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Abstract

Species belonging to the genus Apodemus are one of the most common and broadly distributed
small mammals in the Palearctic, making them ideal for studying ecological and evolutionary
processes in natural systems. Although much research has focused on the ecology of
Apodemus sp., relatively little is known about the evolutionary processes which govern their
natural variation in the wild. This is, in part, due to the limitations of de novo genomic
research in traditionally non-model organisms. However, recent advances in high-throughput
library preparation techniques such as RADseq, have made non-model organisms more
accessible for genome wide analyses. This thesis shows how a modified RADseq protocol
(quaddRAD) can be used to conduct ecological and evolutionary genomics research in a
large population of wild yellow-necked mice, Apodemus flavicollis, that is subject to highly
seasonal conditions.

I show how a high quality genomic dataset of 21,011 SNPs can be generated using
quaddRAD, and discuss the rationale behind the methodology in detail. I then use the geno-
types to construct a multi-generational pedigree, and describe the population’s demography,
fitness and allele frequency dynamics over time. I find significant variation in the genetic
contributions of mice to each generation, where by the end of the study, 53.6% of the sampled
population was descended from a single individual. Contrary to the expected high levels
of inbreeding and low genetic diversity in such a population, I find it is largely panmictic,
which suggests a large degree of connectivity to nearby populations allowing genetic rescue
through high levels of migration and gene flow.

Finally, I show how heterothermic responses, which reduce an individuals energy budget
by up to 65% under harsh conditions, are not only highly variable in the population, but also
highly heritable. This suggests heterothermy could be subject to natural selection. I show that
heterothermic responses form two distinct thermal strategies in the morphospace, which may
be the result of different modes of selection acting on the population to maintain significant
natural variation. This thesis shows the viability of quaddRAD for large scale genomics
research in wild Apodemus sp., to cement their role as a model organism for ecological and
evolutionary genomics research.
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Chapter 1

Apodemus, the under-utilised ecological

and evolutionary model

Model systems are not a new concept in ecological, evolutionary and (population) genetic

research as they allow researchers to understand the patterns and processes which govern

how natural variation is maintained. Their use has been the cornerstone of biological research

for centuries, and a wealth of knowledge has been gained through scientific observation

and experimentation with these systems. When choosing a model to study ecology and

evolutionary biology, researchers must then ask: What makes a good model system?

Historically, choosing an eco-evolutionary model system was determined by its simplicity

to observe and manipulate. For example, short generation times and ease of husbandry

in genera such as Mus, Caenorhabditis and Drosophila, allow real time observation of

evolutionary processes in artificial laboratory environments that forgo the need to wait

tens to thousands of years [48, 169, 202]. Similarly, microbial ecologists regularly use

microcosm experiments to manipulate and evolve entire ecosystems within a 96-well plate in

a concerted and replicable way [181, 185], thus expanding the model to incorporate multi-

species dynamics, and better represent natural systems. Laboratory experiments like these,

when used appropriately, are undoubtedly an incredibly powerful approach to ecological and

evolutionary research. However, their very nature highly simplifies, and tightly controls the
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processes they were designed to observe, de-contextualising them from the natural systems

they are intended to model [163].

Unfortunately, very little is known about the natural history of many of the commonly

used model species as they were chosen for specific traits which facilitate adaptation

to a laboratory. Thus, they are further differentiated from their wild counterparts [6].

However, exemplified in a recent series of articles published in the journal eLife called

The Natural History of Model Organisms, the idea of a model system has begun to shift

outside of the laboratory to also encompass more natural/wild organisms and systems. This

thesis aims to add to an existing collection of wild models by studying the free-living yellow-

necked mouse, Apodemus flavicollis, from Białowieża Forest, Poland. I will discuss how

such a new model system will supplement our growing body of knowledge on ecological

and evolutionary population genomics by providing an excellent new resource for future

research.

1.1 Wild ecological and evolutionary model systems

Wild study systems are popular among naturalists and evolutionary biologists to study natural

variation, and many exist to better understand how populations adapt, differ and diverge

under changing environmental conditions and habitats. Mammalian island populations in

particular have received considerable long-term attention, with some examples including,

but not limited to: red deer on the Isle of Rum [309], Soay sheep on St Kilda [21], water

voles on Coiresa [250] and wild house mice on Skockholm [27], which have been used for

quantitative ecological and evolutionary research since MacArthur and Wilson first developed

their seminal theory of Island Biogeography [201]. The beauty of these study systems is that

they are free running, natural, replicable and isolated microcosms that are allowed to evolve

and adapt to the changing environment. Furthermore, the distribution and range of an island

study species is often defined by the geographical structures and boundaries of the island,

allowing reliable estimates of (effective) population sizes. Isolation also means such models

systems often exist in allopatry, thus serving as an excellent wild observatory for natural

elifesciences.org
https://elifesciences.org/collections/8de90445/the-natural-history-of-model-organisms


1.1 Wild ecological and evolutionary model systems 3

selection [42], genetic drift and founder effects [250], as well as population divergence

and speciation [341]. Other studies include: heritability [257, 277], fitness and fecundity

[69, 247], inbreeding [143], parasitology [5], behavioural ecology [278], life history strategy

[165], and evolutionary trade-offs [153] to name a few. This is of course an in-exhaustive

list, and the range of publications about these model systems numbers in the thousands. It is

clear they provide an invaluable resource.

The isolation and equilibrium dynamics of island model systems however, despite the

many advantages listed above, have one notable caveat: studies of gene-flow and migration

in vertebrates are generally limited to networks of islands which are close enough to allow

small amounts of migration, in species which are also easily able to move between them

such as the wild house sparrows (Passer domesticus) in Helgeland, Norway (but see also

Ali and Vences [7] which discuss how long distance dispersal in mammals could occur

under rare circumstances). These bird model systems form a dynamic meta-population of

source and sink populations which have become popular to study the effects of gene flow

and dispersal [161, 292], phenotypic divergence [64], effective population size [17] and

conservation biology [193, 276]. Physiological studies in the wild such as on basal metabolic

rate and heterothermy however, require mark-recapture experiments and transportation to

laboratories to measure the phenotypes, which in bird species require considerable trapping

effort.

Rodent models are an alternative system which have long been studied due to their adapt-

ability to novel environments, ease of capture, broad distribution, diversity, and ecological,

economical, epidemiological and medigo-genetic importance. For example, many species are

commensal with humans and thrive in agricultural landscapes, causing significant damage

and financial loss [307]. Many species also form reservoirs for infectious diseases [233, 308],

making their proximity to people of particular concern. Studies therefore often focus on the

impact of these rodents on humans, even though only 10-15% of species are considered pests

[316]. The remaining species have important ecological roles in natural systems [33, 269],

and understanding their ecology and natural history has far-reaching implications. Rodents
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have therefore formed one of the most important model systems for researchers in many

fields of research.

Arguably, the most widely studied rodents belong to the genus Mus due to their excep-

tionally broad distribution. Sub-species of the house mouse, Mus musculus for example,

form a fascinating model system for the genetic effects of hybrid zones and introgression

[147]. M. musculus domesticus also forms highly population-specific immunological states,

suggesting immune-dependent selection mechanisms could act to determine how the popu-

lations respond to infection [2]. However, the species is, rather uniquely among the genus,

highly commensal with humans, and very few feral populations exist to study the system in

its natural state.

The genus Apodemus, which also has a broad range across much of the Palearctic [228],

has gained recent attention in ecological and evolutionary research due to an association

with natural, and relatively undisturbed old-growth forest habitats [320]. The presence of

unique genetic characteristics such as B-chromosomes [356], and their heterothremic life

history strategy [31], further makes this an appealing genus to study. Thus, Apodemus is now

developing into an additional model system to understand what maintains natural variation

in the wild.

1.2 Why study Apodemus?

Present across most of the Palearctic [230, 229, 317, 322], Apodemus is composed of at

least 21 species of mice with a range from Western Europe, through North Africa and the

Mediterranean, and as far east as the Japanese Archipelago [53, 219, 229]. Their broad

distribution, good fossil record, non-commensal nature and association with old growth

forest habitats makes them ideal for ecological and evolutionary studies. Furthermore, some

sister species within Apodemus are sympatric, and often syntopic, with a large overlap in

niches [229, 296]. Despite a large range overlap, similar morphological characteristics and

close relatedness, they have not been documented to hybridise in the wild and have distinct

genetic characteristics [25, 53, 151, 229]. This is surprising, given viable chimeras have been
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created in a laboratory setting with the more distantly related and well studied house mouse,

Mus musculus (Linnaeus, 1758) [347]. These characteristics therefore make Apodemus an

appealing genus to research the processes that maintain natural variation in the wild, some of

which will be described in this thesis for yellow-necked mice, Apodemus flavicollis (Melchior,

1834), from Białowieża Forest in Poland.

1.2.1 A.flavicollis in the wild

A. flavicollis is a small (9-12cm), arboreal, nocturnal and forest edge dwelling species

common in the Western Palearctic (figure 1.1). They can weigh between 14-45g, though

males are typically larger and heavier than females. Females can produce litters of 2-11 pups

up to three times per year, and few mice survive more than one year. Although A. flavicollis

is primarily a forest-dwelling species, it has been known to overwinter in houses, though

this is less common [208]. This interaction with humans is of particular epidemiological

significance as Apodemus is often parasitised by Borellia carrying ticks which can cause

Lyme disease. A. flavicollis is also a known reservoir of tick-borne encephalitis and a number

of hantaviruses which can cause haemorrhagic fever [176, 264, 304].

As a largely granivorous species, A. flavicollis is ecologically important due to its role

in seed dispersal by its hoarding behaviours. The behaviour is known to influence forest

composition due to a preference for energy- and nitrogen-rich seeds such as those from

beech, oak and hazel, which are cached as far as 13m from the parent tree [150]. In fact,

this behavior can account for as much as 100% of seed predation within deciduous forests

during masting [74, 149]. It is also strongly linked to an individuals genetics and physiology

through differences in boldness, aggression and territoriality, which in turn affects home

range sizes (100-2300m2) and therefore seed distribution patterns [119, 120, 338]. Reliance

on seeds as the primary source of food, and seasonal variation in their availability, therefore

causes distinct annual cycles of abundance and population density in A. flavicollis, with a

peak in autumn (September-November) and trough in spring (March-April), with significant

variation among years [148, 269].
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To persist in harsh winters and commence breeding under more favourable conditions,

A. flavicollis has adapted in a number of ways to ensure the greatest individual fitness. A

generalist strategy in terms of food choice is one example of this. Limited seed availability

during harsh winters leads to increased predation on secondary sources of food such as

insects, bird eggs and bats [74]. However, the availability of food during winter is highly

stochastic, and the high energy budget of A. flavicollis necessitates additional strategies

to increase the probability of survival. Like many mammals and birds, A. flavicollis has

physiologically adapted to difficult environmental conditions through the ability to enter

torpor, a controlled hypometabolic and hypothermic state, to lower an individuals energy

budget by up to 65% [31, 290]. This allows mice to conserve energy during the winter,

so resources can be dedicated to reproduction when food is once again plentiful. Though

the expression of torpor is not restricted by seasonality, and can occur at any time when

conditions require [290].

We know much about the role of phenotype-environment interactions for the control of

torpor. For example, entry into torpor can be entrained by the rhythmicity of an individuals

circadian cycle which is influenced by natural light levels, and is therefore affected by

seasonality in temperate latitudes across much of A. flavicollis’ range [170]. We also know

that individuals display varying degrees of torpor in response to fasting, which is more

likely under harsh winter conditions [31, 32]. While many studies have also researched the

molecular processes involved in torpor initiation [45, 227], little is known about the genetic

variation responsible for this variation in torpor depth, characterised by individual body

temperature when torpid [31, 32, 155], i.e. Is the ability to enter deeper torpor influenced by

your genotype, or is it merely a plastic response to environmental conditions? Furthermore,

we still do not know how this translates to a population-level response in terms of the evolution

of the phenotype, i.e. Are torpor phenotypes heritable and subject to natural selection? These

are just two of the questions that will be addressed in this thesis to demonstrate the value of

Apodemus as an ecological and evolutionary model.
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1.2.2 Evolutionary and population genetics in A. flavicollis

Much of the genetic research in Apodemus till now has focused on highly targeted amplicon

sequencing technologies, which amplify variable regions such as the mitochondrial gene

Cytb [228], 12S rRNA [228, 230, 322], and nuclear genes such as RAG1 [322]. These

variable regions, with mutation rates typically two orders of magnitude greater than the

nuclear mutation rate [238], have been very useful in phylogenetic and phylogeographic

reconstruction [228–230, 322]. For example, Michaux et al. [230] used sequence variability

in the mitochondiral Cytb gene to show clear phylogeographic structuring in A. flavicollis

populations, and this was most likely the result of population isolation and persistence in two

refugia during the last glacial maximum. The limitation of these approaches, however, is that

they lack the necessary resolution to study selection and gain a better understanding of the

processes governing how populations differ and diverge in response. To do this requires a

genome-wide approach.

1.2.2.1 Genome-wide approaches for population genetics in A. flavicollis

Although the cost of whole genome sequencing significantly reduced after the year 2000

[311], it still remains out of reach for the majority of researchers for population genetic

analyses. This is particularly true for eukaryotic species with genome sizes in the order of

109 bp, as with Apodemus. Alternative approaches, instead utilise polymorphic markers

interspersed throughout the genome. These are heritable polymorphic loci that are present

in one or more populations, with one example being microsatellites, short sequences of

tandemly repeated DNA that are variable in length and sequence, and typically 5-50 base

pairs long [80, 333]. In a number of organisms including Apodemus, microsatellites have

been used in pedigree analysis [119], studies of population structure [204], genetic diversity

[172], estimation of mutation rate [203], and the detection of selective sweeps to name

a few [103, 280, 297]. These studies typically only require tens of loci, and although it

is laborious to develop, microsatellites are relatively inexpensive when such few loci are

needed [103]. However, uncovering the genomic basis for a phenotype with a genome wide



1.2 Why study Apodemus? 9

association (GWA) for example, requires significantly higher resolution involving typically

tens of thousands of independent markers [18, 19, 137, 325].

Unfortunately, significant a priori knowledge of the genome to design primers and amplify

these variable regions is a prerequisite for analyses using microsatellites, which is why they

are labour and time intensive to develop. Thus, they can be costly when more loci are needed,

and require significant resources to develop in non-model organisms such as A. flavicollis, as

little is known about their genome [80, 103]. Although alternatives to microsatellites such as

restriction fragment length polymorphism (RFLP), which requires no a priori knowledge of

the genome, can be used by identifying single nucleotide polymorphisms (SNPs) and form

haplotypes for studies of selection [258], they still lack the resolution necessary for GWA,

and still require significant development time and cost [80]. Recent evidence also suggests

the location of markers such as microsatellites is non-random, and could bias GWA towards

certain genomic regions, even if enough are available to conduct the analysis [191]. The

advent of high throughput sequencing technologies, alleviates the bottleneck of having too

few of markers. SNP arrays for example, typically yield tens to hundreds of thousands of

loci [58]. Despite the improved genome wide resolution however, it still does not preclude

from the significant resource and time investment required to develop. Furthermore, SNP

arrays are specific to a single population, so use in new populations would bias any alleles

towards those present in the initial study population [80].

1.2.2.2 Restriction site associated DNA sequencing

Reduced representation sequencing, where only a representative fraction of the genome

is sequenced, provides a much more cost effective solution for use in evolutionary and

population genetics research compared to whole genome sequencing, while still providing

enough resolution for studies of selection and genotype-phenotype associations. As only a

fraction of the genome is sequenced and represented by the data per sample, hundreds of

individuals can be sequenced simultaneously and genotyped, to yield thousands of markers

along the genome at high coverage, and therefore high confidence. One of the most popular

methods is restriction site associated DNA sequencing (RAD-seq) [20].
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Unlike the targeted amplification and sequencing of microsatellites at known positions

along the genome, RAD-seq uses restriction endonucleases to digest high molecular weight

genomic DNA at restriction sites interspersed throughout the genome, in both coding and non-

coding regions [80], thus resulting in a range of DNA fragment sizes (figure 1.2). Sequencing

libraries are prepared by first ligating sequencing adapters, which have been designed to

contain complementary ends to the restriction enzyme cut site, to the restricted DNA. The

adapters also contain a forward amplification primer and known barcode sequences specific

to each sample. The cost effectiveness and efficiency of this protocol becomes evident at this

stage, where multiple samples can be pooled together as each sample is identifiable by its

barcode. The DNA is then randomly sheared and size selected according to the read length

of the sequencing technology (< 700 bp if using Illumina for example). Y-shaped adapters

containing the reverse primer sequence are subsequently ligated to the sheared end of the

DNA fragments. This forked structure selectively amplifies only DNA fragments that have

the forward primer already ligated, and has fully undergone the first-round elongation to

complete the complementary reverse strand. Hundreds of samples can be prepared in this

way and sequenced together.

In addition to yielding tens of thousands of loci, RAD-seq has the unique advantage of

being highly user customisable by the choice of restriction enzymes, which allows researchers

to target a specified subset of the genome. For example, many plants have very large genomes

due to genome duplications, and have large amounts of non-coding repeat elements prone to

higher levels of DNA methylation [225, 305]. Choosing a methylation sensitive restriction

enzyme such as MspI, can avoid cutting methylated DNA repeat elements, thus excluding

most of them from the sequencing library preparation if desired. In this scenario, it could

be argued that exome capture should instead be used as DNA methylation acts to suppress

transcription of DNA. However, this would also exclude many regulatory regions present

in non-exonic DNA that are not repeat elements, which may be important in the study.

Furthermore, exome capture requires a reference genome or transcriptome, which may not be

available for non-model organisms [51]. RAD-seq therefore remains a viable and powerful

method that enhances a population geneticists toolkit.
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Fig. 1.2 The original RAD-seq protocol by Baird et al. [20]. A) High molecular weight
gDNA is digested by a restriction endonuclease and barcoded Illumina P1 adapters are ligated.
B) Adapter ligated and barcoded DNA fragments are pooled for multiplexing and sheered
randomly. C) Y-shaped Illumina P2 adapters are are ligated. D) Only fragments containing
both P1 and P2 adapters are selectively amplified.
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Since the original RAD-seq study by Baird et al. [20], many variations have been

developed to circumvent the unpredictability of the random shearing step, minimise hands on

time for library preparation, and provide more control over the protocol and the target fraction

of the genome, including with the use of multiple restriction enzymes [80]. Apart from

these benefits, the greatest appeal of these protocols lies in their applicability to non-model

organisms such as the genus Apodemus. In a recent study by Martin Cerezo et al. [53],

RAD-seq was used in A. flavicollis and sylvaticus to demonstrate how a catalogue of shared

markers between two closely related species can be developed to differentiate between them.

They also showed the effectiveness of RAD-seq for estimating genetic diversity across their

range.

1.2.2.3 Bioinformatics analysis of RAD-seq data

With the decreasing cost in high-throughput, next-generation short read sequencing technolo-

gies such as the Illumina platform, and the availability and flexibility of reduced representa-

tion library preparation protocols such as RAD-seq, researchers are producing considerably

larger genomics data sets in organisms which have been traditionally unstudied at this level,

including Apodemus [311]. However, drawing meaningful biological conclusions from

such vast amounts of data requires efficient and robust pipelines for analysis. Many tools

have therefore been developed for each stage of bioinformatic processing of the data, from

demultiplexing and adapter trimming [145, 50, 211], sequence quality assessment [13],

PCR duplicate removal [49], locus assembly either de novo or with a reference genome

[111, 221, 271, 285], variant filtering [77, 270, 306] and analysis [198, 351, 355]. These

citations given here are of course just a few examples of packages within the broad and

expanding field of computational statistical genomics, and as our understanding of the topic

improves, the need for more niche analyses increases. The list will therefore undoubtedly

grow.

A number of pipelines have been developed specifically for genotyping-by-seqencing

approaches such as RAD-seq, due to increasing popularity and various flavours of the protocol.

This includes, but is not limited to: pyRAD, designed specifically for phylogenetics and
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suited for broad taxonomic scales [91], UNEAK, part of the well known GWA analysis

package TASSEL [37, 198], dDOCENT, a bayesian haplotype based variant caller [271],

and arguably the most popular due to its versatility, computational efficiency, and relative

user friendliness, STACKS [50, 49, 285]. As the different packages have been designed with

various algorithms for locus assembly and variant calling, or in the case of pyRAD and

UNEAK with different use cases in mind, the choice of pipeline can be critical to ensuring

minimal bias from PCR duplicates, genotyping error and the effects of low sequencing

coverage [11, 249]. Many studies have therefore compared the efficacy of different programs

including STACKS, in multiple use case scenarios with empirical and simulated data [220,

285, 302, 313, 353]. Recent improvements in the STACKS genotype caller have shown

it is robust and efficient, and outperforms other software [285]. Furthermore, analysis of

RAD-seq data with STACKS in A. flavicollis and sylvaticus, has recently been successfully

demonstrated by Martin Cerezo et al. [53], thus substantiating its use for evolutionary and

population genomics research in Apodemus.

1.3 The study site - Białowieża forest, Poland

Developing a model for ecological and evolutionary research requires any findings to be

placed in the context of the organisms environment. Although A. flavicollis has a large range,

Białowieża Forest, a 1,250km2 expanse of ancient forest straddling the Polish-Belorussian

border was chosen for this study (52o 30′-53o N and 23o 30′-24o 15′E, figure 1.3). Despite

large parts (∼ 39,000ha) of the forest currently being managed, a significant proportion has

remained uncleared [174]. It is one of the largest and best preserved forest patches in Europe,

and is abundant in A. flavicollis making it an ideal location for this study.

1.3.1 The paleoecological history of Białowieża forest

Paleoecological reconstruction of the forest performed with palynological stratigraphy (anal-

ysis of pollen trapped in stratified soil samples), has indicated that climate warming, which

followed the last glaciation, led to the growth of boreal forests across much of central Europe
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Fig. 1.3 Białowieża forest is located on the border between Poland and Belarus in Central
Europe. Białowieża National Park (red outline) is found within the currently recognised
boundary of the forest shown in green. These boundaries have changed since their original
proposal in 1992 shown with a purple outline. Grey indicates the full extent of the forest
habitat. The map was modified from UNESCO, and obtained under CC BY-SA 3.0.

(11,400-10,700 BC). The structure of the sediment cores follow the successional history

of the forest closely [180]. At the end of the last glaciation, loose community structure

meant large expanses of steppe vegetation were common in Białowieża, and melting of

permafrost caused swamps to form in shallow ground. Changes in climate during the Allerød

(11,400-10,700 BC) and Younger Dryas (10,700-9,750 BC) periods led to subsequent shifts

in forest community structure, which was dominated by birch (Betula) and pine (Pinus)

respectively. Further warming and changes in ground water levels due to increased surface

runoff, then led to changes in soil chemistry and water clarity, thus altering the wetland

ecosystems drastically. This hydrological instability eventually allowed the growth of more

tree species species such as elm (Ulmus) and eventually small admixtures of oak (Quercus)

https://whc.unesco.org/en/list/33/multiple=1&unique_number=2005
https://creativecommons.org/licenses/by-sa/3.0/
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and hazel (Corylus) between 8,800-7,300 BC, therefore increasing the heterogeneity of the

forest ecosystem.

Archaeological and palynological evidence indicates the presence human activity in the

forest since the late Neolithic (∼ 3000 BC). This activity, and fluctuations in soil moisture

levels caused by prolonged dry periods during 7,300-1,800 BC caused frequent wildfires,

further altering the forest ecosystem dramatically [180]. During this time, decreasing ground

water levels, as indicated by lithological structuring, caused the drying of marshland and

the retreat of pine forest [180]. This allowed mesophillic tree species such as alder (Alnus),

oak, hazel and hornbeam (Carpinus betulus) to proliferate. Oak, hazel and hornbeam now

dominate much of the forest due to economic exploitation by humans during the medieval

period, where incandescent techniques to alter canopy cover were often used to change the

structure of the forest [180, 358]. Highly fertile oak-horbeam habitats also led to an increase

in agriculturally associated species around the edge of the forest. These complex events

historically caused by variation in the hydrology, temperature and precipitation, and later

by anthropogenic activities, have created the non-uniformity of the forest evident today.

Large seasonal variations in temperature, precipitation and snow cover also contribute to the

uniqueness of the ecology of Białowieża forest [148], where temperatures can vary from

−25.0-1.8oC (µ =−4.8oC) in winter, and 15.2-22.5oC (µ = 18.4oC) in the summer. Snow

cover can also vary significantly, from 1-95cm in harsh winters, though wet and mild winters

are now becoming increasingly common [269].

1.3.2 The (semi-)natural forest ecosystem for scientific research

Despite the presence of humans in Białowieża Forest for the last ∼ 5000 years, pollen records

indicate woodland continuity for at least the last ∼ 2000 years. This is largely due to the

primary activity in the region being hunting and foraging, rather than logging or clearing of

the forest [323]. Designated a Royal Forest during the Jagiellonian dynasty (c. 1362-1572

AD), it was largely protected. The continuity of the forest was therefore preserved and the

ecological processes that maintain the forest in a mostly natural state remained. The structure

and composition of the forest has been drastically altered in the last 250 years however,
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mostly through the artificially high abundance of large game for hunting and grazing [234].

Recent control of game densities have now led to an invasion of oak stands which were

created by excessive grazing, by pine trees through secondary succession, thus returning the

forest to a more natural state [99].

The heterogeneity of the deciduous and riparian forest habitats created by Białowieża

Forest’s highly varied ecological history (figure 1.4) also supports a plethora of species,

including over 2000 macro and lichenised fungi, 1,017 vascular plants, 12,000 insects, over

250 birds, and 59 mammals [26, 30, 174, 234]. Although the Białowieża Forest can no

longer be considered primeval, the long term continuity and strong regenerative capacity

shaped by ecological dynamics, has shown it is a strong subject for ecological research in

a (semi-)natural system. The cultural and scientific value of the forest has therefore been

recognised internationally, and the forest was placed on the United Nations Educational,

Scientific and Cultural Organisation (UNESCO) World Heritage List in 2014. Significant

long term biological research has therefore centred around Białowieża Forest, which is home

to the Mammalian Research Institute of the Polish Academy of Sciences (MRI-PAS), which

manages the A. flavicollis trapping site within the Strict Reserve of Białowieża National Park

used in this study (52o43’N, 23o52’E).

1.4 Scope of the thesis

The ecology of the genus Apodemus has been studied over much of its broad range for

almost a century. However, it has not gained prominence among the many other well-

studied ecological and evolutionary model organisms, despite its important ecological role

in natural systems. This is likely due to the technical limitations of evolutionary genomics

research, which until recently has been unachievable in both the wet and dry lab, and further

compounded by focus on developing resources for ecologically, epidemiologically and

medico-genetically important species such as Mus musculus. However, novel protocols

that integrate reduced representation library preparation methods like RAD-seq, and the

massively-parallel next-generation short read sequencing technologies such as with the
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Fig. 1.4 The heterogeneity of Białowieża Forest by species of plants shown in different
colours. Figure from Zimny et al. [358]. Circles indicate locations within the forest used for
palynological sampling to reconstruct the paleoecological successional dynamics since the
last glacial maximum by Zimny et al. [358].

Illumina platform, have revolutionised the way we study the complex evolutionary processes

that maintain natural variation in the wild. The efficacy of this approach has now been

demonstrated in a number of organisms, including in Apodemus flavicollis [53].

The study by Martin Cerezo et al. [53] used RAD-seq to observe the structure of a local

population, estimate genetic diversity, and differentiate two species of Apodemus. This was a

crucial first step in demonstrating the viability of RAD-seq in Apodemus for eco-evolutionary

research. The aim of this thesis, is to build upon our knowledge of Apodemus flavicollis

by making individual and population level observations using genome-wide markers to

provide insights into some of the processes that maintain natural variation within a single

population and species. Using RAD-seq data generated in a large sample of A. flavicollis

from Białowieża Forest with a custom protocol (n = 672), I will demonstrate how measures
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of relatedness within the population can be used to construct wild pedigrees when few field

observations are available to support it. I will then describe the population’s demography,

and show how allele frequencies vary over four generations. I will also show how relatedness

estimated from RAD-seq data, can be used to estimate the heritability of the highly variable

and ecologically important physiological trait known as torpor. The results presented here

will therefore further establish Apodemus as an excellent evolutionary and ecological model

in natural systems.

The chapters included in this thesis are presented in the format of journal articles, and are

briefly summarised below:

Chapter 2: Restriction-site-associated DNA sequencing for population and ecological

genomics in the wild yellow-necked mouse, Apodemus flavicollis

This chapter shows how a well known variant of RAD-seq (quaddRAD [106]), was

customised for use on a study of 672 tissue samples to produce a large-scale genomic dataset

for conducting population level genomic analyses. Described in detail are the multiple steps

involved in data generation including:

(i) In silico simulation of sequencing libraries at the planning stage.

(ii) The experimental protocols involved to produce sequencing libraries.

(iii) The bioinformatics processing and analyses involved to produce a robust dataset for

ecological and evolutionary applications following DNA sequencing.

The results are then discussed in terms of the power and pitfalls of the approach, and its

potential affects on future analyses.
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Chapter 3: Population demography, fitness and allele frequency dynamics in a pedi-

greed, wild population of Apodemus flavicollis

This chapter describes how the genomic data generated in chapter 2 was used to estimate

relatedness, and construct a pedigree in the wild population of yellow-necked mice where

very limited field observations are available to support the analyses. The pedigree is then used

to estimate individual and population level parameters to describe population demography,

estimate the fitness of each mouse, and describe the allele frequency dynamics through time

in the wild. The results are then discussed in the context of the eco-evolutionary dynamics of

Apodemus flavicollis.

Chapter 4: The heritability of thermal strategies in wild Apodemus flavicollis

Chapter 4 ties together individual and population level data to show how phenotypic

variation in the highly plastic heterothermic responses (torpor) can be explained by genetics

(heritability) in wild A. flavicollis. Two distinct thermal strategies are then described that

are constrained by the body mass and sex of an individual. Finally, the results are discussed

in an evolutionary context to suggest how such a large degree of phenotypic variation is

maintained in the wild.

Chapter 5: Conclusions and future directions

This final chapter summarises the results presented in this thesis, and discusses the future

directions of the research using Apodemus as an ecological and evolutionary model.





Chapter 2

Restriction-site-associated DNA

sequencing for population and ecological

genomics in the wild yellow-necked

mouse, Apodemus flavicollis

2.1 Introduction

Since the advent of next generation sequencing technologies, many sequencing library

preparation techniques have been developed to improve accessibility for de novo research

in non-model organisms. However, none have captured the attention of biologists like

restriction-site associated DNA sequencing (RAD-seq) due to its low per-sample cost and

hands-on time for library preparation. RAD-seq has now become a powerful tool for use

in studies of phylogeography [50, 78, 95], phylogenetics [46, 53], linkage mapping [50],

pedigree analysis [103, 189] and genome-wide association [295]. The original RAD-seq

protocol by Baird et al. [20] has been modified considerably, and has diversified into many

flavours for different use cases [11]. Here I use quaddRAD, a variant of the well known

double digest RAD-seq protocol (ddRAD-seq) [106, 261], to generate RAD-seq libraries

of a large sample of A. flavicollis from a single population, for ecological and population
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genomics research. I will describe the protocol in detail from planning to execution, explain

the rationale behind the choice of methods, and finally discuss the strengths and limitations

of the approach in the context of evolutionary and ecological applications.

2.1.1 Double digest RAD-seq

Despite the low per sample sequencing cost of the original RAD-seq protocol, some limita-

tions slowed its initial uptake among ecological and evolutionary biologists. For example,

after digesting gDNA with restriction endonucleases, the protocol relied on the use of an

expensive sonicator to further shear the template DNA, and repair fragment ends to allow

adapter ligation. This process is completely random as shearing can occur anywhere on

the molecule, and produces varying fragment lengths which must be size-selected by gel

electrophoresis. Furthermore, sonication was known to fragment with varying degrees of effi-

ciency depending on the length of the restricted template DNA [128]. This leads to some loci

being lost if the DNA template is too large or small. ddRAD-seq circumvents this by using

two restriction enzymes to more specifically target a desired proportion of the genome (figure

2.1), and produce fragments that are theoretically homologous among samples of the same

species. As with sdRAD-seq, size selection can then be used to extract the desired portion of

the genome. Hundreds of samples can be multiplexed for high throughput sequencing in this

way, using combinations of barcodes within adapter sequences for sample identification.

Common cutter Rare cutter Included in library Excluded from library

A B

Fig. 2.1 Schematic representation of how genomic representation can be controlled through
the use of common and rare cutting restriction enzymes in ddRAD-seq. Precise size selection
excludes fragments too large or small, and are represented here by A and B respectively.
Only fragments with different cut sites on each end are included in the final sequencing
library.
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2.1.1.1 quaddRAD - a ddRAD-seq protocol which allows for PCR duplicate removal

Despite its advantages, the ddRAD-seq protocol by Peterson et al. [261] still has two major

limitations. Firstly, the unavoidable amplification step to enrich libraries can introduce

artefacts such as PCR duplicates. These are clonal reads of template DNA which can skew

allele frequencies by increasing genotyping error rates, and inflate estimates of homozygosity

[266]. Unlike sdRAD-seq, which allows identification of PCR duplicates due to the random

shearing creating different sized fragments, ddRAD-seq produces the same, predictably sized

template DNA (figure 2.2). PCR duplicates therefore cannot be identified without further

modification of the protocol. One method to identify duplicates is to incorporate a short

degenerate base region within adapter sequences, to identify and computationally remove

PCR duplicates without greatly increasing the costs for adapter synthesis [300]. This method

was adapted for ddRAD-seq by Franchini et al. [106] in the quaddRAD protocol. The quadd

here, refers to the use of four barcodes which can be incorporated combinatorially into

quaddRAD libraries, and increases multiplexing capacity up to 192 samples compared to 96

in standard ddRAD-seq.

Increasing the multiplexing capacity allows quaddRAD to address the second limitation of

ddRAD-seq, which is ascertainment bias due to repeated size selection steps when the number

of samples to be multiplexed per lane is greater than 96. This is because cutting agarose

gels to excise the desired size range can introduce variability in the library size distribution

if done imprecisely. Loci can therefore be differentially represented when pooled, often

causing some alleles to drop out. Automated size selection has reduced this error significantly

(e.g. using the Pippin Prep from Sage Sciences), though can still be as high as 15% per

size selection [106]. The higher multiplexing capacity in quaddRAD however, allows more

samples to be pooled early in the protocol, so libraries can be amplified simultaneously. Size

selection can then take place in a single step at the end of the protocol for up to 192 samples.

This also has the added benefit of requiring less gDNA per sample, which is important for

precious sample preservation in rare species or historical DNA samples. As with previous

versions of RAD-seq, quaddRAD still remains highly customisable by allowing different

enzyme combinations to be used based on the users preference.
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2.1.2 Bioinformatic processing of RAD-seq data using STACKS

Although many different pipelines are available for processing genotyping-by-sequencing

data like RAD-seq, few have the versatility of STACKS [49, 50, 285]. High accuracy that is

comparable to other software and its relative ease of use [331], have led it to become one of

the most widely used RAD-seq analysis pipelines for ecological and evolutionary analyses.

The versatility of STACKS lies in its use for both reference-based and de novo analyses, using

the component pipelines ref_map.pl and denovo_map.pl respectively (figure 2.3).

Raw sequencing data can be input as either FASTA or FASTQ format into STACKS, and

begins with quality control and demultiplexing. As mentioned previously, PCR duplicates

are first identified based on the RAD-seq protocol used, and discarded in the program

clone_filter. The reads can then be demultiplexed based on user provided barcodes,

allowing for some mismatches to account for misincorporation of bases during sequencing.

As RAD-seq data always starts with a restriction site, cut sites can also be rescued in the

same way to ensure as few reads as possible are discarded. This is all conducted in the

process_radtags program. De novo analyses then proceed by building putative alleles

by aligning exactly matching reads in the component ustacks program, and loci in close

sequence space are then merged to form putative loci. A catalogue of shared loci in the

population is then built in cstacks, and samples are genotyped in gstacks. Reference

based analyses forgo the steps in ustacks and cstacks, and instead proceed directly with

genotyping in gstacks. The final stage is running the populations program. This program

filters for minor allele frequency to remove low frequency variants if desired, and outputs

SNPs shared among a user specified proportion of samples from the population(s) in a variety

of formats. These include formats for STRUCTURE analysis [268], phylogenetic analysis

using PHYLIP [100], and variant discovery (.vcf ) [328]. It also computes population level

summary statistics such as measures of heterozygosity for population differentiation and

inbreeding (F-statistics) [345], and nucleotide diversity (π) [240].

Due to computational constraints, early versions of STACKS utilised a maximum like-

lihood framework to call SNPs at a given locus for each sample individually [140]. The

presence of a SNP was determined by computing the log-likelihood ratio test statistic of the
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most likely versus the second most likely SNP, thus providing an estimate of the sequencing

error rate. Although this approach can be accurate [331], it requires high sequencing coverage

(>15x) to differentiate between true SNPs and sequencing error [312]. Updated versions

instead aggregate all samples, and observe biallelic SNPs in the entire population rather

than per individual. This information is then fed as a prior into a Bayesian genotype calling

model to finally genotype each individual [214, 285]. This is advantageous as it retains the

robustness of the model without requiring such high coverage to accurately call SNPs [285].

Fig. 2.3 The STACKS V2 pipeline, from demultiplexing of raw sequencing data, to final
output of SNPs for use in ecological and evolutionary genomics research. Figure from
Rochette et al. [285]
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2.2 Materials and methods

2.2.1 A. flavicollis trapping and tissue sample collection

672 wild A. flavicollis were trapped between 2016-2019 in Białowieża Forest by collabo-

rators in the Mammalian Research Institute at the Polish Academy of Sciences (MRI-PAS,

Białowieża, Poland). The plot location within the forest is situated inside the Strict Reserve

of Białowieża National Park (52o43’N, 23o52’E - figure 2.4) where 220 wooden traps were

baited with oats at 110 trapping locations, set to form a 10x10m grid system in a 0.9ha area

of mixed deciduous forest composed mainly of oak, hazel and hornbeam trees. Life history

information including sex, body mass and approximate life stage were recorded. Tissue sam-

ples were taken as either tail or ear clippings, and stored in 96% ethanol at -20oC until DNA

extraction. As the location of trap boxes does not change, the same individuals were expected

to be recaptured multiple times in the same trapping season. Passive Integrated Transponder

tags (PIT-tags: RF-IDW-1, CBDZOE, Gryfice, Poland) with a unique 16 digit ID that can be

read using a scanner were therefore injected subcutaneously on site, so recaptured individuals

could be identified and potentially used for repeated phenotypic measures. However, due to

the stochastic and natural setting in which the mice live, these PIT-tags can often fall out due

to injury or predation, or simply due to improper subcutaneous injection. These recaptured

mice cannot be re-identified, and so tissue samples were again taken and new tags injected.

Identifying these duplicate samples then requires sequencing and genotyping (see section

2.2.3.3), estimation of genotyping error rates (see section 2.2.3.4) and finally merging of

the data into a single sample ID. Due to the invasive nature of the tissue sampling and pit

tagging procedures involved in mark-recapture experiments with vertebrates, all experimental

procedures outlined in this thesis have been approved by the Local Committee for Ethics in

Animal Research and the Ministry of the Environment, Poland (decision numbers 27/2016,

62/2017 and DOP-WPN.287.7.2016.AN.
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Fig. 2.4 Location of the 0.9 ha trapping site within the Strict Reserve of Białowieża National
Park (yellow star inside the purple outline indicating the location of the Strict Reserve, within
the forest shown in green). The map was modified from UNESCO, and obtained under
CC BY-SA 3.0.

2.2.2 Restriction site Associated DNA sequencing

2.2.2.1 In silico restriction digestion and library preparation

Although reduced representation libraries decrease the total number of potential loci captured

compared to whole genome sequencing, more individuals can be cost effectively multiplexed

while maintaining a relatively high sequencing coverage [11]. This enables higher confidence

in the obtained genotypes at a reasonable cost:performance ratio. Different combinations

of restriction enzymes can be tested in silico without the need for any empirical work. The

choice of common or rare cutting restriction enzymes combined with precise size selection

results in a reduced representation DNA library customised to produce the desired sequencing

coverage. This does however, require the genome sequence to be known beforehand which is

not always possible in non-model organisms. Closely related species with a well established

https://whc.unesco.org/en/list/33/multiple=1&unique_number=2005
https://whc.unesco.org/en/list/33/multiple=1&unique_number=2005
https://creativecommons.org/licenses/by-sa/3.0/
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reference can instead be used to ensure an accurate estimate of the final number of loci and

sequencing coverage can be obtained. To simulate the library preparation procedure, known

restriction sites which are recognised by the chosen enzymes, are searched for along the

genome and the sequence is digested. The frequency with which these enzymes cut depends

upon the length and representation of each base in the restriction site, and is expected to cut,

on average, every 4n base pairs along the genome, where n is the length of the restriction site.

The type of cut (i.e. blunt or staggered), is determined by the enzyme itself. Libraries can then

be simulated according to the choice of experimental design using single or double-digest

RAD-seq with one or a combination of two restriction enzymes respectively.

Here, to provide finer control over the size and number of expected loci from each

individual, ddRAD [261] was chosen to simulate sequencing libraries, and decide the most

appropriate enzyme combination to obtain a desired >25X sequencing coverage (J. Catchen,

2018, personal communication). This can be estimated using C = R
NL , where C is the

predicted coverage, R is the expected number of reads per lane, N the number of samples

multiplexed per lane and L is the number of expected loci. ddRAD has proven reliable

and effective for studies of evolutionary ecology and genomics in A. flavicollis by Martin

Cerezo et al. [53], and the protocol has been optimised for this study system, so was preferred

over other methods of RAD-seq. Section 2.2.2.4 describes in detail the experimental library

preparation protocol used to modify and optimise ddRAD-seq for A. flavicollis.

Six different restriction enzyme combinations with varying proportions of bases and

restriction site length were used to simulate ddRAD-seq libraries, and represent different

cutting frequencies with staggered cuts only (table 2.1). This is to ensure non-specific

ligation in the real library preparation protocol is minimised. As no reference genome for

A. flavicollis is available, the reference for Mus musculus v.GRCm38 was used to simulate

double digestion of each chromosome in silico, using the insilico.digest function of

the SIMRAD V0.96 package [187] in R V3.5.2 [275]. Simulated library construction

involved selecting fragments with different adapters ligated to each end only, to emulate

a more realistic library preparation protocol [20] with the adapt.select function. Each

resulting fragment was then mapped back to each chromosome with matchPattern, part
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of BIOSTRINGS V2.50.2 [255], to return its index along each chromosome as a list. The

distribution of fragment positions was then plotted on a karyoplot of each chromosome

using the kpPlotDensity function of the KARYOPLOTER V1.8.7 package [118], to check

for any bias towards different genomic regions. Analyses were conducted using a custom

R script (available on GitHub, see appendix A.1 for details), and parallelised over 8 CPU

threads using the mclapply function of the PARALLEL V3.4.0 package [275] to improve

computational efficiency.

Restriction enzyme Recognition sequence Cut type

SbfI
5’...CCTGCA | GG...3’
3’...GG | ACGTCC...5’ staggered

EcoRI
5’...G | AATTC...3’
3’...CTTAA | G...5’ staggered

MspI
5’...C | CGG...3’
3’...GGC | C...5’ staggered

MluCI
5’... | AATT...3’
3’...TTAA | ...5’ staggered

NlaIII
5’... | CATG...3’
3’...GTAC | ...5’ staggered

MseI
5’...T | TAA...3’
3’...AAT | T...5’ staggered

Table 2.1 Restriction enzymes chosen for in silico digestion of the M. musculus v.GRCm38
reference genome. Only enzymes producing staggered cuts have been chosen to ensure
non-specific ligation of adapters does not occur during library preparation. Red vertical bars
in the recognition sequence show where the enzymes cut to produce an overhang.

2.2.2.2 DNA extraction and purification

DNA was extracted using a custom protocol in 2mL 96 deep-well plates. 672 tissue samples

were cut into small pieces and lysed in 600 µL of lysis buffer (10mM tris-HCl, pH 8.0,

100mM NaCl, 10mM EDTA, 0.5% SDS, filter sterilised at 0.45 µm) and 16 µL proteinase K

(20 mg mL-1, Invitrogen) at 58oC overnight. The reaction mixture was agitated throughout

the incubation period at 80-100 rpm. 4 µL of RNase A (20 mg mL-1, Invitrogen) was then

https://github.com/raval91/Aflav_thesis_supp/blob/main/chapter2/code/M.musculus_insilico_digestion_parallel_SbfI_MseI.R
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added to each lysed sample and incubated at 38oC for one hour, again with agitation at 80-100

rpm. Lysed samples were then incubated on ice for another hour with the addition of 200

µL 5M potassium acetate to precipitate SDS and any SDS-bound proteins, and subsequently

centrifuged at 4500g for 30 minutes. 500µL of lysate was then transferred to a new deep

well plate, being careful not to disturb the precipitate.

To ensure maximum yield whilst maintaining the integrity of the high molecular weight

genomic DNA (gDNA), paramagnetic bead based capture was chosen to isolate and purify

DNA from the lysate. This method uses 1 µm magnetite beads with a polystrene core and car-

boxylate modified polymer coating, to reversibly bind DNA by altering the concentration of

NaCl in the solution (Solid Phase Reversible Immobilisation - SPRI) [83, 131]. Maintaining

the integrity of high molecular weight gDNA maximises the number of intact restriction sites,

and therefore the number of possible polymorphic sites for genotyping [126]. SPRI beads

can also be used to size select fragments of DNA depending on the ratio of DNA to binding

buffer. Fragments < 100bp do not bind regardless of this ratio. As maximum recovery is

important at this stage, a ratio of 1:1 was used to yield > 90% recovery for fragments > 250bp

long.

To prepare the SPRI bead mix, 700 µL of stock beads (Sera-Mag Speedbeads, GE

Healthcare) were bound on a magnetic rack, washed twice in 10 mM Tris-HCl (pH 8.0) and

resuspended in 50 mL of binding buffer (10 mM Tris-HCl, pH 8.0, 1mM EDTA, pH 8.0,

2.5M NaCl, 20% PEG 8000 and 0.05% tween 20). 500 µL of bead mix was then added to 500

µL lysate that was transferred to a new plate, covered with a tightly-fitting adhesive seal and

inverted twice to ensure thorough mixing of the viscous bead mix and lysate while preserving

DNA integrity. The mixture was then incubated for 10 minutes at room temperature, and

subsequently placed on a magnetic rack till a bead pellet formed. The supernatant was

discarded once clear, and DNA bound beads were washed twice with 80% ethanol while

still on the magnetic rack. DNA was then finally eluted in 80 µL of 10mM Tris-HCl (pH

8.0). The integrity of the extracted gDNA was qualitatively assessed on a 1% agarose gel

with RedSafe nucleic acid staining solution (Chembio), and quantified using the Qubit Broad
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Range Assay (Invitrogen) on a fluorometric microplate reader (FLUOstar OPTIMA, BMG).

The gDNA for each sample was then normalised to 5 ng µL-1 with nuclease free water.

2.2.2.3 Adapter design

quaddRAD, a variant of ddRAD-seq by Franchini et al. [106], was chosen for library

preparation and has been modified to reflect the choice of restriction enzymes based on in

silico DNA digestion (figure 2.5), and the number of samples per lane to be multiplexed

(figure 2.6). The advantage of this variant of ddRAD-seq lies in its use of four barcode

sequences that allows up to 192 samples to be multiplexed, though only a maximum of 100

samples were multiplexed here to maintain high sequencing coverage.

A total of nine quaddRAD_i5n and nine quaddRAD_i7n adapters were designed with

a unique 6bp inner barcode for multiplexing, and each included a 4bp degenerate region

for PCR duplicate identification (full adapter and primer sequences available in appendix

A.1, tables A.1-A.3). Barcodes were also designed to have a minimum hamming distance of

3, safely allowing 3 mismatches when demultiplexing reads to allow for sequencing error.

Adapter overhangs were also modified to match Mse1 and Sbf1 restriction enzyme cut sites

for ligation to digested gDNA.

2.2.2.4 quaddRAD library preparation

100 ng of gDNA from each sample was digested and adapters ligated in a single 40 µL

reaction containing 4 µL 10x CutSmart buffer, 1.5 µL Mse1 (10 UµL-1), 0.75 µL Sbf1

(20 U µL-1), 4 µL ATP (10mM), 1 µL T4 DNA ligase (400 U µL-1), 0.75 µL of each

quaddRAD_i5n and quaddRAD_i7n adapter (10 µM) and ddH2O to 40 µL. The reaction

mixture was incubated for three hours at 30oC in a thermocycler and stopped with 10 µL

of 50 mM EDTA before being pooled according to different inner barcode combinations.

Samples were then purified using SPRI beads in a 0.8:1 (beads:sample) ratio to remove

fragments < 300bp, washed twice with ethanol (80%), eluted in 30 µL of 10mM tris-HCl

and re-quantified using a Qubit 3.0 fluorometer and Qubit high sensitivity assay (Invitrogen).
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Sbf1 Mse1

40µL

60ng
quaddRAD i5_#n quaddRAD i7_#n

20 µL Intermediate library

50µL

quaddRAD 
primer i5nn

quaddRAD 
primer i7nn

Digestion 
+ Adapter 
Ligation

Amplification

Final quaddRAD library

Non specific adapter/primer

4 Degenerate bases

8bp outer barcode

6bp inner barcode

Sbf1 overhang

Mse1 overhang

DNA template

Fig. 2.5 An overview of the quaddRAD library preparation protocol. The adapters here have
been modified for compatibility with the restriction enzymes SbfI and MseI (orange and light
blue respectively), and to accommodate the number of samples to be multiplexed by the use
of 4 barcode sequences (yellow and pink respectively). Degenerate base sequences allow for
PCR duplicate identification (green). Figure adapted from Franchini et al. [106].
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1 2 4 5 6 7 10 11 12 503-701 503-702 503-703 503-704

1 2 3 4 5 6 7 8 9 10 11 12 13

501-701 A 1

501-702 B 2

501-703 C 4

501-704 D 5

502-701 E 6

502-702 F 7

502-703 G 10

502-704 H 11

Inner barcodes

Outer barcodes

Fig. 2.6 Schema of how samples were multiplexed using combinations of inner and outer
barcodes to ensure sequences from all samples were uniquely identifiable. Colours indicate
samples belonging to the same outer barcode. A maximum of 100 samples were multiplexed
per lane, over seven sequencing lanes.

An indexing PCR was carried out to introduce sequencing primers and a second pair of

8bp Illumina indexes to each pool of digested and inner adapter ligated DNA. The libraries

were enriched in a 50 µL reaction mixture containing 4 µL dNTP mix (10 mM), 20 µL 5x

Q5 buffer, 4 µL quaddRAD-i50n primer (10 µM), 4 µL quaddRAD-i70n primer (10 µM),

1 µL Q5 high-fidelity DNA polymerase (2 U µL-1), 50 ng of DNA (restricted, ligated and

pooled) and ddH2O to 50 µL. Reaction conditions were as follows: 98oC for 30s, [98oC

for 15s, 67oC for 30s, 72oC for 60s] repeated for 14 cycles, followed by a final extension at

72oC for 120 seconds. Each PCR reaction was purified using SPRI beads in a ratio of 0.8:1

(beads:sample), washed twice with ethanol (80%), eluted in 50 µL of tris-HCl (10 mM) and

re-quantified using a Qubit 3.0 fluorometer and Qubit broad range assay (Invitrogen). 100

ng of each enriched library was then pooled and size selected to 300-600bp using a Pippin

Prep (Sage Science) and sent for paired end sequencing on an Illumina HiSeq 3000 at the

Core Genomics Facility in the Max Planck Institute for Developmental Biology, Tübingen,

Germany.

2.2.3 Bioinformatic processing

2.2.3.1 Demultiplexing and quality control

Outer barcodes were demultiplexed using BCL2FASTQ2 V2.18 [145] allowing for one

mismatch, and sequences were qualitatively assessed using FASTQC [13] to ensure overall
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sequencing quality was high (figure 2.8). Demultiplexing of inner barcodes and further quality

control were then conducted in STACKS v2.3d [49, 50]. The program process_radtags

of STACKS demultiplexes sequences based on assigned barcodes, uses a sliding window to

remove reads with a PHRED quality score of less than 10, truncates reads to a specified

length (in this case to 136bp to remove poor quality sequences at the end of reads, figure

2.8b), and rescues barcodes based on a specified number of mismatches (3 mismatches

allowed, see section 2.2.2.3). PCR duplicates were then identified and removed using the

clone_filter program in STACKS.

2.2.3.2 Locus assembly, parameter selection and genotyping using STACKS

Developing a final dataset of thousands of loci for population genomic analyses can be ac-

complished via two well documented STACKS pipelines, denovo_map.pl and ref_map.pl

for de novo and reference-aligned sequencing data respectively. Regardless of the pipeline

used, key parameter selection forms an essential part of the bioinformatic process as it is

these parameters which ultimately determine the amount of biologically informative data

available for downstream analyses. As no reference sequence is currently available for

Apodemus flavicollis, denovo_map.pl was used here to assemble short read sequences from

the RAD-seq data and genotype the samples.

Each component program of denovo_map.pl relies on various parameters to control

the final assembly of loci within the population. Selection of the value of these parameters

therefore depends on a number of factors including: the level of inherent polymorphism

within the population of interest, the number of samples being multiplexed during sequencing

and therefore sequencing coverage, the length of raw sequencing reads, the sequencing

technology being used, and the associated amount of error during library preparation and

sequencing. Parameter selection is therefore highly dataset specific, and must be chosen

carefully. Three main parameters must be optimised in STACKS: m, the minimum number of

reads required to form a putative allele and M, the number of mismatches allowed to merge

putative loci, affect how loci are built within each sample in the core program ustacks.

n, part of the core cstacks program, allows for a specified number of mismatches when
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forming the catalog of homologous loci in the population. By iterating over these parameters

and sequentially changing one whilst fixing the others as described by Paris et al. [256],

the user can decide which combination of parameters maximises the biological information

within the data. Here, m, M and n were varied between 2-6 (m2-m6), 0-8 (M0-M8) and 0-10

(n0-n10) respectively. While varying each parameter, all other parameters were kept constant

at m3, M2 and n0. Data on the number of assembled loci, polymorphic loci and SNPs for m,

M and n, contained within the .log files of each core component program of denovo_map.pl,

were extracted using custom bash scripts available on GitHub (see appendix A.1 for details)

and plotted using the GGPLOT2 V3.2.1 package of the statistical programming environment

R V3.5.2.

The final step of denovo_map.pl involves running the populations module to calculate

the number of assembled loci, polymorphic loci and number of SNPs present in at least

80% of the population (r80 loci) as recommended by Paris et al. [256]. As RAD-seq is a

reduced representation sequencing approach, it is important that the final subset of loci are

representative of the whole genome with minimal bias. Selecting r80 loci for optimisation

ensures they are unlikely to contain a large amount of sequencing error, and serve as a

representative proxy for the true genome. Additionally, the presence of multi-allelic SNPs

(>2 alleles) in a population is expected to be rare [139], as a particularly large population

size is necessary to reach a detectable frequency. Multi-allelic SNPs are therefore considered

an artefact of a particularly noisy region of the genome here, and so populations was run

with the additional --write_single_snp argument to ensure only the first of any alternate

alleles were written to the final dataset.

2.2.3.3 Identification and merging of duplicate samples

The unpredictability of life in the wild means a number of previously captured mice were

missing PIT-tags. As there is no way to verify whether these mice have been captured before,

or which ID number they belong to, new PIT-tags were injected with a new ID number under

the assumption these were new mice. Identification of recaptured individuals with more than

https://github.com/raval91/Aflav_thesis_supp/tree/main/chapter2/code
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one ID was therefore necessary using the genotypes obtained from STACKS, as duplicated

samples can introduce additional population stratification.

In any population, all individuals have portions of the genome which are identical by

descent (IBD) due to shared ancestry. A high proportion of the genome found to be identical

by descent, which in this case is indicated by a large number of SNPs shared between

individuals (coefficient of relatedness, r → 1), is an indication of either a very high degree of

relatedness (e.g. identical twins or clones) or duplicate samples. To ensure duplicates are

correctly identified, SNPs obained from STACKS must be stringently filtered to ensure false

estimates of relatedness are not calculated.

Often, true low frequency alleles (minor allele frequency, MAF < 0.05) in a population

are impossible to distinguish from noise generated by sequencing error, and were therefore

filtered using the --min_maf argument of the populations program. Additionally, SNPs

not in Hardy-Weinberg equilibrium (HWE) can indicate a region of the genome under

selection. This is rare however, and is more likely an indication of genotyping errors or

population stratification, which can lead to false estimates of homozygosity in downstream

analyses [59]. SNPs not in HWE were filtered using PLINK V1.9 [270] (p < 0.05 with the mid-

p adjustment [125]). Similarly, SNPs in linkage disequilibrium can also introduce additional

structure, and decrease resolution in downstream analyses [253]. As locus assembly was

conducted de novo, a true measure of linkage disequilibrium in centiMorgans (cM) is not

possible. A statistical approach using PLINK was therefore used to calculate the correlation

(r2) between all pairs of SNPs previously filtered for HWE and MAF, as a proxy for true

linkage. If polymorphism within the population is high, it is possible there may be more than

one SNP present in some putative loci found by STACKS. Filtering for linkage disequilibrium

by estimating r2 between all pairs of alleles will then remove SNPs found on the same

locus, and leave only one for downstream analyses. Individuals with > 70% missing data

were also identified using PLINK and removed. Once SNPs were filtered, all individuals in

the population were then re-genotyped, excluding those with > 70% missing data, and any

SNPs/loci not in linkage equilibrium or HWE using whitelists in populations. SNPs were

finally output in Variant Call Format (.vcf ).
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Pairwise IBD estimation was conducted in R V4.0.3 using the Bioconductor package

SNPRELATE V1.22.0 [354]. Cleaned and filtered SNPs in VCF format and output by

populations, were first converted to the binary Genome Data Structures (GDS) format

using snpgdsVCF2GDS in SNPRELATE. This is a prerequisite for SNPRELATE to ensure

fast and computationally efficient processing. IBD was then estimated using the functions

snpgdsIBDMoM (PLINK method of moments [270]), snpgdsIBDKING (KING method of

moments [205]), snpgdsGRM (Genome-Wide Compex Traits Analysis Toolkit - GCTA [351])

and snpgdsIBDMLE (Maximum Likelihood Estimation [232]) to ensure congruence among

algorithms, and increase confidence in the identification of duplicates. Relatedness estimates

from all four methods were then correlated in a pairwise analysis and plotted. Samples

which clustered at the highest values of relatedness were then considered duplicated samples,

and were subsequently merged by concatenating the raw sequencing data. denovo_map.pl

was then run one final time as the merger of samples was expected to increase the average

sequencing coverage, and alter the MAF of SNPs within the population. To generate the

final panel of SNPs, all filtering steps for MAF, HWE and missingness were repeated on the

merged data and output in .vcf format for further analyses.

2.2.3.4 Calculating the genotyping error rate

As the use of reduced representation sequencing techniques such as RAD-seq have increased,

a growing body of evidence suggests specific biases increase genotyping error rates in RAD-

seq libraries. Here, per-allele error rates have been estimated based on the sequencing of

independently prepared replicate libraries, comparing both within and between sequencing

lanes to estimate how much per-allele error rates vary across the entire dataset. The software

package TIGER [38] was used to implement an expectation maximisation (EM) algorithm, and

estimate the maximum likelihood (ML) estimates of per-allele genotyping error rates. This is

based on the probabilities of observing the number of alternative alleles at a locus, given the

true genotype and the per-allele genotyping error rate at homozygous and heterozygous sites,

ε0 and ε1 respectively (table 2.2). This package was chosen as it allows the user to re-calibrate
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the genotype likelihood directly within the .vcf file based on the estimated genotyping error

rates, and take this into account in downstream analyses.

The data was analysed in RV4.0.3 by linear regression according to:

εgenotyping ∼ L+Cmax + ε, (2.1)

where εgenotyping is the maximum likelihood estimate of the genotyping error rate per sample,

L is the sequencing lane, Cmax is the maximum sequencing coverage per sample, and ε

is the residual error of the model. In the event the data was highly skewed, it was Order-

Norm transformed using the orderNorm function from the R package BESTNORMALIZE

V1.6.1, to ensure the error distribution conformed to the assumptions of homoskedasticity. If

transformation generated ties in the data, thus preventing it from conforming to a gaussian

distribution and meeting the assumptions of linear regression, a negligible amount of random

noise was added to the data to ensure each point was unique, thus breaking ties.

Observed genotype

True genotype 0 1 2

0 (1− ε0)
2 2ε0(1− ε0) ε2

0

1 ε1(1− ε1) (1− ε1)
2 + ε2

1 ε1(1− ε1)

2 ε2
0 2ε0(1− ε0) (1− ε0)

2

Table 2.2 The probability of observing a true genotype at a given biallelic locus and per allele
error rate, at homozygous and heterozygous sites (ε0 and ε1 respectively). 0, 1 and 2 denote
the number of copies of the alternative allele. Table modified from Bresadola et al. [38].
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2.3 Results

2.3.1 Trapping summary

Overall, 287, 274 and 8 mice were caught in 2016, 2017 and 2018 respectively, within the

0.9 ha trapping site inside the Strict Reserve of Białowieża National Park. Of these, 113 were

adults and 147 were juveniles. Ages were estimated based on the size and coat colouration

of the mice, where younger mice generally have more grey fur and a less pronounced

yellow band around the neck compared adults. However, as there is considerable phenotypic

variation in A. flavicollis, there is often a large amount of uncertainty in estimating their age

from field observations. 331 mice (49%) were therefore classed as of an indeterminate age

(Maybe adult/juvenile and unknown age, table 2.3).

Sex is much simpler to determine, as males are generally larger/heavier, have longer

ano-genital distances, and, particularly during mating, have large descended testes. Females

also often have visible nipples, particularly during pregnancy and when postpartum, as they

are still suckling their pups. 252 and 325 mice were classed as males and females respectively.

23 samples were found with no associated field information, so were of both undetermined

age, sex and trapping year.

Trapping
year Adult

Maybe
adult Juvenile

Maybe
juvenile

Unknown
age Males Females

Unknown
sex

2016 54 29 85 33 86 123 164 0
2017 57 28 63 15 111 123 151 0
2018 2 1 0 2 3 4 4 0

Unknown 0 0 0 0 23 2 6 15
Total 113 58 148 50 223 252 325 15

Table 2.3 Breakdown of sampled mice trapped within the 0.9 ha trapping site inside the Strict
Reserve of Białowieża National Park.
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2.3.2 In silico restriction digestion and library preparation

Mean fragment lengths resulting from in silico restriction digestion of the Mus musculus

v.GRCm38 reference genome vary between 94-330bp, and yield between 122,166 and

36,273,627 fragments. Expected sequencing coverage from these fragments is between

0.09X and 25.57X (table 2.4). When high quality DNA is extracted, larger mean fragment

sizes, as produced by SbfI and MseI, or SbfI and MluCI, are desired to ensure the maximum

number of variants are sequenced. Although the number of fragments expected from these

two enzyme pairs are significantly lower than the other enzyme combinations, and both pairs

perform similarly (which is expected as both MseI and MluCI have the same length restriction

site with the same proportion of adenine and thymine bases), SbfI and MseI is expected

to achieve the highest sequencing coverage whilst still capturing relatively large fragment

sizes. Furthermore, Martin Cerezo et al. [53] have also previously used this combination

effectively on A. flavicollis for phylogeographic analyses. For this study, SbfI and MseI are

thus considered the most appropriate for library preparation and paired end sequencing on an

Illumina HiSeq 3000, with 151bp read length. All further results will therefore only consider

this enzyme combination.

Restriction enzymes µ fragment size (bp) N. fragments Expected µ coverage (x)

EcoRI - MseI 184.45 1,493,745 2.09
MluCI - MseI 93.53 22,618,796 0.14
MspI - MseI 209.37 2,273,207 1.37

NlaIII - MluCI 93.14 36,273,627 0.09
NlaIII - MseI 93.04 22,337,740 0.14
SbfI - MseI 304.52 122,166 25.60

SbfI - MluCI 329.68 128,103 24.4

Table 2.4 Mean fragment lengths and expected sequencing coverage from in silico restriction
digestion of the Mus musculus v.GRCm38 reference genome

Plotting the distribution of the expected number of loci by size indicates 25,968 loci

(0.41% of the genome) can be expected from size selecting the prepared libraries between

300-600bp (figure 2.7a). Size selected libraries also indicate good autosomal representation

(figure 2.7b), but poor representation of the Y chromosome suggesting studies of sex-linked

phenotypes may not be appropriate from libraries generated using SbfI and MseI.
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2.3.3 Sequencing, demultiplexing and quality control

Reads from the Illumina HiSeq 3000 yielded a mean of 7.0×106 reads per sample. 95.1%

of reads were successfully assigned an outer barcode with one mismatch allowed, and the

mean PHRED quality score was 36.9. Raw sequencing data was qualitatively assessed using

FASTQC (figure 2.8a), and lower quality at the end of the reads necessitated trimming to

136bp (figure 2.8b). Although the mean PHRED quality score of the raw data was high,

the sliding window implemented in process_radtags gives a finer resolution to remove

sequences where the quality drops below 10. Inner barcodes demultiplexed with more than

3 mismatches are also removed. 5.22% of reads were also identified as PCR duplicates or

chimeric sequences respectively using clone_filter, and were also discarded. The final

mean number of retained reads per sample after demultiplexing and quality control was

6.7×106.

2.3.4 Parameter optimisation in STACKS

Increasing the m parameter of ustacks from two to six increased mean sample coverage

from 18.89X to 24.69X (figure 2.9, green) and further increased mean coverage from

25.24X to 31.94X once samples had been collapsed into putative alleles (figure 2.9, purple).

As expected, the number of assembled loci decreased from 64,535 to 51,043 for m2-m6

respectively (figure 2.10). Both mean coverage and the number of assembled loci, stabilised

quickly from m3-m6, and the consistency in the number of assembled loci present in 80%

of the population (r80 loci), together with high coverage, suggests low sequencing and

PCR error. Furthermore, as all other parameters were constant during optimisation, the low

variance in the number of polymorphic loci and number of SNPs with each iteration of m

indicate it has little effect on the levels of polymorphism detected within the population. The

highest number of polymorphic loci is detected at m2 where the number of r80 loci is 38,579.

However, the highest number of SNPs present in 80% of the population was at m3 (140,421),

though this increase is small and very few loci were excluded. Furthermore, slightly higher
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(a)

(b)

Fig. 2.8 FASTQC output of sequence quality. Only output from one sequencing file is shown
here as an example of quality a) before and b) after truncation to 136bp and removal of
adapter sequences. Red signals poor quality reads.
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mean coverage at m3 also indicates that the increase in the number of SNPs is likely a real

signal, and not due to the promotion of error reads to putative alleles.

Overall, increasing values of M decreased the number of assembled loci and increased

the number of polymorphic loci and SNPs in the population (figure 2.10). The mean number

of assembled loci decreased from 70,239 to 53,539 and increased the mean number of

polymorphic loci from 323 to 12,928 for M0-M8. Although both appear to stabilise at M3,

the maximum number of r80 polymorphic loci detected (37,960) is at M2 suggesting this

is the optimal value of M. This is further supported by no new polymorphic r80 loci being

identified after M1/M2 (figure 2.11), indicating that a higher value of M past M2 will not

contribute any further biological information in the population. The mean number of SNPs

also increases with each increment in M, and by M2, the majority of the polymorphism in the

population, shown by the number of r80 SNPs, has already been captured.
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Fig. 2.9 Mean coverage (green) representing the coverage of primary reads, and mean merged
coverage (purple) representing the mean coverage after primary reads have been merged into
secondary reads.
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Fig. 2.10 The number of assembled loci, polymorphic loci and SNPs for each increment of m
(green), M (orange) and n (purple). The number of r80 assembled loci, polymorphic loci and
SNPs (present in 80% of the population) are indicated by the blue diamonds

After assembly, matching homologous loci across samples in the population to create a

catalogue of loci is carried out in cstacks, and the number of mismatches is controlled by the

parameter, n. Here, the number of r80 SNPs began to asymptote at n2 with a total of 165,604.

Predictably, as building the catalogue only involves matching SNPs from homologous loci

across samples, the number of assembled and polymorphic loci does not change once a single

fixed difference (n1) is introduced.
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Fig. 2.11 The number of new r80 polymorphic loci detected in the population between each
increment of M.

Based on the above findings, the optimal parameters were decided as m3, M2 and n2.

Re-running the STACKS denovo_map.pl with this optimum parameter combination yielded

408,935 loci across the population, of which 32.37% were polymorphic, with a mean of 1.17

SNPs per locus and 479,593 SNPs overall.

2.3.5 Variant filtering and identification of duplicate samples

Of the total 479,593 SNPs detected following parameter optimisation, 448,533 low frequency

variants were removed (MAF < 0.05), 8,624 were removed for not being in HWE (p < 0.05).

Furthermore, calculating pairwise allele count correlations (r2) indicated few SNPs were

statistically associated (figure 2.12) and considered in linkage disequilibrium. 1,313 SNPs

with an r2 > 0.035 were thus removed to conservatively exclude the tail of the distribution.
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28 samples were also removed due to having > 70% missing data, leaving a total of 644

samples and 21,123 remaining SNPs in the population.
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Fig. 2.12 Pairwise squared allele count correlations (r2) for statistically associated SNPs.
Only 13 SNP pairs are correlated with an r2 > 0.1 and are not displayed. The maximum
r2 = 0.997 of which there is only one pair.

IBD estimation identified 55 pairs of samples as replicate pairs which clustered tightly in

the top right corner of each pairs plot (figure 2.13). All four algorithms also identified the

same samples (table 2.5, full table of pairwise relatedness estimates available on GitHub,

see appendix A.1 for details). Relatedness in these samples was >0.9 when estimated using

MLE, KING MoM and PLINK MoM. The GCTA algorithm was slightly more conservative

however, and four pairs of samples were slightly lower (r = 0.779-0.898). Regardless,

these samples still clustered tightly with all other identified duplicates, and all algorithms

are congruent. Overall, estimates of relatedness correlate strongly (Pearson’s ρ 207,044 =

0.568-0.964, p < 0.001). 12 samples were also found to have more than two replicates,

some of which were sequenced across different Illumina sequencing lanes. This allowed

https://github.com/raval91/Aflav_thesis_supp/blob/main/chapter2/tables_and_figs/relatedness_results.txt
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for comparisons of genotyping error rates both within and between lanes (see results on

Genotyping error rate, section 2.3.5.1).

Fig. 2.13 Correlations of relatedness estimated from SNPs that are identical by descent,
between Maximum Likelihood Estimation, KING Method of Moments, PLINK Method
of Moments and GCTA. Duplicated samples cluster tightly in the top right corner of each
plot. Correlation coefficients are calculated using Pearson’s product-moment correlation. ***
indicates p < 0.001. Histograms on the diagonal give an indication of skewness. Shades of
blue are purely for visualisation purposes to show where the density of the points is highest
(darker is more dense).
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Sample 1 Sample 2 MLE KING MoM PLINK MoM GCTA

Af_105 Af_180 0.99035 0.99037 0.99045 0.9614

Af_110 Af_149 0.99557 0.99539 0.99533 0.98982

Af_111 Af_550 0.99729 0.99735 0.99732 0.92776

Af_115 Af_262 0.9965 0.99651 0.99651 0.98535

Af_11 Af_84 0.98463 0.98493 0.98474 0.9669

Af_122 Af_328 0.99365 0.99364 0.99365 1.00175

Af_127 Af_319 0.99756 0.99761 0.99756 0.98355

Af_131 Af_168 0.99811 0.99807 0.99811 1.03318

Af_139 Af_172 0.99889 0.99889 0.9989 0.99526

Af_139 Af_207 0.9961 0.99611 0.99611 0.99093

Af_144 Af_181 0.99463 0.99469 0.99461 0.99535

Af_145 Af_200 0.99046 0.99048 0.99051 0.97839

Af_148 Af_151 0.9965 0.9965 0.99652 0.98935

Af_16 Af_634 0.99643 0.9964 0.99643 1.00091

Af_172 Af_207 0.99642 0.99643 0.99643 0.99039

Af_176 Af_229 0.96284 0.96084 0.96453 0.881

Af_177 Af_615 0.99235 0.99264 0.99242 0.92019

Af_178 Af_28 0.99388 0.99409 0.99396 0.90684

Af_179 Af_79 0.97365 0.97344 0.97422 0.9192

Af_182 Af_499 0.97736 0.97778 0.97763 0.93785

Af_21 Af_243 0.98605 0.98602 0.98622 0.96558

Af_21 Af_62 0.99627 0.99627 0.99628 1.00499

Af_226 Af_57 0.92519 0.9213 0.93115 0.77977

Af_22 Af_660 0.97944 0.97988 0.97973 0.91884

Af_23 Af_604 0.99023 0.99016 0.99015 0.97991

Af_243 Af_62 0.98564 0.98562 0.98581 0.96286

Af_245 Af_61 0.964 0.96368 0.96452 0.93297

Af_259 Af_42 0.99406 0.99398 0.99411 0.96583
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Af_264 Af_369 0.99842 0.99841 0.99843 1.02529

Af_269 Af_66 0.99616 0.99621 0.99618 0.96562

Af_269 Af_73 0.98853 0.98876 0.98864 0.93734

Af_276 Af_339 0.99832 0.99853 0.99857 0.99476

Af_309 Af_380 0.99632 0.99632 0.99635 0.98076

Af_309 Af_482 0.99537 0.99537 0.9954 0.98076

Af_314 Af_641 0.99262 0.99264 0.99265 0.97224

Af_330 Af_645 0.99485 0.99489 0.99485 0.99019

Af_342 Af_633 0.99222 0.99239 0.99228 0.94899

Af_347 Af_82 0.99792 0.99805 0.99803 0.92885

Af_348 Af_360 0.99706 0.99713 0.99707 0.95949

Af_373 Af_7 0.99119 0.99159 0.99131 0.89811

Af_380 Af_482 0.99913 0.99913 0.99913 0.99067

Af_413 Af_594 0.99695 0.99693 0.99699 0.952

Af_416 Af_479 0.9989 0.99889 0.9989 0.99917

Af_477 Af_98 0.98195 0.98189 0.98221 0.95007

Af_47 Af_605 0.9946 0.99463 0.99462 0.98182

Af_489 Af_593 0.98915 0.98931 0.98924 0.94933

Af_501 Af_551 0.99882 0.99882 0.99882 0.98075

Af_523 Af_547 0.99812 0.99795 0.99796 1.02968

Af_527 Af_543 0.99168 0.99158 0.99174 0.98065

Af_539 Af_647 0.99709 0.99714 0.99709 0.99008

Af_552 Af_606 0.99437 0.99452 0.99445 0.91806

Af_560 Af_561 0.96329 0.96157 0.96485 0.87386

Af_570 Af_571 0.9974 0.99745 0.99741 0.96163

Af_619 Af_668 0.99875 0.99876 0.99875 1.0117

Af_66 Af_73 0.98689 0.98736 0.98697 0.93241

Table 2.5 Duplicate samples identified by calculating relatedness coefficients with Maximum
Likelihood Estimation (MLE), KING and PLINK Method of Moments, and GCTA.
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2.3.5.1 Genotyping error rate

As 12 pairs of samples were trapped and re-tagged more than twice (the identity of which

was unknown till relatedness was estimated), sequencing these samples involved preparing

their libraries independently. They were therefore sequenced across all sequencing lanes

allowing comparisons of per allele genotyping error rates across them all. Overall, mean per

allele genotyping error rates were 0.020 (sd = 0.076). Linear regression indicated that while

there was a difference in genotyping error rates between sequencing lanes (F(7,1325) = 95.58,

p < 0.0001), it was only significant in lane three (table 2.6), and was up to an order of

magnitude higher than the other lanes. As expected, maximum sequencing coverage per

sample was highly inversely proportional with per allele genotyping error rates.

Estimate Std. error t value p
Intercept 0.3540 0.0728 4.859 < 0.0001 ****
Lane 2 -0.0521 0.0928 -0.561 0.5747
Lane 3 1.2886 0.0884 14.566 < 0.0001 ****
Lane 4 -0.0554 0.0886 -0.625 0.5319
Lane 5 -0.0379 0.0920 -0.413 0.6800
Lane 6 0.1748 0.0929 1.881 0.0602
Lane 7 0.1121 0.0873 1.284 0.1994

Maximum coverage -0.0060 0.0004 -16.040 < 0.0001 ****

Table 2.6 Linear regression of genotyping error rates between sequencing lanes, and the
effect of sequencing coverage. **** indicates a statistically significant p-value < 0.0001.
The intercept represents sequencing Lane 1 with a maximum coverage of 0x.
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2.4 Discussion

Highly multiplexed approaches for reduced representation DNA sequencing have now be-

come a cornerstone for maximising the level of biological information from a population of

samples, at a reasonable cost:performance ratio. Obtaining reliable genotypes are essential to

the robustness of NGS datasets, and careful consideration must be given to each stage of the

process from study design and planning, to quality control and analysis, to minimise bias and

avoid erroneous biological conclusions from RADseq [11, 47, 75, 80, 106, 239, 312]. Here,

I have described the various steps involved in genomic data generation using a customised

ddRAD-seq protocol, to sequence and reliably genotype a large sample of A. flavicollis from

Białowieża National Park.

2.4.1 Choosing the right restriction enzyme combination

One of the advantages of RAD-seq is being able to multiplex many samples and reduce per

sample sequencing costs. However, achieving high confidence genotype calls requires high

sequencing coverage which can be reduced by a large per-pool sample size [11]. Although

15x coverage can be sufficient to call genotypes in RAD-seq studies [312], higher coverage

can increase confidence in genotype calls and should be aimed for when designing a RAD-

seq experiment [38, 256]. This becomes particularly important when choosing a protocol.

For example, single digest RAD-seq requires an expensive sonicator to further fragment

digested gDNA and yield fragments of various sizes, which can then be selectively amplified

during library preparation. Although these different fragment lengths can be beneficial by

allowing to identify sources of bias such as PCR duplicates [12], sonicators are known to

inefficiently shear already short fragments following restriction digestion. This in turn yields

unequal sequencing coverage per sample [294], and could result in excess homozygosity

in studies of population differentiation. Alternative approaches to RAD-seq study design

such as the double digest approach using two restriction enzymes have thus been favoured by

many researchers [261]. ddRAD-seq allows greater flexibility and control over sequencing

coverage and fragment sizes with the use of two restriction enzymes of different cutting
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frequencies. The choice of these enzymes is essential to minimising bias by ensuring the

desired portion of the genome is targeted and represented in the final sequencing libraries.

Recent variants of ddRAD-seq, including quaddRAD used here, have also incorporated

short degenerate base sequences for PCR duplicate identification, forgoing the necessity

to shear DNA. When preparing any RAD-seq experiment, it is therefore essential to plan

the study based on the expected coverage by choosing the appropriate enzyme(s). in silico

restriction digestion of a reference genome is one useful method of predicting sequencing

coverage and the final number of loci. Although the power of RAD-seq lies in providing

access to non-model organisms without a priori knowledge of the genome, simulating library

preparation using reference genomes of even relatively phylogenetically distant species can

still provide useful insights for study design.

Here, SIMRAD was used to conduct in silico restriction digestion and library preparation

of the Mus musculus v.GRCm38 reference genome. Despite the 8-24% divergence between

Apodemus and Mus [301], simulated libraries provided close to the number SNPs from the

actual protocol (25,968 predicted and 21,123 actual after filtering), and are predicted to

represent ∼ 0.41% of the genome at high coverage. However, high divergence between the

two genera but similar numbers of loci suggests that the RAD-seq libraries generated here

may over represent conserved genomic regions. Analyses could then struggle to differentiate

closely related populations or species in phylogenetic and phylogeographic studies. However,

RAD-seq using the restriction enzymes SbfI and MseI as in this study, has been previously

demonstrated to show signatures of differentiation in the two highly morphologically similar

sister species A. sylvaticus and A. flavicollis (1.51% sequence divergence) using 21,000

shared loci [53]. Furthermore, many other studies have shown its utility in phylogenetics,

and RAD-seq significantly improves on locus recovery compared to other methods [46, 216].

These studies do require thousands of loci to ensure sufficient power for evolutionary research

however, and this must be factored in when designing the study through the choice of

restriction enzyme(s).

In a previous study by DaCosta and Sorenson [75], restriction enzymes with a higher

proportion of GC bases in the restriction site resulted in significant amplification bias towards
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short fragments from GC-rich regions of the genome. The SbfI restriction site has a 75% GC

content and could also bias the libraries in this way. However, the low CpG content in the

M. musculus genome [65] suggests amplification bias towards GC rich regions may be of

less concern. However, this assumption cannot be made for A. flavicollis, as few genomic

resources are available for the species. The use of a high fidelity polymerase such as Q5

here, in combination with an AT rich enzyme such as MseI may instead overcome these

biases [271]. As only fragments with different restriction sites on each end are amplified

during library preparation, this should also further minimise bias towards specific genomic

regions, which is important in genome wide association studies. This is supported by the

larger fragment sizes generated from the use of two frequent cutting enzymes MspI and MseI,

which together have an even representation of all bases (CCGG and TTAA respectively)

compared to EcoRI and MseI (EcoRI restriction site: GAATTC). A bias towards AT or GC

rich regions should yield shorter DNA fragments, as seen with the use of EcoRI despite

having a longer restriction site.

No enzyme choice is completely unbiased however, and examination of fragment distribu-

tions on a chromosomal level from SbfI-MseI indicates low coverage of the Y chromosome.

Some sex-linked loci could therefore be excluded from the libraries and potentially limit

the data to non-sexually divergent loci. Though it must be noted the significance of the

role of sex chromosomes in sexually dimorphic phenotypes is the subject of much discus-

sion [82, 206, 207], and the effect on downstream analyses of excluding loci found on sex

chromosomes is currently unknown.

2.4.2 Accounting for genotyping error rate

As restriction sites are broadly shared within species, RAD-seq should theoretically yield

the same loci among all samples in a population. However, a growing body of evidence

suggests that genotyping error can affect RAD-seq in particular, thus questioning its utility in

evolutionary and ecological studies [11, 272]. Genotyping error is known to directly affect

downstream analyses in studies of selection [324, 349], inbreeding [122] and population

structure and demography [231, 267]. It is therefore imperative that researchers report
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genotyping error rates, and account for them in downstream analyses either directly, or by

calibrating genotype likelihoods of each SNP [38, 217]. However, this is seldom done in large

studies conducted over multiple sequencing lanes. Including replicate samples independently

prepared for sequencing has been shown as a simple way to estimate genotyping error rates

in RAD-seq studies [38, 217]. Here, these replicates were included not only within, but also

between sequencing lanes, and show that although per allele genotyping error rates were

low overall, significant variation could be detected among independently prepared libraries.

Sequencing lane three in particular appeared to be significantly affected.

Genotyping error can occur due to allele dropout, the failure to amplify one or both alleles

at a given locus during a PCR reaction. This can be the result of polymorphisms within the

restriction site, and as a consequence restriction endonucleases can no longer recognise it.

This allele may not be flanked by another restriction site nearby, and will therefore "drop

out" of library preparation, thus causing excess homozygosity at that locus in the population.

This type of error affects ddRAD-seq more than its single-digest counterpart, as the protocol

requires two restriction enzymes, and the probability of point mutations in restriction sites

increases the longer their cumulative length [112]. This also means that restriction enzymes

such as SbfI with longer recognition sequences, should be disproportionately affected by this

phenomenon [197]. However, this should affect all sequencing lanes equally as the same

enzymes were used throughout this study, and cannot completely explain why one sequencing

lane appeared to have a significantly higher error rate than the others. Furthermore, any error

caused by a longer restriction site should be offset by their lower frequencies in the genome.

Amplification bias towards shorter fragments could also cause allele drop out due to a

strong positive correlation between read depth and fragment length [79]. This means alleles

would drop out not as a result of polymorphism in the restriction site, but rather due to low

frequencies in the population resulting in a loss of alleles during quality filtering. More likely,

however, is drop out due to non-standard library preparation procedures such as different

quantification methods following genomic DNA extraction. Here, all sequencing lanes, apart

from lane three, were quantified in a FluoSTAR Optima fluorimetric plate reader allowing

96 samples to be quantified together. Sample DNA concentrations were therefore estimated



2.4 Discussion 57

based on a standard curve generated from eight DNA standards of known concentrations;

these samples were then sequenced on the same lane. Variation in the normalisation of DNA

was therefore minimised, and any errors will affect each sample in the same lane similarly as

the precise point at which the standard curve loses linearity can be pinpointed, and sample

concentrations are more accurately estimated (figure 2.14).

Fig. 2.14 A reliable standard curve is estimated from 8 standards (blue) with an r2 > 0.99.
Linearity is lost if the fluorophores in the reagent become saturated with DNA (red, solid)
and a linear model can no longer accurately estimate the concentration past the point of
inflextion. The highest standard must therefore be removed to improve the fit of the model
and any samples estimated higher than this new maximum must be diluted and re-quantified.
As the Qubit fluorometer estimates concentrations based on a standard curve generated only
from the lowest and highest standards (red, dashed), linearity is assumed along the entire
length of the curve and the model no longer accurately predicts the true concentration. The
high r2 is misleading in this case.

Unlike the other lanes, samples sequenced in lane three were quantified individually on a

Qubit 3.0 fluorometer due to the unavailability of a plate reader. As the Qubit only requires

two DNA standards, each at the limits of detection for the assay to generate the standard

curve, linearity in the fluorescence of the samples is therefore assumed up to the theoretical
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maximum. This can introduce a significant amount of variation in measurements of DNA

quantity, and therefore leads to a higher probability of allele dropout by unequal amplification

of DNA from differently represented samples [12, 11, 75]. 30% of samples in lane three

have a mean sequencing coverage <10X likely due to this variation, and can be discarded so

as not to affect downstream analyses. Though this is not recommended, and should instead

be accounted for later by, for example, re-calibrating genotype likelihoods [38]. Furthermore,

despite being significantly higher in one lane than the others, the overall mean genotyping

error rate reported here is still an order of magnitude lower than reported by Mastretta-Yanes

et al. [217] in their study quantifying genotyping error rates in RAD-seq, and are still within

the estimates of a previous ddRAD-seq study on Apodemus by Martin Cerezo et al. [53].

2.4.3 STACKS parameter optimisation helps separate real biological

signals from signals caused by genotyping error

Once sequencing data is obtained in any RAD-seq experiment, stringent bioinformatic

processing is essential to ensuring the accuracy of SNP calls and detecting real biological

signals. STACKS has become a popular choice for RAD-seq data processing and analysis,

due to its versatility and relatively user friendly interface [49, 50]. After raw sequencing

reads are demultiplexed and have passed quality control procedures (e.g. identifying and

removing PCR duplicates, and reads with low quality or mismatched barcodes), the first stage

of processing the data involves interrogating the m, M and n parameters of denovo_map.pl,

which is dataset-specific [86, 256]. If sub-optimally specified, incorrect population genomic

and evolutionary conclusions can be drawn due to genotyping errors. For example, both

Díaz-Arce and Rodríguez-Ezpeleta [86] and Mastretta-Yanes et al. [217] found lower FST

values for higher values of m. Here, the optimal parameter set: m3, M2 and n2, were found by

iterating over parameter values and plotting the various associated metrics as recommended

by Paris et al. [256].

The m parameter, which controls the minimum number of reads required to collapse into

putative alleles, must be assessed by observing its effect on sequencing coverage, and not
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promoting too many error reads to putative alleles. With careful mediation, few true alleles

will be excluded [256]. However, as some genotyping error is unavoidable, the promotion

of some erroneous reads to putative loci will inevitably occur, particularly if sequencing

coverage is low. Erroneous alleles can instead be excluded downstream as they should

appear in low frequency if genotyping error is low, and m has been assessed properly. Paris

et al. [256] therefore suggest that higher values of m should be used if coverage is <15x.

Although 15X coverage can be sufficient to reliably call genotypes in a population [312],

higher coverage would increase confidence in the genotypes and improve accuracy of variant

calls. m3 was selected during optimisation as the maximum number of r80 SNPs is reached

at this point, and the r80 polymorphic loci decrease sharply at m4. More reads are thus

collapsed into putative loci, and fewer SNPs are shared among individuals (rare alleles are

less likely to be shared among a large proportion of the population) [86].

The M parameter dramatically affects the level of polymorphism detected in the popula-

tion as more mismatches are allowed between alleles to form putative loci. The number of

polymorphic loci quickly asymptotes at M3, and the majority of r80 polymorphic loci and

SNPs are already captured by M2 indicating a low level of polymorphism in the population.

This could be due to high levels of gene flow into the Białowieża population resulting in many

alleles persisting at low frequencies, and is consistent with previous research which found

differentiation is generally low among A. flavicollis populations across Poland [53, 73, 123].

This is further supported by the low levels of pairwise relatedness among captured mice from

Białowieża National Park found here.

Loci also begin to over-merge at higher values of M when in close sequence space, and

explains why the maximum number of r80 SNPs occurs at M3, whereas the maximum

number of r80 polymorphic loci are detected at M2. As no new polymorphic loci are added

after M2, it was selected as the optimum value. Increasing M beyond this point would not

yield more biologically useful information, and the additional SNPs at M3, if not the result

of genotyping error, would otherwise be filtered downstream anyway due to low minor allele

frequencies or high statistical association (r2) with another nearby allele.
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2.4.4 Minimising sources of confounding

Confounding factors in genomics datasets such as high relatedness, duplicated samples and

SNPs in linkage disequilibrium (LD), must be accounted for in many downstream analyses.

As many of these analyses rely on the assumption of independence (of SNPs or samples),

high levels of relatedness and LD can mistakenly introduce population stratification which

can erroneously indicate selection in evolutionary research [342]. Variant data in this study

was therefore stringently quality controlled to minimise possible sources of bias.

2.4.4.1 Filtering SNPs in population genomic analyses

SNP based heritability is often calculated assuming SNPs are independent of one another,

i.e. SNPs are not in LD. However, estimating LD requires a reference genome. As assembly

was conducted de novo here, a statistical proxy for LD was instead used by calculating r2

between all pairs of variants. Few SNPs already filtered for MAF (< 0.05) were found to be

statistically associated, indicating the majority are independent and should not create any

false signals of population structure.

Sequencing errors can also introduce additional variation in a population in the form

of low frequency SNPs, which can strongly affect population genomics analyses [194]. In

small datasets (⩽ 1000 samples), these errors are often indistinguishable from true minor

alleles, and thresholds are therefore often applied to filter these low frequency variants (MAF

threshold = 0.01 - 0.1) when estimating heritability or relatedness. True low frequency

variants have been attributed to the missing heritability of a phenotype, where thousands of

minor alleles are expected to additively contribute to the phenotypic variation in a population

[335, 352]. Filtering these SNPs is therefore likely to affect estimates of heritability in a

downwards bias. However, increasing the power to detect this missing heritability would

require dense genotyping data (⩾ 106 SNPs) and a large population (⩾ 1000 samples),

which allows for the use of weighted genomic relatedness matrices to account for linkage

disequilibrium between alleles which no longer need to be excluded due to a low MAF

[105, 183, 314, 335]. As such a large dataset in A. flavicollis is unavailable for this study, a

more conservative MAF threshold of 0.05 was selected to minimise any bias in downstream



2.4 Discussion 61

analyses as a result of sequencing error. Furthermore, the genotyping error rate here was

calculated as 0.02 (sd = 0.076), and this threshold should sufficiently exclude any minor

alleles likely to be caused by sequencing error. An even more conservative threshold (> 0.05)

is unlikely to reduce noise and increase power in population genomics studies [348], unless

the genotyping error rate is estimated as particularly high (⩾ 0.05).

2.4.4.2 Identifying duplicated samples

Duplicated samples were identified by calculating the proportion of SNPs that are IBD,

and estimating pairwise relatedness in the population. Four algorithms were used here:

MLE, KING MoM, PLINK MoM and GCTA. Relatedness for duplicated samples should

theoretically be one (i.e. 100% of SNPs are identical by descent with oneself). As discussed

previously however, allele dropout caused by variation in library preparation procedures and

sequencing coverage, can result in some variation in the estimates of relatedness. Furthermore,

high levels of inbreeding in the population can also result in high relatedness (>50%), making

the cutoff for deciding which samples are duplicates somewhat arbitrary. However, when

plotting relatedness estimates and correlating the different methods, a small and tight cluster

of samples segregated from the rest of the population, the majority of which were related by

more than 90%. The exception was four pairs of samples between 0.75-0.9, as estimated by

GCTA. These four pairs were estimated as >90% related by MLE, PLINK MoM and KING

MoM however, and the lower values appear to be an artefact of the way GCTA estimates

relatedness. All other duplicates in all four methods correlate strongly. This congruence

among independent estimates of relatedness between maximum likelihood based methods

(MLE and GCTA), and method of moments estimators (PLINK and KING), suggest signals

of relatedness are real, and first, second and third degree relatives are detectable in the

population. This also indicates that the genomic data obtained from quaddRAD can reliably

support pedigree-based analyses, estimates of heritability and genome-wide association

studies [350, 351]. However, life history information such as age, sex or birth years for each

mouse when constructing pedigrees would be necessary to more reliably identify the precise

nature of these relationships (e.g. parent-offspring, siblings, grandparent-grandchild) [142].
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Although all four sets of estimates correlate strongly, the correlation of KING MoM with

the other algorithms is considerably lower. This is because relatedness estimates by KING

MoM are not bounded between zero and one, and unrelated individuals are more likely to be

assigned a relatedness < 0 (figure 2.13). GCTA also allows relatedness < 0 (and also > 1),

and is because the program internally rescales estimates of relatedness. Very low relatedness

estimated by GCTA, despite being less than zero, does not exceed -0.081, more similar

to MLE and PLINK MoM. Despite these scaling differences, high correlation indicates

that this should have little downstream effect [96]. Previous studies however, have shown

relatedness estimates from PLINK MoM to perform poorly compared to KING MoM when

used with very large (>100,000 SNPs) genome-wide datasets, and led to inflation of p-values

during association testing [96, 205]. Alternatively, maximum likelihood based methods

are considered more robust as they remain unbiased, consistent (the parameter estimate, θ̂ ,

converges to the true value as the sample size → ∞) and efficient (low mean square error)

for large sample sizes [232, 288], though it is far more computationally intensive [354].

As datasets increase in size, computational efficiency should therefore be considered when

choosing appropriate methods to estimate relatedness and identify duplicate samples.



Chapter 3

Population demography, fitness and

allele frequency dynamics in a pedigreed,

wild population of Apodemus flavicollis

3.1 Introduction

Winters in Białowieża, Poland can be particularly harsh for small rodents like Apodemus

flavicollis, as mean daily temperatures are often below freezing and mean daily snow cover

can be over 10cm deep [269]. Thus, food availability is severely limited during winter,

and causes distinctive annual cycles of population growth and decline which closely follow

patterns in seedfall [269].

Previous studies estimate the A. flavicollis (sub-)population in Białowieża National Park

declines by as much as 86% during the winter due to the severity of the climate [269].

This should result in high levels of inbreeding and low genetic diversity, and the (sub-)

population should therefore be particularly vulnerable to the effects of drift-driven genetic

differentiation, where alleles are more likely to be lost or fixed, and homozygosity to be high

relative to the whole Polish population [54]. However, more recent studies indicate very

little differentiation between different Polish sub-populations including Białowieża, where

pairwise FST , a measure of genetic differentiation, was measured between 0.007- 0.086 even
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with hundreds of kilometres separating sampling sites [53, 73]. Given the annual cycles of

growth and decline, it is intriguing how such little population structure is maintained.

Czarnomska et al. [73] have shown that A. flavicollis (sub-)populations from northern

Poland exhibit high levels of spatial auto-correlation with increased abundance, even as

the sampling distance from the point of origin increases. That is, as abundance increases,

high levels of genetic similarity can still be detected further away from the origin relative

to when abundance is low. This suggests mice are migrating or increasing their range

more when conditions are favourable, as local resources become limited by increasing local

population density. The probability of gene flow from nearby (sub-)populations to a local

population therefore increases, and could be one mechanism that allows the maintenance

of high genetic diversity. However, studies of population structure such as by Czarnomska

et al., often rely on the use of small numbers of low density markers such as microsatellites.

Although such markers perform well for estimating gene flow, population differentiation

and relatedness [28, 103, 199, 259, 287], they are limited in their use for real-time, high-

resolution, genome-wide studies of genomic variability within a population, and for detecting

selection [184, 236, 321, 357]. They are in essence, single point in time studies, rather than

truly longitudinal.

Only recently, have more fine scale population level studies of genetic drift, gene-flow

and selection become more accessible researchers studying natural populations over multiple

generations. For example, with the use of RAD-seq, Fitzpatrick et al.’s recent study on

the Trinidadian Guppy (Poecilia reticulata) [102], showed using translocation experiments,

how gene-flow from a source population can increase individual fitness by heterosis without

erosion of local adaptive variation in the sink population (outbreeding depression). Chen et al.

[60], also using RAD-seq, showed in a wild population of Florida Scrub-Jays (Aphelocoma

coerulescens), that the overall genetic contribution of immigrants to a population is large,

and the role of selection in short-term allele frequency dynamics in open and natural systems

is restricted to a few loci, with allele frequency variation largely driven by variability in

survival and reproductive success, with smaller contributions from gene flow over time.
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Studies such as these however, often rely on human mediated manipulation of natural

systems to conduct experiments, or observe monogamous and/or diurnal species which have

long generation times that do not overlap. This makes mark-recapture experiments and

estimating relatedness simpler. For more typically r-selected species with short generation

times that do overlap, and are also cyclic such as A. flavicollis, the applicability of their

findings are somewhat limited.

Here I use the set of independent genome-wide SNPs in a wild population of A. flavicollis

from Białowieża National Park obtained using the quaddRAD protocol described in chapter

2, to estimate relatedness in the population, and construct wild pedigrees to describe the

population in terms of its demography and the fitness of each individual. I then track allele

frequencies across multiple cohorts to assess the effects of evolutionary forces in a wild

population that is vulnerable to significant fluctuations in size, uncover levels of genetic

diversity, and show how the population’s genomic structure changes over short timescales at

a high resolution.

3.1.1 Constructing wild pedigrees

Tracing an individuals genealogy by constructing a pedigree has long been recognised by

biologists for its utility to understand patterns of inbreeding, reproductive success, inheritance

and describing population demography. Early pedigrees of wild populations however, were

often limited to easily observable species where individuals and their offspring could be

identified in the field [41]. For wild study systems, in which species may have a long lifespan

with late-onset breeding, are nocturnal, elusive, particularly rare, or express extra pair and

multiple mating strategies, the traditional method for pedigree construction using field obser-

vations alone often results in mis-assigned parentage which can affect downstream analyses

such as estimating the heritability of traits [56]. Major developments in DNA sequencing

technologies however, have provided a viable alternative to support field observations with

molecular evidence, and generate robust pedigrees which accurately reflect the demographic

structure of wild populations [103, 259]. Pedigrees supported by genetic data have since been

used to uncover levels of inbreeding [90, 159, 279], population demography [90], multiple
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mating [279], hybridisation [273], disease transmission [1], and trait heritabilities in the wild

[56, 334].

3.1.1.1 Marker selection for pedigree construction

At the core of all methods to assign parentage and construct pedigrees, lie the principles

of Mendelian inheritance [103], where in diploid species, offspring inherit one allele from

each parent at every locus. Thus, progeny are related to each parent by a mean of 50%

(with some notable exceptions such as in populations with high levels of inbreeding [340]).

Multiple independent, polymorphic, Mendelian loci in a sample of genotyped individuals,

together with even a modest amount of life history information such as birth years, can

then be used to identify first, second and third degree familial relationships among a sea of

unrelated individuals. This strategy relies on identifying what proportion of the genome is

identical by descent [103, 156, 259]. Early approaches to molecular parentage assignment

involved polymorphic allozyme markers: large proteins which are polymorphic in their size

and charge, but not their function. In principle, they should therefore vary in their mobility

through a gel matrix, and can be separated electrophoretically to determine parentage [103].

In practice however, low variability often prevented reliable parentage assignment using

these techniques, and the number of studies using pedigrees stagnated until the discovery of

hypervariable, codominant markers such as microsatellites [103, 157].

Microsatellites are short stretches of tandemly repetitive DNA occurring throughout

the genome [326]. They have high mutation rates compared to other genomic regions

[39], and can be used to identify closely related individuals based on the proportion of

alleles that are identical by descent. They can be easily amplified from poor quality or low

quantities of DNA, and so quickly became the marker of choice for parentage assignment

and pedigree construction, particularly in fields such as conservation biology and historical

DNA analysis, where genetic material is valued for its rarity [339]. Despite their versatility,

microsatellites have some notable drawbacks for pedigree analyses. For example, their use

was highly suited to species in which they were abundant and are highly polymorphic, such

as in many species of fish [84, 248]. Unfortunately, many other species lack the levels of
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polymorphism necessary to discern familial relationships even using these hypervariable loci

[259]. Furthermore, developing primers to sequence microsatellite markers in non-model

organisms with few available genomic resources, can be laborious and expensive [103, 138].

Alternative markers such as single nucleotide polymorphisms (SNPs) are now gaining

favour among biologists for pedigree based analyses [9]. These are single nucleotide dif-

ferences in the genome present in a significant proportion of the population. Although

the power of each individual SNP to determine familial relationships is low compared to

a single microsatellite marker, their high abundance throughout the genome mean a few

hundred SNPs have enough resolving power to discriminate first, second and third degree

relatives, equalling and in some cases outperforming microsatellites in terms of accuracy

[10, 103, 330]. Modern high-throughput sequencing technologies have now made SNP

discovery a common process [210], and are widely used in ecological and evolutionary

studies [182, 235]. Although some methods of developing a SNP panel for parentage anal-

ysis such as SNP arrays still require significant investment to develop, reducing genome

complexity and multiplexing large numbers of samples, as with RAD-seq for example, has

improved the accessibility of genome-wide SNP markers, even in non model organisms, as

they require no a priori knowledge of the genome [10, 103, 157]. SNPs obtained through

reduced representation approaches such as RAD-seq are therefore an appealing choice of

marker for pedigree analyses in large and wild populations.

3.1.1.2 Methodological considerations for pedigree construction

Methods to construct pedigrees from genome-wide markers encompass three main categories:

exclusion-based methods, kinship-based methods, and likelihood-based methods. As codom-

inant markers such as SNPs and microsatellites follow the Medelian laws of inheritance, it

seems intuitive that the list of candidate parents in a population can be refined by simply

excluding samples which do not share any loci with a focal individual. This is a fast method

of assigning parentage that has the potential for high accuracy, as found by Melo and Hale

[226]. However, the authors also acknowledged significant a priori life history information

is still necessary to improve accuracy further, and the method makes a number of specific
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assumptions about the study system. For example, exclusion based methods assume no

genotyping error or mutations in the markers. This is less of a problem in a few hypervariable

sites such as microsatellites, but the growing use of large numbers of SNPs and the increasing

size of modern datasets means this assumption is no longer valid [103]. To account for this,

a number of mismatches can instead be specified when excluding potential parents. Though

the threshold in the number of mismatches allowed is arbitrary, and implicitly assumes a level

of confidence in the genotype accuracy. Furthermore, when used with biallelic SNPs, only

homozygous genotypes are used to assign parentage, and a significant number of informative

markers for pedigree construction are discarded which could otherwise improve accuracy

[103, 209].

Kinship-based methods are an alternative to exclusion-based methods, which work

extremely well to discriminate clones, and first and second degree relatives from unrelated

individuals (as in chapter 2, used to identify duplicate samples, as well as a number of

other studies [303, 315]). However, it is common in wild populations for generations to

overlap, and for individuals to be inbred [152]. Further post-hoc analyses, such as calculating

Cotterman coefficients, which provide the pairwise probability of zero, one or two alleles at

a locus being identical by descent, is then required to distinguish parent-offspring pairs and

full siblings, which are both related by 50%. However, this still cannot differentiate between

tertiary and avuncular relationships (grandparents, half siblings and aunts or uncles), which

are all related by 25%.

Likelihood-based methods provide a significantly more powerful way to construct pedi-

grees, albeit at the cost of computational efficiency [8, 156, 209, 329]. This method relies

on calculating the likelihood of a proposed relationship as a probability, and is based on

the observed proportion of genotypes that are identical by descent. Unlike exclusion-based

methods, this approach also utilises heterozygous genotypes, which would otherwise have

been discarded. The absolute likelihood value provides little information on its own however,

and must instead be considered relative to values estimated for alternative relationships. For

example, if sample A is proposed as the sire of sample C with a likelihood x, then x must be

compared to the probability of the alternative sire D, with likelihood y. By calculating the
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likelihood ratio ΛAC/DC = x
y , a more positive value of ΛAC/DC would indicate A-C is the most

likely sire-offspring pair, and can be assigned to the pedigree.

Likelihood-based pedigree construction and parentage assignment has been implemented

in several software packages such as COLONY [158], FRANZ [281] and SEQUOIA to name

a few (further examples can be found in a recent review by Flanagan and Jones [103]).

SEQUOIA offers an advantage over the other software as it gives explicit consideration to a

much wider range of possible relationships, including secondary, tertiary and avunculars.

This consideration provides the added benefit of allowing to join disconnected clusters of

(half-)siblings, which have one or more unsampled parents, by filling in missing pedigree

links with dummy parents that are unsampled themselves, but are predicted to exist in the

population based on these clusters and the presence of their grandparents. Thus, the effect of

missing pedigree links on population genomic parameters such as inbreeding coefficients

and fitness, are limited [327].

3.1.2 A note on reproductive success as a measure of fitness

The goal of population genetics research is to understand heritable differences in allelic

variation over time, at the population level. Ultimately, the forces that drive the evolution of

a population include:

i Natural selection, where traits increasing fitness (and the alleles responsible) also

increase in frequency (e.g. bright plumage and assortative mating),

ii Genetic drift, where stochasticity in the population causes allele frequencies to vary

due to sampling effects, or

iii Gene flow, where migrants in a population introduce new alleles and increase the level

of standing genetic variation in the population.

In a theoretical model population where drift and migration are absent, population evolution

is ultimately driven by the variation in fitness [251], and pedigrees allow us to estimate the

fitness of each individual, and track their genetic contribution to subsequent generations.
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However, fitness is a difficult parameter to measure, and is often estimated via proxies such

as reproductive success.

Although fitness is, in its most crude definition, a measure of reproductive success,

reproductive success is often a poor reflection of fitness [110]. This is because individuals

can vary in their reproductive quality. For example, consider two focal females, A and

B (figure 3.1). In a female-biased population, the probability of successful reproduction

is male limited due to their rarity, and if Female A produces only male offspring during

her reproductive lifespan, she will likely have more grand-offspring than Female B, which

produces the same number of only female offspring. Female A’s male offspring will therefore

have higher reproductive success than Female B’s female offspring, thus giving them a

higher reproductive value that should be favoured by natural selection. Taken as a measure

of reproductive success however, both Female A and B will have the same fitness, despite

the difference in the number of genealogical descendants and reproductive quality. R. A.

Fisher first noticed this limitation in his theories on fitness, and proposed an alternative which

accounts for not only the quality of the individual, but also of the genealogical descendants

[124]. He defined fitness not by reproductive success, but rather the genetic contribution of

the focal individual to future generations, thus reflecting differences in reproductive quality

well. In this study, three measures of fitness will be declared: the lifetime reproductive

success of each individual, and genealogical and genetic contributions of founders to the

population. This is because founders caught later in the study are expected to have fewer

captured genealogical descendants, and together, these three measures will provide a good

overview of fitness within the population.

3.2 Materials and methods

Inferring pedigrees in a natural population with SNPs requires the markers to be rigorously

filtered to ensure their independence. In this study, variant data as SNPs in a .vcf file were

obtained and filtered using the methods described in chapter 2.2, to estimate relatedness

and generate pedigrees in a wild population. Briefly, sequencing libraries prepared from
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A B

Fig. 3.1 A hypothetical example of how two females with the same reproductive success can
have different fitness based on its definition. In a female-biased population, Female A has
three male offspring (males shown in blue) and Female B has three female offspring (females
shown in red). Both Females A and B have the same fitness when measured as reproductive
success, regardless of the quality of the offspring (quality measured as the number of grand-
offspring of Female A or B). Measured as the genetic contribution to the population however,
Female A has higher fitness as she is likely to have more grand-offspring.

A. flavicollis tail or ear clippings captured in Białowieża National Park, were generated

with a modified quaddRAD protocol [106]. Sequencing data was demultiplexed using the

process_radtags module of STACKS V2.3d, and PCR duplicates were removed using

clone_filter. Samples were then genotyped using the denovo_map.pl pipeline using the

optimised parameters m3, M2 and n2. Unlike many population genomic analyses, thousands

of SNPs are not necessary when estimating pedigrees as this can be computationally pro-

hibitive [142]. Between 300-700 independent and high minor allele frequency (MAF) SNPs

are recommended for pedigree reconstruction [142], and were obtained by filtering for MAF

> 0.45 using the populations module of STACKS. SNPs had already been filtered for HWE

(p ≤ 0.05) and linkage disequilibrium (r2) using PLINK, to ensure SNPs were independent

and not an artefact of sequencing error. This ensures no additional structure is introduced

into the population. As recommended by Huisman [142], the value for the minimum MAF

was decided upon by adjusting the MAF threshold until the number of SNPs passing the

filter fall between the recommended range of 300-700 SNPs. This still produced far more

than the required number of SNPs however, so 400 of the least statistically correlated SNP
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pairs, assumed to come from un-linked loci (lowest r2), were used to give 701 unique SNPs

for pedigree reconstruction.

3.2.1 Pedigree reconstruction

The R package SEQUOIA V2.0.3 [142], which was specifically designed for SNP data, was

used to construct pedigrees as it utilises a fast, heuristic hill-climbing algorithm to rule out

relationships that are impossible, early in the assignment process. For example, potential

offspring must be born after the potential parents. Excluding individuals which do not

meet this criterion significantly speeds up computations to maximise the likelihood of each

relationship [142]. SEQUOIA also considers multiple generations at once. This is important

in wild populations such as A. flavicollis, where generations could overlap, and reduces the

need to declare candidate parents a priori. Though they can be implicitly assumed as part of

the exclusion process of SEQUOIA’s algorithm, when birth years and sex are provided. This

is particularly useful when, as in the case of small, wild and largely nocturnal species like A.

flavicollis, field observations are limited to support pedigree reconstruction.

To ensure the most reliable pedigrees are constructed, birth years were assigned to each

mouse based on their estimated life-stage during field observations. For example, we know

the life-span of wild A. flavicollis is approximately 12 months [269]. An adult mouse caught

in the spring of 2016 could then be estimated as being born in 2015. A juvenile mouse also

caught in the spring of 2016 however, could be born in early 2016 or late 2015 (though winter

births are less common [269]). In this case, as we know the approximate life stage, we can

say the juvenile is born in 2016. Even if incorrect, it ensures the juvenile is placed in the birth

cohort after the adult mouse caught in the same season. Thus, the juvenile mouse cannot

become a potential parent of the adult mouse, and will be excluded by SEQUOIA. This also

allows for the use of samples with some uncertainty in the estimated life stage (maybe adult

or juvenile), to be assigned a birth year. As the speed and accuracy of the computations

relies on the exclusion of such impossible relationships, as much a priori information as

possible must be provided to calculate maximum likelihoods, and minimise errors in the
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final pedigree [142, 226]. A full breakdown of genotyped mice used to create the pedigree is

shown in table 3.1.

Birth
year Adult

Maybe
adult Juvenile

Maybe
juvenile

Unknown
age Males Females

Unknown
sex

2015 52 28 2 1 0 54 29 0
2016 59 29 80 32 0 107 93 0
2017 2 1 63 14 0 52 28 0
2018 0 0 0 2 0 1 1 0

Unknown 0 0 2 1 224 111 101 15
Total 113 58 147 50 224 325 252 15

Table 3.1 Breakdown of genotyped mice used to generate the SEQUOIA pedigree, that were
trapped within the 0.9 ha trapping site inside the Strict Reserve of Białowieża National Park.

701 filtered SNPs from the .vcf file output by the populations module of STACKS, was

first converted into a .raw format in PLINK using the --recodeA modifier for input into

SEQUOIA. The function sequoia was then initially run in R with MaxSibIter=0 (maximum

number of iterations for sibship clustering). This is so sibship clusters are not assigned at

first, allowing to visually inspect the resulting parents and ensure no obviously incorrect

relationships were found. Sequoia was then run again with MaxSibIter=40, to instruct

the package to give explicit consideration to sibship clusters, and assign secondary and

avuncular relationships with a maximum of 40 iterations when maximising the likelihood.

Genotyping error rate was specified as Err=0.020, as calculated in chapter 2.2.3.4, and all

other parameters were kept as default. The distribution of Mendelian errors, which describe

alleles present in an individual that cannot be inherited from either assigned parent, were

then estimated for each SNP using the SnpStats function, and the final pedigree was plotted

using the plot.pedigree function of the KINSHIP2 V1.8.5 package.

3.2.2 Pedigree accuracy

As a pedigree based on field observations is unavailable to compare with SEQUOIA’S pedigree,

two alternative methods have been used to assess its accuracy. Firstly, pairwise genomic

relatedness, calculated as the proportion of SNPs that are identical by descent in chapter
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2.2.3.3, using all individuals and filtered SNPs (n = 592 after merging duplicates and

21,011 SNPs respectively), was regressed against the pairwise pedigree relatedness which

was calculated according to the relationships constructed by SEQUOIA. Unlike pairwise

genomic relatedness, pairwise pedigree relatedness is bound to 0.5, 0.25 and 0.125 for

primary, secondary and tertiary relationships respectively. High correlation between these

two measures should indicate a reliable pedigree has been generated, particularly as the

pairwise genomic relatedness has already been used to successfully identify duplicated

samples, and also confirmed first, second and third degree relationships are detectable within

the population. To generate the pairwise pedigree relatedness matrix, the pedigree output by

SEQUOIA was passed onto the kinship function of the KINSHIP2 V1.8.5 package in R, and

multiplied by two.

Secondly, the EstConf function of SEQUOIA was used to calculate the confidence of each

assigned dam and sire. 400 SNPs were sampled from the 701 SNPs provided to SEQUOIA

using the nSnp=400 argument, and pedigrees were simulated using this sample to calculate

the assignment error rate by comparing each simulated pedigree to the original pedigree

generated by the function sequoia. Assuming the original pedigree provided to EstConf

is correct, overall confidence probabilities can then be calculated for dams and sires using:

(number of mismatches between pedigrees + number of false positives)/2N, where N is

the number of individuals in the pedigree [87, 142]. 60 iterations were used to simulate

pedigrees (nsim=60), and the default 40% of dams and sires were assumed unsampled

(ParMis=c(0.4,0.4)). The genotyping error rate (SnpErr) was again assumed to be 0.020,

and all other parameters remained default. All pedigree analyses were conducted in R

V.3.6.3.

3.2.3 Estimating fitness

Fitness in this study was quantified in three ways:

• Lifetime reproductive success - the number of individuals caught, genotyped and

assigned as an offspring of any focal mouse when constructing a pedigree.
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• Genealogical contribution of founders - the proportion of pups in the population that

are genealogically descended from a focal founder mouse.

• Genetic contribution of founders - the expected proportion of alleles in a given

generation and locus, that when drawn at random, have a probability equal to the

relatedness coefficient, of being identical by descent from the focal individual.

The genetic contribution, G, of a founder was calculated as:

G =
1
n ∑

m
∑
p

(
1
2

)g

, (3.1)

where n is the number of pups born in a given generation, m is the number of mice in that

generation that are related to the focal founder, p is the smallest number of paths in the

pedigree connecting the pup to the focal founder, and g is the generational difference between

the pup and the focal founder [60]. A focal mouse is any mouse in the population, for which

any of the three above mentioned measures of fitness were estimated. A founder was defined

as any individual in the pedigreed population who’s birth parents are unknown. A founder’s

parents may be unknown because they exist in the population but were unsampled, or the

founder was an immigrant from a nearby population.

3.2.4 Estimating inbreeding

Populations experiencing bottlenecks are expected to present high levels of inbreeding and

low genetic diversity due to an excess of homozygotes [241]. Measuring inbreeding is

therefore an important way to assess how a population responds to perturbation on a genomic

scale, and can be defined as the probability that any two alleles sampled from two different

individuals in a population are identical by descent (IBD). That is, that they are inherited

from the same ancestor.

Many methods have been developed to measure inbreeding in a population [159]. Here,

inbreeding was estimated as FH , which measures the observed homozygous genotypes in

individual i, relative to the mean expected homozygous genotypes in a population conforming

to Hardy-Weinberg proportions (randomly mating population) [159]:
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FHi =
O(Homi)−E(Hom)

m−E(Hom)
, (3.2)

where O(Homi) is the number of observed homozygous loci in individual i, and E(Hom) is

the mean number of homozygous genotypes expected under HWE from a total of m loci.

In a population where individuals are mating randomly and conforms to HWE, O(Homi)≈

E(Hom), and FH will be close to 0. Excess homozygosity and high levels of inbreeding

will be indicated by positive values up to 1, as observed homozygosity will be greater than

expected, and negative values up to -1 suggest an excess of heterozygotes in the population

indicating the population is outbred. FH was measured using 21,011 SNP genotypes produced

as a .vcf file by the populations module of the STACKS pipeline that have already been

quality filtered using the methods described in section 3.2. PLINK was then used to estimate

FH for each mouse using the --het modifier. The resulting data was then analysed in R

V4.0.3.

3.2.5 Allele frequency dynamics

Of the 592 genotyped samples in the population, only those with a known birth year (n =

366) were analysed for any observable generational trend in allele frequencies. This is to

ensure the cohort to which each mouse belongs is known, and mice were selected regardless

of whether they were retained in the pedigree or not. First, to see if there was a longitudinal

pattern in allele frequencies, a linear model in the form fo ∼ c+ ε was run for each SNP,

where fo is the observed allele frequency, c is the cohort year, and ε the residuals. This

model was then repeated for the change in observed allele frequencies, ∆ fo, calculated as the

difference in allele frequencies between each year, by substituting it for fo as the response

variable. All explanatory variables remained the same. The predicted values for each model

were then correlated against the observed values, to see how well the models explain the

variation in (the change in) allele frequencies among cohort years.

To test the significance of ∆ fo, null allele frequency distributions were simulated using

a custom R script (available on GitHub, please see appendix A.2 for details) to compare

https://github.com/raval91/Aflav_thesis_supp/tree/main/chapter3/code/allele_freq_sims


3.3 Results 77

the observed and expected (∆ fe) values. Firstly, alleles for every SNP present between

2015-2017 (n = 21,010) for each individual (n = 366), were sampled 1000 times from one of

three possibilities: homozygous reference, homozygous alternate and heterozygous, with

the probability of sampling given in table 3.2. These null distributions were then simulated

2800 times, and p-values for ∆ fo were calculated by counting the number of simulations that

∆ fo remained outside the 95th percentile range of ∆ fe. All analyses and simulations of allele

frequency dynamics were conducted in R V4.0.3.

Zygosity Sampling probability
Homozygous reference (1− fo)

2

Heterozygous 2 fo(1− fo)
Homozygous alternate f 2

o

Table 3.2 The probability of sampling an allele when simulating allele frequency distributions,
so p-values can be calculated to assess the significance of allele frequency change between
2015-2017.

3.3 Results

3.3.1 Pedigree reconstruction

Pedigree construction using SEQUOIA assigned 215 maternal and 223 paternal relationships

overall, from three generations (figure 3.2, full pedigree available as a tabular format with

log-likelihood ratios on GitHub, see appendix A.2 for details). This includes 83, 200, 80

and 2 genotyped mice born in 2015-2018 respectively, of which 151 were female, and 215

were male (a full breakdown of the genotyped samples used for pedigree reconstruction be

found in table 3.1). Also shown in figure 3.2, is male Af_237 and female Af_258, which

are two founders that made a large genealogical and genetic contribution to the population.

These founders are shown here to highlight, relative to the rest of the population, when they

were estimated to be born, and the number of offspring they produced. However, please see

section 3.3.3 for full results on fitness estimates within the population, and a detailed figure

of the respective pedigrees of these two founders showing their full genealogy (figure 3.6b).

https://github.com/raval91/Aflav_thesis_supp/blob/main/chapter3/tables_and_figs/Pedigree.txt
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During pedigree reconstruction, 191 parent offspring pairs remained unassigned by

SEQUOIA due low confidence in the relationship, or due to missing age and birth year data.

65 dummy (non-genotyped) individuals were also assigned as individuals that SEQUOIA

predicts to exist in the population based on sibship clusters (siblings clustered together

but with one or both parents are unsampled, figure 3.3a), but are themselves unsampled.

This included 30 dummy females and 35 dummy males. The number of full siblings per

family varied between 1-9 (mean = 2.08,sd = 1.34), and the distribution is positively skewed

suggesting litter sizes are either generally small, a large number of pups are not surviving

long enough to be trapped, or they have migrated out of the local population covered by the

trapping site. Half-sibling cluster sizes varied considerably more (1-27), though few clusters

of genotyped or dummy individuals were composed of greater than 10 mice (figure 3.3b).
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Fig. 3.3 a) The number of parental and grandparental relationships assigned to genotyped
individuals. b) The size of full sibling (green), and maternal (red) and paternal (blue) half
sibling clusters assigned during pedigree construction. Light red and light blue indicate the
number of dummy half-siblings assigned.
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3.3.2 Pedigree accuracy

Pairwise genomic relatedness (rgrm) estimated in section 2.2.3.3 was strongly correlated

with pairwise pedigree relatedness (rped) as estimated by SEQUOIA (Pearson’s ρ = 0.744,

95% CI = 0.742-0.746, t157,120 = 441.24, p< 0.001). This suggests the constructed pedigree

serves as a strong proxy for the true pedigree relatedness, and the correlation could be

higher still as it appears to be restricted by the large number of unrelated individuals in

the population where pedigree relatedness equals zero, but genomic relatedness is much

higher (figure 3.4). This is due to low confidence in some relationships which prevent these

individuals from being assigned to the pedigree (see GitHub for the full pedigree and full

table of possible but unassigned relatives, additional details in appendix A.2). Furthermore,

patterns of Mendelian inheritance are random, so rgrm is expected to scatter considerably

around rped as observed in figure 3.4. The proportion of rgrm − rped > 0.2 can therefore

be indicative of pedigree error [142], and was low here (3.8× 10−5), thus supporting the

findings of the correlation test.

Further to the above estimated pedigree error, the overall mean confidence probability

in the assignments from 60 simulations of 400 sampled SNPs is high for both dams and

sires (0.998 and 0.990 respectively), and the estimated assignment error rate is low (µ =

6.8× 10−4). Though, the error rate is higher for sires than dams (µdam = 7.6× 10−5 and

µsire = 6.1×10−4). However, this method of simulation to estimate assignment error rate and

confidence probabilities assumes the pedigree used as a truth set to compare the simulations

against, is independently generated, and free from, or has minimal, error (e.g. from reliable

field observations or another independently generated genotype dataset). As both the truth

set used here and the simulated pedigrees are generated from the same genotype data, this

method is somewhat anti-conservative. Thus, assignment error is likely underestimated, and

confidence probabilities overestimated. All three methods to assess pedigree accuracy, when

taken together, do indicate the final pedigree generated by SEQUOIA is accurate.

https://github.com/raval91/Aflav_thesis_supp/tree/main/chapter3/tables_and_figs
https://github.com/raval91/Aflav_thesis_supp/blob/main/chapter3/tables_and_figs/Pedigree.txt
https://github.com/raval91/Aflav_thesis_supp/blob/main/chapter3/tables_and_figs/maybe_relatives.txt
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Fig. 3.4 Correlation between pairwise pedigree relatedness as estimated by SEQUOIA using
701 SNPs, and pairwise genomic relatedness estimated from 21,011 SNPs.
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3.3.3 Estimates of fitness

Overall, fitness estimated as the lifetime reproductive success for each individual, varied

greatly between 0 and 28 (figure 3.5a). Despite this large variation, the mean lifetime

reproductive success was very low (mean = 0.69,sd = 2.07) due to the 191 possible parent-

offspring pairs with low confidence or missing age and birth years (see GitHub for full table

of possible but unassigned relatives, additional details in appendix A.2). When considering

only the lifetime reproductive success of mice assigned to the pedigree with high confidence,

the mean increased to 3.62 offspring per individual (sd = 3.41). However, this is still low

considering litters can include up to 11 pups, and suggests many pups may not survive to adult-

hood. Fitness measured as the number of genealogical descendants of founders (n = 133),

also varied considerably between 1 and 43 (µ = 4.20, sd = 5.35, figure 3.5b). As expected,

founders caught later in the study have fewer genealogical descendants that were trapped, so

the genealogical and genetic contributions of founders to each generation were also calcu-

lated. These contributions correlated strongly (Pearson’s ρ = 0.889, 95% CI = 0.858-0.912,

t224 = 29.6, p < 0.0001). However, genealogical contributions are approximately twice as

large as genetic contributions (paired Wilcoxon test: V = 11,324, p < 0.0001, median =

0.020 and 0.011 for genealogical and genetic contributions respectively). Figure 3.6a shows

the genetic and genealogical contributions to each generation, from two founders to the

population, and demonstrates how their genealogical contributions over four generations

quickly overtake their genetic contributions. Male Af_237 in particular, is shown to make a

particularly large contribution to the population, where 53.6% of individuals in the pedigreed

population are descended from this one mouse, which has also contributed 20.1% of the

total alleles in the population by the end of the study. In comparison, female Af_258, which

despite 19.3% of the population being descended from her, has contributed just 3.8% of the

total alleles in the population likely due to a low estimated lifetime reproductive success

(one versus 26 for Af_237). A full genealogy of these two founders is shown in figure 3.6b,

and a full table of genealogical and genetic contributions of founders to each generation can

be found on GitHub (see appendix A.2 for details). For all three measures of fitness, no

statistical difference between males or females was found (p ≥ 0.092, table 3.3).

https://github.com/raval91/Aflav_thesis_supp/tree/main/chapter3/tables_and_figs
https://github.com/raval91/Aflav_thesis_supp/blob/main/chapter3/tables_and_figs/maybe_relatives.txt
https://github.com/raval91/Aflav_thesis_supp/blob/main/chapter3/tables_and_figs/genealogical_genetic_contributions.txt
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Fitness measure W p
Lifetime reproductive success 3536.5 0.269

Genealogical contribution of founders 14,704 0.348
Genetic contribution of founders 7296 0.092

Table 3.3 Wilcoxon Rank Sum test assessing the statistical difference between male and
female lifetime reproductive success, and genealogical and genetic contributions of male and
female founders to the population.

3.3.4 Estimates of inbreeding and genetic diversity

Mean FH in the population was 0.00287 (sd = 0.0453) suggesting the population is not inbred

overall, and conforms to HWE. This is surprising given the population experiences annual

cycles of decline during winter, where high levels of inbreeding and low genetic diversity are

expected. However, plotting the distribution of FH indicates it is highly positively-skewed

(coefficient of skewness, γ = 0.598, figure 3.7), indicating that although the population is

not inbred overall, there are more individuals that are inbred than outbred (number of mice

where FH ≥ 0.05 = 47 and FH ≤−0.05 = 12).

3.3.5 Allele frequency dynamics

84, 200, 80 and 2 genotyped mice were born in 2015, 2016, 2017 and 2018 respectively. As

the cohort from 2018 was composed of only two mice, they were discarded from the analysis

as they do not provide a representative sample of allele frequencies in the population for that

year. Of the total 21,011 filtered and independent SNPs obtained from ddRAD-seq, 21,010

SNPs were present in all cohort years. As only a single SNP was missing in one year of the

study, it was excluded from further analyses. The presence of 99.99% of alleles in every year

indicates the number of samples in each cohort are representative of the population despite a

large number of unassigned individuals in the pedigree, and generational differences in allele

frequencies should be reliably captured.

Allele frequencies varied between 0.0233-0.579, 0.0390-0.5410 and 0.0124-0.610 for

cohorts from 2015, 2016 and 2017 respectively. Despite SNPs having already been filtered for
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Fig. 3.7 Inbreeding measured as FH in the Białowieża population. FH = 0 indicates an
individual is not inbred, > 0 indicates high levels of inbreeding and excess homozygosity,
and < 0 indicates outbreeding with excess heterozygosity. Mean FH = 0 for the whole
population indicates the population also conforms to HWE.

not being in HWE, the observed allele frequency change, ∆ fo, was highly variable between

-0.217 and +0.164 between 2015-2017 (figure 3.8b) indicating some allele frequencies are

changing considerably between years. Model predictions ( fp and ∆ fp) from linear regression

of fo and ∆ fo with cohort year, also correlate very highly (table 3.4, figure 3.8) indicating

allele frequencies are changing linearly and predictably between cohorts. However, the mean

∆ fo was very low (µ =−0.00068, sd = 0.048).

Surprisingly, 16,534 SNPs (78.7%) increased or decreased in frequency significantly

more than expected (p ≤ 0.05, figure 3.9). Despite the significance of this change, the effect

size is generally small, where 11,653 significant SNPs (70.5% of SNPs with p-values ≤ 0.05)

showed ≤ 5% change over three years. The remaining SNPs however, are subject to extreme
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T d f ρ p
fo- fp 2131.5 63,028 0.993 < 0.0001

∆ fo-∆ fp 263.6 42,018 0.790 < 0.0001

Table 3.4 Correlation (Pearson’s ρ) between observed and predicted allele frequencies ( fo- fp),
and observed and predicted allele frequency change (∆ fo-∆ fp) between 2015-2017.

changes in frequency. Two examples of this between 2015 and 2017 are shown in figure

3.10, which displays the results from a single simulation of ∆ fe, to make clearer the pattern

being described. The minor allele in un_19825 appears to significantly decrease by 21.7%

between 2015-2017 (p < 0.05). Un_16920 on the other hand, appears to increase by 16.1%.

Though this is not significantly different from that expected by chance (p = 0.96). These

results suggest genetic drift or sampling effects alone cannot explain the annual changes in

allele frequencies.
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Fig. 3.9 SNPs with a significant (p ≤ 0.05) observed allele frequency change (∆ fo) between
2015-2017. The majority of SNPs (70.5%) show < 5% change over three years.
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Fig. 3.10 Net expected and observed allele frequency change for a SNP decreasing (top) and
increasing (bottom) in the population after a single simulation, sampling alleles 5000 times.
Blue and red dashed lines indicate the expected and observed net allele frequency changes
between 2015-2017 (left). Grey bars (left) indicate the distribution of net allele frequency
change after 5000 samplings. Blue and red solid lines (right) indicate the expected and
observed allele frequency for each year between 2015-2017. Grey shading (right) indicates
the 95% quantiles of the expected allele frequency distribution.
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3.4 Discussion

Apodemus flavicollis in Białowieża National Park are extremely vulnerable to environmental

variation, as winter survival is strongly positively correlated with mean winter temperature,

and seed crop availability [269]. The population is known to crash by up to 86% of its autumn

population size as a result, and exhibits a distinctive cycle of population growth and decline

with the seasons (peak in autumn and trough in early spring). As population size and density

decrease, localised founder effects should lead to characteristically high levels of inbreeding

and low genetic diversity, and genetic drift should increase [29]. Rare alleles are then more

likely to be lost, though common alleles can also be subject to its effects [215]. This could

in turn reduce fitness, as recessive deleterious alleles accumulate [55, 162]. However, this

study has shown that despite the annual population cycles reported previously [269], genetic

diversity and inbreeding in A. flavicollis from Białowieża National Park are, on average,

consistent with a stable population that conforms to Hardy-Weinberg equilibrium.

3.4.1 The density-migration-drift balance

The Białowieża population of A. flavicollis has surprisingly shown a remarkable level of

genomic resilience to the effects of population crashes in this study. Although 78.7% of

alleles show a significant change in allele frequencies between 2015-2017, the effect size

is generally small for the vast majority, and the mean change is close to zero. Despite this

overall stability in allele frequencies over time, the example of the two SNPs shown in figure

3.10 demonstrates how the remaining 21.3% of allele frequencies can vary considerably

in just three years (up to 21.7% frequency change). This could be caused by genetic drift

following the inbreeding shown in figure 3.7, which may cause alleles such as SNP un_16920

(figure 3.10, bottom row) to drift considerably, but not more, or less, than expected by random

chance. The greater than expected change in alleles such as SNP un_19825 however, suggests

drift alone cannot be responsible for this variability. Furthermore, the question remains how

the majority of allele frequencies remain relatively stable?
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Adams et al. [4] and Robinson et al. [284] show in their studies on a founding population

of wolves on Isle Royale, how a single immigrant into a highly inbred population subject

to significant genetic drift, can rescue the population from the effects of inbreeding (excess

homozygosity and accumulation of deleterious alleles caused by a small effective population

size, Ne). As the relative fitness of this immigrant was significantly greater than the individuals

within the local population, and the population remained isolated following the migration

event, every wolf on the island was soon related to this single male within 2.5 generations.

His direct descendants subsequently accounted for 56% of the population, causing a complete

selective sweep of the native wolves’ genomes. Similarly, some founders in Białowieża

National Park also appear to make a disproportionate genealogical and genetic contribution

to the population, as is shown by Af_237, which contributed 20.1% of alleles within four

generations, and whose descendants account for 53.6% of the pedigreed population.

Unlike the Isle Royale wolves, however, homozygosity here does not appear to be in

excess on average, rather, it is close to that expected under HWE. This is more typical of

panmictic populations with little genetic structure, and few spatial constraints [61]. Following

a harsh winter population crash, a drifting A. flavicollis (sub-)population, as indicated here

by large changes in allele frequencies, is likely to be buffered against the negative effects of

inbreeding and low genetic diversity by immigration from nearby (sub-)populations. This

should introduce additional genetic variation into the local gene pool, and would explain why

some alleles appear to be significantly drifting, while the majority remain relatively stable.

If migration were restricted among (sub-) populations, as with the Isle Royale wolves, A.

flavicollis from Białowieża would otherwise form a closed system, where heterozygosity (H)

would be expected to decline over t generations soon after the first appearance individuals

like Af_237, according to:

Ht = H0(1−
1

2Ne
)t , (3.3)

where Ne is the effective population size, and H0 the heterozygosity at t = 0. This highlights

the strong relationship between Ne and the rate at which alleles are lost due to drift, which

causes heterozygosity to decline by a factor of 1
2Ne

at each generation [166] (figure 3.11).

This model has been validated previously in wild caught white-footed mice (Peromyscus
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leucopus)[343], though these mice were captively bred, making the conditions under which

heterozygosity declines according to theoretical expectations highly controlled. The study

therefore met the assumptions of no migration or mutation, making inferences of natural

populations somewhat limited.

With the buffering effects of migration, the effect of drift may not be so pertinent in the

short term for A. flavicollis in Białowieża, despite the annual population cycling. Ne may

therefore be considerably larger than expected, and further agrees with a recent finding by

Martin Cerezo and Martin Cerezo et al. [53, 212], which show that genetic differentiation

among (sub-)populations of A. flavicollis sampled from multiple distant sites (> 500km apart)

across Europe, is very low, suggesting there is a large degree of connectivity among sample

locations.
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Fig. 3.11 Theoretically decreasing heterozygosity (Ht) over time (t) at varying effective
population sizes (Ne). This model assumes a closed population with little or no migration
and mutation. Models begin with H0 = 0.5 at t = 0, when the population is founded.

Low genetic differentiation in cyclic populations over large distances has also been

observed in different species of voles, lemmings and snowshoe hares [28, 92, 282], and



3.4 Discussion 95

density-dependent dispersal has been suggested as a possible explanation to this pattern

(figure 3.12) [192]. This mechanism suggests local demes are partially isolated during low

density periods. In the case of A. flavicollis, this could be due to deep winter snowfall limiting

the capacity for mice to move between sites, and may result in genetic drift at the local

scale. Drift could then be compensated for by periods of high population densities, increased

migration, and panmixia, which for A. flavicollis occur during the summer and autumn

when there is low snowfall, and food is plentiful. Also known as the founder/flush model

[310], it could explain how local demes, or even (sub-)populations that may be declining,

are rescued from high levels of inbreeding and genetic drift by migrants moving between

demes and interbreeding. This effectively forms a large meta-population of source and

sink (sub-)populations, where fine-scale spatio-temporal and genetic structuring does not

necessarily reflect observations at the meta-population level [263].
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Fig. 3.12 The founder/flush model illustrates how a cyclic population exhibits density de-
pendent dispersal, to maintain high levels of genetic diversity despite periodicity in the
population size and density. This strikes a balance between population size/density, migration
and drift. Only a single period of the cycle is represented here. Black circles represent the
relative sizes of sub-populations or local demes at different times of year, and overlapping
circles indicate migration is occurring between them.
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Density-dependent dispersal was demonstrated by Berthier et al. [28] in a population

of fossorial water voles (Arvicola terrestris), where genetic differentiation among demes

increased when population densities were low, and decreased as the overall population density

increased, suggesting periodic migration between demes. Similar to A. flavicollis, overall

genetic diversity when considering the whole population was also found to be high in A.

terrestris despite the population cycling. Berthier et al. [28] also demonstrated that genetic

diversity reflected the periodicity of population density and size, a result not able to be

replicated here due to the lower spatio-temporal resolution of sampling, and the short length

of the study. Furthermore, the period of the cycles in A. terrestris population size and density

are considerably longer than A. flavicollis (years versus months), allowing considerably

more time for local demes to differentiate. The findings presented here are then even more

remarkable considering the lower sampling resolution. The low mean change in allele

frequencies in A. flavicollis thus indicates density-dependent dispersal and founder/flush

models could also explain how high levels of genetic diversity are maintained here, albeit at

an accelerated rate.

3.4.2 The role of selection in short term allele frequency dynamics

Although founder/flush models could explain much of the allele frequency variation in A.

flavicollis from Białowieża, there of course remains the possibility that these patterns may be

the result of natural selection as well as drift and migration. As SNP un_19825 exemplifies,

many alleles observed here change significantly more than expected by chance over time.

This suggests drift alone is unlikely to be responsible for this variation. Oliver and Piertney

[250] also describe on Coiresa, Scotland, a closed island population of A. terrestris that

experienced long term isolation, where overall, heterozygosity within the Arte-DRB locus of

the MHC class II region was significantly higher than expected relative to neutrally drifting

loci. Following a significant bottleneck where the effective population size reached critically

low levels, allele frequencies within the A. terrestris population became highly skewed

(increased homozygosity), but unlike this study, quickly returned to levels seen prior to the

crash. This indicates allelic variation within the locus, which has a functional role T-cell
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mediated immunity in mammals, is maintained by a balancing selection equilibrium where

heterosis confers a significant fitness advantage, but becomes highly skewed as Ne becomes

critically low due to potent drift. There is no indication of a similar trend for alleles observed

as under selection in A. flavicollis here, though this could be due to the short term of the

study.

Different to the A. terrestris population in Coiresa, A. flavicollis from Białowieża form

an open system subject to other evolutionary forces such as migration, which likely limit the

effects of positive, negative, balancing and stabilising selection. As many SNPs decreasing

in frequency more than expected were already at relatively high frequencies at the start of

the study, it is likely SNPs such as un_19825 are weakly deleterious alleles which are not

subject to exceptionally strong negative selection. This is because highly deleterious alleles

are generally maintained at very low frequencies in a population, if not lost altogether due

to their negative effect on fitness [200]. However, due to the short term of this study, the

power to reliably detect short-term selection is low [178] due to the compounding effects of

drift and migration, and explains why the majority of alleles appear close to HWE, while a

small number of significant alleles appear to show strong signatures of selection (⩾±5%

change in frequency). Genetic drift and migration therefore probably have a greater effect

than selection on short term allele frequency dynamics. Though, this is not to say that natural

selection is having no effect at all, rather the pattern being described here is likely a complex

interaction between changes in population density, migration and drift acting in the short

term, and possibly selection over a much longer time scale.

3.4.3 The limitations of molecular pedigree analyses

Pedigrees in this study were created using data obtained from a modified quaddRAD protocol

[106], and, as extensively discussed in chapter 2.4, genotyping errors could be carried

forward in downstream analyses. For example, genotyping errors caused by allele drop-out

could result in inflated estimates of homozygosity and inbreeding [11]. Though in this

study, this is unlikely, as mean homozygosity and levels of inbreeding were found to be low,

a result supported by low mean relatedness in the population as found in chapter 2.2.3.3
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(µr-MLE = 0.00995, sd = 0.0412), and few pairwise estimates of relatedness were found

≥ 0.55 (as expected for inbred first degree relatives). Furthermore, the mean genotyping

error rate found in chapter 2.3.5.1 was also low, despite low sequencing coverage in some

samples. Together with the stringent filtering thresholds applied to generate the final panel of

SNPs, the effects of genotyping error on downstream analyses should be minimal.

Although the genotyping error rate here was low, there remains a possibility of false

familial assignments when constructing the pedigree. Strucken et al. [318] tested the effect

of genotyping errors, by varying the stringency of the permitted percentage of genotype

mismatches between related individuals when constructing pedigrees, from 0-2%. The

study found that setting the threshold for the percentage of allowed mismatches required

moderation between allowing for too few mismatches and thus increasing the probability

of false negatives, and allowing too many, thus increasing the probability of false positives.

However, this study was based on gap-based test statistics to assign familial relationships,

and the threshold is arbitrarily set to separate and exclude related and unrelated individuals.

Also, gap based methods do not incorporate genotyping error rate directly into the statistical

analyses, and assume mutation does not occur. These methods should therefore be avoided

[103], particularly as the size of modern genomics datasets using next generation sequencing

is increasing. The recommendations by [318] are thus not applicable here.

Unlike gap based statistics, SEQUOIA has integrated genotyping error rates into the

maximum likelihood statistics used to construct the pedigree (as provided by sequoia’s

err = 0.020 modifier), and should be robust to false assignments. This is supported by the

simulations used here to estimate the confidence probability of these assignments, which

found the assignment error rate is low (µerr = 6.8×10−4). However, as mentioned in section

3.3.2, this method assumes the pedigree used to compare the simulations to, is true, making

this analysis anti-conservative when the pedigree generated by SEQUOIA is used as the

truth set, instead of an independently produced pedigree (e.g. from field observations).

Assignment error rates may therefore be underestimated here [142]. Pedigree accuracy was

therefore also assessed using a SNP-based genomic relatedness matrix, which also found the

pedigree to be accurate. Furthermore, Huisman [142] found that pedigree error is < 10−5
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when 400 ⩽ nSNPs ⩽ 800 for pedigree construction (nSNPs = 701 here), and true assignments

were high even with missing life history data. This also lends additional confidence to the

final pedigree’s accuracy.

One seemingly unavoidable limitation of molecular pedigree construction, is its reliance

on as many a priori field observations as possible to estimate life history information (e.g. age,

birth year, life stage and sex) [142, 226]. For species that can be easily monitored, identified,

and are monogamous (e.g. Florida Scub Jays, Aphelocoma coerulescens [60, 274]), obtaining

this information is made straightforward by marking and recapturing individuals and their

offspring. However, for species which are small, largely nocturnal, and exhibit multiple

paternities such as A. flavicollis [40, 129], mark and recapture studies are considerably more

difficult. Unfortunately, this means much of the life history data is missing in this study, as

accurately estimating life stages and birth years can be difficult in wild mice. Including such

ambiguous data could otherwise introduce large amounts of uncertainty and increased error

in the pedigree. The effect of such missing data here was 191 possible parent-offspring pairs

which remained unassigned despite the high likelihood of a first degree relationship, and

more dummy individuals are assigned to the pedigree than actual genotyped mice. Despite

these limitations however, the results presented in this study still indicate a strong genomic

signature which suggests how allele frequency variation could be maintained over short time

scales in A. flavicollis from Białowieża National Park.





Chapter 4

The heritability of thermal strategies in

wild Apodemus flavicollis

4.1 Introduction

4.1.1 The cost of high performance

Life processes are ultimately governed by the flow of energy, and a net gain in energy is

essential to enable self maintenance, growth and reproduction [173]. The constant regulation

of an organisms internal environment (homeostasis) is essential in complex multicellular

organisms. Endothermic homeotherms such as mammals and birds, are able to maintain

stable and metabolically favourable body temperatures (Tb) by producing heat internally

through elevated metabolic processes, that has provided an evolutionary advantage to allow

many species to penetrate different ecological niches, often in the harshest of environments

[70, 265]. Maintenance of endothermic homeothermy however, incurs a high metabolic cost

(measured as basal metabolic rate - BMR) even when under thermoneutral conditions [3]. In

extreme environments, where resources are often scarce and the gradient between internal and

ambient temperatures is steep, the energy balance could be tipped into a deficit as the energy

required to heat or cool the body to maintain homeothermic conditions (stable internal Tb) is

greater than that gained through food. BMR in endotherms, is therefore typically 8-10x higher
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than an equivalently sized poikilotherms, which rely on obtaining heat through behavioural

means such as basking [94, 224]. Endothermic thermoregulation, despite its high cost, is

still considered evolutionarily advantageous as it allows these organisms to maintain high

performance in otherwise unsuitable habitats [132, 133]. Many endotherms have therefore

evolved different strategies to minimise these costs, such as external morphological features

to retain (or expel in hot environments) as much endogenously produced heat as possible (e.g.

feathers, fur and fat or large ears in cold or warm environments respectively). Physiological

adaptations such as torpor are also a common strategy to minimise energy expenditure in

harsh environments, and have been the subject of much research [35, 290, 291].

4.1.2 Torpor as an energy saving strategy

Although most mammals and birds are considered as endothermic homeotherms, many

species in fact decrease their energy budget under adverse conditions by entering a torpid

state: a period of low responsiveness characterised by a reduction of Tb and metabolic rate

to a fraction of the BMR [114, 117]. Metabolic processes are not suspended on entry into

torpor, rather they are maintained at a significantly lower rate to reduce the individual’s

energy budget [115, 246]. This highly regulated hypothermic and hypometabolic strategy

described as heterothermic endothermy, can reduce maintenance costs by up to 65% and is

common among endotherms [35, 290]. It is generally classified into two main phenotypes:

hibernation, and daily torpor.

4.1.2.1 Hibernation versus daily torpor

Hibernation is defined by long torpor bouts lasting multiple days to weeks, is interspersed

by brief periods of arousal, and often, but not exclusively, occurs seasonally. Daily torpor

however, typically lasts only for a few hours per day [114, 290] and can be easily distin-

guished from hibernation [290]. For example, seasonal hibernation is significantly longer

and deeper than daily torpor [290], but is not continuous. Intermittent periods of rewarming

and increased ventilation occur often for a few hours at a time which could be to allow

expulsion of waste products accumulated during hibernation [132]. Furthermore, due to the
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length of time hibernators are torpid, many species fatten before entry to increase energy

reserves, while others hoard food nearby for sustenance during the short periods of arousal

[144]. Hibernators also tend to decrease the metabolic rate to 1-5% of BMR, whereas daily

heterotherms typically reduce to ∼ 30%. However, the metabolic rate in both forms of

torpor is strongly correlated with an individual’s mb and is highly variable [117, 31]. Daily

heterotherms are on average smaller than hibernators though (18g and 85g respectively),

and are typically no heavier than a 9kg, compared to over 200kg in hibernators [97, 117].

Unlike hibernation, daily torpor is not often seasonal, though the length and depth of torpor

can increase in seasons where there are severe resource limitations such as during winter in

temperate latitudes, or dry seasons in more tropical regions [252, 254]. Furthermore, daily

heterotherms do not fatten prior to torpor, and rely on constant foraging to survive [32, 164].

In fact, high proportions of fat can inhibit torpor due to higher leptin levels from brown

adipose tissue increasing metabolic activity [116].

4.1.3 The heterothermy continuum

Despite the differences between hibernation and daily torpor, it is clear that both are employed

as an energy saving mechanism when resources are severely limited. Torpor and hibernation

are not mutually exclusive, however, as some species have been shown to exhibit both,

dependent on various factors such as body condition [168]. Highly plastic Tb, BMR and

torpor duration and length, has led some to suggest the existence of a continuum of phenotypes

from daily torpor to long term hibernation [35, 36]. For example, Kobbe et al. [168] found

in mouse lemurs (Microcebus griseorufus) that torpor length varied significantly from short

daily events typically lasting only a few hours, to full, long-term hibernation lasting several

weeks. Species such as the yellow-necked mouse, Apodemus flavicollis however, exhibit

daily torpor exclusively [31, 32]. This suggests that heterothermy is subject to phylogenetic

constraints [35], and a number of studies have indicated it is highly repeatable [32, 76, 243].

Heterothermic responses could therefore be a heritable trait, and subject to natural selection.

Few of these studies however, investigate the evolutionary processes involved in what

maintains such a vast amount of variation at the population level. Here, I estimate the



104 The heritability of thermal strategies in A. flavicollis

heritability of heterothermic responses in wild A. flavicollis, which undergoes daily torpor

in response to external stressors such as starvation [31]. Boratyński et al. [32] indicated

heterothermic responses in wild A. flavicollis are highly repeatable, and a large amount of the

inter-individual phenotypic variation is predicted to be explained by genetic factors. Here,

I investigate heterothermic responses in A. flavicollis further, and suggest the previously

described phenotypic continuum [32] may only partially explain the high levels of variation

observed here. I then estimate the heritability of heterothermic responses, and suggest how

these phenotypes could be maintained in the wild.

4.2 Materials and Methods

4.2.1 Animal handling and experimental procedure

70 mice were trapped by collaborators at the Mammalian Research Institute at the Polish

Academy of Sciences (MRI-PAS, Białowieża, Poland) for measurement of heterothermic

parameters following Boratyński et al. [32]. Brief descriptions of trapping procedures are

given here, but for full details please see section 2.2.1.

220 wooden traps baited with oats were laid in a 0.9Ha plot within the Strict Reserve

of Białowieża National Park, in two trapping seasons per year (autumn and winter/spring)

between 2016 and 2018. Life history information including sex, body mass and approximate

life stage were recorded, and tissue samples in the form of tail or ear clippings were taken

from each mouse for genotyping. Each sample was subsequently stored in 96% ethanol

at −20oC until DNA extraction. Each mouse was also injected with a Passive Integrated

Transponder (PIT-tags: RF-IDW-1, CBDZOE, Grydice, Poland) with unique 16 digit codes

for identification purposes.

Once transported to MRI-PAS, mice were kept individually in standard cages at 19±1oC

under a natural light-dark cycle with food and water provided ad libitum (carrots, apples

and widely available rodent food - Megan, Kraków, Poland). After seven day post-capture

acclimatisation in the laboratory, mice were anaesthetised under a 2% mixture of isofluorane

and oxygen (Air Products, Warszawa, Poland), and surgically implanted intra-peritoneally
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with temperature sensitive, wax coated data loggers, calibrated in a water bath against a high

precision (0.1oC) mercury thermometer at five temperature points between 17oC and 42oC.

Data loggers were set to measure body temperature (Tb) every 10 minutes with a resolution of

0.062oC. Mice were injected with a 2% mixture of antibiotics (Enrobioflox 5%, Biowet Sp. z

o.o., Gorzów Wielkopolski, Poland) and saline (Baxter Manufacturing Sp. z o.o., Warszawa,

Poland), and allowed a minimum of 7 days to recover from the surgery.

4.2.1.1 Fasting experiments to induce torpor

A. flavicollis has a high calorie requirement and must feed continuously to survive [32]. As

food restriction can quickly induce torpor, fasting experiments can be used to measure the

resulting variation in Tb. However, continued restriction of food (>24h) can result in fatal

hypothermia and loss of mb (body mass), as individuals are unable to return to a normothermic

state and wake themselves from torpor without intervention by passively rewarming the

mice [32]. Furthermore, as there appears to be no difference in an individuals Tb during

torpor between 0-24h and 24-48h [32], it was not necessary, or ethical, to sustain fasting

experiments for longer than 24 hours.

After seven days recovery from surgery, mb was measured (±0.1g, ScoutPro 200, Ohaus,

Parsippany, NJ, USA) and heterothermy was induced in each mouse by restricting food for a

period of 24h, though water was still provided ad libitum. After fasting, mb was measured

again and each mouse was allowed to regain any mass lost during the fasting experiment

before the measurements were repeated after being allowed a minimum of seven days to

recover. Data loggers were then surgically removed, and the mice were released at the place

of capture. A number of mice were expected to be recaptured in the following trapping

season, and were identified with the unique barcode associated with the sub-cutaneously

injected PIT-tag so they were not re-measured. However, a number were found to be missing

PIT-tags due to injury, making them unidentifiable. Without any way to confirm these mice

had been previously trapped, un-tagged mice were (re)injected with the tag and transported

to MRI-PAS for heterothermy measurement. All experimental procedures were approved by
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the Local Committee for Ethics in Animal Research and the Ministry of the Environment,

Poland (decision numbers 27/2016, 62/2017 and DOP-WPN.287.7.2016.AN).

The Heterothermy Index (Hi) was chosen here as a quantitative measure of the depth of

an individuals entry into torpor following Boyles et al. [35]:

Hi =

√
∑(Tb-mod −Tb-i)2

n−1
(4.1)

where Tb-mod is the modal Tb at the peak of the temperature distribution (i.e. when the

individual is in its active phase), Tb-i is the Tb measured at time i, and n is the total number of

measurements taken of Tb. The modal Tb when the individual is not torpid was chosen as it

serves as a proxy for the theoretical optimum, or normal, body temperature experienced by

each individual when not torpid. Hi is essentially a measure of the standard deviation from

normothermy in degrees Celsius (oC).

4.2.1.2 Estimating BMR using respirometry

Minimum basal metabolic rate (BMRmin) was estimated 1-2 days before fasting experiments,

to give an indication of individual maintenance costs in an open flow respirometry system

using indirect calorimetry. Air with a known concentration of nitrogen, oxygen and carbon

dioxide is pumped into a 0.85l calorimetric chamber, and the relative change in oxygen

and carbon dioxide concentration (VO2 , figure 4.1) can be used as a proxy for BMR [101].

Chambers were maintained at an ambient temperature (Ta) of 30oC during daylight hours,

and dehumidified air was pumped in to the system (Drierite Co. Ltd, Xenia, OH, USA).

Input air streams for each chamber were regulated to 500ml min−1 (calibrated using a soap

bubble flow meter - Optiflow 570, Humonic Instruments Inc., USA), and two reference

lines were used to measure the input O2 concentration every 15 minutes. 100ml of output

air was measured every second to determine the final O2 concentration using an FC-10a

gas analyser (Sable Systems International), for five minutes. Electronic components of the

system were connected to a computer through an analogue-digital interface (U12, Sable
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Systems International), and data was recorded using the ExpeData software (Sable Systems

International).

Fig. 4.1 simplified representation of an indirect calorimetry set up to measure the BMR of A.
flavicollis. Arrow thickness indicates the relative change in concentration of gasses between
the input and output to measure VO2 .

4.2.2 Statistical analyses and estimating repeatability and heritability

As some individuals were trapped and measured in multiple seasons, degrees of freedom will

be artificially inflated in analyses due to pseudo-replication. Mean Hi for each individual

was therefore used to compare among grouped variables such as sex, age, trapping year and

season. All analyses were conducted in R V4.0.2 unless otherwise stated.

The repeatability (τ), or intra-class correlation coefficient of Hi, was first calculated

to ensure within-individual variances in heterothermic responses were low. This can also

estimate the upper limit of heritability [98], and is defined mathematically as

τ =
VI

VP
, (4.2)

where VI is the inter-individual variance and VP the total phenotypic variance. Linear mixed

effects regression models to extract the variance components necessary to calculate τ were
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fitted in the forms:

Hi = µ +X1s+X2a+X3mb +X4bmin +Z1Ybirth +Z2Ytrapping +Z3I + ε (4.3)

BMRmin = µ +X1s+X2a+X3mb +Z1Ybirth +Z2Ytrapping +Z3S+Z4I + ε (4.4)

using the package LME4 V1.1-23 in R V4.0.2. Here, µ is the global intercept, X1-4 are

the design matrices of fixed effects s, a, mb and bmin respectively (sex, age, body mass and

BMRmin), and Z1-4 are the incidence matrices of random effects Ybirth, Ytrapping, S and I

respectively (birth year, trapping year, season and individual ID). ε represents the residuals. If

the distribution of residuals did not conform to a gaussian distribution or meet the assumption

of homoskedasticity, response variables were Order-Norm transformed using the orderNorm

function of the BESTNORMALISE package in R V4.0.2 [262]. Variance components were

extracted from the models and used to calculate the repeatability of Hi and BMRmin.

Calculating SNP-based, narrow-sense heritability (h2
SNP) requires that the pairwise ge-

nomic relatedness of each phenotyped individual be known, so the proportion of VP explained

by additive genetic variance (VA) can be estimated as:

h2
SNP =

VA

VP
, (4.5)

and allows dominance and epistatic effects to be accounted for. However, this requires a

large sample size to reduce standard error (SE) even in a highly heritable phenotype [335].

In a theoretical scenario for example, detecting h2
SNP > 0 for a given phenotype when the

true h2
SNP = 0.6, would still require 1477 samples to reach a power of 0.8 and SE 0.21 (figure

4.2). Thus, heritability was instead estimated according to:

h2
SNP =

VG

VG +VE
=

VG

VF +VG +VE
=

VG

VF +VG +VRE +VR
, (4.6)

where VG is the overall genetic variance once related individuals have been removed, and VP

is composed of the residual variance due to environmental effects VE , and VG. VE can in turn
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be partitioned further into its multiple random effects (VRE) which in this study include Ybirth,

Ytrapping and S, and the residual variance (VR). Finally, the fixed effects variance (VF ) must

also be taken into account to ensure the total phenotypic variance is not underestimated [81],

which in this study includes the sex, age, mb and BMRmin of each mouse. This approach

to partition variance components into its fixed and random effects was also applied to the

calculation of τ .

h2
SNP in unrelated individuals was estimated by fitting a linear mixed-effects model in

LME4 V1.1-23 in the forms of formulae 4.3 and 4.4. The variance was partitioned according

to formula 4.6. To estimate VF , the variance was calculated based on the predicted values

for models 4.3 and 4.4, which were obtained using predict in R V4.0.2. 95% bootstrap

confidence intervals were estimated using the confint function.
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Fig. 4.2 Power curves showing the required sample sizes to detect h2
SNP > 0 for a phenotype,

given the true h2
SNP = 0.2-0.8 represented by colour. Power analysis was performed according

to Visscher et al. [335].
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4.2.3 Sequencing, bioinformatic processing and estimating relatedness

To estimate VG and account for any variance in the phenotype that is attributed to shared

environmental effects, the relatedness of all phenotyped mice must be known so that highly

related individuals can be removed from the analysis. Relatedness was estimated using

SNP data obtained from the reduced representation library preparation, sequencing and

bioinformatic processing conducted according to the approach described in detail, in section

2.2.2.4 but briefly recounted here.

Sequencing libraries were prepared following a modified quaddRAD protocol [106]

and sequenced on an Illumina HiSeq 3000. Outer barcodes were demultiplexed using

BCL2FASTQ2 V2.18 [145] and sequences were quality checked using FASTQC [13]. The

STACKS V2.3d bioinformatic pipeline was then used to demultiplex sequences according to

inner barcodes (process_radtags), identify and remove PCR duplicates (clone_filter)

and assemble loci de novo (denovo_map.pl). Parameter optimisation was performed by

iterating over values of m, M and n, and plotting the associated metrics. SNP data from

duplicate samples that were PIT-tagged more than once, were then merged by estimating

relatedness calculated as the proportion of the genome that is identical by descent (r > 0.9

in duplicates) using SNPRELATE V1.16.0 [354]. Pairwise relatedness among all samples

was estimated using 21,011 SNPs filtered for HWE (p ≤ 0.05), linkage disequilibrium

(r2 ⩾ 0.035) and MAF ⩾ 0.05. Once duplicates were merged, the pipeline was run again

to estimate the relatedness in the phenotyped samples. The final kinship matrix was then

multiplied by two and scaled by subtracting the mean relatedness and dividing by the

standard deviation to produce the final genomic relatedness matrix (GRM). Using this GRM,

cryptically related individuals (r ⩾ 0.025) were removed from the analysis to estimate h2
SNP.
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4.2.4 Cluster analysis

To better understand if there is any inherent structure in the heterothermy data, a k-means

cluster analysis was performed. As clustering algorithms will find structure in even a uniform

distribution, the clustering tendency of the data was first assessed to ensure any groups

found are not an artefact of the algorithmic clustering process. Hi, mb and BMRmin were

first standardised by subtracting the mean and dividing the standard deviation to allow

comparisons with a null dataset. A random uniform distribution was then drawn within the

range of the true data set for each variable to generate the null. The Hopkins statistic assesses

cluster tendency by calculating the probability a data set is drawn from a uniform distribution

with no inherent structure [22, 141], and was calculated for both the null and heterothermy

data using the get_clust_tendency function of the FACTOEXTRA package in R V4.0.2

[160]. A value close to 0.5 indicates no structure is present, and values close to one indicates

strong clustering tendency. K-means clustering was then performed for K = 2-10 using the

kmeans function, with the nstart argument set to 25 random initial cluster centres. The

optimal number of clusters were finally chosen based on a combination of visual assessment

and calculation of 30 different indices using the NbClust function of the R V 4.0.2 package

NBCLUST [57].

4.3 Results

Overall, 34, 31 and five mice were measured for Hi between 2016-2018 respectively (table

4.1). This included 24 females and 46 males. Six adults and 13 juveniles were also measured,

however, a further 51 mice were of indeterminate life stage. As there is a possibility that life

stage could affect the estimate of Hi, uncertain age classes were treated as missing data in

all analyses in this chapter. All mice measured for Hi were also measured for BMRmin (see

section 4.3.4 for full results on BMRmin).
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Trapping
year Adult

Maybe
adult Juvenile

Maybe
juvenile

Unknown
age Female Male

2016 4 7 10 3 10 11 23
2017 1 6 3 2 19 10 21
2018 1 1 0 1 2 3 2
Total 6 14 13 6 31 24 46

Table 4.1 Breakdown of mice measured for Hi.

4.3.1 Variation in heterothermic responses

Tb-i varied substantially when mice were torpid during the fasting experiment, and was

significantly lower than Tb-mod by 1.21oC - 14.77oC (paired Wilcoxon test: V = 43,071,

p < 0.0001, figure 4.3a). As a result, Hi also varied considerably from 0.97oC - 6.48oC,

and was negatively correlated with mb (T68 = −3.36, p = 0.001, ρ = −0.38, 95%CI =

−0.56 -−0.16, figure 4.3b). Mass-adjusted BMRmin was also found to negatively correlate

with mass-adjusted Hi (T291 = −6.22, p ≤ 0.0001, ρ = −0.30, figure 4.4). As adult A.

flavicollis can vary in mb and size markedly, age classes can be very difficult to determine

in the field. Only 19 out of 70 mice have been confirmed as adult or juvenile (n = 6 and 13

respectively), and mass corrected Hi did not differ between them due to small sample size

(T14.5 = 0.58, p = 0.57).

Hi was significantly lower in males than females even when corrected for mb (µm =

2.06oC, sd = 0.85oC,µ f = 2.80oC, sd = 1.23oC; T64.7 = 8.48, p ≤ 0.0001). This indicates

heterothermic responses are sexually dimorphic in A. flavicollis. Males were also considerably

heavier than females (µm = 42.7g, sd = 5.43g, µ f = 33.6g, sd = 3.51g; T64.7 =−8.48, p ≤

0.0001, figure 4.3b). However, there was no difference in the proportion of mb lost during

torpor between males and females suggesting both sexes bear the same cost (Wilcoxon test

W = 663, p = 0.17). Analysis of variance also shows Hi did not differ between trapping

years whether mass corrected or not (F2,67 = 1.76, p = 0.18 and F2,67 = 0.14, p = 0.86

respectively).
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Fig. 4.4 Relationship between mass adjusted Order-Norm transformed Hi and mass adjusted
BMRmin. Blue and red denote females and males respectively.

4.3.2 Clustering analysis

The Hopkins statistics showed a high cluster tendency for the heterothermy dataset and, as

expected, not for the null (0.795 and 0.500 respectively) indicating that real inherent structure

exists in the data. K-means cluster analysis revealed two distinct groups in the morphospace

indicating the presence of thermal specialists and generalists in the population (figure 4.5).

K = 2 was chosen for the optimal number of clusters as the indices generated by NbClust

did not give any clear indication for an optimum (see appendix A.3, table A.4 for details).

Visual assessment also indicated a loss of clear structure in the dataset at K = 3-10, shown by

large amounts of overlap in the clusters (see appendix A.3, figure A.1 for details). Principal

components one and two explained 86.3% of the variation in the data overall, and thermal

specialists included 192 measures from 36 males, and 15 measures from 3 females. Thermal
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generalists on the other hand, included 107 measures from 23 females, and 70 measures

from 17 males. This shows overall that males are more often thermal specialists and females

are more often thermal generalists, though the sex of the individual is not preclusive to a

particular thermal strategy.
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Fig. 4.5 K-means cluster analysis of thermal strategy for K = 2. Pink and blue represent
thermal generalists and specialists respectively.
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4.3.3 Repeatability and heritability of heterothermic responses

To calculate τ , equation 4.3 was simplified based on the significance of the terms. As the age

of each mouse was already found to be non-significant, it was removed from the model. To

estimate the variance of random effects, the modelling approach explores the parameter space

until the best estimate is found. However, if not enough variation exists in the data, these

parameters are unable to escape from the boundary of the parameter space and the resulting

estimates are unreliable. Ybirth, Ytrapping and S were therefore also removed as the estimated

variance was zero. Hi was found to be highly repeatable in the population as a whole, and

for each sex individually (τ = 0.68-0.84, 95% CI = 0.61-0.86, table 4.2). Pairwise genomic

relatedness was low among phenotyped samples overall (µr =−0.014, sd = 0.038; figure

4.6). However, 73 pairs of individuals were highly related (r ⩾ 0.025), 19 pairs of which

were first or second degree relations (r = 0.2 - 0.55 respectively). Once these highly related

individuals were removed, 24 mice were retained for estimating h2
SNP, and heterothermic

responses were found to be highly heritable in the population as a whole, and for each

sex individually (h2
SNP = 0.57-0.87, 95% CI = 0.33-0.91; table 4.2). h2

SNP was found to be

lower in males compared to females, though this difference is not statistically significant as

confidence intervals overlap.

Sex Fixed effects τ 95% CI h2
SNP 95% CI

Overall
mb +Sex+BMRmin 0.69 0.61-0.74 0.70 0.58-0.79

mb +Sex 0.74 0.68-0.78 0.76 0.65-0.82
mb 0.75 0.69-0.80 0.78 0.66-0.83

Male
mb +BMRmin 0.71 0.64-0.76 0.61 0.39-0.73

mb 0.78 0.70-0.83 0.64 0.43-0.75

Female
mb +BMRmin 0.76 0.63-0.81 0.80 0.52-0.89

mb 0.79 0.68-0.84 0.88 0.68-0.93

Table 4.2 The repeatability and heritability of Hi calculated based on the inclusion of three
fixed effects. Models were calculated for both sexes separately and together.
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Fig. 4.6 Pairwise genomic relatedness among all phenotyped samples. Lighter blue indicates
greater genomic relatedness.

4.3.4 Basal metabolic rate in a wild population

BMRmin was measured for all 70 mice phenotyped for heterothermic responses in win-

ter/spring 2016-2018. 19 of these were also trapped and measured in autumn 2016-2017.

Overall, BMRmin varied between 0.56-1.69mW (µ = 0.94mW, sd = 0.23mW , figure 4.7a).

As it was significantly correlated with mb (ρ = 0.32,T87 = 3.16, p < 0.01; figure 4.7b),

BMRmin was corrected for mb in subsequent analyses. There was a significant difference

between males and females for mass corrected BMRmin (µ f emale = −0.24mW , sd f emale =

0.20mW , µmale = 0.14mW , sdmale = 0.29mW ; T84.1 =−7.27, p ≤ 0.0001), though did not

differ between adults and juveniles due to small sample sizes (T14.9 = 1.28, p = 0.22). Linear

regression showed mb corrected BMRmin did not differ between 2016-2018, but was signifi-

cantly higher in winter/spring compared to autumn (table 4.3, figure 4.8). Despite the broad

distribution of BMRmin in the population overall, and 19 individuals having been measured in
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both autumn and winter, repeatability cannot be calculated as the estimated within-individual

variance was too low (VI ∼ 0) meaning it cannot be partitioned. However, large standard

errors due to differences between seasons indicate that repeatability is expected to be very

low (figure 4.7a).

Estimate Std. error T p
Intercept -0.16 0.08 -2.13 0.04

Trapping year 2017 -0.06 0.07 -0.95 0.34
Trapping year 2018 -0.12 0.15 -0.81 0.42

Season winter/spring 0.25 0.08 3.06 <0.01

Table 4.3 Table of coefficients for linear regression between mass-corrected BMRmin, trapping
year and trapping season. The baseline intercept represents autumn 2016.
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transformed and colours represent trapping seasons.
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4.4 Discussion

Previous studies have shown that heterothermic responses form a continuum of highly plastic

phenotypes [114], and in response to food deprivation is also highly repeatable [32, 76].

This study highlights that heterothermic responses, are not only repeatable, but also highly

heritable, variable within the population, and could be subject to natural selection.

4.4.1 Maintenance of variation in heterothermic responses

Phenotypic plasticity has long been suggested as a precursor to natural selection in a variable

environment [67]. For example, heterotherms like A. flavicollis are able to respond to stressful

changes in the environment by lowering their body temperature and metabolic rate, enter into

a torpid state and reduce their energy budget by as much as 65%, thus maximising survival

probability until conditions are once again favourable [243]. This ensures a balance between

energy acquisition and expenditure to avoid a deficit, and allows individuals to maintain a

metabolically optimal body temperature when active (∼ 37oC), provided sufficient resources

are available [291]. In highly seasonal, temperate forests such as in Białowieża, harsh winter

conditions can cause temperatures to drop as low as −20oC and snow depth can be over

10cm [148]. Food quickly becomes scarce, and winter mortality in A. flavicollis can reach

86% [148, 269]. This should impart an extremely large directional selection pressure on the

population for any phenotype which can facilitate winter survival. The heterothermy index

(Hi) in this case, should be skewed towards higher values if deeper torpor increases survival

by reducing individual energy budgets, and the response to selection is strong. The reality is

quite different however, and the distribution in heterothermic responses has previously been

described as a phenotypic continuum within a range of values, indicating the processes that

maintain such variation are complex [32, 35]. Unfortunately, the heterothermy continuum

is often described based on measures such as Hi, which rely on differences in Tb only, and

often cannot differentiate between subgroups within the continuum [290, 132]. Inclusion of

multiple variables to describe heterothermic responses, as done by Ruf and Geiser [290] and



122 The heritability of thermal strategies in A. flavicollis

this study, indicates that heterothermy is a structured phenotype, that is constrained by these

multiple interacting and co-variable, secondary phenotypes.

One theory proposes that the large degree of heterothermic variation exists due to con-

straints by individual body mass (mb) [130, 168, 188, 337]. For example, Kobbe et al. [168]

found that both the duration and frequency of torpor bouts increased in mouse lemurs (Mi-

crocebus griseorufus (Kollman, 1910)) when an individual’s body condition was higher

prior to entry. Lemurs were also found to lose a greater proportion of their mb per day as

more time was spent torpid, and the an individual is more likely to enter into deeper torpor

when body condition is better, and mb is higher [337]. This suggests the benefits of deeper,

more frequent torpor bouts are conditional on the presence of sufficient fat reserves, and

there may otherwise be a large cost for higher Hi [177]. Such phenotypic plasticity leads to

the presence of multiple intermediate phenotypes from short bouts of daily torpor to full,

long-term hibernation lasting multiple weeks within a single species. In agreement with

a study by Vuarin et al. [337] on grey mouse lemurs, it appears heterothermic responses

in A. flavicollis are also constrained by mb. However, the trend is reversed where heavier

individuals have a lower Hi, and unlike mouse lemurs, they appear to suffer no immediate

cost for torpor when measured as the proportion of mb lost during the fasting experiment.

Furthermore, and contrary to the existence of intermediate phenotypes in other species,

patterns of two distinct thermal strategies emerge in A. flavicollis.

The presence in the population of thermal generalists, which are better able to respond to

stressful environmental conditions and enter a deeper torpid state (higher Hi), and thermal

specialists, which are more likely to remain at or near normothermic conditions (lower Hi)

better explains the patterns found here. Heterothermic responses in A. flavicollis cluster

well in the morphospace indicating two distinct thermal strategies exist in the population.

There is no evidence based on the Hi data presented here to suggest environmental variation

drives this variation, and it appears rather, the presence of two strategies is driven by multiple

interacting phenotypes (mb, BMRmin and sex in this study). This offers a far more complex

picture of heterothermy than can be simply attributed to differences in mb alone. I propose the

description of a heterothermy continuum may be incomplete for species which exclusively
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enter daily torpor such as A. flavicollis, and that heterothermy in the wild may be sexually

as well as phylogenetically constrained, suggesting the variation in heterothermic responses

may be unique to each species [35, 290]. Few low resolution measurements and high levels

of co-variance with continuous variables such as mb likely hid these patterns in previous

studies, and must be accounted for in future.

Schulte-Hostedde et al. [299] showed in three small rodent species that males have

proportionally higher muscle mass than females, which may improve mate searching and

guarding capacity. However, larger size and a higher proportion of muscle tissue requires

more energy to maintain as shown by higher BMRmin in A. flavicollis, and activity patterns

must therefore also remain high to ensure sufficient foraging effort for self maintenance. As

daily heterotherms rely primarily on consistent food sources rather than their minimal fat

reserves for their primary source of energy, deep torpor may not be beneficial in the heavier

mice due to a shift in catabolic processes from lipid to protein metabolism [171]. However,

some heavier female A flavicollis also appear to be more similar to males and vice versa in

terms of their thermal strategy, suggesting the effect of sex is likely secondary to mb. The

interaction of sex and mb together may therefore ultimately determine the phenotype of each

individual within the population.

Androgenisation presents one mechanism to explain how these patterns arise. Greater

ano-genital distance, a proxy for higher individual testosterone production in many rodents

including Apodemus sp., strongly correlates with body size in both sexes [43, 120]. A study

by Cantoni et al. [43] found in California mice (Peromyscus californicus) that females born

to litters with higher proportions of males were masculinised (larger body sizes and greater

ano-genital distances), and close proximity to male foetus’ in utero is known to result in

more masculine physiological, behavioural and morphological phenotypes in adulthood,

compared to females surrounded by other females [336]. Increased testosterone exposure in

perinatal females is also known to masculinise regulatory centres of the brain such as the

hypothalamus, which has direct role in torpor expression by regulating T3 thyroid hormone

levels [23, 71, 72, 121, 237, 254]. Furthermore, exogenous testosterone administration

results in the complete inhibition of daily torpor in Siberian hamsters [254, 289]. Given the
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importance of hypothalmic function and testosterone in growth, development and torpor

[72, 62, 134, 135], larger female A. flavicollis shown here to have a lower Hi similar to the

average male could therefore adopt a more specialist, "male" thermal strategy if they too have

been exposed to higher intrauterine testosterone levels. This suggests epigenetic modification

in the early stages of development could play a larger role in determining thermal life-history

strategies than previously thought.

Maintaining these higher body masses and entering prolonged torpor carries a large

amount of risk in A. flavicollis. For example, as Tb during torpor (Tb-i) is a function of Ta in

species with a high surface area:body mass ratio, high thermal inertia is needed following long

torpor bouts to passively rewarm when an individual is larger/more massive [113]. Inability

to do so can subsequently cause fatal hypothermia as arousal becomes increasingly difficult

due a limited capacity for non-shivering thermogenesis [32, 133]. Higher Tb-i and lower Hi

in males and large females therefore allows a return to an active phase more easily following

torpor, as they are closer to their normothermic condition, thus reducing this risk. The cost

of torpor is still considerable, however, and although there appears to be no difference in the

immediate costs of daily torpor between the sexes here [337], its effect on long term fitness

is unknown. Male and large female A. flavicollis may use torpor as a secondary, "emergency-

use" strategy which trades-off between conserving energy and its associated costs, when

nearing their operational thermal limits, or starvation [76, 136, 177, 245, 298, 344]. The

benefits of continued foraging may be greater than the benefits of torpor for these thermal

specialists [291], and the observed variation in A. flavicollis may then be a result of stabilising

selection towards intermediate-low values for thermal specialists that are more likely to be

male, and neutral selection in thermal generalists that are more likely to be female. Future,

more long term studies observing a wider range of phenotypes could uncover selective

differences in heterothermy in a wild population, and elucidate the long term benefits and

costs of daily torpor on fitness.
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4.4.2 Seasonal variation in BMR

BMRmin was found to vary significantly between mice trapped in autumn versus winter/spring

in Białowieża Forest, reflecting short term adaptability to environmental variation. This has

also been demonstrated in a number of free-living mammals, birds, fish, and invertebrates,

as well as humans [146, 175, 186, 244, 283, 346]. For example, Zub et al. [359] also found

in a wild population of weasels (Mustela nivalis) from Białowieża forest, that variation

in resting metabolic rate (RMR) was partially explained by the variation in an individuals

permanent environment, which was highly heritable (0.40-0.54). However, permanent

environmental effects were small, and did not lower the estimates of additive genetic variance

considerably when included in models to estimate the heritability of RMR. As metabolic

rate, whether measured as BMRmin or RMR, is a complex and highly plastic physiological

trait correlated with both environmental variables such as photoperiod, temperature and food

availability, as well as secondary phenotypes such mb, age and sex [223], it is surprising

that Zub et al.’s estimates of the heritability of RMR are so high given weasels were not

allowed sufficient time to acclimatise to a laboratory environment as in previous studies with

similarly high estimates [89, 169, 242, 293]. It could then be argued that high estimates of

heritability, when the environment is not strictly controlled for, could then be an artefact

of behavioural syndromes and individual stress responses, which may bias estimates of

metabolic parameters [14, 44, 179]. Though, it must be noted others have suggested BMR

can still evolve independently of physiological and behavioural traits [34, 218]. Unfortunately,

low inter-individual variation in BMRmin due to low sampling resolution here meant τ and

h2
SNP could not be estimated, thus making a direct comparison with the heritability of

metabolic parameters from these studies difficult.

In addition to the potential functional link between behaviour and metabolism, one

must also consider whether inter-individual variation in metabolic rate is determined by

life history strategy. For example, Auer et al. [16] show in brown trout that individual

metabolic responses to variation in food availability was markedly different among fish, and

consequently affected growth rates; fish that increased metabolic rates the most also grew

the fastest in response to greater food availability, but then grew slower than fish whose
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metabolic rate was less labile when food was not available ad libitum. This suggests the

existence of two distinct strategies similar to that found in heterothermic responses in A.

flavicollis here, and the choice of strategy could affect survival as mice able to mature quicker

while food is plentiful in the autumn, may then be advantaged as they have a greater foraging

capacity during winter [120]. This could explain why mice caught in autumn were on average

smaller/lighter than those caught in winter/spring (µaut = 34.1g, sd = 7.23g, µwint/spr =

39.2h, sd = 6.58; T26.6 = −2.79, p = 0.01), as a greater proportion of mice caught in the

autumn may still be growing when food is more plentiful compared to individuals caught in

winter/spring which may have matured quickly. This assumes however, that the probability

of catching large or small mice in winter/spring is a function of survival probability which

may not be the case, and increased trapping effort in future would better elucidate the patterns

in the seasonal variation of BMRmin.

4.4.3 Heritability of heterthermic responses

Repeatability is often considered the upper limit of heritability in evolutionary studies [98].

By this definition, true narrow-sense heritability (h2), which accounts for variation resulting

from additive genetic effects, should be lower than the repeatability of that trait, τ (formula

4.7), as the proportion of the variation attributed to genetic effects is lower than the overall

individual phenotypic variance (VI in formula 4.2).

h2
SNP ≤ h2 ≤ H2

SNP ≤ τ (4.7)

h2
SNP, which is the phenotypic variance explained by common SNPs, should be lower still as

not all SNPs responsible for the observed phenotypic variation are captured during sequencing

due to sequencing error and allele dropout resulting from the characteristics of the chosen

sequencing protocol [11].

Interestingly, h2
SNP was estimated as higher than τ in this study when estimated for both

sexes together, and for females alone. This could be due to some heteroskedasticity and

deviation from normality of the residuals in the models (appendix A.3, figures A.2 - A.15,
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residuals vs. fitted plots, scale-location plots and Q-Q plots), though, as this represents only a

small number of measurements, its effect is likely to be small, and as shown in table 4.2, the

difference between τ and h2
SNP is not significant as their confidence intervals broadly overlap.

Under specific conditions, τ can underestimate the upper limit of h2
SNP [88]. For ex-

ample, calculating τ assumes that measures of fixed effects are independent and free from

multi-collinearity. Although multi-colinearity was low between Sex, mb and BMRmin here

(appendix A.3, figures A.2 - A.15, plots of variance inflation factors for multi-colinearity),

unmeasured secondary phenotypes could also correlate with these fixed effects and Hi.

Male mice for example, can be heavier than females due to a higher proportion of muscle

mass [24]. However, mice may also be heavier if they have a high proportion of body fat

which was not measured in this study. As the metabolic rate can vary between tissue types

[93, 109], large variation and multi-colinearity of unmeasured phenotypes such as body fat

content/body condition with sex, mb, BMRmin or Hi could non-randomly affect the estimates

of the repeatability and heritability of heterothermic responses.

Environmental variation could also affect phenotypic variation [88]. Micro-environmental

differences were strictly controlled however, so short term environmental variation on each

mouse should not bias the estimates for τ or h2
SNP. This is supported by non-significance in

mass-adjusted Hi among trapping years, indicating short-term environmental fluctuations

are unlikely to influence heterothermic responses. However, elements of each individuals

permanent environment can have lasting effects on an individuals phenotype. One example,

already mentioned in section 4.4.1, is the maternal effect of intrauterine testosterone exposure

and masculinisation of females. Another example is the effect of nutrition on height in

young and adolescent humans, where poor nutrition early in life was found to cause a

20cm difference in height among adults [66]. The latter could be due to a strong genotype-

environment interaction and differences in sensitivity to environmental variation. Similar

interactions could also occur in A. flavicollis and affect Hi.

Such complex interactions between multiple variables when estimating heritability are

considered a violation of the assumption of independence for each factor. This assumption is

made to allow the estimation of variance components, and differentiate between true additive
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genetic variance, dominance effects and environmental variability. The reality however, is

that highly complex interactions can occur between single Mendelian alleles, multiple genes

and the environment. Estimating variance components accurately would therefore require an

infinite number of partitions which is simply impossible. The estimate of h2
SNP given here, is

therefore an over-estimate of the true heritability of heterothermic responses, and explains

why repeatability may not be its upper limit here. This over-estimation is further compounded

by the low power of this study to accurately estimate dominance effects. However, given

relatedness was taken into account to remove as much common environmental effects as

possible, h2
SNP was still high, and indicates that heterothermic responses could still be subject

to natural selection. These estimates of heritability could then be considered a ceiling based

on the data presented here, and it is clear that the heterothermic responses of each individual

have a strong genetic component, though to what degree still remains unclear. Increased

sampling effort in future would allow further variance partitioning to estimate how much

variation is due to dominance effects, and thus provide a more accurate estimate of h2
SNP.



Chapter 5

Conclusions and future directions

5.1 The genetic revolution brings us to the wild frontier of

model organism research

Since Darwin and Wallace first embarked on their expeditions to study natural variation in

the wild, scientists have attempted to uncover the rules which govern how such vast amounts

diversity are maintained. It is via model organisms such as Drosophila melanogaster, Mus

musculus and Arabidopsis thaliana, that we can test our hypotheses in simplified laboratory

studies. Using such models, we have since discovered: how selection can drive phenotypic

change [48], how model populations can diverge [85, 167], and even how entire model

ecosystems can evolve in response to rapidly changing environmental conditions [107, 108].

Despite the power and many advantages of these studies [169], laboratory model systems are

a product of their artificial environment often resulting in very different conclusions from

studies of natural/wild study systems [319]; to quote Professor Sarah M. Farris, they "provide

an extremely high resolution picture, but a very narrow field of view".

Early population genetics research was limited to studies of phenotypic variation con-

trolled by segregating Mendelian loci in laboratory strains of model organisms (e.g. recessive

lethal mutations in Drosophila [195]). Although there was a general consensus on the effect

these loci have on phenotypic variation, population geneticists struggled to interpret their
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observations at the level of the gene due to technological limitations and low resolution.

Consequently, attempts at high-resolution studies of population genetics were almost aban-

doned [190]. As molecular techniques became more sophisticated however, the discovery of

highly polymorphic markers such as microsatellites and single nucleotide polymorphisms

re-invigorated the field, and biologists began searching for more natural models in an attempt

to place them in the context of their natural history [6].

Modern techniques such as RAD-seq are now routinely used to produce high-density

marker panels for almost any species, without a priori knowledge of the genome [20]. This

thesis has demonstrated the power of RAD-seq to conduct population genomics research in a

natural system.

5.1.1 On the power and pitfalls of RAD-seq. Methodological consider-

ations for a new model system

The versatility of RAD-seq has made it increasingly popular among ecological and evolution-

ary biologists working in non-model organisms [51, 78, 222]. The scientific community has

therefore attempted to extensively validate the protocol [12, 197, 272], and many iterations

have since followed to address its limitations [11]. For example, although the original single-

digest RAD-seq can provide a cost effective solution for large scale genomics research, it still

requires an expensive sonicator to further fragment restricted DNA. Furthermore, it offers

little control over the final library sizes, and requires careful refinement to ensure the desired

proportion of the genome is represented [128]. Double-digest RAD-seq was developed

specifically to improve upon this, though it lacked the ability to identify PCR artefacts such

as duplicate and chimeric reads. It also did not have the capacity to multiplex large numbers

of samples to reduce costs further [106, 261]. The modified quaddRAD protocol used to

prepare libraries here, has now resolved these issues by using a quadruple indexing system to

allow up to 192 samples on a single sequencing lane, whilst also allowing to identify PCR

artefacts [106, 213].
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Despite these clear advantages, particular care must be taken when designing any RAD-

seq experiment. For example, although the quadruple indexing system allows for multiplexing

192 samples, such a large number on a single sequencing lane is ill-advised as the mean

per-sample coverage decreases, and could result in allele imbalance and dropout [312]. The

choice of restriction enzymes is also critical to ensuring minimal bias in the final libraries

[75], and in silico restriction digestion as conducted in chapter 2, is therefore an invaluable

method to predict the number and distribution of loci before commencing the experiment

[187, 332]. Even if conducted in relatively phylogenetically distant species as may be

required when working de novo, simulated RAD-seq experiments can still provide useful

insights for planning the protocol.

Although RAD-seq has, to some degree, democratised the field of population genomics

[51], the design of any experiment must always be considered in the context of the study

aims and study system. For example, despite the order of magnitude fewer loci obtained

from amplicon-based markers such as microsatellites, they still remain a viable option for

the many study systems in which such resources are already available, and in which the

analyses do not require high-density loci [103]. Pedigree analyses are one example where

microsatellites can perform as equally well as SNPs in large populations, with significantly

fewer loci [104, 196]. However, in study systems where heterozygosity is low, as is expected

in studies of inbreeding for conservation genetics, microsatellites may not have the resolving

power to discern familial relationships with high confidence [184]. Furthermore, genomic

resources are often limited in rare and non-model species, making microsatellite marker

systems expensive and laborious to develop [103, 138].

Although microsatellite markers have previously been used in Apoedmus [123, 129, 204,

203], they lack the necessary power for high resolution studies of allele frequency dynamics

and selection as conducted in chapter 3. There of course remains the possibility that large

numbers of SNPs may exhibit high levels of linkage disequilibrium due to the choice of

enzyme combinations, which may then limit the power to detect selection [197]. However,

strict quality control procedures ensure that even with some linkage disequilibrium, loci under

selection can still be identified [51, 140, 286]. The result in this study, is a clear signal of
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selection despite high levels of drift, inbreeding and migration. RAD-seq has therefore proven

itself once again, as an incredibly powerful tool for ecological and population genomics

research.

5.2 Is another model system needed? A Comparison with

other classical models

The famous ungulate model systems of the Scottish islands such as Isle of Rum red deer

and Soay sheep on St Kilda, are a classic example of already well established free-living

models for ecological and population genomics research. Until its cessation in 1972, the red

deer population of the Northern Block on Rum was intensively managed (overwinter feeding

by deer managers), and actively culled [260]. The population has since grown to over 900

individuals, though its density appears to be no different from other managed populations still

present on the island [260]. Thus, the Isle of Rum red deer form an excellent model system

of the ecological and evolutionary dynamics in a stable population which has experienced

ecological release in the past. Furthermore, the differences in environmental sensitivities of

stags and hinds have made sexual dimorphism and fitness effects in the wild a central theme

among the hundreds of published articles about the population [52, 63, 154].

With the exception of the ease of trapping and transportablity to conduct measurements

in mice, chapters 3 and 4 demonstrate studies of sexually dimorphic phenotypes and allele

frequency dynamics in A. flavicollis are comparable to other model systems [127, 153, 60].

For example, the Soay sheep of St Kilda also exhibit population cycles which are determined

by the severity of winter conditions [68, 269]. However, due to the considerably shorter

generation time of A. flavicollis, the genomic signature left by these population maxima and

minima is highly accelerated (detectable in just three years here). Longer term studies may

then reveal evolutionary trends which would otherwise take considerably longer to observe in

models of large herbivores. It is clear the determinants of the dynamics of all these systems

including A. flavicollis appear to be dictated by multiple factors: winter carrying capacity,

age, sex, food availability and stochasticity [68, 127, 269].
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Unlike the allopatric ungulate populations however, free-living populations in unbounded

habitats such as Białowieża Forest are not restricted by the study site or island. Furthermore,

many species in nature are not monogamous like the Florida Scrub Jay [60], as is evident

in chapter 3. Wild pedigrees in a small, polygamous species such as A. flavicollis, are thus

impossible to verify with field observations. The results therefore incorporate considerable

amounts of uncertainty and missing data. Though, with advancements in molecular pedigree

reconstruction and statistical genetics, this limitation can be accounted for successfully as

was done here using SEQUOIA [142]. Consequently, and despite the effects of gene flow from

neighbouring (sub-)populations, the signatures of drift and selection are both clearly evident,

and likely act in conjunction to stabilise the population. This suggests A. flavicollis has

an extraordinary resilience to perturbation, and can adapt to persist under harsh conditions.

From a conservation perspective, the population from Białowieża Forest may then also offer

insights into the effects of inbreeding and genetic rescue in declining populations. The model

cannot then be considered atypical of other natural populations without further research. The

genus Apodemus is therefore an excellent new model system to complement those which are

already established, and should be considered by researchers in future to conduct ecological

and population genomics in the wild.

5.3 Summary of findings from a new model system

5.3.1 The importance of scale in evolutionary studies

I have shown here the importance of scale in evolutionary genomics studies, where processes

at the individual and population level can reveal contrasting patterns. For example, as

expected in a population which experiences severe population crashes due to harsh winter

conditions, many A. flavicollis in Białowieża National Park do show signs of inbreeding and

reduced genetic diversity. Furthermore, some individuals appear to be making considerably

greater genetic contributions to the next generation than others. We can then predict, that at

a population scale, allele frequencies should be changing considerably due to genetic drift

following population declines. However, on average, inbreeding is low, genetic diversity is
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high, and allele frequencies are as expected under Hardy-Weinberg equilibrium. Although

some allele frequencies are changing considerably, the majority remain largely stable. This

is a pattern which is indicative of a panmictic population experiencing large amounts of

migration from surrounding areas, which could act to rescue local (sub-)populations following

the winter decline. A. flavicollis could therefore have a very large effective population size,

and may be considered as a meta-population.

Confirming this pattern of decline and rescue in future could involve sampling along

a large transect (> 500km) during multiple seasons and years, to reveal both local and

population level responses to the periodicity in population size observed in Białowieża

National Park [269]. This could also uncover a pattern of isolation by distance between

(sub-)populations over short time periods, and confirm whether the founder/flush model can

explain the genetic variation and allele frequency dynamics described here [192, 310].

5.3.2 A phenotypic continuum only partly explains the natural varia-

tion of heterothermic responses in A. flavicollis

The variability in genetic and genealogical contributions to future generations also suggests

that phenotypes which increase the probability of survival could be maintained in the pop-

ulation due to natural selection. For example, A. flavicollis, as a heterothermic species, is

able to minimise its energy budget by entering into a temporarily torpid state when food

is restricted. These heterothermic responses were found to be highly heritable here, and

previous studies have described a continuum of phenotypes that are present in the popula-

tion [32]. This suggests that a higher heterothermy index may provide some evolutionary

advantage for individuals able to more efficiently allocate resources to self maintenance

when conditions are harsh. However, a phenotypic continuum only partially explains the

variation in heterothermy, which appears to be stratified into two distinct thermal strategies

in A. flavicollis.

Multiple interacting phenotypes, which account for much of the phenotypic variation

of heterothermic responses, could minimise the physiological cost associated with entry
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into deep torpor by constraining heterothermic responses [15], and are largely responsi-

ble for which thermal strategy is undertaken. The two strategies are: thermal specialists,

characterised by larger/heavier mice that are mostly, but not exclusively, male, and thermal

generalists, characterised by smaller/lighter mice that are mostly, but not exclusively, female,

and appears to best explain the majority of the variation of heterothermy in the population.

As heterothermic responses are highly heritable, the presence of these two strategies suggests

natural selection may act to stabilise thermal specialists towards intermediate-low values of

the heterothermy index, but may be acting neutrally to allow greater phenotypic plasticity in

thermal generalists. This should reduce the costs associated with deep torpor and high body

mass in thermal specialists, and minimise the energy deficit in lighter thermal generalists.

Future work on thermal strategies and torpor in A. flavicollis, should concentrate on

phenotyping enough individuals for multiple traits including heterothermic responses in the

population, to ensure sufficient power to conduct a genome wide association study [335].

The model should take into account any correlation between these phenotypes [81], and

specifically test for sexual dimorphism which appears to be responsible for much of the

phenotypic variation. If alleles are found to segregate in sexually divergent phenotypes,

validation could uncover the differences in complex molecular mechanisms involving signifi-

cant genetic, hormonal and epigenetic control of torpor between the sexes. This would then

link molecular, individual and population level processes responsible for natural variation in

fitness and torpor.
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[220] McCartney-Melstad, E., Gidiş, M., and Shaffer, H. B. (2019). An empirical pipeline for
choosing the optimal clustering threshold in radseq studies. Molecular ecology resources,
19(5):1195–1204.

[221] McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A.,
Garimella, K., Altshuler, D., Gabriel, S., Daly, M., et al. (2010). The genome analysis
toolkit: a mapreduce framework for analyzing next-generation dna sequencing data.
Genome research, 20(9):1297–1303.

[222] McKinney, G. J., Larson, W. A., Seeb, L. W., and Seeb, J. E. (2017). Rad seq provides
unprecedented insights into molecular ecology and evolutionary genetics: comment on
breaking rad by lowry et al.(2016). Molecular ecology resources, 17(3):356–361.

[223] McNab, B. K. (2002). The physiological ecology of vertebrates: a view from energetics.
Cornell University Press.

[224] McNab, B. K. (2007). The evolution of energetics in birds and mammals la evolución
de la energética en aves y mamíferos. The quintessential naturalist: honoring the life and
legacy of Oliver P. Pearson, 134:67.

[225] Mehrotra, S. and Goyal, V. (2014). Repetitive sequences in plant nuclear dna: types,
distribution, evolution and function. Genomics, proteomics & bioinformatics, 12(4):164–
171.

[226] Melo, A. T. and Hale, I. (2019). ‘apparent’: a simple and flexible r package for accurate
snp-based parentage analysis in the absence of guiding information. BMC bioinformatics,
20(1):1–10.

[227] Melvin, R. G. and Andrews, M. T. (2009). Torpor induction in mammals: recent
discoveries fueling new ideas. Trends in Endocrinology & Metabolism, 20(10):490–498.

[228] Michaux, J., Chevret, P., Filippucci, M.-G., and Macholan, M. (2002). Phylogeny
of the genus apodemus with a special emphasis on the subgenus sylvaemus using the
nuclear irbp gene and two mitochondrial markers: cytochrome b and 12s rrna. Molecular
phylogenetics and evolution, 23(2):123–136.

[229] Michaux, J., Libois, R., and Filippucci, M. (2005). So close and so different: com-
parative phylogeography of two small mammal species, the yellow-necked fieldmouse
(apodemus flavicollis) and the woodmouse (apodemus sylvaticus) in the western palearctic
region. Heredity, 94(1):52–63.

[230] Michaux, J., Libois, R., Paradis, E., and Filippucci, M.-G. (2004). Phylogeographic
history of the yellow-necked fieldmouse (apodemus flavicollis) in europe and in the near
and middle east. Molecular phylogenetics and evolution, 32(3):788–798.

[231] Miller, C. R., Joyce, P., and Waits, L. P. (2002). Assessing allelic dropout and genotype
reliability using maximum likelihood. Genetics, 160(1):357–366.

[232] Milligan, B. G. (2003). Maximum-likelihood estimation of relatedness. Genetics,
163(3):1153–1167.



154 References

[233] Mills, J. (2005). Regulation of rodent-borne viruses in the natural host: implications
for human disease. Infectious diseases from nature: mechanisms of viral emergence and
persistence, pages 45–57.

[234] Mitchell, F. J. and Cole, E. (1998). Reconstruction of long-term successional dynamics
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Appendix A

Due to the length and size of many of the supplementary materials for this thesis, they have

been included in a GitHub repository at https://github.com/raval91/Aflav_thesis_supp.git.

Below is a summary of the materials contained within it, where all filenames hyperlink

directly to the specified file or directory in the digital version of this thesis. For a detailed

description of the tables, column names and the information contained with them, please see

the README.md file, also in the GitHub repository.

A.1 Chapter 2

A.1.1 Code

This directory contains scripts used in chapter 2 to optimise STACKS V2.3D parameters to

genotype A. flavicollis samples.

• denovo_map_parameter_optimisation.sh optimised parameters to genotype sam-

ples using the denovo_map.pl pipeline of STACKS 2.3D.

• stacks_data_extraction.sh extracts the relevant metrics from Stacks 2.3d to opti-

mise parameters

• denovo_pipeline.sh runs denovo_map.pl on the optimised parameter combination

and prepares data for pedigree construction

https://github.com/raval91/Aflav_thesis_supp.git
https://github.com/raval91/Aflav_thesis_supp/blob/main/README.md
https://github.com/raval91/Aflav_thesis_supp/tree/main/chapter2
https://github.com/raval91/Aflav_thesis_supp/tree/main/chapter2/code
https://github.com/raval91/Aflav_thesis_supp/blob/main/chapter2/code/denovo_map_parameter_optimisation.sh
https://github.com/raval91/Aflav_thesis_supp/blob/main/chapter2/code/stacks_data_extraction.sh
https://github.com/raval91/Aflav_thesis_supp/blob/main/chapter2/code/denovo_pipeline.sh
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• M.musculus_insilico_digestion_parallel_SbfI_MseI.R runs an in silico re-

striction digest of a reference genome and outputs various plots

• stacks_metrics.R plots the stacks metrics to assess which ones are optimal

A.1.2 Tables, figures and data

This directory contains tables and data used in, or generated by, the analyses in chapter 2.

• A.flavicollis_demographic_data.txt contains life history and sample ID data

on samples from Białowieża National Park

• adapter_primer_sequences.pdf contains tables of fixed pairs of adapter sequences

containing inner barcodes and Illumina primer sequences containing combinatorially

used outer barcodes for quaddRAD.

• coverage_duplicates_merged.txt contains sequencing coverage of samples after

duplicate samples have been merged

• parameter_optimisation_metrics.txt contains the metrics extracted from stacks

2.3d to optimise parameters

• relatedness_results.txt contains pairwise relatedness estimated by maximum

likelihood, GCTA, KING and PLINK method of moments to identify duplicate samples

• relatedness_results_duplicatesMerged.txt contains pairwise relatedness esti-

mated by maximum likelihood estimation after duplicate samples had been merged

• genotyping_error_rates.txt contains genotyping error rates as estimated using

TIGER

• sample_groups.txt contains a list of independently sequenced samples across mul-

tiple sequencing lanes

https://github.com/raval91/Aflav_thesis_supp/blob/main/chapter2/code/M.musculus_insilico_digestion_parallel_SbfI_MseI.R
https://github.com/raval91/Aflav_thesis_supp/blob/main/chapter2/code/stacks_metrics.R
https://github.com/raval91/Aflav_thesis_supp/tree/main/chapter2/tables_and_figs
https://github.com/raval91/Aflav_thesis_supp/blob/main/chapter2/tables_and_figs/A.flavicollis_demographic_data.txt
https://github.com/raval91/Aflav_thesis_supp/blob/main/chapter2/tables_and_figs/adapter_primer_sequences.pdf
https://github.com/raval91/Aflav_thesis_supp/blob/main/chapter2/tables_and_figs/coverage_duplicates_merged.txt
https://github.com/raval91/Aflav_thesis_supp/blob/main/chapter2/tables_and_figs/parameter_optimisation_metrics.txt
https://github.com/raval91/Aflav_thesis_supp/blob/main/chapter2/tables_and_figs/relatedness_results.txt
https://github.com/raval91/Aflav_thesis_supp/blob/main/chapter2/tables_and_figs/relatedness_results_duplicatesMerged.txt
https://github.com/raval91/Aflav_thesis_supp/blob/main/chapter2/tables_and_figs/genotyping_error_rates.txt
https://github.com/raval91/Aflav_thesis_supp/blob/main/chapter2/tables_and_figs/sample_groups.txt
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A.2 Chapter 3

A.2.1 Code

This directory contains scripts used in chapter 3 to generate a pedigree using genotype data

from A. flavicollis, estimate fitness and analyse allele frequency dynamics in the population.

• allele_freq_sims/cluster contains scripts to simulate null allele frequency distri-

butions on a high performance cluster:

1. MAF_clusterRun_control.sh instructs the cluster to run the simulations as a

batch job

2. nullMAFsimulations.sh parallelises the simulations

3. MAF_clusterRun.R runs the simulations in R

4. extract_confint.R extracts the confidence intervals from the output of the

simulations

• allele_freq_sims/nullMAFsimulations.R runs the above simulations in parallel

on a desktop computer instead of on a cluster

• allele_frequency_change.R analyses and plots allele frequency change over time

• pedigree_construction_R3.6.R constructs a pedigree using sequoia in R v3.6 and

conducts analyses

• genetic_contributions.R calculates the genetic and genealogical contributions of

founders to a population

https://github.com/raval91/Aflav_thesis_supp/tree/main/chapter3
https://github.com/raval91/Aflav_thesis_supp/tree/main/chapter3/code
https://github.com/raval91/Aflav_thesis_supp/tree/main/chapter3/code/allele_freq_sims/cluster
https://github.com/raval91/Aflav_thesis_supp/blob/main/chapter3/code/allele_freq_sims/cluster/MAF_clusterRun_control.sh
https://github.com/raval91/Aflav_thesis_supp/blob/main/chapter3/code/allele_freq_sims/cluster/nullMAFsimulations.sh
https://github.com/raval91/Aflav_thesis_supp/blob/main/chapter3/code/allele_freq_sims/cluster/MAF_clusterRun.R
https://github.com/raval91/Aflav_thesis_supp/blob/main/chapter3/code/allele_freq_sims/cluster/extract_confint.R
https://github.com/raval91/Aflav_thesis_supp/blob/main/chapter3/code/allele_freq_sims/nullMAFsimulations.R
https://github.com/raval91/Aflav_thesis_supp/blob/main/chapter3/code/allele_frequency_change.R
https://github.com/raval91/Aflav_thesis_supp/blob/main/chapter3/code/pedigree_construction_R3.6.R
https://github.com/raval91/Aflav_thesis_supp/blob/main/chapter3/code/genetic_contributions.R
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A.2.2 Tables, figures and data

This directory contains tables and data used in, or generated by, the analyses in chapter 3.

• maybe_relatives.txt contains a list of possible relationships that were excluded

from the pedigree

• pedigree.txt contains the pedigree generated by SEQUOIA in R v3.6

• genealogical_genetic_contributions.txt contains the genealogical and ge-

netic contributions of founders

• allele_frequencies.txt observed allele frequencies between 2015-2017

• allele_frequency_change.txt contains data on the change in allele frequencies

between 2015-2017

• pvals.txt contains the p-values of observed vs expected allele frequency change

between 2015-2017

• genetic_diversity.het contains estimates of genetic diversity (inbreeding coeffi-

cients) as calculated by PLINK

https://github.com/raval91/Aflav_thesis_supp/tree/main/chapter3
https://github.com/raval91/Aflav_thesis_supp/tree/main/chapter3/tables_and_figs
https://github.com/raval91/Aflav_thesis_supp/blob/main/chapter3/tables_and_figs/maybe_relatives.txt
https://github.com/raval91/Aflav_thesis_supp/blob/main/chapter3/tables_and_figs/pedigree.txt
https://github.com/raval91/Aflav_thesis_supp/blob/main/chapter3/tables_and_figs/genealogical_genetic_contributions.txt
https://github.com/raval91/Aflav_thesis_supp/blob/main/chapter3/tables_and_figs/allele_frequencies.txt
https://github.com/raval91/Aflav_thesis_supp/blob/main/chapter3/tables_and_figs/allele_frequency_change.txt
https://github.com/raval91/Aflav_thesis_supp/blob/main/chapter3/tables_and_figs/pvals.txt
https://github.com/raval91/Aflav_thesis_supp/blob/main/chapter3/tables_and_figs/genetic_diversity.het
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Index Optimal clusters Index value
Hubert 0 0
Dindex 0 0

Frey 1 NA
Duda 2 0.7163

PseudoT2 2 100.1932
Beale 2 0.6704

McClain 2 0.6542
Scott 3 414.4471

TrCovW 3 17577.98
TraceW 3 111.0165

Ratkowsky 3 0.4332
Ball 3 204.8935
KL 4 89.9839
CH 4 274.7578

Hartigan 4 78.64
Marriot 4 8263545

Friedman 4 2.2164
Rubin 4 -0.339

DB 4 1.0062
Silhouette 4 0.3658
PtBiserial 4 0.5732
SDindex 4 2.0272

Dunn 6 0.0432
Cindex 7 0.2406
CCC 10 3.5171
SDbw 10 0.2722

Table A.4 Table of indices generated by NBCLUST to assess the optimal number of clusters
for K-means cluster analysis of Hi, BMRmin and mb.

https://github.com/raval91/Aflav_thesis_supp/tree/main/chapter4/
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respectively).
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A.3.1 Code

This directory contains scripts used to analyse heterothermic responses of A. flavicollis.

• cluster_analysis.R performs a K-means cluster analysis on the heterothermy data

• torpor_analysis.R runs a full analysis if heterothermic responses including estimat-

ing repeatability, calculating relatedness and estimating heritability

• BMR_analysis_REML_final.R runs a full analysis of BMRmin data from A. flavicollis

A.3.2 Tables, figures and data

This directory contains tables, data and figures used in, or generated by, the analyses in

chapter 4.

• cluster_analysis/cluster_indices.txt contains a table of indices to determine

optimal number of clusters in K-means cluster analysis

• cluster_analysis/k3.pdf - cluster_analysis/k10.pdf are figures of cluster

analyses for heterothermy data when K=3-10

• diagnostic_plots/repeatability/ contains figures of quantile-quantile plots,

and residuals vs fitted values plots of repeatability models including sex+mb+bmr,

sex+mb and mb as variables in the models. Also included are diagnostic plots for for

models of each individual sex

• diagnostic_plots/heritability/ contains figures of quantile-quantile plots, and

residuals vs fitted values plots of heritability models including sex+mb+bmr, sex+mb

and mb as variables in the models. Also included are diagnostic plots for for models of

each individual sex

https://github.com/raval91/Aflav_thesis_supp/tree/main/chapter4/code
https://github.com/raval91/Aflav_thesis_supp/tree/main/chapter4/code/cluster_analysis.R
https://github.com/raval91/Aflav_thesis_supp/tree/main/chapter4/code/torpor_analysis_REML.R
https://github.com/raval91/Aflav_thesis_supp/blob/main/chapter4/code/BMR_analysis_REML_Final.R
https://github.com/raval91/Aflav_thesis_supp/tree/main/chapter4/tables_and_figs
https://github.com/raval91/Aflav_thesis_supp/tree/main/chapter4/tables_and_figs/cluster_analysis/cluster_indices.txt
https://github.com/raval91/Aflav_thesis_supp/tree/main/chapter4/tables_and_figs/cluster_analysis
https://github.com/raval91/Aflav_thesis_supp/tree/main/chapter4/tables_and_figs/heritability_diagnostic_plots/repeatability
https://github.com/raval91/Aflav_thesis_supp/tree/main/chapter4/tables_and_figs/heritability_diagnostic_plots/heritability
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