a specific task. The data extraction layer is responsible for extracting data

from IoT devices. In the data abstraction layer, data is encapsulated into a JavaScript Object

Notation (JSON) format rather than transmitting raw data via it. The data transmission layer

is responsible for transmitting and receiving information through any radio and has a mist

nodes where the abstracted payload of JSON-SenML [58] is transmitted to the microcon-

troller via the radio attached. The proposed framework efficiently achieves interoperability

and is energy efficient. However, it lacks scalability and offline capability. Furthermore,

privacy and security are not supported in their design.

Another work is proposed by the authors in [59], a framework that consists of four layers,

including: IoT physical devices layer, mist nodes layer, fog nodes layer and cloud nodes

layer. IoT layer sends data to the mist nodes, which are responsible for processing the data.

The cloud node layer is responsible for heavy computation tasks. The proposed framework is

energy efficient since it uses mist node and has less latency. However, it lacks scalability at

the physical layer, and does not support security, privacy and offline capability.

The authors [60] have taken that work a step further by introducing an offloading compu-

tation mechanism among mist nodes using the MQ Telemetry Transport (MQTT) protocol

that does not require service orchestration. Similar to the above work, a generic framework

based on mist computing is proposed in [61]. The framework consists of mist nodes that
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process data at the extreme-edge and provide mobile devices to share the networking and

computational mechanisms as services in a versatile manner.

The framework is called a mobile embedded platform (mePaaS) and the essence of it

lies in the architecture of Enterprise Service Bus (ESB). mePaaS nodes lend their hardware

resources on the basis of a service level agreement (SLA) to others. Also, it utilises a

plugin module-based method to enable nodes to perform computational processes specified

through their requesters. mePaaS is capable of implementing a workflow that makes the

service modules available to complete the requesting tasks. mePaaS requests may submit a

request package consisting of the process flow specified in the standard workflow model (e.g.,

BPMN) and input parameters with custom algorithms. The proposed framework is energy

efficient because of the use of mist nodes that processes data at the extreme edge. However,

other related IoT challenges, such as offline capability, privacy, security and scalability, are

not well considered in their design.

In [26], the authors described the fog computing architecture in support of distributed

intelligence in the IoT. Fog nodes are considered as hardware and software architecture. In

hardware, fog nodes are mainly installed on gateways, and appliances. In software, fog

nodes are described as a virtual machine. Reliability, bandwidth and security are enhanced.

However, it has been identified that security and privacy in fog computing remains as an

issue [62–64]. In addition, how the approach is implemented and evaluated is not described.

Also, it lacks a mechanism that deals with interoperability.

The work in [65] uses device-driven and human driven, to decrease energy usage and

latency. Machine learning is adopted to identify user behaviors and data gathering from

sensors are adjusted to decrease data transmission. Furthermore, some of the local tasks are

offloaded between fog nodes in need to decrease energy usage. The proposed approach is

considered to be energy efficient and supports less latency. However, it does not support



24 Literature Review

scalability and interoperability. Furthermore, a way of exchanging information between

sensor nodes is not supported.

2.4.3 Distributed Ledger Technology DI

In Distributed Ledger Technology (DLT) approaches to DI, the functionality and data are

distributed among all participant nodes. DLT serves as a shared, digital infrastructure for

applications beyond financial transactions. DLT enables the operation of highly scalable,

available and append-only distributed databases (known as the distributed ledger) in an

untrustworthy environment [66].

Recently, the authors in [67–69], proposed an approach in support of distributed intelli-

gence. In [67], the system focuses on privacy and security. The privacy leakage is avoided

due to the fact that gateway requires the user to add consent before anyone gets access to the

data. Authentication and secure management of privacy are ensured using digital signatures.

The proposed approach achieves security and privacy. However, the offline capability is not

well supported in their approach and IoT resource constraints i.e., power consumption are

not taken into consideration. The approach also lacks scalability and interoperability.

Similarly, a distributed intelligence approach is proposed in [68], the architecture con-

sists of six main components. The proposed approach is scalable, secure, energy efficient,

lightweight and supports transparency, where low-level details are hidden. However, the

offline-capability is not considered, and the elimination of redundant data coming from

WSNs still remains unsolved. It also lacks a mechanism to deal with interoperability.

IOTA tangle architecture is an evolving DLT platform aimed at addressing transaction

costs, mining and scalability issues (in the context of Blockchain technology) [66], that are

related to IoT. The architecture of a tangle, which is central to IOTA has been proposed to

achieve DI.
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For example, in [70] a distributed intelligence approach that adopts the IOTA protocol is

proposed. It establishes an infrastructure network for smart homes, paying particular attention

to scalability. All of the home IoT nodes in the system are linked with neighbouring nodes

to exchange information and ensure synchronisation with the ledger. The approach is only

suitable for small scale applications and would lead to higher energy to be consumed in all

nodes since proof of work computation is performed on local IoT nodes. The offline capability

is not supported and is not decentralised because it’s fully based on a coordinator.The

approach also does not support interoperability in the design of the architecture.

Similarly, the work proposed in [71] in which a macro standardisation of energy con-

sumption per transaction for the IOTA decentralised cryptocurrency is introduced. They

measure the IOTA’s Proof of Work (PoW) on local node. The energy consumption of App

usage was analysed in different ways including battery states and Android Debug Bridge

(ADB). The battery states is a tool included in the Androied framework that collects batter

data on devices, while ADB is responsible for dumping the collected battery data to develop

a machine and create a report. The results indicates that PoW offloading can save energy

consumption of IoT devices. However, privacy, scalability and security are not considered in

their design.

In [72], the authors proposed a system architecture that consumes the available com-

putational resources of public volunteer devices for solving the expensive computational

puzzles. The system architecture consists of several components including: core client, tangle

subscriber, database and scheduler service each of which is responsible for a specific task.

The core client is concerned with maximising the resource usage of the device. It is also

responsible for communicating with the server services for requesting tasks and for reporting

results within deadlines. The tangle subscriber is concerned with publishing every new trans-

action that it receives and adds it to the ledger and the subscriber service gets notified about

the new transactions continuously. Upon receiving new transactions, the subscriber service



26 Literature Review

adds all new valid 3 transactions to the database. The database component is concerned with

storing every new transaction published by the tangle. The scheduler service is concerned

with handling the initiated requests and results from all the clients. The proposed system is

energy efficient since it offloads heavy computational tasks from constrained IoT devices.

A novel Dual Signature Masked Authentication Message (DSMAM) is proposed in [73].

It ensures that data is generated by the trusted IoT device i.e, authenticity and enhances

the classical IOTA masked authentication message (MAM). The users can securely and

privately share messages with each other using the MAM channel. The communication

can take place using the distribution of three input parameters ‘Root’, ‘Public Key of IoT

device’ and a ‘SideKey’. The receiver can then fetch the data message payload from the

respective MAM channel. Only the valid receiver having the correct combination of these

three input parameters can fetch and decode the message in the encrypted packet of MAM

payload. The proposed approach is energy energy efficient since it uses a Proof of Work

(PoW) computation offloading and supports privacy and security. However, scalability is not

considered in their design.

In [74] a system architecture is proposed to ensure privacy. The architecture adopts a

cuckoo filter in the IOTA lightweight client to avoid address reuse upon pruning of the tangle

history. The lightweight client node holds a cuckoo filter that consists of all addresses used

previously to receive funds. If the user requests a wallet to generate an address to receive

funds, the cuckoo filter is checked if it contains an address, if it does not, then the address

is returned as a fresh address, and a copy of the address is sent to the cuckoo filter to avoid

future reuse. The system ensures the privacy of the users in an efficient way.

A general purpose decentralised attribute based access control mechanism using IOTA

tangle is introduced in [75]. The technique ensures that owner defines and manages access

control over his objects. It describes a security policies and the level of authorisation

granularity of access rights and stores them on the tangle. In this way, it guarantees distributed
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auditability and prevents the user from fraudulently denying the granted access rights. In

the case of access request, the owner sends the authorisation token to the requester only

if the requester meets the conditions defined in the access control policy. The proposed

access control mechanism is scalable and achieves privacy by using masked authenticated

messaging.

Most recently, an approach to distributed intelligence is introduced in [25]. The approach

is called a Scalable Distributed Intelligence Tangle-based approach (SDIT). The approach

is concerned with solving some of the IoT issues such as scalability, energy usage and

decentralisation by adopting the IOTA protocol. A computation offloading mechanism has

been developed to ensure that constrained IoT devices do not engage in performing heavy

computation tasks. The proposed approach is scalable, energy-efficient and decentralised.

However, security and elimination of redundant data are not considered. Also, they outline

to develop a mechanism to deal with interoperability and offline capability as part of their

future work.

Similar to [70, 25], the work presented in [76] in which a distributed intelligence archi-

tecture is introduced. The architecture consists of three main components, including IoT

nodes, super-node, and Masked Authenticated Messages (MAM). IoT nodes are responsible

for sensing the environment. The super-nodes are mainly concerned with aggregating data

and packaging them into a transaction, which then are sent to the IOTA network. MAM

is mainly responsible for managing access control over the data stored in the tangle. The

approach achieves privacy with the use of MAM. However, the approach lacks an offline

capability and interoperability mechanisms that are critical to IoT applications, and is neither

energy efficient nor scalable due to the lack of an efficient clustering mechanism.
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2.4.4 Service Oriented Computing DI

In Service Oriented Computing approaches to DI, the functionality is supported as services

that are distributed in all levels of the system. In addition, it ensures that software components

are re-usable and interoperable through service interfaces.

Recent work is introduced in [77]. The LEONORE system to support distributed intel-

ligence. LEONORE is built up using a service-oriented architecture and supports several

application components in large-scale IoT deployments. The LEONORE framework works

according to two phases: push-based and pull-based. The pull-based is responsible to in-

dependently propose a run time method, while provisioning of push-based, responsible for

providing control for the application by providing software updates and maintains security.

The proposed framework is energy efficient and scalable. However, offline capability, security

and privacy are not well supported.

A service oriented computing is developed for the agriculture application in [78]. The

architecture contains components that are related to farming and farmers such as monitoring

of the farm and it describes how farming should utilise such components. In this way, it is

likely to reduce the expenditure for farming, minimise the labor, improve the crop yielding

and suitability of the crop for a particular soil. However, the proposed approach lacks

scalability, offline capability and privacy, which are fundamental requirements for IoT.

Similar to the above work, but differs by adopting micro-services is the approach proposed

in [79]. The architectural style contains various patterns, including client-server, peer-to-peer

and cloud computing patterns. The framework proposes the adoption of micro-services.

Micro-services adopts a simple Application Programming Interface (APIs), which are thinly

layered (light weighted compared to Service Oriented Architecture (SOA)). Some might

argue that micro-services are similar to SOA. However, both apply service based architec-

ture that enables service use and reuse. The differentiation is in the way where processing

functionalities are triggered, where data is processed, architectural style, architectural charac-
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teristics, service characteristics and capabilities. The proposed approach is energy efficient

and interoperable. However, scalability that will accommodate the growth of IoT devices

is not well supported. Furthermore, other challenges such as privacy, offline capability and

security are not considered.

2.4.5 Hybrid DI

A hybrid approach combines the functionality of various algorithms from DI categories.

The main aim of the hybrid approaches is to reduce the effect of the limitations of the

aforementioned DI categories.

Most of the introduced hybrid approaches are mainly concerned with issues related to

the management of data, processing of data in a timely manner and privacy, by mixing

different algorithms from various technologies to achieve the required goal. In early studies,

distributed intelligence was achieved by integrating the architecture of WSNs at the various

level of IoT in support of distributed intelligence [13]. In such approaches, the aim is that

wireless sensor network architecture is to be connected to the Internet, and the intelligence

should be distributed at several layers. These approaches are considered efficient in regard to

energy usage. This is because data processing is distributed among all layers and they provide

flexibility. However, they lack scalability, privacy and offline capability, which are considered

fundamental challenges of the IoT domain. They also lack support for interoperability.

In [80], the authors applied fog computing as a means to support distributed intelligence

by setting up an architecture that is made up of three layers. The sensory layer is concerned

with the transmissions of data to the upper layer. A fog layer plays the role of data processing

transferred from the sensor nodes. The cloud computing layer is used for heavy processing

of data. The system is suitable for timely response applications and is energy efficient since

processing is performed near the data source. However, the approach lacks support for other

IoT technical challenges such as scalability, offline capability and privacy.
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Recently, a computing paradigm called Edge Mesh is being suggested in [81] to enable

distributed intelligence in IoT. Decision-making task is distributed through the network

among devices, instead of data being transmitted directly to a central location for processing.

Combining the use of both computation and data, tasks are exchanged with Edge Mesh

through a network of routers and edge devices. The architecture of Edge Mesh comprises

of several devices. First of all, the end devices are concerned with actuation and sensory

purposes. Secondly, edge devices can be used to process and connect end devices. Thirdly,

routers are being utilised to transmit data. Finally, the cloud is increasingly being used to

perform advanced analysis of data. The incorporation of Edge Mesh could bring various

benefits such as improved security and privacy. Nevertheless, some will be concerned

about privacy and security, but how privacy can be accomplished is not taken into account.

Furthermore, how scalability is ensured at the end devices is not provided.

In comparison to the above, the research in [82] suggested an AI-based distributed

intelligence solution. The solution incorporates the use of both cloud based and edge

controller to enable distribute intelligence. To be specific, it has been shown that the cloud-

based controller is capable of providing intelligence at high level. The edge controller is

designed to support intelligence at low level. The advantages of their research are reducing

response time and loosening rules requirements. However, the approach lacks a mechanism

that allows offline capability and privacy preserving.

A hybrid distributed intelligence approach is proposed in [83]. The approach comprises

of several layers, including IoT layer, fog layer, and cloud layer. The IoT layer contains

of WSNs that are mainly concerned with data collection from the environment, then data

is transmitted to the fog layer, which is responsible for the processing. The cloud layer

is responsible for heavy computation. The architecture is energy efficient and scalable.

However, it lacks an offline capability mechanism and privacy.
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A hybrid distributed data flow is introduced in [84, 85]. All levels of the architecture

comprise of fog nodes and these fog nodes operate based on their computing resources. It has

edge input/output and nodes for computing data. The input nodes are used to communicate

and transmit data to the compute nodes. The computing nodes are mainly concerned with

data processing. The proposed system takes into account the scalability. However, offline

capability and privacy remains unsolved.

A novel tiered architecture to allow distributed intelligence is presented in [86]. The three-

tier architecture manages gathered data from sensors. The regional tier contains fog nodes

that are mainly concerned with data combination and pre-processing. The cloud data centre

is hosted to deal with heavily computations of data. The proposed system reduces energy

usage by utilising fog nodes to process data. However, scalability is not well maintained

within the system and privacy is not considered. Furthermore, it applies static orchestration,

leading to system failure.

Most recently, the authors in [29] propose a novel approach in support of distributed

intelligence. The approach consists of (1) IoT nodes; (2) tangle to manage transactions;

(3) Proof of Work (PoW) server and mobile agents to gather transactions data. All of the

IoT nodes in the system are linked with neighbouring nodes to exchange information. IoT

devices deployed to sense data. A PoW server contains high power resources and deals

with heavy computations. The mobile Agents are triggered to gather transactions data along

their identified routes. The mobile-Agent Distributed Intelligence Tangle-Based approach

MADIT [29] is scalable and shares information between sensor nodes. Furthermore, the

system is energy efficient and decrease the data that needs to be collected. However, offline-

capability is not considered, but outlined as future work.

In [87], a distributed Internet-like architecture is introduced. The system has three main

layers. The first layer is mainly concerned with real world objects such as sensor devices.

The second layer communicates and coordinates the tasks coming from the first layer. The
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final layer is mainly concerned with user requests and services. The system is scalable and

enables interoperability. However, dealing with other challenges such as offline capability is

not introduced and does not consider resource constraints posed by IoT devices.

The authors in [88] introduced an approach that relies on Mobile Cloud Computing. It

was proposed that sensing and processing be merged in the architecture of the network and

it requires that the application workload to be shared among server side and nodes. This

proposed approach allows the data to be analysed and monitored in real time. However, the

approach in [88] is not scalable and is not designed to cope with time-critical applications.

Furthermore, offline capability is not considered but outlined as future work.

Another work is introduced in [89]. The work describes a system architecture that consists

of data collection, self-organisation and reasoning. The data collection is to be used for

gathering and communicating data to a gateway for further processing, while self-organisation

is responsible for proper management such as configuration, discovery and duplicated

identification checks. The publish-subscribe is responsible for disseminating/acquiring

data, which can be handled by the MQ Telemetry Transport (MQTT) protocol. Finally, the

reasoning plays the role of extracting knowledge based on context using a Naïve Bayes

method. The approach is scalable and delay is avoided due to the use of bayesian reasoning.

However, the ability to work in critical cases is not supported.

In [90], the authors present a hierarchical distributed computing architecture. Layer one

is largely used for computations. It is designed to provide centralised control purposes and

wide city monitoring. The second layer consists of the intermediate computing nodes that

recognise and respond to potentially dangerous activities and act upon the risks identified.

The third layer consists of high-performance edge devices, which are low-powered linked to a

group of sensors that manages raw data from sensors and analyses data promptly. The fourth

layer is comosed of sensor nodes to track environmental changes . The benefits include low
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latency, efficient responses in real-time and energy efficient. Nonetheless, issues related to

the IoT, such as security and scalability, are not taken into account in the proposed approach.

2.4.6 Intelligence Levels

Intelligence-levels in DI approaches aim to indicate where raw data processing occurs and

where processing functionalities are triggered. In each distributed intelligence approach, the

level of supported intelligence can be either low-level, high-level or both levels supported.

For example, the works reported in [49–54] focuses on high-level intelligence by enabling

data processing and processing functionality to occur in the cloud. Other research efforts

that primarily support high-level intelligence are proposed in [67, 70, 25, 76] in which nodes

with advanced computational resources i.e., energy is responsible for heavy computations

and data processing.

Low-level intelligence is mainly concerned with enabling data processing to occur at

the edge of the network. For example, the DI approaches described in [57–59, 61, 26]

in which the main idea is to provide low-level intelligence to the data at the edge. In

addition, cooperation among physical IoT devices by means of data sharing. Such research

efforts would lead to a significant decrease in energy consumption since data computation is

performed near the IoT devices and faster response time is obtained.

Both high-level and low-level intelligence are supported in all levels of the IoT system to

ensure minimum resource usage. For example, the DI approaches proposed in [77, 13, 81, 82,

86, 29] focuses on enabling high-level and low-level intelligence. In these approaches, low-

level intelligence is supported by enabling data to be shared among various IoT devices and

perform computation to provide usefulness insight out of the data. On the other hand, high-

level intelligence is supported by making use of the cloud to perform big data analytics [82].
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2.4.7 Similar Approaches and Algorithms

This part describes distributed intelligence approaches and mobile agent itinerary planning

algorithms that are similar to the research in this thesis. These approaches and algorithms are

described as follows:

Distributed Intelligence Approaches

There are several distributed intelligence solutions proposed in the literature [51, 59, 70,

77, 81]. These solutions are based on cloud computing, mist computing, distributed ledger

technology, service-oriented computing and hybrid as described in 2.4. For example, the

work reported in [51] the Cloud-Assisted Real-time Methods for Autonomy (CARMA),

which aims to design, develop, and test cooperative automated driving technology, based

on a distributed control system. The system consists of three-tier distributed computing

architecture namely: the CARMA Vehicle, the CARMA edge and the CARMA core. The

executions of autonomous functions are distributed between the on-board system and the

cloud-based high performance shared back-end system.

The authors in [59] proposed a framework that compromises of four layers, namely: IoT

physical devices layer, mist nodes layer, fog nodes layer, and cloud nodes layer. The IoT

layer is responsible for transmitting data to the upper layer, which consists of mist nodes.

The mist nodes are mainly responsible for data processing. The cloud node layer is used for

heavy computations task. The proposed framework is energy efficient because of the use of

mist nodes and has less latency. However, it lacks scalability at the physical layer and does

not support security, privacy and offline capability.

A distributed intelligence approach that adopts the IOTA protocol is proposed [70]. The

introduced approach develops an infrastructure network for smart homes. The IoT nodes are

connected with neighbouring nodes to exchange information and the data is eventually sent

to the tangle. The approach is only suitable for small scale applications and would lead to
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higher energy consumption since the Proof of Work (PoW) computation is performed on

local IoT nodes. In [77] a system called LEONORE to support distributed intelligence is

introduced. LEONORE is made up of components from the service-oriented architecture.

It supports several application components in large-scale IoT deployments. The proposed

framework is energy-efficient and scalable. However, offline-capability, energy-efficiency,

security and privacy are not well supported.

A hybrid paradigm called edge mesh is proposed in [81]. The architecture of edge

mesh consists of four types of devices including: end devices, edge devices, routers, and

cloud each of which performs a particular task. The end devices are responsible for sensing

the surrounding area. The edge devices are responsible for decision making and facilitate

interaction between end devices. The routers are responsible for routing data between edge

devices, while the cloud provides computing resources such as storage and processing. The

framework has several advantages such improved security and privacy. Nevertheless, how

privacy can be accomplished is not taken into account. Furthermore, how scalability is

ensured at the end devices is not provided.

Mobile Agent Itinerary Planning Algorithms

There are several multi-mobile agent itinerary planning algorithms in the literature [19–21].

For example, a spawn multi-mobile agent itinerary planning (SMIP) approach is introduced

in [19] to mitigate the substantial increase in cost of energy and time used in the data

collection processes. The SMIP works by allowing the main mobile agent to spawn other

mobile agents with different tasks assigned from the main mobile agent. Similarly, a multi-

mobile agent itinerary planning approach called GIGM-MIP approach is proposed in [20] .

In GIGM-MIP each group in the network will be visited by more than mobile agent. The

data size of the source nodes in each group decides how many mobile agents will be sent to

that particular group. The approach balances the accumulated data between mobile agents.
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However, having more than one mobile agent dispatched to visit one group would result in

an increase of the mobile agent migration hops. In addition, multiple mobile agents carrying

the same aggregation code within a single partition would result in an increase in energy

consumption.

Another multi-mobile agent itinerary planning approach is introduced in [21]. The

approach consists of four main phases including: visiting central location (VCL) selection

algorithm, source-grouping algorithm, single itinerary planning (SIP) algorithm and its

iterative algorithm. The VCL selection algorithm is responsible for calculating a high source

node density. The source-grouping algorithm is mainly concerned with grouping nodes

in the network and assign mobile agents to a specific group. The itinerary planning of

the mobile agent is determined by using a SIP. The iterative algorithm is used to ensure

that all sensor nodes are assigned to the allocated mobile agents. The proposed algorithm

considers a cluster-based technique in which the source nodes are arranged geographically

and distributed in several clusters. This limits the use of proposed algorithm when the nodes

are sparsely deployed.

2.4.8 Evaluation of Distributed Intelligence Approaches

The evaluation of distributed intelligence approaches covers 30 representative approaches. As

described in Table 2.1, the evaluation aims to assess existing research using the categorisation

presented in Section 2.4 and the identified challenges in Section 2.2.

According to Table 2.1, the least implemented challenges of distributed intelligence are

offline capability, security and scalability. Many research efforts support only two or three of

the IoT DI challenges, which are potentially critical for many IoT applications. In terms of

offline capability, it has not been implemented in most of the research efforts according to

Table 2.1.
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DI Categories AP RC SC SE PR OC IO IL

Cloud Computing

[49] ✓ ✓ X ✓ X X H
[50] ✓ ✓ X ✓ X X H
[51] ✓ X X ✓ X ✓ H
[52] ✓ X ✓ ✓ X X H
[54] X X ✓ ✓ X ✓ H
[53] X ✓ X ✓ ✓ X H

Mist Computing

[57] ✓ X ✓ X X X L
[26] ✓ X ✓ X X X L
[65] ✓ X ✓ X X X L
[58] ✓ X X ✓ X ✓ L
[59] ✓ ✓ X X X ✓ L
[60] ✓ ✓ X ✓ ✓ X L
[61] ✓ ✓ X X X X L

Distributed Ledger Technology

[67] X X ✓ ✓ X X H
[68] ✓ ✓ ✓ X X X H
[70] X ✓ ✓ ✓ X X H
[25] ✓ ✓ X X ✓ X H
[76] X X X ✓ ✓ X H

Service Oriented Computing
[77] X X ✓ ✓ X X H&L
[78] ✓ ✓ ✓ X X X H&L
[79] X ✓ ✓ ✓ X X H&L

Hybrid

[13] ✓ ✓ X X ✓ X H&L
[80] ✓ ✓ ✓ X X ✓ H&L
[81] ✓ ✓ ✓ X X X H&L
[82] X ✓ X X X ✓ H&L
[83] ✓ ✓ ✓ X X ✓ H&L
[84] X ✓ X ✓ X ✓ H&L
[85] ✓ X ✓ X X X H&L
[86] ✓ ✓ ✓ X X X H&L
[29] ✓ ✓ X X ✓ ✓ H&L
[87] X ✓ ✓ ✓ X ✓ H&L
[88] ✓ X ✓ X X X H&L
[89] ✓ X ✓ X X X H&L
[90] ✓ X X ✓ X X H&L

AP: Approach
RC: Resource Constraints
SC: Scalability
SE: Security
PR: Privacy
OC: Offline Capability
IO: Interoperability
IL: Intelligence Levels
L: Low-level
H: High-level
H&L: Both High-level and Low-level

Table 2.1 Evaluation of distributed intelligence approaches
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Among these research efforts, the work proposed in [26] provides an interesting case

study on applying distributed intelligence in smart factory applications. When applying the

fog computing technology, fog nodes are described by the hardware and software architecture.

Therefore, real time analysis is supported and low-latency is minimised. It has been indicated

that the fog computing approach is able to reduce bandwidth because processing is occurring

within the network. The work proposed by the authors in [52] relates to the security issue

in which a cloud based approach is used to deal with attacks (e.g, data theft) where two

additional security features are added. Consequently, better security can be achieved through

the proposed built in features in addition to existing cloud security features. In regards to the

offline capability issue, the authors in [13] introduced offline capability in their architectural

design, but without giving details about the implementation and evaluation.

2.4.9 A Summary of Shortcomings of Existing Distributed Intelligence

Approaches

From the above discussion, it can be seen that most of the current approaches to enabling

distributed intelligence in IoT are subject to all the problems inherent in distributed systems.

Firstly, the approaches suggested usually depend on centralised architecture for processing

data [64] that offers high cost and unacceptable delays for many distributed applications.

These include health monitoring, autonomous driving, emergency response etc. Furthermore,

transferring data to a central location requires high network bandwidth [91, 8].

Bottlenecks and delays are expected from the communications between the devices and

the centralised system [88]. Tracing data stored in the cloud is very difficult and lacks ac-

countability. IoT that is based on central infrastructure requires trusting third party for dealing

with data and the storage of data in the cloud has the possibility of that data to be deleted

or tampered with [92]. Besides, solutions that fully relies on fog computing is considered
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to have problems with security and privacy [62, 28]. They also lack interoperability and

interaction models [28].

Previous research recommends that IoT needs to shift away from a central point of

control [93]. Approaches based on Blockchains introduce overhead and performance is-

sues [94, 95]. Therefore, developing a standardised approach is required to define IoT data.

For example, the one provided in the IOTA Identification of Items (IDoT) [96] that aims to

protect the network, too. Also, blockchains require transferring a large portion of data, which

is the header block, leading to a wastage of resources [97].

2.5 Mobile Agent and Distributed Intelligence

Mobile agents (MAs) are software abstractions that perform data processing autonomously

while physically migrating between nodes in the network to enable the sharing of data

amongst participants’ nodes [98]. MAs facilitates the flexibility and scalability problems of

centralised models [99], and are commonly deployed in Wireless Sensor Networks (WSN)

for data collection and in-network processing. Many MAs approaches dispatch agents to

collect data from the network rather than sending the data back to a gateway. The benefits of

using MAs as stated in [100] include: reduced task redundancy, lower network bandwidth

and reduced network load.

2.5.1 Single Itinerary Planning (SIP)

Over the last few years, mobile agent itinerary planning has drawn many researchers’ attention

in the field of WSNs. The interested readers are referred to the recent survey [101] and

the references therein for a comprehensive review of the mobile agent itinerary planning

approaches in WSNs. It is noticed that many of these research efforts are towards optimising

and constructing an energy efficient itinerary planning mechanism [102–109]. One piece
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of the early work on Single Itinerary Planning (SIP) is proposed in [102], in which the

authors have developed two heuristic algorithms to calculate the itinerary of the single mobile

agent. Two algorithms are named local closest first (LCF) and global closest first (GCF) are

proposed. LCF operates by finding the next node in the shortest distance to the current node

while GCF aims to find the centre’s closest node. The proposed algorithms are static and can

save energy as the itinerary planning needs calculated only once.

However, the approach does not scale well if a single MA has to visit thousands or

millions of sensor nodes. It also leads to big delays in reporting the data because of using

only a single MA, which has to move between all sensor nodes in the network.

The authors in [106] proposed a mobile agent directed diffusion (MADD) approach,

which is based on a directed diffusion algorithm. The approach works by making the sink

to initially get diffused with an interest for notifications of low-rate exploratory events that

are intended for path setup and repair. The proposed approach reduces energy consumption

because it relies on directed diffusion agent trip and eliminates data redundancy. However,

it introduces a delay since a single mobile agent is routed among sensor nodes and is not

suitable for large scale sensor networks.

The mechanism introduced in [107] is an improvement over the MADD approach.

There are three phases of the proposed approach: First, the MA action phase; second,

the dissemination phase of exploratory data; and third, the controlled setup phase of gradients.

In the first phase, the sink node floods its neighbor with interest messages in the controlled

setup phase of gradients. It sets up an itinerary to the next hop based on two metrics: (1)

the remaining energy threshold and (2) the minimum hop count. In the exploratory data

dissemination phase, the main aim is to discover the source nodes and to establish the

TargetSrcTable (containing targets and source node information) in each target node. Sensory

data is stored in the cache of each source node, waiting for collection in the next phase. The
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approach is energy efficient. However, due to the same limitations as above research efforts,

the solution lacks scalability due to the use of a single MA.

The work proposed in [110] is called Itinerary Energy Minimum Algorithm (IEMA).

IEMA extends LCF by considering estimated communication costs. The aim of IEMA is

to achieve better energy efficiency. It focuses on choosing the first visiting node among the

remaining set of source nodes as well as an optimal source node as the next source node to

be visited. The algorithm estimates the energy costs of the alternative choices of the first

node. The proposed schema is energy efficient. However, it does not scale to a large number

of sensor nodes since only a single mobile agent is used. In addition, it does not take into

consideration the growing size of collected data of the mobile agent when visiting a sequence

of nodes.

In [111] an event-driven adaptive method is proposed, which implements a semi-dynamic

routing strategy based on a two-level genetic algorithm. A fitness function is constructed to

meet the desired detection accuracy while minimising energy consumption and path losses in

a global sense. The sink node has necessary predetermined knowledge for performing the

global optimisation, such as the geographical locations of all sensor nodes. The sink node is

responsible for computing the routes for mobile agent. The mobile agent follows the route

computed by the genetic algorithm according to the fitness function. The proposed approach

is energy efficient. However, it lacks scalability since a single mobile agent is used, which is

not suitable for time critical applications that require real time processing.

2.5.2 Multiple Itinerary Planning (MIP)

To alleviate the inherent problem caused by the use of a single mobile agent, a number of

Multiple Itinerary Planning (MIP) approaches have been developed.

Authors in [103] investigate the role of multiple mobile agents and propose a novel a

routing itinerary algorithm called DMAIP. The idea is to group all sensor nodes into multiple
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itineraries for a mobile agent. The approach consists of three main components, including:

remote user, sink node and sensor node. The remote user assigns a task to a sink node. When

the sink node receives a task it traverses the network topology to generate a spanning tree,

and assigns each path to one of the mobile agents.

A new immune inspired algorithm, called the Clonal Selection Algorithm for Multi-

agent Itinerary Planning (CSA-MIP), is proposed by the authors in [105], in order to solve

the MIP problem in WSNs. The important components of CSA-MIP includes: encoding,

mutation operators, cloning of antibodies and affinity function. CSA-MIP is based on two

computational stages called Stage I and Stage II. Each stage involves a different mutation

operator. The proposed approach has less computational complexity and is energy efficient.

A novel central location-based MIP (CL-MIP) framework is presented in [21]. The frame-

work consists of four parts including: visiting central location (VCL) selection algorithm,

source-grouping algorithm, SIP algorithm and its iterative algorithm. The VCL selection

algorithm is used to calculate a high source node density. The source-grouping algorithm

is responsible for grouping nodes and assigning mobile agents to particular groups. The

SIP algorithm is adopted to determine the itinerary of mobile agents. Finally, the iterative

algorithm is mainly concerned with ensuring that all source nodes are assigned to the allo-

cated MAs. The CL-MIP algorithm considers a cluster-based technique in which the source

nodes are arranged geographically and distributed into several clusters. This indicates that

the CL-MIP is not applicable to be used if the nodes are sparsely deployed.

The authors in [112] proposed a new itinerary planning strategy, which consists of three

phases. First, the network is partitioned into clusters according to the distance between the

sensor nodes using the k-means algorithm. Second, the number of MAs is determined for

each partition based on the volume of data from each source node and the geographical

distance. Third, an optimised itinerary plan is produced for each partition group, identifying

the source nodes to be visited according to a greedy randomised adaptive search procedure
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(GRASP). This approach is scalable and delay is minimised due to dispatching of multiple

agents for each group. However, this algorithm is not sufficiently robust as the data volume

increases. Furthermore, the number of partitions must be manually identified by the user,

which can result in sub-optimal partitions of the network.

In [108], an energy efficient itinerary planning approach is proposed. The algorithm is

based on Iterated Local Search (ILS), a metaheuristic method commonly used for solving

discrete optimisation problems. ILS iteratively applies a simple modification to a local search

routine, each time starting from a different initial configuration, in search of an improved

solution. The ILS algorithm is executed centrally at the sink which statically determines

the number of MAs that should be used and the itineraries these MAs should follow. The

proposed algorithm is energy efficient and avoids delays. However, the itinerary planning is

deterministic and pre-defined at the sink node. Therefore, if a sensor node depletes in energy,

it would result in re-constructing the paths for each mobile agent.

The authors in [109] proposed a system, which employs both mobile agents and mobile

servers to collect data from sensor nodes deployed in a sensing field. Mobile agents migrate

from node to node autonomously and return to the mobile server after data collection. The

migration process relies on a geographic routing approach to route mobile agents. Upon

collecting data mobile agents find the current location of the mobile server and returns to

it with the aggregated data. The system focuses on a effective and intelligent gathering

mechanism.

The authors in [113] proposed directional source grouping algorithms (DSG-MIP). The

main idea is to divide the network area into sector zones with specific angles, the centres of

which are the immediate neighbors of the sink node. After this, the source nodes are allocated

to an itinerary within each sector zone. The route to the sink node inevitably converges

on each MA’s round trip and increasingly extends as the MAs travel further from the sink

node [104].
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A multi-mobile agent itinerary planning-based energy and fault aware data aggregation

(MAEF) method is proposed in [114] to plan itineraries for MAs. The approach comprises

of three main phases, including: 1) cluster head selection and construction, 2) cluster head

based itinerary planning and 3) mobile agent migration and data collection. In the cluster

head selection phase, the idea is to distribute the density impact factor of each node to the

other sensor node, then the sensor node with the highest accumulated impact factor will be

selected as a cluster head node. In the cluster head itinerary planning phase, mobile agent

itineraries among cluster head nodes are constructed based on a minimum spanning tree

(MST). In the final phase, the sink dispatches mobile agents to gather data from cluster head

nodes.

In [20], a multiple mobile agent itinerary planning approach named as GIGM-MIP is

proposed, which works in three phases. In the first phase, the network is partitioned using

thek-means method and based on geographical information in which a set of partitions is

generated and each partition can have several mobile agents. In the second phase, the number

of mobile agents is determined and groups of nodes are defined for each mobile agent.

Finally, the third phase is concerned with defining the itinerary that passes throughout the

source nodes grouping of each mobile agent. Several mobile agents can be allocated to each

partition.

The authors in [115] proposed a Scalable and Load-balanced Mobile Agents-based Data

Aggregation (SLMADA) protocol, in which the itinerary of a mobile agent is dynamically

decided at each hop. The whole monitoring area is divided into centric zones and it is assumed

that the sink node knows the location coordinates of source nodes. A zone coordinator is

selected in each concentric zone, which assists the MAs in the dispatching and receiving to

and from the network. The sink node will create a set of MAs, one for each zone coordinator

and dispatch mobile agents to the centric zones. This approach allows mobile agents to decide

their visit sequence dynamically based on information provided by the zone coordinators.
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Energy-Aware Mobile Agent Based (EAMB) is proposed in [116]. The network is

divided into multiple clusters and a group of sensor nodes is assigned to one cluster. The

MAs moves between cluster head nodes only, which is defined by using a minimum spanning

tree (MST).

In [117], a dynamic and distributed migration protocol, called energy and trust aware

mobile agent migration (ETMAM), is proposed. The main idea is to identify and bypass faulty

or malicious nodes during the mobile agent migration process. The sink node dispatches

mobile agents concurrently to the coordinator nodes of each wedge region in the network.

Coordinator nodes are the nodes of the innermost concentric ring. Due to the need to

detect malicious nodes, the whole approach is considered complicated and requires heavy

computation.

In [19], the authors proposed a spawn multi-mobile agent itinerary planning (SMIP) to

reduce significant rises in energy costs and time spent on data collection. This is based on the

spawning agents, which allows the primary MA to spawn another MA into a single fraction.

The proposal uses k-means algorithm to calculate the number of clusters based on Bayesian

ratings. The sink node specifies the number of MAs and their itineraries for each partition

when the partitioning is complete. The approach is energy efficient and scalable.

To summarise, most of the above approaches do not take into consideration that when the

mobile agent moves along the routes, the size of collected data from sensor nodes increases

rapidly, leading to higher consumption of network bandwidth.

The evaluation of the recent mobile agent itinerary planning literature covers 18 represen-

tative approaches. Table 2.2 presents the comparisons of existing research from a number of

angles, including: scalability, energy-efficiency, grouping strategy, and delay. From Table

2.2, it can be seen that all SIP approaches lack scalability and suffer from delays in reporting

data back to a sink node during mobile agent migration. Meanwhile, all MIP approaches can

help address the issues of scalability, and avoid excessive delays.
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Table 2.2 Comparison Among Mobile Agent (MA) Approaches

Categories Approach Scalability Energy-Efficiency Grouping Delay

SIP

[102] X ✓ X ✓
[111] X ✓ X ✓
[106] X ✓ X ✓
[107] X ✓ X ✓
[110] X ✓ X ✓

MIP

[103] ✓ ✓ ✓ X
[104] ✓ ✓ ✓ X
[105] ✓ ✓ ✓ X
[108] ✓ ✓ ✓ X
[109] ✓ ✓ ✓ X
[114] ✓ ✓ ✓ X
[113] ✓ ✓ ✓ X
[20] ✓ ✓ ✓ X
[115] ✓ ✓ ✓ X
[116] ✓ ✓ ✓ X
[117] ✓ ✓ ✓ X
[19] ✓ ✓ ✓ X

2.6 Hardware-based Security Primitives for IoT

The inherently distributed nature of distributed intelligence approaches provides several

vulnerable points to compromise security. Consequently, it is a fundamental challenge

to ensure authenticity, integrity, confidentiality and availability among various integrated

devices [118, 119].

Hardware security primitives have been put forward as a promising security primitive to

achieve security. This refers to hardware devices that are used as fundamental building blocks

to create security solutions [119]. It consists of Physically Unclonable Functions (PUFs)

and True Random Number Generator (TRNG). On one hand, PUFs are an integrated circuit,

which has the ability to generate secret responses and cryptographic keys by applying inherent

physical variations from manufacturing [120]. PUFs can be implemented on programming

micro-controllers. In PUFs, inputs are referred to as “challenges” and outputs are “responses.”

A challenge and its associated response are known as a challenge-response pair (CRP). On the
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other hand, TRNG are hardware components that is responsible for producing random bits

according to the outcome of unpredictable physical processes such as the device’s internal

thermal noise [121].

Recent research focused on exploiting the benefits of hardware security primitives for

Cyber-Physical Systems (CPS) [122, 120, 123, 124]. The authors in [122] have proposed

a novel integrated TRNG-PUF architecture based on Photo-voltaic (PV) solar cells. The

proposed architecture works according to two phases including: Training phase and Run

phase. The training phase is mainly concerned with learning the entropic nature of PV solar

cells and sets an optimal sampling interval, which is a vital step to set optimum TRNG

throughput. The run phase is mainly responsible for obtaining sensor response in either a

dynamic (large variation) response to produce TRNG output or static (stable) response to

generate PUF output. The proposed integrated architecture could be beneficial in space-

limited CPS.

Another PUF design that is specifically targeted for use in IoT applications is proposed

in [124]. The architecture of the proposed PUF consists of a microcontroller, eight piezo

sensors, eight 100 K resistors and an ac voltage source, each of which is responsible for

performing a specific task. The proposed PUF should be considered a weak PUF as it is

designed to have only one possible challenge-response pair (CRP). The reason there should

only be one pair is because the response generated by the PUF is a result of comparing the

intrinsic characteristics of the piezo sensors. The proposed PUF approach can be incorporated

into IoT devices as a cybersecurity solution.

A novel solar cell based PUF that leverages the intrinsic variations present in solar cells

is introduced in [120]. The proposed design utilises a microcontroller to read the open-circuit

voltages (Voc) of a selection of solar cells and generate an associated response. The proposed

design was implemented using amorphous silicon solar cells, monocrystalline solar cells, and

polycrystalline solar cells. A microcontroller is responsible for capturing voltages output and
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converting them to digital values. The PUF uses these values to generate a 128 bit response

by comparing the voltages in a pre-determined pattern. Each bit in the generated response

is a direct result of a comparison made between the output voltages of two different groups

of solar cells. The proposed approach ensures the security of IoT devices without adding

hardware.

A novel weak PUF design using thermistor temperature sensors is proposed by the

authors in [123]. The design uses the differences in resistance variation between thermistors

in response to temperature change. The approach is based on 8 thermistor temperature sensors.

Each sensor is connected to a microcontroller in the configuration. A microcontroller is

used to compare readings from groups of thermistor temperature sensors to generate a

weak response. An algorithm is used to process the individual voltage data and construct

a 128-bit response. It produces a response by making a series of comparisons between

total output readings for predetermined groups of a given component. It assumes that each

component should have the same reading and any differences are solely due to their intrinsic

variations. The approach has shown an improved overall reliability with regards to changes

in temperature.

2.7 Challenges and Opportunities

This chapter discussed several issues and challenges that are important in a distributed intel-

ligence approach. Also, it examined more than 30 research efforts to evaluate distributed

intelligence approaches. these challenges are research fields that needs to be further investi-

gated. The related references for each challenge is provided in which the interested reader

can use to further look into a specific challenge.

The challenges in developing a distributed intelligence approach/platform that could

potentially support all of the challenges is summarised as follows:
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– Both DI and DLT are still in their early stages and require further experimentation.

Distributed intelligence is considered to be very critical in determining the success

of almost any IoT applications such as smart parking. The main reason behind it

is that it requires the placement of where methods should be invoked/triggered and

where data should be processed. This needs an effort to where distributed intelligence

should be put and activated. This process requires several stages such as business logic,

energy efficiency and computation efficient. Distributed ledger technology (DLT),

will change the infrastructure for the Internet of Things into collaborative distributed

participants. The IOTA technology will tackle many of the IoT issues by enabling

scalablity, efficient processing of data, security and privacy [29, 25].

– There is an overall lack of a DI platform and approach that can provide an efficient

framework for other researchers to test alternative approaches and distributed algo-

rithms. For example, in order to design and develop a new hybrid DI approach that

combines various technologies such as Network Function Virtualization (NFV) [125],

Mobile Cloud Computing [126], Multi-Agent system [127, 128], Distributed ledger

technology [129], is yet to be developed.

– Ensuring where to place the intelligence is a major research question that should be

taken into consideration when developing a distributed intelligence approach. Other

related research questions that should be investigated including: How IoT devices

should cooperate with each other to support low-level intelligence? Where should

heavy computations be invoked? Who is responsible for the distribution of tasks

between devices? When to trigger data processing and where? These are all research

questions that need to be investigated further. The computation tasks should be

distributed among various devices depending on the available resources of each device.

For example, IoT devices with higher resources can perform data processing on behalf

of constrained IoT devices. Therefore, the tasks should be distributed among different
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devices depending on the application requirements and resources available on the

devices. Mist computing can work on the edge of the network and can deal with issues

related to security, data processing and access control, etc. This requires mist devices

to be robust and flexible. It is a challenge to manage all the tasks concurrently when

developing distributed intelligence approaches.

2.8 Proposed Solution and Theories

This section briefly describes why distributed ledger technology is suitable for IoT. In

addition, it describes the theories of the proposed distributed intelligence approach and the

multi-mobile agent itinerary planning approach.

DLT can be used to eliminate the requirement of a central entity from the IoT architectures.

IOTA technology is a decentralised public ledger that is used for organising the data and

executing the transactions. IOTA technology offers a significant benefit including: scalability,

zero-fees transactions, resiliency and decentralization. In addition, the different types of

nodes developed in the IOTA technology e.g., full nodes and light nodes are suitable for the

resource constraints IoT devices, such as power consumption and limited storage. Chapter 3

describes the features of the IOTA technology in detail.

2.8.1 A New Enabling Approach

The concept of IOTA Full Node [96], which can be defined as a node within the tangle

architecture that is capable of finding neighbours and communicating with them, attaching

transactions to the tangle, bundling and signing, tip selection, validation, and performing the

Proof of Work (PoW). IOTA full nodes hold a complete copy of the tangle.

The concept of light nodes [96] that participates in the network and can be defined as a

node within the tangle architecture that relies on the full node to interact with the tangle; it
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distinguishes itself from other nodes in the sense that it does not store a copy of the tangle

and does not validate transactions. It has been specifically designed as a lightweight node for

resource constrained IoT nodes.

Fig. 2.2 A New Distributed Intelligence Approach for IoT.

The proposed approach consists of three layers. The first layer consists of end nodes

running an IOTA light client and will act as an end points to the IOTA network. The second

layer, comprises of a less unconstrained IoT devices running the IOTA full node. Finally,

the application layer consists of logic and enables the developer to create decentralised

applications.

Mobile agent (MA) technology can provide cooperation and information sharing among

different types of nodes. A mobile agent can be defined as a piece of software that performs
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data processing autonomously while moving from node to node in the network [130]. The

agent can collect local data and perform any necessary data aggregation. Mobile agents

can make decisions autonomously without user input. They provide flexibility in terms of

decision making and reliability in terms of node failure.

2.9 Summary

This chapter presented an overview and classifications of distributed intelligence approaches

in IoT. It also described the need for distributed intelligence in the IoT domain. It described

distributed intelligence approaches according to the following categorisation: Cloud Com-

puting, Mist Computing, Distributed Ledger Technology, Service Oriented Computing and

Hybrid. This chapter also evaluated distributed intelligence approaches according to the iden-

tified challenges, followed by a summary of shortcomings of existing distributed intelligence

approaches. In addition, it presented hardware-based security primitives with recent research

effort in IoT. Finally, it described future research directions towards developing a scalable

and energy efficient distributed intelligence approaches.



Chapter 3

IOTA Distributed Ledger Technology

3.1 Introduction

The Internet of Things (IoT) is considered to be as an enabling technologies for several

applications. It connects physical objects together with the aim of exchanging data with other

systems over the internet to enable communications between these objects [1], also referred

to as Cyber-Physical Systems (CPS) [7].

Distributed ledger Technology (DLT) is emerging technology that has been developed

to share data among different participants deployed over various locations all over the

world. This technology provides several benefits to various IoT applications. DLT is being

investigated by many researchers across the world as a promising solution to IoT. It can tackle

many of the challenges imposed by the IoT systems such as the scalability, energy-efficiency,

security and privacy [29, 131].

IOTA is an open source distributed public ledger technology, which records and executes

transactions between machines and devices in the IoT. In 2015, IOTA foundation [132]

introduced the concept of IOTA technology that has attracted much attention over the

past years as an emerging peer-to-peer (P2P) technology for distributed computing and

decentralised data sharing. The IOTA can avoid the attacks that want to take control over
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the system. Interestingly, due to its unique and attractive features such as: scalability,

zero-fees transaction, transactional privacy, security, the immutability of data, integrity

and fast transaction confirmation, IOTA has been applied in various sectors beyond the

cryptocurrencies. Some of the areas, digital healthcare [133], access and rights management

system [75], and internet of electric vehicles [134].

3.2 Distributed Ledger Technology

Distributed Ledger Technology (DLT) can be divided into three main types based on the

differentiation of the data structure used for the ledger, including: BlockChain (BC) [135],

IOTA tangle (DAG) [136], and Hashgraph [137]. BC is a distributed, decentralised, and im-

mutable ledger for storing transactions and sharing data among all network participants [138].

Hashgraph, is considered as an alternative to BC and is used to replicate state machines,

which guarantees Byzantine fault tolerance by specifying asynchrony and decentralisation,

as well as no need for proof-of-work (PoW), eventual consensus with probability of one

and high speed in the consensus process [139]. BC has been criticised for its cost, energy

consumption and lack of scalability.

To overcome these limitations, the IOTA tangle technology has been introduced as a

decentralised data storage architecture and a consensus protocol, based on a Directed Acyclic

Graph (DAG). Each node in the DAG represents a transaction, and the connections between

transactions represent the transaction validators [136].

Blockchain technology recently started to receive attention from both academic and

industry, since it offers a wide range of potential benefits to areas beyond cryptocurrency

(in particular the IoT), as it has unique characteristics such as immutability, reliability and

fault-tolerance [140]. It is predicted that BC will transform the IoT ecosystems by enabling

them to be smart and more efficient. According to the International Data Cooperation (IDC),

it is stated that 20 per cent of IoT deployments will employ a basic level of BC enabled
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services [141]. This number will continue to increase for the adoption of BC in the IoT since

it is in the early stages of innovation. Overall, BC is considered as an effective solution to be

integrated with the IoT to achieve some of the IoT technical challenges [142].

BC is potentially able to overcome some of the IoT issues such as privacy and secu-

rity [143]. However, building an energy-efficient and scalable IoT applications remains a

challenge. Firstly, all BC consensus mechanisms in either private or public BC, require

all fully participating nodes to retain copies of all transactions recorded in the history of

BC, which comes at the cost of scalability [140]. Furthermore, IoT devices have limited

processing capabilities, and memory storage which brings an issue when using BC-based

architectures. Some of the IoT devices will not be able to engage in performing the Proof of

Work (PoW) consensus operations due to their limited computational power and battery life.

Also, IoT devices do not always come with the required storage space to place a complete

copy of the BC [144].

With the IOTA tangle, transactions are directly attached to the tangle without the need to

wait as they need to approve two previous transactions called tips. Hence, the tangle is more

efficient than traditional BC under the well-designed architectures [70].

3.3 IOTA Platform: An Overview

Currently, IOTA is scheduled to undergo a two-part protocol upgrade, IOTA 1.5 (Chrysalis)

and IOTA 2.0 (Coordicide), aimed at implementing a series of major DLT technology ad-

vancements to improve network functionality and achieve greater decentralisation. The IOTA

1.5 introduces a protocol enhancements that enable smart contract functionality, tokenized

assets and stable coins, which could enable new use cases for consumer and enterprise IoT

applications, an implementation of product features including: reusable addresses, UTXO,

new Firefly wallet, and new libraries and Application Programming Interface (APIs) for an

improved developer experience. The IOTA 2.0, implements a new consensus mechanism that
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aims to improve IOTA’s scalability, security, and decentralisation by removing the centralised

Coordinator node. The architecture of the IOTA tangle is an evolving DLT platform aimed

at addressing transaction costs, mining and scalability issues (in the context of Blockchain

technology) [66], that are related to IoT. The architecture of a tangle [136], which is central

to IOTA, a Directed Acyclic Graph (DAG) that offers a potentially scalable IoT-enabled

applications. The tangle can be used to build IoT applications. However, the tangle has

the advantages of being intuitively understandable. IOTA technology offers the necessary

scalability and versatility for IoT. In the context of transactions, IOTA may promote IoT in-

teractions. This approach radically changes the overall design, development, implementation

and management process of the IoT systems.

3.3.1 The Tangle

The IOTA tangle was developed to cope with the requirements of IoT applications such as

scalability, energy-efficiency and security. The tangle is built upon a Directed Acyclic Graph

(DAG), which is considered to be as the ledger that stores transactions. The tangle is the

data structure which consists of a collection of sites and edges [136]. In order to issue a

transaction by a node, the node should work to approve two previous transactions. Choosing

the two previous transaction is done by using the tip selection technique where by default

is the Markov Chain Monte Carlo (MCMC) technique [136]. The main aim of the tangle

network is to make all the transactions to be confirmed and to make all the unconfirmed

transactions to confirmed transactions, the MCMC technique is executed n number of times.

Genesis is the first transaction of the network, which is approved directly or indirectly by the

other transactions.

IOTA tangle is designed in a way to enable transactional settlement to be more scalable,

more the transactions made more secure and efficient the tangle gets [136].
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Fig. 3.1 IOTA Tangle is based on a Directed Acyclic Graph (DAG)

IOTA is based on ternary messages and it uses this system because, compared to binary,

ternary computing is considered to be more efficient as it can represent data in three states

rather then just two. The messages are represented by a base-3 number system where each

digit is -1, 0, 1. There is also the concept of tryte, which consists of 3 trits that can be

represented by 27 states. Consequently, these states are required to be with uppercase letters

e.g., A-Z and the number “9”.
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Fig. 3.2 Transaction 8 directly approves 5 and 6. It indirectly approves 1, 2 and 3. It does
not approve 4 and 7

Fig 3.2 illustrates how transactions are approved in the IOTA tangle.

The possible advantages and reasons for incorporating the IOTA technology into the IoT

infrastructure are as follows:

• Scalability: Scalable infrastructure is required by all of the IoT applications to handle the

growth in the number of the IoT devices. The natural uniqueness of the tangle-based

architecture in terms of decentralized consensus that ensures the participants also

validate transactions in the network. Scalability is ensured within The IOTA tangle

and does not have a scaling limitations.

• Decentralisation: Data exchange is validated and approved in centralised network ar-

chitectures by central third-party authorities. In comparison to centralised server

maintenance, this results in a more significant expense. Nodes exchange transactions

with one another in the IOTA tangle-based architecture without depending on a cen-

tralised authority. Accordingly, all participants wishing to share transactions on the

tangle must also take an active part in consensus processes.
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• Security and privacy: Security and privacy remains a crucial challenge in the IoT domain.

To make sure that data stays confidential and protected, IOTA developed a protocol

called IOTA streams, which is a cryptographic framework that is designed as a secure

message verification and protection protocol for transferring data over a given transport

layer.

• Zero-fees transactions: As IOTA participants themselves perform the Proof of Work

(PoW), IOTA does not involve miners. The transaction costs shall be considered the

electricity sufficient to verify a working mechanism for two previous unconfirmed

transactions. This implies that to sustain the tangle network, all participants of the

network should use their power usage, thus eliminating transaction charges. Through

the use of the tangle system, IOTA would operate free of charge, making the system

much more distributed.

• Energy-efficiency: To be able to save power usage of the restricted IoT devices, IOTA

allows the Proof of Work (PoW) to be moved to a devices with higher resources. IoT

nodes have limited resources in terms of power consumption, therefore, IoT systems

need to be built to optimise energy efficiency to enhance the life of the network and

the devices. IOTA technology enables Proof of Work (PoW) to be outsourced to a

more powerful device for efficacy with regard to energy efficiency and transaction

throughput.

• Resiliency: The integrity of the data transmitted and analysed is required for IoT ap-

plications, hence the IoT infrastructure must be resilient to breakage and data leak

(e.g. offline capacity). The IOTA network has replicas of the data kept by peers of

IOTA. This helps maintain data integrity and provides extra flexibility for the IoT

infrastructure in combination with the offline tangle capability.
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Table 3.1 Node Types in IOTA Network

Node Type Storage Validation
Full Node Full Tangle last Snapshot Yes
Light Node None No
Hornet FullNode Full Tangle Yes
GoShimmer Full Tangle Yes
Wasp Full Tangle Yes
Chronicle Permanode Full Tangle Permanently Yes

The IOTA networks consist of interconnected nodes running the same node software. This

software enables read and write access to the tangle, validation of transactions and storage of

transactions in their local ledgers. Table 3.1 Describes the features of the participant’s nodes

of IOTA network.

3.3.2 Anatomy of IOTA Transaction

The IOTA version 1.0 was managed and enhanced by the IOTA Reference Implementation

(IRI) network of nodes that implements the network of IOTA specifications and communicates

via the JSON-REST HTTP1 interface 1. A transaction is a functional unit of the IOTA tangle.

The transaction performs local interactions between nodes in the network. The anatomy of

the transaction is given in [145].

The transaction comprises of 11 elements as shown in Table 3.2. The field of a transaction

object has a single purpose, apart from the signatureMessageFragment. This field may contain

up to 2187 trytes, and includes either a user’s digital signature for a value-based transaction or

user-defined data for a zero-value transaction take place on the IOTA network. Therefore, the

ability to effectively to store user-defined data in this field leaves the door open for the tangle

to continue serving as a tamper-proof, unauthorised data repository. The IOTA transaction

consists of 2673 trytes (if encoded). When decoding the trytes, there will be a transaction

object with the following values:

1https://github.com/iotaledger/iri/releases/tag/v1.8.2-RELEASE
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Table 3.2 IOTA Transaction Structure

Field Data types and values
Hash String 81-trytes
SignatureMessageFragment String 2187-trytes
Address String 81-trytes
value Int
Timestamp Int
CurrentIndex Int
LastIndex Int
Bundle String 81-trytes
TrunkTransaction String 81-trytes
BranchTransaction String 81-trytes
Nonce String

• Hash: is a string that consists of 81-trytes, which is unique hash of this transaction.

IOTA replaced Curl-P-27 with a hash function based on Keccak-384, which is called

Kerl. Keccak is a function that went on to become SHA-3. Kerl encodes the input

bytes into ternary (0, 1 -> -1, 0, 1) before hashing.

• SignatureMessageFragment: is a string that consists of 2187-trytes signature message

fragment. In case there is a spent input, the signature of the private key is stored here.

If no signature is required, it is empty (all 9’s) and can be used for storing the message

value when making a transfer. IOTA uses the Winternitz one-time signature scheme

(W-OTS) to generate digital signatures. This signature scheme is quantum robust,

which means that signatures are resistant to attacks from quantum computers. W-OTS

uses relatively small key and signature sizes. As a result, it is a one-time signature

scheme, it can only be used to securely sign one message.

• Address: is a string that consists of 81-trytes address. In case this is an *output*, then

this is the address of the recipient. In case it is an *input*, then it is the address of the

input, which is used to send the tokens from (i.e., address generated from the private

key).
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• value: is an int value transferred in this transaction.

• Timestamp: is an int of the transaction. It is important to know that timestamps in

IOTA are not enforced.

• CurrentIndex: is an int of the transaction and refers to the index of this transaction in

the bundle.

• LastIndex: is an int that refers to the total number of transactions in this bundle.

• Bundle: Is a string that consist of 81-tryte bundle hash, which is used for grouping

transactions of the bundle together. With the bundle hash you can identify transactions

which were in the same bundle.

• TrunkTransaction: Is a string that consists of 81-trytes hash of the first transaction that

was approved with this transaction.

• BranchTransaction: Is a string that consists of 81-trytes hash of the second transaction

that was approved with this transaction.

• Nonce: Is a string that consists of 81-trytes hash. The nonce is required for the

transaction to be accepted by the network. It is generated by doing Proof of Work

(either in IRI via the attachToTangle API call, or with one of the libraries such as, ccurl

or python).

3.3.3 IOTA Streams

The IOTA Streams is a cryptographic framework that is designed as a secure message

verification and protection protocol for transferring data over a given transport layer [146].

The channels protocol is specifically developed as a replacement for the previously used

Masked Authentication Messaging (MAM) [147] library for transferring data using the tangle
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as the primary transportation mechanism. The channels in IOTA streams are structured in a

number of different ways with any arbitrary combination of Publishers and Readers.

Streams Channels Protocol

There are several types of channels provided for the IOTA streams, which are necessarily for

Authors and Subscribers to be produced in order to interact with the tangle. The channels are

described as follows:

Authors: A channel called author is mainly concerned with producing a new channel

along with the configuration of the structure of that particular channel. It can be either a

single branch or a multibranch. The Author of a channel is potentially capable of setting the

access restrictions to branches within a channel structure. In addition, the author of a channel

accepts and manages user subscription messages.

Subscribers: A channel called subscriber is simply any user in a particular channel,

but not the author. A subscriber is produced in an independent way without requiring

verification by an author. To be able to write to a specific branch or to process a private

stream, a subscription to the channel is required and the author will accept and process that

subscription. Consequently, a subscriber can use a Pre-Shared keys as an alternative way of

subscription to interact with a stream without the need to conduct a subscription process.

Branching: Branches are defined as a sequential that contains a set of messages, which

is spawned and connected to the announcement message. These branches will typically

be produced in two ways including: a signed packet or keyload message for public and

private streaming respectively. A channel consists of two different types including: single

branch and multi branch. The single branch is a linear sequencing of messages where every

message connected to the previous one, while the multi branch is a sequence of messages

that does not depend on sequential linking of messages. Now, when producing a channel,

the author decides what the channel should use, which can be either a single branching or
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multi-branching. Then, this will notify the Streams instance in which way to proceed in

order to perform the sequencing. The subscribers will ultimately be notified as they process

the root message (Announcement). Therefore, the instances know the sequencing order

eventually.

Keyloads: A keyload message controls access rights, which enables the author to identify

who will be able to decrypt any messages that are attached following it. There are two

different ways in order to identify access when producing a keyload including: subscriber

public keys and pre-shared keys. The subscriber public keys is adopted in the processing

of subscription messages, where public keys are masked and giving to the author to be

stored on their instance. That Author will have the ability to identify who can gain access

the subsequent messages by including that public key in the keyload. The pre-shared keys

are shared between users offline. consequently, these keys are used for granular access

restrictions to a stream without requiring the subscription process.

3.3.4 IOTA Smart Contract

The concept of IOTA Smart Contract Protocol (ISCP) was originally coming from the Qubic

project [148] and inherits most of its useful features. It is considered as a second layer

protocol built on top of the core protocol and executed by GoShimmer nodes [149]. The

protocol is developed in a way to be fully decoupled into a separate node called Wasp.

Consequently, IOTA’s smart contracts are run through the network of Wasp nodes, all of

which are connected to the tangle. IOTA Smart Contract (SC) is an effective solution that

shifts priorities towards a pragmatic solution. Fundamentally, IOTA SC are “Quorum-based

Computations”, which does not change from the original vision of the Qubic protocol. Fig

3.3 describes the structure of the IOTA smart contract.
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Fig. 3.3 Structure of IOTA Smart Contract

IOTA SC adopts the logic of UTXO Digital Assets (also known as Colored Coins). In

order to create a smart contract, a new digital asset should be created and sent to the address

of the SC. This transaction is essentially the Genesis transaction of the SC, which becomes

the origin transaction (Genesis) of the SC. It does not require any additional fess for this

process to be completed. This created digital asset remains at the address of the SC for the

duration of the SC‘s term. Hence, the property of the SC.

In order to issue a request to the SCs, a digital asset is required to be created in this request

transaction and sent to the address of the SC. Then, the request coin is usually sent to the SC

and remains the property of the SC (at its address). This only temporary digital asset will be

converted back to the original IOTA token when the request is processed (settled, confirmed)

and remains in the SC. Since the original transaction usually includes an initialisation request

to create a SC, it requires two IOTA tokens to create a SC.

IOTA SCs are defined as immutable state machines and works according to the following

two steps: State Machine: Every Smart Contract contains a state that is connected to the tangle.

The state consists of data, such as account balances, input conditions and consequences over

time. Each state update represents a state transition on the tangle. The Smart Contract’s state

and program code are both unchangeable due to the fact that they are stored on the tangle.

The state can be updated incrementally by appending new transactions to the tangle. The
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tangle supports a verifiable audit trail of state transitions. This creates confidence that the

state transitions are valid and cannot be corrupted by malicious or faulty nodes.

A multi-chain environment has been integrated into IOTA SC and completely secured

by the tangle (base layer 1): Subnets consists of Wasp nodes (committees), which is mainly

designed to run many blockchains in parallel on it, without losing sight of the tangle en-

vironment that secures IOTA’s digital assets. Each of these chains are a fundamental and

functional equivalent of an Ethereum blockchain, which has the ability to host several Smart

Contracts.

IOTA smart contracts does not require all nodes to participate in the network to execute

all smart contracts as its designed to be more flexible. This meets the needs of the smart

contract owner. Therefore, it will reduce cost and power while increasing flexibility.

3.3.5 Relationship between Coordicide and Coordinator

The IOTA network currently relies on a coordinator, which has been implemented and

operated by the IOTA foundation as a third parity to manage transactions confirmation. The

purpose of the coordinator is to prevent attacks such as parasite chains [150]. The coordinator

is responsible for issuing milestone transaction every two minutes to validate the transactions.

Each transaction attached to the IOTA tangle has its own parameter values [150] that the

coordinator uses to determine its path.

In order for the IOTA network to be fully decentralised, Coordicide has been intro-

duced [151], which is a proposal for the removal of the coordinator. When this happens,

nodes will be able to reach a consensus without milestones, making IOTA networks decen-

tralised. Coordicide is focused on the removal of the coordinator through the implementation

of several network components. At a high level it consists of several modules to achieve the

vision including: node accountability, auto-peering, node discovery, rate control, consensus,

voting and tip-selection. Coordicide anticipates that all honest participants of the network
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would agree on which transactions should be considered valid [151]. It is important to

remark that one should not be afraid of the probabilistic nature of it if something occurs with

strictly positive probability, this doesn’t yet mean it would ever occur in practice. Another

important idea is that, while there is no need for total consensus on what is really important

(transactions’ validity), the total consensus on everything is not required. Therefore, it may

use an approximate consensus to achieve the total one with high probability [151].

3.3.6 Auto-Peering

In IOTA network, a node is the machine that holds all of the information about the tangle.

In order for the network to work efficiently, nodes exchange information with each other

to be kept up-to-date about the new ledger state. In the current IOTA implementation, a

manual peering process is adopted for nodes to mutually register as neighbors. This manual

peering leads to attacks, which affects the network topology. In order to prevent these attacks

and to make the setup process of new nodes simpler, an auto-peering mechanism has been

introduced. The mechanism enables nodes to select their neighbors automatically. The

process of enabling nodes to select their neighbors should not require manual intervention by

the node operator. Hence, it is called auto-peering. Fig 3.4 shows the IOTA auto-peering

mechanism.

Fig. 3.4 IOTA Auto-peering mechanism

The auto-peering aims to achieve two important goals. First, it creates an infrastructure

where new nodes can easily join the network; second, it ensures that an attacker cannot
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target specific nodes during the peering process, i.e., it ensures the network to be secure

against eclipse attacks. The auto-peering works according to five phases including: peer

discovery, neighbor selection, network reorganisation, eclipse protection, choosing salts and

sybil protection all of which has a specific functionality. The interested reader is referred to

the auto-peering section for full details about each phase [151].

3.3.7 Snapshotting

Since there is a huge amount of transactions and data is exchanged among IOTA participants

nodes, the network will ultimately grow big, in particular for zero value data transaction.

In order to keep IOTA in accordance with the requirements of embedded devices, which

will permeate and constitute the Internet of Things. It applies the concept of snapshotting.

Snapshotting is defined as a method that reduces the size of the tangle database by eliminating

all transactions from the tangle [96]. It leaves only a record of address with corresponding

balances. Simply speaking a snapshot is a list of every address with corresponding non

zero balance. Snapshotting is similar to Blockchain pruning, except snapshotting has the

significant advantage of grouping several transfers to the same address into 1 record, which

leads to a smaller storage requirement [96].

3.4 Integration of IOTA and IoT

Centralised cloud models have made a considerable contributions in the growth of IoT

regarding data processing and storage, but in data transparency, there is an inherent need

of trust and a lack of absolute confidence. Centralised cloud models are considered much

like a black box for IoT applications and IoT users do not have control of the data since

they are stored in a third party. Furthermore, centralised cloud models are vulnerable to

faults. In the evolution of IoT, the fog computing paradigm, which works at the edge
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of the network is getting more functionality since data is processed near the IoT devices

as compared to the cloud [8]. Therefore. The IoT can benefit from the decentralised

network architecture offered by IOTA tangle, where further deployments of IoT applications

will continue while eliminating the need for trust in centralised cloud models. However,

IOTA tangle is still in its early stages of research and development, and there are still

several research challenges towards integrating IoT and IOTA tangle in a seamless manner.

Achieving absolute decentralisation, scalability, energy-efficiency, security and privacy in

the IoT using the IOTA tangle is needed, considering the differences and heterogeneity in

various devices involved in the IoT domain. Most of the IoT devices have limitations in terms

of energy consumption, limited processing and limited storage and incapable of holding a

complete copy of the tangle.

3.5 Application Scenarios

In this part, we describe several application scenarios. The application scenarios provided

in this part are on 1) Smart Parking, 2) Smart Campus, and 3) Self-Driving Cars. These

generic application scenarios were modified with minor alterations to support the use of

IOTA platform in an efficient manner. These scenarios are referred to throughout this chapter

and have applied them to describe the functionality of IOTA protocol and to demonstrate

how IOTA protocol can be used in several IoT applications.

3.5.1 Smart Parking

Smart Parking is a crucial component of smart cities with the primary goal of finding, allo-

cating, reserving, and providing parking spaces for individual vehicle drivers in a particular

area. It provides vehicle drivers with the ability to find available spaces in congested areas in

the city. This smart parking system is considered to be based on real world projects that have
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been implemented in several cities in Europe and the United Kingdom, particularly in Lon-

don and Cardiff [152]. According to [153] existing smart parking solutions are complicated

and transdisciplinary. However, smart parking enables drivers to efficiently find parking

spaces via information and communications technology [153]. It presents the opportunity for

smart cities to take on an effort to efficiently optimize the use of their parking resources. In

this scenario, the system deploys smart sensors around the parking area for the purpose of

monitoring and reporting occupancy and for data processing to obtain useful insights from

the gathered sensor data. To be specific,

Fig 3.5 describes a smart parking system, in which sensors are deployed to gather

information. The procedure requires the end user to perform several steps to be able to

reserve a parking slot. These steps are described as follows 1) the use of a mobile application

to search for a parking space near the required destination 2) select the zone and navigate

through the parking slots to check for availability in that selected zone 3) finally pay the

charges in the preferred way. To develop an intelligent parking system that takes into

consideration energy efficiency, including power consumption and scalability, the adoption

of an IOTA platform can help to perform tasks more efficiently.

Fig. 3.5 A Smart Parking Application.
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3.5.2 Smart Campus

Smart campus extracts, applies the same principles and operation of the smart city to the oper-

ation of the campus. It enables the connectivity between students, staff and their surrounding

environments. It has been adopted by many universities worldwide. Smart Campus requires

universities to use advanced technologies, e.g., smart cards and sensing technology, in order

to be able to control and monitor various facilities on campus automatically. The benefits of

building a smart campus are to significantly cut down operational costs, automate the process

of maintenance, reduce energy consumption, and improve the learning experience[154]. The

smart campus is usually based on a three-layer architecture: layer of physical things, layer of

network and layer of application. The layer of physical things requires the deployment of

sensors to gather data in regards to the monitored environment. In the network layer, data is

fused and aggregated, while, the application layer, uses cloud systems to store and retrieve

data.

Fig. 3.6 A Smart Campus Application.

Fig 3.6 illustrates and provides the building blocks of the smart campus domain. In

order to make smart campus energy efficient and scalable, it’s recommended to use the

IOTA platform. This is due to the fact that it can store data in the tangle in an efficient way
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and accommodate the scalability growth of the domain. Furthermore, a reward system can

be built within the smart campus and tokens could be given to students who study at the

library. These tokens can then be used to make a discount for students on their tuition fees.

Consequently, motivating students to study as well as keeping the campus sustainable.

3.5.3 Self-Driving Vehicles

A self-driving vehicle is an emerging industry and advanced technological development in

the field of the automobile with several solutions already adopted by many companies such as

Google and IBM. A self-driving vehicle refers to the capability of any vehicle with features,

which enables it to accelerate, brake and steer with limited or no driver interaction. Self-

driving cars will be part of smart cities and require the improvement of the city infrastructure

to support and protect them. This self-driving case study is based on a real world project as

described in [155]. In this scenario, the component of the architecture is logically partitioned

into three tier and these include CARMA vehicle, CARMA edge, and CARMA core, each

of which has its own functionality. CARMA vehicle is responsible for connecting all the

sensors and other equipment’s. CARMA edge processes the information gathered from the

vehicle. It allows collaboration with roadside and is capable of providing further computation.

CARMA core is the cloud systems that are responsible for storing information coming from

multiple vehicles and other supporting services.
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Fig. 3.7 A Self-Driving Vehicles Application.

Fig 3.7, shows an example of self-driving vehicles, e.g., taxi equipped with sensors

and a person on the road ordering a taxi through his/her mobile application. To support an

energy-efficient and scalable infrastructure for such application scenario. The IOTA platform

brings benefits by efficiently enabling secure communications and information sharing e.g.,

in the form of transactions among vehicles. It allows the payment to be made through the

crypto-wallet. Further, vehicles are able to gather sensor and actuator data then store them

securely and efficiently in the IOTA tangle. Consequently, data would be offered in virtual

market places to, e.g., other traffic participants, researchers or city planners.

3.6 Lessons Learned

In this part, we take into account the main characteristics of IOTA described throughout

Section 3.3 and discuss how they would help to build safe, scalable and energy-efficient
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sensing infrastructures for numerous IoT applications, e.g., smart parking. Creating smart

living spaces for people is a result of high demand and competition. The government and

industry sectors have been pushed to lunch smart city programs. Investments in smart cities

aim to find ICT-based sustainable solutions to rising challenges [156].

Smart parking is an important aspect of smart cities because it offers opportunities for

vehicle drivers to find available parking in congested areas of the city. Smart Parking makes

it possible to park more vehicles with a limited number of resources. Smart parking should

also ensure that limited resources are not exhausted [157]. The best approach is to use the

most efficient and optimal use of resources. In this respect, the components and mechanisms

of a smart car park and how these applications handle and consume resources (such as energy

consumption, practices, payments through crypto wallet, etc.) must be understood. In the

context of IoT, all of the information needed to understand smart parking and it’s parking slots

are concealed in IoT data. It requires collecting, aggregating and analysing them efficiently

on a large scale to obtain knowledge and useful information from IoT data. The scalable

sensing network is a crucial component in the processing and analysis of IoT data.

– It is important to ensure that data analysis is applied in the right time and the right place

i.e., distributed intelligence. The process of data in the smart parking system moves

from sensor to the cloud infrastructure. It is always recommended to process data in

the network before sending it to the cloud. This ensures a decrease in transferring data

to the cloud, which reduces storage costs and computational costs. Large amount of

data is aggregated and generates only a summarised results. The summarised results

indicates that less data is to be sent to the cloud, leading to lower costs in energy

consumption and bandwidth.

– Communication protocols are beyond the scope of this chapter. However, communi-

cation protocols are required in establishing the IoT infrastructure. This requires a

careful consideration in using the suitable protocol such as MQTT. All protocols are
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characterised by their own advantages and disadvantages. Most of the protocols are

designed to reduce the overall energy consumption. In addition, IoT gateways can

apply the needed communication protocol at run time to further reduce IoT resources.

For example, the authors in [28, 8] shows that a lot of energy is reduced by utilising

the MQTT rather than HTTP. Therefore, which protocol should be used depends on

the application deployed. The interested reader is referred to the surveys in [28, 8] to

determine which communication protocol is suitable for which scenario.

– IOTA is considered as an important part in decentralising the network. IOTA is gaining

a particular attention to ensure scalability and privacy of IoT systems. In IOTA there

is no need for centralised repositories to allow for IoT services. Moreover, it can

potentially solve the scalability and energy-efficiency in IoT systems [29].

– According to [158, 159], context-awareness plays a critical role in decreasing energy

consumption in the described application scenarios. For example, It can decide (1)

when nodes are required to sense and when to go offline, i.e., event-driven (2) when to

apply the required protocol, (3) when to transfer data, and (4) when to lower or speed

rates of sampling i.e., time-driven.

3.7 Summary

This chapter presented a solid background of IOTA tangle and the working principle of the

tangle; it also described the benefits of integrating the IOTA tangle in the IoT domain. It

described several application scenarios showing the benefits of IOTA tangle to IoT applica-

tions to achieve better scalability and energy-efficiency. In addition, it described the lessons

learned in order to build a scalable and energy-efficient sensing infrastructures for numerous

IoT applications, e.g., smart parking.





Chapter 4

A Distributed Intelligence Framework for

the IoT with IOTA and Mobile Agents

Several studies have demonstrated the benefits of using distributed intelligence (DI) to

overcome these challenges. In this chapter, a Mobile-Agent Distributed Intelligence Tangle-

Based approach (MADIT) is proposed as a potential solution based on IOTA (Tangle),

where Tangle is a distributed ledger platform that enables scalable and transaction-based

data exchange in large P2P networks. MADIT enables distributed intelligence at two levels.

First, multiple mobile agents are employed to cater for node level communications and

collect transactions data at a low level. Second, high level intelligence uses a Tangle based

architecture to handle transactions. The Proof-of-Work offloading computation mechanism

improves efficiency and speed of processing, while saving energy consumption. Extensive

experiments show that transaction processing speed is improved by using mobile agents,

thereby providing increased scalability. The research presented in this chapter was published

in [6, 160].
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4.1 Introduction

IoT applications connect everyday objects to the Internet and enable the gathering and

exchange of data to increase the overall efficiency of a common objective [1]. It is estimated

that there will be approximately 125 billion devices connected to the Internet in 2030 [2,

161, 162]. Consequently, most IoT applications are required to be highly scalable and energy

efficient, so that they are capable of dynamically responding to a growing number of IoT

devices [163].

Distributed Intelligence (DI) is an approach that could address the challenges presented

by the proliferation of IoT applications. DI is a sub-discipline of artificial intelligence that

distributes processing, enabling collaboration between smart objects and mediating commu-

nications, thus supporting IoT system optimisation and the achievement of goals [164].

The local interactions among IoT devices will be finally attached to the IOTA tangle.

We propose an integration of the IOTA tangle [136] and mobile agents [165] techniques, in

order to realise a scalable DI approach by providing low-level and high-level intelligence.

Functionalities are distributed to both low-level and high-level layers. The proposed Mobile-

Agent Distributed Intelligence Tangle-Based approach (MADIT) specifically recognises

resource-constrained devices, which might not be able to perform the required computation

at low-level. High-level computation is performed by more advanced computational devices.

The work in this chapter outlines the design of a scalable system that can be used in

various IoT applications. The IOTA tangle is used to achieve scalability and a higher level

node is responsible for performing the Proof of Work (PoW) for efficacy with regard to

energy efficiency and transaction throughput [163].

IOTA technology focuses on Machine-2-Machine (M2M) transactions. Due to its high

scalability and zero transaction fees, IOTA’s network facilitates data exchange with IoT-

connected devices worldwide. The different types of nodes, which are the core of the IOTA

network, such as the full node and the light client nodes are suitable for resource constrained
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IoT devices. The light client can run on IoT devices with limited resources e.g., power and

memory, while the full node can run on devices with higher resources. This justifies why

IOTA technology was chosen over other technologies.

4.2 SDIT: Scalable Distributed Intelligence Tangle-Based

Approach

This section presents the proposed Scalable Distributed Intelligence Tangle-based approach

(SDIT) that aims at tackling the scalability, energy-efficiency and decentralisation by adopting

the IOTA tangle technology.

4.2.1 SDIT: System Architecture

Figure 4.1 illustrates an abstract view picture of the proposed system architecture. The

architecture is divided into three main parts including: IoT devices, Tangle to process

transactions(txs), and PoW enabled server. Each IoT device is connected with neighbouring

nodes via TCP/IP protocols for communication, and interaction with the tangle is in the

form of transactions. The tangle is responsible for managing, collecting and processing

the transactions. A PoW-enabled server has rich resources and is mostly responsible for

performing all of the computations on behalf of the IoT devices. This is a critical task for

efficacy with regard to energy efficiency and transaction throughput. The tangle can act as a

data management layer for processing and storing data in an efficient way.

The green boxes in Figure 4.1 represent fully confirmed transactions, which means

that they are approved by all of the current tips, whereas the red boxes are not confirmed

transactions. The blue boxes are the tips.
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Fig. 4.1 The Scalable Distributed Intelligence Tangle-based approach (SDIT)

4.2.2 Consensus Mechanism Employed

Since we are utilising the IOTA tangle to deal with transactions. The same working principals

is followed in which a new transaction should choose two previous unapproved transactions,

which are called Tips, to approve based on the tip selection algorithm. After tips are selected,

the IOTA nodes are able to publish their new transactions to the Tangle. In the advanced

Markov Chain Monte Carlo Tip Selection Algorithm (MCMC) N independent random walks
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are generated on the tangle; the walks begin at the genesis or at a random node and keep

moving along the edges of the tangle based on a probability function.

The MCMC Algorithm ensures that the tips are selected non-deterministically along the

path of the largest cumulative weight for a reasonable amount of time. The probability from

transaction walking from the genesis Lx to a tip Ly is proportional to P(−α(Lx−Ly)), where

Pxy is an increasing function (generally an exponential), α is a constant and ci represents the

Cumulative Weight of transaction i. The process ends when the walker reaches a tip, which

is then selected for approval.

Typically, the first tip is usually selected for approval. For further details on the working

mechanism of the MCMC algorithm, the interested reader is referred to the IOTA white

paper in [136]. To support the advanced tip selection process, the MCMC technique [136],

applies a set of rules for deciding the probability of each step in a random walk, and works

as follows:

1. Run the MCMC algorithm N times to choose 100 new transactions (tips). The proba-

bility of the transaction being accepted is therefore M / N (M is the number of times a

tip is reached that has a direct path to the transaction);

2. Calculate how many tips that are directly or indirectly connected to a particular

transaction and decide with what probability transactions will be accepted as follows:

(a) if it is less than 50%, the transaction is not approved as yet (not confirmed);

(b) if it is above 50%, the transaction has a fair chance to be approved (awaiting to

be confirmed);

(c) if it reaches the level of 98% or 100%, the transaction is considered approved

(fully confirmed).
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4.2.3 Proof of Work Offloading

Fig. 4.2 Computation offloading in SDIT approach

Offloading can be divided into two categories including: data offloading and computation

offloading. The former refers to the use of novel network techniques to transmit mobile

data originally planned for transport via cellular networks. The latter refers to the offloading

of heavy computation tasks to conserve resources [166]. It is commonly assumed that the

implementation of computation offloading depends heavily on the design of the network

architecture. The main goal of offloading is to save energy consumption or overall task

execution time, or both of them. It was suggested by the authors in [32] to conserve energy
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of IoT devices by performing the proof-of-work operation on a device with rich resources,

thus achieving improved energy-efficiency.

Figure 4.2 illustrates the computation offloading mechanism used in the SDIT approach

in which the computation operation of performing the PoW is offloaded to a device with

higher resources. This saves energy consumption of constrained IoT devices.

In particular, we achieve scalability and decentralisation by adapting the IOTA tangle and

their consensus mechanism. The proposed approach is presented in view of the architecture,

consensus mechanism and the computation offloading technique employed.

4.3 MADIT: Mobile-Agent Distributed Intelligence Tangle-

Based approach

4.3.1 MADIT: System Architecture

The envisioned framework, Mobile-Agent Distributed Intelligence Tangle-Based approach

(MADIT), represents the novel contribution of the work and is depicted in Fig. 4.3. One

of the key contributions of this work is the attempt to establish a baseline for a reference

framework for Tangle-based MADIT that can be used to support various IoT applications.

The framework is divided into four main parts: (1) IoT devices; (2) Tangle to process

transactions(txs); (3) PoW enabled server, and; (4) Mobile Agent to carry a list of transactions

data. Each IoT device is connected with neighbouring nodes via TCP/IP protocols for

communication, and interactions with the Tangle are in the form of transactions. IoT devices

are responsible for collecting data from the environment. The Tangle is responsible for

managing and processing the transactions. A PoW-enabled server is an IoT device that has

rich resources and is responsible for performing costly computations on behalf of IoT devices.

Mobile Agents are responsible for transporting a list of transactions when visiting nodes on
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their routes. This is an important task that supports inter-node communications. The Tangle

can act as a data management layer for processing and storing data in an efficient way.

Fig. 4.3 The Mobile Agent Distributed Intelligence Tangle-based Approach (MADIT)

4.3.2 Algorithms Design

An algorithm 2 that efficiently partitions the network into several groups, which can aid in

the mobile agent itinerary planning is proposed in order to improve energy-efficiency and

scalability. This algorithm leverages three key factors: identifying a set of routes covering all

nodes in the network, comparing the routes to select the route with the least number of nodes

and source nodes grouping. The set of routes are generated to identify the shared nodes and

private nodes. The shared nodes are used for grouping purposes, while private nodes are

considered as nodes the belongs to a particular route. The routes are compared based on
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the number of nodes in order to select the route that has a smaller number of nodes. Then,

the source grouping technique takes place to generate several groups based on the identified

shared nodes.

Another algorithm 3 that is used for dispatching mobile agents to collect data is proposed.

The algorithm intelligently schedules mobile agents to visit a set of nodes in a particular

group. This algorithm leverages three key factors: visiting a specific group, one mobile agent

to each group and threshold value. The mobile agents are dispatched to a specific group to

collect data. This algorithm ensures that there are not two agents visiting the same group.

Since the mobile agent size increases when visiting nodes in the network, the algorithm

initializes a threshold value to ensure that the mobile agent data buffer is not overloaded.

4.3.3 Mobile Agent Transactions for Local Interactions

The framework employs multiple mobile agents to avoid delays in reporting transaction

data and to support local interactions (i.e., low-level intelligence). The framework considers

that nodes in close proximity of each other will most likely generate similar data; therefore

applying data aggregation techniques to eliminate redundancy is required. A data aggregation

technique similar to [167, 168] is used to calculate the size of transaction data accumulated

by the MA. Transaction data results are fused with an aggregation ratio (ρ,0 ⩽ ρ ⩽ 1).

Consider Li
ma to be the amount of accumulated transactions data result after the MA finishes

from source i, where Ai is the amount of transactions data to be aggregated by ρ , which is

the fusion factor. Then:

Li
ma = Ai

L2 = A1 +(1−ρ)×A2 (4.1)
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Li = Li−1 +(1−ρ)×Ai (4.2)

Li = A1 +
i

∑
g=2

(1−ρ)×Ag (4.3)

In equation (4.3) there will be no data aggregation in the first node and the value of p depends

upon the type of deployed application.

The packet message format of the proposed MADIT is described in Fig. 4.4. The pair of

Itinerary Planning and List of transactions are the payload of the agents. Dispatcher ID is

used to identify the root node that creates and dispatches MA. FirstNode, denotes the first

node that the MA will visit. Static Routes, denotes the computed routes for MAs with all

of the assigned nodes to be visited. ToVisitFlag, is set to indicate that whether the node has

been visited by an agent or not.

Fig. 4.4 Message format of the proposed (MADIT) approach

The reason for applying mobile agents in the work is not just to support low-level

intelligence. It was stated in [169] that one of the most power hungry operations is radio

communication; therefore, dispatching agents to collect transactions data rather than sending

it is more efficient.

Algorithm 1 presents the pseudocode of establishing a random DAG G. Algorithm 2

presents the pseudocode of computing the routes and generating groups for all mobile agents.
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Algorithm 3 presents the pseudocode of dispatching multi-mobile agents to start collecting

transactions data.

Initially, the establishment of a random Directed Acyclic Graph (DAG) is proposed as

described in (Algorithm 1), which is designed to build a graph with a random number of

Nodes and Edges. The algorithm iterates to add the required number of nodes nodeNum.

Then, it performs a check to ensure that the graph G is a directed acyclic graph. Then, the

algorithm applies the Depth-first search (DFS) technique to ensure that all nodes can be

traversed back to the root.

The Algorithm source grouping of sensor nodes (Algorithm 2) uses G Algorithm 1 as

input and is designed specifically for making a group of source nodes for all mobile agents.

It checks If the node has at least one connection or more in-degree connection and if the node

has two or more connection out-degree connection. Hence, this is a shared node. It plays

an important role within the network because it has multiple routes and is considered as a

building block in generating groups. In addition, it acts as a main hub for connecting the

nodes within the DAG network.

The algorithm finds a set of routes covering all nodes in the network by identifying the

roots and the leaves. Then, it finds all possible routes between leaves and roots. For finding

the least route, the source grouping algorithm sorts out all routes and compares them to

identify the route with the least number of nodes. We define a shared node as the node that

belongs to multiple routes. This means shared nodes can be reached by multiple routes.

Shared nodes among different routes will be allocated as follows:(1) Initially each route

is assigned a group of nodes, which belong to each particular route only (or we can call

these nodes as private nodes on the route); (2) A shared node will be allocated to the group

currently with the least number of nodes among the associated routes. Each generated group

defines a set of nodes for the dispatched MAs to collect data from.
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Algorithm 1: Generate a random directed acylic graph G
Input: nodeNum,edgeNum
Output: G

1 Initialize G to a directed acylic graph (DAG) with nodeNum nodes but without any
edges, and nodes range from 0 to nodeNum−1

2 while edgeNum≥ 0 do
3 nodea← randint(0, nodeNum)
4 nodeb← nodea
5 while nodeb == nodea do
6 nodeb← randint(0, nodeNum)
7 Add edge(nodea, nodeb) to G
8 if G is still DAG then
9 edgeNum← edgeNum−1

10 else
11 Remove edge(nodea,nodeb) from G

12 Get DFS post-route (G)
13 Return DFS post-order

14 Return G

Algorithm 2: Source grouping of sensor nodes
Input: DAG G
Output: List of routes, Groups of source nodes

1 if in-degree connection of node >= 1 and out-degree connection of node >= 2 then
2 Shared Node in G
3 for root in Roots in DAG do
4 for leaf in Leaves in DAG do
5 for route in nx.all simple paths (Dag, root, leaf) do
6 Find all routes in G

7 for each shared node routes list in DAG do
8 if route >= 2 then
9 Select the route with the least number of nodes

10 for each selected least route do
11 Add all least route nodes into a group.

12 Return list of routes, Groups of source nodes
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Algorithm 3: Dispatch a mobile agent MA to collect transactions
Input: DAG G, list of routes R, Groups of source nodes gs
Output: Transactions T collected by MA

1 Initialize T as an empty set of transactions collected by MA
2 while MA has not completed the allocated tasks do
3 Move to visit the next node n according to the given route r
4 if n has been visited by any other mobile agent then
5 Repeat Step 3, until all nodes in r have been visited

6 if all nodes in r have been visited then
7 MA completes the allocated tasks

8 else
9 Dispatch MA to visit node n

10 Collect transactions T ′ (not exceeding limitation d in total) from node n
11 Add transactions in T ′ to T
12 Set visited flag of node n to true

13 if T contains d transactions then
14 MA completes the allocated tasks and publish the transaction to the ledger

15 Return T

The algorithm that dispatches mobile agents is described in Algorithm 3. It begins with

input (1) DAG G, List of routes R r ∈ R and a groups of source nodes gs, given through

algorithm 2. Then, it initializes T as an empty set of transactions collected by MA. It starts

dispatching mobile agents on a particular group in gs and ensures that no two agents will

follow the same route. During the trip, each MA will visit nodes according to the given

group gs. It will first check whether the current visiting node has been visited by any of the

mobile agents or not. If the flag visited of the node is true, the MA will move on to visit

the next node on the route. Otherwise, if the current node is not visited during the same

mission, the MA collects transactions data up to its data load d, and sets the flag visited of

the node as true. The MA completes the allocated tasks and returns either when all nodes on

the given route have been visited, or when the MA has collected d transactions on the trip.

The data load d threshold for each agent ensures that the agent buffer is not overloaded with

transactions data during one single trip.
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4.3.4 Proof of Work Offloading

Fig. 4.5 Computation Offloading in MADIT Approach.

Fig. 4.5 illustrates the computation offloading mechanism used in the MADIT approach.

It shows that the Proof of Work (PoW) operation is outsourced to an IOTA full node with

unlimited power.
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In particular, the framework addresses the problem of scalability and decentralisation

without loss of efficiency by adapting and integrating the IOTA tangle and mobile agents. the

work describes the proposed framework in view of the architecture, the consensus mechanism,

the role of mobile agents and the Proof of Work computation offloading technique employed.

4.4 Experimental Results, Evaluation and Analysis

In this section, a description of the implementation of the experimental results, followed

by an evaluation of the proposed solution in regards to the scalability, throughput and

decentralisation are provided. Then, an analysis and discussion of the results obtained is also

provided, to highlight the useful characteristics of IOTA tangle for IoT.

4.4.1 Environment Setup

The latest release of IOTA Reference Implementation (IRI 1.8.1) is deployed, which is

the official Java build embodying the IOTA network specifications, 1 on the DigitalOcean

cloud platform2, and another IOTA Reference Implementation (IRI 1.8.1) on a local server

dedicated for performing the operation of the Proof of Work (PoW).

The functionality related to IOTA addresses, transactions, broadcasting, routing, and

multi-signatures have been implemented using iota.lib.py [170], the official Python library

of IOTA Distributed ledger. In total, a large number of nodes with the specifications of

medium size virtual machines (4GB RAM, 2 VCPU and 60.0GB Disk) are used to create

the network. A medium size nodes and nodes with rich resources are used because this is

more representative of real-world IoT scenarios. Nodes with rich resources enhance the

performance by reducing the time it takes to perform the PoW.

1https://github.com/iotaledger/iri/releases/tag/v1.8.1-RELEASE
2https://www.digitalocean.com
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Fig. 4.6 Scalability in Tangle with 290
Nodes

Fig. 4.7 Scalability in Tangle with 290
Nodes

In order to measure transaction speed and scalability, the sending nodes are configured to

initiate a fixed number of transactions = 5. The experiments uses a set of different Minimum

Weight Magnitude (MWM) (9,11,13,14). These transactions are broadcasted among all

nodes through TCP/IP.

In order to validate the scalability, the Transaction Per Second (TPS) and Confirmed

Transaction Per Second (CTPS) are tested under different numbers of nodes (50, 100, 150,

up to 2903) with different Minimum Weight Magnitude (MWM) configurations as presented

above, as shown in Figure 4.6, and 4.7 respectively. TPS is defined as the number of

transactions published to the network per second and CTPS is defined as the number of

transactions that move from pending to confirmed per second. The results obtained is based

on a real deployment of IOTA nodes.

4.4.2 Results and Analysis

In this part, the performance of the scalability and throughput is presented, which was

evaluated over several runs to obtain accurate results. Then, it was compared against one of

the recent approaches in the literature, namely, DAG-based smart communities [131]. Their

publications gave their full specifications, making it possible for researchers to implement

3Due to resource constraints, the experiments considers only up to 290 nodes.
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Fig. 4.8 Performance of TPS under dif-
ferent MWM

Fig. 4.9 Performance of CTPS under dif-
ferent MWM

and reproduce the published results. Finally, they achieved promising results for smart homes

and are planning to extend their work with further comparisons.

Scalability: The results can be seen from Fig. 4.6 to Fig. 4.9. As shown in Fig. 4.6

and Fig. 4.7, when the MWM is set to 14, the TPS/CTPS results with a different number

of nodes, it is clear that as the number of nodes increases, the TPS/CTPS transaction speed

approximately increases linearly. Therefore, the transaction speed has good linear scalability

when the number of nodes increases. For example, when 50 nodes are sending transactions,

the STDI-Based approach TPS reaches 1.376 tx/s and CTPS 6.418 tx/s respectively, whereas

with a DAG-Based approach the TPS reaches 1.743 tx/s and CTPS reaches 7.519 tx/s

respectively. This demonstrates that the proposed STDI-Based approach outperforms the

DAG-Based approach and performs well when the number of nodes increases.

Throughput: As shown in Fig. 4.6 and Fig. 4.7, it is clear that the proposed STDI-

Based approach outperforms the DAG-Based approach in terms of efficiency in processing

transactions. For example, in the situation in which 10 nodes are sending, the average TPS

reaches 1.132 tx/s and CTPS 6.234 tx/s, respectively in STDI-Based approach. Whereas in the

DAG-Based approach the TPS reaches 1.314 tx/s and CTPS reaches 7.256 tx/s respectively.

This is due to the computation offloading mechanism used in STDI-Based approach.

The results in Fig. 4.8 and Fig. 4.9 are conducted to test the effect of MWM on the TPS

and CTPS. In these experiments, we set the MWM to 9,11,13,14 to measure the effect on the
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TPS/CTPS. In Fig. 4.8, it is clear that the TPS is affected by the use of different MWM, as

when it is set to 13, it almost reaches 5.321 tx/s and when it is set to 14, it almost reaches

6.591 tx/s. From Fig. 4.9, the changes in MWM have almost no influence on the CTPS.

Decentralisation: The proposed SDIT-Based approach outperforms the DAG-Based

approach in terms of decentralisation.

4.5 MADIT Experiments, Evaluation and Analysis

In this section, an experimental results and an evaluation of the proposed MADIT solution in

terms of scalability and decentralization is presented. In addition, it provides analysis and

discussion of the results, to establish important insights that illustrate the usefulness of IOTA

tangle integrated with mobile agents for the IoT domain.

4.5.1 Environment Setup

The latest release of IOTA Reference Implementation (IRI 1.8.2) is deployed (IRI 1.8.2)4,

which is the official Java build embodying the IOTA network specifications, on the DigitalO-

cean cloud platform5, and another IOTA Reference Implementation (IRI 1.8.2) on a local

server dedicated for performing Proof of Work (PoW) operations.

The functionality related to IOTA addresses, transactions, broadcasting, routing, and

multi-signatures have been implemented using iota.lib.py [170], the official Python library

of the IOTA Distributed Ledger. Different numbers of IOTA participant nodes were used to

create the network in order to simulate real life scenarios.

4https://github.com/iotaledger/iri/releases/tag/v1.8.2-RELEASE
5https://www.digitalocean.com
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4.5.2 Results and Analysis

The following two performance metrics are used in the experiments: Transaction Per Second

(TPS) and Throughput.

Table 4.1 Performance metrics for experimental work.

Performance Metrics
Evaluation Metrics Definition
Transaction Per Second (TPS) refers to the number of trans-

actions published to the Tan-
gle network per second.

Throughput refers to the efficiency in pro-
cessing transactions in a given
amount of time.

Scalability: The obtained results can be seen in Fig. 4.10. As shown in Fig. 4.10, it is

clear that as the number of nodes increases, the TPS transaction speed increases linearly. For

example, when the MWM is 9 and 50 nodes are engaged, with one mobile agent dispatched,

as shown by the green line, the TPS of MADIT (WA denotes with mobile agents dispatched)

reaches 3.749 tx/s (i.e., transactions per second) compared to the baseline (NA denotes no

mobile agents dispatched) TPS, which is 2.942 tx/s. Hence, MADIT is 1.27 times faster than

the baseline method. Still when the MWM is 9, and the number of nodes is 150, in this case,

the average TPS with MA reaches 5.422 tx/s whereas in the baseline, TPS reaches 3.997 tx/s.

This time, MADIT is 1.36 times faster than the baseline method. This demonstrates that the

proposed MADIT approach is more scalable than the baseline method.

Throughput: As shown in Fig. 4.10, it is clear that the proposed MADIT approach brings

an improvement over the baseline approach in terms of efficiency in processing transactions.

For example, in the situation in which 150 nodes are engaged, and the MWM is set to 14, the

average TPS of baseline reaches 4.176 tx/s (shown by the red line), whereas when employing

MAs, the average TPS reaches 2.776 tx/s, as shown by the green line. This is due to two
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Fig. 4.10 Scalability in Tangle with/without mobile agents

factors: (1) the computation offloading mechanism, and (2) the inclusion of mobile agents in

the MADIT approach.

Fig. 4.11 Performance of Baseline-TPS and Agent-Based under different
MWM.
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Fig. 4.11 demonstrates the effect of the different Minimum Weight Magnitude (MWM)

on the TPS. In this experiment, the MWM is set to 9,11,14 to measure the effect on the TPS.

In Fig. 4.11, it is clear that the TPS is affected by the use of different MWM configurations

as when it is set to 11, it reaches 6.455 tx/s, and when it is set to 14, it reaches 7.141 tx/s.

Decentralisation: The proposed MADIT approach is fully decentralised as the use of

the consensus mechanism is adopted.

4.6 Summary

This chapter presented an important step towards the integration of IOTA tangle with the IoT.

It described a scalable IOTA Tangle-Based Distributed Intelligence Approach. The results

indicate that an IOTA tangle can scale to a large number of IoT devices, thus addressing the

scalability challenge in the IoT domain. Compared to existing work, SDIT enables high-

scalability and decentralisation possibilities for building large-scale IoT applications. Also, it

described the proposed framework, which is called Mobile-Agent Distributed Intelligence

Tangle-Based approach (MADIT). The framework advocates IOTA tangle and mobile agents

for supporting distributed intelligence in IoT. It presents an IOTA tangle and mobile agents

based approaches as a solution to the problem of the limitations of traditional distributed

intelligence systems. Mobile agents deliver an efficient way of collecting transactions. The

advantages of MADIT include: scalability; decentralisation and the facilitation of node level

communications (low level intelligence).





Chapter 5

An Energy Efficient Multi-Mobile Agent

Itinerary Planning Approach

Mobile Agent (MA) technology brings many benefits into Wireless Sensor Networks (WSNs),

such as saving network bandwidth and enabling energy efficient mechanisms for collecting

sensor data. Nowadays, itinerary planning for MAs is one of the most important features of

the WSN. However, the way in which all dispatched MAs are routed inside the sensor net-

works must be intelligently planned to reduce energy consumption and improve information

accuracy. There have been many research efforts designing itinerary planning algorithms

to deploy multiple MAs in a given sensor network, where routes are generated so that MAs

can follow different routes to collect data from sensor nodes efficiently and effectively. This

chapter proposes a new energy efficient Graph-based Static Mutli-Mobile Agent Itinerary

Planning approach (GSMIP). GSMIP applies Directed Acyclic Graph (DAG) related tech-

niques and divide sensor nodes into different groups based on the routes defined by MAs

itineraries. MAs follow the predefined routes and only collect data from the groups they are

responsible for. The experimental findings demonstrate the effectiveness and superiority of

the proposed approach compared to the existing approaches in terms of energy consumption

and task delay (time). The research presented in this chapter was published in [171]
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5.1 Introduction

A pervasive interconnected network, including a wireless sensor network (WSN), is defined

by its capacity to perform basic tasks through exchanging resources that are in network or in

node domains.

One primary aim of WSNs is to allow users to access information of interest from

data obtained through spatially distributed sensors. Sensors are generally installed in large

numbers to gain full visibility of the controlled physical environment. Such sensor network

systems are designed in a way that immense amounts of data will be produced [172]. Mobile

agent techniques have been widely used to enable efficient collaborative data collection from

a WSN. In these techniques, mobile agents (MAs) will be dispatched, which will traverse the

sensor along predefined routes, generated by itinerary planning, to collect data from sensor

nodes on the way. The need to locate and handle mobile agents in energy-efficient WSN

applications is primarily characterised by approaches used to design the itinerary planning of

MAs.

Practical constraints on the implementation of sensor nodes, such as computational

capacity and battery-limited sensor nodes makes itinerary planning a challenging [16] task.

The critical issues while dispatching a mobile agent include the migration cost of mobile

agent, itinerary planning and the approaches to establishing such a plan.

The principal objective of the mobile agent is to collect and process data in a network.

Without user interaction, they can combine and make local decisions autonomously. The

main reason why mobile agents are used is that radio communication is one of the most

effective hungry operations [169]. To avoid long distance radio communication, mobile

agents are dispatched to gather data instead of sending it back to a sink node. In such

scenarios, planning mobile agent itinerary in order to optimise energy consumption for sensor

nodes is critical. However, it has been challenging to solve the problem, which is NP-hard,

of finding an ideal sequence of sensor nodes to be visited by a mobile agent [173, 174].
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Hence, one main challenge is how to create an appropriate itinerary for MAs to collect

data [16]. Itinerary planning refers to identifying a route of a MA which the MA should

follow when traversing the sensor network and visiting sensor nodes. Each route contains a

sequence of source nodes to be visited through the MA migration trip. Current techniques

for the development of MA itineraries can be generally classified into three types: Static

itinerary, Dynamic itinerary and Hybrid itinerary [16], which will be discussed in more detail

below.

This chapter is based on the data structure used in IOTA tangle, which is a Directed

Acyclic Graph (DAG) and applies related techniques to generate an efficient itinerary planning

for MAs. It divides sensor nodes into different groups based on the routes defined by MAs

itineraries. MAs follow the predefined routes and only collect data from the groups they are

responsible for.

MAs have been put forward as an efficient technique for collecting data in WSNs. It

was stated in [169] that one of the most power hungry operations is radio communication.

MAs facilitate the flexibility and scalability problems of centralised models [99]. MAs can

autonomously move among sensor nodes to collect data without requiring human inputs,

leading to reductions in energy consumption and network bandwidth usage. This justifies

why mobile agent is efficient in collecting data from sensor nodes.

5.2 Components of Mobile Agent

In WSNs, Mobile Agents (MAs) are referred to as software abstractions performing information-

rich data collection and autonomous data processing whilst dynamically migrating between

network nodes so that data is exchanged between participant nodes [98].

MAs have also recently been suggested to address the limitations of centralised models’

scalability and the flexibility problems of static hierarchical frameworks. MAs comprise of

four components as shown in Fig. 5.1.
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Fig. 5.1 Components of Mobile Agent

• Itinerary: It can be identified as the mobile agent trip route for visiting source nodes.

Itinerary planning is usually divided into three categories: static, dynamic and hybrid.

In a static itinerary, the route is computed at the dispatcher prior to the MA migration.

In a dynamic itinerary, the route of MA is determined by the MA on the fly. In a hybrid

itinerary, the sensor nodes to be visited by the MA are selected by the dispatcher, but

the visiting sequence is determined by the MA on the fly.

• Data space: This is the data buffer of MA, and is primarily capable of producing data

integration. The findings should have incremental precision as the agent moves from

one node to another.
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• Identification: This is a unique number that identifies the mobile agent and the dispatcher.

Typically presented in a 2-tuple (i : j) format, where i denotes the dispatcher’s IP

address, and j is a serial number assigned to each MA by the dispatcher.

•Method: This is the execution code that each MA executes.

5.3 Proposed GSMIP Itinerary Planning Approach

5.3.1 GSMIP Architecture

Fig. 5.2 The Proposed Mobile Agent Itinerary Planning Approach

Fig. 5.2 presents an abstract view of the proposed Graph-based Static Mutli-Mobile Agent

Itinerary Planning approach (GSMIP). It shows a set of sensor nodes in each route and how

nodes are grouped together. The routes are generated to cover all nodes in the network. The

sink node is responsible for dispatching MAs to each group in order to collect data from.
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The MAs collect data from the groups that they are assigned to. For example, the itinerary

(e.g., orange lines) represents the routes to the assigned group.

Fig. 5.3 describes an example of the working principles of the algorithms. It shows a set

of routes (route 1, route 2 and route 3 in this example) that cover all nodes, including private

nodes and shared nodes, in the network. Private nodes are nodes that belong to a particular

route only. Shared nodes are source nodes that are on multiple routes. There is only one

shared node in this example, and it is on both route 1 and route 2. In addition, a group is a

collection of private nodes and allocated shared nodes in a particular route. The groups are

generated based on allocating shared nodes to the group of a route with the least number

of nodes. Take Fig. 5.3 as an example. Since the group of nodes for route 2 has only two

private nodes, while that of route 1 has three private nodes, the shared node is allocated to

the group for route 2. Note that, the source sink (e.g., dispatcher) and the sink node (e.g.,

destination) in practice can be the same (sink) node. Here, because the network is modeled

as a DAG, it virtually divide it into two nodes, where each node will make use part of the

links to source nodes in the network.

Fig. 5.3 An Example of the Working Principles of the Algorithms
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5.4 Experiments, Evaluation and Analysis

5.4.1 Simulation Setup

The proposed GSMIP is implemented and tested and is compared with existing approaches

from the literature, namely SMIP [19], GIGM-MIP [20], and CL-MIP [21], using the Pymote

simulator [175].

Pymote focuses on WSNs, which generally are networks of low power embedded devices.

It is widely used by many researchers and developers to test algorithms. The network model

is adopted from [21] where 100 sensor nodes are uniformly deployed in an area and the sink

node is placed at the centre of the area.

5.4.2 Simulation Parameters

The sensor nodes are static and uniformly deployed within a 1000 m × 500 m network size.

The number of sensor nodes is set to 100 and sensor nodes are randomly distributed in the

network. The sink node is located at the center of the network, and it has unlimited energy

supply and higher computational capability. All the sensor nodes have the same initial energy.

The radio transmission range is set to 60 m, while the raw data size is 2048 bits. The mobile

agent code size is1024 bits, the data processing rate is 50 Mbps, the raw data reduction ratio

is 0.8 and the mobile agent accessing delay is 10 ms. The experiments consider all types of

energy consumption in the simulations, including transmission, idling and sensing. Table 5.1

lists all of the mobile agent parameters used during simulation.



106 An Energy Efficient Multi-Mobile Agent Itinerary Planning Approach

Table 5.1 Simulation Parameters of the Proposed GSMIP Approach.

Network Size 1000 m x 500 m

Number of Sensor Nodes 100

Raw Data Size 2048 bits

MA Code Size 1024 bits

Data Processing Rate 50 Mbps

Raw Data Reduction Ratio 0.8

Aggregation Ratio 0.9

Radio Transmission Range 60 m

MA Accessing Delay 10 ms

Table 5.2 Performance metrics for experimental work.

Performance Metrics
Evaluation Metrics Definition
Energy Consumption refers to the energy spent

for transmitting, and receiv-
ing messages by mobile agent
from all sensor nodes.

Task Duration refers to the average time
when the mobile agents are
dispatched by the sink to the
time when the last mobile
agent returns back to the sink.

Dispatched Mobile Agent refers to the number of dis-
patched mobile agent to col-
lect data from all sensor
nodes.
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Fig. 5.4 The Impact of Number of Sensor
Nodes on Consumed Energy

Fig. 5.5 The Impact of Number of Sensor
Nodes on Task Duration

Fig. 5.6 The Impact of Number of Sensor
Nodes on Consumed Energy

Fig. 5.7 The Impact of Number of Sensor
Nodes on the Network Lifetime

5.4.3 Evaluation and Analysis

To evaluate the performance of different approaches, the following three performance metrics

are considered: Task Duration, Energy Efficiency and Number of Dispatched Mobile Agents.

Table 5.2 describes these three performance metrics.

Energy Efficiency: As shown in Fig. 5.4, it is clear that the proposed GSMIP approach

outperforms SMIP, GIGM-MIP, and CL-MIP approaches in terms of energy consumption.

More energy is required for more agents to perform tasks in all of the four approaches. But it

can be observed that the proposed GSMIP exhibits better energy saving over other approaches.

The proposed GSMIP approach achieves 31.2% and 13.3% energy decrease when compared



108 An Energy Efficient Multi-Mobile Agent Itinerary Planning Approach

to SMIP 36.4% and 15.2%, GIGM-MIP 47.4% and 17.1%, and CL-MIP 48.5% and 25.6%

when the number of nodes decreases from 100 to 10. The CL-MIP algorithm consumes the

highest energy, and this is because of the distribution of a large number of mobile agents

to the sensor network leading to an increase in the number of mobile agents hops. The

GIGM-MIP algorithm has better energy consumptions compared to the CL-MIP when the

number of sensor nodes increases. This is due to the fact that the GIGM-MIP algorithm

distributes the data collection between mobile agents in each region of the network. The

proposed GSMIP achieves better energy consumption compared to SMIP, GIGM-MIP and

CL-MIP respectively. This achievement is obtained for two main reasons including: efficient

partitioning i.e., grouping technique and the shortest itinerary of the mobile agents in each

group. The efficient partitioning of the network constructs less itineraries for the mobile

agents in each group. This minimises the number of hops for each mobile agent in each

group.

Task Duration: Fig. 5.5 compares the four approaches in terms of task duration. It

is observed that the proposed GSMIP approach outperforms the three existing approaches,

including SMIP, GIGM-MIP and CL-MIP. It can be observed that the proposed GSMIP

achieves the best task duration of all approaches. The proposed GSMIP achieves 50.8% and

20.4% task duration decrease when compared to SMIP 54.9% and 28.7%, GIGM-MIP 56.3%

and 32.5%, and CL-MIP 65.9% and 40.2%, which has the highest delay when the number

of nodes decreases from 100 to 10. In SMIP, GIGM-MIP and CL-MIP algorithms, each

mobile agent is scheduled to visit all sensor nodes with the static routes determined by the

sink node to collect data from sensor nodes. The process increases the number of mobile

agents hops, leading to a considerable delays. Meanwhile, The proposed GSMIP has better

task duration because of less nodes that are required to be visited by the mobile agents i.e.,

shortest itineraries.
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Fig. 5.8 The Impact of Number of Dis-
patched Mobile Agent’s on energy con-
sumption (10 MAs)

Fig. 5.9 The Impact of Number of Dis-
patched Mobile Agent’s on Task duration
(10 MAs)

Energy Efficiency: As shown in Fig. 5.6, which shows the effect of energy consumption

by considering different parameters. It is clear that the proposed GSMIP approach outper-

forms SMIP, GIGM-MIP, and CL-MIP approaches in terms of energy consumption. It can

observed that the proposed GSMIP exhibits better energy saving over other approaches. The

proposed GSMIP approach achieves 33.3% and 27.1% energy decrease when compared to

SMIP 38.1% and 31.2%, GIGM-MIP 44.7% and 35.3%, and CL-MIP 53.5% and 40.9%

when the number of nodes decreases from 100 to 10. The improvement of the GSMIP

approach on energy consumption is because the number of hops for each MA is minimised

within the groups.

Network Lifetime Fig. 5.7 shows the impact of the number of sensor nodes on the

network lifetime. It can be observed that as the number of nodes increases, the network

lifetime for the proposed GSMIP is almost the same as compared to SMIP, GIGM-MIP, and

CL-MIP that shows a noticeable decrease. This is due to the fact that the proposed GSMIP

approach applies data aggregation and therefore carries a smaller size of the data packets,

which leads to less energy consumption thereby increasing network lifetime.

Energy Efficiency: As shown in Fig. 5.8, which shows the effect of the number of

dispatched MAs on energy consumption. It is clear that the proposed GSMIP approach
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Fig. 5.10 The Impact of Number of Dis-
patched Mobile Agent’s on energy con-
sumption (20 MAs)

Fig. 5.11 The Impact of Number of Dis-
patched Mobile Agent’s on Task duration
(20 MAs)

outperforms SMIP, GIGM-MIP, and CL-MIP approaches in terms of energy consumption

while varying the number of dispatched MAs. This experiment considers the number of

dispatched MAs as 10. It can be observed that the proposed GSMIP exhibits better energy

saving over other approaches. The proposed GSMIP approach achieves 36.3% and 20.1%

energy decrease when compared to SMIP 41.2% and 24.1%, GIGM-MIP 43.4% and 25.1%,

and CL-MIP 53.4% and 32.7% when the number of nodes decreases from 100 to 10. The

improvement of the GSMIP approach on energy consumption is due to the fact that the

number of hops for each MA is minimised within the groups.

Task Duration: Fig. 5.9 compares the four approaches in terms of task duration while

varying the number of dispatched MAs. The experiment considers the number of dispatched

MAs as 10. It is observed that the proposed GSMIP approach outperforms the three existing

approaches, including SMIP, GIGM-MIP and CL-MIP. It can be observed that the proposed

GSMIP achieves the best task duration of all approaches. The proposed GSMIP achieves

49.2% and 22.6% task duration decrease when compared to SMIP 59.8% and 32.9%, GIGM-

MIP 61.2% and 32.5%, and CL-MIP 71.5% and 49.3%, which has the highest delay when

the number of nodes decreases from 100 to 10. The improvement of the GSMIP approach

for the task duration is due to the fact that the shortest itineraries are constructed for each

MA in each group.
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Energy Efficiency: As shown in Fig. 5.10, which shows the effect of the number of

dispatched MAs on energy consumption. It is clear that the proposed GSMIP approach

outperforms SMIP, GIGM-MIP, and CL-MIP approaches in terms of energy consumption

while varying the number of dispatched MAs. The experiment considers the number of

dispatched MAs as 20. It can observed that the proposed GSMIP exhibits better energy

saving over other approaches. The proposed GSMIP approach achieves 41.4% and 25.2%

energy decrease when compared to SMIP 49.6% and 31.3%, GIGM-MIP 57.5% and 34.2%,

and CL-MIP 59.6% and 40.8% when the number of nodes decreases from 100 to 10. The

improvement of the GSMIP approach on energy consumption is due to the fact that the

number of hops for each MA is minimised within the groups.

Task Duration: Fig. 5.11 compares the four approaches in terms of task duration while

varying the number of dispatched MAs. The experiment considers the number of dispatched

MAs as 20. It is observed that the proposed GSMIP approach outperforms the three existing

approaches, including SMIP, GIGM-MIP and CL-MIP. It can be observed that the proposed

GSMIP achieves the best task duration of all approaches. The proposed GSMIP achieves

50.3% and 26.5% task duration decrease when compared to SMIP 56.6% and 34.8%, GIGM-

MIP 63.3% and 37.4%, and CL-MIP 67.3% and 45.4%, which has the highest delay when

the number of nodes decreases from 100 to 10. The improvement of the GSMIP approach

for the task duration is due to the fact that the shortest itineraries are constructed for each

MA in each group.

The Effect of the Number of Dispatched Mobile Agents on Task Duration: Fig. 5.13

demonstrates the impact of the number of dispatched MAs on task duration for the proposed

GSMIP. From Fig. 5.13, it is observed that when 20 mobile agents are dispatched and the

number of nodes is 100, the task duration reaches 0.34/S; whereas when 30 mobile agents are

dispatched and the number of sensor nodes is 100 the task duration reaches 0.27/S. Also, It is

clear that when 40 mobile agents are dispatched and the number of sensor nodes is 100, the
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Fig. 5.12 The number of dispatched
mobile agent of the proposed GSMIP
and alternative approaches

Fig. 5.13 The Impact of Number of Dis-
patched Mobile Agent’s on Task duration
(MAs 20, 30, 40, 50)

task duration reaches 0.24/S whereas when 50 mobile agents are dispatched and the number

of sensor nodes is 100 the task duration reaches 0.22/S.

Number of Dispatched Mobile Agent: As shown in Fig. 5.12, which shows the number

of dispatched mobile agent. It is clear that the CL-MIP dispatches the highest number

of mobile agents, which is more than 60 MAs whereas GIGM-MIP dispatches 60 MAs

followed by SMIP that dispatches more than 50 MAs. On the other side, the proposed

GSMIP dispatches the minimum MAs, which is 50 MAs.

5.5 Summary

This chapter addressed the issue of efficient multi-mobile agents itinerary planning. In

order to achieve scalability and to reduce energy consumption, an energy-efficient itinerary

planning approach, called GSMIP, has been proposed. A grouping strategy is developed

where nodes in the network are assigned into smaller sets, making energy depletion less of a

problem. Experimental evaluation shows that the proposed itinerary planning approach is

scalable, energy-efficient, and reduces delays while increasing network lifetime.



Chapter 6

Conclusion and Future Work

6.1 Introduction

This chapter concludes the study and presents a detailed conclusion of each chapter, along

with the aim, objectives and achievements. In addition, it provides complete future research

directions and open research questions that require further investigation.

6.2 Conclusion

The work in this thesis proposes a distributed intelligence framework that can be useful in

various IoT application scenarios. In addition, the thesis proposes an energy efficient multi-

mobile agent itinerary planning approach. The results obtained for the scalability and energy-

efficiency are promising, and every algorithm proposed is implemented so that experimental

comparison can be made against the existing state of the art approaches. Over the last few

years, the Internet of Things (IoT) have been widely adopted for delivering services across

various domains, from smart cities, smart campus and intelligent transportation systems

to industry. IoT interconnects heterogeneous devices with diverse functionalities to meet

the evolving requirements of the earlier mentioned domains. IoT devices are characterised
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by limited resources, such as power consumption, memory and processing. Distributed

Intelligence is defined as a sub-discipline of artificial intelligence, which allows processing

functionality to be distributed, enables collaboration between smart objects and mediates

data exchange to optimise communication for IoT applications. This concept may be spilt

into two levels: intelligence at a high level and intelligence at a low level.

Chapter 2 describes distributed intelligence in IoT that underpins this research i.e., the

existing distributed intelligence approaches in IoT; the concept of distributed intelligence;

the motivation and challenges of distributed intelligence; and an overview of hardware-

based security primitives techniques for IoT. For the first part, the taxonomy of distributed

intelligence is illustrated in details including: distributed intelligence challenges, intelligence

levels and classifications of distributed intelligence approaches. For the second part, the

mobile agent and an overview of the current techniques are presented in details including

single itinerary planning and multiple itinerary planning. It’s shown that while distributed

intelligence is an active research area, there are challenges in ensuring scalability and

decentralisation. Finally, a description of the theories of the contributions is presented

followed by a discussion of the challenges and future research directions that requires further

investigation.

Chapter 3 presents the theories and background of the IOTA distributed ledger technology.

The fundamental working principles of IOTA technology and the components of IOTA

including: masked authenticating messaging, IOTA smart contract, relationship between

coordicide and coordinator, auto-peering, and snapshotting are described in details. The

suitability of IOTA technology to IoT followed by the characteristics of IOTA. The similar

distributed intelligence approaches and mobile agent itinerary planning algorithms that are

closely related to the work in this thesis are also presented. Finally, a three different IoT

use case scenarios that would benefit from the IOTA technology e.g, smart parking, smart
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campus, and self-driving vehicles are described in details. This chapter concluded that IOTA

is an efficient and suitable technology to support distributed intelligence.

Chapter 4 focuses on the design and development of the proposed distributed intelligence

framework and its related components including: IoT devices to collect data, tangle to process

transactions, mobile agent to collect transaction and Proof of Work (PoW) enabled server

for performing heavy computations tasks. Most current distributed intelligence approaches

are configured to transmit data to a central location for further processing. However, such

approaches do not focus on the scalability at the physical layer and consume energy due

to transmission as well as network bandwidth. By considering the limited resources of

IoT devices such as power consumption, enabling distributed intelligence was achieved

through two levels including: high and low. In the high level, a tangle-based architecture

is used to deal with transactions, while low level adopts mobile agents to cater for node

level communications. The advantages include: scalability; decentralisation, elimination of

redundant transaction data and the facilitation of node level communications. A simulation is

conducted in order to evaluate the advantages of the proposed framework in a larger-scale

network.

Chapter 5 focuses on the design and development of the proposed multi-mobile agent

itinerary planning approach. The approach describes all relevant components including:

sensor nodes mobile agents, mobile agent itinerary and collected data. The sensor nodes

are deployed to sense the environment. The mobile agents are dispatched to collect data

from a particular group. The itinerary is the route followed during mobile agent migration.

It has been identified that most current multi-mobile agent approaches are designed to be

scalable and energy-efficient. However, such approaches have several issues including:

lack of determining the optimal number of mobile agents and efficiently partitioning the

sensor network into groups. By considering these issues, a grouping strategy is introduced
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where nodes in the network are assigned into smaller sets, making energy depletion less of a

problem. A simulation is conducted to validate the performance of the proposed approach.

6.3 Aim, Objectives, and Achievements

This research project is aiming to develop a scalable and energy-efficient distributed intelli-

gence framework for the IoT. The framework adopts the IOTA tangle architecture and mobile

agents in order to enable distributed intelligence whilst minimising energy-consumption

and ensuring scalability. Also, the framework develops a new multi-mobile agent itinerary

planning approach that is scalable and energy-efficient.

Objective One: To examine and identify common requirements of existing distributed

intelligence approaches in IoT.

Achievement One: The first objective was met via a comprehensive review that was carried

out covering existing distributed intelligence approaches and classified them into five

categories namely: cloud computing, mist computing, distributed ledger technology,

service-oriented computing and hybrid. In addition, a review of mobile agent itinerary

planning approaches have been presented in Chapter Two.

Objective Two: To develop a distributed intelligence framework using multi-mobile agents

and IOTA technology as an efficient architectural technique to facilitate local interac-

tion, collection, aggregation of transactions data and it enables the deployment of IoT

applications that are scalable and energy efficient.

Achievement Two: The second objective was satisfied through the development of a new

Mobile-Agent Distributed Intelligence Tangle-Based framework (MADIT) that adopts

the IOTA tangle to support high-level intelligence and multi-mobile agents to support
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low-level intelligence i.e, cater for node level communications. The framework is

discussed in more details in Chapter Four.

Objective Three: To evaluate an existing Proof of Work (PoW) offloading mechanism for

efficacy with regard to energy efficiency and transaction throughput.

Achievement Three: The third objective was met through the evaluation of the IOTA Proof

of Work (PoW) offloading mechanism in which the PoW computation was offloaded

to devices with higher resources for efficacy with regard to energy efficiency and

transaction throughput. The PoW computation offloading is discussed in Chapter Four.

Objective Four: To develop a new energy-efficient multi-mobile agent itinerary planning

mechanism by partitioning Directed Acyclic Graph (DAG) into groups and allowing

mobile agents to visit a particular group.

Achievement Four: The fourth objective was satisfied through the proposed Graph-based

Static Multi-Mobile Agent Itinerary Planning approach (GSMIP). It applies Directed

Acyclic Graph (DAG) related techniques to divide the network into several groups,

which will eventually allow each mobile agent to visit a particular group. The proposed

approach is discussed in more details in Chapter Five.

6.4 Future Work

As this is an emerging research field, there are a number of interesting directions for future

work that can be used to extend the work further. Below is a summary of interesting directions

for future work
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6.4.1 Hybrid and Adaptable Framework

IoT networks consists of heterogeneous devices ranging from low-power devices to high

end servers. Therefore, a single solution would not be deployed for all IOTA-based IoT

architectures. This is because of the different capabilities provided by IoT networks. Conse-

quently, a possible solution should initially be adaptable and take into consideration all of

the IoT constraints. Thus, one of the challenges that require further attention in the future is

how to design and develop a hybrid, dynamic and adaptable framework for IOTA-based IoT

architectures. The main questions that might arise are as follows:

•Where functionality should be invoked?

•Where heavy computation tasks should be placed?

• How much support control should the framework allow?

• How to support cooperation among IoT devices to cater for node level communications in

an efficient way?

6.4.2 Energy-Efficiency

Due to the high power consumption of PoW, computation offloading is a suitable solution

for saving energy consumption. Another interesting research direction for reducing energy

consumption of IoT devices would be to apply the mechanism of "Compute and Wait" where

several proof rounds are needed. For example, any given consensus node must resolve the

game in the the current round before participating in the next round. Consequently, a node

that solves the game of current round can only move on to the next round if a predetermined

number of solutions have been found by other nodes as described in [176]. This would result

in a significant reduction in energy-consumption.
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6.4.3 Security Against Attack

Security is considered as a crucial challenge that is required by almost all of the IoT ap-

plications to avoid cyber attack. For example, IoT devices, deployed IOTA nodes and

IoT gateways can be affected by cyber attack, which would lead to unusual behaviour and

functioning of these IoT devices. This can lead to provide wrong decisions in response

to emergent situations. Furthermore, the security of the network is also important as it is

capable of protecting the IoT system from various attacks such as sniffer and jamming. Cyber

security [42] to be added as an important enhancement to many IoT applications.

6.4.4 Privacy-Preserving

IOTA Streams has been developed to ensure privacy and authentication when sending IoT

data. It can be applied to enable multiparty authentication scenarios [5]. Moreover, location

privacy [43] that focuses on how to effectively select reasonable dummy locations and

avoid having the real locations. These are considered as an important issues for providing

an effective IoT privacy [28, 177]. IOTA streams combined with Dynamic Searchable

Symmetric Encryption (DSSE) [178] would lead to an efficient privacy solution for the IoT

healthcare application. An important privacy issues arise as follows:

• How to design access control mechanism based on IOTA technology to preserve transac-

tion privacy in IoT healthcare applications?

• How to use IOTA token mixers to guarantee privacy?

• How to design a set of suitable forms as a proof of concept to support a complete privacy

solution?
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6.4.5 Adaptive Routing Protocol

IOTA tangle can be used to generate an effective routing protocol for IoT networks. A

routing protocol should balance the following characteristics: energy-efficiency, scalability,

robustness and Quality of Service (QoS) [179]. It has been suggested that clustering is

an important factor in determining a successful implementation of any routing protocol.

Hierarchical routing consists of two tiers including upper and lower. In the upper-tier,

nodes are called cluster head and act as routing backbone, while nodes in the lower-tier are

concerned with sensing activities. The main questions that might arise are as follows:

• How to cluster the network in an efficient way?

• How to elect cluster head nodes? What metrics should be considered when selecting a

cluster head node?

•When to rotate cluster head nodes, e.g., based on the level of remaining energy?

6.4.6 Offline Capability

The IOTA tangle can be used to solve the problem of offline capability. This task is not

simply a network entities configuration problem; the major issue is related to clustering the

network. However, it can be achieved by creating offline tangle where a certain number of

nodes can effectively go offline and issue transactions among themselves. This means that an

active internet connection is not needed, while the tangle is offline. Upon completion, it is

possible to simply attach the transactions of the offline tangle back to the online one.

6.4.7 Dynamic Multi-Mobile Agents Itinerary Planning

How to derive a dynamic or a hybrid itinerary plan for mobile agents is a critical task, which

allows each mobile agent to decide the visiting sequence on-the-fly. This is particularly
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useful for providing fault-tolerance and can be achieved by adopting an efficient clustering

method in which nodes will be grouped according to specific criteria and mobile agents will

be directed to a particular group as described in [165].

• How to route mobile agent among sensor nodes in an intelligent way?

• How to design a dynamic itinerary planning that enables mobile agents to decide the

visiting sequence on the fly?

• How to design and develop an efficient grouping mechanism that would aid in mobile

agent itinerary?

6.4.8 IOTA Tangle in Wireless Sensor Networks

The benefits offered by IOTA tangle can be explored in other areas, such as Wireless Sensor

Networks (WSN). It will not necessarily be pertinent to the scalability and energy-efficiency

issues and undoubtedly these issues will be taken into consideration. In addition, it would

be interesting to investigate the possibility of adapting it to suit Information Extraction (IE)

techniques in WSNs such as event-driven (Threshold-based), time-driven (periodic) and

query-based (request-response) [159]. Therefore, not limiting the benefits of IOTA tangle to

a specific problem or problem domain.

Finally, how to design and develop a new programming abstraction model [180] that

will suit all of the IE techniques. Consequently, it will be used as a building block in

establishing an infrastructure for a new integrated hybrid Information Extraction framework.

It will be made up of a specific, customised components and techniques along with the

development of distributed algorithms from several technologies such as Network Function

Virtualization (NFV) [125], Coordination Models and Languages [181], Distributed Ledger

technology [182] and Micro-services [183], wrapped up with an Application Programming

Interface (API).
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