
University of Huddersfield Repository

Cusack, Ashley

Applying Artificial Intelligence Planning to Optimise Heterogeneous Signal Processing for Surface 
and Dimensional Measurement Systems

Original Citation

Cusack, Ashley (2021) Applying Artificial Intelligence Planning to Optimise Heterogeneous Signal 
Processing for Surface and Dimensional Measurement Systems. Doctoral thesis, University of 
Huddersfield. 

This version is available at http://eprints.hud.ac.uk/id/eprint/35547/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/



 

    

 

 

  

Applying Artificial Intelligence 
Planning to Optimise 

Heterogeneous Signal Processing for 
Surface and Dimensional 
Measurement Systems 

ASHLEY CUSACK 

 

 

 

A thesis submitted to the University of Huddersfield in partial fulfilment 

of the requirements for the Degree of Doctor of Philosophy 

 

The University of Huddersfield 

 

 

 

June 2021 



1 

Copyright Statement 

 

i. The author of this thesis (including any appendices and/or schedules to this thesis) owns any 

copyright in it (the “Copyright”) and he has given The University of Huddersfield the right to 

use such Copyright for any administrative, promotional, educational and/or teaching 

purposes. 

ii. Copies of this thesis, either in full or in extracts, may be made only in accordance with the 

regulations of the University Library. Details of these regulations may be obtained from the 

Librarian. This page must form part of any such copies made. 

iii. The ownership of any patents, designs, trademarks and any and all other intellectual property 

rights except for the Copyright (the “Intellectual Property Rights”) and any reproductions of 

copyright works, for example graphs and tables (“Reproductions”), which may be described 

in this thesis, may not be owned by the author and may be owned by third parties. Such 

Intellectual Property Rights and Reproductions cannot and must not be made available for use 

without the prior written permission of the owner(s) of the relevant Intellectual Property 

Rights and/or Reproductions  



2 

Abstract 

The need for in-process measurement has surpassed the processing capability of traditional computer 

hardware. As Industry 4.0 changes the way modern manufacturing occurs, researchers and industry 

are turning to hardware acceleration to increase the performance of their signal processing to allow 

real-time process and quality control. 

This thesis reviewed Industry 4.0 and the challenges that have arisen from transitioning towards a 

connected smart factory. It has investigated the different hardware acceleration techniques available 

and the bespoke nature of software that industry and researchers are being forced towards in the 

pursuit of greater performance. In addition, the application of hardware acceleration within surface 

and dimensional instrument signal processing was researched and to what extent it is benefitting 

researchers. The collection of algorithms that the field are using were examined finding significant 

commonality across multiple instrument types, with work being repeated many times over by 

different people. 

The first use of PDDL to optimise heterogenous signal processing within surface and dimensional 

measurements is proposed. Optical Signal Processing Workspace (OSPW) is presented as a self-

optimising software package using GPGPU acceleration using Compute Unified Device Architecture 

(CUDA) for Nvidia GPUs. OSPW was designed from scratch to be easy to use with very little-to-no 

programming experience needed, unlike other popular systems such LabVIEW and MATLAB. It 

provides an intuitive and easy to navigate User Interface (UI) that allows a user to select the signal 

processing algorithms required, display system outputs, control actuation devices, and modify capture 

device properties. 

OSPW automatically profiles the execution time of the signal processing algorithms selected by the 

user and creates and executes a fully optimised version using an AI planning language, Planning 

Description Domain Language (PDDL), by selecting the optimum architecture for each signal 

processing function.  

OSPW was then evaluated against two case studies, Dispersed Reference Interferometry (DRI) and 

Line-Scanning Dispersed Interferometry (LSDI). These case studies demonstrated that OSPW can 

achieve at least 21x greater performance than an identical MATLAB implementation with a further 

13% improvement found using the PDDL’s heterogenous solution. 

This novel approach to providing a configurable signal processing library that is self-optimising using 

AI planning will provide considerable performance gains to researchers and industrial engineers. With 

some additional development work it will save both academia and industry time and money which 

can be reinvested to further advance surface and dimensional instrumentation research.  



3 

Acknowledgements 

The last six years have been most challenging but most rewarding of my life, my life has changed 

significantly since undertaking this PhD and I am incredibly grateful for the people in my life who have 

made me who I am today. 

I would like to thank my supervisors, Haydn Martin and Jane Jiang, for their support, guidance and 

belief in me throughout this project, especially at times when I had little belief in myself. Also, special 

thanks must be given to James Williamson and all my colleagues for their help and friendship while 

working in the CPT. 

Additional thanks must be given to Andrew Crampton, Peter Mather and Nigel Schofield for continued 

support and guidance throughout the latter years of this research. Also, a special thank you to Richard 

Baron and David Spencer for their support during the completion of this thesis.  

Finally, I must thank my parents Julie and Steven and my partner Sarah for their love, unbelievable 

support and continued encouragement throughout my studies and everyday life, without you I could 

have never completed this work. 

 

 

 

 

 

This work is dedicated to my grandma, Lilian Walker, who sadly passed during this period. 

  



4 

Table of Contents 
Copyright Statement ............................................................................................................................... 1 

Abstract ................................................................................................................................................... 2 

Acknowledgements ................................................................................................................................. 3 

Table of Contents .................................................................................................................................... 4 

List of Figures ........................................................................................................................................ 10 

List of Tables ......................................................................................................................................... 16 

List of Acronyms .................................................................................................................................... 17 

1 Thesis Overview ............................................................................................................................ 19 

1.1 Introduction .......................................................................................................................... 19 

1.1.1 Surface and Dimensional Measurement Systems for Future Manufacturing .............. 19 

1.1.2 The Requirement for Optimisation in Signal Processing .............................................. 21 

1.2 Research Questions .............................................................................................................. 24 

1.3 Aim ........................................................................................................................................ 24 

1.4 Objectives.............................................................................................................................. 24 

1.5 Thesis Structure .................................................................................................................... 25 

1.6 Contribution to Knowledge ................................................................................................... 26 

1.7 Publications ........................................................................................................................... 26 

2 Future Manufacturing & Industry 4.0 ........................................................................................... 27 

2.1 Introduction .......................................................................................................................... 27 

2.2 Review of the Technologies Driving Industry 4.0.................................................................. 29 

2.2.1 Cyber-physical Systems (CPS) ....................................................................................... 30 

2.2.2 The Internet of Things ................................................................................................... 31 

2.2.3 Big Data ......................................................................................................................... 33 

2.2.4 Summary ....................................................................................................................... 34 

2.3 Investigation into Hardware Acceleration Technologies ...................................................... 35 

2.3.1 Digital Signal Processor (DSPs) ...................................................................................... 35 

2.3.2 General Purpose Graphics Processing Unit (GPGPU) .................................................... 36 



5 

2.3.3 Field Programmable Gate Array (FPGA)........................................................................ 38 

2.3.4 Summary ....................................................................................................................... 39 

2.4 Review of Hardware Acceleration in Surface and Dimensional Measurement Processing .. 39 

2.4.1 Interferometry .............................................................................................................. 40 

2.4.2 Optical Coherence Tomography (OCT) ......................................................................... 42 

2.4.3 Structured Light ............................................................................................................ 45 

2.4.4 Summary ....................................................................................................................... 46 

2.5 Analysis of Software Availability and Usage ......................................................................... 46 

2.5.1 Software Requirements ................................................................................................ 47 

2.5.2 Software Cost Estimation .............................................................................................. 47 

2.5.3 Review of Commercial Software ................................................................................... 48 

2.5.4 Survey into the Usage Open-Source Software .............................................................. 54 

2.5.5 Summary ....................................................................................................................... 58 

2.6 Conclusion ............................................................................................................................. 58 

3 Artificial Intelligence Techniques to Increase Performance ......................................................... 60 

3.1 Introduction .......................................................................................................................... 60 

3.2 Evaluation of Search Algorithms ........................................................................................... 61 

3.2.1 Uninformed Search Strategies ...................................................................................... 62 

3.2.2 Informed Search Strategies ........................................................................................... 63 

3.2.3 Summary ....................................................................................................................... 70 

3.3 Investigation of Automated Planning and Scheduling .......................................................... 70 

3.3.1 Stanford Research Institute Problem Solver (STRIPS) ................................................... 71 

3.3.2 Planning Domain Definition Language (PDDL) .............................................................. 74 

3.4 Investigation of Software Optimisation using Artificial Intelligence .................................... 81 

3.5 Review of Artificial Intelligence to Optimisation Manufacturing ......................................... 82 

3.6 Conclusion ............................................................................................................................. 84 

4 Case Study: Dispersed Reference Interferometry (DRI) ............................................................... 86 

4.1 Introduction to Dispersed Reference Interferometry .......................................................... 86 



6 

4.1.1 Low Resolution, Absolute Measurement ...................................................................... 87 

4.1.2 High Resolution, Relative Measurement ...................................................................... 89 

4.2 Signal Processing Requirements of Dispersed Reference Interferometry ........................... 89 

4.3 Investigation into the Software Requirements for Signal Processing................................... 89 

4.3.1 Computation Requirements .......................................................................................... 90 

4.3.2 User Interface (UI) Requirements ................................................................................. 91 

4.3.3 Summary ....................................................................................................................... 92 

4.4 Initial Proposal of User Interface Design .............................................................................. 92 

4.4.1 Future Improvements ................................................................................................... 95 

4.5 Exploration of Data Management Between Two Processes ................................................. 96 

4.6 Signal Processing Considerations .......................................................................................... 98 

4.6.1 Serial Signal Processing ................................................................................................. 98 

4.6.2 Parallel Signal Processing ............................................................................................ 100 

4.6.3 GPU Signal Processing ................................................................................................. 103 

4.6.4 Signal Processing Engine ............................................................................................. 108 

4.6.5 Challenges Faced ......................................................................................................... 111 

4.6.6 Summary ..................................................................................................................... 113 

4.7 Evaluation of Dispersed Reference Interferometry Performance Improvements ............. 113 

4.7.1 Image Capture ............................................................................................................. 114 

4.7.2 Absolute Position Measurement ................................................................................ 114 

4.7.3 High-Resolution Measurement ................................................................................... 115 

4.8 Conclusion ........................................................................................................................... 116 

5 Consideration of a Heterogenous Signal Processing Library ...................................................... 119 

5.1 Introduction ........................................................................................................................ 119 

5.2 User Interface: Signal Processing Configuration ................................................................. 121 

5.2.1 Creation and Management of Configuration Files ...................................................... 121 

5.2.2 Providing the Ability to Configure Signal Processing .................................................. 122 

5.3 Investigation of Configurable Signal Processing Methodology .......................................... 127 



7 

5.3.1 Standardised Function Files ........................................................................................ 127 

5.3.2 Passing Run Parameters for Configuration ................................................................. 127 

5.3.3 Parsing XML Data to Configure Signal Processing ....................................................... 128 

5.3.4 Enabling Runtime Polymorphism ................................................................................ 131 

5.3.5 Configuring the Execution of the Correct Functions ................................................... 132 

5.3.6 Introduction of CUDA Accelerated Signal Processing Functions ................................ 135 

5.3.7 Prospective List of Signal Processing Functions .......................................................... 137 

5.4 User Interface: Visualisation ............................................................................................... 142 

5.4.1 Management of Data Streams Between Applications ................................................ 143 

5.4.2 Visualisation Objects of Processed Data ..................................................................... 143 

5.5 Conclusion ........................................................................................................................... 145 

6 Evaluation of Profiling to Determine AI Heuristics ..................................................................... 146 

6.1 Introduction ........................................................................................................................ 146 

6.2 Consideration of Optimisation Parameters ........................................................................ 146 

6.3 Investigations into Profiling Methodology .......................................................................... 148 

6.4 Comparison of CPU vs GPUs for DRI and LSDI .................................................................... 153 

6.4.1 Dispersed Reference Interferometry (DRI) ................................................................. 154 

6.4.2 Line-Scan Dispersive Interferometry (LSDI) ................................................................ 156 

6.5 Performance Comparison of Throughput vs Latency ......................................................... 161 

6.5.1 Dispersed Reference Interferometry (DRI) ................................................................. 161 

6.5.2 Line-Scan Dispersive Interferometry (LSDI) ................................................................ 162 

6.5.3 Summary ..................................................................................................................... 163 

6.6 Evaluation of OSPW Performance ...................................................................................... 163 

6.6.1 Dispersed Reference Interferometry Performance Evaluation .................................. 164 

6.6.2 Line-Scan Dispersive Interferometry Performance Evaluation ................................... 164 

6.7 Conclusion ........................................................................................................................... 166 

7 Optimising OSPW Using Artificial Intelligence (AI) Planning ...................................................... 167 

7.1 Introduction ........................................................................................................................ 167 



8 

7.2 Mapping Signal Processing Functions to PDDL Actions ...................................................... 167 

7.3 Evaluation of PDDL Solutions for Dispersed Reference Interferometry ............................. 171 

7.3.1 Solution Results ........................................................................................................... 171 

7.3.2 Summary ..................................................................................................................... 172 

7.4 Evaluation of PDDL Solutions for Line-Scan Dispersive Interferometry ............................. 172 

7.4.1 Single Architecture Results ......................................................................................... 173 

7.4.2 Analysis of Heterogenous Execution of LSDI............................................................... 174 

7.4.3 Summary ..................................................................................................................... 177 

7.5 Conclusion ........................................................................................................................... 179 

8 Discussion .................................................................................................................................... 180 

8.1 Summary of Investigations ................................................................................................. 180 

8.2 Conclusions ......................................................................................................................... 183 

8.3 Caveats of the Presented Approach ................................................................................... 185 

8.3.1 Signal Processing Engine Recompiling ........................................................................ 185 

8.3.2 Acquisition Devices ..................................................................................................... 186 

8.3.3 SPE Library Expansion ................................................................................................. 186 

8.3.4 Deterministic Measurement Intervals ........................................................................ 187 

8.3.5 Summary ..................................................................................................................... 188 

8.4 Potential Routes to Distribution of OSPW .......................................................................... 188 

8.5 Closing Statement ............................................................................................................... 189 

9 Further Work ............................................................................................................................... 190 

9.1 Introduction ........................................................................................................................ 190 

9.2 Further Expansion of the User Interface ............................................................................. 190 

9.3 Modifications to the PDDL Configuration ........................................................................... 190 

9.3.1 Introduction of New Heuristics ................................................................................... 190 

9.3.2 PDDL: Durative Actions ............................................................................................... 192 

9.4 Consideration of Asynchronous GPU Streams .................................................................... 195 

10 References .............................................................................................................................. 197 



9 

11 Appendices .............................................................................................................................. 205 

11.1 Sample of Function Files ..................................................................................................... 205 

11.1.1 getDerivative ............................................................................................................... 205 

11.1.2 Autoconvolution ......................................................................................................... 206 

11.1.3 CopyFromGPU ............................................................................................................. 207 

11.2 Configuration Files .............................................................................................................. 208 

11.2.1 DRI ............................................................................................................................... 208 

11.2.2 LSDI .............................................................................................................................. 213 

11.3 DRI PDDL Files ..................................................................................................................... 231 

11.3.1 Sample Domain File..................................................................................................... 231 

11.3.2 Problem File ................................................................................................................ 237 

11.3.3 Solution Files ............................................................................................................... 238 

11.4 LSDI PDDL Files .................................................................................................................... 240 

11.4.1 Sample Domain File..................................................................................................... 240 

11.4.2 Problem File ................................................................................................................ 261 

11.4.3 Solution Files ............................................................................................................... 262 

 

  



10 

List of Figures 

Figure 1-1: Approximation of cost and acceleration possibilities of different architectures ............... 20 

Figure 1-2: Visual Example of Execution Times in a Heterogeneous Application ................................ 22 

Figure 1-3: Theoretical Optimisation of Execution Times in a Heterogeneous Application................. 23 

Figure 2-1: The relation between CPS, IoT, and cloud computing within Industry 4.0 (Pisching et al., 

2015) ..................................................................................................................................................... 30 

Figure 2-2: Publications containing Hardware Acceleration Keywords ................................................ 35 

Figure 2-3: Selection of graphics cards used. Note. Reprinted from “Performance and scalability of 

Fourier domain optical coherence tomography acceleration using graphics processing units” by Li, J, 

et al., Applied Optics, 50, p. 1832. ........................................................................................................ 43 

Figure 2-4: Programming Languages levels and their properties ......................................................... 49 

Figure 2-5: Note. Reprinted from "Obtaining a 35x Speedup in 2D Phase Unwrapping Using Commodity 

Graphics Processors" by Karasev, P.A. et al., 2007, Radar Conference, p. 577 ................................. 50 

Figure 2-6: Note. Reprinted from “Benefits of Programming Graphically in NI LabVIEW”, by LabVIEW, 

(2019,03,05). Retrieved from https://www.ni.com/en-gb/innovations/white-papers/13/benefits-of-

programming-graphically-in-ni-labview.html ....................................................................................... 52 

Figure 2-7: Scopus data showing the total number of publications to contain the phrase "Open-source" 

in the title since from 2000 to 2020...................................................................................................... 55 

Figure 2-8: Lazy Evaluation example .................................................................................................... 56 

Figure 2-9: ArrayFire performance figures. Note. Reprinted from “Why ArrayFire?”, by ArrayFire. 

Retrieved from https://arrayfire.com/why-arrayfire/ .......................................................................... 56 

Figure 3-1: Example of Node diagram, using blind search to evaluate all possible paths. .................. 61 

Figure 3-2 Breadth-First Search on a simple binary tree (Russell & Norvig, 2010) .............................. 62 

Figure 3-3: Depth-First Search on a simple binary tree (Russell & Norvig, 2010) ................................ 63 

Figure 3-4: Best-first Search on a binary tree ....................................................................................... 64 

Figure 3-5: Initial Node Diagram and First step of Dijkstra's Algorithm to find the shortest path using a 

min-priority queue ................................................................................................................................ 65 

Figure 3-6: Second step of Dijkstra's algorithm for this node diagram - Expanding node A ................ 65 

Figure 3-7: Third step of Dijkstra's algorithm for this node diagram - Expanding node B ................... 65 

Figure 3-8: Final step of algorithm for this node diagram - Expanding node D .................................... 66 

Figure 3-9: Shortest path to each node and overall shortest path found using Dijkstra's algorithm .. 66 

Figure 3-10: Using the example data from , a node graph can be made and solved with Dijkstra's 

algorithm ............................................................................................................................................... 67 



11 

Figure 3-11: A* Node Diagram Example - - Same Node Tree as Figure 3-4. Total Cost: 𝑓𝑛 =  𝑔(𝑛) +

ℎ(𝑛) ...................................................................................................................................................... 69 

Figure 3-12: AI Planning search types, where the box highlighted green would be the next action called

 .............................................................................................................................................................. 71 

Figure 3-13: STRIPS Hierarchy Example ................................................................................................ 72 

Figure 3-14: STRIPS Hierarchy Example (Corrected) ............................................................................. 72 

Figure 3-15: Sussman Anomaly (Russell & Norvig, 2010) ..................................................................... 73 

Figure 3-16: Sussman Anomaly: Sub-goals (Russell & Norvig, 2010) ................................................... 73 

Figure 3-17: Graphical Representation of PDDL Domain (Making a cup of tea) .................................. 76 

Figure 3-18: Goal PDDL Syntax for making a cup of tea. ...................................................................... 76 

Figure 3-19: Graphical Representation of PDDL Map (making a cup of tea) ........................................ 77 

Figure 3-20: PDDL Solution (making a cup of tea) ................................................................................ 78 

Figure 3-21: Cup of Tea Example - Action Costs ................................................................................... 78 

Figure 3-22: Cup of Tea Example - New Action Cost Added - creating more desirable plan ............... 79 

Figure 3-23: All Possible Permutations of three functions with necessary memory transfers ............ 80 

Figure 3-24: Calibration Plan Time Comparison from Parkinson et al. ................................................. 84 

Figure 4-1: Schematic diagram of DRI bulk optics interferometer based upon a Michelson 

Interferometer (Williamson, 2016) ....................................................................................................... 86 

Figure 4-2: Sample Interferogram generated in MATLAB. The red line notes the point of symmetry.87 

Figure 4-3: Converting Camera Data into computable values .............................................................. 87 

Figure 4-4: Signal processing to determine the relative position ......................................................... 88 

Figure 4-5: Note. Reprinted from “Parallel Programming in OpenMP” by Chandra, R., 2001, p.3, San 

Francisco, CA: Morgan Kaufmann Publishers ....................................................................................... 91 

Figure 4-6: User Interface v1 ................................................................................................................ 93 

Figure 4-7: Function Configuration v1 .................................................................................................. 94 

Figure 4-8: UI Actuator Control Panel ................................................................................................... 95 

Figure 4-9: Configuration Files .............................................................................................................. 96 

Figure 4-10: Function Class that data is imported into ........................................................................ 97 

Figure 4-11: Inter-process communication using CSV files .................................................................. 97 

Figure 4-12: Camera Data Formats ....................................................................................................... 99 

Figure 4-13: Initial library of algorithms programmed for the DRI Case Study .................................... 99 

Figure 4-14: Multithreading example showing two processes being forked from one to two threads

 ............................................................................................................................................................ 100 

file:///C:/Users/Ashley/OneDrive%20-%20University%20of%20Huddersfield/phd/Corrections/U1052143%20Ashley%20Cusack%20Thesis%20-%20Editorial%20Corrections.docx%23_Toc75333105
file:///C:/Users/Ashley/OneDrive%20-%20University%20of%20Huddersfield/phd/Corrections/U1052143%20Ashley%20Cusack%20Thesis%20-%20Editorial%20Corrections.docx%23_Toc75333119


12 

Figure 4-15: Multithreading can be used without forking/joining threads and can run a single process 

constantly in a different thread to the main loop .............................................................................. 101 

Figure 4-16: Multiple camera buffer arrays allows the camera thread to write to one buffer while the 

main thread reads from the other ...................................................................................................... 102 

Figure 4-17: Kernel Definitions (Code) ............................................................................................... 103 

Figure 4-18: CUDA Thread Organisation ............................................................................................. 104 

Figure 4-19: Kernel Call ....................................................................................................................... 104 

Figure 4-20: CUDA Thread Allocation Calculation .............................................................................. 105 

Figure 4-21: Array Flattening .............................................................................................................. 105 

Figure 4-22: Comparison between how getDeriviative runs in serial execution compared to the GPU 

execution............................................................................................................................................. 106 

Figure 4-23: Order of operations for executing a function on the GPU ............................................. 107 

Figure 4-24: Signal Processing Engine main file flow diagram ........................................................... 108 

Figure 4-25: XML Config File Loading and Importing. Function class represented in UML ................ 109 

Figure 4-26: Flow diagram of the main loop of the SPE that runs continually until stopped. It uses 

switch statements to select the correct function. .............................................................................. 110 

Figure 4-27: getPointer function. Given the name of a variable returns its pointer .......................... 110 

Figure 4-28: Switch statement for selecting functions in the main loop of the SPE .......................... 111 

Figure 4-29: GetPointer Function takes the name of an array and returns the correct pointer ........ 113 

Figure 4-30: Frame Rate and Latency of Data Capture for DRI .......................................................... 114 

Figure 4-31: Frame Rate and Latency of Absolute Position Measurement for DRI ............................ 115 

Figure 4-32: Frame Rate and Latency of High-Resolution Measurement for DRI .............................. 116 

Figure 4-33: DRI frame rate comparison for different measurements and architectures ................. 117 

Figure 4-34: DRI latency comparison for different measurements and architectures ....................... 118 

Figure 5-1: Note. Reprinted from “Investigation of Line-Scan Dispersive Interferometry for In-Line 

surface metrology” by Tang, D., 2016, p. 59. ...................................................................................... 120 

Figure 5-2: LSDI Fringe Patten ............................................................................................................ 120 

Figure 5-3: UML Representation of Configuration XML File ............................................................... 122 

Figure 5-4: Configurator: Add New Signal .......................................................................................... 122 

Figure 5-5: Configurator: Add New Datapoint .................................................................................... 123 

Figure 5-6: Configurator: Add New Function ...................................................................................... 124 

Figure 5-7: Configurator: Colours/Properties of Boxes ...................................................................... 124 

Figure 5-8: Configurator: Add New Function (Completed) ................................................................ 125 

Figure 5-9: Configurator: Completed Signal Processing Chain Ready For Profiling ............................ 126 

file:///C:/Users/Ashley/OneDrive%20-%20University%20of%20Huddersfield/phd/Corrections/U1052143%20Ashley%20Cusack%20Thesis%20-%20Editorial%20Corrections.docx%23_Toc75333137
file:///C:/Users/Ashley/OneDrive%20-%20University%20of%20Huddersfield/phd/Corrections/U1052143%20Ashley%20Cusack%20Thesis%20-%20Editorial%20Corrections.docx%23_Toc75333138


13 

Figure 5-10: OSPW Created Function Call. This has two Signals and three Datapoints. It also specifies 

floats to be used as the template types ............................................................................................. 126 

Figure 5-11: OSPW Configuration File Extract .................................................................................... 126 

Figure 5-12: Function Class Template ................................................................................................. 127 

Figure 5-13: SPE Run Parameters check at launch ............................................................................. 128 

Figure 5-14: Data Classes .................................................................................................................... 128 

Figure 5-15: Data Importing Process .................................................................................................. 130 

Figure 5-16: Overloaded Function ...................................................................................................... 131 

Figure 5-17: Template Function .......................................................................................................... 131 

Figure 5-18: Function with Function Class Variables .......................................................................... 132 

Figure 5-19: Variable Union ................................................................................................................ 132 

Figure 5-20: Function Calling .............................................................................................................. 133 

Figure 5-21: Job Management - Main Switch ..................................................................................... 134 

Figure 5-22: Sample Code of Variadic Templates & Lambda Function .............................................. 135 

Figure 5-23: Job Queue Pop & Push ................................................................................................... 135 

Figure 5-24: GPU Function call and potential memory transfers ....................................................... 136 

Figure 5-25: OSPW Function Library ................................................................................................... 138 

Figure 5-26: Mathematical Functions Example (1D Representation)................................................. 140 

Figure 5-27: Statistic Functions Example (2D Representation) .......................................................... 140 

Figure 5-28: Logic Function Example (1D Representation) ................................................................ 141 

Figure 5-29: Signal Manipulation Example (2D Representation) ....................................................... 141 

Figure 5-30: Header and Data sent from SPE to UI ............................................................................ 142 

Figure 5-31: User Interface Multiple Document Interface (MDI) ....................................................... 142 

Figure 5-32: Stream Management Window ....................................................................................... 143 

Figure 5-33: Multiple Document Interface Graph Window ................................................................ 144 

Figure 5-34: Multiple Document Interface: 2D Image ........................................................................ 145 

Figure 6-1: Additional Functions needed for GPU Profiling. Using three arrays as examples, the data 

needs to be copied backwards and forwards between the CPU and GPU to execute correctly. ....... 148 

Figure 6-2: OSPW Profiling Decision – Profiling commences unless an optimum configuration already 

exists ................................................................................................................................................... 149 

Figure 6-3: Job Management – Profiling ............................................................................................. 150 

Figure 6-4: Normal Distribution plot of DRI Function on the CPU ...................................................... 151 

Figure 6-5: Statistical Calculations of DRI data on convertBytes function ......................................... 152 

Figure 6-6: Statistical Calculations of LSDI data on FFT function ........................................................ 152 

file:///C:/Users/Ashley/OneDrive%20-%20University%20of%20Huddersfield/phd/Corrections/U1052143%20Ashley%20Cusack%20Thesis%20-%20Editorial%20Corrections.docx%23_Toc75333155
file:///C:/Users/Ashley/OneDrive%20-%20University%20of%20Huddersfield/phd/Corrections/U1052143%20Ashley%20Cusack%20Thesis%20-%20Editorial%20Corrections.docx%23_Toc75333162


14 

Figure 6-7: Visual Representation of GPU Card Performance. Cards Highlighted in Green were used for 

Profiling. .............................................................................................................................................. 154 

Figure 6-8: Comparison of signal processing across different architectures on the DRI – Lower is better

 ............................................................................................................................................................ 155 

Figure 6-9: Total Execution time for each architecture (including necessary memory transfers) ..... 158 

Figure 6-10: Comparison of GTX 1070 Memory Transfers Over Three Consecutive Runs ................. 161 

Figure 6-11: DRI Throughput Comparison .......................................................................................... 162 

Figure 6-12: LSDI Throughput Comparison ......................................................................................... 162 

Figure 6-13: Performance Benefit for GPU frame batching for LSDI .................................................. 163 

Figure 6-14: Comparison between OSPW and standalone software for DRI ..................................... 164 

Figure 6-15: Comparison between OSPW and standalone software for LSDI (CPU) .......................... 165 

Figure 6-16: Comparison between OSPW and standalone software for LSDI (GPU) ......................... 165 

Figure 6-17: FPS Percentage Benefit of using Bespoke Software ....................................................... 166 

Figure 7-1: DRI PDDL Predicates showing the variables, devices and state flags used throughout the 

domain file .......................................................................................................................................... 168 

Figure 7-2: Visual Representation of PDDL action for a DRI function ................................................ 169 

Figure 7-3: Backwards search through DRI functions to satisfy the goal state .................................. 170 

Figure 7-4: Nine Different Domain Files created for Dispersed Reference Interferometry ............... 171 

Figure 7-5: Comparison of PDDL Solutions for the DRI Signal Processing .......................................... 172 

Figure 7-6: Seven Different Domain Files created for Line-Scan Dispersive Interferometry ............. 173 

Figure 7-7: LSDI Single Architecture PDDL Solutions .......................................................................... 173 

Figure 7-8: Iterative LSDI Heterogeneous PDDL Solutions (GTX 650Ti) .............................................. 174 

Figure 7-9: Visual Representation of LSDI Homogenised Function Execution on GTX 650Ti (not to scale)

 ............................................................................................................................................................ 174 

Figure 7-10: Iterative LSDI Heterogeneous PDDL Solutions (GTX 780Ti)............................................ 175 

Figure 7-11: Visual Representation of LSDI Heterogeneous Function Execution on GTX 780Ti (not to 

scale) ................................................................................................................................................... 175 

Figure 7-12: Iterative LSDI Heterogeneous PDDL Solutions (GTX 1070) ............................................ 176 

Figure 7-13: Visual Representation of LSDI Heterogeneous Function Execution on GTX 1070 (not to 

scale) ................................................................................................................................................... 176 

Figure 7-14: Visual Representation of the different solution paths LPG-td made ............................. 177 

Figure 7-15: Comparison of PDDL Solutions for the LSDI Signal Processing ....................................... 178 

Figure 7-16: Normal Distribution of LSDI permutations using an Intel i7-7820X and Nvidia GTX 1070

 ............................................................................................................................................................ 179 



15 

Figure 8-1: Percentage Deviation from Median for 10 Consecutive LSDI Measurements ................. 187 

Figure 9-1: Illustrative Example of Energy Usage – Latency Optimisation ......................................... 191 

Figure 9-2: Illustrative Example of Energy Usage – Energy Optimisation .......................................... 192 

Figure 9-3: PDDL Durative action time intervals................................................................................. 193 

Figure 9-4: Cup of Tea Example (With Durative Actions) ................................................................... 194 

Figure 9-5: Multiple concurrent CUDA Streams ................................................................................. 195 

  



16 

List of Tables 

Table 2-1: CUDA Performance compared to OpenCL - Green highlights the fastest architecture (Karimi 

et al., 2010) ........................................................................................................................................... 38 

Table 2-2: Note. Adapted from "Comparison of LabVIEW and MATLAB for Scientific Research" by 

Tašner, T,et al.,2012, Annals of the Faculty of Engineering Hunedoara-International Journal of 

Engineering, 10, p. 389 ......................................................................................................................... 52 

Table 2-3: MATLAB vs LabVIEW Results from (Cansalar et al., 2015). Green indicates the fastest 

software. ............................................................................................................................................... 53 

Table 2-4: MATLAB vs LabVIEW - MATLAB Speedup – Yellow indicates a performance deficit. ......... 53 

Table 2-5: Evaluation of Drawbacks of Open-source Software ............................................................ 58 

Table 4-1: Look Up Table of General Command Set (GCS) for different actuators. ............................. 95 

Table 6-1: Comparison of GPUs used for OSPW Profiling .................................................................. 154 

Table 6-2: Comparison of Execution Time (CPU Ticks) for the CPU and various GPUs for DRI – Fastest 

architecture is highlighted in green .................................................................................................... 155 

Table 6-3: Comparison of Execution Time (Counter Ticks) for the various GPUs for DRI (Colour scale 

indicates the range of values, from red to green: worst to best). ...................................................... 156 

Table 6-4: Comparison of Data Transfers to various GPUs for DRI .................................................... 156 

Table 6-5: Comparison of Data Transfers from various GPUs for DRI ................................................ 156 

Table 6-6: Comparison of Execution Time (CPU Ticks) for the CPU and various GPUs for LSDI - Fastest 

architecture is highlighted in green. ................................................................................................... 157 

Table 6-7: Comparison of Execution Time (CPU Ticks) for the various GPUs for LSDI ....................... 159 

Table 6-8: Comparison of Memory Transfer Time (CPU Ticks) to and from various GPUs for LSDI ... 160 

Table 8-1: Complex Variable Naming Conventions Used During This Research ................................ 187 

 

  



17 

List of Acronyms 

ADL Action Description Language 

AI Artificial Intelligence 

ANN Artificial Neural Network 

API Application Programming Interface  

ARIMA Autoregressive intergraded moving average 

CAD Computer Aided Design 

CAM Computer Aided Manufacturing 

CAPP Computer Aided Process Planning 

CCD Charge-Coupled Device 

CMOS Complementary Metal-Oxide-Semiconductor 

CPG Consumer-Packaged Goods 

CPS Cyber Physical System 

CPU Central Processing Unit 

CSV Comma Separated Values 

CUDA Compute Unified Device Architecture 

CUFFT CUDA Fast Fourier Transfer 

DDL Dynamic Link Library  

DLP Digital Light Projector 

DRI Dispersed Reference Interferometry 

DSP Digital Signal Processing 

FFT Fast Fourier Transform 

FFTW Fastest Fourier Transform in the West  

FIFO First-In, First-Out 

FLOPS Floating-point Operations Per Second 

FPS Frames Per Second 

GB Gigabytes 

GCS General Command Set 

GFLOPS Giga-Floating-point Operations Per Second (10^9) 

GPGPU General Purpose Graphics Processing Unit 

GPL General Public License 

GPOS General Purpose Operating System 

GPU Graphical Processing Unit 

HDD Hard Disk Drive 

HDL Hardware Description Language 

HPC High Performance Computing 

HSFFT High Speed Fast Fourier Transform 

HTN Hierarchical Task Network 

IFFT Inverse Fast Fourier Transform 

IMS Intelligent Manufacturing System 

IIoT Industrial Internet of Things  

IoT Internet of Things 

IPC Inter-process communication 

JCUDA Java Compute Unified Device Architecture 



18 

KPI Key Performance Indicators 

LiDAR Light Detection and Ranging 

LPG-td Local Search for Planning Graphs Timed-initial-literals and Derived-predicates 

LSDI Line-Scanning Dispersed Interferometry 

LUT Look-Up Table 

MDI Multiple Document Interface 

MIP Mixed-Integer Programming 

MLP MultiLayer perceptron 

MQTT Message Queuing Telemetry Transport 

MSVC Microsoft Visual C++ 

NVCC NVIDIA CUDA Compiler 

OCT Optical Coherence Tomography 

OS Operating System 

OSS Open-source Software 

OSPW Optical Signal Processing Workspace 

PDDL Planning Domain Definition Language 

PI Physik Instrumente 

PLC Programmable Logic Controller 

PPS Process Planning and Scheduling 

PSI Phase Shift Interferometry 

R2R Roll-to-roll 

RAM Random-Access Memory 

RFID Radio-Frequency IDentification 

RTOS Real Time Operating System 

SCE Software Cost Estimation 

SDF Standard Data Format 

SDK Software Development Kit 

SLD Super-Luminescent Diode 

SM Stream Multiprocessor 

SPE Signal Processing Engine 

SSD Solid State Drive 

STRIPS Stanford Research Institute Problem Solver 

SVN Support Vector Machine 

SysML System Modelling Language 

TFLOPS Tera-Floating-point Operations Per Second (10^12) 

TI Texas Instruments 

TRL Technology Readiness Level 

UI User Interface 

UML Unified Modelling Language 

VHDL Very (High Speed Integrated Circuits) Hardware Description Language 

VRAM Video Random Access Memory  

WLI White Light Interferometry 

WSI Wavelength Scanning Interferometry 

XML Extensible Markup Language 



19 

1 Thesis Overview 

1.1 Introduction 

1.1.1 Surface and Dimensional Measurement Systems for Future Manufacturing 

Surface and dimensional measurement is defined as the measurement of surface texture and surface 

form of an object and also the physical size and distance from said object (Gao et al., 2019). A large 

variety of measurement instruments are available commercially, from contact methods using 

mechanical stylus’, to non-contact instruments such as optical methods and Atomic Force Microscopy 

(AFM) (Whitehouse, 2011). This research concentrates on the need to accelerate the signal processing 

of optical instruments to realise the ever-increasing manufacturing requirements, as there is the 

requirement to capture and process significantly more data as the transition to smart manufacturing 

takes place.  

In the shift from traditional manufacturing to smart manufacturing (referred to as Industry 4.0 or the 

fourth industrial revolution) the requirement of in-process and on-machine measurement has 

increased across the production line. Smart manufacturing is the data technology driven approach to 

a production lines that allow real-time on-machine measurement and process control to meet the 

changing demands of modern manufacturing. In-process metrology is the process of measuring the 

work piece without stopping the production line, allowing the manufacturing to continue, thus 

maximising efficiency. This increase in measurements is seen in newer manufacturing such as additive 

and nanoscale manufacturing, but also in traditional manufacturing methods such as cutting, grinding 

and polishing (Gao et al., 2019). Furthermore, enabling closed looped feedback from these sensors, 

greater process control can be achieved by feeding results back into the numerical control systems 

(CNC), reducing scrap rates and increasing yields. However, to achieve this, the signal processing needs 

to be faster than ever before. 

Optical sensors are ubiquitous in surface and dimensional measurement due to their non-contact 

measurement and high speed. Industry 4.0 has led manufacturing to become data driven, with ever 

increasing data sizes, in combination with the increase in the number of sensors, data can no longer 

simply be stored, it must be processed in real-time with only the most crucial of data recorded once 

processed. The move to on-machine measurement also means that the apparatus used for processing 

the data needs to be compact with the maximum possible performance per square meter of 

production-line real-estate possible. These requirements have led researchers to use hardware 

acceleration techniques to increase the processing speeds of their algorithms. 



20 

For many years, signal processing on standard computer hardware with software such as MATLAB and 

LabVIEW has been the standard approach, but the data processing requirements for smart 

manufacturing are increasing due to optical sensors getting larger and faster, and traditional 

sequential processing is no longer providing enough performance. Researchers and industry are 

searching for alternatives to increase the performance of their signal processing and, for industry, 

increase the performance their production lines. There are three main choices instrumentation 

manufacturers consider when requiring an increase signal processing performance, they are: Digital 

Signal Processors (DSPs), Graphical Processing Units (GPUs) and Field Programmable Gate Arrays 

(FPGAs). 

Each of the three have their advantages and disadvantages, such as performance, cost, or complexity 

to implement (Figure 1-1). Given the right application, and enough time to optimise for the 

instrumentation, each should provide an increase in performance over all-purpose software packages 

such as MATLAB and LabVIEW. FPGAs should provide the largest performance increase, but are 

expensive are time-consuming to program, but are an excellent choice for a single application that 

does not change over time. DSPs are a cheaper option but offer less computation than FPGAs, they 

are small and portable just like FPGAs but are easier to program. Just like FPGAs, DSPs are great for a 

single application but may allow more flexibility than FPGAs (HajiRassouliha, Taberner, Nash, & 

Nielsen, 2018).  

 

Figure 1-1: Approximation of cost and acceleration possibilities of different architectures 

GPUs require other hardware such as a PC or server to operate, these often run on general-purpose 

operating systems (GPOS) such as Windows or Linux, whereas FPGAs and DSPs use their own real-time 

operating systems (RTOS). Therefore, the cost considered here is for the GPU itself, which can range 

from a couple of hundreds to a couple of thousand GBP, and within that range offer a wide range of 



21 

acceleration. Although upgrading to a high specification of GPU later down the line should be much 

simpler of an upgrade than it would be for either the DSP or FPGA (HajiRassouliha et al., 2018). Due 

to their ease to program, relative low-cost and capability of acceleration, a significant amount of 

literature document their use of GPUs for acceleration, across the entire field of surface and 

dimensional sensors and instrumentation.  

However, whether it is a researcher in a laboratory, or an engineer in industry, all the software to 

design signal processing requires significant time and financial investment to learn a programming 

language. Furthermore, with the requirement to use hardware acceleration becoming necessary to 

increase the performance of the signal processing, even more time is needed to ensure that the 

algorithms that are developed are efficient and optimised. This is being asked of engineers and 

scientists, who find themselves in this position as a biproduct of their research and do not necessarily 

have any background in computer science. 

1.1.2 The Requirement for Optimisation in Signal Processing 

Whether in a manufacturing plant or an academic research lab, time is expensive. If a software 

package takes twelve months to design, that is twelve months a measurement instrument is not ready 

to use or sell, not to mention the cost of employing a software engineer for twelve months. If the 

processing of a set of measurement data takes five minutes, it may be the bottleneck in a production 

line causing delays, or perhaps the processing is not undertaken at all causing products to potentially 

not meet the design specifications, all of which costs companies money. These reasons are why 

industries and academics frequently use commercial software packages such as MATLAB and LabVIEW 

even though they have their shortcomings. 

MATLAB and LabVIEW have their performance issues, designing a “one size fits all” product must make 

trade-offs for features such as ease of use, a high level of abstraction from programming, and to 

provide a large library of prebuilt functions to support multiple fields. These trade-offs are at the cost 

of performance, and while they are becoming more efficient each new release, they still fall behind in 

performance compared to lower-level programming such as C. In 2010 MATLAB aimed to improve 

performance by supporting GPUs in their parallel toolbox, followed by LabVIEW’s GPU analysis toolkit 

in 2012.  

However, both these options present the user with a binary choice, CPU or GPU, and while there is 

the option to measure the execution time and compare which is fastest for a given subset of functions, 

for large solutions this may be unmanageable. Also, in the case of MATLAB’s parallel toolbox, memory 

transfers to and from the GPU need to be configured by the user. Depending on the application, it 



22 

may be advantageous to use a combination of both the CPU and GPU for a given function or set of 

functions. This is known as a heterogeneous computing. 

The execution time (latency) of signal processing can be monitored and recorded and used as a 

heuristic to determine its performance. For example, two different solutions are shown in Figure 1-2, 

firstly, a purely CPU based execution (Figure 1-2a), where each function is called in turn and executed 

sequentially on the CPU and secondly a solution using the GPU for each function (Figure 1-2b). The 

GPU implementation may be faster or slower than the CPU solution depending on hardware 

specification and processing requirements. In this example, all memory transfers are considered of 

equal computation and a time of 5 ms is used for these. 

 

Figure 1-2: Visual Example of Execution Times in a Heterogeneous Application 

From the example data in the figure above it an improved solution would appear to be to execute 

functions A and C on the CPU (15 ms vs 2 ms), but function B and D on the GPU (17 ms vs 50 ms). 

However, it is not as straightforward as comparing two functions and selecting the fastest. Figure 1-3a 

uses the fastest platform for each individual function, however, when the memory transfers are 

introduced, the solution is actually slower than either the individual CPU or GPU configurations from 

Figure 1-2.  

 



23 

 

Figure 1-3: Theoretical Optimisation of Execution Times in a Heterogeneous Application 

This is because function C is only marginally faster on the CPU (2 ms faster) but the two memory 

transfers are required to switch to the GPU and back again adds an extra 10 ms therefore providing a 

weaker solution. When accounting for memory transfers, the fastest possible solution (𝐶𝑃𝑈(𝐴), 

𝐺𝑃𝑈(𝐵), 𝐺𝑃𝑈(𝐶) and 𝐺𝑃𝑈(𝐷)) is 35% faster than the original CPU solution and 5 ms (11% faster) 

than the earlier GPU solution (Figure 1-3b). Finally, Figure 1-3c shows a potential concurrency scenario 

where multiple functions could execute simultaneously (if they are mutually exclusive) providing an 

even further benefit to the overall execution time. In the example above, executing function A on the 

CPU simultaneously with function B on the GPU would provide a further 5 ms (12%) performance 

saving compared to the next best solution (Figure 1-3b) 

However, as the number of functions in a signal processing sequence increase, the number of 

permutations across both architectures, in addition to any memory transfers required, increases 

exponentially creating a problem that cannot be solved by simply checking each path in turn. This 

problem is similar to the “travelling salesperson problem” and can be solved using the execution time 

as the heuristic (the parameter we want to optimise for) and artificial intelligence planning to reduce 

the number of permutations to consider when searching for a solution.  



24 

This reduction of permutations, referred to as branch pruning, can be achieved by placing constraints 

on actions (signal processing functions) excluding them from the search for a solution if their 

predicates are not met. Once an action has been undertaken, the effects of that action update the 

state of various parameters to allow the search to continue, enabling new search paths and closing 

off paths that do not need to be considered anymore.  

1.2 Research Questions 

This thesis aims to answer the following questions: 

1. Why is software such as MATLAB and LabVIEW so ubiquitous in academia and industry, when 

its performance is suboptimal? 

2. What are the reasons behind the increase in requirement for hardware acceleration in surface 

and dimensional measurement? 

3. Is there commonality in the signal processing requirements of optical sensor measurement 

such that a pre-existing configurable signal processing library would save valuable time and 

money? 

4. Can AI Planning find an optimum solution for executing signal processing on heterogenous 

CPU-GPU system, give an informed heuristic to minimise latency? 

1.3 Aim 

To provide the most optimum signal processing sequence on a heterogeneous platform for a given set 

of algorithms by using artificial intelligence to select the optimum execution. This will support the 

increase of sensors used to measure dimensions and profiles which are generating larger datasets to 

facilitate the increasing requirements within manufacturing from the movement to Industry 4.0.  

1.4 Objectives 

• Investigate the requirements of Industry 4.0 and determine the most important features that 

researchers and industry require for future manufacturing software. 

• Examine how hardware acceleration is currently being used in surface and dimensional 

sensors and instrumentation to process the increasing data sizes and improving signal 

processing performance.  

• Development of an easy-to-use software package for use by researchers and industry to 

advance the future of manufacturing by prototyping signal processing quickly and efficiently. 

• Demonstrate the use of AI Planning to find the optimal solution for a given signal processing 

sequence and hardware combination across a heterogenous, CPU-GPU architecture. 



25 

1.5 Thesis Structure 

This thesis is laid out as follows: 

• Chapter 2 reviews how Industry 4.0 is changing the landscape of manufacturing and increase 

in requirement for in-process measurement. It investigates how hardware acceleration is 

being utilised in surface and dimensional sensors and instrumentation to processing signal 

processing from optical sensors and the benefits provided by DSPs, GPUs, and FPGAs. It also 

investigates the state-of-the-art software used to process signal processing and why there is 

a transition from commercial software packages to mid-level languages such as C++, CUDA 

and OpenCL for GPU acceleration.  

• Chapter 3 introduces artificial intelligence to solve the optimisation problem. For a given set 

of signal processing functions, there are exponentially many possible permutations. By 

investigating search and planning a solution to reduce the total possible permutations to only 

those that provide a valid result will be determined. 

• Chapter 4 provides a case study, Dispersed Reference Interferometry (DRI), to observe the 

performance benefits of hardware acceleration using a GPU for the single point technique. It 

also illustrates that developing configurable accelerated algorithms is a steep learning curve 

and outlines what steps need be taken to remove this programming time from an user.  

• Chapter 5 brings together all the literature and development work and a software package 

has been created that enables users to configure a signal processing sequence for their needs. 

It details the creation of the software and how it provides flexibility without impacting on 

performance. 

• Chapter 6 outlines the process of profiling, measuring the time taken to run each algorithm 

on a heterogeneous platform. This profiling information can then be used as a cost function 

do evaluate which architecture is optimum for each signal processing function. 

• Chapter 7 evaluates the heterogeneous solutions found through LPG-td, a PDDL planner, and 

the performance benefits it provides over a single architecture. The planner should return an 

optimal solution for the current hardware given a sequence of signal processing and hardware 

availability.  

• Chapter 8 presents an appraisal of the proposed software solution to optimise performance. 

It evaluates both the improvements that this research provides, and the limitations to the 

approach taken. 

• Chapter 9 considers future investigations and improvements that may provide further 

performance benefits including changes to the PDDL heuristics, concurrent actions, and 

asynchronous memory transfers between architectures. 



26 

1.6 Contribution to Knowledge 

The novel work reported within this thesis is summarised as follows: 

• New approach to providing a library of hardware accelerated signal processing containing 

algorithms used across surface and dimensional sensors and instrumentation, for the future 

of manufacturing, that outperforms commercial alternatives. 

• In contrast to other open-source alternatives, this research provides the capability to 

configure the signal processing library to the requirements of a user without the need to learn 

a programming language. 

• First demonstration of the use of an AI planning language, PDDL, to optimise the signal 

processing and data requirements using a heterogenous approach to the available hardware. 

1.7 Publications 

Conference Presentation: 

A. Cusack, H. Martin and X. Jiang, Optical Signal Processing Workspace (OSPW); a self-optimised 

on-line system. The Enlighten Conference: Optical Metrology for Smart Decision Making, 2019, 

Coventry 

 

  



27 

2 Future Manufacturing & Industry 4.0 

2.1 Introduction 

This chapter investigates how Industry 4.0 is impacting high-value manufacturing, specifically the 

changes to signal processing techniques. It explores how hardware acceleration is being applied in 

surface and dimensional sensors and instrumentation and the benefits that researchers and industry 

can achieve for their signal processing requirements. This chapter also investigates and evaluates the 

different hardware used for processing big data and providing signal processing acceleration through 

the use of FPGAs, DSPs, and GPUs. Their strengths, weaknesses, and their usage within surface and 

dimensional sensors and instrumentation is analysed to determine the current state of the art of 

hardware acceleration and how this technology is being implemented. Finally, this chapter examines 

Autonomic Computing, a term coined by IBM to describe the shift to systems managing themselves 

without human interaction.  

Jiang, Scott, Whitehouse, and Blunt (2007) define surface metrology as “the science of measuring 

small-scale geometric features on surfaces: the topography of the surface.” Whereas dimensional 

metrology “ensures the size of the workpiece conforms to the designer’s wish” including “the 

measurement of length, position and radius” (Whitehouse, 2011, p. 1). To measure the surface or 

dimensions requires two stages, the first is the capturing of information by an input with the second 

stage being to analyse the data captured. Non-contact optical sensors are used across a wide range of 

fields from surface measurement of automotive parts to analysis of orthopaedic implants to extend 

their longevity in the human body. The role of surface and dimensional measurement can be thought 

of as “what needs to be measured in order to enable a workpiece to work according to the designer’s 

aim – one as to measure in order to be able to control” (Whitehouse, 2011, p. 1) 

Industry 4.0 relies on continuous feedback from multiple sensors, monitoring multiple parameters of 

associate with the workpiece, at multiple points in the manufacturing process. Vacharanukul and 

Mekid (2005) outline the three types of measurement used in the manufacturing which have since 

been updated by Gao et al. (2019). There are defined as post-processing, on-line and in-process 

measurement. 

Post-process 

Post-process or offline measurement describes the use of instruments located away from the 

manufacturing process. This significantly increases the time taken from an object being created and 

being measured increasing overall production time and cost, this method may also require a person 

to move the object to the measurement area and start the process. It does however allow control of 



28 

parameters related to the object or machine as it isolated from the machinery, such as temperature 

or humidity. 

On-line  

On-line or on-machine measurement is defined as when the part is measured within the production 

line without the need of intervention. Although this means the production line does have to stop to 

do the measurements it still has a latency benefits over offline measurement. Measurements can be 

taken at several stages of the production line without constantly removing or resitting the part in 

manufacture.  

In Process 

In-process or on-machine metrology can be described as measurements taken during the 

manufacturing process without the need to stop production. This saves even more time again than 

on-line or offline processing but does come with its own challenges. This requires instrumentation to 

be computationally fast to take the measurement and process the result without slowing down the 

production line, it also needs to be robust to survive the harsh conditions it could be placed with 

potential debris and noise such as vibration potentially being present. 

Maximum efficiency within the production line can only be achieved when the measurement takes 

place at the closest point to the manufacturing line, either on-line or in-process (McKeown, Wills-

Moren, & Read, 1987). In recent years, in-process, on-machine processing is having an ever-increasing 

important role in process control, feeding information back into the machines from the measurements 

taken. This closed-loop feedback allows manufacturing lines to increase production yields and be 

notified of machining errors such as tool-ware (Takaya, 2014). As the move towards Industry 4.0 

continues, the more important on-machine measurement is becoming. As technologies such as 

additive manufacturing increases in popularity so does the number of measurements required to 

ensure a product conforms to its design. 

The two categories of measurement instruments used in surface and dimensional metrology are either 

contact or non-contact. Contact based stylus method was the original method of profiling a surface 

and is obtained by measuring the geometry of the stylus as it moves across the surface. It is therefore 

important to select the correct shape and size of stylus to ensure an accurate measurement, with 

these parameters being a limiting factor of the measurement. Another factor limiting stylus based 

measurement is its slow nature, if the surface is soft the stylus could damage the object and is also 

limited by the area of which it can measure (Whitehouse, 2011).  



29 

Therefore, non-contact techniques such as optical techniques and Atomic Force Microscope (AFM) 

aim to improve upon the existing contact-based methods. Optical methods remove the possibility of 

damage to the surface, measure faster and are more robust than stylus based methods (Whitehouse, 

2011). 

2.2 Review of the Technologies Driving Industry 4.0 

The term Industry 4.0, the fourth industrial revolution, initiated in Germany in 2011 and has since 

attracted significant attention in recent literature (Lu, 2017). This fourth industrial revolution aims to 

achieve higher levels of operational efficiency, productivity, and automation to adapt to the changing 

nature of manufacturing (Thames & Schaefer, 2016), including other advantages such as reduced costs 

and provide more flexibility. Industry 4.0’s aim also encompasses other technologies and paradigms 

including Cyber Physical Systems (CPS), Internet of Things (IOT), Cloud-based Manufacturing and Big 

Data (Lu, 2017).These technologies are all vital to achieve Industry 4.0’s vision of a smart factory, as 

the number of sensors increases, from measurement instruments to environmental monitoring, 

“smart-technology” will be required to autonomously process the vast amounts of data that will be 

generated (Lasi, Fettke, Kemper, Feld, & Hoffmann, 2014).  

One of these technologies, Cyber-physical systems, coined by the US National Science Foundation in 

the mid-2000s, builds upon earlier concepts in fields such as embedded systems and mechatronics. 

Since its coinage, its use has grown within the literature to over 1000 articles, and while the Internet 

of Things (IoT) and CPS have several similarities and overlapping principles, IoT has seen an order of 

magnitude more articles discussing its use compared to CPS. Although IoT did have a head-start being 

first discussed around 1999 at the Massachusetts Institute of Technology (MIT) (Greer, Burns, 

Wollman, & Griffor, 2019).  

Both CPS and IoT are crucial for achieving the goal of a smart factory, the relationships between CPS, 

IoT, and Cloud Computing is shown in Figure 2-1. While CPS’s are used at shop floor level to integrate 

manufacturing processes, enable machine-to-machine communication, and physical-to-digital 

comparisons, IoT uses sensory and smart object interconnection to connect objects, machines and 

people together to create the internet of things and internet of services (Pisching, Junqueira, Filho, & 

Miyagi, 2015). 



30 

 

Figure 2-1: The relation between CPS, IoT, and cloud computing within Industry 4.0 (Pisching et al., 2015) 

2.2.1 Cyber-physical Systems (CPS)  

Due to the increase in availability and reduction in cost, the number of sensors in today’s 

manufacturing facility is greater than ever before. The competitive nature of industry has driven 

companies to invest in high-technology methodologies to increase efficiencies, reduce costs and 

become more autonomous. This increase in sensors however has resulted in the continuous 

generation of large data sets, requiring CPS’s to use hardware acceleration and cloud computing to be 

able to process the data in real-time (Lee, Bagheri, & Kao, 2015; Lee, Lapira, Bagheri, & Kao, 2013).  

Lee et al. (2015) outlines a five-level CPS structure for development of CPS systems, named the 5C 

architecture. This 5C architecture outlines the hierarchy of a CPS and the attributes within each level, 

reminiscent of the levels of automation for car driving. The 5C architecture starts at level one, smart 

connection, where multiple sensors/systems are connected and share data, at this level data is 

collated but no action is taken. The 5C model then increases in complexity through data-to-

information, where the data captured is processed to provide smart analytics and diagnosis 

information about the connected machines, sometimes referred to as Intelligent Manufacturing 

System (IMS). Level three, Cyber, uses specific analytical tools to extract more information about the 

machine(s) to enable self-comparison against other machines (horizonal integration) or a digital twin. 



31 

The concept of Digital Twins, Digital Factories etc. require the mapping the technical, and sometimes 

the business processes into the digital world (Kádár et al., 2010). These digital counterparts then allow 

real-time feedback by comparing the live system to a model, these comparisons can be executed in 

three different modes: 

1. Offline: The analysis of the uncertainties prior to the execution of the machine. 

2. Proactive: Anticipating change by recognising any deviation from the model. 

3. Reactive: Analysing what disturbance has occurred and how what actions can be taken to 

minimise losses (Monostori et al., 2016). 

All these by themselves allow the system to inform a human that a deviation is about to or has 

occurred. However, without Cognition or Configuration, no decisions can be autonomously made on 

the corrective action, these are levels four and five on the 5C architecture by Lee et al. (2015). 

Providing feedback from the cyber space, digital twin, digital factory etc. to the physical space is the 

final level on the 5C model and provides the closed loop system required for the smart factory. This 

allows the system to self-configure, self-adapt and/or self-optimise autonomously based on decisions 

made by the data captured, whether mechanical or environmental. 

As businesses move higher up the 5C the more sensors that are required to map the physical world 

and compare it against the digital mode. The increase in sensors ensures the physical world is being 

mapped correctly and therefore decisions can be made accurately without the need for human 

intervention. The Internet of Things (IoT) is advancing the mapping of physical spaces by providing 

connectivity between machines. 

2.2.2 The Internet of Things 

The term, Internet of Things (IoT), was first coined by Kevin Ashton within the context of supply chain 

management, using RFID in Proctor & Gamble’s supply chain (Ashton, 2009). Since then, it has 

expanded to include applications from healthcare, to transport, and manufacturing. Although the 

definition of “things” has expanded in the two decades since its first use, the aim has stayed the same, 

for a computer to sense information autonomously without the need for human intervention (Gubbi, 

Buyya, Marusic, & Palaniswami, 2013). A study by I. Gartner (2015) forecasted that by 2020 there 

would be nearly 21 billion connected “things” worldwide, over three times the world population. 

Georgakopoulos, Jayaraman, Fazia, Villari, and Ranjan (2016) states three opportunities that IoT can 

have on manufacturing plants. Firstly, real-time monitoring of key performance indicators (KPIs), 

providing personalised KPI visualisations to personnel and analysing the production process to identify 

improvement opportunities. Secondly, closer to the original IoT definition, smart inventory 



32 

management, electronically tagging products to enable identification and tracking across the plant 

and beyond. Finally, automation of complex activities for quality control using specialised 

technologies. They also state these solutions have the added benefit of also potentially increasing 

plant safety by monitoring employees and equipment.  

Zhang et al. (2015) used the term Industrial Internet, which later became Industrial Internet of Things 

(IIoT), to describe the control and decision making during manufacturing operations (Electric, 2013). 

IIoT is enabling unparalleled levels of productivity and performance by integrating machine-to-

machine communication with industrial data analytics. As a result, industrial companies in power 

generation, manufacturing, utilities, construction, aviation, and a variety of other sectors are seeing 

significant operational and financial improvements.  

Kanawaday and Sane (2018) provides an example of using IIoT on the production line of a slitting 

machine used to produce packaging with their aim being to predict failures before any major losses 

are incurred. To achieve this, they monitor the various parameters using a Programmable Logic 

Controller (PLC) sampled at 1 Hz pushing the data to the cloud using Message Queuing Telemetry 

Transport (MQTT). Although the authors do not state why this data is sent to the cloud for processing, 

their results using an Autoregressive intergraded moving average (ARIMA) model allowed them to 

predict future failure points with a 94-99% accuracy. 

Strauß, Schmitz, Wöstmann, and Deuse (2019) also investigated the use of IIoT architecture and 

machine learning for predictive maintenance, however their specific aim concerned the “Brownfield” 

of old systems. They noticed that manufacturing plants are often equipped with older machines that 

do not contain sensors or any form of connectivity and present results from a study claiming 75% of 

industrial companies are not willing to heavily invest in these technologies. The authors suggest a low 

cost, central embedded device, BananaPi, that contains temperature and vibration sensors and 

communicates over a 5 GHz Wi-fi connection.  

For their case study, Strauß et al. (2019) connected BananaPi with an additional sensor kit containing 

two acceleration sensors, three inductive current clamps, and three temperature sensors each of 

which monitored one of 60 identical cranes on a BMW production line. Their data was sampling at 10 

Hz coming from a total of 480 sensors across all 60 cranes, averaging around 1.2 GB per hour. By using 

various machine learning algorithms to compare the results against one another, they found 

supervised algorithms such as Decision Trees and MultiLayer Perceptron (MLP). A neural networks 

MLP worked best to classify single faults when given historical fault data. Finally, they determined 

using a Support Vector Machine (SVM) gave the best live detection of faults, detecting several 

defective installations within the control cabinet. 



33 

A research article by Tanuska, Spendla, Kebisek, Duris, and Stremy (2021) investigated smart anomaly 

detection using AI. Their focus was on the predictive maintenance of automotive assembly line 

conveyors that transport car bodies during the entire assembly. They state the most common problem 

of carrier cessations is the jamming or seizing of a wheel baring and is up to the maintenance crew to 

visually identify the damaged carrier. To resolve this problem and identify the fault before it causes 

downtime, they implement a host of sensors including temperature sensors for the carrier wheel, an 

RFID tag for each station for identification and a microphone for sound measurement.  

Their initial implementation was to implement the sensors on each of the 59 carriers across the 1.25 

km production line. However due to plant constraints they implemented a single stationary measuring 

station that took measurements each time a carrier past by it, reducing the frequency at which they 

could measure from 100 frames a day on each carrier, to once every two hours per carrier. All this 

data was transmitted to an Industrial PC (IPC) and was analysed by a MLP neural network to detect 

the failure of the bearings.  

Tanuska et al. (2021) managed to detect a bearing failure approximately two to four hours before 

critical damage just from temperature sensors alone, without their neural network. When processing 

with their neural network this increased to four to six hours, finally including sound data from the 

microphone increased this to eight to ten hours before critical damage occurred. This increased 

warning window gave the maintenance crew a powerful tool and allows the assembly process to avoid 

significant downtime which often led to financial loses. 

IIoT is increasing the number of sensors on a production line, but also in the entire manufacturing 

plant. These sensors provide vital data to enable predictive maintenance, lower energy consumption 

and monitor KPIs in real time. But these sensors are creating a new problem, data processing 

requirements and data storage, this problem is referred to as Big Data (Al-Fuqaha, Guizani, 

Mohammadi, Aledhari, & Ayyash, 2015).  

2.2.3 Big Data 

With the push towards an interconnected manufacturing factory, through CPS and IoT technologies, 

data is becoming more accessible. This continuous capturing of real-time information from many 

sources has the negative impact of significant storage issues and is often referred to as “Big Data”. 

Cemernek, Gursch, and Kern (2017) described big data as “a ‘term’ describing large volumes of high 

velocity, complex and variable data requiring advanced techniques to enable the capture, storage, 

distribution, management and analysis of the information”.  



34 

This definition is based upon research set out by Laney (2001) who was the first to outline the three 

dimensions of big data, known as the three V’s: Volume, Variety, and Velocity, however, other authors 

have since increased this number adding various other properties, such as IBM including Veracity and 

Oracle also including Value (Cemernek et al., 2017). While the number of characterising factors is up 

for debate, what is certain is advance data analytical techniques are required to compute the vast 

sizes of data captured by the ever-growing number of sensors on a production line. The processing of 

these data sets is often referred to as data mining. 

While the size (volume) of data being captured is important, all the different properties of the data 

need to be considered. The Variety of data describes the different data formats that may be recorded, 

CSV data, databases, XML files, etc, with velocity describing how often the data is being captured. 

Veracity, defined by IBM as “the unreliability inherent in some sources of data”, is often viewed as the 

property that defines the data quality (Cemernek et al., 2017). Oracle’s value property is slightly more 

abstract, whereby the data itself has a value, a value that changes dependant on the analytics used to 

process the data. The more advance the data analytics are, the more economically worthy the insights 

and the benefits of the data captured are saving development time and eliminating possible defects 

prior to production (Alcácer & Cruz-Machado, 2019; Obitko, Jirkovský, & Bezdíček, 2013). 

Capturing and storing the data is one challenge, the much harder challenge is processing the 

information acquired using useful analytical tools. Obitko and Jirkovský (2015) state “the single 

retrieval of [a] time series data point…is usually not an issue, on the other hand, a task such as ‘what 

was the temperature trend during afternoons of this week’…is a more complex analytics task”. In this 

example, the data processing needs to include pattern recognition over many different periods for 

things like predictive machine maintenance, or product defect predictions. 

Finally all this analysis needs to be processed in real-time, a whitepaper by GE (Platforms, 2012) stated 

a Consumer-Packaged Goods (CPG) company captured 5000 data points every 33 milliseconds. Even 

at 1 byte per sample, which is highly unlikely, that CPG company would generate 4TB (terabytes) of 

data each year. However, this whitepaper is nearly a decade old, and the data size captured per second 

is likely to have significantly increased along with the number of sensors capturing data. There is no 

argument that this data is useful, but the analytical tools used need to gather and store the useful 

data and dispose of everything else otherwise huge storage devices are going to be required at great 

expense (J. Wang, Zhang, Shi, Duan, & Liu, 2018). 

2.2.4 Summary 

It is clear big data is only getting larger, and the benefits of data mining are numerous, from saving 

energy, increasing product yields, and shortening development time. However, as the data velocity 



35 

and volume increase, traditional, CPU-bound processing is no longer fast enough, and industry is 

looking towards Hardware acceleration to solve its ever-growing data problem. 

2.3 Investigation into Hardware Acceleration Technologies 

Hardware acceleration is the use of computer hardware that has been specifically made to perform 

tasks more efficiently than general-purpose Central Processing Units (CPUs). Hardware acceleration is 

used to either decrease the latency or increase the throughput of signal processing. Other advantages 

can include reduced power consumption, increased parallelism, and reduction in physical size. The 

hardware used for acceleration ranges from basic, low-cost, single-core DSPs to highly specific, 

expensive to develop FPGA solutions, and GPGPU processing offering excellent price to performance. 

However, selection of the most suitable hardware for a given application is challenging, there are 

significant differences in the cost of each type, their performance capabilities and the amount of time 

required to implement such hardware. Therefore, a review of the different acceleration options is 

undertaken, the usage of these technologies over the last two decades is illustrated in Figure 2-2. 

 

Figure 2-2: Publications containing Hardware Acceleration Keywords 

2.3.1 Digital Signal Processor (DSPs) 

Digital Signal Processors (DSPs) were developed due to the rapid development of digital computer 

technology in the 1960s in well-funded industries such as oil, space, and medical applications. Due to 

hardware limitations in the 1960s, DSPs did not run in real-time, taking longer to process the data than 

the data capture itself, this would change in the 1970s, and became popular in many consumer 

products such as aircrafts, calculators and barcode scanners (Khan, Hasnain, & Jamil, 2016). Over the 

next forty years, DSPs have become smaller, cheaper, and faster and are used in a significant amount 

of consumer devices sold today including mobile phones, televisions, and computers. 

0

500

1000

1500

2000

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020

To
ta

l n
u

m
b

er
 o

f 
 P

u
b

lic
at

io
n

s

Year

Publications Containing Hardware Acceleration Keywords
(Metrology, Interferometry & Tomography)

GPU FPGA DSP



36 

Modern DSPs, sold by companies such as Texas Instruments (TI) and Microchip, can be split into four 

categories: 

1. Ultra-low power 

2. Power-optimised 

3. Digital Media Processors 

4. Multi-core 

Ultra-low power DSPs are cheap, but limited in their computational power, which limits these 

processors to simple signal processing algorithms with either small data, or few signal processing 

steps. Power optimised DSPs are used in devices where low power is one of the most important 

features, such as mobile and portable devices, but can process more complicated algorithms or more 

data than their ultra-low power alternatives. Digital media processors are used very specifically in 

video and image processing, encoding and decoding hardware codecs such as H.264 and JPEG. Finally, 

Multi-core DSPs are rare in consumer electronics and are normally reserved for High Performance 

Computing (HPC). They consist of multiple cores allowing them to compute tasks in parallel, although 

this does allow them to be used for much larger applications, the trade-off is their increase is cost due 

to the increase in core count (HajiRassouliha et al., 2018).  

DSPs would not be as ubiquitous if they did not have their advantages. Their small physical size and 

low development cost make them attractive for simple computer vision and image processing tasks. 

Texas Instruments (TI), one of the main manufacturers of DSPs, offer free licenses for their software 

library tools used to program the chips, increasing their usage. Being low power makes them great for 

battery operated devices, specifically mobile devices, for their handling of communication protocols 

such as USB and Bluetooth. However, their processing capability is still limited, and although multicore 

DSPs exist, they are more suitable for sequential programming. For a more powerful, but still low-cost, 

option for signal processing is needed then General-Purpose computing on Graphics Processing Unit 

(GPGPU) might be a better solution. 

2.3.2 General Purpose Graphics Processing Unit (GPGPU) 

The first graphics accelerators were developed for accelerating high-quality renders of complex scenes 

using Open Graphics Library (OpenGL) (Montrym, Baum, Dignam, & Migdal, 1997). Although their 

implementation has changed significantly over the last two decades, the methodology of using 

graphics accelerators has stayed the same, performing fast matrix calculations in parallel. The increase 

in performance over the last two decades has been driven by the gaming industry, who are using 

continually improving hardware to render their gaming scenes in higher and higher resolutions and at 

greater frame rates. This drive by the gaming industry has also allowed prices to stay competitive, as 



37 

this hardware is sold directly to consumers and is produced in much larger quantities therefore 

reducing the price (HajiRassouliha et al., 2018). 

There are three major companies in the market offering GPU hardware: Nvidia, ATI Technologies, and 

Intel. While ATI and Nvidia have focused the mid-to-high range market, Intel focused on integrated 

graphics processed on their CPU packages. According to an article in 2020 by Forbes (2020), Nvidia 

have just under 70% market share, making them the leader in the GPU space. However, these figures 

include graphic cards sold for gaming for consumers, therefore, it is unclear what percentage of 

graphics cards used for scientific data processing are Nvidia or ATI Technologies. One finding that is 

clear, is the market is getting larger each year, driven by fields such as machine learning and artificial 

intelligence with Nvidia and their proprietary CUDA application programming interface (API) leading 

the way (Nvidia, 2019). Nevertheless, ATI graphics cards can still be used for GPGPU, with OpenCL, an 

open standard defined by the Khronos Group (Khronos, 2019), allowing CPU and ATI GPGPU 

heterogenous platform computing. 

Both OpenCL and CUDA are free to use and both use C++11 for programming the APIs. Both provide 

function libraries for common image processing tasks, such as Fast Fourier Transforms (FFT) and linear 

algebra. Both ATI and Nvidia also offer graphics cards at many different prices and performance levels, 

with many having orders of magnitude more compute power and memory than the previously 

discussed DSPs. As of 2021, Nvidia’s current most powerful GPU can process 38.7 TFLOPS (Tera-

Floating-Point Operations Per Second) with up 48 GB of Video Random Access Memory (VRAM) 

(Nvidia, 2021). 

In two different articles examining the performance difference between OpenCL and CUDA, Karimi, 

Dickson, and Hamze (2010) and Fang, Varbanescu, and Sips (2011) both found CUDA to be as fast or 

faster than OpenCL (Table 2-1). Karimi et al. (2010) suggests that the choice can be made on factors 

such as “prior familiarity” or the number of “available development tools for the target hardware”. 

However, the results by Karimi et al. (2010) and Fang et al. (2011) appear to be application specific as 

Cheik Ahamed and Magoulès (2017) found through a variety of different tests that OpenCL and CUDA 

switch places for fastest when using small quantities of single precision (floating-point) but CUDA 

opened up a lead when larger data sizes were used.  

  



38 

Table 2-1: CUDA Performance compared to OpenCL - Green highlights the fastest architecture (Karimi et al., 2010) 

Qbits 
GPU Operations Kernel Running Time Data Transfer Time 

CUDA OpenCL CUDA OpenCL CUDA OpenCL 

8 1.97 2.24 1.96 2.23 0.009 0.011 

16 3.87 4.75 3.85 4.73 0.015 0.023 

32 7.71 9.05 7.65 9.01 0.025 0.039 

48 13.75 19.89 13.68 19.8 0.061 0.0086 

72 26.04 42.32 25.94 42.17 0.106 0.146 

96 61.32 72.29 61.1 71.99 0.215 0.294 

128 101.07 113.95 100.76 113.54 0.306 0.417 

 

However, all that performance comes at a cost. GPUs not only cost more than most DSPs, but they 

require more power and are significantly larger. It is not just the physical cards which are larger, but 

they require to be a part of a heterogenous system, taking up more space, a potential issue on a small 

production line. The heterogenous system is also a GPUs main bottleneck, having to transfer data 

between the host CPU and the GPU is often the slowest part of the program, poor optimisation leads 

to slow performance. GPUs are designed for massive data parallelism and their performance 

decreases significantly when met by either a non-optimised algorithm, or an algorithm that requires 

serial iteration through an array. Finally, although there are significant resources online, provided both 

by Nvidia and the public, programming with CUDA or OpenCL requires significant development time 

if the algorithms and data transfers are to be optimised. 

While GPUs do offer the best price to performance, when compared against DSPs and FPGAs, they are 

frequently outperformed by hardware that can be specifically customised to the required task. 

2.3.3 Field Programmable Gate Array (FPGA) 

FPGAs are the most expensive and most specialised of the three hardware acceleration methods being 

reviewed. In contrast to DSPs, GPUs and CPUs, FPGAs do not have a pre-structured architecture, 

instead the architecture is configured by programmatically interconnecting logic gates to perform the 

task required. FPGA programming languages are also different from DSPs and GPUs, due to their 

architecture, they are programmed using Hardware Description Languages (HDLs) such as Very (High 

Speed Integrated Circuits) Hardware Description Language, VHDL, and Verilog. FPGAs, like DSPs, are 

low powered, however, they can process significantly more data, important for real-time applications 

where latency is critical (Bailey, 2019). 

The two main suppliers of FPGAs are Altera (Intel, 2020) and Xilinx (Xilinx, 2020) who have both been 

in the market for almost twenty years. Unfortunately, pricing of development tools is high, much more 

than DSPs and GPU, furthermore, high-level functions often require expensive licenses, resulting in 



39 

algorithms being developed using unoptimised basic functions. These licensing restrictions, in addition 

to the fact that HDL languages differ significantly from C++, not only make development difficult for 

beginners, but require a considerable amount of training time. However, this upfront training and 

development cost may not be a concern if the intention is to mass produce the chips later. FPGA code 

can be adapted into Application Specific Integrated Circuits (ASICs), reducing the per unit cost 

substantially as the majority of the cost is not the chip itself, but the time spent creating it. However, 

for that time and cost, very efficient, high-throughput processing can be achieved with the lowest 

computation to power ratio of the three methods, important for portable applications.  

2.3.4 Summary 

If portability or power efficiency is a design goal, without any financial or time restrictions, then FPGAs 

provide a very high level of performance when compared to DSPs and GPUs. If portability is still 

desired, but there is a requirement for low cost, then DSPs provide a respectful level of acceleration 

at a fraction of the cost, with a faster development time. Finally, the best value to performance is a 

GPU, if the processing does not need to be portable, and a high level of acceleration is required. A 

competitively priced GPU offers a quick development path providing the ability to periodically transfer 

the signal processing to new hardware much easier than the other options discussed.  

Having analysed the various methods of hardware acceleration available, a sub-set of literature in the 

use of hardware acceleration to process surface and dimensional sensor data will be investigated to 

see how researchers and industry are using hardware acceleration, why they find a need to use it, and 

finally, which of the hardware acceleration methods are most prominent and why. 

2.4 Review of Hardware Acceleration in Surface and Dimensional Measurement 

Processing  

As Industry 4.0 advances high value manufacturing, the optical sensors on production lines are not 

only increasing in number, but the data sizes they are capturing are also getting larger. This is creating 

problems for both researchers and industry as traditional, sequential processing methods are no 

longer providing fast enough signal processing. Therefore, there is an increase in the use of hardware 

acceleration methods in improve the performance of signal processing to achieve real-time, or better 

performance.  

Early in this research, a review into the signal processing used within optical measurements was 

conducted to evaluate the commonality of the algorithms used. However, that review included 

techniques such as Digital Holography, Adaptive Optics and Simulation which no longer relate to this 

research. Therefore, the literature reviewed discussing the use of hardware acceleration has been 



40 

limited to only include optical sensor measurement techniques within surface and dimensional 

measurement or that have significant commonality of their signal processing algorithms. The 

techniques reviewed below are Interferometry, Structured light, and OCT to determine the extent of 

hardware acceleration in the processing of optical sensor data to improve process and quality control.  

2.4.1 Interferometry 

Interferometry is the measurement method using the interference of waves, usually light. Most 

interference methods start with a basic Michelson interferometer but form the basis of one of the 

most important tools in metrology. However, until recently, this would have been dimensional 

metrology, rather than surface metrology. Interferometry covers instruments from high-speed 

monochromatic single point techniques such as Dispersed Reference Interferometry (DRI) 

(Williamson, 2016) up to multi-image, three-dimensional data, for example Wavelength Scanning 

Interferometry (WSI) (Muhamedsalih, 2013). The different ends of this scale have very different 

requirements, small data at a high speed is more suited for DSPs or FPGAs, optimising for latency. 

Whereas, at the opposite end, high throughput of large data sets is crucial and while an FPGA may still 

be an option, Muhamedsalih (2013) selected a GPU for its low cost and its parallelism capability, 

beneficial when processing across multiple images. 

Purde, Meixner, Schweizer, Zeh, and Koch (2004) were one of the first to accelerate surface profile 

measurement with a GPU, calculating FFTs for speckle interferometry. They chose a GPU as “neither 

a board design nor an extra high speed data link is necessary”, although it is not clear how much of a 

performance advantage they achieved, they state they gained an increase in performance over their 

serial program. Finally, they predicted that “modern graphics are growing with a factor of 3.0 to 3.7 

every 18 months” (p. 1119) and while that figure turned out to be a little bit high when comparing 

operations per second (around 2.1x year-on-year from 2004 to 2018), they did correctly predict the 

future increases in GPU acceleration in interferometry. 

Phase unwrapping is an area that has seen a great amount of attention in GPU hardware acceleration 

due its high parallelism possibility. Karasev, Campbell, and Richards (2007) used an Nvidia 8800 GTX 

programmed in C for Graphics (Cg), as this was pre-CUDA. They compared a MATLAB, CPU, and GPU 

implementation of a phase unwrapping algorithm for different grid sizes. They found that a GPU had 

an increase of 5-35x the performance of the CPU and around 7500x faster than MATLAB. Almost a 

decade later, Zhong, Tang, and Zhang (2015) also used a GPU (Tesla C2050) for a 2D phase unwrapping 

algorithm. Using more modern hardware then Karasev et al. (2007), and with the introduction of CUDA 

in 2007, Zhong et al achieved similar increases in performance, between 12-105x that of their Intel 

X5650, a powerful six-core CPU. 



41 

Schneider, Fey, Kapusi, and Machleidt (2011) also used an Intel X5650 and Tesla C2050 to calculate 

height data of interferograms captured from a white light interferometer. Unlike previous discussed 

works, Schneider et al results are mixed, with the Intel CPU outperforming the GPU by almost double 

in a contrast algorithm, with the Tesla GPU being the clear fastest in the sliding average and bucket 

method algorithms. They author states this is due to the GPU’s memory bandwidth being limited, and 

the contrast algorithm only using “one arithmetic instruction”. This bandwidth limitation was also 

reported by Tomczewski, Pakula, Van Erps, Thienpont, and Salbut (2013) using low-coherence 

interferometry and calculating interpolation, phase shifting and curve fitting. Although they did still 

see a speedup of 40x that of a single core, and 28x of multi-core, this bandwidth limitation is likely to 

be common amongst fast algorithms, with the data transfer taking as long, or substantially longer than 

the algorithm itself.  

Finally, Muhamedsalih, Jiang, and Gao (2011) used an Nvidia GTX 280 and CUDA to process multiple 

2D images from a wavelength scanning interferometer computing algorithms such as FFTs. As 

previously mentioned, applying a GPU’s parallelism capability to a problem where repeated processes 

are applied to multiple images is advantageous, and this was shown by the author who achieved from 

a 21.5x to a 66x speedup against MATLAB, dependent on the number of frames processed at one time. 

This collection of literature shows GPUs are being used across different interferometric techniques 

successfully and providing performance increases in orders of magnitude greater than single-core 

CPUs and in the case of Karasev et al. (2007), thousands of times faster than commonly used software 

package MATLAB. However, FPGAs are also being used within interferometry, but not as extensively. 

Three different implementations by Peng, Xue, and Gao (2015), Karpiński, Khoma, Khoma, and 

Więcław (2017) and Scholz, Rosenberger, and Notni (2019) have all used Xilinx FPGAs to accelerate 

white light interferometry and achieved real-time processing speeds. However, none of them provide 

more than a couple of results and with no comparison to other architectures it is difficult to draw 

conclusions as to the benefit they have achieved by using an FPGA over a CPU, GPU, or DSP. 

Two more papers that discuss FPGAs capturing interferometric data are by T. Hussain et al. (2017) and 

X. Li, Xiao, Zhou, Ni, and Wang (2019). As with the research listed above, results are scarce in these 

papers, and are written to demonstrate a proof of concept of processing with an FPGA, rather than 

comparing results to a different, previously used, architecture. However, both sets of authors aimed 

to achieve capture and process data captured at 6 MHz and 10MHz respectively and their results seem 

to suggest they achieved this. 



42 

Pacholik, Muller, Fengler, Machleidt, and Franke (2011) compared processing of WLI on a CPU, GPU, 

and FPGA, using an Intel E8600 (CPU), Nvidia 280 GTX (GPU) and Virtex 5 (FPGA). They are computing 

three different tasks on the different hardware, Pre-processing, Demodulation and Gaussian fitting. 

While some are more suited to the GPU than others, compared to the CPU they achieved speed-ups 

of between 5-30x over the CPU and when comparing throughput, the GPU also outperformed the 

FPGA, however the FPGA typically outperformed the CPU. They state due to the GPU having a 

processor clock 10x the speed of the FPGA, throughput was going to be higher on the GPU, however 

they express that FPGA’s power consumption was substantially lower and would still allow real-time 

processing capability.  

Fowers, Brown, Cooke, and Stitt (2012) also compared FPGA and GPU execution using an Intel Xeon 

W3520 (CPU), Nvidia 295 GTX (GPU) and Altera Stratix 3 (FPGA). Like Pacholik et al. (2011), Fowers et 

al. (2012) compares execution times across three different algorithms, sum of absolute differences 

(SAD), 2D convolution and correntropy. The FPGA outperformed both the CPU and GPU in the SAD 

and correntropy, with the GPU coming second, whereas the positions were reversed in the 2D 

convolution. Overall, the authors state that the GPU was faster for the smaller amounts of data, the 

FPGA gained significantly when it came to much larger data due to the FPGA having “kernel-size 

independent performance”. It is likely that once the kernel was larger than 16x16 at higher resolutions 

that the GPU became saturated and had to wait for some data to finish processing before it could 

continue. 

It is clear FPGAs and GPUs are being used within interferometry and achieving performance gains 

compared to a CPU. FPGAs do seem to have a greater performance advantage when it comes to 

latency, but GPUs lead the way for throughput due their significantly higher clock speed and core 

count.  

2.4.2 Optical Coherence Tomography (OCT) 

Although OCT is traditionally used for medical imaging, it has many similarities to White Light 

Interferometry (WLI) with regards to the signal processing. The field of OCT is therefore reviewed to 

not only show the similarities in signal processing with other optical sensor measurements, but also 

the wide-ranging impact that a generic software package for optical sensor data processing would 

have outside of manufacturing.  

OCT has become a staple of medical imaging capturing two- and three-dimensional images at 

micrometre-resolution. OCT offers high resolution, cross sectional imaging in fields such as optometry 

and ophthalmology Yasuno et al. (2005). More recently OCT has been applied to more engineering 

applications such as defect detection in Additive Manufacturing (AM) and polymer composites and 



43 

also in micro-electronics to evaluate PCB coating thickness. These recent uses of OCT in non-biological 

areas are due to OCT’s superiority in axial and lateral resolutions compared to other high-frequency 

ultrasound imaging (Martin, Kumar, Henning, & Jiang, 2020). Due to OCT’s extensive usage in medical 

research, there is a significant amount of literature surrounding accelerating signal processing in OCT, 

which overlaps with the algorithms used in engineering within interferometry.  

Jian Li, Bloch, Xu, Sarunic, and Shannon (2011) used a selection of Nvidia graphics cards (Figure 2-3) 

to compute DC removal, FFT, and a logarithm amongst a few other steps. They achieved over 2x 

speedup on the GTX 480 vs the GTX 295, but it is not stated how much faster this is compared to other 

non-GPU solutions. The major drawback they found was the memory copy time, taking 60% of the 

overall execution time. 

 

Figure 2-3: Selection of graphics cards used. Note. Reprinted from “Performance and scalability of Fourier domain optical 

coherence tomography acceleration using graphics processing units” by Li, J, et al., Applied Optics, 50, p. 1832. 

Rasakanthan, Sugden, and Tomlins (2011) also found their data transfers took a significant portion of 

time, 38% in their implementation of OCT processing. They did, however, minimise the data transfer 

overhead by batching data together and transferring multiple frames at once. Using a standard 

technique of processing one frame at a time they achieved a frame rate of 524205 lines/s, but when 

they batched more than four frames together this increased to 724314 lines/s, a 38% improvement. 

They also do not state what their previous implementation architecture was before hardware 

acceleration, or compare it to their new results, but it can be assumed their new GPU accelerated 

method is faster. 

L. Wang, Hofer, Guggenheim, and Považay (2012) have taken an interesting and unique method of 

programming their Nvidia GTX 580. Rather than re-programming their signal processing in OpenCL or 

CUDA, including background subtraction, up-sampling, and linearisation, they used a now-

discontinued commercial software package called Jacket to convert their MATLAB code to CUDA C++ 

code. This code is then available via a Dynamic Link Library (DLL) file and can be used either by code 

packages such as Microsoft Visual Studio, or LabVIEW. They authors used the DLL with LabVIEW to 



44 

achieve a 90x speedup over their MATLAB code, although due to the number of steps taken to achieve 

this, inefficiencies may have been introduced into the process, a true CUDA implementation would 

likely have yielded much better results. 

Another paper that compares CUDA execution to MATLAB results is by Xu, Huang, and Kang (2014b). 

They aimed to achieve real time image construction of 2048 x 1000 images using a combination of a 

Nvidia GTX 670 and two Tesla C2075 GPUs. As with the other papers discussed, they are using similar 

signal processing algorithms to other researchers, DC removal, FFT, logarithms, and array padding. Xu 

et al. manage to achieve a 112x speedup compared to their C++ implementation and a 459x speedup 

compared against MATLAB achieving their real-time goal. This was published over six years ago, at 

time of writing, and such processing power is now likely to be available on a single GPU, although their 

processing requirements or image size may have increased in the elapsed time since this was 

published. 

Others notable papers using GPUs in OCT are by Y. Wang et al. (2012) who managed to achieve real-

time processing with an Nvidia Tesla C1060 using algorithms such as interpolation, FFT, and mean. 

Watanabe, Maeno, Aoshima, Hasegawa, and Koseki (2010) also achieved real-time processing of FFT, 

interpolation and padding using a CUDA and an Nvidia GTX 295. Xu, Huang, and Kang (2014a) managed 

to achieve a 5x speedup over their CPU using an Nvidia GTX 580, processing convolutions. Finally, 

Trojanowski, Kraszewski, Strakowski, and Pluciński (2014) achieved a 12x speedup using a Nvidia GTX 

590 to accelerate their processing of FFTs. 

FPGAs are also used in OCT to accelerate the signal processing, Ralston, Mayen, Marks, and Boppart 

(2004) were one of the first to implement this hardware for OCT. They used a Virtex II FPGA to 

accelerate several low pass filter algorithms achieving real-time processing compared to the 10s it was 

taking on their unspecified host computer. Desjardins et al. (2009) also used a Virtex II to accelerate 

their signal processing, consisting of background removal, FFT, and interpolation. They state “The 

reconstruction speeds achieved with the FPGAs utilized in this study were comparable to those that 

could be achieved with optimized software running on current desktop CPUs” (p. 1471) and go on to 

express the potential of FGPA acceleration in OCT for real-time applications. 

J. Li, Sarunic, and Shannon (2011) discuss their use of FPGAs and why they chose them over a GPU for 

their hardware acceleration. This paper is intriguing as the authors discuss their implementation of 

acceleration using a GPU, which was reviewed earlier. Since their GPU acceleration was 6.9x that of a 

CPU, they have implemented the same algorithms; DC removal, FFT, and resampling, on three Virtex 

5 FPGAs chained together achieved processing speed of 465 MB/s. Although this is lower than their 

GPU processing rate of 527 MB/s, that did not include data transfer, which when included reduced 



45 

the overall speed to 207MB/s. However, even though their increase in performance on the FPGA is 

now over 15x that of their CPU, it is not without its drawbacks, for example, the FPGA only supported 

16-bit floating point values, significantly decreasing the quality of the data representation. 

Importantly, they stated that It took around three months to develop the original GPU code, not an 

insignificant amount of time, however they estimate the FPGA development time was around four 

times longer. 

2.4.3 Structured Light 

Structured Light uses a projection of a known pattern, this can be in the form of horizontal bars or 

grids, onto an object surface. One or multiple cameras then capture the pattern projected onto the 

surface and measure how the pattern has been deformed. From that the surface and depth 

information of the object can be calculated, providing three-dimensional shape data (Geng, 2011). 

Karpinsky, Hoke, Chen, and Zhang (2014) developed a 3-D shape measurement system that can 

capture and reconstruct images at 30 FPS. Karpinsky et al. wanted to develop their processing for 

laptop computing and therefore chose to use a Nvidia NVS 5400M. Although they do not mention why 

they chose laptop computing, it did achieve their target of 30 FPS for an 800x600 imaging acquisition. 

They outline a two-frequency phase-shifting algorithm, two filtering operations and a phase 

unwrapping algorithm all of which are processed on the GPU. 

Hao, Takeshi, and Idaku (2012) built a real-time, structured light 3D scanner capturing multiple coded 

light patterns that are projected at 1000 frames per second from a Digital Light Projector (DLP). The 

images are captured through a high-speed camera and passed to a Nvidia Tesla C1060 for processing. 

They implemented several algorithms including binarization, filtering and triangulation, all which are 

specified mathematically for future implementation. They conclude that using the GPU, they can 

output 3D videos of 512x512 pixels at 500 frames per second. 

While there are only a few articles for GPU usage in structured light there are large benefits to be had. 

The majority of CPUs will not be able to process this level of data (>10,000,000 points/s) for real-time 

processing, this signifies most of structured light data must be being processed offline. By using GPUs 

this would not online bring these methods online but allow bigger CCD arrays and therefore improve 

the resolution of the data captured. Karpinsky et al. proved that with a middle-class laptop GPU 30 

FPS was possible, for that reason using a up to date GPU like the Nvidia RTX A6000, with over 150x the 

compute performance, much larger frames could be processed at increased speeds (Nvidia, 2021). 



46 

2.4.4 Summary 

Interferometry and structured light have seen a significant amount of literature published by 

researchers using GPU, DSP, and FPGA acceleration to improve the amount of data that can be 

processed and reduce the time it takes. With other techniques such as OCT also producing significant 

literature surround the performance benefits through GPU acceleration, this benefit reaches far 

beyond optical sensors and surface and dimensional measurement. Many of the articles are using the 

same subset of algorithms, DC removal, background removal, FFT, logarithms, etc. however, each are 

spending considerable time developing their own algorithms separately.  

Given the commonality in signal processing algorithms between interferometry, OCT and structured 

light, it is likely that other optical measurement techniques in other areas not considered in this 

research has overlapping requirements. This possible commonality across multiple fields extends the 

number of academics and engineers having to spend significant time learning a new programming 

language or languages to develop their signal processing. As J. Li et al. (2011) stated this process could 

take around a year. This is not just a problem faced in research labs, whereby projects have time 

restraints, in industry time is money, and companies cannot wait 12-18 months for a software 

package, they need something they can use straightaway with little to no modification. 

The proposed solution to this, is to have a software package, that contains all the signal processing 

algorithms that are being used for processing optical measurement data, and that provides hardware 

acceleration in the form of GPGPU processing. This acceleration comes at a relatively low cost, and 

can provide significant performance benefits over traditional sequential processing. The next area this 

thesis will review is evaluating the software requirements industry and academics have, the costs 

associated with software development, and the currently available packages that they are using. 

2.5 Analysis of Software Availability and Usage 

From the literature reviewed previously, it is evident that hardware acceleration is being used to 

increase the performance of signal processing within surface and dimensional sensors and 

instrumentation. Due to their widespread use by the gaming industry, GPUs provide an excellent price 

to performance level when compared to DSPs and FPGAs and deliver excellent performance of signal 

processing that is suited to parallelism. However, in most instances, the research discussing hardware 

acceleration has moved away from established software packages such as MATLAB and LabVIEW and 

instead, developers have spent significant time programming their own implementations of 

algorithms in C++, CUDA, or OpenCL. This section investigates the different requirements researchers 

and industries have for software and what solutions, free or commercial, exist and what benefits or 



47 

drawbacks there are between developing bespoke software, using commercial products, or 

harnessing open-source development.  

2.5.1 Software Requirements 

Industry and academics are often working at different Technology Readiness Levels (TRL), however 

their software requirements that they have are very familiar. They are often both developing 

instrumentation and software on an incremental basis and require software that can easily be 

adapted. The software would still benefit from being as efficient as possible, but another important 

feature is likely to be configurability. Therefore, any potential solution that provides a signal 

processing library with hardware acceleration is likely to benefit academics and industrial engineers 

alike. 

Having reviewed the different hardware acceleration methods previously, the use of GPGPU 

processing offers excellent price to performance levels. That is not to say other methods such as FPGAs 

are not used, if very high-speed measurement is required, FPGAs may be the only option available, 

however for most applications GPUs will provide plenty of performance, and certainly more than 

commercial offering can provide. 

However, Small and Median-sized Enterprises (SMEs) made up 99% of private sector businesses in the 

UK in 2020, with 1.3 million businesses having between 1 and 49 employees (Department for Business, 

2020). Therefore, it is vital for these small companies to assess their software requirements and 

possible solutions carefully, they can do this using a software cost estimation (SCE) model. 

2.5.2 Software Cost Estimation 

A great deal of literature has been published in the field of estimating software development costs 

and development time, along with comprehensive reviews of the literature itself. This field of Software 

Cost Estimation (SCE) is well established and was first discussed in the 1970s by Wolverton (1974) with 

several hundred of papers published each year attaining to some aspect of estimating the cost of 

software development. During this time, several models have been proposed that allow companies or 

researchers wanting to develop software to estimate the resources required such as the Putman 

model (Putnam, 1978), the PRICE S model (Freiman & Park, 1979), and COCOMO (Boehm, 1984). Each 

of these models have their benefits and drawbacks, but each provide an estimation to how many 

“man-months” software development should take given a set of factors required for the software. 

Goodcore, a software development company from the UK, compared estimating software costs to 

asking: “I want to build a house, how much will it cost?”. The answer is it depends on many factors, 



48 

hence why there are so many competing models and significant literature published in the field 

(Goodcore, 2020). These factors include, but not limited to (Boehm, 1984): 

• The number of developers working on the project. 

• If there is a time constraint on the development. 

• How many progress deliverables are required. 

• The access to the hardware to be integrated with the software. 

• The complexity of software required. 

Each model places different weightings on each of these factors, which ultimately estimates the total 

man-months required for development. Having previously discussed the almost necessary 

requirement of hardware acceleration in present day data processing software, this would have a 

significant impact on development cost and time, requiring higher-skilled developers and an increase 

in development and testing. 

However, without this planning, costs could spiral and without proper project management, the 

development could deviate from its development schedule, go over budget, or not encompass the 

requirements of the original software proposal. Sun, Zhou, and Wolf (2001) estimated that 88% of a 

software development project is personnel costs, therefore it is crucial to plan how much time and 

money the development of software will cost. According to PayScale, a compensation and data 

company, the average software developer salary in the UK is around £38,000 a year (PayScale, 2021). 

Furthermore, costs do not just stem from the software development itself, there are costs associated 

with creating documentation for users to be able to interact with the software, also there will be 

potential rework costs and ongoing maintenance. Software is unlikely to be perfect first time and will 

require iterations to fix any irregularities within the software and may require extra features later 

down the line (Boehm & Papaccio, 1988). 

These potential costs and long lead times often leaves researchers and industry looking towards off-

the-shelf commercial software packages that have high levels of abstraction from programming 

languages to allow them to quickly pull together some signal processing without needing to know 

lower-level languages like C and Java. These packages will now be evaluated to discuss their benefits 

and limitations. 

2.5.3 Review of Commercial Software 

There are several mathematical commercial software packages in the market designed to make 

creating signal processing easy, without having to learn a low-level programming language. MATLAB 

and LabVIEW are two of the most popular, but they have taken very different approaches. While 



49 

LabVIEW offers graphical programming, with no computer code in sight, whereas MATLAB does 

require users to use programming script, but is at a very high level. A rough guide to programming 

language levels can be found below (Figure 2-4). Therefore, if MATLAB and LabVIEW are so easy to 

use, why are people transitioning to programming language such as C++, CUDA and OpenCL. 

 

Figure 2-4: Programming Languages levels and their properties 

2.5.3.1 MATLAB 

MATLAB has branded itself as “the easiest and most productive computing environment for engineers 

and scientists” MATLAB (2020). Whether that statement is true is open to interpretation and a user’s 

personal preference, however the reasons why they state this are substantiated. They provide an 

enormous number of functions that are easy to access, rigorously tested, and have documentation 

written “for engineers … and not computer scientists” MATLAB (2020). These are all beneficial to the 

researcher or developer needing develop their signal processing working relatively quickly, without 

spending six to twelve months to a year learning C. Compared to a software developers salary, and 

the time it would take to develop a bespoke software package, MATLAB’s £2000 license fees is 

excellent value for money, especially considering the enormous amount of documentation it has, not 

to mention the community support is has from such wide usage. 

Even though MATLAB has an extensive library, helpful documentation, is relatively low cost, and 

provides parallel computing support, researchers are still shifting to languages like C and CUDA as in 

the pursuit of faster processing as MATLAB’s flexibility comes at a large performance disadvantage. 

Many of the literature reviewed in the previous chapter discussed their performance increase moving 

from MATLAB to C, and even greater from MATLAB to CUDA (Figure 2-5). It should be noted, the graph 

is a logarithmic plot and that each gridline represents a 10x time increase. Karasev et al. (2007) 



50 

illustrates this performance issue showing the differences in execution time between the three 

methods, they state “reasonable care was taken to optimize all three versions” (p. 577). However, 

they also state “extensive optimizations that substantially alter the nature of the source code … were 

not undertaken” (p. 577). This indicates that a more optimised implementation of their CPU and GPU 

code would have yielded even greater results than they already achieved. 

 

Figure 2-5: Note. Reprinted from "Obtaining a 35x Speedup in 2D Phase Unwrapping Using Commodity Graphics 

Processors" by Karasev, P.A. et al., 2007, Radar Conference, p. 577 

It is this reason that several researchers and companies have developed MATLAB-to-C++ translator 

tools, including MATLAB themselves. This allows a developer to create their signal processing in 

MATLAB with all its benefits, and when they finalised their algorithms, they can convert everything to 

C++. One of these translation tools that has been previously mentioned is Jacket. Jacket (Pryor et al., 

2011) by AccelerEyes allowed users to take their MATLAB code and port it to CUDA using an 

intermediary custom compiler. Jacket contained a large library of GPU-tuned function syntax for 

MATLAB ensuring that the code that was ported across was optimised as much as possible. While their 

results showed a significant performance increase above MATLAB, they did not compare Jacket to a 

pure CUDA implementation, they also used double precision variables, a type not particularly 

optimised for on a GPU. Unfortunately, it seems MATLAB filed a patent infringement against Jacket 

and the software was removed from sale. 

Due to the lawsuit, and lack of availability of Jacket it is unclear how the translation state between 

MATLAB and C++ technically worked, however another CPU software API that is currently available is 

Armadillo (Sanderson, 2010). Armadillo is a C++ library that contains 44,000 lines of code incorporating 

many of the linear algebra functions that MATLAB also provides. Each of these functions is in a pair, 

allowing simple conversion between MATLAB and C++, however variable translation is not as 



51 

straightforward. As C++ is a static language and must be compiled, compared to MATLAB’s interpreted 

language, variables must be explicitly declared at creation, with the type and size being fixed. 

Nevertheless, Sanderson (2010) reports performance results up to 14.7x greater than MATLAB when 

using Armadillo rather than MATLAB.  

Based upon Armadillo, Paulsen, Feinberg, Cai, Nordmoen, and Dahle (2016) created Matlab2cpp, an 

intermediary translation tool to parse the input before it is translated to C++ by Armadillo. The authors 

hope that this parser will increase the efficiency of the translated functions that Armadillo provides. 

However, in their results they only compare vanilla MATLAB to their C++ results, and not the 

differences between Matlab2cpp and Armadillo.  

Armadillo’s limit however is it is CPU bound, and while MATLAB does support GPU execution natively, 

it is with a smaller subset of algorithms and is still speed restricted due to its high-level nature and 

while there are other third-party software out there that make programming GPU code from scratch 

easier, it seems a tool to efficiently translate MATLAB code to CUDA is not available. 

2.5.3.2 LabVIEW 

LabVIEW was developed as a visual programming language in the 1980s by National Instruments. 

Using its propriety graphical ‘language’ called G it has been used by engineers and scientists for 

decades for testing, measurement, and control applications (LabVIEW, 2019). From the literature 

reviewed in the previous chapter, only a few papers discussed their use of LabVIEW. National 

Instruments describe G as “an extremely high-level programming language who purpose to increase 

the productivity of its users while executing at nearly the same speeds as lower-level languages like 

FORTRAN, C, and C++”.  

Although LabVIEW provides a modern looking interface, and able to interact with a large number of 

actuation tools and capture devices, the graphical programming can start to become complicated. 

Figure 2-6 shows a LabVIEW example for some basic signal processing (application not specified), and 

already the number of blocks and ‘wires’ are starting to look unmanageable. National Instruments, 

the creator of LabVIEW states that it “executes at nearly the same speeds as lower-level languages”, 

therefore there should be plenty of research using LabVIEW. Instead is a significant body of 

researchers detailing why they moved away from it. 



52 

 

Figure 2-6: Note. Reprinted from “Benefits of Programming Graphically in NI LabVIEW”, by LabVIEW, (2019,03,05). 

Retrieved from https://www.ni.com/en-gb/innovations/white-papers/13/benefits-of-programming-graphically-in-ni-

labview.html 

Tašner, Lovrec, Tašner, and Edler (2012) are one of the few who have moved compared LabVIEW’s 

performance against another piece software, they compared LabVIEW against MATLAB. They 

compared the two software packages on the same PC (Intel i7-2600) across four different tests, matrix 

calculation, FFT, bode plot, and a DC motor simulation. Their results are shown in Table 2-2. Half of 

their tests, FFT and bode plot were faster in LabVIEW than MATLAB, by about 50% each time, with the 

other tests taking around twice as long. However, even LabVIEW did outperform MATLAB, as 

previously discussed, the bar was not set very high, and does not yield the results that National 

Instruments claim. It is unfortunate that these researchers did not compare these results to a third 

implementation, like C++, but it would be expected from how MATLAB performed, that C++ would 

also outperform LabVIEW. 

Table 2-2: Note. Adapted from "Comparison of LabVIEW and MATLAB for Scientific Research" by Tašner, T,et al.,2012, 

Annals of the Faculty of Engineering Hunedoara-International Journal of Engineering, 10, p. 389 

Calculation MATLAB (s) LabVIEW (s) 

Matrix Calculation 6.23 15.618 

FFT 0.289 0.162 

Bode Plot 0.188 0.09 

DC Motor Simulation 0.215 0.309 

 

https://www.ni.com/en-gb/innovations/white-papers/13/benefits-of-programming-graphically-in-ni-labview.html
https://www.ni.com/en-gb/innovations/white-papers/13/benefits-of-programming-graphically-in-ni-labview.html


53 

Cansalar, Mavis, and Kasnakoglu (2015) also investigated the performances of both MATLAB and 

LabVIEW. Using an Intel Xeon W3550 running Windows 7, they simulated a simple DC motor controller 

in MATLAB’s Simulink and LabVIEW using a P-controller, PI-controller, and PID-controller. It is clear 

from the results shown in Table 2-3 that in five out of six simulations, MATLAB outperformed LabVIEW, 

with LabVIEW only being faster in the smallest simulation. Additionally, as the controller complexity 

increased, the execution time also increased, and interestingly so did the performance increase that 

MATLAB provided over LabVIEW (Table 2-4). These results once again demonstrate MATLAB performs 

faster on average than LabVIEW. For LabVIEW to be outperformed by MATLAB is a tough blow when, 

as previously discussed, MATLAB itself can be orders of magnitude slower than C implementations. 

Table 2-3: MATLAB vs LabVIEW Results from (Cansalar et al., 2015). Green indicates the fastest software. 

Sim 

Time 

(s) 

Step 

Size 

(s) 

Number 

of Loops 

P-Controller PI-Controller PID-Controller 

MATLAB 

(µs) 

LabVIEW 

(µs) 

MATLAB 

(µs) 

LabVIEW 

(µs) 

MATLAB 

(µs) 

LabVIEW 

(µs) 

2 0.001 2000 3940 11600 5011 33303 5692 38885 

2 0.01 200 932 1206 1106 3322 1167 4106 

2 0.1 20 419 160 694 379 713 449 

60 0.001 60000 91262 344453 119900 984330 140620 1176089 

60 0.01 6000 9781 34777 12849 99261 14503 116675 

60 0.1 600 1561 3616 1859 9895 2058 11986 

 

Table 2-4: MATLAB vs LabVIEW - MATLAB Speedup – Yellow indicates a performance deficit. 

Sim 

Time 

(s) 

Step 

Size 

(s) 

Number 

of 

Loops 

MATLAB Speedup compared to LabVIEW 

P-Controller PI-Controller PID Controller 

2 0.001 2000 2.94 6.65 6.83 

2 0.01 200 1.29 3.00 3.52 

2 0.1 20 0.38 0.55 0.63 

60 0.001 60000 3.77 8.21 8.36 

60 0.01 6000 3.56 7.73 8.04 

60 0.1 600 2.32 5.32 5.82 

 

 



54 

It is clear from the results discussed above that although MATLAB and LabVIEW provide very easy to 

use interfaces allowing programming at a very high level, that it is also their greatest weakness. Their 

performance figures are trounced by lower-level implementations on the CPU and GPU. If industries 

or academic institutions cannot invest the money or do not have the time to create their own 

software, even though commercial software might be easy to use and has a relatively low cost, it often 

does not provide enough performance. Therefore, the last option available is to evaluate Open-source 

Software (OSS) options to determine if packages exist that support their requirements. 

2.5.4 Survey into the Usage Open-Source Software 

While originally in the 1990s there were many critics of open-source out there, such as (Lewis, 1999) 

who stated “I doubt that open-source will long influence how software is built” in the 20 years since 

that article was written, open-source is now larger than ever. For example, according Gartner (2021) 

the an open-source Linux kernel, Android, is used on 86% of all mobile phones. Open-source is now 

synonymous in everyday life through mobile phones and is used across industry either through the 

reuse of components in commercial software or the entire software system (Ajila & Wu, 2007). 

In 2006, only seven years since Lewis aired his views on OSS, Fitzgerald (2006) coined the term OSS 

2.0 having seen radical increase in its use, stating a “Moore’s Law effect seems to be taking place”. 

While the number of publications may not have continued to double, there has been a significant 

amount of literature published in the last 20 years regarding open-source software (Figure 2-7). This 

change from its first iteration to OSS 2.0 was brought on by the introduction of the Open-source 

Definition, removing some of the restrictions developers faced when bundling software together 

(Lerner & Triole, 2000). 



55 

 

Figure 2-7: Scopus data showing the total number of publications to contain the phrase "Open-source" in the title since 
from 2000 to 2020. 

Ajila and Wu (2007) hypothesised and proved there was a strong correlation between the degree of 

OSS adoption and software product quality, and between the degree of OSS adoption and cost of 

software development. Therefore, companies and researchers wanting to develop software may be 

able to turn to open-source alternatives, rather than developing their own, therefore some of the 

currently available OSS options will be analysed to evaluate what currently exists, and what any new 

software solution needs to consider having a large impact in optical sensor development. 

2.5.4.1 ArrayFire 

ArrayFire (Malcolm et al., 2012), created by AccelerEyes, the company behind the legally blocked 

Jacket software, is a GPU library for C++ and Python. ArrayFire provides high-level abstraction from 

the GPU through APIs such as CUDA and OpenCL, allowing engineers and scientists to take full 

advantage of GPU hardware. One of ArrayFire’s most useful features is its single matrix object (array). 

Rather than requiring a defined type for data, ArrayFire analyses the data in the object at compile time 

and defines the type automatically. Another clever feature that ArrayFire presents is “Lazy 

Evaluation”. Lazy Evaluation monitors the code the user has developed and analyses it in real-time to 

increase the performance of the formulas. Figure 2-8 shows an example of a user taking four steps to 

create array D, using ArrayFire’s patented Lazy Evaluation this is reduced to two steps, reducing the 

time performing multiple kernel executions and the entire computation is batched together. This 

technique also reduces memory requirements, before lazy evaluation, the code required four arrays, 

256 values wide, whereas the modified kernels only require two arrays, a 50% memory saving.  

  

0

2000

4000

6000

8000

10000

12000

14000

16000

2000 2005 2010 2015 2020

To
ta

l N
u

m
b

er
 o

f 
P

ap
er

s

Year

Publications containing "Open-source" in the 
article title



56 

𝑎𝑟𝑟𝑎𝑦 𝐴 = 𝑟𝑎𝑛𝑑𝑢(256); 

𝑎𝑟𝑟𝑎𝑦 𝐵 = 𝑐𝑜𝑠(𝐴); 

𝑎𝑟𝑟𝑎𝑦 𝐶 = 𝑝𝑜𝑤(𝐵, 2); 

𝑎𝑟𝑟𝑎𝑦 𝐷 = 1 − 𝐶; 

Lazy Evaluation 

𝑎𝑟𝑟𝑎𝑦 𝐴 = 𝑟𝑎𝑛𝑑𝑢(256); 

 

𝑎𝑟𝑟𝑎𝑦 𝐷 = 1 − 𝑝𝑜𝑤(𝑐𝑜𝑠(𝐴), 2); 

 

Figure 2-8: Lazy Evaluation example 

ArrayFire also contains libraries for displaying the data computed, using OpenGL. By utilising OpenGL, 

there is no need to copy data from the GPU to the CPU before displaying, OpenGL can render the 

images or graphs straight from the GPU memory using the GPU performance, further increasing 

performance. ArrayFire presents impressive performance figures (Malcolm et al., 2012) compared to 

Intel’s Math Kernel Library (MKL) and previously discussed Armadillo (Figure 2-9). However, the 

drawback of ArrayFire is it does still require learning a programming language, albeit a high-level 

language that has significant performance advantages over other offerings and has many features to 

make the process as easy as possible. 

 

Figure 2-9: ArrayFire performance figures. Note. Reprinted from “Why ArrayFire?”, by ArrayFire. Retrieved from 

https://arrayfire.com/why-arrayfire/ 

2.5.4.2 itom 

itom (Gronle, Lyda, Wilke, Kohler, & Osten, 2014) allows researchers to quickly protype software when 

using various different hardware devices (motors, camera, ADCs etc.). Sensibly, they have used 

different existing packages where possible, to provide the user with the best experience they could. 

Using C++ for the software, Qt for the user interface and Python for the programming logic. However, 



57 

this still does leave the user knowing and understanding Python programming language to be able to 

use itom, something not too dissimilar than MATLAB’s scripting language. 

To evaluate itom’s performance, it was tested against MATLAB and LabVIEW in three tests, an FFT, a 

linear filter and a nonlinear filter. It should be stated that itom was created to make prototyping easy, 

not to provide the fastest implementation, however, in almost every test, at every different kernel 

size, it was outperformed by both MATLAB and LABVIEW. Gronle et al. (2014) do state that “loop 

operations should be avoided in script languages, but they are much faster in MATLAB due to the 

internal just-in-time compiler” (p. 2978), MATLAB was created for matrix calculations after all. 

However, this does not explain the significant performance deficit that itom had. It could be 

speculated that all the different layers, Python, C++, and Qt, are having a negative impact on the 

performance available from the PC. 

2.5.4.3 Summary 

Open-source software is not without its drawbacks, Morgan and Finnegan (2007) conducted a field 

study amongst 13 companies such as Nokia, Siemens, and Sony. They found that open-source software 

often has compatibility issues, where it has been designed with one system, architecture or 

configuration in mind, and is not compatible with a user’s setup. Secondly, they found a lack of 

expertise exist when implementing the open-source software. Often, people are turning to open-

source software as they do not have the expertise to develop their own, therefore they often do not 

have a team of technicians to get the software working as required. 

Secondly, the study also found there were business drawbacks of open-source, some of which pose 

greater challenges than their technical counterparts. For example, the lack of support of the software, 

perhaps when first using the software, or after the member of staff that implemented has left the 

company. The lack of ownership of open-source software also raises similar issues. Finally, it found a 

significant proportion of open-source software is discovered by word of mouth. As open-source 

software has no marketing budget, it is hard to get word out of the software that exists. 

Even though both ArrayFire and itom both offer advantages, they both fall foul of some of the 

disadvantages associated with open-source software mentioned above. These have been summarised 

in Table 2-5. Both at some point fail in terms of both technical and business requirements and may 

suggest why there isn’t a significant body of research discussing the use of them within applications.   



58 

Table 2-5: Evaluation of Drawbacks of Open-source Software 

Technical Drawbacks ArrayFire itom 

Good Compatibility Yes Not Evaluated 

Easy to Understand Documentation Yes No 

Complete Functionality No No 

Availability of Roadmaps No No 

Business Drawbacks  

Support Provided Yes Limited 

Clear ownership Yes Yes 

Access to source code No Yes 

Sufficient marketing No No 

 

2.5.5 Summary 

Industrial engineers and academic researchers who are looking to pair their instrumentation with a 

software package have a difficult decision to make: 

1. Generic commercial software, high level of abstraction, easy to use, inexpensive, but limited 

performance.  

2. Build a bespoke software package, requires significant time and cost, would require mid-level 

developer(s) to create, would require UI, signal processing, and documentation to be created. 

3. Open-source software, free to use, high probability of better performance than generic 

software, however unless it for its specific application, would need mid-level programming to 

modify. 

It should be noted, that there may be licensing restrictions if using re-packaging commercial software 

or using open-source for a business’s own commercial purposes. 

2.6 Conclusion 

The literature reviewed illustrates the increase in sensors and the requirement to process the data 

captured from them arising from the transition to Industry 4.0. With the increase in the use of 

technologies such as CPS to model a theoretic system and compare it to a physical world, and IIoT 

increasing not only the total number of sensors, but the variety of parameters these sensors are 

capturing, the processing requirements of a system are at an all-time high. 

As the data size increases, and the type of sensors diversifies, researchers and industry are frequently 

finding that their traditional, sequential-based implementations, through software such as MATLAB 

and LabVIEW can no longer meet their requirements. As these requirements exceed the capability of 



59 

generic commercial software, the field is looking towards bespoke implementations of software using 

mid-level programming languages to harness the benefit of programming “closer to the hardware”.  

As programming moves “away from the hardware” also referred to as a strong level of abstraction, it 

may use more natural language elements and is much more user readable. This easier to use interface 

is MATLAB and LabVIEW’s greatest benefit, but the strong abstraction provides an inherent 

performance deficit and therefore it is also its greatest weakness. Moving into lower-level languages, 

“closer to the hardware”, removes these levels of abstraction and gives the developer tighter control 

over processing cycles and memory. However, this is of course at the cost of more complicated 

programming, longer development times, and an increased skill set being required. 

In addition to the benefit of programming in lower programming languages, APIs such as OpenCL and 

CUDA allow the use of GPGPU processing, a form of hardware acceleration. Although not the only 

form, with the use of DSPs and FPGAs also increasing, GPGPU processing can offer significant 

performance increases, as demonstrated by the literature reviewed, at relatively small financial cost.  

A heterogenous combination of sequential CPU and parallel GPU execution of signal processing 

algorithms would allow a “best of both worlds” approach to the processing of surface and dimensional 

data, other optical sensor techniques, and beyond. However, being able to provide algorithms on 

multiple architectures introduced a new problem, how to determine which architecture is best for a 

given function. To find a solution to this problem, the field of artificial intelligence search and planning 

will be investigated to discover what techniques exist and how they can be implemented into a 

software package to provide an optimum processing experience. 

 

 

  



60 

3 Artificial Intelligence Techniques to Increase Performance 

3.1 Introduction 

This chapter investigates autonomic computing and artificial intelligence (AI). Autonomic Computing 

is a computer’s ability to manage itself without human intervention. Autonomic computing uses AI to 

coordinate plans for self-configuration, self-optimisation and self-healing and is being used as part of 

Industry 4.0 during the manufacturing process (Sanchez, Exposito, & Aguilar, 2020). Industry 4.0 

requires high agility and rapid change of the manufacturing process and fast reconfiguration of 

production lines, but without limiting the performance of the production lines. Therefore, any 

software package requires both performance and easy configurability.  

To maximise processing performance, CPU-GPU heterogenous computing is proposed, however this 

creates a problem surrounding the choice of architecture for a given function. It would not be efficient 

to exhaustively test every combination of function and architecture, therefore the field of artificial 

intelligence, more specifically search and planning, is reviewed to discover what techniques exist to 

solve this problem is a timely fashion.  

A concept defined as “Autonomic Cycle of Data Analytics” outlines the closed loop tasks that work 

together to enable automation of the processes that they supervise (Aguilar, Cordero, & Buendía, 

2018). Firstly, tasks must be monitored by capturing data and information about the systems 

behaviour, this links back to the previously discussed issue surrounding big data. Secondly, once 

captured, the data needs to be analysed to interpret, understand, and compare the data against what 

it knows the process should be doing. Finally, and most importantly, it needs to make a decision, based 

on its understanding of the process and what is happening, the system must decide on a course of 

action to take to reduce failures amongst many other factors. Once this “cycle” has been completed, 

it is restarted starting a new iteration of the cycle (Sanchez et al., 2020). 

This research concerns itself with the self-optimisation of signal processing, and to an extent self-

configuration based upon the optimisation solution. Scheduling these processing components can be 

understood as a search problem with various heuristics used to determine what is a successful, 

optimal path (Klöpper, 2010). Search can be either uninformed, where no further knowledge is 

assumed of the data, or informed, where other data is known. Automated planning concentrates on 

how computer interpretable syntax can be created to instruct the planning algorithm what is required 

of it (Russell & Norvig, 2010). 

Potential solutions to this optimisation problem will now be evaluated, starting with search 

algorithms, both uninformed and informed. 



61 

3.2 Evaluation of Search Algorithms 

Rather than iterating each possible solution and then selecting the path that returns the smallest 

number (Figure 3-1), search algorithms use different search techniques, minimum-priority queues, 

weights and heuristics to reduce the number of permutations that need to be checked. Search starts 

with an initial node (the root) with each possible other node being linked by branches. Different search 

algorithms have different techniques for investigating these branches, this section discusses these 

methods and their advantages and disadvantages. This section uses the concept as asymptotic 

complexity, also known as O-notation. O-notation describes the behaviour of a function according to 

how their run time or memory requirements grow as the input size grows (Russell & Norvig, 2010). 

Search algorithms reduce the worst-case performance from 𝑂(2𝑛) where 𝑛 is the number of nodes, 

to something much smaller. There are many different techniques to searching through a node map 

such as Depth-first, Breadth-first, Dijkstra, Best-first, and A*. 

 

Figure 3-1: Example of Node diagram, using blind search to evaluate all possible paths. 



62 

3.2.1 Uninformed Search Strategies 

Uninformed search strategies, also referred to as blind search, have no additional information about 

the distance between the start and the goal state. These search strategies are defined by the order 

which they expand nodes, all they can do is generate successors in order to find the goal state (Russell 

& Norvig, 2010). 

3.2.1.1 Breadth-first 

Breadth-first search initially expands the root node and then expands all of its successors. All nodes 

are given a depth in the search tree and once all the successors at the same depth have been 

expanded, their own successors are then expanded (Figure 3-2). Any search which stores every 

expanded node has a space complexity as a factor of the time complexity. For breadth-first, the time 

and space complexity are both 𝑂(𝑏𝑑+1), b is the branching factor (average) and d is the depth of the 

node graph. This not only means the algorithm takes exponentially longer depending on the depth, 

but requires an exponential amount of memory to store all the explored nodes (Russell & Norvig, 

2010). In the figure below, the goal node would be the 7th node to be expanded. 

 

Figure 3-2 Breadth-First Search on a simple binary tree (Russell & Norvig, 2010) 

3.2.1.2 Depth-first 

Depth first search expands each node as deep as possible until the node has no successor, if it reaches 

the bottom and a goal has not been satisfied it is removed from memory and returns to the highest 

non-expanded node and restart this process (Figure 3-3). This version of search is non-optimal as it 

may search the hole of the left-hand branch (to node H), but the goal is on the opposite side of the 

node graph. If there are multiple goals, it could return a path that is not necessarily the shortest, but 

simply the one it found first; a path which could have a high depth value. The time complexity of the 

depth-first algorithm is 𝑂(𝑏𝑚) where b is the branch factor and m is the maximum depth. This is 

potentially slower than breadth-first, depending on where the goal lies within the graph, but the space 

complexity for depth-first is only 𝑂(𝑏𝑚), significantly reducing the amount of memory needed 

(Russell & Norvig, 2010). In the below figure, the goal node would be the 10th node to be expanded. 



63 

 

Figure 3-3: Depth-First Search on a simple binary tree (Russell & Norvig, 2010) 

3.2.2 Informed Search Strategies 

Informed search uses problem-specific knowledge beyond the problem itself and uses this information 

to find a solution more efficiently. These strategies not only consider a cost to travel from the current 

node to its successors 𝑔(𝑛), but also a heuristic value ℎ(𝑛) that helps guide the algorithm towards 

the most optimum path, given an admissible heuristic (Russell & Norvig, 2010). 

3.2.2.1 Best-first 

Best-first uses heuristics to prioritises nodes that are heading in the correct ‘direction’, and only checks 

others if those routes are unsuccessful (Russell & Norvig, 2010). Figure 3-4 shows a node diagram with 

a start node S and an end node of G, also on the graphs are the heuristic values, these have been 

calculated based on the physical distance between S and G. Out of the nodes at depth one, B has the 

lowest heuristic value so is expanded first, once B is expanded its successors are added to the priority 

queue in heuristic order. This continues until a goal state is found, or the node has no successors, at 

which point it continues at the next possible node from the queue. After B is expanded, a goal state is 

found and therefore the search is stopped; it would not go on to investigate the path [𝑆 → 𝐶 → 𝐹 →

𝐺], which could overall have a shorter path. As best-first only uses heuristics, and not path length, the 

path length from [𝐵−> 𝐺] could be longer than [𝐶−> 𝐹−> 𝐺], but as the heuristic is smaller it is not 

considered. 



64 

 

Figure 3-4: Best-first Search on a binary tree 

Although best-first has a potential 𝑂(𝑏𝑚) time complexity, just like depth first, the search cost is likely 

to be significantly smaller, which is better, as the space complexity is also 𝑂(𝑏𝑚). However, as it 

should only expand the nodes that are tending towards the goal state, this should reduce the amount 

of memory needed. 

3.2.2.2 Dijkstra  

Dijkstra’s algorithm (or Dijkstra Shortest Path algorithm) uses path length for finding the shortest path 

between nodes, giving a worst-case performance of 𝑂(𝑛2) where 𝑛 is the number of nodes (Dijkstra, 

1959). Edsger W. Dijkstra first created this algorithm to find the shortest path between Rotterdam and 

Groningen in the 1950s, but in the decades since its development, it has been extensively used and 

many iterations of it exist (Frana & Misa, 2010). Dijkstra uses best-first search to expand the shortest 

paths first, only expanding other once the current shortest path has a dead-end. An example of how 

Dijkstra’s algorithm works is illustrated in Figure 3-5 to Figure 3-9, each node has a current shortest 

distance of infinity, as until each node is expanded, the node may not be accessible. In the first figure 

(Figure 3-5), the first two possible paths (A and B) are expanded. As the path to A is shorter than the 

path to B, this path is further investigated before returning to path B.  



65 

 

Figure 3-5: Initial Node Diagram and First step of Dijkstra's Algorithm to find the shortest path using a min-priority queue 

Step two for this example involves expanding node A, the current shortest path (Figure 3-6). The three 

routes to be expanded here are [𝐴 → 𝐵], [𝐴 → 𝐶], and [𝐴 → 𝐷]. The route [𝑆 → 𝐴 → 𝐵] now has a 

path length of 3, therefore it is quicker to perform the route [𝑆 → 𝐴 → 𝐵] than it is [𝑆 → 𝐵].  

 

Figure 3-6: Second step of Dijkstra's algorithm for this node diagram - Expanding node A 

Once node A has been fully explored, [𝑆 → 𝐴 → 𝐵] has the shortest path length, therefore node B is 

expanded next. Node B can only be expanded to [𝑆 → 𝐴 → 𝐵 → 𝐷] which would provide a path length 

of seven. This is already larger than the path [𝑆 → 𝐴 → 𝐷], four, so is ignored, the next shortest path 

is now [𝑆 → 𝐴 → 𝐷], therefore node D is expanded next (Figure 3-7). 

 

Figure 3-7: Third step of Dijkstra's algorithm for this node diagram - Expanding node B 



66 

Node D can now be expanded in two directions, to node C (current path length 6), or to F. Expanding 

to node C, giving the path [𝑆 → 𝐴 → 𝐷 → 𝐶], returns a path length of 7, greater than the current path 

[𝑆 → 𝐴 → 𝐶] length so is ignored. Expanding to F would provide a total path length of six for 

[𝑆 → 𝐴 → 𝐷 → 𝐹] (Figure 3-8).  

 

Figure 3-8: Final step of algorithm for this node diagram - Expanding node D 

The complete path of [𝑆 → 𝐴 → 𝐷 → 𝐹] is the same length of [𝑆 → 𝐴 → 𝐶], therefore the route 

[𝑆 → 𝐴 → 𝐶 → 𝐹] would not be investigated as it is not shorter. However, if [𝑆 → 𝐴 → 𝐷 → 𝐹] was 

greater than [𝑆 → 𝐴 → 𝐷 → 𝐶] or another path was still being considered, all these possible paths 

would be investigated until the completed path was the smallest path length. 

Dijkstra’s algorithm works well to find the shortest path in very few steps (Figure 3-9), but when 

applying it to this research, not all paths are possible. As functions have strict prerequisites, there may 

only be a couple of valid paths, rather than the multiple paths that Dijkstra would work its way 

through. 

 

Figure 3-9: Shortest path to each node and overall shortest path found using Dijkstra's algorithm 

Dijkstra could be used in this manner to have a node for each signal processing function for both CPU 

and GPU (Figure 3-10). Using a brute-force method of trying each possibility would take 2𝑛 = 24 =

16 steps, whereas using Dijkstra’s algorithm it only takes five steps. 



67 

 

Figure 3-10: Using the example data from , a node graph can be made and solved with Dijkstra's algorithm 



68 

Unfortunately, there are a few limitations to Dijkstra’s algorithm that means it is not suitable for this 

application. One of the things Dijkstra requires is rigid structure, requiring node A to consistently come 

before node B, and if this is changed, a whole new structure is required for this minor change. Another 

drawback of Dijkstra is it does not allow parallel actions, if it is advantageous to execute two functions 

at the same time, one on the CPU and the other on the GPU.  

3.2.2.3 A* 

The most widely used known format of best-first search is A*. It evaluates which nodes to expand 

based not only upon the cost to travel to the node (e.g. Dijkstra) but also the heuristic cost to travel 

from the current node to the goal. A heuristic is a secondary value that can be used to determine 

whether the current path is reaching the goal state, often this heuristic is a metric like physical 

distance, for this research the most sensible heuristic to use would be execution time. In A* the travel 

cost is referred to as 𝑔(𝑛), the heuristic cost ℎ(𝑛), with the total cost calculated by 𝑓(𝑛) = 𝑔(𝑛) +

ℎ(𝑛) through node n. When finding the optimum solution, it starts with the node with the smallest 

𝑓(𝑛) value. The main condition of a heuristic used for A* is it must be admissible. An admissible 

heuristic is one that never overestimates the cost, i.e., it estimates to reach the goal is not higher than 

the lowest possible cost from the current node (Russell & Norvig, 2010). 

Figure 3-11 is an example of an A* node diagram and is compared to Figure 3-4, which uses the same 

node map, but used the simpler best first instead. As A* uses both path length 𝑔(𝑛) and heuristics 

ℎ(𝑛) to determine which node to investigate, it expands nodes in a different order. Firstly, the start 

node S is expanded giving Nodes A, B and C. Unlike when using best-first, A* next expands node C as 

the even though the heuristic cost is higher, the total cost when factoring in the path length is lower 

and therefore at the top of the priority queue. Node C is then expanded giving E and F, as F now has a 

total cost higher than B, B therefore is expanded next. Once B is expanded, a goal is found with a total 

cost of 45, as this goal is not currently the shortest path being considered, [𝑆−> 𝐶−> 𝐹], this path is 

checked before returning the path [𝑆−> 𝐵−> 𝐺], the path that best-first returned. Now F is at the 

top of the priority queue, it is expanded, also finding a goal state, this goal state has a total path length 

of 44, one less than the previous goal found. As this goal state has been found, and is at the top of the 

priority queue, there are no possible shorter paths, and A* returns the shortest path as 

[𝑆−> 𝐶−> 𝐹 → 𝐺]. 



69 

 

Figure 3-11: A* Node Diagram Example - - Same Node Tree as Figure 3-4. Total Cost: 𝑓(𝑛) =  𝑔(𝑛) + ℎ(𝑛) 

In most scenarios where a sensible heuristic has been chosen, the time and space complexity are still 

exponential, the same as best-first, giving 𝑂(𝑏𝑑) where b is the branching factor and d is the depth of 

the goal. Although, due to the heuristic factor, many of the 𝑏𝑑 nodes can be pruned saving time and 



70 

memory, although memory is still an issue for A* as it keeps all generated nodes (complete or un-

investigated) in memory.  

3.2.3 Summary 

While uninformed search may have space complexity benefits with algorithms such as depth-first, it 

has its drawbacks in time efficiency and can also return non-optimal solutions, although informed 

searches can also return non-optimal solutions. Uninformed searches can also fail to return a solution 

as they can find themselves stuck in infinite loops, depending on the way the nodes are mapped out. 

Informed search therefore has its benefits, it can be as quick or quicker than uninformed search, it can 

find solutions which may not be optimal in isolation but may have a lower cost than uniformed search 

if many goal states exist. The introduction of A*’s heuristic aims to constantly return the optimum, 

lowest cost goal, but a suitable heuristic is needed for this, A* can still have memory issues due to its 

need to store all generated nodes (Russell & Norvig, 2010).  

On reflection of investigating search, it is not the right solution to the problem outlined in in the 

introduction. Instead of providing an algorithm with a set of waypoints and allow it to find the best 

route, there needs to be a mechanism to provide the algorithm a series of constraints. These 

constrains would contain three things:  

1. A loose order in which the signal processing functions need to execute in. 

2. Which variables can be used, and where. 

3. Where functions could potentially be run in parallel. 

These requirements for an algorithm gravitate more towards planning models rather than search. 

3.3 Investigation of Automated Planning and Scheduling 

Automated planning and scheduling, sometimes denoted as AI planning, arose from research in fields 

such as robotics and control theory (Ghallab, Nau, & Traverso, 2004). In 1971 Fikes and Nilsson (1971) 

developed STRIPS, the first major planning system. Since then variations and extensions of STRIPS 

have been created such as Action Description Language (ADL) (Pednault, 1989) and in 1998, Planning 

Domain Description Language was introduced as a computer-parsable syntax that allowed users to 

represent planning problems (McDermott et al., 1998). 

Planning languages consist of actions and effects/results, where each action produces a result that 

then enables one or more further actions; just like node expansion in search, Unlike search, in 

planning, actions can have preconditions, actions that need to be completed before it can be called 

itself (Russell & Norvig, 2010). When planning algorithms are searching for a solution, they either use 

forward-search or backwards-search. Forward-search starts at the first action and looks for other 



71 

actions for which their preconditions are satisfied. Conversely, backwards-search starts at the goal 

state, and work backwards, selecting those actions where their result would trigger the current action 

(Ghallab et al., 2004). These differences are shown in Figure 3-12. By using backwards search, only the 

nodes that modify the preconditions of the current node are considered, saving time and memory. 

 

Figure 3-12: AI Planning search types, where the box highlighted green would be the next action called 

3.3.1 Stanford Research Institute Problem Solver (STRIPS) 

STRIPS is a planning automated planner that was created to improve the efficiency of other planning 

algorithms while reducing the size of the search space. Unlike Dijkstra that uses forward search, 

starting at the start node and working towards the end node, STRIPS uses backward search, starting 

at the end node and working its way back to the start. Part of STRIPS’s efficiency is that when working 

backwards, the only nodes need to be considered are those that were a precondition of the current 

sub-goal. This not only reduces the branching factor, but increases the speed of the algorithm and 

reduces the memory needed to keep track of all the different branches that are being considered 

(Ghallab et al., 2004). 

When first investigating the problem given, STRIPS (Fikes & Nilsson, 1971) creates a hierarchy of the 

final goal and its sub-goals (Figure 3-13). These sub-goals are based on the defined preconditions from 

each parent function, this is how the branching effect is reduced (Ghallab et al., 2004). For the purpose 

of illustration, two sub-goals (Sub-goal 1.1.1.1 and Sub-goal 2.1.2) have been included, but as no 

parent function exists with them as prerequisites, these would be ignored by STRIPS. The diagram is 

shown corrected in Figure 3-14.  



72 

 

Figure 3-13: STRIPS Hierarchy Example 

 

Figure 3-14: STRIPS Hierarchy Example (Corrected) 

STRIPS then iterates through the various nodes from the main goal, backwards through the sub-goals 

until all goals in the network have been satisfied. Goals are therefore solved one at a time, this 

sometimes causes STRIPS to run into problems, such as when two variables are linked and 

interchanging (Ghallab et al., 2004). Probably the best known example of this is the Sussman anomaly 

(Sussman, 1973) (Figure 3-15), where two sub-goals are defined from the overall goal of 𝑜𝑛(𝐴, 𝐵) ∧

𝑜𝑛(𝐵, 𝐶). These sub-goals are defined as: 

1. 𝑜𝑛(𝐴, 𝐵) 

2. 𝑜𝑛(𝐵, 𝐶) 

Sub-goal o (Figure 3-16a) is to place A on B, simply move C off A and then place A on B, this has satisfied 

the first goal, although sub-goal 2 cannot be achieved without undoing sub-goal 1. Instead try and to 



73 

achieve sub-goal 2 (Figure 3-16b) Simply move block B on top of blocks C and A, again, to now achieve 

sub-goal 1, sub-goal 2 must be broken. This means that the algorithm needs to be recursive to break 

the goal, execute the action(s) then re-check that it satisfies both sub-goals, giving a worst-case 

performance of 𝑂(𝑛3), although unlikely in applications where these conflicts do not exist (Ghallab et 

al., 2004). 

 

Figure 3-15: Sussman Anomaly (Russell & Norvig, 2010) 

 

Figure 3-16: Sussman Anomaly: Sub-goals (Russell & Norvig, 2010) 

The worst-case performance of 𝑂(𝑛3), where n is the number of nodes, is unlikely for the application 

within this research. Therefore, it is likely to be nearer Dijkstra’s value of 𝑂(𝑛2) or 𝑂(|𝑉| + |𝐸|), where 

V is the number of nodes and E is the number of edges (Ghallab et al., 2004; Russell & Norvig, 2010). 

It is more likely to be closer to A*’s worse case performance value of 𝑂(𝑏𝑑) where b is the branching 

factor and d is the depth (Russell & Norvig, 2010). As these algorithms are going to be dealing with 

signal processing functions, where each function is represented by a node, the number permutations 

increases exponentially, so the performance of these algorithms does need to be considered. 

However, this pathfinding algorithm only runs a single time once the user has settled on the signal 

processing steps needed for their application. Therefore, the overhead time for pathfinding is going 

to be relatively small in respect to the time this plan is used for once created. The overall time saved 

by using this type of method more than outweighs the time needed to find the shortest path in the 



74 

first place, with the pathfinding algorithm only needing to re-run when there is a software or hardware 

change. 

In conclusion, STRIPS provides backwards search capability reducing the number of active nodes under 

investigation and therefore reduces the need to check every single branch with its Breadth-first 

branching reduction technique. Combining STRIPS with a shortest path algorithm based on Dijkstra or 

A* would provide a method of finding the shortest path between the start and the end meeting all 

the sub-goals along the way. To achieve this, a formal planning language is needed to be able to 

formalise the goals, prerequisites and paths needed to successfully complete the signal processing 

requirements set. 

3.3.2 Planning Domain Definition Language (PDDL) 

PDDL provides a computer interpretable, standardised syntax for representing planning problems 

created as part of the International Planning Competition which it has evolved from over the last two 

decades (McDermott et al., 1998; Russell & Norvig, 2010). Its purpose was to try and standardise AI 

planning languages inspired by the languages of STRIPS (Fikes & Nilsson, 1971) and ADL (Pednault, 

1989), with ADL being an advancement of STRIPS.  

A PDDL model is split into two parts, a problem, and a domain. The problem consists of what the 

goal(s) are, it defines all the objects that are to be used and initialises them (Russell & Norvig, 2010). 

An object can have predicates (logical facts) applied to them; these states are assumed false unless 

initiated as true. Furthermore, the problem file is the goal states of different objects, for example: 

When making a cup of tea (a common example for PDDL), the goal is a hot cup of tea, but the user 

might want to program that the kettle is returned to its base. Therefore, the goals would be 

𝐻𝑜𝑡 𝐶𝑢𝑝 𝑜𝑓 𝑇𝑒𝑎 ∧ 𝐾𝑒𝑡𝑡𝑙𝑒 𝑜𝑛 𝐵𝑎𝑠𝑒. An example goal for the LSDI would be to calculate the height of 

the measured object, making sure that the measurement is on the CPU at the end. This way, even if 

the GPU functions outperform the CPU, the data is transferred back to the CPU before finishing. Thus, 

the goal is not just 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝐻𝑒𝑖𝑔ℎ𝑡 it would be 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝐻𝑒𝑖𝑔ℎ𝑡 ∧ 𝐻𝑒𝑖𝑔ℎ𝑡 𝑖𝑠 𝑜𝑛 𝐶𝑃𝑈, here the 

height is the object and the predicate is checking the object is onCPU. 

The second half of the PDDL model is the domain file. The domain file contains the list of possible 

actions, not all of which may be needed to satisfy to goal(s) specified in the problem file, this is where 

STRIPS comes in useful to remove the unnecessary branches (actions) that are not needed for the end-

goal (Russell & Norvig, 2010). Each action in the domain contains three parts. 

1. Parameters 



75 

These are instances of the objects defined that needed for use in this action. Instances are simply 

a copy of the object, allowing a user to have multiple instances of the same object type, just like 

in programming with classes and objects. This implementation defines an object to a single 

instance and therefore object/instance can be used interchangeably. 

2. Preconditions 

These are the same as the prerequisites discussed earlier, these are the conditions that must be 

met before this action can be used. 

3. Effects 

Effects can be viewed as the opposite of preconditions; these are what should happen once the 

action has been completed.  

These three parts are the structure of each action and allows PDDL to start with the final goal and 

work backwards based on the preconditions needed for the current node to find the start point and 

find a path.  

3.3.2.1 Example: Cup of Tea 

Using the example of making a cup of tea using STRIPS and PDDL shows how PDDL can navigate a path 

based on set goals and constrains. Figure 3-17 shows a graphical representation of PDDL code for the 

domain. The domain contains seven different actions, all part of the process of making a cup of tea. 

Each action has preconditions and effects, there also objects, the components needed to make a cup 

of tea, and states these objects could be in. In PDDL, a state is either true or false, therefore duplicate 

states for Cup is Empty and Cup is Full are not needed as either one can be used, with the other one 

being Cup is not Empty or cup is not Full.  



76 

 

Figure 3-17: Graphical Representation of PDDL Domain (Making a cup of tea) 

The problem file is then also used to define what is expected of a PDDL plan. In this example, PDDL is 

required to find a path that makes cup of tea with milk and sugar. Based on the objects and states that 

can be used, the end goal must include what states need to be true at the end-goal. In this instance, 

for a cup of tea, the cup needs to not be empty, the cup needs to contain milk and the cup contain 

sugar. This would be represented as: 𝐶𝑢𝑝 𝑁𝑜𝑡 𝐸𝑚𝑝𝑡𝑦 ∧ 𝐶𝑢𝑝 𝐻𝑎𝑠 𝑀𝑖𝑙𝑘 ∧ 𝐶𝑢𝑝 𝐻𝑎𝑠 𝑆𝑢𝑔𝑎𝑟. This is 

shown in PDDL syntax in Figure 3-18, the object is the cup, with each of the states being check if true. 

 

Figure 3-18: Goal PDDL Syntax for making a cup of tea. 

PDDL then takes both the domain file and the problem file and creates a map in memory, starting at 

the final goal, using the sub goals that were set out in the problem file, to create a path all the way 

back to the start. Taking each sub-goal and looking at which action effects satisfy the preconditions 

for that sub-goal. This can be seen in Figure 3-19. There are a few things to note in this diagram, firstly 

Add Sugar can be done at any time, there is no arrow leading to sub-goals before this, therefore it 

could be done at the start, in the middle or near the end. The milk on the other hand, requires the cup 



77 

to not be empty so cannot be completed until the cup has been filled, this is shown by the arrow 

pointing left from the Add Milk action. Secondly the same is true for Fill Kettle and Put Tea in Teapot, 

neither of these actions have preconditions and therefore can be done in any order. 

 

 

Figure 3-19: Graphical Representation of PDDL Map (making a cup of tea)  



78 

The solution from PDDL for this example is shown in Figure 3-20. The 

numbers that preface each action illustrates the order the actions can be 

completed in; equal numbers state they can be done at the same time in 

any order, an increase in number means a previous action needs to have 

completed. As can be seen when comparing  Figure 3-19 with  

Figure 3-20, the generated map was correct and the actions Put Tea in 

Teapot, Fill Kettle and Add Sugar can be executed in any order. This shows 

that PDDL can find the solution to a problem given the correct logic and 

constraints. Furthermore, PDDL 2.1 introduced the ability for actions to 

have a cost associated with them, hopefully solving the pathfinding 

problem. 

3.3.2.2 PDDL Fluents 

PDDL 2.1 (Fox & Long, 2003) introduced fluents, referred to in PDDL as action-costs, which can be used 

within an action effect to increase/decrease a numerical parameter. This enables PDDL to not only 

find a possible path but find the best path given a metric to optimise for. Given different applications, 

different metrics may be necessary to optimise for. A path may need to be a longer, or require a couple 

more actions, but if it increases accuracy, or decreases cost, that might be the more desirable path. 

This has a performance impact, as PDDL has to check all possible paths to optimise for the given metric 

and not simply return the first couple of successful paths that it finds. 

Looking back at the cup of tea example, if a (time) cost is assigned to each action (Figure 3-21) and the 

problem file is instructed to minimise the total cost, it would return the same plan. But if a second 

type of kettle was added, that boiled water in half the time and the program was run again, it would 

return the new solution that minimises the time (Figure 3-22). While both the old and new plan are 

both valid, now that action costs can be defined, the new plan is more desirable.  

 

Figure 3-21: Cup of Tea Example - Action Costs 

 

0:   (PUT-TEA-IN-TEAPOT T TP) [1] 

0:   (FILL-KETTLE K) [1] 

0:   (ADD-SUGAR C) [1] 

1:   (BOIL-WATER K W) [1] 

2:   (FILL-TEAPOT TP W) [1] 

3:   (FILL-CUP C TP) [1] 

Figure 3-20: PDDL Solution (making a cup of 
tea) 



79 

 

Figure 3-22: Cup of Tea Example - New Action Cost Added - creating more desirable plan 

PDDL has shown using the cup of tea examples that given a goal state, and logical sub-goals, it can find 

the shortest path given a metric to optimise for, in the examples case, time. It can hold the state of 

objects in memory allowing for complex logical decisions to be made given an extensive list of actions. 

Each action only executes if all preconditions are met and returns its own changes in the form of 

effects to allow PDDL to continue to find the shortest path. There are more extensions of PDDL 2.1 

such as durative actions; actions that exist for a specific length of time, that could be used in the future 

to allow scheduling of actions, but as this research is not taking place on a RTOS, this would not be of 

much use. 

3.3.2.3 PDDL Planner 

As PDDL is a language, a parser (called a planner) is needed to compute the files and output a solution. 

The planner selected for this research was LPG-td (Local Search for Planning Graphs; Timed initial 

literals and Derived predicates). LPG-td was selected as it allows the use of fluents, introduced in PDDL 

2.1 (Fox & Long, 2003), enabling the assignment of a time cost to each action. The problem file can 

then be instructed to minimise the total-cost of all the actions used, therefore each solution that LPD-

td returns has a lower cost than the previous, further optimising the signal processing. LPG-td requires 

a domain file and a problem file, it then computes the best path to the goal state based upon the 

constrains given to it in both the domain and problem files. LPG-td first finds a valid path, and then 

optimise and explore other paths resulting in the final solution being the optimum solution. There are 

many settings that can be set to also determine when LPG-td stops looking, such as number of path 

restarts, number of solutions found, or a time limit. 

3.3.2.4 PDDL vs Monte Carlo Simulation 

Monte Carlo simulations are used to model the likelihood of various outcomes in a mechanism that is 

difficult to predict due to random variables' interference. It is a method for figuring out how risk and 

uncertainty effect prediction and forecasting models. A Monte Carlo simulation can be used to solve 

problems in almost any area, including economics, engineering, supply chain management, and 

research. A conventional optimisation problem that is regularly discussed alongside Monte Carlo 



80 

simulation, is the travelling salesperson problem. This problem investigates the optimum travel 

choice, given the factual distance between each point across a set number of “destinations”.  

The problem outlined in this chapter has many similarities to this conventional problem. The CPU time 

that is used as the heuristic would be the distance between the two points, with the goal of visiting 

each destination translating to visiting each function. However, this is where the similarities end. 

Figure 3-23 illustrates a sample of two functions with two variables (A and B), with the permutations 

of a third function also shown. The choice of the first function is one of five, 𝐶𝑃𝑈1, 𝐺𝑃𝑈1, 𝐺𝑃𝑈1 (𝐴), 

𝐺𝑃𝑈1 (𝐵) and 𝐺𝑃𝑈1 (𝐴𝐵). However, the number of permutations soon rises, as for the second 

function, the choice is one of 30, and one of 175 for the third function, with only the memories 

transfers considered that have not be performed previously.  

 

Figure 3-23: All Possible Permutations of three functions with necessary memory transfers 

The result of this indicates if all potentially memory transfers are considered at each branch, the 

branching factor is between 𝑚2 + 1 and 𝑚2 + 2, where 𝑚 is the number of variables. Therefore, the 

time and space complexity increases from 𝑂(2𝑛) to 𝑂((𝑚2 + 𝑛)(𝑚2 + 1)𝑛−1), where 𝑛 is the 

number of functions. To reduce the branching factor and the increase in time and space complexity, 

a PDDL domain with will be used with predicates and actions tracking which memory transfers are 

required and which are already in the correct place. This should hopefully reduce the time complexity 

back towards 𝑂(2𝑛) at the cost of increasing the space complexity to track which memory transfers 

are required, and which have already occurred. In addition, PDDL will enable future work for 

scheduling of asynchronous memory transfers and concurrent kernels to be executed, something a 

Monte Carlo simulation is not designed for. 

3.3.2.5 Summary 

AI Planning, or more specifically PDDL, has shown that it can find a solution to a problem, given a list 

of constrains. Not only can a solution be found for a problem, but it can find the optimal solution for 



81 

the given constrains. By providing the problem file with a cost metric to optimise for, PDDL finds the 

solution with the smallest cost, in the case of this research, that cost is function execution time. Not 

that PDDL is without problems, if even a small change to an action or the problem is made, the whole 

plan needs to be re-computed to check a valid solution still exists. While this process does take time 

to run, by using backwards-search and breadth first to reduce the branching factor does reduce the 

amount of time needed. Although this time penalty is minimised, the planning time is very small 

compared to the amount of time that plan would be valid for, only needing updating when a software 

or hardware change is needed. 

Now the search and planning problem has been realised, and a potential solution in PDDL has been 

found, the use of AI in software optimisation will be reviewed to examine the current state-of-the-art 

methods to increase the performance of signal processing. 

3.4 Investigation of Software Optimisation using Artificial Intelligence 

Optimised software executing across single and heterogenous platforms requires consideration of 

many parameters at either runtime or compile time. Researchers has proposed different approaches 

for the heuristics used in optimisation, such as latency, throughput, and energy consumption and 

indeed the processes used to optimise the software itself (Memeti, Pllana, Binotto, Kołodziej, & 

Brandic, 2018). The main methods for software optimisation processes can be split into two 

categories: 

1. Offline training data is used to optimise new, unseen signal processing. 

2. Offline real data is used to optimise itself. 

The first of these was implemented by Z. Wang and O'Boyle (2009), using training data to optimise 

parallel CPU execution (OpenMP) using a feed-forward Artificial Neural Network (ANN) and Support 

Vector Machine (SVM) to solve their scheduling problem. They used an offline supervised learning 

scheme presenting the ANN with program features and desired mapping decisions for the parallel 

threads. By using this training data and a set of specific heuristics, they trained their ANN to be able 

to predict the optimal number of threads for a new, unseen problems with up to an 8x performance 

increase relative to their sequential alternatives. 

Dastgeer, Li, and Kessler (2013) also used offline training data to help optimise new problems, 

however, unlike Wang et al., Dastageer et al. was optimising CPU-GPU heterogenous multicore 

systems. They proposed a system named PEPPHER, an annotated software module using XML 

documents to specify parameters and performance metrics. PEPPHER was given a set of algorithms, 

matrix-multiplication, sorting, path finding, and back propagation, at different sizes and records the 



82 

performance, it can then use this training data to predict the execution time of a new unseen problem. 

However, even though the author states the reduction in time that PEPPHER provides against other 

training algorithms, they do not state how accurate the model is at predicting execution times. 

The second of the above-mentioned categories, offline optimisation using real data, has been 

investigated by Grewe and O'Boyle (2011). They selected 47 benchmarks including matrix 

multiplication, convolution, and a program to calculate the coulombic potential, and executed them 

on a CPU (2x Intel Xeon E5530) and a GPU (ATI Radeon HD 5970) using OpenCL. Using the execution 

time as their heuristic, they developed a machine-learning predictor to best “partition” the 

corresponding program, by partition they are scheduling some functions for the CPU, some on the 

GPU or distributed over the two. In their results they state they achieved a 57% performance benefit 

over other state-of-the-art scheduling/partitioning methods, but more importantly a minimum 

improvement of 55% by using partitioning instead of a single architecture. 

Another investigation into optimising for real-time processing is by Albayrak, Akturk, and Ozturk 

(2013). They used a greedy mapping algorithm to generate a kernel map to minimise the total 

execution cost, by splitting functions between the CPU and GPU where it was advantageous to do so. 

Like Grewe et al., Albayrak et al. used OpenCL to process a set of benchmarks on both the CPU 

(Phenom II X6) and GPU (GTX 460). They first processed the benchmarks on the CPU and GPU 

separately then using their greedy algorithm to decide as to which architecture provided the optimum 

execution on a function-by-function basis. They compare their results to a commercially available 

Mixed-Integer Programming (MIP) based solver and while their results were slightly lower than the 

MIP, they did achieve an up to 2x speedup compared to their CPU-only or GPU-only executions. 

3.5 Review of Artificial Intelligence to Optimisation Manufacturing 

Previously the use of AI to optimise the processing side of the data has been discussed, however there 

is significant research in the field of optimising the manufacturing process itself. While not directly 

related to this research, briefly reviewing this area at a high level shows the impact AI is having 

throughout the whole manufacturing industry. 

Leo Kumar (2017) outlines the two main areas that AI is impacting on the manufacturing process, 

Computer Aided Processing Planning (CAPP) and Process Planning and Scheduling (PPS). CAPP is the 

bridge between Computer Aided Design (CAD) and Computer Aided Manufacturing (CAM) and is used 

to achieve more effective use of manufacturing resources. The use of expert systems to help optimise 

the manufacturing process is nothing new and was first discussed back in the 1980s by Weill, Spur, 

and Eversheim (1982). Whereas PPS concerns itself with organising, managing, and maximising work 



83 

and workloads of equipment, supplies, and resources. As this research’s focus is process planning and 

scheduling, it is this area of the literature that this sub-section will focus on. 

Zhou, Tang, Zhu, and Wang (2020) presented an AI scheduler used for online and dynamic scheduling 

of manufacturing jobs in a smart factory. Reinforced learning provides the framework with self-

organizing and self-learning capabilities under uncertainty, allowing the AI scheduler to learn and 

optimise development schedules for multiple objectives. The proposed AI scheduler employs a 

manufacturing value network (MVN) to estimate state-action values from multi-dimensional sensor 

data of manufacturing items, and then performs real-time scheduling based on available machines 

and pending jobs. Their results show that their AI scheduler not only enhances multi-objective 

performance metrics in scheduling of production jobs, but also effectively deals with unexpected 

events in manufacturing systems (e.g., urgent workorders, machine failures). 

Wally et al. (2019) presented an automatically generated production plan from a production system 

model that describes production resources, their availability, and their capability, as well as the 

materials to be handled and produced. To automatically generate this production plan they used PDDL 

which was able to schedule the use of four, 6-axis robots to manipulate materials. Wally et al. not only 

wanted to determine the most optimum path, but they also wanted to use durative actions to provide 

a minute-by-minute schedule for the operation. Their preliminary results, although successful show 

how problematic durative actions become, with their most optimum schedule taking 4 hours to find, 

however they did use a computer almost a decade old which will have impacted their possible results, 

for what was a relatively simple Lego pickup car comprising of three parts. 

Another use of PDDL within manufacturing to control robotic arms is by Huckaby, Vassos, and 

Christensen (2013). In this paper they used an extension of UML, System Model Language (SysML) to 

model the various operations that can be performed on an assembly line. They then took the SysML 

model and convert it into PDDL terms for the robotic arms, material parts, assembly stations, and 

manufacturing tools. Their case study was the preparation of a car-door part for an assembly into a 

car using a planner called OPTIC capable of PDDL3 domains, however no durative actions were used. 

Although the author does not state how long these solutions took to find, they successfully found two 

different solutions depending on different constraints on the reach of the robotic arm, showing that 

the planner is able to deal with configuration and process change. 

Finally, AI, and more specifically PDDL, was used to calibrate machine tools (Parkinson, Longstaff, 

Fletcher, Crampton, & Gregory, 2012). They proposed two models and test them again both an 

academic expert and an industrial expert. Their proposed models are for sequential calibration and 

potential concurrent calibration of a fixe-axis gantry machine with the aim to reduce machine 



84 

downtime. Previously to their PDDL implementation, Parkinson et al. proposed a Hierarchical Task 

Network (HTN) method and compared it to their current PDDL results. The academic expert’s solution 

would take 12.5 hours and the industrial expert’s plan was 11.5 hours, each algorithm was then given 

ten minutes on a AMD Phenom II X4 970 running Ubuntu 11.04 to find a solution to the given problem. 

They found that the HTN did provide a 45-minute benefit over the academic expert, however the 

solution was still suboptimal compared to the industrial expert. However, the PDDL implementation 

was 53 minutes shorter than the previous HTN provided plan, and 38 minutes shorter than the 

industrial expert. Furthermore, the second, concurrent model, was 72 minutes shorter than the best 

plan (industrial expert), results of which are illustrated in Figure 3-24 below. 

 

Figure 3-24: Calibration Plan Time Comparison from Parkinson et al. 

3.6 Conclusion 

Automated planning and scheduling can be traced back to the 1960s and 1970s. In its infancy, new 

search methods were being developed, each tacking an issue from a different angle with benefits for 

certain applications. It was not until informed search with heuristics came along that the use of AI in 

this field started to develop. Since this point AI has been used to optimise everything from calibrating 

machines, scheduling productions lines, and optimising the software that manages everything in 

between. The use of PDDL and its ability to optimise for a given goal (heuristic) given a set of 

requirements, whilst having the ability to change and adapt to the various parameters it has access to 

is beneficial for this research.  

The literature reviewed has not only shown that this is possible but has found solutions that are more 

optimised than those generated by academic and industrial experts. PDDL is able to take timing data 

mined from the execution of signal processing and generate a solution instructing the software on 

10:00

10:30

11:00

11:30

12:00

12:30

13:00

13:30

14:00

Industrial
Expert

Academic
Expert

HTN PDDL
(Sequential)

PDDL
(Concurrent)

P
la

n
 L

en
gt

h
 (

H
o

u
rs

)

Plan Creator

Calibration Plans



85 

which architecture is the local optimum for each individual function to achieve an overall optimum 

execution. It will also be able to adapt when the timing data changes, perhaps due to hardware 

changes, or a change in the signal processing requirements. It manages this by simply re-processing 

the domain with updated information and will provide an up-to-date solution that is optimum for the 

requirements of researchers and industry.  



86 

4 Case Study: Dispersed Reference Interferometry (DRI) 

As an initial case study, early in this research, Dispersed Reference Interferometry (DRI) is undertaken 

to allow the author to become familiar with some of the signal processing requirements of optical 

instruments and learn about the various configurability and optimisation challenges that laid ahead. 

This chapter evaluates the challenges of providing an optimised library of signal processing functions 

for use by researchers and industry that also includes hardware accelerated algorithms to increase 

the overall performance. 

4.1 Introduction to Dispersed Reference Interferometry 

DRI is a single point interferometric measurement technique that uses a broadband super-

luminescent diode (SLD) to measure surfaces at nanometre resolution. DRI was developed with the 

aim of being used for on-machine metrology as a remote fibre probe could be used to separate the 

measurement apparatus from the manufacturing line. The DRI architecture is based on a Michelson 

interferometer which has a large amount of dispersion applied to the reference arm with a separate 

measurement arm (Figure 4-1). As the measurement arm (M1) moves in the x-axis, the centre of the 

interferogram shifts left and right, using signal processing it is possible to calculate the distance to the 

measurand based upon where the centre of the interferogram lies (Figure 4-2). The interferograms 

are captured by a CMOS sensor spectrometer and then analysed to calculate the measurement 

(Martin & Jiang, 2013). In order to achieve an absolute high-resolution measurement, two techniques 

are combined, one achieving the absolute position and the other accomplishing the high resolution 

(Williamson, Martin, & Jiang, 2016). 

 

Figure 4-1: Schematic diagram of DRI bulk optics interferometer based upon a Michelson Interferometer (Williamson, 2016) 



87 

 

Figure 4-2: Sample Interferogram generated in MATLAB. The red line notes the point of symmetry.  

The spectral interferograms captured by the detector have a point of symmetry directly linked to an 

absolute surface position providing an axial resolution of 279 nm over a range of 285 µm. An 

improvement to this resolution can be achieved through the process of template matching 

(Williamson et al., 2016). Template matching compares the captured interferogram against a set of 

pre-calculated templates resulting in a much-increased level of resolution (0.6 nm) across the range.  

4.1.1 Low Resolution, Absolute Measurement 

The detector used for the DRI is a Basler 8192-pixel 12-bit line sensor (Balser, 2020), giving a value of 

zero to 4096 for each pixel across two bytes of information. Once this is data is captured it is passed 

through the following processes: 

1. The first processing step in the signal processing chain is to combine the two bytes of data into a 

single pixel value, this is also converted into a variable type such as an integer (int) or a floating-

point type (float) (Figure 4-3). Once the signal is in a desirable format, it is passed through a number 

of signal processing steps to achieve the low-resolution absolute position. 

 

Figure 4-3: Converting Camera Data into computable values 

2. The derivative of the signal is then computed by calculating the difference between each pixel. As 

the derivative approaches the centre of the interferogram it tends towards zero. This central point 

is the interferogram’s point of symmetry (Figure 4-4). 



88 

3. Once the differential is calculated, it is passed through a low-pass filter using a moving average 

algorithm that averages each pixel with its nearest neighbours. The width of this window can be 

increased or decreased as required to remove background noise in the original signal. 

4. The filtered signal is then convolved with itself (auto-convolution) to find the symmetrical point of 

the original signal.  

5. Finally, the minimum point is found giving the 279 nm resolution. Additionally, another step is 

introduced to increase the resolution further by fitting a polynomial to the minimum point and 

finding the minimum point of the polynomial. 

 

 

Figure 4-4: Signal processing to determine the relative position 

The calculated symmetrical point is a vertical low-resolution, absolute measurement, with the pixel 

resolution being 279 nm, this can be improved by the polynomial fitting. This resolution is not 

appropriate for many of the on-machine applications that this technique was aimed at, therefore 

further signal processing to extract phase data to achieve higher resolution is required (Williamson, 

2016).  



89 

4.1.2 High Resolution, Relative Measurement 

The method used to achieve a high-resolution result is template matching, whereby the captured 

interferogram is compared against a collection of simulated different templates to ascertain which it 

most closely resembles. This is achieved in several steps: 

1. The interferogram is windowed around the point of symmetry, using itself and the 700 pixels either 

side resulting in a new windowed interferograms 1401 pixels wide. 

2. A correlation algorithm is used to compare the new windowed interferograms with a collection of 

800 templates. 

3. An array of correlation values is then generated, and the first maximum (highest correlation) point 

is then found. 

4. A second-order polynomial is then fitted to the maximum point and the maximum value of the 

polynomial is found and is used as the wrapped phase value (this is a relative position).  

By using 800 simulated templates, each 1401 pixels wide, a resolution of less than 1 nm can be 

achieved, much higher than the absolute position. Unfortunately, as this high-resolution technique 

only provides a relative position, it needs to be combined with the absolute measurement in order to 

have both, high resolution and absolute positioning. 

4.2 Signal Processing Requirements of Dispersed Reference Interferometry 

Previously to this research, a 2048-pixel CCD sensor was used and was processed on-line in LabVIEW. 

LabVIEW enables researchers to quickly create signal processing and receive initial results, however 

this was at a performance cost. LabVIEW was processing between three and five frames per second 

(to achieve a high-resolution, absolute measurement). Not only was this not fast enough, (the target 

being 10 kHz), but a wider sensor was needed to increase the optical performance. The increase in 

data being acquired and processed has a negative impact on processing speed. Therefore, moving 

away from LabVIEW was the only option. In order to obtain processing speeds closer to the 10kHz 

target, some form of hardware acceleration would be required. 

This became the starting point for this research; to develop a piece of software that provides a similar 

level of performance of bespoke software while keeping the configurability and ease-of-use of 

software such as LabVIEW. It also needs to utilise any hardware acceleration if it is available such as 

GPUs, and parallel processing using multiple CPU threads.  

4.3 Investigation into the Software Requirements for Signal Processing 

The software requirements were mainly influenced by the signal processing requirements. The 

computation needed to be fast, be able to provide multi-core and/or GPU processing and support 



90 

polymorphism. The software should also provide an easy-to-use user interface that is intuitive to use 

and allows the user to customise the signal processing for their requirements. 

4.3.1 Computation Requirements  

The main constraint of a programming language is its capability of both multi-core and GPU 

processing. Having earlier evaluated both CUDA and OpenCL, CUDA, with its propriety optimisations 

between hardware and software, should provide the best acceleration despite its hardware 

restrictions. This selection therefore significantly reduces programming languages available for 

programming the serial code in. CUDA provides a Software Development Kit (SDK) for both C/C++ and 

Python and has been ported to Java by a third-party called JCUDA (Yan, Grossman, & Sarkar, 2009).  

Python is a high-level programming language, this refers to the level of abstraction away from the 

details of the computer, whereas C/C++ require more intricate knowledge of hardware and are mid-

level languages (Figure 2-4). Therefore, Python excels in its ease-of-use but due to its high-level nature 

it has a negative impact in performance. Whereas with C/C++ or Java, it is the other way around. Java 

is a mid-level language like C, but was designed to be easier to use, and therefore has had features 

removed to simplify the experience, such as memory pointers, type definitions and templates. 

However, Java does have other useful features such as run-time interpreter, rather than C’s compiler, 

event-driven programming and native multithreading. 

Contrasting between C++ and Java, both provide different useful features, however, due to the 

author’s previous experience in C++, initially it was the chosen language whilst continually assessing 

its capability for the processing needed. This allows the use of CUDA in its native supported form, 

hopefully providing an excellent level of acceleration without having to rely on third-party libraries. 

As C++ does not have parallel programming natively supported, a third-party interface must be used 

to have a multithreaded workload.  

OpenMP is an Application Programming Interface (API) that supports multithreading in C and C++ on 

Linux, Windows and macOS (Dagum & Menon, 1998). Multithreading capability is important as nearly 

all desktop processors sold today have multiple cores on a single chip. Although the speedup for 

multiple cores is not linear, and varies depending on thread saturation rate, utilising these extra cores 

can provide a significant speed increase for no additional hardware cost (Figure 4-5). Not only does 

the main thread fork into multiple threads, OpenMP also automatically splits the memory and can 

create new memory only accessible by each individual thread allowing easy memory management. 



91 

 

Figure 4-5: Note. Reprinted from “Parallel Programming in OpenMP” by Chandra, R., 2001, p.3, San Francisco, CA: Morgan 

Kaufmann Publishers 

4.3.2 User Interface (UI) Requirements 

A Signal Processing Engine (SPE) needs an easy-to-use UI to be able to quickly develop the signal 

processing chain that users require. The user interface needs to provide three main features:  

1. The ability to configure the SPE. 

2. Graphically display the data output by the SPE. 

3. Provide a method for controlling actuators.  

Unfortunately, there is typically a trade-off between being easy to use and providing a usable level of 

functionality. For example, MATLAB and LabVIEW provide flexibility, but MATLAB requires the user to 

learn an additional coding language, while LabVIEW has a similar learning curve for its associated UI. 

When creating a UI it for researches and industry, it should not require them to learn a new 

programming language but must allow them to harness the signal processing available in the SPE. 

The first option is to include the UI as part of the SPE program, but Microsoft Foundation Class (MFC) 

is an outdated framework and requires third-party libraries to achieve some of the above outlined 

features, although it would be advantageous to use CUDA to render the outputs. There are non-

Microsoft design tools available, such as Qt, but these require paid licenses, and these were outside 

the scope of this research. Therefore, early on in this research, the decision was taken to use C# and 

.NET framework to develop the UI, enabling an easy to use, modern looking UI.  

.NET Framework by Microsoft, is made up of tools, programming languages, and a library for many 

different applications, and can be programmed in C#. C# is an objected oriented programming 



92 

language also created by Microsoft in 2000, designed to be simple, modern, and general-purpose. Part 

of the .NET Framework is Windows Form Application, a GUI class library providing an easy interface 

to develop windows applications for desktops and tablets. C# is significantly more suitable for UI 

elements rather than C++/MFC and has optimised pre-built libraries for buttons, textboxes, graphs, 

datasets etc. and does not rely on third-party libraries. However, the need for two separate programs 

raises data access difficulties between the two processes and any configuration data created needs to 

be sent from the UI to the SPE and any data to be shown to the user is transferred to the UI. This is 

covered in more detail in chapter 4.5. 

4.3.3 Summary 

C++, CUDA and OpenMP were selected as the programming languages for the SPE. They retain 

performance whilst allowing a useful level of customisability. The UI has been programmed in C# using 

Windows Forms in a separate program to harness the benefits that the .NET frameworks provides for 

the graphical side, while maintaining the speed the low-level nature C++ provides. This should allow 

for the “best of both worlds” approach while hopefully minimising any overhead created by moving 

data between the two processes. 

4.4 Initial Proposal of User Interface Design 

The first iteration of the UI was specifically designed for the DRI, this allowed the author to gain 

experience programming in C# and .NET framework. Throughout the design of the UI, features were 

designed to be application non-specific, e.g. graphs (Figure 4-6a), others, e.g. the data readout (Figure 

4-6c), are specific to the DRI but are available in a more generalised way in future iterations. 



93 

 

Figure 4-6: User Interface v1 

The UI has three main purposes, data visualisation, SPE configuration and actuator control. Data 

visualisation for the DRI consists of three outputs, the raw interferogram, the auto-convoluted signal 

(absolute position), and the correlation value (relative position). The interferogram and AC signal can 

be plotted on the same graph (Figure 4-6a), the AC result (the minimum point of the AC signal) and 

the template match result are both plotted against time so they can also share a graph (Figure 4-6b). 

The graph data is imported from the SPE by the UI, to save time not every data point is plotted on the 

axis (Figure 4-6a), instead the UI determines the screen resolution and then decimates the data by the 

nearest factor smaller than the ratio (Equation 4-1). This data reduction allows the graphs to be drawn 

quicker and more frequently, while still showing more points than the screen resolution can 

reproduce, so is unnoticeable by the user. The graphs also auto-scale the first time they plot data in 

both the X and Y axis’, and when plotting against time it shows the last 500 results (this may need to 

be a factor of the data rate in future). 

 

Equation 4-1 

 

 

  



94 

If the user requires data to be saved, this can also be done through the UI, by selecting only the outputs 

required. To reduce wasted time, the different signals and data points that are being displayed can be 

individually turned on and off to only save the data that is required. Once the outputs are chosen, they 

can be saved in three different modes: 

1. Save every n frame for m number of frames. 

2. Save every frame for n seconds. 

3. Save every frame until stopped. 

The SPE configurator (Figure 4-7), allows users to select the functions they require and set the function 

parameters. As previously mentioned, this is currently designed for the DRI only, however, with 

expansion and generalisation in mind, yet currently the only parameters that can be set are specific 

to the DRI and are hard coded into the UI. All the available functions are loaded into the UI at runtime, 

once added to the run list, the configurable parameters (highlighted yellow) can be set, along with the 

input and output arrays. Once all the required functions are added, and placed in the correct order, 

the configuration can be saved and used by the SPE to execute the chosen signal processing. 

 

Figure 4-7: Function Configuration v1 

Finally, the last feature of the UI is the actuator control (Figure 4-8). This allows users to move 

mechanical stages to scan objects. Currently this is only setup to move in one axis, but multiple of 

these could be used together to create 2D/3D movement.  



95 

 

Figure 4-8: UI Actuator Control Panel 

Several commands have been added to the UI to communicate with the actuation devices. As the 

actuation devices use General Command Sets (GCS), a translation Look Up Table (LUT) has been added 

so that when an action is called, it is translated to the command for the actuation device being used. 

These are shown in Table 4-1. The actuators can be moved either linearly from two points or stepped 

by a set distance from a start to an end point. When recording data, the actuation position can also 

be saved so the data can be matched back to the actuator’s position at the time of capturing the data. 

Table 4-1: Look Up Table of General Command Set (GCS) for different actuators. 

UI Command PI E709 Newport SMC100 

Go To MOV Z N1 1PAN 

Move Step MVR Z N 1PRN 

Get Position POS? 1TPN 

Set Speed VEL Z N 1VAN 

Stop STP TP 

Terminators \n \r\n 

 

4.4.1 Future Improvements 

The basics for the SPE configurator have been established successfully, but modifications are needed 

to adapt to the increase of permutations available when the function library increases. The user will 

need to create arrays to enable better data flow throughout their configuration. There might be 

occasions where multiple arrays are used, rather than a single input and single output. The 

configuration parameter names need to be adaptable for each individual function, therefore 

knowledge of the function from the SPE needs to be imported into the UI so the right text can be 

displayed. This needs careful consideration, for the data to be in a readable format by both the SPE 

 
1 N is the decimal value sent with the command, the units for this are set by the device. 



96 

and the UI and to not simply duplicate any data, as this would cause memory read and write issues if 

the data did not match correctly. Finally, as the number of possible functions, arrays and the function 

list increase in size, the more complicated the UI may become, therefore a drag-and-drop user 

interface may be beneficial for the configurator. 

4.5 Exploration of Data Management Between Two Processes 

The configuration data is managed between the UI and the SPE though files saved in Extensible 

Markup Language (XML). XML is used for two reasons, firstly it is a user readable format which in this 

initial stage is useful for debugging possible problems and errors; secondly, C# structures can be 

serialised directly into XML removing possible programming errors when converting between stored 

data and XML format. The configuration XML file contains the order of functions, which arrays are 

used for each function and the data points that go with them in Figure 4-7. Upon completion of the 

configuration, it is saved, and the user can start the SPE, which has an argument passed to it detailing 

the location of the configuration file for it to be imported. 

The serialisation of the C# data is very useful during the export process, because if the data was 

incorrectly transferred between the two separate processes, it would be very likely that the functions 

would not work. The wrong array could be used, the wrong data points, or even worse, e.g. an array 

of length 100 is asked to record 200 values causing a memory overflow along with a whole host of 

other problems. Therefore, when the SPE is importing the data, it needs to perfectly replicate what 

the user requested and what the XML file recorded. Unfortunately, there is no inbuilt method in C++ 

for importing C++, so custom functions were created using a third-party XML parser (TinyXML, 2015) 

to read in the data. 

 

Figure 4-9: Configuration Files 



97 

The problem with this first version of the import/export system is the 

class that holds the data, the class has a member for every parameter 

used across all the functions that exists for the DRI (Figure 4-10). Once 

the library includes more functions with many different parameters, 

this class will be very complicated and confusing to maintain and 

therefore needs improving. However, the import configuration 

system does work correctly, and SPE imports the correct Signals and 

DataPoints into the correct function, with the signal processing 

executing as expected. Finally, to reflect any changes made in the SPE, 

both the configuration manager and also in the exporting of the 

configuration file will need to be modified to maintain consistency. 

Processed data is transferred from the SPE to the UI, this is done through a process called Inter-Process 

communication (IPC). There are several ways IPC can be implemented on Windows, these include 

standard files, memory mapped files, and Named pipes. Standard files such as comma separated value 

(CSV) can be used to store numerical data with a comma placed between each data point (Figure 4-11) 

stored on a hard drive.  

 

Figure 4-11: Inter-process communication using CSV files 

CSV allows for easy importing and exporting of data between two processes as both C++ and C# have 

inbuilt functions for dealing with CSV data. However, this is very inefficient as for each data point a 

comma is needed (one byte), increasing the file size by 12.5% for 8-byte double precision and 25% for 

4-byte integers. Even using this inefficient method, the UI needs to know that there is a file ready to 

be read and where that file exists. Furthermore, the files were originally being saved to a mechanical 

hard disk drive (HDD) further limiting performance, this has since been switched to a solid-state drive 

(SSD) which has seen significant improvements. However, the standard file format is still an issue and 

needs improving before larger sets of data can be outputted efficiently. 

The other type of IPC mentioned, Named Pipes is a First-In-First-Out (FIFO) communication method. 

Between the two processes, one creates the pipes (the parent), while the other process (the child) 

Figure 4-10: Function Class that 
data is imported into 



98 

searchers for pipes to connect to. Each of these pipes are simplex communication but can be full- 

duplex by combing two together one in each direction, both created by the parent. This allows data 

to be saved in a CSV file and then a notification message can be sent down the pipe from the SPE to 

the UI to say the data is ready to be read and the location of said data. This removes any conflicts 

where the SPE may be writing to the data file at the same time the UI is attempting to read from it, as 

the UI can also let the SPE know when it has finished reading and that it can write new data to the file.  

4.6 Signal Processing Considerations 

There are three processing methods that have been implemented, serial CPU execution, parallel multi-

core CPU execution and CUDA GPU execution. Each has its own set of requirements and challenges 

and requires the ability to be able to switch between all three to evaluate which of the three is best 

for each given algorithm. 

4.6.1 Serial Signal Processing 

Firstly, the camera image needs to be acquired, the camera used for the DRI is the Basler racer 

raL8192-12gm which captures an image 8192 pixel wide and a single pixel high. Basler provides an 

SDK which allows developers to communicate to the device capturing additional properties such as 

image number and timestamp. This captured image can be acquired in three different formats, 

Mono8, containing eight bits of data per pixel, Mono12, containing twelve bits of data across two 

bytes and also Mono12 packed, containing three bytes of data for each two pixels (Figure 4-12). The 

format chosen moving forward was Mono12, therefore capturing 16 KB images, the advantage of this 

was Mono12 packed required longer to unpackage the data the benefit it provided in camera data 

rate. However, if only image capturing is required, using Mono12 packed would yield a smaller latency 

and increased frame rate, however, it isthe signal processing is the bottleneck for the DRI. Finally, in 

the next section, multithreading is introduced rendering the time taken to acquire a camera image 

irrelevant, therefore the faster signal processing is more advantageous.  



99 

 

Figure 4-12: Camera Data Formats 

Each of the functions that were required for DRI measurement were defined by Williamson (2016), 

these fulfilled the requirement to be able to measure a high-resolution absolute position by combining 

data from a convolution and correlation algorithm. All the algorithms were programmed and verified 

from pre-existing MATLAB code or freely available open-source code, the algorithms created for the 

DRI are shown in Figure 4-13. The FFT library, High Speed Fast Fourier Transform (HSFFT), is an open-

source algorithm for C++ and was implemented with changes made to enable its use with arrays rather 

than vectors (R. Hussain, 2016). However, this library is replaced by FFTW later for performance 

benefits.  

 

Figure 4-13: Initial library of algorithms programmed for the DRI Case Study 



100 

Once all the signal processing has been programmed it is compiled, however, before any data can be 

transferred to the UI a couple of properties need to be set. Firstly, the signals that the user requires 

displaying need to be configured, these are set in the UI and imported into the SPE through the XML 

configuration file loaded at the start. Secondly, all the different outputs need to be packaged together 

so that only when all the data is ready that the notification is sent to alert the UI to read the files. A 

function, OutputData, takes any signals that the user requires graphing in the UI and caches them until 

the file is available to be written to, caching these signals and only writing when the files are free 

prevents data not reaching the UI. However, as multiple frames may be cached, only the latest signal 

is displayed as data for the DRI is processed faster than human eyesight, so the graph drawing is limited 

to 25 FPS to reduce superfluous plotting that wastes time.  

Once all the serial processing algorithms are programmed and tested, the next step is to investigate if 

any performance increase can be found by utilising the multiple CPU cores available through parallel 

programming. 

4.6.2 Parallel Signal Processing 

The main computer being used for this research contains an Intel i7-4790 consisting of four cores and 

eight threads. There are two ways that the SPE can utilise the CPU’s multithreaded architecture. 

Firstly, each signal processing function could launch eight threads and split the workload between 

them equally, this would decrease the execution time of each function individually. However, creating 

threads (forking) and ending them (joining) has an overhead, and if the function is only short the 

overhead can cost more than it benefits from (Figure 4-14). Although Amdahl’s law (Amdahl, 1967) is 

strictly associated with the parallel capability of a function itself, this limitation is based on the same 

principle. 

 

Figure 4-14: Multithreading example showing two processes being forked from one to two threads 

Depending on the signal processing function, or the size of data processed by the function, parallel 

processing may not be advantageous in the forking/joining method. There is, however, a second 



101 

method to use multiple threads, rather than forking and joining threads for each function, specific 

functions can be run on separate threads for the entire life of the program. Looking at Figure 4-15, 

running the program serially would take 80ms, that can be improved by forking threads for the main 

processing saving 15ms, almost 20% of the total execution time. However, an extra 10ms has been 

introduced due to the time taken for threads to be created and destroyed, reducing or removing this 

overhead entirely would be advantageous.  

 

Figure 4-15: Multithreading can be used without forking/joining threads and can run a single process constantly in a 

different thread to the main loop 

In Figure 4-15c, rather than splitting each function across multiple threads, the data acquisition is now 

run on its own thread throughout the process. Although this would not provide a benefit on its first 

pass, when running in a continuous loop, by the time one set of data has been processed, the next 

image has already been acquired and is waiting in memory, saving 20 ms, a 25% reduction in overall 

execution time. This method is frequently not the most efficient and is heavily dependent on the data 

size and the complexity of the function. As the image size or function complexity increases the more 

likely that forking and joining is beneficial. However, by using a separate thread for data acquisition 

the capture latency is reduced to almost zero. 

This method of multithreading has therefore been applied to the data capture of the DRI (Figure 4-16). 

A class, CameraData, has been created to hold the images, timestamp, and image number and two 

instances of this class have been created along with a variable to keep track of which instance is 

currently being written to. This allows the camera thread (Figure 4-16b) to write to one buffer while 

the main thread (Figure 4-16c) reads from the other. When the main thread needs to read the buffer, 

it uses a mutex to stop the camera writing while the BufferID is changed, once changed, the mutex is 

unlocked. Now the camera can resume writing the data it captured to the new buffer, while the main 

thread reads from the other buffer. This reduces the time spent locked in the mutex to be as small as 

possible. 



102 

 

Figure 4-16: Multiple camera buffer arrays allows the camera thread to write to one buffer while the main thread reads 

from the other 

The other function suited to this method of multithreading is the data outputting function. Copying 

the data into the cached variable needs to be executed by the main thread, but once cached, a similar 

setup to Figure 4-16 can be used to send the data from the SPE to the UI. The main thread can save to 

the cached variable, while function OutputData is running on a separate thread. Once a notification 

has been received from the UI to initiate the data transfer, outputData locks a mutex preventing the 

main thread from writing new data to the cached variables while it transfers data to the UI, finally the 

mutex will be unlocked once this process has been completed. It may also be valuable to have two 

cached variables that can be switched (like Figure 4-16) to prevent the program from having to stop 

for long periods while reading or writing. 

Another part of the SPE that benefits from running on separate threads are the Namedpipes that are 

used to communicate between the two programs. Using separate threads allows data to be sent and 

received without effecting the main thread, allowing notifications from the UI to be received and 

processed within the main loop at a specified time, action can then be taken depending on content of 

those notifications. This also allows the SPE to send notifications or messages to the UI, without 

disturbing the main thread. It may be to immediately lock a mutex and stop the main thread from 

running, although this is not currently implemented, however, currently it would only stop running at 

the end of the current frame being processed. 



103 

There is the limit to how far multithreading can go at this time, by running the camera acquisition, 

data outputting and two named pipes all on different threads, including the main thread, a total of 

five threads are being used without any forking/joining cost. Therefore, the next stage to further 

increase the SPE performance is to implement General Purpose Graphics Processing Unit (GPGPU) 

hardware acceleration for the signal processing to examine how much benefit that can provide. 

4.6.3 GPU Signal Processing 

CUDA can be programmed alongside standard C++ code and compiled with Nvidia CUDA Compiler 

(NVCC). When using CUDA, code that is executed on the CPU, or variables stored in RAM are known 

as host functions or host variables, conversely, GPU functions and variables are known as device 

functions or variables. When using NVCC it separates the two parts of the code allowing the C++ code 

to be compiled by MSVC and only compiles the CUDA. CUDA functions, known as kernels have a 

definition prefix before the function return type, these are __host__, __device__, and __global__ 

(Figure 4-17). Host functions are called and executed on the CPU, with no intervention from the GPU, 

conversely, device kernels are called and executed on the GPU independent of the CPU. Finally, global 

functions, the most frequently used, are called by the host but executed on the device. 

 

Figure 4-17: Kernel Definitions (Code) 

Before a global kernel can be launched, the number of threads the GPU should create needs to be 

calculated and set, once calculated. In CUDA threads are split up into blocks, each block of threads can 

have up to three dimensions. A single block can hold 1024 threads, and each thread executes a copy 

of all the code within the kernel. If more than 1024 threads are required, a grid of blocks needs to be 

configured (Figure 4-18). Both these parameters are then included within the function called, placed 

between two sets of chevrons (Figure 4-19). 



104 

 

Figure 4-18: CUDA Thread Organisation 

 

 

Figure 4-19: Kernel Call 

Calculating the correct and most efficient number of threads to be launched to achieve the calculation 

is crucial. Launching too few threads results in missing computation and incorrectly returns zero for 

parts of the data, launching too many results in wasting time while the GPU manages the unnecessary 

threads. Although, as GPUs consist of multiple stream multiprocessors (SM) resulting in large numbers 

of cores per device, each SM has thirty-two CUDA cores so it is advisory to launch blocks of threads 

that are multiples of 32, even if that means launching a slightly too many threads. For example, an 

array is 800 by 125 pixels, it may seem sensible to run 800 threads per block and 125 blocks. This 

would provide each block an efficiency of 78%, as each block is not utilising 224 of its threads. Whereas 

launching ninety-eight blocks each with 1024 pixels, would mean only the last block is under-utilised, 

giving an overall performance of 99.6%. 

Figure 4-20 shows the process used for calculating the CUDA threads for the DRI signal processing, the 

number of total threads would first be calculated based on the algorithms requirements and the data 

size being used. This value is then passed through the allocation function, each time using the 

maximum number of threads possible in each dimension and subsequently calculating the number of 

blocks in each dimension of a grid. 



105 

 

Figure 4-20: CUDA Thread Allocation Calculation 

When using CUDA, data must be transferred to and from the CPU and GPU using memory pointers. 

This means it is not advisable to have multi-dimensional arrays storing data, therefore when data has 

more than one dimension it is stored in a flattened array. For example, if the data is a three-

dimensional 2x2 image, each pixel having three colours (red, green and blue) this is flattened into a 

single 1D array twelve wide and one high (Figure 4-21). This is so the data can be accessed by an array 

pointer created and allocated memory at the start of the program rather than at compile time. This 

can then be transferred to the GPU where basic calculations are used to separate out the different 

dimensions from the original array using the original widths of the data and a stride value, the distance 

between each dimension. 

 

Figure 4-21: Array Flattening 

The best way to illustrate the differences between a serial and GPU function is to look at an example, 

Figure 4-22 shows the getDerivative function and Equation 4-2 shows the calculation. 



106 

( )

( )

( )

( )

 

1

1 1

1

1

where 1

, ,d , ,d  where d where 1 < i < m
2

wh

a

ere

1,2, ,nd index,

i i

T i i

i m i

i i

s s i

s s
d

s s i m

i m

+

− +

−

− = 
 

+ 
= =  

 
− = 

 



d

 

Equation 4-2 

The serial function first calculates the first and last value in the array as these are calculated differently, 

then creates a variable, i, and loops through each remaining element in the array until all elements 

have had their derivative calculated. On the GPU, the same code runs on every thread, therefore there 

are no loops and the check for the bookended elements is also done on each thread. As more threads 

may be launched than needed, there is an initial check to make sure extra threads do not execute and 

cause memory overflows. Next, each thread checks if its threadID is either zero or Length-1, if either 

are true it executes the code specific to those elements, else the main operation is executed. Once 

each thread finishes it is destroyed, once all threads are destroyed the kernel exits. 

 

Figure 4-22: Comparison between how getDeriviative runs in serial execution compared to the GPU execution 



107 

When the CPU launches a global GPU kernel, the CPU does not wait for the kernel to finish and 

continues through its sequential execution, if another kernel is launched before the previous has 

finished, the CPU adds the kernel to a queue and once again continue. As far as the CPU is concerned 

this is an asyncronous operation, but the GPU executes the kernels in the order which they were 

launched. If a kernel is required to finish before the main program flow should continue, this can be 

achieved by using cudaDeviceSynchronize which forces the CPU to wait until all queued kernels have 

been completed. 

As mentioned previously, GPU memory and CPU memory are separate and when executing kernels 

any variables that are used need to be copied to the GPU before the kernel is launched. Depending on 

the data flow, these may need to be copied back to the CPU after if they have been modified. If a 

kernel is launched and the next operation is to copy the memory back to the CPU, the CPU waits until 

the kernel has completed and is free to be able copy data back, in this scenario, cudaDeviceSynchronize 

is not needed as memcpy operations are synchronous.  

The function to transfer data to the GPU is memcpy, this function can transfer memory from the host 

(CPU) to the device (GPU) and vice versa. Typically before a kernel, any arrays used are allocated GPU 

memory and copied to the device. Once all data is on the device the number of threads needed can 

be calculated and then the kernel can be launched, when complete any modified arrays may need to 

be copied back to the CPU if used on the host at a later stage. If all functions in a signal processing 

chain are to be executed on the GPU, it is unlikely any data would be copied between the host and 

device apart from the data acquired and the data to be output to the UI. A representative example of 

the steps taken to execute a kernel is shown in Figure 4-23. 

 

Figure 4-23: Order of operations for executing a function on the GPU 



108 

Now all the signal processing has been programmed and tested, the surrounding code that allows all 

the functionality described above to work together is discussed. This forms the majority of the Signal 

Processing Engine (SPE). 

4.6.4 Signal Processing Engine  

A significant amount of code is needed as the framework of SPE in order to be modifiable and to allow 

configurations that fundamentally changes the program and acquire and output the correct data. The 

structure of these threads are shown in Figure 4-24 and discussed in more detail throughout this 

section. 

 

Figure 4-24: Signal Processing Engine main file flow diagram 

Firstly, the configuration file (Chapter 4.5) is imported, this is an XML file and contains all the 

information about each function, sample files can be found in Appendix 11.1. The configuration file 

loading follows a simple process of looping through each element in the XML and importing each line 

into a list of type function (Figure 4-25). This class is not an efficient way of storing the data, as each 

instance has a member for every different variable needed across the DRI functions, therefore each 

instance of function has many unused members, wasting memory. Moreover, when expanded to 

include more functions, this is not sustainable for all the possible different variables needed, this is 

modified in a future iteration discussed in Chapter 5.3.3. 



109 

 

Figure 4-25: XML Config File Loading and Importing. Function class represented in UML 

The variable names are stored in the function class, but the variables themselves are stored 

separately. All the arrays used are stored as pointers in a class, then at runtime these are allocated 

memory based on the width of the captured image, which is currently hardcoded into the SPE. This is 

inefficient, as arrays that do not require the full length of a camera image still have the same amount 

of memory allocated, this is not too much of an issue for the current 8192 image size, but this 

inefficiency would be worse for a larger image. This is also the method for allocating the data on the 

GPU, where memory can be extremely limited. Furthermore, memory is allocated on the CPU and GPU 

regardless on which platform is being used, this again is an inefficiency that needs addressing in future 

work. Finally, the DRI has two stages of measurement resolution, if only relative measurement is 

needed, all the arrays for absolute measurement are still initialised and allocated, wasting both 

memory and time. 

Once the configuration is imported, memory can be allocated on the CPU, and if available, the GPU, 

template data is then imported and copied onto the GPU for future potential use. The penultimate 

step before the main loop can start is to connect to the named pipe to allow data transfer to and from 

the UI. Finally, a connection to the camera needs to be established, this initialisation of the connection 

only needs to run once as the data capturing itself is separate. Once all the variables have been 

allocated and any setup functions have been executed, the main loop can start. The main loop runs in 

a while loop and cycles through all the objects of function in the function list (Figure 4-26). The SPE 



110 

then uses switch statements to compare the function member ID and selects the correct function 

based upon this attribute.  

 

 

Figure 4-26: Flow diagram of the main loop of the SPE that runs continually until stopped. It uses switch statements to 

select the correct function. 

Once the function has been located, the function call does not contain pointers to the memory 

location where the correct array is stored, instead it contains a secondary function call to a getPointer 

function that takes a string as an input (Figure 4-27). This string is the name of the array needed in 

plain text form, this was imported from the XML file and is used as the reference to the array. This 

name is then compared in a series of if statements to find a match against other strings. Once a match 

is found, the correct pointer is returned and can then be used in the function call, this usually needs 

to be repeated for the output array as well as the input array.  

 

Figure 4-27: getPointer function. Given the name of a variable returns its pointer 



111 

Just like the function class, this is a very inefficient way of managing this data, not only does the SPE 

have to compare the name against multiple strings, it must do it every loop. These comparison strings 

are also hard coded, so any changes made to a variable name would require a full recompile. The last 

negative is that this function can only return a single type, therefore severely limiting flexibility and 

also speed. Calculations using doubles requires twice the memory and take at least double the time. 

This is another section of the SPE code that is improved later and has been reworked as the number 

of arrays increase and SPEs library expands. 

The ability to switch between CPU and GPU 

signal processing functions is achieved by 

selecting a different case in the switch 

statement. Rather than selecting case one 

for the convertBytes CPU function, case eight 

would be selected for the GPU counterpart 

(Figure 4-28). In future, the ability to use the 

same case from the switch statement for 

both the CPU and GPU function, with some 

logic inside the switch case to select the 

correct architecture would be a useful 

improvement as the function library gets 

larger. This reduces the number of cases that 

need to be check each loop by half, 

increasing the performance as the library 

gets larger. 

 

4.6.5 Challenges Faced 

One of the challenges faced in this early work came about by developing the SPE and the UI in separate 

programs. By separating these two programs and developing in separate languages has allowed each 

program to include the benefits of its chosen programming language. Unfortunately, this means 

having to pass data between the two separate programs, this is not a problem for non-time critical 

data, such as configuration parameters, but passing signal processing data needs to be done in a quick 

and time efficient manner to prevent causing a bottleneck. It is not ideal to use a language like C++ to 

gain efficiencies to then have a slow data transfers just to output the data on a graph in C#. Ideally, as 

the data is stored in random access memory (RAM), it would be ideal to simply pass the memory 

Figure 4-28: Switch statement for selecting functions in the main 
loop of the SPE 



112 

location between the two programs, but alas memory pointers are unique to each individual process 

and should not be accessed from a different program other than the one that created it. 

An inefficient and temporary solution to data transferring was to save the data as a CSV file, however, 

a better option was to save the data as binary (.bin) files. Binary files have no formatting and simply 

consist of ones and zeros; therefore, the data has to first be converted from integers, single-point 

precision or double point precision into binary before it can be saved in this format. C++ has these 

functions built in and therefore are relatively efficient. Using the same hard drive as before, a test was 

conducted to investigate what the performance benefit would be for saving the data as a binary file 

rather than a CSV. The results showed that saving in binary format was over twice as fast saving as 

CSV due to not having to separate the data with commas.  

As the binary file does not contain any formatting, header information needs to be placed at the start 

of the binary stream that can be read by the UI to enable it to convert the data back into its original 

form (integer, single precision, double precision). Adding this header information does create a small-

time penalty but is insignificant when compared to the time lost adding commas when saving as a CSV 

file. The complication that this adds is the process to add/read the header information must be 

identical on the SPE and UI, otherwise data reconstruction is not possible. Any changes made in the 

SPE must be mirrored on the UI, duplicated the work needed to make minor changes. An unintended 

advantage of saving in a binary file is multiple signals can be saved in the same file at once, provided 

that this is reflected in the header information. This can provide a significant timesaving when 

transferring multiple signals or sets of multiple signals compared to saving a single signal. This is 

because as file sizes increase data can be written to the disk faster as there are less random read/write 

operations needed when the data is saved in one single block. 



113 

Another challenge faced during this early work 

was dynamically setting which array was to be 

used at what time and in which function. The 

ability to import the configuration existed and the 

name of the array to use was accessible, but the 

ability to select an array based on its name was 

not. In an attempt to solve this before each 

function was executed (every loop) getPointer is 

called for each array in order to select the array to 

be used. GetPointer takes the name of the array, 

in plain text and compares the string against 

several if statements, when one of the if 

statements return true GetPointer returns the 

correct pointer. Although this is a brute force way 

of achieving this, for the small number of arrays 

used at this time it worked just fine, however, it 

was not very efficient and it checks every variable, 

every loop, but it does allow dynamic array 

selection. This problem is addressed and solved 

later in Chapter 5.3.5 as this is an ever increasingly 

long list as the number of variables grows. 

4.6.6 Summary 

The challenges listed above allows for development of the SPE moving forward when the number of 

functions in the library increases. It has also identified performance benefits that can be made further 

increasing the SPE optimisation. The serial functions allow signal processing on the CPU without any 

extra hardware required, and also utilises multithreading if available on the hardware. By dedicating 

specific functions to their own thread, data acquisition, data outputting and inter-process 

communication allows utilisation of the multiple cores modern CPUs contain. In addition, by 

multithreading in this method, any GPU acceleration is an additional benefit, and not instead of, 

further increasing the efficiency of the SPE.  

4.7 Evaluation of Dispersed Reference Interferometry Performance Improvements  

Now the SPE is operational, the different processing modes can be benchmarked, and the 

architectures can be compared against each other.  

double * GetPointer(char Name[]) { 

    std::string myString; 

    int Size = strlen(Name); 

    myString.assign(Name, Size); 

    if (myString == "CPU_AC") 

        return CPU_Signals[0].AC; 

    else if (myString == "CPU_Interferogram") 

        return CPU_Signals[0].Interferogram; 

    else if (myString == "GPU_Interferogram") 

        return GPU_Signals[0].Interferogram; 

    else if (myString == "GPU_AC") 

        return GPU_Signals[0].AC;  

    else if (myString == "GPU_Smooth_Derivative") 

        return GPU_Signals[0].Smooth_Derivative; 

    else if (myString == "CPU_AC_Result") 

        return CPU_Results[0].AC_Result; 

    else if (myString == "GPU_AC_Result") 

        return GPU_Results[0].AC_Result; 

    else 

        cout << "Error, Variable Not Found: "  

 << myString << "\n"; 

        system("pause"); 

    } 

} 

Figure 4-29: GetPointer Function takes the name of an array and returns 
the correct pointer 



114 

4.7.1 Image Capture 

The first test involves capturing the data, reinterpreting the Mono12 to floating points and then saving 

to a CSV file. The main thread is responsible for converting the Mono12 data to integers on the CPU, 

whereas when running on the GPU, any memory transfers needed are also included. The data 

acquisition from the camera is being executed on a separate thread. As shown in Figure 4-30, the CPU 

and GPU (Single Frame) have a similar frame rate, with the GPU just edging ahead, even though the 

signal processing required for converting data is minimal, it was still faster to transfer the data to the 

GPU and back. As for batching GPU data, this method better utilises the large number of GPU threads 

available, and therefore provides a significant increase in frame rate. However, this is at the cost of 

latency, as thirty-two or sixty-four frames are being processed at once, the rate at which the data is 

output is reduced. The camera can capture in Mono12 mode around 6000 FPS so should not result in 

a bottleneck with these measurements, but for the batched data, it cannot be ruled out that the main 

thread had to wait for frames to be ready before it could send them to the GPU. 

 

 

Figure 4-30: Frame Rate and Latency of Data Capture for DRI 

4.7.2 Absolute Position Measurement  

The next is to calculate the absolute position, this involves capturing the data and reinterpreting it to 

floating points, calculating the derivative, filtering the derivative, and finally convoluting the signal 

with itself (auto-convolution). This time, the CPU outperforms the GPU (Figure 4-31), which might at 

first seem peculiar, given operations such as derivative and FFT are prime candidates for GPU 

acceleration, but there are two reasons for this. Firstly, for the FFT, CUDA has to run a setup each time 

before the FFT can run, which is inefficient and has been re-evaluated and modified to prevent this in 

0

5

10

15

20

25

0

500

1000

1500

2000

2500

3000

3500

CPU GPU GPU
(Batch Size = 32)

GPU
(Batch Size = 64)

La
te

n
cy

 (
m

s)

Fr
am

e 
R

at
e 

(F
P

S)

Data Capture

Frame Rate Latency



115 

a later update. Secondly, and the main reason, is the filter algorithm is poorly optimised for a single 

frame on the GPU.  

Due to the nature of the filtering algorithm, which is a moving average, there are a number of summing 

actions that need to be done linearly and do not allow for easy parallelisation within a single frame. 

However, when data is batched, the algorithm can be parallelised across multiple frames, completing 

multiple linear summations in different threads for each different frame. This allows batched frames 

to provide a significant frame rate increase once again, but once again, at the cost of increased latency. 

These results were also compared to a MATLAB implementation, using pre-acquired data. Although 

using pre-acquired data might not seem an accurate comparison, the data acquisition is done in a 

separate thread in the SPE and therefore the cost to acquire data is virtually zero, therefore, MATLAB 

should have a slight advantage. As expected MATLAB, due to its high-level language, is considerably 

slower than either the CPU or GPU and therefore a higher latency than either architecture when 

processing a single frame at a time. 

 

Figure 4-31: Frame Rate and Latency of Absolute Position Measurement for DRI 

4.7.3 High-Resolution Measurement 

Finally, is to calculate the high-resolution measurement, this contains all of the steps from above and 

also windows the signal and implements template matching (correlation), however, this does not 

include combining the two measurements together. Although previously (Figure 4-31) the GPU was 

slower than the CPU, Figure 4-32 shows the GPU out-performing the CPU due to the template 

matching having some very parallelisable elements. Once again, batching the frames provides 

significant frame rate increases over single frame, and would indicate that 128, or 256 frames may 

also have an additional benefit. However, when the GPU becomes saturated, or the memory transfers 

become the limiting factor, the performance increase batch processing data provides plateaus. Lastly, 

0

10

20

30

40

50

60

0

200

400

600

800

1000

1200

MATLAB CPU GPU GPU
(Batch Size = 32)

GPU
(Batch Size = 64)

La
te

n
cy

 (
FP

S)

Fr
am

e 
R

at
e 

(F
P

S)

Absolute Position Measurement

Frame Rate Latency



116 

MATLAB is once again slower than the CPU or GPU with the worst decrease in performance from the 

absolute position across any architecture. 

 

Figure 4-32: Frame Rate and Latency of High-Resolution Measurement for DRI 

4.8 Conclusion 

In all tests, the SPE was significantly faster on the CPU than MATLAB, but when processing a single 

frame at a time, the GPU was sometimes not the fastest architecture (Figure 4-33). This is due to the 

overhead associated with executing on the GPU. These overheads are memory transfers to move the 

data to the GPU for processing and then returning the modified data back to the CPU’s memory and 

also a small overhead to calculate the number of threads needed to launch the kernel. As the 

algorithms become more complex and take longer to execute, the percentage of time consumed by 

the overhead decreases, thus using the GPU become more advantageous.  

 

  

0

20

40

60

80

100

120

140

0

100

200

300

400

500

600

MATLAB CPU GPU GPU
(Batch Size = 32)

GPU
(Batch Size = 64)

La
te

n
cy

 (
m

s)

Fr
am

e 
R

at
e 

(F
P

S)

High Resolution Measurement

Frame Rate Latency



117 

 

Figure 4-33: DRI frame rate comparison for different measurements and architectures 

In these tests, processing frames in batches also indicates how 2D data would perform, as, the more 

data provided to the GPU to compute, the smaller of a percentage the overhead is, and therefore the 

greater the benefit of using the GPU over the CPU is. In this scenario the GPU really benefits from 

processing larger data, either 2D or batching 1D data together provides a higher throughput but also 

higher latency (Figure 4-34). 

This initial work in developing a basic UI and SPE for the DRI involved learning C++, C#/.NET 

Framework, OpenMP and CUDA. With the author having some previous experience in C++ and 

C#/.NET this was still around a twelve month learning and development process to achieve the above 

results. While the results demonstrate a significant increase in performance for the GPU over the CPU, 

the DRI contained relatively few signal processing steps, and the development for a larger signal 

processing chain would likely be longer. Furthermore, the performance increase potential is likely to 

be higher than the reported figures above, CUDA optimisation is not a trivial undertaking and requires 

significant knowledge of thread and memory management to achieve the highest level of 

performance. Therefore, there is a huge benefit to be able to access a signal processing library with 

the CUDA efficiencies already established. To be able harness the acceleration of a multicore CPUs or 

GPU without having to spend twelve to eighteen months programming to develop a piece bespoke 

software is an enormous benefit to researchers and industry. 

74 12
287 264

60
299

140 94

1980

900

447

3296

1126

524

0

500

1000

1500

2000

2500

3000

3500

Image Capture Absolute Position High Resolution

Fr
am

es
 P

er
 S

ec
o

n
d

FPS Comparision for DRI across CPU, GPU and MATLAB

MATLAB CPU GPU GPU (Batch Size = 32) GPU (Batch Size = 64)



118 

 

Figure 4-34: DRI latency comparison for different measurements and architectures 

In the next chapter this case study will be expanded to be more generic and applicable to other optical 

measurement techniques and many fields beyond. One of the main features required in this software 

is the ability to profile signal processing functions to be able to compare CPU and GPU execution times 

against each other for each function. This comparison can then be carried out using AI to narrow down 

the search criteria and return a solution providing increased performance compared to a single 

architecture.  

  

13.529

81.681

3.49 3.79

16.77

3.35 7.12 10.69
16.16

35.56

71.59

19.42

56.84

122.14

0

20

40

60

80

100

120

140

Image Capture Absolute Position High Resolution

La
te

n
cy

 (
m

s)
Latency Comparision for DRI across CPU, GPU and MATLAB

MATLAB CPU GPU GPU (Batch Size = 32) GPU (Batch Size = 64)



119 

5 Consideration of a Heterogenous Signal Processing Library 

5.1 Introduction 

Continuing from the case study, the consideration of a heterogenous signal processing library is now 

discussed to meet the requirements laid out in the objectives. Throughout this chapter, a second case 

study will be undertaken, Line-Scan Dispersive Interferometry (LSDI), introducing two-dimensional 

data, and three-dimensional data when multiple frames are processed in batches. The introduction of 

this second case study will help ensure that the signal processing algorithms created can be evaluated 

for their performance on a real experimental setup. 

Creating software containing a prebuilt library of signal processing functions that are configurable by 

the user at runtime while keeping the performance of bespoke software is a challenging goal. The 

software should be easy-to-use, while containing the signal processing algorithms that industry and 

researchers commonly use when processing surface and dimensional sensor data. Some algorithms 

are available free and open-source from third parties, these algorithms have been extensively tested 

for performance and accuracy and these have been implemented within the Signal Processing Engine 

(SPE).The SPE also should also include GPU acceleration using CUDA while offering the same level of 

configurability as the serial function library. To be able to provide the user with optimum performance 

algorithms need to be profiled (timed) on both architectures to find which is the best for the signal 

processing requirements of their measurement.  

LSDI uses a broadband light source from a halogen lamp connected to the interferometer though a 

multi-mode fibre. LSDI provides an environmentally robust technique that is suitable for in-line surface 

inspection obtaining the surface profile in a single shot (Figure 5-1). LSDI can achieve high dynamic 

measurements whilst maintaining a high signal-to-noise ratio, a necessity when implementing 

instruments on manufacturing lines (Tang, 2016). 



120 

  

Figure 5-1: Note. Reprinted from “Investigation of Line-Scan Dispersive Interferometry for In-Line surface metrology” by 

Tang, D., 2016, p. 59. 

The LSDI captures fringe patterns using a Mono8 640x480 pixel image (Figure 5-2) resulting in a 0.3 

MB image, 37x larger than the DRI image. Within this single shot, LSDI can measure a vertical 

resolution of 100 nm across a range of almost 6 mm. It also contains significantly more signal 

processing stages, therefore CUDA acceleration should increase the performance over the serial code 

and provide a significant increase over the MATLAB code previously used by Tang et al. 

 

Figure 5-2: LSDI Fringe Patten 

  



121 

The proposed software solution has been named Optical Signal Processing Workspace, OSPW. This 

chapter will demonstrate how this software has been created, the inherent benefits it provides over 

previously discussed solutions, and the innerworkings of how it achieves its flexibility while not 

sacrificing performance. The discussion of OSPW is in chronological order of how a user would interact 

with the software. Therefore, first the user interface is discussed as this would be the first interface 

and user would see when using OSPW. 

5.2 User Interface: Signal Processing Configuration 

The first part of OSPW is configurating the Signal Processing Engine, this is done through the 

Configurator. The Configurator uses information stored in configuration files to enable users to 

configure the functions available in the library. Once a configuration is created, it is saved in an XML 

formatted file used by the SPE to execute the configuration created. 

5.2.1 Creation and Management of Configuration Files 

Each signal processing function has two files associated with it, a function header file (.h or .cuh) used 

by the SPE and a function configuration file (.xml) used by the configurator in the UI. Both these files 

have the same file name, the name of the function, with the configuration file describing the specifics 

of the function, its available architectures, and the parameter information. It is important that the 

details in the files match exactly, if there is a disparity between them, then the SPE may not execute 

correctly. Therefore, these files are created and controlled by the UI through the library management. 

Whenever a new function is added, a function configuration file is automatically created from the 

function code. 

Each of these configuration files (Figure 5-3) contains the name of the function, the switch statement 

case number and whether there is a CPU and GPU version of the function available. The bulk of the 

file consists of the parameter information, each parameter of the function is listed with its various 

properties such as its name, description, whether it is a signal or a data, and the data type. It also 

includes whether the parameter is read only, to help constrain the data flow, whether memory 

transfers would be needed to execute the function on the GPU, and finally, if the variable needs to be 

hidden and not configured by the user, but by OSPW itself.  



122 

 

Figure 5-3: UML Representation of Configuration XML File 

The function data type can be any of the primitive data types supported by C++, or a template type 

allowing multiple possibilities. The list of permutations created by the template type parameters are 

exhaustively listed in the RuntimeOptions list within the function configuration (Several examples of 

configuration files can be found in Appendix 1.1. By listing each of the possible permutations allows 

the configurator to check if the permutation chosen by the user is supported by the function. This list 

of runtime options is also created when the function is added, the user adding the functions, will select 

the data types they wish the function to accept. 

5.2.2 Providing the Ability to Configure Signal Processing 

The signal configurator has been made to be as easy to use as possible to allow users to quickly create 

their chain of signal processing functions. The program management configurator uses a drag-and-

drop interface to make the process simple by dragging the signals and datapoints from the side bar 

onto the function. The creation of Signal and Datapoints is also straightforward. Selecting Signals at 

the top opens the ‘Create new signal’ page, where the signal details need to be entered; name, length, 

height, depth, and data type (Figure 5-4).  

 

Figure 5-4: Configurator: Add New Signal 



123 

Datapoints are created using the same method, however, they have different properties (Figure 5-5). 

datapoints are a single value and can either be alphanumerical strings or numerical data, their initial 

value also needs to be set, although if they are modified within a function the value can be initially set 

to zero. Finally, whether the datapoint is read only or not needs to be specified; by default, the box is 

ticked. If a value does not change it does not ever need to be copied in or out of GPU memory or have 

a mutex setup when being modified, saving valuable time and removing constraints when trying to 

optimise the signal processing. 

 

Figure 5-5: Configurator: Add New Datapoint 

The signals and datapoints are the data flow throughout the signal processing chain and need to be 

added to the functions in the configurator. Functions are split up into categories and can be selected 

from the dropdown boxes (Figure 5-6). A function can contain Signals, Datapoints and Prerequisites 

and can be marked as once only. Signals and datapoints can be dragged from the right-hand-side into 

the multi-coloured boxes.  



124 

 

Figure 5-6: Configurator: Add New Function 

Generally, the colours of the signal and datapoints must match the boxes for the functions, except for 

grey boxes. Grey boxes are for variables that use templates and accept multiple data types. When a 

template variable exists in a function, the compatibility of the data type used is checked against its 

configuration file before it can be added. Bold labels represent signals whereas non-bold labels 

represent datapoints, finally red labels signify that this variable is modified by the function. A full 

breakdown can be found in Figure 5-7. 

 

Figure 5-7: Configurator: Colours/Properties of Boxes 

Finally, when all the signals and datapoints have been added any prerequisite functions can be added. 

Only functions that are immediate prerequisites need to be added, with any previous prerequisites 

being carried forward within the previous function. This adds constraints to check whether or not a 

function can be executed at a specific time, if this was not implemented it could be assumed that all 

functions could run in any order. The option “Execute Once Only” marks the function as an 

initialisation process and only run it once before the rest of the functions. This allows functions like 



125 

data importing to be run at the start and then use the data throughout, increasing performance by 

not having to execute it each cycle. A completed function can be seen in Figure 5-8. If the variables 

used for the template variables match the runtime options specified in the configuration file it is 

added, otherwise any problematic signals and datapoints are removed. 

 

Figure 5-8: Configurator: Add New Function (Completed) 

Once all the signals, datapoints and functions have been added, the user can click ‘Profile’ and two 

configuration files are created; CPU and GPU (Figure 5-9). At the same time, the Configurator places 

the correct function calls into each function header file (Figure 5-10) for both CPU and GPU profiling, 

after this the SPE needs recompiling, this is discussed in the future work section. Each of the 

configuration files (Figure 5-11) is loaded separately into the SPE to begin profiling the signal 

processing functions selected. These files are loaded by sending the location of the file as a runtime 

argument to the SPE executable along with the information on what architecture it should profile for 

and the profiling parameters. These parameters tell the SPE when it should stop profiling; this is 

discussed in detail in Chapter 6.  



126 

 

Figure 5-9: Configurator: Completed Signal Processing Chain Ready For Profiling 

 

Figure 5-10: OSPW Created Function Call. This has two Signals and three Datapoints. It also specifies floats to be used as 

the template types 

 

Figure 5-11: OSPW Configuration File Extract 

Once these files have been created and updated, they are sent, by refence, to the Signal Processing 

Engine (SPE), where they are imported and interpreted in C++. 

Function<float,float>(F[0].CPU_Signals[0]->fData,F[0].CPU_Signals[1]->fData, 

F[0].CPU_DataPoints[0]->iData,F[0].CPU_DataPoints[1]-iData,  

F[0].CPU_DataPoints[2]->fData); 



127 

5.3 Investigation of Configurable Signal Processing Methodology 

Once the configuration has been finalised it can be imported to the second part of OSPW, the Signal 

Processing Engine. This is where all the signal processing is executed using C++ for serial code and 

CUDA for GPU accelerated functions. It takes the XML configuration file created by the configurator 

and imports it into a selection of custom classes configuring each function to the user’s requirements. 

5.3.1 Standardised Function Files 

Function files follow a standard template (Figure 

5-12), the template contains file definitions, file 

includes and a class that encapsulates the signal 

processing code and configuration functions. 

Each function is enclosed within its own class to 

enable further standardisation when configuring 

and specific configuration functions to allow the 

configurability needed in the function, without 

having to change the processing code. The GPU 

function call contains the calculation of the 

blocks and threads needed, and then calls the 

actual kernel separately, this kernel must be 

defined outside the class as the class does not 

exist in the GPU’s memory. As each function has 

a standard format, it allows for the Configurator 

to edit these files and insert the correct 

configurations into the CPU and GPU configuration sections. Additionally, if new algorithms are added 

to the library in the future by the user, OSPW can programmatically create new function files by 

inserting the relevant CPU/GPU code where necessary. 

5.3.2 Passing Run Parameters for Configuration 

To allow OSPW to communicate between the UI and SPE, run-time parameters are added to pass data 

between them. When the UI is instructed to launch the SPE it passes the file location of the loaded 

configuration file to the SPE along with any other parameters. These are; whether the SPE should 

profile or simply execute, the tolerance of the median when calculating the average and how many 

medians in a row are needed for OSPW to be sure that the median calculated is stable and repeatable 

(discussed in Chapter 6). These parameters are loaded by the SPE at the very start of the programme 

and cannot be changed unless the SPE is restarted. 

#ifndef [FUNCTIONNAME]_H 
#define [FUNCTIONNAME]_H 
#include “CPUHeaders.h” 
#include “GPUHeaders.h" 
 
//GPU Kernel Header 
 
class [FUNCTIONNAME] { 
private: 
 //Any Private class objects are defined here 
public: 
 //Serial Function Call 
  
 //GPU Function Call 
  
 //CPU Config – Add to Queue 
 
 //GPU Config – Add to Queue 
 
}; // - End of Class 
 
//GPU Kernel - This has to be stored outside of 
the class  
#endif 

Figure 5-12: Function Class Template 



128 

 

Figure 5-13: SPE Run Parameters check at launch 

5.3.3 Parsing XML Data to Configure Signal Processing 

All the configurable data is stored within the six custom classes listed below (Figure 5-14). For each 

Signal, Datapoint and Function the user creates in the configurator, it is stored within these classes. 

When the SPE first loads the configuration files, these classes are populated. 

 

Figure 5-14: Data Classes 

  



129 

Dimensions 

This sub-class contains the values of the dimensions of the parent class. It is used within the Signal 

class to store up to three dimensions of the signals, these can then be accessed later for calculating 

GPU thread needs and CPU/GPU memory transfers. It is kept as a sub-class rather than integrated into 

Signal to keep member functions tidy. 

VarSize (Enum) 

VarSize is an enumeration rather than a new class and is used in the Details sub-class to identify the 

data type being used for that variable. This identifier is used when allocating the memory to ensure 

the right memory space is given for the variable type used. 

Details 

This base class is used to store the text data of signals and datapoints and includes the enumeration 

varSize and the three-letter identifier. The identifier is used in the header information when 

transferring data from the SPE to the UI and is matched to the stream management. The Details class 

is defined as a parent class as it is used in deriving the Signal and Datapoint classes. 

Datapoint 

This derived class is for storing single value variables. Variables such as the width of an image being 

processed or a multiplication factor to be used in a multiply function. These are stored within a union 

to minimise memory overhead. datapoints can be stored as read-only or read and write depending on 

if they need to be modified during the SPE execution, this is set in the configurator when creating a 

datapoint. 

Signal 

The Signal class is also derived from the details class and is similar to the datapoint class, but has two 

extra members, Dimensions and memoryAllocated. memoryAllocated is set to true once the memory 

allocation function has been run and the memory have been allocated to the signal. This is checked 

before functions with the variable can be used. 

Function  

The Function class is also derived from the details class and contains all the information regarding each 

function including its name, orderID, which instructs the function where it needs to be called within 

the sequence and the ID which stores which case it is in the switch. The execution type informs the 

SPE whether it is to be run before, after or within the main loop, allowing functions to be called once 



130 

at the beginning or the end, saving valuable time and the Platform selects whether to execute on the 

CPU or GPU. Finally, there are vectors that store the pointers of the already created signals and 

datapoints needed for the function. These are stored as pointer references and not duplicated, this 

allows data to be modified by one function and used in another, without having to pass data between 

functions themselves, only the pointer.  

To create and fill the classes described above, data needs to be imported, from the file created by the 

configurator. This is then loaded into the SPE upon starting and allows the dynamically created class 

objects to be configured correctly (Figure 5-15). 

 

Figure 5-15: Data Importing Process 

In the SPE there are five vectors created, two for signals (CPU and GPU), two for datapoints (CPU and 

GPU) and one for functions. First, all the signals and datapoints are imported into their CPU vectors, 

secondly the functions are imported one-by-one (Figure 5-15). As each function is loaded, a pointer to 

each signal and datapoint required is placed in the respective CPU vectors (Figure 5-14). Then, if GPU 

profiling is specified or if the function is configured to be executed on the GPU, a copy of the CPU 

signal/datapoint is created and added to the corresponding GPU signal or datapoint vector at the same 

index. This simplifies any CPU to GPU memory transfers as they can be accessed at the same index . 



131 

This also makes providing the correct variables to function calls very straightforward, as the compiled 

code can access the variables in an increasing order, therefore it is critical that in the configuration 

file, variables are placed in the correct place and required in the correct order. 

5.3.4 Enabling Runtime Polymorphism 

The signal processing library contains the commonly used functions, but these functions need to be 

configurable to the user’s requirements, otherwise they are just as restrictive as existing methods. To 

make these functions configurable they must have parameters that can be set at runtime, something 

that is not as straight forward as it might seem in C++.  

The first problem is data types, as the signal processing functions are customisable, one user may 

require an integer parameter, whereas another may want to use a decimal (floating-point) value. C++ 

has two methods for achieving this (Horton, 2004), in the first method C++ allows multiple versions of 

a function with the same name and selects the correct version based upon the data types sent to it; 

this is called overloading (Figure 5-16). The second method uses templates and allows a single form of 

the function and different data types to be used (Figure 5-17). This significantly reduces the amount 

of code repeating and reduces any potential for error, unfortunately both these methods require 

knowing which variables and type(s) at compile time and not at runtime.  

 

Figure 5-16: Overloaded Function 

 

Figure 5-17: Template Function 

To combat the need to know the variables at compile time, multiple classes have been created to 

house the variables and select the correct one at runtime. Each function has a list of all the signals and 

datapoints used in the function and is configured to use each signal and datapoint in sequence (Figure 

5-18). These signals and datapoints have been populated during the loading and is configured to the 

users requirements. This gives the compiler a known memory location where the data is eventually 

going to be stored without knowing data sizes or types but allows the user to configure the function 

later to their needs.  

void Function(int *Input, int *Output, int Width, int Height, int Parameter); 
void Function(float *Input, float *Output, int Width, int Height, int Parameter); 
void Function(float *Input, float *Output, int Width, int Height, float Parameter); 
void Function(double *Input, double *Output, int Width, int Height, int Parameter); 
void Function(double *Input, double *Output, int Width, int Height, float Parameter); 
void Function(double *Input, double *Output, int Width, int Height, double Parameter); 

template<class Type1, class Type2> 

void Function(Type1 *Input, Type1 *Output, int Width, int Height, Type2 Parameter); 



132 

 

Figure 5-18: Function with Function Class Variables 

The final part of this configurability is the union structure used for the signals and datapoints, 

“A union is a user-defined type in which all members share the 

same memory location” (Microsoft, 2019). To be able to store 

all the different types of data that the user may want to use, the 

union allows the storage of all the available datatypes and when 

loaded allocates the correct size memory to the correct 

variable. Due to the above limitations, and the need to specify 

a variable type at compile, the configuration needed by the user is required to be hard coded into the 

program before compile time. Due to the checks in the UI code, there should be no errors generated 

as it has all the information it needs to make sure the code it generates is compatible at compile and 

runtime. This is because each function’s configuration file details the runtime options to ensure 

compatibility. 

5.3.5 Configuring the Execution of the Correct Functions 

Once all the functions are imported and the vectors are filled, the functions can be called. Firstly, the 

loop is run once (Figure 5-20a) to execute any functions that have the ExecuteType value of 1, these 

are functions only to execute once at the beginning. This could be functions like camera setup, 

importing background profiles etc., these only need to be run once at the start, and this saves time 

later, rather than unnecessarily running these each time. 

template<class Type1> 

void Function(Type1 *F.CPU_Signals[0], Type1 *F.CPU_Signals[1],  

int F.CPU_DataPoints[0], int F.CPU_DataPoints[1], int F.CPU_DataPoints[2]); 

union { 
 byte *bData; 
 int *iData; 
 float *fData; 
 double *dData; 
 OSPWComplex *ccData;  
 cufftComplex *gcData; 
}; 

Figure 5-19: Variable Union 



133 

 

Figure 5-20: Function Calling 

Which of the different functions to be executed is derived from the configuration file that has been 

imported into the Function vector (Figure 5-14). This vector is then iterated though looking at the ID 

parameter and finding the corresponding case from the switch statement used to organise the 

different function calls (Figure 5-21a). However, this was inefficient, having to search for the matching 

case statement each time had an impact on performance, therefore a better solution was required. 



134 

 

Figure 5-21: Job Management - Main Switch 

The solution was to create a job management class to manage the profiling and function execution 

(Figure 5-21b). The function vector still must be looped through once to determine which switch case 

needs to be called, but instead of calling the function and moving on, it is added to a list in the job 

management class. 

The job management class is possible due to Variadic templates (Microsoft, 2016) and C++ Lambda 

functions (Lischner, 2013). Function calls themselves cannot simply be added to a list and then 

executed in sequence, there is no standard datatype that would allow that, as each function is 

different and has a different number of parameters, that is where Variadic templates are used. 

Variadic templates allow a variable number of parameters to be sent to a function, but these are still 

not formatted in a manner to be entered into a list.  

To solve this, an intermediary function is employed to convert the standard function call into a void 

pointer that can then be saved to a list. A void pointer is simply used as a common type, and refers to 

an object of any type. This intermediary function uses a lambda expression to take the function and 

its arguments passed via a variadic template, combined into a void pointer and then inserted into the 

job list along with the function parameters for use later (Figure 5-22). By also including the function 



135 

parameters, when the system is profiling it can relate the data gathered back to the specific function 

and its execution within the job list, this removes any potential for error at a later stage, also if a 

function is called multiple times, it removes any ambiguity as to which iteration it is. 

 

Figure 5-22: Sample Code of Variadic Templates & Lambda Function 

Using the job management class, the Function vector is iterated through, and for any function required 

to run on each loop, its configuration function is called. From this configuration function, it adds the 

CPU or GPU version of the function to the job list. Once the SPE reaches the end of the Function vector, 

the job list can start executing the CPU/GPU functions. After each job has executed, it is placed in a 

‘done’ list, this continues until the job list is depleted (Figure 5-23). Some housekeeping is undertaken 

before the job list can be repopulated, such as saving timing data, alerting the UI that data is ready to 

be sent, once this is completed, the job list is then refilled from the ‘done’ list and everything repeats. 

 

Figure 5-23: Job Queue Pop & Push 

5.3.6 Introduction of CUDA Accelerated Signal Processing Functions 

GPU functions are launched differently to CPU functions and includes two additional steps before the 

CUDA kernel can be launched. The GPU function has already been configured and added to the job 

list, but rather than the signal processing code being in the function call, it has an added layer to first 

calculate the threads needed, before executing the kernel itself. The intermediate layer is there as all 

class WorkItem { 

  

function<void()> Func; 

 Function *F; 

 template<class _Fn, class... _Args> 

 void Create(_Fn&& _Fn, _Args&&... _An) { 

  Func = [_Fn, _An...]()  { (_Fn)(_An...); }; 

 } 

 

 void Execute() { 

  Func(); 

 } 

} 

 

 

 

 

 



136 

the configuration code and serial function are stored in a class, but the kernel cannot be contained 

within a class due to the class object being created on the host but executed on the device.  

Any data required by the GPU function is not transferred as part of the function itself, instead being 

copied before and after the function where required (Figure 5-24). Separate functions manage the 

memory transfers between the host and device, which are created by the configurator and inserted 

into the configuration file. The configurator uses the MemoryCopy property from the function 

configuration files to determine if data needs copying to the device before the function or to the host 

after the function. This enables the signal processing functions to operate in isolation, and if memory 

transfers become unnecessary, i.e. if multiple GPU functions are chained together, the memory 

transfer functions can be removed from the job list, rather than having to re-program the GPU call 

itself. 

 

Figure 5-24: GPU Function call and potential memory transfers 

Threads are calculated as discussed in Chapter 4.6.3, illustrated in in Figure 4-20, and launched in 

three-dimensional blocks of 1024 threads each. Each of the signal processing functions have 

parameters defining the width, height and depth of the data passing through it, and the threads are 

calculated based upon these values. This thread calculation is done every time the function is called 

and not simply the first time, this is in case the parameters being used to calculate the number of 

threads is modifiable by a previous function, and therefore the number of threads required changes 

over time. An improvement that could be made here, is a check on the thread calculating parameters, 

checking their read and write status, if they are read only, save the thread and block values to be used 

repeatably, saving time not having to recalculate a fixed value. 



137 

 

Figure 4-20: CUDA Thread Allocation Calculation 

5.3.7 Prospective List of Signal Processing Functions 

From the literature reviewed in section 2.4, several algorithms were highlighted as common across 

optical surface and dimensional measurements. The majority of these have been programmed in an 

initial library for use across many measurement techniques (Figure 5-24). All the functions allow up to 

three-dimensional data inherently for anything from 1D single point to 3D areal measurement or 

batches of data containing one or two dimensions. The functions created fit into three main 

categories: 

1. Mathematical 

2. Array Manipulation 

3. Data Management 



138 

 

Figure 5-25: OSPW Function Library 

5.3.7.1 Mathematical Functions 

The mathematical functions are made up of five sub-categories; first- and third-party functions consist 

of the bulk of the signal processing techniques used in data processing. The other three categories 

concern basic arithmetic operations, statistical operations such as averages and standard deviation 

and finally comparison operations e.g. if statements. 

5.3.7.1.1 First Party Functions 

The function library has been extended since the first case study for the DRI adding extra functions 

some of which are used by the LSDI. The functions initially created for the DRI have been updated to 

accept three-dimensional data, and all new functions also support this. Almost all of the new functions 

added were based upon MATLAB code being used for LSDI but have been generalised to allow for any 

size data and single or multiple dimension images. The majority of algorithms have also been 

translated into CUDA kernels for GPU acceleration, with the acceptation of the cubic interpolation due 

to being provided by a third-party library. These have all been tested and their results compared to 



139 

their serial counterparts to check for mathematical consistencies ensuring each function returns the 

same values regardless of architecture.  

All the functions have been compared to their MATLAB counterparts to check for differences in the 

results calculated, the largest error calculated was 1.72 nm, below the resolution of the LSDI 

instrument. Further investigations into why this error occurred found this was down to the differences 

in the cubic interpolation algorithms, the MATLAB used a third derivative of the signal to calculate 

interpolation properties, whereas the C++ implementation used the second derivative. This was 

restricted by the third-party implementation. 

5.3.7.1.2 Third Party Functions 

In addition to the custom functions that were created some third-party mathematical libraries were 

utilised for their speed and efficiency. For fourier transforms, CUFFT included in CUDA’s toolkit is used 

on the GPU, and for the CPU, FFTW, created by the Massachusetts Institute of Technology (MIT) (Frigo 

& Johnson, 2005), is used under the General Public License (GPL). The free edition of ALGLIB by ALGLIB 

Project was also used, a numerical analysis and data process library, for the cubic interpolation 

function. Although ALGLIB is free to use, they limit the license to GPL 2+, removing any possibility of 

commercial distribution without providing source code, something that may need to be reviewed in 

the future. ALGLIB do offer a commercial version, but the source code of this cannot be distributed, 

something that may be a problem due to the current method of OSPW configuring the SPE by injecting 

source code and recompiling.  

5.3.7.1.3 Arithmetic Operations 

Standard mathematical operations such as add, subtract, multiply and divide were needed to allow 

for basic maths to be computed within the platform. Although these are all standard C++ operations 

that can be used, they needed to be placed within OSPW configurable functions, so the user has the 

ability to configure the functions. Two versions of each of the above functions needed to be created 

(Figure 5-26). Figure 5-26a allows a signal to be divided by a single number (datapoint) whereas Figure 

5-26b divides one signal by another, both these are commonly used. Other mathematical functions 

that were added include logarithms, exponentials, indices, absolute, inverse, rounding, sine, cosine 

and tangent. 



140 

 

Figure 5-26: Mathematical Functions Example (1D Representation) 

5.3.7.1.4 Statistical Operations 

Statistical functions such as finding the minimum, maximum, mean, median and standard deviation 

are commonly used in algorithms such as correlation and normalisation. These functions are 

configurable and can be used to find the statistical method in any dimension or combination thereof 

(Figure 5-27). Other functions that are grouped within this category also include calculating the sum 

of an array and the product of an array, both used in other algorithms. 

 

Figure 5-27: Statistic Functions Example (2D Representation) 

5.3.7.1.5 Comparison Operations 

This is the smallest section of functions, the comparison functions allow a u to do one of three things; 

check each value in a signal against a single datapoint Figure 5-28a, check a signal against another 

signal Figure 5-28b, or compare two datapoints. Therefore, there are three versions of each of five 

comparative operations, check if equal, check if less than, check if more than, check if more than or 



141 

equal, check if less than or equal. Each of them has an option to simply return true or false, or a 

different value if true or false. 

 

Figure 5-28: Logic Function Example (1D Representation) 

5.3.7.2 Array Manipulation 

Array Manipulation algorithms are very important and commonly used in all data processing. 

Operations such as ‘reverse the signal in any of the three possible dimensions (or combinations 

thereof) (Figure 5-29) and also transposing a 3D array into any new order. There are a few other 

functions that fall into this category, such as separating the parts of a complex number (real and 

imaginary) and also sorting an array highest to lowest or lowest highest (by dimension or overall). 

 

Figure 5-29: Signal Manipulation Example (2D Representation) 

5.3.7.3 Data Management 

Two functions are responsible for caching the data to be transferred to the UI, outputArray and 

outputDatapoint. Both these functions add header information about the data and the data itself to a 

vector that is transferred to the UI when the job list is empty. The header information contains an 

identifier to the signal that is created by the configurator and stored on the UI and also the timestamp 



142 

of when the data was captured (Figure 5-30). Data is then transferred over a named pipe on a separate 

thread once the job queue is empty, this allows the signal processing to continue and start the next 

cycle while the data is being transferred. If the data transfer takes longer than the signal processing, 

multiple frames are cached together and sent at together. 

 

Figure 5-30: Header and Data sent from SPE to UI 

5.4 User Interface: Visualisation 

The final of the three parts that make up OSPW is the visualisation and UI objects. The main UI has 

changed from a single user form, to multiple windows that can be placed within the main UI window, 

this is known as a Multiple Document Interface (MDI) (Figure 5-31). Child windows created such as 

SPE configurator, stream management, function manager, actuation and settings can be placed within 

this window, but not outside it. To help with window alignment the UI has been split into 25x25 pixel 

squares that child windows snap to the nearest grid corner. While the SPE Configurator is the focus of 

the pre-signal processing, the Stream Management is the focus of the post-signal processing and data 

visualisation. From this window the user can control what is shown on the screen, whether that is 

graphs or images and also control what data is saved. 

 

 

Figure 5-31: User Interface Multiple Document Interface (MDI) 



143 

5.4.1 Management of Data Streams Between Applications  

When the outputArray and outputDatapoint functions are configured in the configurator, the signals 

and datapoints that are referenced are added to the stream management. The signal dimensions are 

also included enabling the stream management to know what size data to expect when decoding the 

data received (Figure 5-32). The header information for each signal and datapoint includes the  

Stream Key to identify which variable has been transferred from the SPE but does not need to include 

and size or data type information. The stream management keeps track of which graph interface the 

data is being displayed on, with the option to plot multiple signals on the same graph, or different 

graphs. The stream management is also where users can opt to save the stream data to a file, this data 

is saved in the raw binary format that is imported to the UI and is saved until disabled. 

 

Figure 5-32: Stream Management Window 

5.4.2 Visualisation Objects of Processed Data 

The main aspect of a user interface is the visual graphs and images that represent what is being 

measured, OSPW provides both these features. Multiple signals can be placed on a single graph and 

multiple graphs can be displayed at once, also if saving BMP images, these can too be displayed live 

in the UI. 

5.4.2.1 Graphs 

Graphs have changed very little since the original case study. They have been split from the single 

form into separate MDI child modules enabling any number of graphs to be created from the same 

template (Figure 5-33). This also allows graphs to be placed anywhere on the screen, snapping to the 

previously described grid . The graphs still auto-scale based on the first data they receive and can be 

manually changed below. Multiple signals can also be placed on the same graph on either the same 

or different y-axis’, this is all controlled from the Stream Management window. As before, the data is 

decimated by an integer that gives the closest number of pixels to the screen width, to save time 

drawing each data point (Equation 4-1). Two-and-three dimensional graphs do still need implementing 

and is discussed in the further work section. 



144 

 

Figure 5-33: Multiple Document Interface Graph Window 

 

 

Equation 4-1 

5.4.2.2 Images 

Live 2D images can also be displayed from the stream management (Figure 5-34). If the saveBMP 

function is selected in the SPE configurator, the option to display the image appears in the stream 

management when the SPE is running. This image is loaded from disk and therefore may have 

performance limits but should update at the same time as any other data is transferred from the SPE, 

and when the job list has finished. The ability to visualise 3D Standard Data Format (SDF) files is a 

possibility for the future and is discussed in the future work section.  



145 

 

Figure 5-34: Multiple Document Interface: 2D Image 

5.5 Conclusion 

OSPW provides a simple to use interface to configure the signal processing required by a user without 

the need for the user to understand or learn a programming language. Using simple drag-and-drop 

interface, powerful signal processing functions can be configured for one, two- or three-dimensional 

data and have been validated to ensure their mathematical consistency with MATLAB. OSPW also 

provides live data visualisation and the ability to save data allowing users to post-process or evaluate 

data later if necessary.  

Currently two versions of each function exists, one for the CPU and another for the GPU, but being 

able to determine which of these is fastest for a given function, would allow OSPW to consistently 

execute the optimum signal processing chain given the data and processing requirements given by a 

user. Having previously discussed the potential use of artificial intelligence in chapter 3, a heuristic is 

needed for a planner to optimise for. Therefore, the following chapter will evaluate a method of 

profiling the execution time of a function will be evaluated to discover if execution time can be used 

as the heuristic for optimisation. 



146 

6 Evaluation of Profiling to Determine AI Heuristics 

6.1 Introduction 

To be able to optimise the signal processing for greater performance, the current performance will be 

measured to be used as the PDDL heuristic. To measure this execution time, each signal processing 

function on both the CPU and GPU will be timed (profiled). Profiling of the signal processing may begin 

once the infrastructure is complete and commonly used signal processing functions have been added 

to the library, with the majority also having a hardware accelerated version using a graphics card.  

OSPW needs to determine which architecture is optimal for an application, this is achieved by 

measuring the execution time of each individual signal processing function on the CPU and GPU. 

Immediatly before and after each function is called, a timestamp, the number of CPU ticks since the 

OS started, is recorded at a resolution of approximately 285 ns.  Once each of the functions is profiled, 

the fastest architecture, or combination of architectures, is identified and used to execute the signal 

processing in the optimum configuration for the processing requirements and hardware available. 

6.2 Consideration of Optimisation Parameters 

As previously discussed, whether in an academic research laboratory, or on a production line 

performance is critical. If a measurement cannot be taken in real-time it might not be desirable to 

even take the measurement, leading to potential defects and expensive rework. Therefore, this 

research has primarily focused on execution time of signal processing sequences, or more accurately, 

the latency of the measurement. The faster the measurement data can be captured and processed, 

the lower the latency of the result, however if latency is not critical for an application, throughput 

could provide further performance gains.  

GPUs processes data in parallel rather than sequentially like a single-thread CPU would do. Therefore, 

there can be benefits to processing data in batches to utilise the GPU to its full capacity. Theoretically, 

computing the signal processing for two frames on a CPU would take twice as long, however on a GPU, 

if GPU load for a single frame is below 50%, should only take marginally longer than one frame. The 

signal processing time per frame itself will increase very little, however memory transfer times will 

scale linearly with the data size once the maximum memory bandwidth is reached.  

However, in some cases latency, or throughput, may not be the critical parameter and instead might 

be memory, storage capacity, network transfer speeds, or power consumption. Due to the 

requirement for inherent flexibility in the proposed solution, there is a significant memory 

requirement, due to allocating all possible memory at the beginning, to prevent time lost to allocating 

and deallocating memory. Nevertheless, unless capturing very large images, or creating a large 



147 

number of arrays, memory should not be a limiting factor when compared to the 128 GBs of RAM 

most CPUs support. There is a possibility this may be a limiting factor for GPU memory for very large 

images; however, GPUs are shipping with more VRAM each generation, with Nvidia’s 3000 series 

shipping with up to 24 GB and their Ampere Quadro cards providing up to 48 GBs (Nvidia, 2021). 

Memory usage is however easy to calculate and could be used as a secondary heuristic in the PDDL 

domain. 

The consideration of power consumption is growing with the need to be greener becoming part of 

every company’s strategy map, with Wolpert, Kempes, Stadler, and Grochow (2019) estimating that 

computers make up 5% of all electricity used in the USA and Europe. While transistor sizes have 

decreased, increasing efficiencies, GPU dies have become larger and power usage has increased over 

the last decade, with the high-end GPUs consuming around 300 W (Nvidia, 2021). However, the use 

of AI planning to optimise for power efficiency would is an interesting discussion and will be detailed 

in the future work section. 

Storage speeds and or network transfer speeds are much harder to measure or determine due to 

various factors. Storage speeds massively differ depending on the size of the data being read or 

written, for example 1000 files at 1 MB each will take longer than one file at 1000 MB due to the 

sequential nature of the single file write, compared to the random write of 1000 files. In SSDs, read 

and write speeds can also change depending on the size of the storage device used, with larger devices 

offering better performance due to the increase in individual NAND chips. Although recent advances 

with PCIe generation 4, write speeds can be found upwards of 5 GB/s (Digital, 2021), therefore storage 

write speeds should not be a bottleneck. 

Finally, network speeds are even harder to predict and measure than storage speeds, as depending 

on the current network traffic can have a direct impact on each individual’s IPC capability of accessing 

or writing to network devices. However, 10 Gbps network connections are not uncommon anymore, 

with 25 Gbps and 100 Gbps being introduced and is therefore unlikely to be a limiting factor for 

researchers or industry. 

To summarise, the heuristic that is used in the domain file can be any measurable parameter, however 

due to the requirement for real-time processing, time (latency) is used as the primary cost function in 

this research. However, both latency and throughput will be evaluated to discover the performance 

benefits of processing multiple data sets at once for applications that does not require low latency.  



148 

6.3 Investigations into Profiling Methodology 

Before profiling, OSPW’s user interface generates two configuration files for the signal processing 

required, one for CPU profiling and one for GPU profiling. The CPU configuration file contains the list 

of signal processing functions needed that run on the CPU (Figure 6-1a), these are run on a single 

thread, except some input and output functions which operate on separate threads as they can be 

running while other signal processing is taking place. The second configuration is the GPU 

configuration and is very different to the CPU configuration. To execute functions on the GPU, any 

required data needs to be transferred to the GPU memory beforehand, also any changes or new data 

created must be transferred back again if it is used by the CPU later (Figure 6-1b). Therefore, the GPU 

configuration contains memory transfer functions, before and after the GPU kernel, to allow profiling 

of the memory transfers that are required to execute GPU code correctly. This is because if a GPU 

kernel is faster, but requires a lengthy memory transfer, it can make the overall GPU function slower. 

When profiling the GPU, any functions that do not have a GPU counterpart will run on the CPU in the 

same way as the CPU profiling method. This profiling is only run if GPU hardware is detected. 

 

Figure 6-1: Additional Functions needed for GPU Profiling. Using three arrays as examples, the data needs to be copied 

backwards and forwards between the CPU and GPU to execute correctly. 

Once the configuration is imported and the function vector is filled, several if statements allow OSPW 

to operate in a few different modes (Figure 6-2). Initially, it checks whether the system is running in 

profile mode, it then checks which architecture it should profiling for and then calls the respective 

CPU or GPU launch function. If profiling has already been completed, and OSPW has created an 



149 

optimum configuration file, OSPW operates in execution mode and checks which architectural 

platform it needs to use for each function before execution. 

 

Figure 6-2: OSPW Profiling Decision – Profiling commences unless an optimum configuration already exists 

Once all the launch functions have been called through the above process, the job queue is populated 

and OSPW starts iterating through the list. When profiling, OSPW requests the current timestamp 

from the Windows performance counter. The performance counter enables high resolution (<1 µs) 

measurement as it counts the number of CPU ticks that have elapsed since system start-up (Figure 

6-3). Once each function from the job list is profiled, a second timestamp using the same performance 

counter is taken, the difference between the two values is then calculated. This value is then used to 

compare the execution time of a CPU function vs a GPU function. 

 



150 

 

Figure 6-3: Job Management – Profiling 

As OSPW has been designed on Windows, and not on a Real Time Operating System (RTOS), function 

execution time varies each time the function runs. Since many events run simultaneously within the 

General Purpose Operating System (GPOS), with little or no priority given to one single task, software 

often has to wait for the next free processing cycle, which in turn leads to a fluctuating and 

unpredictable execution time. To minimise this unpredictability, multiple runs of each function are 

processed and a statistical measure can be calculated. Although the execution time does fluctuate 

from the average that is calculated, profiling is designed to determine if, on average, the CPU or GPU 

is the fastest for that specific function and not accurately predict what the OS will be doing for each 

microsecond it is running for.  

It is predicted that the range of execution times on the GPU is less than that of the CPU as it is likely 

that the GPU is idle while not being used for this processing. However, secondary functions used for 

memory transfer functions are required to allow data to move between the CPU and GPU memory 

which requires CPU processing cycles which is affected by the nature of the GPOS. When developing 

an algorithm to calculate the average execution time of a signal processing function, several statistic 

methods were considered; mean, median and 90th and 95th percentile. 

To establish which average type returns the most reliable and repeatable value, the signal processing 

for both the DRI and LSDI has been profiled and the data gathered is evaluated to find the best average 

type to use to decide on the best architecture for each individual function during profiling. As can be 

seen from the graphs in Figure 6-4, the data does form a normal distribution but is heavily right-

skewed, therefore the mean is situated to the right of the median. This is to be expected when 

measuring time due to the processing being measured having a finite lowest value, but an infinite 



151 

upper limit. The data shows that although the mean over a long period of time is possibly more 

representative, it is skewed due to high-value anomalies. Therefore, the median is a more reliable and 

repeatable average to use than the mean. 

 

Figure 6-4: Normal Distribution plot of DRI Function on the CPU 

Next the 90th and 95th percentiles were compared. Analysing the data for two functions; one from the 

DRI (Figure 6-5) and one from the LSDI (Figure 6-6), after a period, both these percentile measures 

stabilise. The value at which these parameters stabilise at is not too important, the reliability and 

repeatability of the data is what is necessary for profiling, to be able to accurately compare the two 

architectures. Therefore, looking at the graphs, the median stabilises before either of the percentiles 

therefore profiling the system faster. Calculating the median is much quicker than calculating a 

percentile, saving time during the profiling of the system too, something that becomes important 

when profiling many functions on two different architectures. 



152 

 

Figure 6-5: Statistical Calculations of DRI data on convertBytes function 

 

 

Figure 6-6: Statistical Calculations of LSDI data on FFT function 

0

10

20

30

40

50

60

70

0

100

200

300

400

500

600

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

C
P

U
 T

ic
ks

 (
St

at
is

ti
ca

l M
ea

su
re

s)

C
P

U
 T

ic
ks

 (
D

at
a)

Frame Number

Comparison of Profile Parameters on DRI (convertBytes)

convertBytes Median Mean 90th Percentile 95th Percentile

48000

48500

49000

49500

50000

50500

51000

40000

50000

60000

70000

80000

90000

100000

110000

120000

0 200 400 600 800 1000 1200 1400 1600 1800 2000

C
P

U
 T

ic
ks

 (
St

at
is

ti
ca

l M
ea

su
re

s)

C
P

U
 T

ic
ks

 (
D

at
a)

Frame Number

Comparison of Profile Parameters on LSDI (FFT)

FFT Median 90th Percentile 95th Percentile Mean



153 

When profiling, OSPW needs to decide if enough profiling has been recorded, and a stabilised median 

has been selected to be the indicator, OSPW calculates a median at particular intervals, and when this 

value has stabilised, OSPW can stop profiling. Reviewing the data recorded in the previous test and 

evaluating where the median reached a stable value, the DRI ran at around 581 FPS and reached a 

stable median after around 1000 frames on average, however, some functions took longer to stabilise 

at around 5000 frames. LSDI ran slower due to the increase in signal processing requirements and data 

size, running at around 7.4 FPS taking around 900 frames on average to reach a stable median. This 

means the DRI reached a stable median in a maximum time of ten seconds whereas the LSDI took 

almost three minutes.  

As the function execution takes longer, the range of values increases, and due to there being less data, 

the median fluctuates more as the probability of median changing is higher at in smaller datasets. 

Therefore, a median is calculated every 1000 frames or ten seconds, after five consecutive medians 

that are within 1% of each other, that function is regarded as successfully profiled. Once all functions 

reach this status, profiling is stopped for the selected platform and the results saved for further 

analysis. 

6.4 Comparison of CPU vs GPUs for DRI and LSDI 

Both case studies discussed in this research have been profiled on their respective CPUs and a 

selection of different graphics cards. DRI was profiled on an Intel i7-4790 CPU, with the LSDI using an 

Intel i7-7820X. For the graphics cards, a selection of Nvidia graphics cards across different generations 

were used to represent the hardware researchers may have available, these were; GTX 520 (DRI Only), 

GTX 650Ti, GTX 780Ti and GTX 1070. Each function was executed, including any memory transfers 

to/from the GPU that are required for GPU kernels to execute correctly. Additionally, OSPW has been 

evaluated against standalone software for both the DRI and LSDI to ascertain if any performance 

deficits exist by using it.  

The GPUs being used to test are compared in Table 6-1 and Figure 6-7. Generally, the more CUDA 

cores, faster memory and higher floating-point performance, the better it should perform. Nvidia’s 

naming scheme for their GPUs is mostly straight forward, the first digit (or two digits for  

four-digit numbers) denotes the generation, ten is newer than seven which is newer than six. The next 

digit indicates the tier of graphics card, again larger is better, the last invariably always being zero. 

Finally, the Ti (Titanium) indicates a slightly more powerful version of the standard card, the GTX 780Ti 

has more performance than the GTX 780.  



154 

 

Figure 6-7: Visual Representation of GPU Card Performance. Cards Highlighted in Green were used for Profiling. 

This is important to note when comparing the GTX 780Ti and GTX 1070, the 1070 is larger number and 

therefore the assumption is it perform better. Even though the graphics card is two generations newer 

(Nvidia skipped generation eight), it is two tiers lower, so would be expected to perform about the 

same, Nvidia tend to improve by one tier each generation. Therefore, when looking at the results, 

there are likely to be a slight improvement when comparing the two newest GPU, with a larger gap 

between the rest. 

Table 6-1: Comparison of GPUs used for OSPW Profiling 

 Nvidia 
GTX 520 

Nvidia 
GTX 650Ti 

Nvidia 
GTX 780Ti 

Nvidia 
GTX 1070 

Clock Speed 810 MHz 928 MHz 876 MHz 1506 MHz 

CUDA Cores 48 576 2880 1920 

Memory Bandwidth 14.4 GB/s 86.4 GB/s 336 GB/s 256GB/s 

Floating Point Performance 156 GFLOPS2 1425 GFLOPS 5046 GFLOPS 5783 GFLOPS 

 

6.4.1 Dispersed Reference Interferometry (DRI) 

The case study discussed in chapter 3, Dispersed Reference Interferometry , was the first to be profiled 

to calculate a low resolution, absolute position, and did not contain signal processing to calculate the 

high resolution as the previous algorithms were no longer being used by the lead researcher. 

Therefore, profiling is completed for seven signal processing functions, these include one for capturing 

data from camera and two that output processed data to the UI. The data captured and processed by 

the DRI is relatively small, 8 KB, and the functions themselves are computationally light, therefore 

there is no advantage for executing any of the signal processing on a GPU (Table 6-2). There is a time 

overhead required to launch a kernel on the GPU, this overhead consists of a launch overhead and an 

execution overhead. The launch overhead is for the CPU to queue up the GPU kernel and prepare it 

for launching, the execution overhead, the smaller of the two, is associated with initialising the kernel. 

 
2 Giga-FLoating Point Operations Per Second 



155 

When profiling the DRI, the overhead is a substantial component of the kernel execution, this is 

excluding any memory transfers that may be needed if functions were faster on the GPU.  

Table 6-2: Comparison of Execution Time (CPU Ticks) for the CPU and various GPUs for DRI – Fastest architecture is 
highlighted in green 

Function 
Intel i7-4790 

CPU 
Nvidia 

GTX 520 
Nvidia 

GTX 650Ti 
Nvidia 

GTX 780Ti 
Nvidia 

GTX 1070 

getData 103 N/A N/A N/A N/A 

convertBytes 14 158 99 107 118 

getDerivative 7 160 95 98 117 

smoothData 305 1422 627 652 401 

autoConvolution 864 7619 1106 5211 1534 

outputArray 8 N/A N/A N/A N/A 

outputArray 6 N/A N/A N/A N/A 

 

 

Figure 6-8: Comparison of signal processing across different architectures on the DRI – Lower is better 

Closer examination of the GPU execution times, Table 6-3, reveals no single GPU is best across all 

functions, this is likely due to differences in GPU clock speed and kernel execution overhead time. 

Most of the functions executed faster as the performance of the GPU increased, except for 

autoConvolution on the GTX 780Ti. Further investigations into these discrepancies showed the auto-

convolution took an unexpected amount of time, perhaps due to an outdated driver. However, as long 

as the metric used is repeatable across the two architectures, the value itself is not as important. A 

repeatable metric is more important than an accurate metric here. Despite the DRI executing faster 

on the CPU, the memory transfer times were still measured and recorded and are shown in Table 6-4 

and Table 6-5. Again, there is no clear fastest GPU, but as the data is small, there is very little difference 

across the selection. The largest difference between cards was transferring the auto-convolution 

0 2000 4000 6000 8000 10000

Intel i7-4790 CPU

Nvidia
GTX 520

Nvidia
GTX 650Ti

Nvidia
GTX 780Ti

Nvidia
GTX 1070

CPU Ticks

A
rc

h
it

ec
tu

re

DRI Profiling for different architectures

getData convertBytes getDerivative smoothData autoConvolution outputArray outputArray



156 

signal from the GPU amounting to 1.86 ms between the GTX 520 (the slowest) and GTX 650Ti (the 

fastest), this likely due to differences in memory bandwidth, memory clock speed or differences in the 

memory architecture. 

Table 6-3: Comparison of Execution Time (Counter Ticks) for the various GPUs for DRI (Colour scale indicates the range of 

values, from red to green: worst to best). 

Function 
Nvidia 

GTX 520 
Nvidia 

GTX 650Ti 
Nvidia 

GTX 780Ti 
Nvidia 

GTX 1070 

convertBytes 158 99 107 118 

getDerivative 160 95 98 117 

smoothData 1422 627 652 401 

autoConvolution 7619 1106 5211 1534 

 

Table 6-4: Comparison of Data Transfers to various GPUs for DRI 

Signal (To GPU) 
Nvidia 

GTX 520 
Nvidia 

GTX 650Ti 
Nvidia 

GTX 780Ti 
Nvidia 

GTX 1070 

Camera 105 97 88 91 

Interferogram 111 85 100 93 

Derivative 112 85 98 93 

Filtered Interferogram 116 85 100 94 

Autoconvolution N/A N/A N/A N/A 

 

Table 6-5: Comparison of Data Transfers from various GPUs for DRI 

Signal (From GPU) 
Nvidia 

GTX 520 
Nvidia 

GTX 650Ti 
Nvidia 

GTX 780Ti 
Nvidia 

GTX 1070 

Camera N/A N/A N/A N/A 

Interferogram 184 108 128 153 

Derivative 169 106 126 145 

Filtered Interferogram 160 127 124 132 

Autoconvolution 208 118 163 132 

 

6.4.2 Line-Scan Dispersive Interferometry (LSDI) 

The LSDI, in contract to the DRI, contains eighteen functions and processes 37.5x more data per 

function at 0.3 MB per frame. The increase in signal processing steps needed for the LSDI, and the 2D 

nature of the data, allows the GPU to significantly accelerate some of the algorithms, but not all of 

them (Table 6-6). A prime example for acceleration is FFT (4) and IFFT (15) where the NVidia GTX 1070 

GPU only takes 1.6% and 2.9% of the time the Intel CPU. By contrast, functions such as Zero_Start (7), 

Subtract (11) and Add (12) are an order of magnitude faster on the CPU than any of the GPUs, this is 



157 

expected in these functions contain very few operations and therefore the GPU kernel launch 

overhead once again outweighs any potential performance benefit.  

Table 6-6: Comparison of Execution Time (CPU Ticks) for the CPU and various GPUs for LSDI - Fastest architecture is 
highlighted in green. 

Function 
Intel i7-7820X 

CPU 
Nvidia 

GTX 650Ti 
Nvidia 

GTX 780Ti 
Nvidia 

GTX 1070 

1 divide 779 1313 348 275 

2 Interpolation 174914 N/A N/A N/A 

3 FFT 57897 4016 1651 1283 

4 Absolute 8926 1169 654 629 

5 Zero_Start 18 810 459 467 

6 Zero_End 240 808 454 460 

7 getMax 5512 15287 13172 10350 

8 Logic 18 1195 1251 1102 

9 zeroComplex_Start 73 889 514 417 

10 zeroComplex_End 937 822 455 392 

11 IFFT 49653 5264 2232 1434 

12 complexLog 79875 1205 550 463 

13 getImag 1979 751 420 399 

14 unWrapPhase 5802 16599 15620 6435 

15 windowSignal 1263 1017 515 290 

16 polyFit 62974 82767 63458 22201 

17 calcHeight1 6 506 546 619 

18 calcHeight2 196 495 541 619 

 

Evaluating the graph in Figure 6-9 reveals that any of the graphics cards used for profiling provide an 

overall performance increase above that of the CPU, this includes any memory transfers that are 

required for the signal processing to work correctly. However, not all functions executing on the GPU 

are performing optimally, many would benefit from being run on the CPU. Two problems arise from 

this, firstly for a given function, the CPU may be faster, but the surrounding memory transfers required 

to move the data between devices may outweigh the CPU performance benefit. Secondly, this 

problem gets exponentially more complicated, for instance, it may not be optimum to copy data from 

the CPU to the GPU for a single function, but it might be for the next three consecutive functions, this 

become a problem that is not easily solved and becomes exponentially harder for the more functions 

that exist. 



158 

 

Figure 6-9: Total Execution time for each architecture (including necessary memory transfers) 

The data in Table 6-7, demonstrates that the Nvidia GTX 1070 is sometimes not the fastest of the 

various graphics cards tested. Function execution times mostly follow the pattern of getting quicker 

the higher performance the GPU is, with a few exceptions (functions 17 and 18). These functions only 

process one data point for each line of the captured image, therefore leading to relatively little signal 

processing compared to something like FFT, therefore even at a maximum of 20% slower, it only 

equates to 19 µs, and as shown in Table 6-6, for this particular application, the CPU was faster.  

  

0 50000 100000 150000 200000 250000 300000 350000 400000 450000 500000

Intel i7-7820X CPU

Nvidia
GTX 650Ti

Nvidia
GTX 780Ti

Nvidia
GTX 1070

CPU Ticks

A
rc

h
it

ec
tu

re
LSDI Profiling for different architectures



159 

Table 6-7: Comparison of Execution Time (CPU Ticks) for the various GPUs for LSDI 

ID Function 
Nvidia 

GTX 650Ti 
Nvidia 

GTX 780Ti 
Nvidia 

GTX 1070 

1 divide 1313 348 275 

2 FFT 3586 1176 827 

3 Divide2 430 475 456 

4 Absolute 1169 654 629 

5 Zero_Start 810 459 467 

6 Zero_End 808 454 460 

7 getMax 15287 13172 10350 

8 Logic 1195 1251 1102 

9 zeroComplex_Start 889 514 417 

10 zeroComplex_End 822 455 392 

11 IFFT 5264 2232 1434 

12 complexLog 1205 550 463 

13 getImag 751 420 399 

14 unWrapPhase 16599 15620 6435 

15 windowSignal 1017 515 290 

16 polyFit 82767 63458 22201 

17 calcHeight1 506 546 619 

18 calcHeight2 495 541 619 

 

Looking at Table 6-8 illustrates similar anomalies with the Nvidia GTX 1070 periodically not being the 

optimum graphics card out of the three used for profiling but with larger differences. There are often 

slight differences due to the OS interrupting the processing, but these differences were measured up 

to 64%. Although these figures are concerning, this is the exact reason that profiling on the hardware 

to be used is necessary, these results were run and averaged over five runs to minimise anomalies 

(Figure 6-10). When an user begins to use OSPW, the profiling measures the likely execution times for 

the given hardware, therefore, if the hardware is changed at a future point, OSPW would need to re-

run the profiling procedure to generate a new optimised configuration. 

  



160 

Table 6-8: Comparison of Memory Transfer Time (CPU Ticks) to and from various GPUs for LSDI 

Signal (To GPU) Nvidia GTX 650Ti Nvidia GTX 780Ti Nvidia GTX 1070 

fftResult 13612 13806 13362 

fftResult_Real 3825 3905 3837 

getHeight 1811 1955 2088 

getHeight2 236 274 359 

HighCutFreq 347 380 382 

ifftResult 11826 12103 11095 

interSampleYt1 3086 3178 3063 

LowCutFreq 385 408 394 

MaxID 353 362 370 

Phase 1673 1740 1722 

phase_final_c 3701 3749 3299 

Polynomial 316 310 375 

Signal 859 878 815 

unwrapedPhase 3954 3952 3037 

 

Signal (From GPU) Nvidia GTX 650Ti Nvidia GTX 780Ti Nvidia GTX 1070 

fftResult 13424 13351 12846 

fftResult_Real 3249 3280 3582 

getHeight 274 331 440 

getHeight2 269 324 440 

HighCutFreq 400 409 441 

ifftResult 11362 11550 10721 

LowCutFreq 405 416 443 

MaxID 505 513 577 

MaxValue 402 418 448 

Phase 2563 2602 2660 

phase_final_c 3098 3072 2551 

Polynomial 597 620 687 

sampleYt1 1504 1433 1287 

unwrapedPhase 3542 3394 2931 

 

  



161 

 

Figure 6-10: Comparison of GTX 1070 Memory Transfers Over Three Consecutive Runs 

6.5 Performance Comparison of Throughput vs Latency  

6.5.1 Dispersed Reference Interferometry (DRI) 

As previously discussed, the DRI signal processing is short, and therefore the data size is small, when 

processing a single frame, the CPU is significantly faster. However, when batching 16 frames together, 

the GPU starts to have a speed benefit (Figure 6-11). For some applications, batching frames together 

might not be beneficial, if real-time feedback is needed for example, however in scenarios where 

latency is not critical, batching DRI frames can have enormous benefits. At 128 and 256 frames the 

limiting factor becomes the camera capture rate, around 6.5 kHz, but the GPU benefit over the CPU is 

around 3x the throughput. As for the CPU execution time per frame, this stays between 2100 and 2200 

frames independent of the batch size, as is to be expected due to its sequential processing nature, as 

the data size increases, the processing time will increase linearly. 

0

2000

4000

6000

8000

10000

12000

14000

C
P

U
 T

ic
ks

Signal

Memory Transfers for LSDI

Average of 1 Average of 2 Average of 3



162 

 

Figure 6-11: DRI Throughput Comparison 

6.5.2 Line-Scan Dispersive Interferometry (LSDI) 

It was demonstrated in chapter 6.4.2 that using a GPU for processing LSDI data had a significant speed 

advantage, and this only increases when batching frames together and optimising for throughput 

rather than latency (Figure 6-12). For this comparison, the CPU limited interpolation algorithm has 

been ignored to illustrate the GPU accelerated functions only and the benefit they provide the signal 

processing. Increasing from a single frame up to 16 frames shows a marked increase in performance, 

around 3.5x that of the single frame GPU and 22x of a CPU.  

 

Figure 6-12: LSDI Throughput Comparison 

After 16 frames performance unexpectedly decreases, this is likely due to the increase in memory 

being used when processing the frames. However, upon further inspection this decrease in 

performance is linked to two specific functions, polyfit and unwrapPhase (Figure 6-13). These 

0

1000

2000

3000

4000

5000

6000

7000

1 Frame 2 Frames 4 Frames 8 Frames 16 Frames 32 Frames 64 Frames 128 Frames256 Frames

To
ta

l F
ra

m
es

 P
er

 S
ec

o
n

d
 (

FP
S)

Batch Size

Batching Frames for DRI (Average over 50 runs per batch size)

CPU GPU

0

20

40

60

80

100

120

140

160

180

1 Frame 2 Frames 4 Frames 8 Frames 16 Frames 32 Frames 64 Frames 128 Frames

Fr
am

es
 P

er
 S

ec
o

n
d

 (
FP

S)

Batch Size

Batching Frames for LSDI (Average over 10 runs per batch size)

CPU GPU (Without CPU Interpolation)



163 

functions are more sequential in nature when compared to their counterparts and this seems to have 

a major impact on their performance when processing large amounts of data. In future work these 

algorithms will be reworked and further optimised to reduce any of these performance issues. 

 

Figure 6-13: Performance Benefit for GPU frame batching for LSDI 

6.5.3 Summary 

The results of these throughput comparisons provide two interesting conclusions. Firstly, if latency is 

not important, batching frames together for the GPU to process together provides a significant speed 

benefit. However, both the DRI and LSDI reveal a point of diminishing returns, for the DRI this was 

around 128 frames, and the LSDI was 16 frames. This plateau, or decrease in the case of the LSDI, is 

important when deciding on a batch size. The major limiting factor of how large of a batch can be used 

is likely to be the GPU memory, this is less of a problem with newer graphics cards which are sold with 

higher and higher memory capacities, however there is still an upper ceiling. In the case of the DRI, 

the point of diminishing returns was the camera speed, not the GPU memory, around 37 MB/batch 

for 256 frames), and for the LSDI was the slow algorithms, not the GPU memory, around 850 MB/batch 

for 32 frames). This point is therefore hard to predict and like other parameters, benefits from profiling 

the signal processing at different batch sizes (if latency is not critical) to find the optimum 

configuration. This should be considered when searching for a pathfinding algorithm to compute the 

different configuration possibilities.  

6.6 Evaluation of OSPW Performance 

The signal processing algorithms used by the DRI and LSDI were compared by themselves outside of 

OSPW to simulate the environment they would be used in if they were created by an user from scratch. 

Therefore, these do not contain dynamic variables, polymorphism, or variadic templates, instead the 

unWrapPhase, -67%

polyFit, -25%

-80%

-60%

-40%

-20%

0%

20%

40%

60%

80%

100%

120%

P
er

fo
rm

an
ce

 B
en

ef
it

 f
ro

m
 in

cr
ea

se
 

in
 b

at
ch

 s
iz

e

Function

GPU Batch Size Comparision (16 vs 32 Frames)



164 

functions are static as they do not need to change. The standalone software also does not have a job 

queue and sequentially iterates through a loop; therefore, it does not require launch functions.  

6.6.1 Dispersed Reference Interferometry Performance Evaluation 

Over 100 runs of the DRI on the CPU, the standalone software averaged a frame rate of 2257 FPS, 

whereas OSPW returned a frame rate of 2206 FPS giving a deficit of 2.31% by using OSPW while 

profiling. Although when profiling is complete, and therefore disabled, the deficit is reduced to 1.88%. 

These results were also compared to a MATLAB script, with the data pre-loaded rather than using than 

a capture device but keeping the hardware and other processing the same. Under these conditions 

MATLAB returned a frame rate of 104 FPS, therefore, OSPW provides a 21x increase in performance 

compared to MATLAB (Figure 6-14). 

 

Figure 6-14: Comparison between OSPW and standalone software for DRI 

6.6.2 Line-Scan Dispersive Interferometry Performance Evaluation 

For the CPU data on the LSDI, the standalone software outputted at an average of 7.06 FPS whereas 

OSPW outputted at an increased 7.59 FPS, outperforming the standalone software. When comparing 

the pre-configured execution of OSPW against the standalone software, both increase to 7.62 FPS for 

OSPW but 7.8 FPS for the standalone software. This increase for the standalone software means it 

outperforms OSPW by 2.18%. MATLAB was once again compared to the above figures, and for a CPU 

execution, MATLAB ran at an average of 1.43 FPS (Figure 6-15). 

2257

2215

2206

104

0 500 1000 1500 2000 2500

Standalone

OSPW Executing

OSPW Profiling

Matlab

Frames per Second

DRI Performance Comparison



165 

 

Figure 6-15: Comparison between OSPW and standalone software for LSDI (CPU) 

Using a graphics card has a performance benefit for the LSDI, therefore the same tests have been 

repeated for GPU profiling and execution. When OSPW profiles GPU functions, it also profiles each 

potential memory transfer to and from the GPU, so this has a significant impact on the profiling results, 

although the same profiling restraints were placed on the standalone software. When profiling OSPW, 

it is considerably slower at 5.93 FPS compared to the standalone software at 8.92 FPS, this is an 

unexpected difference and may have been caused by other unknown factors, such as CPU or memory 

occupancy, rather than being a true representation of the difference. When executing an optimised 

configuration (and therefore removing all the unnecessary memory transfers), OSPW outperforms the 

standalone software at 15.71 FPS compared to 15.45 FPS (Figure 6-16). 

 

Figure 6-16: Comparison between OSPW and standalone software for LSDI (GPU) 

7.8

7.62

7.59

1.43

0 1 2 3 4 5 6 7 8 9

Standalone

OSPW Executing

OSPW Profiling

Matlab

Frames Per Second (FPS)

LSDI  Performance Comparison (CPU)

0 2 4 6 8 10 12 14 16 18

OSPW Executing

OSPW Profiling

Standalone

Frames Per Second (FPS)

LCWSI Performance Comparison (GPU)



166 

6.7 Conclusion 

At around 2% difference in any benchmark between OSPW and the standalone software (Figure 6-17), 

some of the deficit can probably be attributed to operating system requirements at the time of 

running these benchmarks. It was initially anticipated that OSPW would have a minor reduction in 

performance over standalone software due to the extra processing needed to retrieve functions from 

a job queue and the polymorphism of the functions themselves. Nonetheless, this deficit is 

outweighed by OSPW’s ease of use and configurability. It also performs faster than MATLAB with a 

5.3x speed up on the CPU and 11x increase using the GPU for LSDI and a 21x increase for the DRI.  

However, if the two different architectures can be used in harmony and retain the fastest functions 

from each architecture throughout the signal processing, this could reduce any deficit and potentially 

provide a significant performance benefit over standalone software executing on any single 

architecture. The next chapter will apply PDDL using the profiling data as the action cost, for the 

planner to be able to optimise for. 

 

Figure 6-17: FPS Percentage Benefit of using Bespoke Software 

  

-3.00%

-2.50%

-2.00%

-1.50%

-1.00%

-0.50%

0.00%

0.50%

1.00%

1.50%

2.00%

DRI LSDI (CPU)  LSDI (GPU)

O
SP

W
 P

er
fo

rm
an

ce
 D

ef
ec

it

Instrument & Architecture

OSPW vs Bespoke Performance Difference



167 

7 Optimising OSPW Using Artificial Intelligence (AI) Planning 

7.1 Introduction 

Chapter 6 analysed the profiling results and concluded that making the decision as to which was the 

fastest architecture was complex. The more functions required for the measurements, the 

exponentially larger the problem became. This chapter describes the application of PDDL, first 

discussed in chapter 3.3.2, using LPG-td, to the profiling results to examine what optimisations are 

possible using multiple architectures together. These results were captured across several different 

graphics cards to demonstrate a range of hardware that may already be available to users or present 

the different levels of acceleration different price points can provide. 

7.2 Mapping Signal Processing Functions to PDDL Actions 

Once OSPW captures the profiling data it automatically creates three PDDL domain files; CPU 

(standalone), GPU (standalone) and CPU and GPU Heterogeneous and a single problem file. OSPW 

then evaluates the three solutions that are returned by LPG-td, CPU Only, GPU Only and 

Heterogeneous, and selects the solution with the smallest total-cost to use for the final signal 

processing configuration. The solution lengths given are the number of CPU ticks measured by the 

Windows performance counter (Microsoft, 2018), these were recorded with a counter frequency of 

3.51 MHz for the DRI and 3.52 MHz for the LSDI. This gives a tick resolution of 285 ns. 

Converting the signal processing requirements into PDDL is about mapping the signal processing parts 

to be readable by a PDDL Planner (Figure 7-1). Firstly, the variables (signals and datapoints) is the 

objects, the signal processing functions are the actions, the only other details needed are states. Each 

signal processing action needs a state ‘flag’ to say that action is completed, it also checks that any 

precondition actions have also been completed. Other states that is needed are to check whether the 

data is on the CPU or the GPU, and mutex states to make sure two resources are not attempting to be 

used at the same time. A mutex is needed to check if the CPU or GPU is in use, as two actions cannot 

be run concurrently on the same architecture.  



168 

 

Figure 7-1: DRI PDDL Predicates showing the variables, devices and state flags used throughout the domain file 

An action is needed for each signal processing function on the CPU and GPU and also for each memory 

copy needed between the two architectures for each signal and datapoint object used. Figure 7-2 is a 

visual representation of DRIs PDDL domain showing a CPU action, it takes three parameters: 

1. cpu – this is so it can check the CPU is not currently active. 

2. sig – This is an instance of the signal: Camera. 

3. sig – This is an instance of the signal: Interferogram. 

In the preconditions, its checks that all of the instances relate to the correct object, if they do not yet 

exist, they are created. The next precondition group checked is the CPU and the function status. It first 

checks that the CPU is not busy, then it checks that this action has not already been run for the output 

signal. The action done status is applied to the output signal, this allows the successor function to 

check any prerequisites have been completed on its own input parameters. This allows the planner to 

keep track of which actions have been completed without having to set this state for every object. 

Finally, it checks where the objects required are in memory. It checks that both the input parameters 

(Signal and Background) are on the CPU, as this is a CPU function. If all of these preconditions are met 

the action can be executed. 



169 

 

Figure 7-2: Visual Representation of PDDL action for a DRI function 

The effects this action has are as follows: 

1. It sets that the output signal sampleYt1’s data is on the host (CPU) and not the device (GPU). 

Previously this object was neither on the host or on the device. 

2. It marks the output signal sampleYt1 as completed by divide1 action, therefore when the 

successor to this function checks its input for pre-completed functions, it returns true. 

3. It also increases the metric total-cost; this is the median value calculated during profiling. In 

the problem file it is instructed to minimise this total-cost metric, finding the shortest path. 

A visual representation of the DRI’s parameters, pre-conditions and effects are shown in Figure 7-3. 



170 

 

Figure 7-3: Backwards search through DRI functions to satisfy the goal state 

For GPU functions, the action syntax changes only slightly. Rather than checking if the CPU is free, it 

checks the GPU is not in use, and the preconditions regarding object locations must be on the device 

rather than the host, (although these two properties are not mutually exclusive). Finally, when the 

GPU action has completed, the state of the object is set onDevice rather than onHost.  

The other type of action that exists in the domain file are the memory transfers. Memory transfer 

actions check that both the CPU and GPU are not in use, as both are needed to complete the memory 

transfer. It also checks that the object is on the sender’s memory and is not on the receiver’s memory, 

if the object is already on the receiver’s memory, the action does not need to be executed. Finally, if 

all the preconditions are met, the object is marked as being on the receiver’s memory, but it is not 

removed from the sender, as currently the data is simply duplicated for now, it is only removed from 

the sender’s memory if the data has been modified by a future action. 

In the LSDI’s problem file, are all the objects (variables) that are going be used, these then each have 

an instance created in the domain, this allows PDDL to create multiple instances of the same object, 

something that  is not needed for OSPWs requirements. It also sets the initial state for some objects 

(variables), for example, a background image is loaded into CPU memory once at the very start, as this 



171 

is a single call function it is not profiled. Therefore, the default state that PDDL observes for this object 

is that the data already exist on the CPU, otherwise PDDL cannot return a valid plan. This is because 

the first function expects this object to either already exist or be created by p action that it needs to 

call as a precondition. Finally, the goal is set, the goal for the LSDI is to return two different height 

signals, but the data to be on the CPU so it can be sent to the UI, therefore the sub-goals are: 

𝑑𝑜𝑛𝑒_𝑔𝑒𝑡𝐻𝑒𝑖𝑔ℎ𝑡1 ∧ 𝑑𝑜𝑛𝑒_𝑔𝑒𝑡𝐻𝑒𝑖𝑔ℎ𝑡2 ∧ 𝑜𝑛𝐻𝑜𝑠𝑡(𝑔𝑒𝑡𝐻𝑒𝑖𝑔ℎ𝑡1) ∧ 𝑜𝑛𝐻𝑜𝑠𝑡(𝑔𝑒𝑡𝐻𝑒𝑖𝑔ℎ𝑡2) 

This ensures that not only is the correct data calculated using the correct functions, but that data exists 

in the CPU memory ready to be outputted to the user interface, completing the signal processing 

chain. 

7.3 Evaluation of PDDL Solutions for Dispersed Reference Interferometry 

7.3.1 Solution Results 

As shown in Chapter 6.4.1 there does not seem any advantage to running the DRI on a GPU due to the 

small amount of data being captured and processed. Nevertheless, all the profiling data for the Intel 

i7-4790 CPU and Nvidia GPUs: GTX 520, GTX 650Ti, GTX 780Ti and GTX 1070 was imported into a total 

of nine separate domain files and processed with LPG-td (Figure 7-4). A selection of these domain files 

and solutions can be found in appendix 11.3. 

 

Figure 7-4: Nine Different Domain Files created for Dispersed Reference Interferometry 

Figure 7-5 shows using the CPU as the only architecture is the best solution, when running solely on 

the GPU, the solutions are typically slower than the CPU. Finally, when the domain was given both the 

CPU and GPU functions to choose from it successfully selected all the CPU functions.  



172 

 

Figure 7-5: Comparison of PDDL Solutions for the DRI Signal Processing 

One anomaly here is that the GTX 780Ti results are much higher than expected. When investigated 

further in Chapter 6.4.1, the execution of the Auto-convolution on the GTX 780Ti is the cause, 

executing at around one fifth of the speed that would be expected (Figure 6-8). It is much more likely 

to be executing at around the same speed as recorded on the Nvidia GTX 1070 due to their similar 

specifications. However, these profiling results were gathered multiple times and their values 

averaged to reduce such issues. Further investigation and repeated tests are needed to solve this, but 

as this still would not provide an overall benefit it was not explored. 

7.3.2 Summary 

Although restricted by the data, LPG-td has solved the problem for the DRI, with the best solution to 

run everything on the CPU. Next the LSDI solutions is investigated to explore what advantage may be 

yielded when using multiple architectures. 

7.4 Evaluation of PDDL Solutions for Line-Scan Dispersive Interferometry 

Unlike the DRI, it was clear from the results chapter 6.4.2 that GPU acceleration was beneficial for the 

LSDI, but it depended on which combination of CPU and GPU as to how much benefit could be gained. 

For the LSDI, three graphics cards were compared: GTX 650Ti, GTX 780Ti and GTX 1070 with an Intel 

i7-7820X CPU (Figure 7-6). A selection of these domain files and solutions can be found in appendix 

11.4. 

0

2000

4000

6000

8000

10000

12000

CPU GPU (520) GPU (650 Ti) GPU (780 Ti) GPU (1070)

So
lu

ti
o

n
 L

en
gt

h
 (

Sh
o

rt
er

 is
 b

et
te

r)

Architecture

DRI PDDL Comparison

Single Architecture Heterogeneous Architecture



173 

 

Figure 7-6: Seven Different Domain Files created for Line-Scan Dispersive Interferometry 

Each set of profiling data for each GPU was imported into a PDDL domain and run against the problem 

file for LSDI each CPU/GPU combo is analysed separately and then against one another. As there are 

eighteen functions used for the LSDI, there are 262,144 different permutations that would need to be 

considered for each architecture combination.  

7.4.1 Single Architecture Results 

When running PDDL for a single architecture there is only one valid solution, as there are no other 

permutations to choose from. Therefore, these are very quick for LPG-td to compute, the planner 

selects all the signal processing functions required for the selected sole architecture. Figure 7-7 shows 

that the use of any of the three GPUs provides a speed benefit, and the more powerful the GPU (left 

to right), the more benefit it provides.  

 

Figure 7-7: LSDI Single Architecture PDDL Solutions 

451K

315K
283K

243K

0K

100K

200K

300K

400K

500K

CPU GPU (650 Ti) GPU (780 Ti) GPU (1070)

So
lu

ti
o

n
 L

en
gt

h
 (

Sh
o

rt
er

 is
 b

et
te

r)

Architecture

LSDI Single Architecture PDDL Solutions



174 

7.4.2 Analysis of Heterogenous Execution of LSDI  

From the single architecture results, it is clear that the GPU yields a benefit but combining the 

architectures should provide an even larger performance benefit. 

7.4.2.1 CPU and Nvidia GTX 650Ti 

As there are many possible paths, LPG-td first finds a valid path before exploring other paths that may 

return a better solution. As can be seen in Figure 7-8 the first solution was worse than the GTX 650Ti 

by itself (425K ticks vs 315K ticks), however, the second iteration of the heterogeneous solution is 

faster and once the final, optimum solution is found, it is 13% faster than the standalone GPU.  

 

Figure 7-8: Iterative LSDI Heterogeneous PDDL Solutions (GTX 650Ti) 

Figure 7-9 shows a visual representation of the way LPD-td found solutions that utilises multiple 

architecture. By using the GPU for functions three and four (FFT and absolute data) it saves time over 

the CPU, it also repeats this later for the IFFT amongst other functions. But it also utilises the CPU 

when it is the optimum architecture. For example, function fourteen (unwrapping phase) is much 

quicker on the CPU, so it therefore it copies the data back to the CPU memory and continues serially. 

PDDL and LPG-td satisfied the requirement of finding the optimum solution for this combination of 

CPU and GPU based upon the profile data provided. A solution that is faster than either architecture 

individually. 

 

Figure 7-9: Visual Representation of LSDI Homogenised Function Execution on GTX 650Ti (not to scale) 

425070

275466

0K

100K

200K

300K

400K

500K

1 2 3 4 5

So
lu

ti
o

n
 L

en
gt

h
 

(S
h

o
rt

er
 is

 b
et

te
r)

Plan #

LSDI: Heterogeneous (GTX 650 Ti) PDDL Solution Iterations



175 

7.4.2.2 CPU and Nvidia GTX 780Ti 

The GTX 780Ti is a more modern and a higher specification of graphics card than the GTX 650Ti and 

this performance advantage is shown in the standalone solutions (283K ticks compared to the GTX 

650Ti’s 315K). Therefore, there should be a further increase in performance compared to the CPU-

only and GTX 780Ti-only solutions. Creating a new domain file with the GTX 780Ti’s profiling data 

creates five solutions, once again starting off worse than either individual architecture, but gradually 

getting better each iteration (Figure 7-10). By the final and best solution, the heterogeneous solution 

is almost 6% faster than the GPU by itself, and over 40% faster than the CPU alone. 

 

Figure 7-10: Iterative LSDI Heterogeneous PDDL Solutions (GTX 780Ti) 

When looking at the function breakdown in Figure 7-11, the function split between architectures is 

exactly the same as the GTX 650Ti, only utilising the few GPU functions that are faster. Until there is 

such an increase in GPU performance that the GPU is faster (including any memory transfers) for more 

functions, the solutions look the same. But again, LPG-td was successful in finding the most optimum 

solution for this particular signal processing and available hardware. 

 

Figure 7-11: Visual Representation of LSDI Heterogeneous Function Execution on GTX 780Ti (not to scale) 

7.4.2.3 CPU and Nvidia GTX 1070 

The GTX 1070 is the most powerful graphics card of the three profiled with about 15% better floating-

point performance than the GTX 780Ti (Table 6-1). This should therefore present around a 15% 

463304

266890

0K

100K

200K

300K

400K

500K

1 2 3 4 5

So
lu

ti
o

n
 L

en
gt

h
 

(S
h

o
rt

er
 is

 b
et

te
r)

Plan #

LSDI: Heterogeneous (GTX 780 Ti) PDDL Solution Iterations



176 

improvement in PDDL solution from the GTX 780Ti, especially as the GTX 1070 outperformed the GTX 

780Ti by 14% when used by itself (Figure 7-7). Unlike previous plans, the profiling data for the CPU 

and GPU functions was much closer and therefore LPG-td created more plans before settling on the 

final one (Figure 7-12).  

 

Figure 7-12: Iterative LSDI Heterogeneous PDDL Solutions (GTX 1070) 

As with each of the previous iterative solutions, the GTX 1070 starts off with a plan worse than either 

single architecture solution and then gradually improves until reaching an optimum result of 225K 

ticks. This solution is 8.5% better than the GPU only solution and 50% faster than the CPU only 

solution. As can be seen in Figure 7-13, the majority of the functions selected are using the GPU, hence 

why the difference between the GPU only solution is less than 10%. To further investigate how the 

plan went from 463K to 225K, each of the ten solutions have been analysed to illustrate how the 

solutions progressed. 

 

Figure 7-13: Visual Representation of LSDI Heterogeneous Function Execution on GTX 1070 (not to scale) 

Figure 7-14 shows the selected architecture for each function across all of the ten incremental 

solutions with each providing more optimisation over the previous. Although each plan is better than 

the previous, LPG-td sometimes takes multiple iterations before making the best decisions. Just like 

the search algorithms discussed in the previous chapter, it expands different paths with different 

priorities, eventually it corrects any mistakes and returns the best solution. For example, solution five 

463304

225403

0K

100K

200K

300K

400K

500K

1 2 3 4 5 6 7 8 9 10

So
lu

ti
o

n
 L

en
gt

h
(S

h
o

rt
er

 is
 b

et
te

r)

Plan #

LSDI: Heterogeneous (GTX 1070) PDDL Solution Iterations



177 

found that using the GPU for zeroData1, zeroData2 and getMax was best, but this was reversed in 

solution six. By solution six, the solution was almost there, just two function differ to the final solution 

(zeroComplex1 and zeroComplex2), but the planner goes through three more solutions getting 

incrementally better before finding this optimum solution.  

 

 

Figure 7-14: Visual Representation of the different solution paths LPG-td made 

7.4.3 Summary 

In summary, LPG-td consistently found the best possible solution for the LSDI signal processing 

requirements (Figure 7-15). The more powerful the graphics card, the better performance, and 

therefore allowing some of the shorter functions to also be faster on the GPU than the CPU. Although 

there is 218 possible permutations for the LSDI, the best solution for each hardware combination was 

found in under five minutes, with the single architectures only taking seconds. This is a one-time cost 

and only needs to be recomputed if the signal processing or available hardware changes; a small price 

to pay for an almost 10% benefit per frame. 



178 

 

Figure 7-15: Comparison of PDDL Solutions for the LSDI Signal Processing 

Evaluating for a single GPU, the Nvidia GTX 1070, it is possible to plot the normal distribution of all 

possible solutions, good or bad. When plotted, all the possible solutions form a standard gaussian 

distribution, however due to the nature of measuring time, the distribution is slightly right skewed 

(Figure 7-16). It should be noted that this distribution displays all successful plans for the given set of 

signal processing requirements with only the necessary memory transfers are included, giving 2𝑛 

permutations, where 𝑛 is the number of signal processing functions. The total number of possible 

permutations if searching every possible memory transfer that may or may not be required would be 

(𝑚2 + 1)𝑛−1(𝑚2 + 𝑛), where 𝑚 is the number of potential memory transfers, this would return both 

significantly more and worse permutations. For the LSDI example, there are 14 possible memory 

transfers that could be required and 18 functions, with an upper limit of 2.17E+41 total paths. 

Figure 7-16 shows that when a GPU is available, the CPU alone plan is worse than 80% of the multiple 

architecture plans, as expected, any use of the GPU for the LSDI should yield better performance. 

However out of the 218 (262144) possible solutions, only 0.2% of them are better than the GPU only 

solution. PDDL successfully found the fastest of this small subset of plans, something that would take 

much longer if randomly selecting a path and evaluating its performance, whist also minimising the 

memory overhead needed to track which memory changes are required.  

451K

315K
283K

243K
275K 268K

225K

0K

50K

100K

150K

200K

250K

300K

350K

400K

450K

500K

CPU GPU (650 Ti) GPU (780 Ti) GPU (1070)

So
lu

ti
o

n
 L

en
gt

h
 (

Sh
o

rt
er

 is
 b

et
te

r)

Architecture

LSDI PDDL Comparison

Single Architecture Heterogeneous Architecture



179 

 

Figure 7-16: Normal Distribution of LSDI permutations using an Intel i7-7820X and Nvidia GTX 1070 

7.5 Conclusion 

LPD-td has successfully taken domain files generated by OSPW containing the profiling data for both 

the DRI and LSDI and found the most optimum solution for the given data. PDDL allows the user to 

find and use the most optimum signal processing without having to manually profile each function to 

discover if GPU acceleration is beneficial. As shown, profiling a single GPU function sometimes does 

not demonstrate a benefit, but multiple functions chained together can have a benefit, a task that 

would take a significant amount of time to manually evaluate all permutations. Within the five minutes 

it took LPG-td planner to process all the profile data, allows users to achieve performance level near 

those of bespoke software without having to manually evaluate which architecture best suits which 

functions, a time consuming process. Furthermore, within that time it enables users to access 

hardware acceleration, which for the LSDI, provided a 13% performance increase over the fastest 

single architecture. 

  



180 

8 Discussion 

8.1 Summary of Investigations 

Initially, relevant literature was reviewed to discover the impact Industry 4.0 is having on high-value 

manufacturing, and the technologies driving the increase in hardware acceleration taking place in 

surface and dimensional instrumentation. It was discovered technologies such as Cyber Physical 

Systems (CPS), the Industrial Internet of Things (IIoT), and the increase and improvement of optical 

sensor technology are behind the increase of data sizes and processing requirements faced by both 

academic researchers and industrial engineers. The different types of hardware acceleration being 

introduced to address this increase in data sizes were assessed to discover the performance benefits 

of different architectures.  

Also reviewed were the types of signal processing algorithms used within surface and dimensional 

sensors and instrumentation which found that there is significant commonality in the algorithms. 

However, in most articles analysed the authors are creating these from scratch, when that could be 

better reinvested in instrument development. The findings from this assessment also identified a 

significant body of research existing detailing the use of GPGPU processing providing a high level of 

performance for a relatively low cost.  

Additionally, an evaluation of software availability was undertaken to discover the software options 

that researchers and industry have to choose between. In addition to this, an investigation into the 

costs associated with developing a bespoke software package were analysed to understand the 

process required when considering the hiring of a software developer to create a bespoke application. 

This investigation revealed some of the hidden costs behind software development such as the time 

required to create documentation, on-going maintenance costs, and additional costs that come from 

managing and evaluating a project. These costs would explain the reason so many are using generic 

packages like MATLAB and LabVIEW with poor performance, as the time and financial investment is 

so high. 

Following these investigations, the possibility of creating a software package was explored that 

contains a pre-built library of signal processing functions used within surface and dimensional 

instrumentation signal processing, although may have significant benefit to other fields as well. This 

solution should provide hardware accelerated processing to meet the demands of Industry 4.0, in the 

form of GPGPU processing, a method technologically and financially viable for most research 

institutions and manufacturing plants. However, this raised a new problem, the requirement to be 

able to select the best architecture needed to be smartly determined for each individual function, 



181 

giving an overall performance benefit by utilising multiple processor types. Therefore, the field of 

artificial intelligence search and planning was investigated. 

This investigation evaluated different uninformed and informed search strategies, these alone were 

not enough as constraints such as program order and variable usage could not be specified. However, 

this investigation informed the transition to examine automated planning, more specifically Planning 

Domain Description Language (PDDL). PDDL enables constraints to be applied to actions, pruning the 

number of possible branches to search through. Effects can also be added to actions, to update the 

state of the constraints to allow the search to continue towards a goal state. PDDL 2.1 also allows the 

use of fluents to be able to specify a cost function the planner should optimise for, therefore multiple 

solutions may be found to the problem, with each solution returning a lower cost than the previous. 

From these findings it was clear PDDL would provide a solution to the optimisation problem. The 

concept of using a Monte Carlo simulation was also investigated, however as the branching factor was 

directly relating to the number of variables (𝑚2) it was determined that PDDL provided a better 

solution to branch pruning. Finally, the use of AI within both software optimisation and manufacturing 

was surveyed to determine the state of the art techniques currently being used to optimise processes 

in academia and industry. This study paid specific attention to those using scheduling and process 

planning techniques when optimising. The study showed significant AI usage for optimisation of 

software, typically with training data and neural networks to optimise for new, unseen problems. 

Whereas in manufacturing, the use of AI is much smaller but is increasing, some specific examples of 

the use in PDDL and similar techniques were discussed to show the benefits AI can provide. 

An initial case study, Dispersed Reference Interferometry (DRI), was used for the author to familiarise 

themself with the software creation process, informed by the findings in the literature review, and 

also familiarise themself with the signal processing requirements of an optical instrument. This case 

study lasted around twelve months developing both CPU and GPU algorithms in C++ and CUDA, a user 

interface in C#, and communication between the two. This development time is likely to be the same 

for anyone wanting to create bespoke software, and further illustrates why so many accept the 

reduction in performance that exist in programs such as MATLAB and LabVIEW. 

The results from this case study illustrated the possible performance from accelerating signal 

processing with GPGPU parallelism. However, the DRI image size was one dimensional and even 

though the GPU processing did provide 7.8x speedup compared to MATLAB, when batching frames 

together and processing them in 32s or 64s, the GPU could provide 8x performance increase over the 

CPU and over 43x the performance of MATLAB. Throughout this case study, many lessons were 



182 

learned, with potential problems being discussed alongside the possible solutions to be evaluated in 

future versions. 

Once the initial learning and application to the case study was completed, a solution to the 

heterogenous signal processing software package was considered. This examined three main areas of 

interest, the ability to configure for a user’s signal processing needs, the Signal Processing Engine (SPE) 

that captures and processes the data, and the visualisation of the processed data. During the 

formulation of the Optical Signal Processing Workspace (OSPW), a second case study was undertaken, 

Line Scan Dispersive Interferometry (LSDI), to evaluate the performance of the algorithms created on 

an experimental setup.  

To achieve the objectives laid out in chapter 1, many advance C++ techniques were applied such as 

variadic templates and lambda functions to achieve the polymorphism required at runtime. 

Multithreading of CPU cores was also utilised to provide acceleration by running tasks such as data 

capture, inter-process communication and data transfer in the background, while the main thread 

continues to process incoming data. GPGPU processing was also key objective, and each sequential 

function was paired with a GPU accelerated counterpart (except CPU bound functions).  

Finally, the User Interface (UI) provided an area for users to configure the signal processing using a 

simple drag-and-drop interface and visualise the data processed using 1D graphs and 2D images. As 

the UI and the SPE were created in two separate programs, the data was transferred between the two 

programs via a first-in-first-out (FIFO) inter-process communication method called named pipes. 

Contained as part of the SPE is a class that is responsible for execution the algorithms from a queue 

list. Immediately before the function is called, and again after, a timestamp is taken to be able to 

evaluate the algorithms performance on a given architecture. During the investigations into these 

timestamps, of which have a resolution of approximately 285 ns, there was an amount of fluctuation 

on the results. It was found that due to Operating System (OS) demands consistently changing 

throughout the signal processing, this affected the time taken to process the algorithm. Although this 

also did appear in GPU profiling, it was to a much lesser extent. 

After an evaluation into averaging calculations such as 95th percentile, mean, and median, the decision 

was taken to take the median of the results at regular intervals. When a specified number (five) 

medians were calculated at the same value (within a small tolerance), it was deemed that a fair 

evaluation of that function’s execution time had been captured. This allowed a like-for-like 

comparison between the CPU and GPU profiling data, the main criteria was the repeatability of a 

execution time, rather than pinpoint accuracy of the time itself.  



183 

The results of the profiling for CPU and GPU were discussed for both the DRI and LSDI, with the GPU 

only providing benefit for the LSDI, and not the DRI (over a single frame). When the results were re-

evaluated for throughput measurement, by batching frames together, both the DRI and LSDI had a 

marked improvement in performance compared to CPU only execution.  

The proposed solution, Optical Signal Processing Workspace (OSPW), was then evaluated against a 

version without any polymorphism or profiling overhead to investigate the performance lost due to 

the inherent need for configurability, finding a 2.5% deficit. However, this 2.5% deficit is 

overshadowed by the significant performance benefits provided compared to previously used 

MATLAB processing. However, if the signal processing can be distributed across the two architectures 

to harness the multiple processing core types available, this deficit will be negated. 

Finally, using the profiling data as a cost function, PDDL could be introduced to solve the optimisation 

problem, calculating which architecture is best for each given function to achieve an overall optimum 

solution. Firstly, the signal processing functions needed to be mapped to PDDL actions, prerequisite 

functions mapped to an action’s predicates, updating the states of predicates through effects, and 

importing the variables as types. Once this mapping was complete, the execution time can be used as 

the heuristic (cost function) and the LPG-td planner will find the optimum solution. 

Solutions were searched for both the DRI and LSDI across several CPU-GPU combinations, with the 

planner always returning an optimum result within a five-minute window, often quicker. When 

optimising for a single frame, the planner simply returned a CPU only solution for the DRI due to its 

small data size. However, for the LSDI, the best solution on an Intel i7-7820X and Nvidia GTX 1070 was 

a 13% improvement over a single architecture. 

In the following section, the research presented will be evaluated against the original objectives laid 

out in chapter 1 before discussing some of the caveats of the approach and potential solutions to 

these. 

8.2 Conclusions 

This sub-section reassesses the work untaken and the results presented in chapters 4 to 7 and 

compares it against the objectives laid out in chapter 1. The objectives are repeated in bold above 

each consideration for convenience. 

Investigate the requirements of Industry 4.0 and determine the most important features that 

researchers and industry require for future manufacturing software. 



184 

The results of the investigation into the requirements and current implementations of software within 

surface and dimensional measurements highlight the both the repetition of software development, 

and the lack of performance from the use of commercial software packages such as MATLAB and 

LabVIEW. The requirements of software for future manufacturing does not differ between academic 

researchers or industrial engineers, they may at different levels of the technology readiness scale, but 

both require software that is configurable, adaptable to their needs, and above all else, provides real-

time measurement capabilities.  

Developing custom software is an expensive and time consuming process and therefore many have to 

comprise for sub-optimum performance through generic commercial software, which provides great 

documentation, ease of use, and high abstraction from programming, but often does not offer the 

performance required. Industry 4.0 is pushing measurements to be taken in-process to increase 

production efficiencies, therefore the processing of measurement data needs to be as fast as the 

production line itself. If it cannot be taken in process it often will not be taken at all, leading to 

potential failures, defects, and expensive rework. 

Examine how hardware acceleration is currently being used in surface and dimensional 

measurements to process the increasing data sizes and improving signal processing performance.  

From the review into hardware acceleration within surface and dimensional signal processing, the use 

of FPGAs, DSPs and GPUs has steadily increased over the past twenty years. The most discussed of 

these methods is GPU processing, due to its relatively low price compared to the performance it can 

provide. GPGPU acceleration has provided significant performance improvements across the 

literature reviewed in interferometry, structured light and OCT and is extremely likely to be having the 

same impact in other fields that require real-time processing of data. 

Development of an easy-to-use software package for use by researchers and industry to advance 

the future of manufacturing by prototyping signal processing quickly and efficiently. 

Unlike other open-source alternatives, Optical Signal Processing Workspace has been presented as a 

software package that researchers and industry can use to configure a pre-built signal processing 

library for their application without the requirement of programming knowledge. Using the 

configurator, users can create signals and datapoints that can be drag-and-dropped onto functions 

controlling the data flow between algorithms. Facilitating the configurator with drag-and-drop 

functionality keeps the interface looking clean and uncluttered. Most functions allow multiple data 

types and are configurable for n-length and n-dimensional data allowing full configurability by the 

user.  



185 

The configurator creates two configuration files that are then used by the Signal Processing Engine 

(SPE) to execute the signal processing specified. One file allows the SPE to execute the signal 

processing serially on the CPU, the other utilises any GPU hardware available by swapping out CPU 

functions for GPU functions. The configurator automatically configures memory transfers required for 

the functions selected when processing data using a GPU. Finally, data processed by the SPE is sent to 

the User Interface (UI) where is can be displayed by graphs and images or saved for post-processing. 

Further expansion of the UI is discussed in Further Work, section 9.2 

Demonstrate the use of AI Planning to find the optimal solution for a given signal processing 

sequence and hardware combination across a heterogenous, CPU-GPU architecture. 

The novel use of AI Planning, specifically PDDL, to optimise signal processing has been demonstrated 

with results shown in chapter 7 demonstrating a performance increase of 13% for the LSDI over a 

single architecture implementation without a user having to manually profile each permutation of 

CPU and GPU functions. This is in addition to the 11x performance gain already achieved in the LSDI 

case study over previously used MATLAB. 

Having reviewed other informed search techniques and Monte Carlo simulation, the use of PDDL 

allowed significant pruning of possible permutations (branches) due to the ability to apply constraints 

to each of the PDDL actions. These constraints and the reduction of branches allowed the search 

problem to be reduced from 𝑂((𝑚2 + 𝑛)(𝑚2 + 1)𝑛−1) to closer to 𝑂(2𝑛). Further performance may 

also be possible with and durative PDDL plans and asynchronous GPU streams, both of which are 

discussed in the Further Work sections 9.3.2 and 9.4 respectively. Further expansion to different or 

multiple heuristics is also detailed in the Future Work section 9.3.1. 

8.3 Caveats of the Presented Approach 

This research has presented a method of optimising the signal processing used within surface and 

dimensional measurements by using AI planning to select the optimum architecture in a heterogenous 

system. However, this approach is not without caveats, several of which are discussed here, with 

potential future solutions to address these deficiencies. 

8.3.1 Signal Processing Engine Recompiling 

Currently, once OSPW’s configurator has created the configuration files, it modifies the SPE function 

files to insert the correct function calls into the CPUConfig functions. These modifications in a compiled 

language require the SPE to recompiled before it can be used. Currently, this process is manually 

achieved by rebuilding the project in Visual Studio, this is far from ideal, especially if this software 

becomes available for others to use. 



186 

It may be beneficial to transfer the compiling of the SPE to GNU Compiler Collection (GCC), a free C 

compiler that can be accessed through the command line, an important feature for OSPW to 

automatically initiate the compilation. The benefit to using GCC is its standalone nature, although this 

require MinGW to run, as GCC is designed for Linux. Whereas the current method of using Visual 

Studio requires unnecessary additional software, and potentially a license depending on the version 

used.  

8.3.2 Acquisition Devices 

Currently, each of the acquisition devices are hard-coded into the SPE, this is not suitable moving 

forward and requires a more generic approach for future users to be able to use OSPW without 

needing to manually program their camera SDK. The solution to this is implement the generic API 

GenICam (European Machine Vision Association), this API has been implemented by a number of 

machine vision cameras using USB3, GigE and CameraLink. 

Utilising this API would allow the SPE to search for cameras connected to the PC, transmit 

configuration settings, and receive data from the capture device. The user would not need to program 

anything specific for their camera (unless it was not supported the standard) and would help reduce 

the compile problem outlined above. 

8.3.3 SPE Library Expansion 

Currently the library contains a significant number of signal processing functions, these are listed in 

section 5.3.7, that should cover a wide range of surface and dimensional measurement techniques. 

There also exists a method to add new functions, that automatically creates configuration XML files 

and C++ header information discussed in section 5.3.1. However, the signal processing function itself 

would need to be manually imported from tested, working, C++ code. This may have undesirable 

consequences if not imported correctly, or is not in a format expected by the import manager. 

If a user does not have a programming background, they might not be able to develop a C++ function 

to import. Or perhaps, a data type that is not currently supported needs to be implemented, or for 

variables like complex numbers, a different naming convention is required to store the real and 

complex parts, a problem faced during this research (Table 8-1). Finally, a user may have a bespoke 

C++ function but no GPU counterpart and, as discussed in chapter 2, there are no adequate solutions 

that can take MATLAB code, or sequential C++ code and generate an optimised GPU version, especially 

one that would then easily integrate into OSPW. However, for users with some programming 

experience a discussion surrounding the release of this research as an open-source package can be 

found in section 8.4. 



187 

Table 8-1: Complex Variable Naming Conventions Used During This Research 

Implementation Real Imaginary 

HSFFT Variable[index].re Variable[index].im 

FFTW Variable[index][0] Variable[index][1] 

cuFFT Variable[index].x Variable[index].y 

  

A more rigorous approach to above problem might be to implement a Dynamic Link Library (DLL) 

interface to execute functions from precompiled shared libraries. This would also reduce some of the 

requirements to recompile if the signal processing library exists in DLL files, there would be no need 

to edit header files for a user’s requirement, instead selecting a different variation of the linked library. 

However, this option was not investigated in this research. 

8.3.4 Deterministic Measurement Intervals 

In a subset of manufacturing scenarios there is a requirement measurement processing at a consistent 

frame rate. In an application such as roll-to-roll processing (R2R) the measurand under the 

measurement apparatus is moving at a constant speed and therefore there is a requirement to take a 

measurement at pre-determined intervals. However, as previously discussed the execution time of 

signal processing on an IPC fluctuates unpredictably due to non-related operating system demands 

(Figure 8-1). These variations are the reason the presented approach uses an averaging algorithm 

when profiling signal processing algorithms. This averaging method provides a benefit when 

comparing CPU and GPU execution times but is little help when determining the exact latency of 

individual measurements. 

 

Figure 8-1: Percentage Deviation from Median for 10 Consecutive LSDI Measurements 

-2%

0%

2%

4%

6%

1 2 3 4 5 6 7 8 9 10

P
er

ce
n

ta
ge

 D
ev

ia
ti

o
n

 f
ro

m
 

M
ed

ia
n

Measurement Number

Percentage Deviation from Median for 10 
Consecutive LSDI Measurements CPU GPU



188 

However even though OSPW can not provide determanistic measurement intervals, it does not mean 

that this research can not provide benefits to those requiring consistant processing frame rates. The 

above graph illustrates the deviation is no higher than 6% and significantlly less on the GPU. As long 

as the optimial soluton measurement is faster than the process its measuring, there is still a benefit 

to optimising. It may be that by optimsing for a heterogenous architecture is the only method that 

provides a process fast enough to measure the measurand in real-time. All of this excludes the 

additional benefit provided from having a library of mid-level signal processing functions without 

requiring the user to program them themselves.  

8.3.5 Summary 

While there are some limitations to the presented approach, it does provide a significant performance 

advantage from both the use of C++ and CUDA, and further optimisations from using AI planning. 

Some of these limitations discussed have had solutions proposed to improve or correct the related 

issue, and in addition to these, more improvements will be discussed in the future work section, 

chapter 9.  

8.4 Potential Routes to Distribution of OSPW 

Distribution of OSPW is limited by the third-party libraries that have been integrated. FFTW is covered 

by a GPL2 license and ALGLIB uses an MIT license. Neither of these distribution licenses forbid 

commercial distribution but do require that the source code must distributed along with the program. 

This would not be an issue as OSPW needs compiling after configurating and for that the source code 

needs to be modifiable, and therefore open. This also allows user to add extra functionality to OSPW 

if they have a specific device that they need to include that is not natively supported by GenICam or 

add new signal processing functionality. 

However, trying to commercialise open-source software historically does not work due to the open 

nature of the code. In the past companies have distributed their software and charged an optional 

license fee for support to receive a return on their development costs. For OSPW an open-source 

distribution makes the most sense given the license restrictions, with the potential option to offer a 

paid support service. This method of distribution is likely to have the greatest impact on the 

advancement of surface and dimensional measurement signal processing in both industry and 

academia. 

 

  



189 

8.5 Closing Statement 

This research has presented Optical Signal Processing Workspace (OSPW), a novel approach of using 

PDDL to optimise a library of signal processing functions used in optical surface and dimensional 

measurements on a heterogenous system. Using a modern, easy to use, user interface, the signal 

processing can be configured without prior knowledge of a programming language and can be 

configured for any data length with up to three dimensions. OSPW provides hardware acceleration 

using GPGPU though Nvidia’s CUDA API with the majority of the library functions having GPU 

accelerated version. Through the selection of C++ and CUDA, a performance increase of up to 21x was 

achieved in the DRI case study and 5.45x in the LSDI cast study when compared to MATLAB. With the 

introduction of AI planning to optimise the signal processing sequence for the heterogenous hardware 

available, this novel approach provided a further performance increase of 13% for in the LSDI case 

study. 

With some further development work, discussed in the next chapter, this novel approach to providing 

an adaptable signal processing library that optimises itself will provide significant performance benefit 

to researchers and industrial engineers. Furthermore, it will save time removing the requirement to 

learn a programming language and develop their own software, time that can be reinvested in further 

advance surface and dimensional sensor and instrumentation research.  

  



190 

9 Further Work 

9.1 Introduction 

In addition to the novel approach of using AI planning to optimise signal processing on a heterogenous 

system, further work has been identified to improve the presented approach. This chapter introduces 

on-going research and ideas which aim to further increase the user experience, provide further 

performance optimisations, and allow users to optimise for multiple heuristics. 

9.2 Further Expansion of the User Interface  

Chapter 5 described OSPW’s user interface and the various visualisation methods available for users 

to view the data processed by the SPE. Due to the one-dimensional data of the DRI and two-

dimensional data of the LSDI, the chance to develop more visualisation techniques unfortunately 

never materialised. The two main visualisation methods that are absent are two-dimensional and 

three-dimensional graph plotting. 

.NET Framework natively supports drawing two-dimensional graphs using its Chart class; however, it 

does not support three-dimensional graph plotting. Paid offerings exist from third-party companies 

such as SciChart, Xceed, and ILNumerics. However, there does appear to be ways of plotting these 

graphs without the use of paid software, but unlike the commercial offerings, these methods are not 

optimised and take considerable time to draw, something not useful on a live production line.  

Previously discussed ArrayFire does have the capability of drawing three-dimensional graphs using 

OpenGL and the GPU, however this would have to be part of the SPE and not the UI. There are both 

benefits and drawbacks to this method. The benefit is that the graphs are rendered on the GPU which 

is much faster than they can be rendered on the CPU, saving valuable time. The drawback is while the 

image is rendering, new data is not being processed, reducing overall efficiency. However, if the 

images cannot be rendered in the UI, and this is the only option, then a reduction in efficiency is 

preferred over not visualising the data at all. However, if ArrayFire can be implemented correctly, the 

GPU could be rendering one image, while the data is imported for the next, but this would need careful 

consideration. 

9.3 Modifications to the PDDL Configuration 

9.3.1 Introduction of New Heuristics 

The notion of different or multiple heuristics was discussed in in section 6.2, with this research 

concentrating on the execution time (latency) being the heuristic to optimise for. Both storage and 

network speeds were discussed as possible heuristics but dismissed due to the potential to remove 

any issues being caused by these parameters by upgrading the IPC equipment at relatively low cost. 



191 

While the benefit of batch processing (throughput optimisation) was illustrated in section 6.5, the 

process to profile the signal processing sequence for multiple batch sizes would be lengthy process 

for a user, however the ability to find the point of diminishing results for batch size could be useful 

data for a measurement. As shown for the LSDI, processing more than 32 or more frames 

simultaneously on the GPU provided a deficit in the overall processing rate, compared to 16 frames. 

Finally, the potential for optimising for the lowest power consumption was also discussed in section 

6.2. Looking at an illustrative example (Figure 9-1), assuming a constant power draw for the duration 

of the processing, the GPU uses nearly 4x the energy of a CPU execution. Even when optimising for 

the lowest latency, the 8.1 J required is still significantly above that required by the sequential CPU 

sequence.  

 

Figure 9-1: Illustrative Example of Energy Usage – Latency Optimisation 

Therefore, it may safe to assume that if power efficiency is required, a GPU is completely out of the 

question, however, that is not the case. If for example a function takes one tenth of the time on a GPU 

compared to a CPU, the 600% increase in power required by the GPU is a more energy efficient over 

the entire execution. Figure 9-2 illustrates a different example, however, in this example, due to the 

slow nature of function D on the CPU, the CPU sequence consumes 21 J of energy, whereas due to the 

parallelism nature of the GPU, this function only takes 5 ms, with a total energy consumption of 13.6 

J. Furthermore, the GPU is even still providing a latency benefit over the CPU, saving over 350 ms, an 

87% reduction. 

 



192 

 

Figure 9-2: Illustrative Example of Energy Usage – Energy Optimisation 

If, as before, the domain is set to optimise for the lowest latency, Figure 9-2c returns an even faster 

result which uses even less energy at 6.6 J. However, if instead the domain heuristic is energy 

consumption, instead of execution time, a more energy efficient, however slower, solution can be 

found, at just 5.6 J (Figure 9-2d). This illustrates, the potential different heuristics that could be used 

to optimise a user’s signal processing for the parameter that is the most critical for a given application. 

9.3.2 PDDL: Durative Actions 

Introduced in PDDL 2.1 along with fluents, previously discussed in Chapter 3.3.2.2, were durative 

actions. In its current setup, PDDL treats every action as instantaneous with a time duration of one, 

whereas with durative actions, the duration of each action can be specified. This adds a couple of extra 

properties to each action and a potential benefit to the solution. Firstly, it changes the way 

preconditions are checked, rather than simply checking whether each of the preconditions are true, 

the planner requires each of the preconditions to be checked at a particular time interval during the 

action (Figure 9-3). Secondly, effects are also triggered at time intervals, these intervals are at start, 

at end and over all. 



193 

 

Figure 9-3: PDDL Durative action time intervals 

From the Cup of Tea example laid out in Chapter 3.3.2.1, it can be adapted to utilise durative actions 

(Figure 9-4). Now, instead of all the actions happening instantaneously, they all have a duration 

assigned to them. Each action has had its preconditions and effects modified to include the time 

interval at which they need to be checked or executed. It is important that these are specified 

correctly, for example, when filling a cup, haveCup needs to be true throughout the entire function, 

therefore no other action can be run concurrently that removes the cup. 



194 

 

Figure 9-4: Cup of Tea Example (With Durative Actions) 

When applying this to signal processing, each variable required would be checked for its availability 

atStart, any variable that was modified during the function would need to be available overAll and the 

effect flag that indicates that a function has been execution would be applied atEnd. This would allow 

functions that are mutually exclusive to each other to be executed during the same period. Although 

profiling is not an exact measurement of the time taken to execute each function, instead being a 

repeatable comparison, therefore, concurrency may not be possible for short functions, but would 

have benefits for functions that take longer, or have a small standard deviation from the median. 

The reason for durative actions not being currently implemented in OSPW is the significant 

computation required to process the durative data. Not only does the PDDL planner have to find a 

solution through the actions that meets the goal criteria, there are an infinite number of start times 

that each action could run at. In the pursuit of computing the optimum plan, the planner investigates 

multiple paths, as these paths now contain durations, where functions may benefit from running in 



195 

parallel, the number of paths is exponentially larger. The computation was attempted for the LSDI in 

Windows 7; however, the planner would return inconsistent solutions and often crash before 

finishing. LPG-td is available on Linux, but that currently would require having to transfer data and 

processing the plan on a different operating system. 

9.4 Consideration of Asynchronous GPU Streams 

In a standard CUDA implementation, one single stream is used, whereby all the kernels and memory 

transfers are executed by stream zero, like how a single thread is used for basic CPU processing. 

However, CUDA offers the ability to run multiple concurrent streams, up to sixteen kernels and a 

memory copy in either direction all at the same time. This concurrency allows significant increases in 

performance if the application is not too sequential and benefits from multiple streams. Figure 9-5 

shows how a serial CUDA implementation could be split into multiple concurrent streams, by 

executing memory transfers at the same time as kernels, here the kernels themselves are not running 

in parallel, but up to sixteen kernels can be executed at once. Kernel concurrency is not normally 

utilised due to data from one kernel often required for subsequent kernels. When increasing the 

number of concurrent streams, it is also possible to have the GPU executing a kernel and performing 

two memory transfers while the CPU is computing the fourth, not requiring any data to be transferred 

between the host and device for the fourth function. 

 

Figure 9-5: Multiple concurrent CUDA Streams 



196 

This currently is not implemented as the PDDL current implementation is not able to plan for actions 

(functions) to execute concurrently. However, having discussed durative actions in the previous 

section, the problem file can define three simultaneous streams, one for kernels and one for each 

direction of memory transfer. When a kernel or memory transfer is running, the corresponding stream 

will be marked as inUse, therefore preventing multiple data transfers at once. Finally, if mutually 

exclusive actions can run concurrently, PDDL will find the fastest solution that satisfies the goal.  

The SPE will need modifications to allow the job queue to run concurrent functions either solely on 

the GPU, or dual execution on the CPU and GPU. It will also need to ensure that if multiple functions 

are being run concurrently, that all prerequisites to a function have been completed before 

continuing. Further to the comments made in the previous sub-section, this adds further complication 

to finding the optimum solution using a PDDL planner, with the number of permutations increasing 

once again. Each possible stream combination will have to be evaluated to see where performance 

can be optimised, this exponential problem will further question whether LPG-td is able to process 

the plan and deliver a solution. 

  



197 

10 References 

Aguilar, J., Cordero, J., & Buendía, O. (2018). Specification of the autonomic cycles of learning analytic 
tasks for a smart classroom. Journal of Educational Computing Research, 56(6), 866-891.  

Ajila, S. A., & Wu, D. (2007). Empirical study of the effects of open source adoption on software 
development economics. Journal of Systems and Software, 80(9), 1517-1529. 
doi:https://doi.org/10.1016/j.jss.2007.01.011 

Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., & Ayyash, M. (2015). Internet of Things: A 
Survey on Enabling Technologies, Protocols, and Applications. IEEE Communications Surveys 
and Tutorials, 17(4), 2347-2376. doi:10.1109/COMST.2015.2444095 

Albayrak, O. E., Akturk, I., & Ozturk, O. (2013). Improving application behavior on heterogeneous 
manycore systems through kernel mapping. Parallel Computing, 39(12), 867-878. 
doi:10.1016/j.parco.2013.08.011 

Alcácer, V., & Cruz-Machado, V. (2019). Scanning the Industry 4.0: A Literature Review on Technologies 
for Manufacturing Systems. Engineering Science and Technology, an International Journal, 
22(3), 899-919. doi:https://doi.org/10.1016/j.jestch.2019.01.006 

Amdahl, G. M. (1967). Validity of the single processor approach to achieving large scale computing 
capabilities. Paper presented at the Proceedings of the April 18-20, 1967, spring joint computer 
conference, Atlantic City, New Jersey.  

Ashton, K. (2009). That ‘internet of things’ thing.  
Bailey, D. (2019). Image Processing Using FPGAs. 
Balser. (2020). Basler racer raL8192-12gm - Line Scan Camera. Retrieved from 

https://www.baslerweb.com/en/products/cameras/line-scan-cameras/racer/ral8192-12gm/ 
Boehm, B. W. (1984). Software Engineering Economics. IEEE Transactions on Software Engineering, SE-

10(1), 4-21. doi:10.1109/TSE.1984.5010193 
Boehm, B. W., & Papaccio, P. N. (1988). Understanding and controlling software costs. IEEE Transactions 

on Software Engineering, 14(10), 1462-1477. doi:10.1109/32.6191 
Cansalar, C. A., Mavis, E., & Kasnakoglu, C. (2015). Simulation time analysis of MATLAB/Simulink and 

LabVIEW for control applications. Paper presented at the Proceedings of the IEEE International 
Conference on Industrial Technology. 

Cemernek, D., Gursch, H., & Kern, R. (2017, 24-26 July 2017). Big data as a promoter of industry 4.0: 
Lessons of the semiconductor industry. Paper presented at the 2017 IEEE 15th International 
Conference on Industrial Informatics (INDIN). 

Chandra, R. (2001). Parallel programming in OpenMP. San Francisco, CA: Morgan Kaufmann Publishers. 
Cheik Ahamed, A.-K., & Magoulès, F. (2017). Conjugate gradient method with graphics processing unit 

acceleration: CUDA vs OpenCL. Advances in Engineering Software, 111, 32-42. 
doi:https://doi.org/10.1016/j.advengsoft.2016.10.002 

Dagum, L., & Menon, R. (1998). OpenMP: an industry standard API for shared-memory programming. 
IEEE Computational Science and Engineering, 5(1), 46-55. doi:10.1109/99.660313 

Dastgeer, U., Li, L., & Kessler, C. (2013). Adaptive Implementation Selection in the SkePU Skeleton 
Programming Library. In C. Wu & A. Cohen (Eds.), Advanced Parallel Processing Technologies: 
10th International Symposium, APPT 2013, Stockholm, Sweden, August 27-28, 2013, Revised 
Selected Papers (pp. 170-183). Berlin, Heidelberg: Springer Berlin Heidelberg. 

Department for Business, E. I. S. (2020). Business population estimates for the UK and regions 2020. 
Retrieved from https://www.gov.uk/government/statistics/business-population-estimates-
2020/business-population-estimates-for-the-uk-and-regions-2020-statistical-release-
html#:~:text=UK%20private%20sector.-
,At%20the%20start%20of%202020%3A,%C2%A30.7%20trillion%20(16%25) 

Desjardins, A. E., Vakoc, B. J., Suter, M. J., Yun, S. H., Tearney, G. J., & Bouma, B. E. (2009). Real-Time 
FPGA Processing for High-Speed Optical Frequency Domain Imaging. IEEE Transactions on 
Medical Imaging, 28(9), 1468-1472. doi:10.1109/TMI.2009.2017740 

https://doi.org/10.1016/j.jss.2007.01.011
https://doi.org/10.1016/j.jestch.2019.01.006
https://www.baslerweb.com/en/products/cameras/line-scan-cameras/racer/ral8192-12gm/
https://doi.org/10.1016/j.advengsoft.2016.10.002
https://www.gov.uk/government/statistics/business-population-estimates-2020/business-population-estimates-for-the-uk-and-regions-2020-statistical-release-html#:~:text=UK%20private%20sector.-,At%20the%20start%20of%202020%3A,%C2%A30.7%20trillion%20(16%25
https://www.gov.uk/government/statistics/business-population-estimates-2020/business-population-estimates-for-the-uk-and-regions-2020-statistical-release-html#:~:text=UK%20private%20sector.-,At%20the%20start%20of%202020%3A,%C2%A30.7%20trillion%20(16%25
https://www.gov.uk/government/statistics/business-population-estimates-2020/business-population-estimates-for-the-uk-and-regions-2020-statistical-release-html#:~:text=UK%20private%20sector.-,At%20the%20start%20of%202020%3A,%C2%A30.7%20trillion%20(16%25
https://www.gov.uk/government/statistics/business-population-estimates-2020/business-population-estimates-for-the-uk-and-regions-2020-statistical-release-html#:~:text=UK%20private%20sector.-,At%20the%20start%20of%202020%3A,%C2%A30.7%20trillion%20(16%25


198 

Digital, W. (2021). Data Sheet: WD_BLACK SN850 NVMe SSD. Retrieved from 
https://documents.westerndigital.com/content/dam/doc-
library/en_us/assets/public/western-digital/product/internal-drives/wd-black-ssd/data-sheet-
wd-black-sn850-nvme-ssd.pdf 

Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische mathematik, 1(1), 
269-271.  

Electric, G. (2013). What is the Industrial Internet of Things (IIoT)? Retrieved from 
https://www.ge.com/digital/blog/what-industrial-internet-things-iiot 

European Machine Vision Association. GenICam - EMVA. Retrieved from 
https://www.emva.org/standards-technology/genicam/ 

Fang, J., Varbanescu, A. L., & Sips, H. (2011, 13-16 Sept. 2011). A Comprehensive Performance 
Comparison of CUDA and OpenCL. Paper presented at the 2011 International Conference on 
Parallel Processing. 

Fikes, R. E., & Nilsson, N. J. (1971). STRIPS: A new approach to the application of theorem proving to 
problem solving. Artificial intelligence, 2(3-4), 189-208.  

Fitzgerald, B. (2006). The Transformation of Open Source Software. MIS Quarterly, 30(3), 587-598. 
doi:10.2307/25148740 

Forbes. (2020). Can AMD’s Share In The GPU Market Rise 20%? Retrieved from 
https://www.forbes.com/sites/greatspeculations/2020/03/16/can-amds-share-in-the-gpu-
market-rise-20/ 

Fowers, J., Brown, G., Cooke, P., & Stitt, G. (2012). A performance and energy comparison of FPGAs, 
GPUs, and multicores for sliding-window applications. Paper presented at the Proceedings of 
the ACM/SIGDA international symposium on Field Programmable Gate Arrays, Monterey, 
California, USA. https://doi.org/10.1145/2145694.2145704 

Fox, M., & Long, D. (2003). PDDL2. 1: An extension to PDDL for expressing temporal planning domains. 
Journal of artificial intelligence research.  

Frana, P. L., & Misa, T. J. (2010). An interview with Edsger W. Dijkstra. Commun. ACM, 53(8), 41–47. 
doi:10.1145/1787234.1787249 

Freiman, F. R., & Park, R. (1979). Price software model-version 3: An overview. Paper presented at the 
Proceedings, ieee/piny workshop on quantitative software models, ieee catalog no. th0067. 

Frigo, M., & Johnson, S. G. (2005). The design and implementation of FFTW3. Proceedings of the IEEE, 
93(2), 216-231.  

Gao, W., Haitjema, H., Fang, F. Z., Leach, R. K., Cheung, C. F., Savio, E., & Linares, J. M. (2019). On-
machine and in-process surface metrology for precision manufacturing. CIRP Annals, 68(2), 
843-866. doi:https://doi.org/10.1016/j.cirp.2019.05.005 

Gartner. (2021). Gartner Says Worldwide Smartphone Sales Declined 5% in Fourth Quarter of 2020. 
Retrieved from https://www.gartner.com/en/newsroom/press-releases/2021-02-22-4q20-
smartphone-market-share-release 

Gartner, I. (2015). Gartner Says 6.4 Billion Connected "Things" Will Be in Use in 2016, Up 30 Percent 
From 2015 [Press release]. Retrieved from https://www.gartner.com/en/newsroom/press-
releases/2015-11-10-gartner-says-6-billion-connected-things-will-be-in-use-in-2016-up-30-
percent-from-2015 

Geng, J. (2011). Structured-light 3D surface imaging: a tutorial. Advances in Optics and Photonics, 3(2), 
128-160. doi:10.1364/AOP.3.000128 

Georgakopoulos, D., Jayaraman, P. P., Fazia, M., Villari, M., & Ranjan, R. (2016). Internet of Things and 
Edge Cloud Computing Roadmap for Manufacturing. IEEE Cloud Computing, 3(4), 66-73. 
doi:10.1109/MCC.2016.91 

Ghallab, M., Nau, D. S., & Traverso, P. (2004). Automated planning: theory and practice. 
Amsterdam;Boston;: Elsevier/Morgan Kaufmann. 

Goodcore. (2020). How Much Does It Cost To Develop Custom Software: What Industry Experts Say. 
Retrieved from https://www.goodcore.co.uk/blog/cost-to-develop-software/ 

https://documents.westerndigital.com/content/dam/doc-library/en_us/assets/public/western-digital/product/internal-drives/wd-black-ssd/data-sheet-wd-black-sn850-nvme-ssd.pdf
https://documents.westerndigital.com/content/dam/doc-library/en_us/assets/public/western-digital/product/internal-drives/wd-black-ssd/data-sheet-wd-black-sn850-nvme-ssd.pdf
https://documents.westerndigital.com/content/dam/doc-library/en_us/assets/public/western-digital/product/internal-drives/wd-black-ssd/data-sheet-wd-black-sn850-nvme-ssd.pdf
https://www.ge.com/digital/blog/what-industrial-internet-things-iiot
https://www.emva.org/standards-technology/genicam/
https://www.forbes.com/sites/greatspeculations/2020/03/16/can-amds-share-in-the-gpu-market-rise-20/
https://www.forbes.com/sites/greatspeculations/2020/03/16/can-amds-share-in-the-gpu-market-rise-20/
https://doi.org/10.1145/2145694.2145704
https://doi.org/10.1016/j.cirp.2019.05.005
https://www.gartner.com/en/newsroom/press-releases/2021-02-22-4q20-smartphone-market-share-release
https://www.gartner.com/en/newsroom/press-releases/2021-02-22-4q20-smartphone-market-share-release
https://www.gartner.com/en/newsroom/press-releases/2015-11-10-gartner-says-6-billion-connected-things-will-be-in-use-in-2016-up-30-percent-from-2015
https://www.gartner.com/en/newsroom/press-releases/2015-11-10-gartner-says-6-billion-connected-things-will-be-in-use-in-2016-up-30-percent-from-2015
https://www.gartner.com/en/newsroom/press-releases/2015-11-10-gartner-says-6-billion-connected-things-will-be-in-use-in-2016-up-30-percent-from-2015
https://www.goodcore.co.uk/blog/cost-to-develop-software/


199 

Greer, C., Burns, M., Wollman, D., & Griffor, E. (2019). Cyber-physical systems and internet of things. 
In. 

Grewe, D., & O'Boyle, M. F. P. (2011) A static task partitioning approach for heterogeneous systems 
using OpenCL. In: Vol. 6601 LNCS. Lecture Notes in Computer Science (including subseries 
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (pp. 286-305). 

Gronle, M., Lyda, W., Wilke, M., Kohler, C., & Osten, W. (2014). itom: an open source metrology, 
automation, and data evaluation software. Applied optics, 53(14), 2974-2982. 
doi:10.1364/AO.53.002974 

Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of Things (IoT): A vision, 
architectural elements, and future directions. Future Generation Computer Systems, 29(7), 
1645-1660. doi:https://doi.org/10.1016/j.future.2013.01.010 

HajiRassouliha, A., Taberner, A. J., Nash, M. P., & Nielsen, P. M. F. (2018). Suitability of recent hardware 
accelerators (DSPs, FPGAs, and GPUs) for computer vision and image processing algorithms. 
Signal Processing: Image Communication, 68, 101-119. 
doi:https://doi.org/10.1016/j.image.2018.07.007 

Hao, G., Takeshi, T., & Idaku, I. (2012). GPU-based real-time structured light 3D scanner at 500 fps. Paper 
presented at the Proc.SPIE. 

Horton, I. (2004). Ivor Horton's beginning ANSI C++: the complete language (3rd ed.). Berkeley, Calif: 
Apress. 

Huckaby, J., Vassos, S., & Christensen, H. I. (2013, 3-7 Nov. 2013). Planning with a task modeling 
framework in manufacturing robotics. Paper presented at the 2013 IEEE/RSJ International 
Conference on Intelligent Robots and Systems. 

Hussain, R. (2016). rafat/hsfft: FFT Implementation. Equally suitable for power of 2 and non-power of 2 
input data. Retrieved from https://github.com/rafat/hsfft 

Hussain, T., Amin, S., Zabit, U., Kamran, F., Bernal, O. D., & Bosch, T. (2017). A High Performance Real-
Time FGPA-Based Interferometry Sensor Architecture. Paper presented at the Proceedings - 
14th International Conference on Frontiers of Information Technology, FIT 2016. 

Intel. (2020). Intel® FPGAs and Programmable Devices - Intel® FPGA. Retrieved from 
https://www.intel.co.uk/content/www/uk/en/products/programmable.html 

Jiang, X., Scott, P. J., Whitehouse, D. J., & Blunt, L. (2007). Paradigm shifts in surface metrology. Part I. 
Historical philosophy. Proceedings of the Royal Society A: Mathematical, Physical and 
Engineering Science, 463(2085), 2049-2070. doi:10.1098/rspa.2007.1874 

Kádár, B., Lengyel, A., Monostori, L., Suginishi, Y., Pfeiffer, A., & Nonaka, Y. (2010). Enhanced control of 
complex production structures by tight coupling of the digital and the physical worlds. CIRP 
Annals, 59(1), 437-440. doi:https://doi.org/10.1016/j.cirp.2010.03.123 

Kanawaday, A., & Sane, A. (2018). Machine learning for predictive maintenance of industrial machines 
using IoT sensor data. Paper presented at the Proceedings of the IEEE International Conference 
on Software Engineering and Service Sciences, ICSESS. 

Karasev, P. A., Campbell, D. P., & Richards, M. A. (2007, 17-20 April 2007). Obtaining a 35x Speedup in 
2D Phase Unwrapping Using Commodity Graphics Processors. Paper presented at the Radar 
Conference, 2007 IEEE. 

Karimi, K., Dickson, N. G., & Hamze, F. (2010). A performance comparison of CUDA and OpenCL. arXiv 
preprint arXiv:1005.2581.  

Karpiński, M., Khoma, V., Khoma, A., & Więcław, Ł. (2017, 21-23 Sept. 2017). Segment approximation 
approach for reconstructing of surface topology. Paper presented at the 2017 9th IEEE 
International Conference on Intelligent Data Acquisition and Advanced Computing Systems: 
Technology and Applications (IDAACS). 

Karpinsky, N., Hoke, M., Chen, V., & Zhang, S. (2014). High-resolution, real-time three-dimensional 
shape measurement on graphics processing unit. Optical Engineering, 53(2), 024105-024105. 
doi:10.1117/1.OE.53.2.024105 

https://doi.org/10.1016/j.future.2013.01.010
https://doi.org/10.1016/j.image.2018.07.007
https://github.com/rafat/hsfft
https://www.intel.co.uk/content/www/uk/en/products/programmable.html
https://doi.org/10.1016/j.cirp.2010.03.123


200 

Khan, M. N., Hasnain, S. K., & Jamil, M. (2016). Digital signal processing: a breadth-first approach (Vol. 
1). Aalborg, Denmark: River Publishers. 

Khronos. (2019). OpenCL Overview - The Khronos Group Inc. Retrieved from 
https://www.khronos.org/opencl/ 

Klöpper, B. (2010). First Steps Towards Distributed Multi-objective Scheduling for Self-optimizing 
Manufacturing Systems*. IFAC Proceedings Volumes, 43(4), 332-337. 
doi:https://doi.org/10.3182/20100701-2-PT-4011.00057 

LabVIEW. (2019). Benefits of Programming Graphically in NI LabVIEW [White paper]. Retrieved from 
https://www.ni.com/en-gb/innovations/white-papers/13/benefits-of-programming-
graphically-in-ni-labview.html 

Laney, D. (2001). 3D data management: Controlling data volume, velocity and variety. META group 
research note, 6(70), 1.  

Lasi, H., Fettke, P., Kemper, H.-G., Feld, T., & Hoffmann, M. (2014). Industry 4.0. Business & Information 
Systems Engineering, 6(4), 239-242. doi:10.1007/s12599-014-0334-4 

Lee, J., Bagheri, B., & Kao, H.-A. (2015). A Cyber-Physical Systems architecture for Industry 4.0-based 
manufacturing systems. Manufacturing Letters, 3, 18-23. 
doi:https://doi.org/10.1016/j.mfglet.2014.12.001 

Lee, J., Lapira, E., Bagheri, B., & Kao, H.-a. (2013). Recent advances and trends in predictive 
manufacturing systems in big data environment. Manufacturing Letters, 1(1), 38-41. 
doi:https://doi.org/10.1016/j.mfglet.2013.09.005 

Leo Kumar, S. P. (2017). State of The Art-Intense Review on Artificial Intelligence Systems Application 
in Process Planning and Manufacturing. Engineering Applications of Artificial Intelligence, 65, 
294-329. doi:10.1016/j.engappai.2017.08.005 

Lerner, J., & Triole, J. (2000). The Simple Economics of Open Source. National Bureau of Economic 
Research Working Paper Series, No. 7600. doi:10.3386w7600 

Lewis, T. (1999). The open source acid test. Computer, 32(2), 128-127. doi:10.1109/2.745728 
Li, J., Bloch, P., Xu, J., Sarunic, M. V., & Shannon, L. (2011). Performance and scalability of Fourier domain 

optical coherence tomography acceleration using graphics processing units. Applied optics, 
50(13), 1832-1838. doi:10.1364/AO.50.001832 

Li, J., Sarunic, M. V., & Shannon, L. (2011, 1-3 May 2011). Scalable, High Performance Fourier Domain 
Optical Coherence Tomography: Why FPGAs and Not GPGPUs. Paper presented at the 2011 
IEEE 19th Annual International Symposium on Field-Programmable Custom Computing 
Machines. 

Li, X., Xiao, S., Zhou, Q., Ni, K., & Wang, X. (2019). A real-time distance measurement data processing 
platform for multi-axis grating interferometry type optical encoders. Paper presented at the 
Proceedings of SPIE - The International Society for Optical Engineering. 

Lischner, R. (2013). Exploring C++ 11 (Second;2; ed.). Berkeley, CA: Apress. 
Lu, Y. (2017). Industry 4.0: A survey on technologies, applications and open research issues. Journal of 

Industrial Information Integration, 6, 1-10. doi:https://doi.org/10.1016/j.jii.2017.04.005 
Malcolm, J., Yalamanchili, P., McClanahan, C., Venugopalakrishnan, V., Patel, K., & Melonakos, J. (2012). 

ArrayFire: a GPU acceleration platform. Paper presented at the SPIE Defense, Security, and 
Sensing. 

Martin, H., & Jiang, X. (2013). Dispersed reference interferometry. CIRP Annals - Manufacturing 
Technology, 62(1), 551-554. doi:10.1016/j.cirp.2013.03.104 

Martin, H., Kumar, P., Henning, A., & Jiang, X. (2020). Extended sub-surface imaging in industrial OCT 
using ‘non-diffracting’Bessel beams. CIRP Annals, 69(1), 493-496.  

MATLAB. (2020). MATLAB vs. Python: Top Reasons to Choose MATLAB. Retrieved from 
https://uk.mathworks.com/products/matlab/matlab-vs-python.html 

McDermott, D., Ghallab, M., Howe, A., Knoblock, C., Ram, A., Veloso, M., . . . Wilkins, D. (1998). PDDL-
the planning domain definition language. In: Technical Report CVC TR-98-003/DCS TR-1165, 
Yale Center for Computational …. 

https://www.khronos.org/opencl/
https://doi.org/10.3182/20100701-2-PT-4011.00057
https://www.ni.com/en-gb/innovations/white-papers/13/benefits-of-programming-graphically-in-ni-labview.html
https://www.ni.com/en-gb/innovations/white-papers/13/benefits-of-programming-graphically-in-ni-labview.html
https://doi.org/10.1016/j.mfglet.2014.12.001
https://doi.org/10.1016/j.mfglet.2013.09.005
https://doi.org/10.1016/j.jii.2017.04.005
https://uk.mathworks.com/products/matlab/matlab-vs-python.html


201 

McKeown, P., Wills-Moren, W., & Read, R. (1987). In-Situ Metrology And Machine Based Interferometry 
For Shape Determination (Vol. 0802): SPIE. 

Memeti, S., Pllana, S., Binotto, A., Kołodziej, J., & Brandic, I. (2018). A Review of Machine Learning and 
Meta-heuristic Methods for Scheduling Parallel Computing Systems. Paper presented at the 
Proceedings of the International Conference on Learning and Optimization Algorithms: Theory 
and Applications, Rabat, Morocco. https://doi.org/10.1145/3230905.3230906 

Microsoft. (2016). Ellipsis and Variadic Templates. Retrieved from https://docs.microsoft.com/en-
us/cpp/cpp/ellipses-and-variadic-templates?view=vs-2019 

Microsoft. (2018). QueryPerformanceCounter function. Retrieved from 
https://docs.microsoft.com/en-us/windows/win32/api/profileapi/nf-profileapi-
queryperformancecounter 

Microsoft. (2019, 05/06/2019). Unions. Retrieved from https://docs.microsoft.com/en-
us/cpp/cpp/unions?view=vs-2019 

Monostori, L., Kádár, B., Bauernhansl, T., Kondoh, S., Kumara, S., Reinhart, G., . . . Ueda, K. (2016). Cyber-
physical systems in manufacturing. CIRP Annals, 65(2), 621-641. 
doi:https://doi.org/10.1016/j.cirp.2016.06.005 

Montrym, J. S., Baum, D. R., Dignam, D. L., & Migdal, C. J. (1997). InfiniteReality: A real-time graphics 
system. Paper presented at the Proceedings of the 24th annual conference on Computer 
graphics and interactive techniques. 

Morgan, L., & Finnegan, P. (2007). Benefits and Drawbacks of Open Source Software: An Exploratory 
Study of Secondary Software Firms, Boston, MA. 

Muhamedsalih, H. (2013). Investigation of wavelength scanning interferometry for embedded 
metrology. (PhD). Huddersfield,  

Muhamedsalih, H., Jiang, X., & Gao, F. (2011, 30/6/2011). Acceleration computing process in 
wavelength scanning interferometry. 

Nvidia. (2019). CUDA Zone | NVIDIA Developer. Retrieved from https://developer.nvidia.com/cuda-
zone 

Nvidia. (2021). Nvidia RTX A6000 Datasheet. Retrieved from https://www.nvidia.com/content/dam/en-
zz/Solutions/design-visualization/quadro-product-literature/proviz-print-nvidia-rtx-a6000-
datasheet-us-nvidia-1454980-r9-web%20(1).pdf 

Obitko, M., & Jirkovský, V. (2015). Big data semantics in industry 4.0. Paper presented at the 
International conference on industrial applications of holonic and multi-agent systems. 

Obitko, M., Jirkovský, V., & Bezdíček, J. (2013). Big data challenges in industrial automation. In Industrial 
Applications of Holonic and Multi-Agent Systems (pp. 305-316): Springer. 

Pacholik, A., Muller, M., Fengler, W., Machleidt, T., & Franke, K. H. (2011, 2011). GPU vs FPGA: Example 
Application on White Light Interferometry. 

Parkinson, S., Longstaff, A. P., Fletcher, S., Crampton, A., & Gregory, P. (2012). Automatic planning for 
machine tool calibration: A case study. Expert Syst. Appl., 39(13), 11367–11377. 
doi:10.1016/j.eswa.2012.03.054 

Paulsen, G. Y., Feinberg, J., Cai, X., Nordmoen, B., & Dahle, H. P. (2016, 12-16 June 2016). Matlab2cpp: 
A Matlab-to-C++ code translator. Paper presented at the 2016 11th System of Systems 
Engineering Conference (SoSE). 

PayScale. (2021). Average Software Engineer Salary in United Kingdom. Retrieved from 
https://www.payscale.com/research/UK/Job=Software_Engineer/Salary 

Pednault, E. P. (1989). ADL: Exploring the Middle Ground Between STRIPS and the Situation Calculus. 
Kr, 89, 324-332.  

Peng, Y., Xue, Y., & Gao, R. (2015). An optical Fourier Transform spectrometer based on the Michelson 
interferometer with angle difference between two mirrors. Optik, 126(9-10), 1002-1005. 
doi:10.1016/j.ijleo.2015.01.003 

Pisching, M. A., Junqueira, F., Filho, D. J. S., & Miyagi, P. E. (2015). Service Composition in the Cloud-
Based Manufacturing Focused on the Industry 4.0, Cham. 

https://doi.org/10.1145/3230905.3230906
https://docs.microsoft.com/en-us/cpp/cpp/ellipses-and-variadic-templates?view=vs-2019
https://docs.microsoft.com/en-us/cpp/cpp/ellipses-and-variadic-templates?view=vs-2019
https://docs.microsoft.com/en-us/windows/win32/api/profileapi/nf-profileapi-queryperformancecounter
https://docs.microsoft.com/en-us/windows/win32/api/profileapi/nf-profileapi-queryperformancecounter
https://docs.microsoft.com/en-us/cpp/cpp/unions?view=vs-2019
https://docs.microsoft.com/en-us/cpp/cpp/unions?view=vs-2019
https://doi.org/10.1016/j.cirp.2016.06.005
https://developer.nvidia.com/cuda-zone
https://developer.nvidia.com/cuda-zone
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/quadro-product-literature/proviz-print-nvidia-rtx-a6000-datasheet-us-nvidia-1454980-r9-web%20(1).pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/quadro-product-literature/proviz-print-nvidia-rtx-a6000-datasheet-us-nvidia-1454980-r9-web%20(1).pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/quadro-product-literature/proviz-print-nvidia-rtx-a6000-datasheet-us-nvidia-1454980-r9-web%20(1).pdf
https://www.payscale.com/research/UK/Job=Software_Engineer/Salary


202 

Platforms, G. I. (2012). The rise of industrial big data. GE Intelligent Platforms.  
Pryor, G., Lucey, B., Maddipatla, S., McClanahan, C., Melonakos, J., Venugopalakrishnan, V., . . . 

Malcolm, J. (2011). High-level GPU computing with Jacket for MATLAB and C/C++. Paper 
presented at the Proceedings of SPIE - The International Society for Optical Engineering. 

Purde, A., Meixner, A., Schweizer, H., Zeh, T., & Koch, A. (2004, 18-20 May 2004). Pixel shader based 
real-time image processing for surface metrology. Paper presented at the Instrumentation and 
Measurement Technology Conference, 2004. IMTC 04. Proceedings of the 21st IEEE. 

Putnam, L. H. (1978). A General Empirical Solution to the Macro Software Sizing and Estimating 
Problem. IEEE Transactions on Software Engineering, SE-4(4), 345-361. 
doi:10.1109/TSE.1978.231521 

Ralston, T., Mayen, J., Marks, D., & Boppart, S. (2004). Real-time digital design for an optical coherence 
tomography acquisition and processing system (Vol. 5324): SPIE. 

Rasakanthan, J., Sugden, K., & Tomlins, P. H. (2011). Processing and rendering of Fourier domain optical 
coherence tomography images at a line rate over 524 kHz using a graphics processing unit. 
Journal of Biomedical Optics, 16(2), 020505-020505-020503. doi:10.1117/1.3548153 

Russell, S. J., & Norvig, P. (2010). Artificial intelligence: a modern approach (3rd, International ed.). 
London;Boston, [Mass.];: Pearson. 

Sanchez, M., Exposito, E., & Aguilar, J. (2020). Autonomic computing in manufacturing process 
coordination in industry 4.0 context. Journal of Industrial Information Integration, 19, 100159. 
doi:https://doi.org/10.1016/j.jii.2020.100159 

Sanderson, C. (2010). Armadillo: An open source C++ linear algebra library for fast prototyping and 
computationally intensive experiments.  

Schneider, M., Fey, D., Kapusi, D., & Machleidt, T. (2011). Performance comparison of designated 
preprocessing white light interferometry algorithms on emerging multi- and many-core 
architectures. Procedia Computer Science, 4, 2037-2046. 
doi:https://doi.org/10.1016/j.procs.2011.04.222 

Scholz, T., Rosenberger, M., & Notni, G. (2019). Massively Parallel Implementation of a Fast Resource 
Efficient White Light Interferometry Algorithm. Paper presented at the 2018 International 
Conference on Digital Image Computing: Techniques and Applications, DICTA 2018. 

Strauß, P., Schmitz, M., Wöstmann, R., & Deuse, J. (2019). Enabling of Predictive Maintenance in the 
Brownfield through Low-Cost Sensors, an IIoT-Architecture and Machine Learning. Paper 
presented at the Proceedings - 2018 IEEE International Conference on Big Data, Big Data 2018. 

Sun, H.-W., Zhou, M., & Wolf, C. (2001). A methodology for software development cost analysis in 
information-based manufacturing. Paper presented at the Proceedings 2001 ICRA. IEEE 
International Conference on Robotics and Automation (Cat. No. 01CH37164). 

Sussman, G. J. (1973). A computational model of skill acquisition. Massachusetts Institute of 
Technology,  

Takaya, Y. (2014). In-Process and On-Machine Measurement of Machining Accuracy for Process and 
Product Quality Management: A Review. International Journal of Automation Technology, 8(1), 
4-19. doi:10.20965/ijat.2014.p0004 

Tang, D. (2016). Investigation of Line-Scan Dispersive Interferometry for In-Line Surface Metrology. 
(Doctoral). University of Huddersfield, Retrieved from 
http://eprints.hud.ac.uk/id/eprint/29153/  

Tanuska, P., Spendla, L., Kebisek, M., Duris, R., & Stremy, M. (2021). Smart Anomaly Detection and 
Prediction for Assembly Process Maintenance in Compliance with Industry 4.0. Sensors, 21(7), 
2376. Retrieved from https://www.mdpi.com/1424-8220/21/7/2376 

Tašner, T., Lovrec, D., Tašner, F., & Edler, J. (2012). Comparison of LabVIEW and MATLAB for Scientific 
Research. Annals of the Faculty of Engineering Hunedoara-International Journal of Engineering, 
10(3).  

Thames, L., & Schaefer, D. (2016). Software-defined Cloud Manufacturing for Industry 4.0. Procedia 
CIRP, 52, 12-17. doi:https://doi.org/10.1016/j.procir.2016.07.041 

https://doi.org/10.1016/j.jii.2020.100159
https://doi.org/10.1016/j.procs.2011.04.222
http://eprints.hud.ac.uk/id/eprint/29153/
https://www.mdpi.com/1424-8220/21/7/2376
https://doi.org/10.1016/j.procir.2016.07.041


203 

TinyXML. (2015). TinyXml Main Page. Retrieved from http://www.grinninglizard.com/tinyxml/ 
Tomczewski, S., Pakula, A., Van Erps, J., Thienpont, H., & Salbut, L. (2013). Low-coherence 

interferometry with polynomial interpolation on Compute Unified Device Architecture-enabled 
graphics processing units. Optical Engineering, 52(9), 094105-094105. 
doi:10.1117/1.OE.52.9.094105 

Trojanowski, M., Kraszewski, M., Strakowski, M., & Pluciński, J. (2014). Parallel multithread computing 
for spectroscopic analysis in optical coherence tomography. 

Vacharanukul, K., & Mekid, S. (2005). In-process dimensional inspection sensors. Measurement, 38(3), 
204-218. doi:https://doi.org/10.1016/j.measurement.2005.07.009 

Wally, B., Vyskocil, J., Novak, P., Huemer, C., Sindelar, R., Kadera, P., . . . Wimmer, M. (2019). Production 
planning with IEC 62264 and PDDL. Paper presented at the IEEE International Conference on 
Industrial Informatics (INDIN). 

Wang, J., Zhang, W., Shi, Y., Duan, S., & Liu, J. (2018). Industrial big data analytics: challenges, 
methodologies, and applications. arXiv preprint arXiv:1807.01016.  

Wang, L., Hofer, B., Guggenheim, J. A., & Považay, B. (2012). Graphics processing unit-based dispersion 
encoded full-range frequency-domain optical coherence tomography. Journal of Biomedical 
Optics, 17(7), 077007-077007. doi:10.1117/1.JBO.17.7.077007 

Wang, Y., Oh, C. M., Oliveira, M. C., Islam, M. S., Ortega, A., & Park, B. H. (2012). GPU accelerated real-
time multi-functional spectral-domain optical coherence tomography system at 1300nm. 
Optics Express, 20(14), 14797-14813. doi:10.1364/OE.20.014797 

Wang, Z., & O'Boyle, M. F. P. (2009). Mapping parallelism to multi-cores: A machine learning based 
approach. ACM SIGPLAN Notices, 44(4), 75-84. Retrieved from 
https://www.scopus.com/inward/record.uri?eid=2-s2.0-
70350608629&partnerID=40&md5=06ee7f8ff5f85e1168329699666099ac 

Watanabe, Y., Maeno, S., Aoshima, K., Hasegawa, H., & Koseki, H. (2010). Real-time processing for full-
range Fourier-domain optical-coherence tomography with zero-filling interpolation using 
multiple graphic processing units. Applied optics, 49(25), 4756-4762. 
doi:10.1364/AO.49.004756 

Weill, R., Spur, G., & Eversheim, W. (1982). Survey of computer-aided process planning systems. CIRP 
Annals, 31(2), 539-551.  

Whitehouse, D. J. (2011). Handbook of surface and nanometrology (2nd ed.). Boca Raton, FL: CRC Press. 
Williamson, J. (2016). Dispersed reference interferometry for on-machine metrology. University of 

Huddersfield,  
Williamson, J., Martin, H., & Jiang, X. (2016). High resolution position measurement from dispersed 

reference interferometry using template matching. Optics Express, 24(9), 10103-10114. 
doi:10.1364/OE.24.010103 

Wolpert, D., Kempes, C., Stadler, P. F., & Grochow, J. A. (2019). The energetics of computing in life and 
machines: SFI Press. 

Wolverton, R. W. (1974). The Cost of Developing Large-Scale Software. IEEE Transactions on Computers, 
C-23(6), 615-636. doi:10.1109/T-C.1974.224002 

Xilinx. (2020). Xilinx - Adaptable.  Intelligent. Retrieved from https://www.xilinx.com/ 
Xu, D., Huang, Y., & Kang, J. U. (2014a). GPU-accelerated non-uniform fast Fourier transform-based 

compressive sensing spectral domain optical coherence tomography. Optics Express, 22(12), 
14871-14884. doi:10.1364/OE.22.014871 

Xu, D., Huang, Y., & Kang, J. U. (2014b). Real-time compressive sensing spectral domain optical 
coherence tomography. Optics Letters, 39(1), 76-79. doi:10.1364/OL.39.000076 

Yan, Y., Grossman, M., & Sarkar, V. (2009). JCUDA: A Programmer-Friendly Interface for Accelerating 
Java Programs with CUDA. 

Yasuno, Y., Madjarova, V. D., Makita, S., Akiba, M., Morosawa, A., Chong, C., . . . Yatagai, T. (2005). 
Three-dimensional and high-speed swept-source optical coherence tomography for in vivo 

http://www.grinninglizard.com/tinyxml/
https://doi.org/10.1016/j.measurement.2005.07.009
https://www.scopus.com/inward/record.uri?eid=2-s2.0-70350608629&partnerID=40&md5=06ee7f8ff5f85e1168329699666099ac
https://www.scopus.com/inward/record.uri?eid=2-s2.0-70350608629&partnerID=40&md5=06ee7f8ff5f85e1168329699666099ac
https://www.xilinx.com/


204 

investigation of human anterior eye segments. Optics Express, 13(26), 10652-10664. 
doi:10.1364/OPEX.13.010652 

Zhang, Y., Zhang, G., Wang, J., Sun, S., Si, S., & Yang, T. (2015). Real-time information capturing and 
integration framework of the internet of manufacturing things. International Journal of 
Computer Integrated Manufacturing, 28(8), 811-822. doi:10.1080/0951192X.2014.900874 

Zhong, H., Tang, J., & Zhang, S. (2015). Phase quality map based on local multi-unwrapped results for 
two-dimensional phase unwrapping. Applied optics, 54(4), 739-745. 
doi:10.1364/AO.54.000739 

Zhou, T., Tang, D., Zhu, H., & Wang, L. (2020). Reinforcement Learning with Composite Rewards for 
Production Scheduling in a Smart Factory. IEEE Access.  



 

11 Appendices 

11.1 Sample of Function Files 

11.1.1 getDerivative 

<Function> 

 <Ref>13</Ref> 

 <Name>getDerivative</Name> 

 <Serial>true</Serial> 

 <Parallel>true</Parallel> 

 <GPU>true</GPU> 

 <Description>Calculate the derivative of a signal</Description> 

  <Parameter> 

   <ParameterName>Input</ParameterName> 

   <Type>Type1</Type> 

   <Category>Signal</Category> 

   <Description>No Description Available</Description> 

   <ReadOnly>true</ReadOnly> 

   <MemoryCopy>Input</MemoryCopy> 

  </Parameter> 

  <Parameter> 

   <ParameterName>Output</ParameterName> 

   <Type>Type2</Type> 

   <Category>Signal</Category> 

   <Description>No Description Available</Description> 

   <ReadOnly>false</ReadOnly> 

   <MemoryCopy>Output</MemoryCopy> 

  </Parameter> 

  <Parameter> 

   <ParameterName>Width</ParameterName> 

   <Type>int</Type> 

   <Category>DataPoint</Category> 

   <Description>No Description Available</Description> 

   <ReadOnly>true</ReadOnly> 

  </Parameter> 

  <Parameter> 

   <ParameterName>Height</ParameterName> 

   <Type>int</Type> 

   <Category>DataPoint</Category> 

   <Description>No Description Available</Description> 

   <ReadOnly>true</ReadOnly> 

  </Parameter> 

  <RuntimeOptions>byte,byte,int,int</RuntimeOptions> 

  <RuntimeOptions>byte,int,int,int</RuntimeOptions> 

  <RuntimeOptions>byte,float,int,int</RuntimeOptions> 

  <RuntimeOptions>byte,double,int,int</RuntimeOptions> 

  <RuntimeOptions>int,int,int,int</RuntimeOptions> 

  <RuntimeOptions>int,float,int,int</RuntimeOptions> 

  <RuntimeOptions>int,double,int,int</RuntimeOptions> 

  <RuntimeOptions>float,float,int,int</RuntimeOptions> 

  <RuntimeOptions>float,double,int,int</RuntimeOptions> 

  <RuntimeOptions>double,double,int,int</RuntimeOptions> 

</Function> 

  



206 

11.1.2 Autoconvolution 

<Function> 

 <Ref>6</Ref> 

 <Name>autoConvolution</Name> 

 <Serial>true</Serial> 

 <Parallel>true</Parallel> 

 <GPU>true</GPU>  

  <Parameter> 

   <ParameterName>Input</ParameterName> 

   <Type>Type1</Type> 

   <Category>Signal</Category> 

   <Description>No Description Available</Description> 

   <ReadOnly>true</ReadOnly> 

   <MemoryCopy>Input</MemoryCopy> 

  </Parameter> 

  <Parameter> 

   <ParameterName>Output</ParameterName> 

   <Type>Type1</Type> 

   <Category>Signal</Category> 

   <Description>No Description Available</Description> 

   <ReadOnly>false</ReadOnly> 

   <MemoryCopy>Output</MemoryCopy> 

  </Parameter> 

  <Parameter> 

   <ParameterName>Width</ParameterName> 

   <Type>int</Type> 

   <Category>DataPoint</Category> 

   <Description>No Description Available</Description> 

   <ReadOnly>true</ReadOnly> 

  </Parameter> 

  <Parameter> 

   <ParameterName>Height</ParameterName> 

   <Type>int</Type> 

   <Category>DataPoint</Category> 

   <Description>No Description Available</Description> 

   <ReadOnly>true</ReadOnly> 

  </Parameter> 

  <Parameter> 

   <ParameterName>ResultID</ParameterName> 

   <Type>Type1</Type> 

   <Category>DataPoint</Category> 

   <Description>No Description Available</Description> 

   <ReadOnly>false</ReadOnly> 

   <MemoryCopy>Output</MemoryCopy> 

  </Parameter> 

  <Parameter> 

   <ParameterName>Maximum</ParameterName> 

   <Type>bool</Type> 

   <Category>DataPoint</Category> 

   <Description>No Description Available</Description> 

   <ReadOnly>true</ReadOnly> 

  </Parameter> 

  <RuntimeOptions>int,int,int,int,int,bool</RuntimeOptions> 

  <RuntimeOptions>float,float,int,int,float,bool</RuntimeOptions> 

  <RuntimeOptions>double,double,int,int,double,bool</RuntimeOptions>  

</Function> 

  



207 

11.1.3 CopyFromGPU 

<Function> 

 <Ref>25</Ref> 

 <Name>copyFromGPU</Name> 

 <Serial>false</Serial> 

 <Parallel>false</Parallel> 

 <GPU>true</GPU> 

  <Parameter> 

   <ParameterName>S</ParameterName> 

   <Type>Signal</Type> 

   <Category>Object</Category> 

   <Description>No Description Available</Description> 

   <ReadOnly>true</ReadOnly> 

   <Hidden>true</Hidden> 

   <HiddenParameter>F.Signals[0]</HiddenParameter> 

  </Parameter> 

  <Parameter> 

   <ParameterName>CPU_Input</ParameterName> 

   <Type>Type1</Type> 

   <Category>Signal</Category> 

   <Description>No Description Available</Description> 

   <ReadOnly>false</ReadOnly> 

  </Parameter> 

  <Parameter> 

   <ParameterName>GPU_Output</ParameterName> 

   <Type>Type1</Type> 

   <Category>Signal</Category> 

   <Description>No Description Available</Description> 

   <ReadOnly>false</ReadOnly> 

  </Parameter>  

  <RuntimeOptions>int</RuntimeOptions> 

  <RuntimeOptions>float</RuntimeOptions> 

  <RuntimeOptions>double</RuntimeOptions> 

</Function>   



 

11.2 Configuration Files 

11.2.1 DRI 

11.2.1.1 CPU 

<configurationProperties> 
  <Signal> 

    <ID>0</ID> 

    <Name>Camera</Name> 

    <Type>Byte</Type> 

    <Length>16384</Length> 

    <Width>1</Width> 

    <Depth>1</Depth> 

  </Signal> 

  <Signal> 

    <ID>1</ID> 

    <Name>Interferogram</Name> 

    <Type>Float</Type> 

    <Length>8192</Length> 

    <Width>1</Width> 

    <Depth>1</Depth> 

  </Signal> 

  <Signal> 

    <ID>2</ID> 

    <Name>Derivative</Name> 

    <Type>Float</Type> 

    <Length>8192</Length> 

    <Width>1</Width> 

    <Depth>1</Depth> 

  </Signal> 

  <Signal> 

    <ID>3</ID> 

    <Name>FilteredDeriv</Name> 

    <Type>Float</Type> 

    <Length>8192</Length> 

    <Width>1</Width> 

    <Depth>1</Depth> 

  </Signal> 

  <Signal> 

    <ID>4</ID> 

    <Name>Autoconv</Name> 

    <Type>Float</Type> 

    <Length>8192</Length> 

    <Width>1</Width> 

    <Depth>1</Depth> 

  </Signal> 

  <DataPoint> 

    <ID>0</ID> 

    <Name>SignalWidth</Name> 

    <Type>Int</Type> 

    <ReadOnly>true</ReadOnly> 

    <Value>8192</Value> 

  </DataPoint> 

  <DataPoint> 

    <ID>1</ID> 

    <Name>CameraWidth</Name> 

    <Type>Int</Type> 

    <ReadOnly>true</ReadOnly> 

    <Value>16384</Value> 

  </DataPoint> 

  <DataPoint> 

    <ID>2</ID> 

    <Name>SignalHeight</Name> 

    <Type>Int</Type> 

    <ReadOnly>true</ReadOnly> 

    <Value>1</Value> 

  </DataPoint> 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

<DataPoint> 

    <ID>3</ID> 

    <Name>Alignment</Name> 

    <Type>Bool</Type> 

    <ReadOnly>true</ReadOnly> 

    <Value>true</Value> 

</DataPoint> 

  <DataPoint> 

    <ID>4</ID> 

    <Name>SmoothWidth</Name> 

    <Type>Int</Type> 

    <ReadOnly>true</ReadOnly> 

    <Value>101</Value> 

  </DataPoint> 

  <DataPoint> 

    <ID>5</ID> 

    <Name>SmoothDepth</Name> 

    <Type>Int</Type> 

    <ReadOnly>true</ReadOnly> 

    <Value>2</Value> 

  </DataPoint> 

  <DataPoint> 

    <ID>6</ID> 

    <Name>ACResult</Name> 

    <Type>Float</Type> 

    <ReadOnly>false</ReadOnly> 

    <Value>0</Value> 

  </DataPoint> 

  <DataPoint> 

    <ID>7</ID> 

    <Name>SignalDepth</Name> 

    <Type>Int</Type> 

    <ReadOnly>true</ReadOnly> 

    <Value>1</Value> 

  </DataPoint> 

  <Function> 

    <FunctionConfig> 

      <Name>Basler_GigE</Name> 

      <Ref>0</Ref> 

      <GPU>false</GPU> 

      <Hidden>false</Hidden> 

    </FunctionConfig> 

    <ID>0</ID> 

    <Type>0</Type> 

    <Platform>0</Platform> 

    <Thread>0</Thread> 

    <Signals /> 

    <DataPoints>1,2,7</DataPoints> 

  </Function> 

  <Function> 

    <FunctionConfig> 

      <Name>getData</Name> 

      <Ref>2</Ref> 

      <GPU>false</GPU> 

      <Hidden>false</Hidden> 

    </FunctionConfig> 

    <ID>1</ID> 

    <Type>0</Type> 

    <Platform>0</Platform> 

    <Thread>0</Thread> 

    <Signals>0</Signals> 

    <DataPoints>1,2</DataPoints> 

  </Function> 

  

 

 

 

  

 



209 

 

<Function> 

    <FunctionConfig> 

      <Name>convertBytes</Name> 

      <Ref>8</Ref> 

      <GPU>true</GPU> 

      <Hidden>false</Hidden> 

    </FunctionConfig> 

    <ID>2</ID> 

    <Type>0</Type> 

    <Platform>2</Platform> 

    <Thread>0</Thread> 

    <Signals>0,1</Signals> 

    <DataPoints>3,0,2</DataPoints> 

  </Function> 

  <Function> 

  <Function> 

    <FunctionConfig> 

      <Name>getDerivative</Name> 

      <Ref>13</Ref> 

      <Description>Calculate the derivative 

of a signal</Description> 

      <GPU>true</GPU> 

      <Hidden>false</Hidden> 

    </FunctionConfig> 

    <ID>3</ID> 

    <Type>0</Type> 

    <Platform>2</Platform> 

    <Thread>0</Thread> 

    <Signals>1,2</Signals> 

    <DataPoints>0,2</DataPoints> 

  </Function> 

  <Function> 

    <FunctionConfig> 

      <Name>filter</Name> 

      <Ref>19</Ref> 

      <GPU>true</GPU> 

      <Hidden>false</Hidden> 

    </FunctionConfig> 

    <ID>4</ID> 

    <Type>0</Type> 

    <Platform>2</Platform> 

    <Thread>0</Thread> 

    <Signals>2,3</Signals> 

    <DataPoints>4,5,0,2</DataPoints> 

  </Function> 

  <Function> 

    <FunctionConfig> 

      <Name>autoConvolution</Name> 

      <Ref>5</Ref> 

      <GPU>true</GPU> 

      <Hidden>false</Hidden> 

    </FunctionConfig> 

    <ID>12</ID> 

    <Type>0</Type> 

    <Platform>2</Platform> 

    <Thread>0</Thread> 

    <Signals>3,4</Signals> 

    <DataPoints>0,2,6,3</DataPoints> 

  </Function> 

  <Function> 

    <FunctionConfig> 

      <Name>outputArray</Name> 

      <Ref>3</Ref> 

      <GPU>false</GPU> 

      <Hidden>false</Hidden> 

    </FunctionConfig> 

    <ID>6</ID> 

    <Type>0</Type> 

    <Platform>0</Platform> 

    <Thread>0</Thread> 

    <Signals>1</Signals> 

    <DataPoints /> 

  </Function> 

  

 

 

 

 <Function> 

    <FunctionConfig> 

      <Name>outputArray</Name> 

      <Ref>3</Ref> 

      <GPU>false</GPU> 

      <Hidden>false</Hidden> 

    </FunctionConfig> 

    <ID>7</ID> 

    <Type>0</Type> 

    <Platform>0</Platform> 

    <Thread>0</Thread> 

    <Signals>4</Signals> 

    <DataPoints /> 

  </Function> 

</configurationProperties> 

  



210 

11.2.1.2 GPU 

<configurationProperties> 

  <Signal> 

    <ID>0</ID> 

    <Name>Camera</Name> 

    <Type>Byte</Type> 

    <Length>16384</Length> 

    <Width>1</Width> 

    <Depth>1</Depth> 

  </Signal> 

  <Signal> 

    <ID>1</ID> 

    <Name>Interferogram</Name> 

    <Type>Float</Type> 

    <Length>8192</Length> 

    <Width>1</Width> 

    <Depth>1</Depth> 

  </Signal> 

  <Signal> 

    <ID>2</ID> 

    <Name>Derivative</Name> 

    <Type>Float</Type> 

    <Length>8192</Length> 

    <Width>1</Width> 

    <Depth>1</Depth> 

  </Signal> 

  <Signal> 

    <ID>3</ID> 

    <Name>FilteredDeriv</Name> 

    <Type>Float</Type> 

    <Length>8192</Length> 

    <Width>1</Width> 

    <Depth>1</Depth> 

  </Signal> 

  <Signal> 

    <ID>4</ID> 

    <Name>Autoconv</Name> 

    <Type>Float</Type> 

    <Length>8192</Length> 

    <Width>1</Width> 

    <Depth>1</Depth> 

  </Signal> 

  <DataPoint> 

    <ID>0</ID> 

    <Name>SignalWidth</Name> 

    <Type>Int</Type> 

    <ReadOnly>true</ReadOnly> 

    <Value>8192</Value> 

  </DataPoint> 

  <DataPoint> 

    <ID>1</ID> 

    <Name>CameraWidth</Name> 

    <Type>Int</Type> 

    <ReadOnly>true</ReadOnly> 

    <Value>16384</Value> 

  </DataPoint> 

  <DataPoint> 

    <ID>2</ID> 

    <Name>SignalHeight</Name> 

    <Type>Int</Type> 

    <ReadOnly>true</ReadOnly> 

    <Value>1</Value> 

  </DataPoint> 

  <DataPoint> 

    <ID>3</ID> 

    <Name>Alignment</Name> 

    <Type>Bool</Type> 

    <ReadOnly>true</ReadOnly> 

    <Value>true</Value> 

  </DataPoint> 

   

 

 

 

 

  

 

 <DataPoint> 

    <ID>4</ID> 

    <Name>SmoothWidth</Name> 

    <Type>Int</Type> 

    <ReadOnly>true</ReadOnly> 

    <Value>101</Value> 

  </DataPoint> 

  <DataPoint> 

    <ID>5</ID> 

    <Name>SmoothDepth</Name> 

    <Type>Int</Type> 

    <ReadOnly>true</ReadOnly> 

    <Value>2</Value> 

  </DataPoint> 

  <DataPoint> 

    <ID>6</ID> 

    <Name>ACResult</Name> 

    <Type>Float</Type> 

    <ReadOnly>false</ReadOnly> 

    <Value>0</Value> 

  </DataPoint> 

  <DataPoint> 

    <ID>7</ID> 

    <Name>SignalDepth</Name> 

    <Type>Int</Type> 

    <ReadOnly>true</ReadOnly> 

    <Value>1</Value> 

  </DataPoint> 

  <Function> 

    <FunctionConfig> 

      <Name>Basler_GigE</Name> 

      <Ref>0</Ref> 

      <GPU>false</GPU> 

      <Hidden>false</Hidden> 

    </FunctionConfig> 

    <ID>0</ID> 

    <Type>0</Type> 

    <Platform>0</Platform> 

    <Thread>0</Thread> 

    <Signals /> 

    <DataPoints>1,2,7</DataPoints> 

  </Function> 

  <Function> 

    <FunctionConfig> 

      <Name>getData</Name> 

      <Ref>2</Ref> 

      <GPU>false</GPU> 

      <Hidden>false</Hidden> 

    </FunctionConfig> 

    <ID>1</ID> 

    <Type>0</Type> 

    <Platform>0</Platform> 

    <Thread>0</Thread> 

    <Signals>0</Signals> 

    <DataPoints>1,2</DataPoints> 

  </Function> 

  <Function> 

    <FunctionConfig> 

      <Name>Interferogram_copyToGPU</Name> 

      <Ref>24</Ref> 

      <GPU>true</GPU> 

      <Hidden>false</Hidden> 

    </FunctionConfig> 

    <ID>2</ID> 

    <Type>0</Type> 

    <Platform>2</Platform> 

    <Thread>0</Thread> 

    <Signals>0</Signals> 

    <DataPoints /> 

  </Function> 

   

 

 

 

 



211 

 

  <Function> 

    <FunctionConfig> 

      <Name>convertBytes</Name> 

      <Ref>8</Ref> 

      <GPU>true</GPU> 

      <Hidden>false</Hidden> 

    </FunctionConfig> 

    <ID>3</ID> 

    <Type>0</Type> 

    <Platform>2</Platform> 

    <Thread>0</Thread> 

    <Signals>0,1</Signals> 

    <DataPoints>3,0,2</DataPoints> 

  </Function> 

  <Function> 

    <FunctionConfig> 

     <Name>Interferogram_copyFromGPU</Name> 

      <Ref>25</Ref> 

      <GPU>true</GPU> 

      <Hidden>false</Hidden> 

    </FunctionConfig> 

    <ID>4</ID> 

    <Type>0</Type> 

    <Platform>2</Platform> 

    <Thread>0</Thread> 

    <Signals>1</Signals> 

    <DataPoints /> 

  </Function> 

  <Function> 

    <FunctionConfig> 

      <Name>Interferogram_copyTomGPU</Name> 

      <Ref>24</Ref> 

      <GPU>true</GPU> 

      <Hidden>false</Hidden> 

    </FunctionConfig> 

    <ID>5</ID> 

    <Type>0</Type> 

    <Platform>2</Platform> 

    <Thread>0</Thread> 

    <Signals>1</Signals> 

    <DataPoints /> 

  </Function> 

  <Function> 

    <FunctionConfig> 

      <Name>getDerivative</Name> 

      <Ref>13</Ref> 

      <Description>Calculate the derivative 

of a signal</Description> 

      <GPU>true</GPU> 

      <Hidden>false</Hidden> 

    </FunctionConfig> 

    <ID>6</ID> 

    <Type>0</Type> 

    <Platform>2</Platform> 

    <Thread>0</Thread> 

    <Signals>1,2</Signals> 

    <DataPoints>0,2</DataPoints> 

  </Function> 

 <Function> 

    <FunctionConfig> 

      <Name>Derivative_copyFromGPU</Name> 

      <Ref>25</Ref> 

      <GPU>true</GPU> 

      <Hidden>false</Hidden> 

    </FunctionConfig> 

    <ID>7</ID> 

    <Type>0</Type> 

    <Platform>2</Platform> 

    <Thread>0</Thread> 

    <Signals>2</Signals> 

    <DataPoints /> 

  </Function> 

   

 

 

 

 

  <Function> 

    <FunctionConfig> 

      <Name>Derivative_copyToGPU</Name> 

      <Ref>24</Ref> 

      <GPU>true</GPU> 

      <Hidden>false</Hidden> 

    </FunctionConfig> 

    <ID>8</ID> 

    <Type>0</Type> 

    <Platform>2</Platform> 

    <Thread>0</Thread> 

    <Signals>2</Signals> 

    <DataPoints /> 

  </Function> 

  <Function> 

    <FunctionConfig> 

      <Name>smoothData</Name> 

      <Ref>19</Ref> 

      <GPU>true</GPU> 

      <Hidden>false</Hidden> 

    </FunctionConfig> 

    <ID>9</ID> 

    <Type>0</Type> 

    <Platform>2</Platform> 

    <Thread>0</Thread> 

    <Signals>2,3</Signals> 

    <DataPoints>4,5,0,2</DataPoints> 

  </Function> 

  <Function> 

    <FunctionConfig> 

     <Name>FilteredDeriv_copyFromGPU</Name> 

      <Ref>25</Ref> 

      <GPU>true</GPU> 

      <Hidden>false</Hidden> 

    </FunctionConfig> 

    <ID>10</ID> 

    <Type>0</Type> 

    <Platform>2</Platform> 

    <Thread>0</Thread> 

    <Signals>3</Signals> 

    <DataPoints /> 

  </Function> 

  <Function> 

    <FunctionConfig> 

      <Name>FilteredDeriv_copyToGPU</Name> 

      <Ref>24</Ref> 

      <GPU>true</GPU> 

      <Hidden>false</Hidden> 

    </FunctionConfig> 

    <ID>11</ID> 

    <Type>0</Type> 

    <Platform>2</Platform> 

    <Thread>0</Thread> 

    <Signals>3</Signals> 

    <DataPoints /> 

  </Function> 

  <Function> 

    <FunctionConfig> 

      <Name>autoConvolution</Name> 

      <Ref>6</Ref> 

      <GPU>true</GPU> 

      <Hidden>false</Hidden> 

    </FunctionConfig> 

    <ID>12</ID> 

    <Type>0</Type> 

    <Platform>2</Platform> 

    <Thread>0</Thread> 

    <Signals>3,4</Signals> 

    <DataPoints>0,2,6,3</DataPoints> 

  </Function> 

  

 

 

 

 

 



212 

 

 <Function> 

    <FunctionConfig>    

<Name>autoConvolution_copyFromGPU</Name> 

      <Ref>25</Ref> 

      <GPU>true</GPU> 

      <Hidden>false</Hidden> 

    </FunctionConfig> 

    <ID>13</ID> 

    <Type>0</Type> 

    <Platform>2</Platform> 

    <Thread>0</Thread> 

    <Signals>4</Signals> 

    <DataPoints /> 

  </Function> 

  <Function> 

    <FunctionConfig> 

      <Name>outputArray</Name> 

      <Ref>3</Ref> 

      <GPU>false</GPU> 

      <Hidden>false</Hidden> 

    </FunctionConfig> 

    <ID>14</ID> 

    <Type>0</Type> 

    <Platform>0</Platform> 

    <Thread>0</Thread> 

    <Signals>1</Signals> 

    <DataPoints /> 

  </Function> 

  <Function> 

    <FunctionConfig> 

      <Name>outputArray</Name> 

      <Ref>3</Ref> 

      <GPU>false</GPU> 

      <Hidden>false</Hidden> 

    </FunctionConfig> 

    <ID>15</ID> 

    <Type>0</Type> 

    <Platform>0</Platform> 

    <Thread>0</Thread> 

    <Signals>4</Signals> 

    <DataPoints /> 

  </Function> 

  <Function> 

    <FunctionConfig> 

      <Name>sendData</Name> 

      <Ref>5</Ref> 

      <GPU>false</GPU> 

      <Hidden>false</Hidden> 

    </FunctionConfig> 

    <ID>16</ID> 

    <Type>0</Type> 

    <Platform>0</Platform> 

    <Thread>0</Thread> 

    <Signals /> 

    <DataPoints /> 

  </Function> 

</configurationProperties>



 

11.2.2 LSDI 

11.2.2.1 CPU 

<configurationProperties> 

<Signal> 

 <ID>0</ID> 

 <Name>Lambda</Name> 

 <Type>float</Type> 

 <Length>640</Length> 

 <Width>1</Width> 

 <Depth>1</Depth> 

</Signal> 

<Signal> 

 <ID>1</ID> 

 <Name>interSampleX</Name> 

 <Type>float</Type> 

 <Length>1424</Length> 

 <Width>1</Width> 

 <Depth>1</Depth> 

</Signal> 

<Signal> 

 <ID>2</ID> 

 <Name>Background</Name> 

 <Type>byte</Type> 

 <Length>640</Length> 

 <Width>480</Width> 

 <Depth>1</Depth> 

</Signal> 

<Signal> 

<ID>3</ID> 

<Name>Background_f</Name> 

<Type>float</Type> 

 <Length>640</Length> 

 <Width>480</Width> 

 <Depth>1</Depth> 

</Signal> 

<Signal> 

 <ID>4</ID> 

 <Name>interSampleX_c</Name> 

 <Type>float</Type> 

 <Length>1326</Length> 

 <Width>480</Width> 

 <Depth>1</Depth> 

</Signal> 

<Signal> 

 <ID>5</ID> 

 <Name>Signal</Name> 

 <Type>float</Type> 

 <Length>640</Length> 

 <Width>480</Width> 

 <Depth>1</Depth> 

</Signal> 

<Signal> 

<ID>6</ID> 

<Name>sampleYt1</Name> 

<Type>float</Type> 

<Length>640</Length> 

<Width>480</Width> 

<Depth>1</Depth> 

</Signal> 

<Signal> 

 <ID>7</ID> 

 <Name>interSampleYt1</Name> 

 <Type>float</Type> 

 <Length>1424</Length> 

 <Width>480</Width> 

 <Depth>1</Depth> 

</Signal> 

  

 

 

 

 

 

 

<Signal> 

 <ID>8</ID> 

 <Name>fftResult</Name> 

 <Type>Complex</Type> 

 <Length>1424</Length> 

 <Width>480</Width> 

 <Depth>1</Depth> 

</Signal> 

<Signal> 

 <ID>9</ID> 

 <Name>fftResult_Real</Name> 

 <Type>float</Type> 

 <Length>1424</Length> 

 <Width>480</Width> 

 <Depth>1</Depth> 

</Signal> 

<Signal> 

 <ID>10</ID> 

 <Name>MaxID</Name> 

 <Type>int</Type> 

 <Length>480</Length> 

 <Width>1</Width> 

 <Depth>1</Depth> 

</Signal> 

<Signal> 

 <ID>11</ID> 

 <Name>MaxValue</Name> 

 <Type>float</Type> 

 <Length>480</Length> 

 <Width>1</Width> 

 <Depth>1</Depth> 

</Signal> 

<Signal> 

 <ID>12</ID> 

 <Name>LowCutFreq</Name> 

 <Type>int</Type> 

 <Length>480</Length> 

 <Width>1</Width> 

 <Depth>1</Depth> 

</Signal> 

<Signal> 

 <ID>13</ID> 

 <Name>HighCutFreq</Name> 

 <Type>int</Type> 

 <Length>480</Length> 

 <Width>1</Width> 

 <Depth>1</Depth> 

</Signal> 

<Signal> 

 <ID>14</ID> 

 <Name>ifftResult</Name> 

 <Type>Complex</Type> 

 <Length>1424</Length> 

 <Width>480</Width> 

 <Depth>1</Depth> 

</Signal> 

<Signal> 

 <ID>15</ID> 

 <Name>Phase</Name> 

 <Type>float</Type> 

 <Length>1424</Length> 

 <Width>480</Width> 

 <Depth>1</Depth> 

</Signal> 

<Signal> 

 <ID>16</ID> 

 <Name>unwrapedPhase</Name> 

 <Type>float</Type> 

 <Length>1424</Length> 

 <Width>480</Width> 

 <Depth>1</Depth> 

</Signal> 

  

 

 

 

 



214 

<Signal> 

  <ID>17</ID> 

  <Name>phase_final_c</Name> 

  <Type>float</Type> 

  <Length>1326</Length> 

  <Width>480</Width> 

  <Depth>1</Depth> 

</Signal> 

<Signal> 

 <ID>18</ID> 

 <Name>Polynomial</Name> 

 <Type>float</Type> 

 <Length>2</Length> 

 <Width>480</Width> 

 <Depth>1</Depth> 

</Signal> 

<Signal> 

 <ID>19</ID> 

 <Name>getHeight</Name> 

 <Type>float</Type> 

 <Length>480</Length> 

 <Width>1</Width> 

 <Depth>1</Depth> 

</Signal> 

<Signal> 

 <ID>20</ID> 

 <Name>getHeight2</Name> 

 <Type>float</Type> 

 <Length>480</Length> 

 <Width>1</Width> 

 <Depth>1</Depth> 

</Signal> 

<DataPoint> 

 <ID>0</ID> 

 <Name>Lambda_A</Name> 

 <Type>Double</Type> 

 <ReadOnly>true</ReadOnly> 

 <Value>-0.0000032722</Value> 

</DataPoint> 

<DataPoint> 

 <ID>1</ID> 

 <Name>Lambda_B</Name> 

 <Type>Double</Type> 

 <ReadOnly>true</ReadOnly> 

 <Value>0.083694</Value> 

</DataPoint> 

<DataPoint> 

 <ID>2</ID> 

 <Name>Lambda_C</Name> 

 <Type>Double</Type> 

 <ReadOnly>true</ReadOnly> 

 <Value>604.99</Value> 

</DataPoint> 

<DataPoint> 

 <ID>3</ID> 

 <Name>Width</Name> 

 <Type>int</Type> 

 <ReadOnly>true</ReadOnly> 

 <Value>640</Value> 

</DataPoint> 

<DataPoint> 

 <ID>4</ID> 

 <Name>SamplingPoints</Name> 

 <Type>int</Type> 

 <ReadOnly>true</ReadOnly> 

 <Value>1424</Value> 

</DataPoint> 

<DataPoint> 

 <ID>5</ID> 

 <Name>Height</Name> 

 <Type>int</Type> 

 <ReadOnly>true</ReadOnly> 

 <Value>480</Value> 

</DataPoint> 

<DataPoint> 

 <ID>6</ID> 

 <Name>pointSpacing</Name> 

 <Type>float</Type> 

 <ReadOnly>true</ReadOnly> 

 <Value>0.007</Value> 

</DataPoint> 

<DataPoint> 

 <ID>7</ID> 

 <Name>lCutOff</Name> 

 <Type>float</Type> 

 <ReadOnly>true</ReadOnly> 

 <Value>0.3</Value> 

</DataPoint> 

<DataPoint> 

 <ID>8</ID> 

 <Name>hCutOff</Name> 

 <Type>float</Type> 

 <ReadOnly>true</ReadOnly> 

 <Value>0</Value> 

</DataPoint> 

<DataPoint> 

 <ID>9</ID> 

 <Name>window_Start</Name> 

 <Type>int</Type> 

 <ReadOnly>true</ReadOnly> 

 <Value>49</Value> 

</DataPoint> 

<DataPoint> 

 <ID>10</ID> 

 <Name>SamplingPoints2</Name> 

 <Type>int</Type> 

 <ReadOnly>true</ReadOnly> 

 <Value>1326</Value> 

</DataPoint> 

<DataPoint> 

 <ID>11</ID> 

 <Name>Area</Name> 

 <Type>int</Type> 

 <ReadOnly>true</ReadOnly> 

 <Value>307200</Value> 

</DataPoint> 

<DataPoint> 

 <ID>12</ID> 

 <Name>FFT_Forward</Name> 

 <Type>int</Type> 

 <ReadOnly>true</ReadOnly> 

 <Value>1</Value> 

</DataPoint> 

<DataPoint> 

 <ID>13</ID> 

 <Name>HalfSamplingPoints</Name> 

 <Type>int</Type> 

 <ReadOnly>true</ReadOnly> 

 <Value>712</Value> 

</DataPoint> 

<DataPoint> 

 <ID>14</ID> 

 <Name>zero_Start</Name> 

 <Type>int</Type> 

 <ReadOnly>true</ReadOnly> 

 <Value>0</Value> 

</DataPoint> 

<DataPoint> 

 <ID>15</ID> 

 <Name>zero_End</Name> 

 <Type>int</Type> 

 <ReadOnly>true</ReadOnly> 

 <Value>2</Value> 

</DataPoint> 

<DataPoint> 

 <ID>16</ID> 

 <Name>FFT_Backward</Name> 

 <Type>int</Type> 

 <ReadOnly>true</ReadOnly> 

 <Value>-1</Value> 

</DataPoint> 

 

 

 



215 

<DataPoint> 

 <ID>17</ID> 

 <Name>polynomialOrder</Name> 

 <Type>int</Type> 

 <ReadOnly>true</ReadOnly> 

 <Value>2</Value> 

</DataPoint> 

<DataPoint> 

 <ID>18</ID> 

 <Name>SamplingCenter</Name> 

 <Type>int</Type> 

 <ReadOnly>true</ReadOnly> 

 <Value>711</Value> 

</DataPoint> 

<DataPoint> 

 <ID>19</ID> 

 <Name>scaleChange</Name> 

 <Type>int</Type> 

 <ReadOnly>true</ReadOnly> 

 <Value>1000</Value> 

</DataPoint> 

<DataPoint> 

 <ID>20</ID> 

 <Name>saveFolder</Name> 

 <Type>string</Type> 

 <ReadOnly>true</ReadOnly> 

 <Value>D:\Platform\</Value> 

</DataPoint> 

<DataPoint> 

 <ID>21</ID> 

 <Name>flipBMP</Name> 

 <Type>bool</Type> 

 <ReadOnly>true</ReadOnly> 

 <Value>true</Value> 

</DataPoint> 

<DataPoint> 

 <ID>22</ID> 

 <Name>FileName1</Name> 

 <Type>string</Type> 

 <ReadOnly>true</ReadOnly> 

 <Value>getHeight1</Value> 

</DataPoint> 

<DataPoint> 

 <ID>23</ID> 

 <Name>FileName2</Name> 

 <Type>string</Type> 

 <ReadOnly>true</ReadOnly> 

 <Value>getHeight2</Value> 

</DataPoint> 

DataPoint> 

 <ID>24</ID> 

 <Name>importBackground</Name> 

 <Type>string</Type> 

 <ReadOnly>true</ReadOnly> 

 <Value>background.bmp</Value> 

</DataPoint> 

<DataPoint> 

 <ID>25</ID> 

 <Name>importSignal</Name> 

 <Type>string</Type> 

 <ReadOnly>true</ReadOnly> 

 <Value>measurement47nm.bmp</Value> 

</DataPoint> 

<DataPoint> 

 <ID>26</ID> 

 <Name>singleHeight</Name> 

 <Type>int</Type> 

 <ReadOnly>true</ReadOnly> 

 <Value>1</Value> 

</DataPoint> 

<DataPoint> 

 <ID>27</ID> 

 <Name>cameraOffset</Name> 

 <Type>int</Type> 

 <ReadOnly>true</ReadOnly> 

 <Value>2596</Value> 

</DataPoint> 

<DataPoint> 

 <ID>28</ID> 

 <Name>cameraRowOffset</Name> 

 <Type>int</Type> 

 <ReadOnly>true</ReadOnly> 

 <Value>8</Value> 

</DataPoint> 

<DataPoint> 

 <ID>29</ID> 

 <Name>cameraFileLocation</Name> 

 <Type>string</Type> 

 <ReadOnly>true</ReadOnly> 

<Value>D:\\FringeOrder\\LSDI.cxf</Value> 

</DataPoint> 

<DataPoint> 

 <ID>30</ID> 

 <Name>cameraChannel</Name> 

 <Type>int</Type> 

 <ReadOnly>true</ReadOnly> 

 <Value>1</Value> 

</DataPoint> 

<Function> 

 <FunctionConfig> 

  <Name>importBMP</Name> 

  <Ref>45</Ref> 

  <GPU>false</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>0</ID> 

 <Type>1</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>2</Signals> 

 <DataPoints>20,24</DataPoints> 

</Function> 

<Function> 

 <FunctionConfig> 

  <Name>createLamda</Name> 

  <Ref>48</Ref> 

  <GPU>false</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>1</ID> 

 <Type>1</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>0</Signals> 

 <DataPoints>0,1,2,3</DataPoints> 

</Function> 

<Function> 

 <FunctionConfig> 

  <Name>linspace</Name> 

  <Ref>49</Ref> 

  <GPU>false</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>2</ID> 

 <Type>1</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>1,0</Signals> 

 <DataPoints>3,4</DataPoints> 

</Function> 

<Function> 

 <FunctionConfig> 

  <Name>GaussianFilter</Name> 

  <Ref>50</Ref> 

  <GPU>false</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>3</ID> 

 <Type>1</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>2,3</Signals> 

 <DataPoints>3,5,6,7,8</DataPoints> 

</Function> 



216 

<Function> 

 <FunctionConfig> 

  <Name>windowSignal</Name> 

  <Ref>38</Ref> 

  <GPU>false</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>4</ID> 

 <Type>1</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>1,4</Signals> 

 <DataPoints>9,10,4,26</DataPoints> 

</Function> 

<Function> 

 <FunctionConfig> 

  <Name>startCamera</Name> 

  <Ref>52</Ref> 

  <GPU>false</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>6</ID> 

 <Type>1</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>5</Signals> 

 <DataPoints>29,30</DataPoints> 

</Function> 

<Function> 

 <FunctionConfig> 

  <Name>getSignal</Name> 

  <Ref>53</Ref> 

  <GPU>false</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>5</ID> 

 <Type>0</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>5</Signals> 

 <DataPoints>5,3,27,28,14</DataPoints> 

</Function> 

<Function> 

 <FunctionConfig> 

  <Name>divide</Name> 

  <Ref>30</Ref> 

  <GPU>true</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>7</ID> 

 <Type>0</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>5,3,6</Signals> 

 <DataPoints>3,5</DataPoints> 

</Function> 

<Function> 

 <FunctionConfig> 

  <Name>Interpolation</Name> 

  <Ref>44</Ref> 

  <GPU>false</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>8</ID> 

 <Type>0</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>0,6,1,7</Signals> 

 <DataPoints>3,5,4</DataPoints> 

</Function> 

 

 

 

 

 

 

 

<Function> 

 <FunctionConfig> 

  <Name>FFT</Name> 

  <Ref>41</Ref> 

  <GPU>true</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>9</ID> 

 <Type>0</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>7,8</Signals> 

 <DataPoints>4,5</DataPoints> 

</Function> 

<Function> 

 <FunctionConfig> 

  <Name>Divide2</Name> 

  <Ref>32</Ref> 

  <GPU>true</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>10</ID> 

 <Type>0</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>8,8</Signals> 

 <DataPoints>4,3,5</DataPoints> 

</Function> 

<Function> 

 <FunctionConfig> 

  <Name>Absolute</Name> 

  <Ref>26</Ref> 

  <GPU>true</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>11</ID> 

 <Type>0</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>8,9</Signals> 

 <DataPoints>4,5</DataPoints> 

</Function> 

<Function> 

 <FunctionConfig> 

  <Name>Zero_Start</Name> 

  <Ref>39</Ref> 

  <GPU>true</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>12</ID> 

 <Type>0</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>9</Signals> 

 <DataPoints>14,15,4,5</DataPoints> 

</Function> 

<Function> 

 <FunctionConfig> 

  <Name>Zero_End</Name> 

  <Ref>39</Ref> 

  <GPU>true</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>13</ID> 

 <Type>0</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>9</Signals> 

 <DataPoints>13,4,4,5</DataPoints> 

</Function> 

 

 

 

 

 

 

 



217 

<Function> 

 <FunctionConfig> 

  <Name>getMax</Name> 

  <Ref>34</Ref> 

  <GPU>true</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>14</ID> 

 <Type>0</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>9,10,11</Signals> 

 <DataPoints>4,5</DataPoints> 

</Function> 

<Function> 

 <FunctionConfig> 

  <Name>Logic</Name> 

  <Ref>43</Ref> 

  <GPU>true</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>15</ID> 

 <Type>0</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>10,12,13</Signals> 

 <DataPoints>5</DataPoints> 

</Function> 

<Function> 

 <FunctionConfig> 

  <Name>Subtract</Name> 

  <Ref>35</Ref> 

  <GPU>true</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>16</ID> 

 <Type>0</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>10,12,12</Signals> 

 <DataPoints>5</DataPoints> 

</Function> 

<Function> 

 <FunctionConfig> 

  <Name>Add</Name> 

  <Ref>36</Ref> 

  <GPU>true</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>17</ID> 

 <Type>0</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>10,13,13</Signals> 

 <DataPoints>5</DataPoints> 

</Function> 

<Function> 

 <FunctionConfig> 

  <Name>zeroComplex_Start</Name> 

  <Ref>40</Ref> 

  <GPU>true</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>18</ID> 

 <Type>0</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>8,12</Signals> 

 <DataPoints>14,4,5</DataPoints> 

</Function> 

 

 

 

 

 

 

 

<Function> 

 <FunctionConfig> 

  <Name>zeroComplex_End</Name> 

  <Ref>40</Ref> 

  <GPU>true</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>19</ID> 

 <Type>0</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>8,13</Signals> 

 <DataPoints>4,4,5</DataPoints> 

</Function>  

<Function> 

 <FunctionConfig> 

  <Name>IFFT</Name> 

  <Ref>42</Ref> 

  <GPU>true</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>20</ID> 

 <Type>0</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>8,14</Signals> 

 <DataPoints>4,5,16</DataPoints> 

</Function> 

<Function> 

 <FunctionConfig> 

  <Name>divide3</Name> 

  <Ref>32</Ref> 

  <GPU>true</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>21</ID> 

 <Type>0</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>14,14</Signals> 

 <DataPoints>4,3,5</DataPoints> 

</Function> 

<Function> 

 <FunctionConfig> 

  <Name>complexLog</Name> 

  <Ref>29</Ref> 

  <GPU>true</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>22</ID> 

 <Type>0</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>14,14</Signals> 

 <DataPoints>4,5</DataPoints> 

</Function> 

<Function> 

 <FunctionConfig> 

  <Name>getImag</Name> 

  <Ref>33</Ref> 

  <GPU>true</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>23</ID> 

 <Type>0</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>14,15</Signals> 

 <DataPoints>4,5</DataPoints> 

</Function> 

 

 

 

 

 

 

 



218 

<Function> 

 <FunctionConfig> 

  <Name>unWrapPhase</Name> 

  <Ref>37</Ref> 

  <GPU>true</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>24</ID> 

 <Type>0</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>15,16</Signals> 

 <DataPoints>4,5</DataPoints> 

</Function> 

<Function> 

 <FunctionConfig> 

  <Name>windowSignal</Name> 

  <Ref>38</Ref> 

  <GPU>true</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>25</ID> 

 <Type>0</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>16,17</Signals> 

 <DataPoints>9,10,4,5</DataPoints> 

</Function> 

<Function> 

 <FunctionConfig> 

  <Name>polyFit</Name> 

  <Ref>51</Ref> 

  <GPU>true</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>26</ID> 

 <Type>0</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>4,17,18</Signals> 

 <DataPoints>17,10,5</DataPoints> 

</Function> 

<Function> 

 <FunctionConfig> 

  <Name>calcHeight1</Name> 

  <Ref>27</Ref> 

  <GPU>true</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>27</ID> 

 <Type>0</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>18,19</Signals> 

 <DataPoints>5</DataPoints> 

</Function> 

<Function> 

 <FunctionConfig> 

  <Name>calcHeight2</Name> 

  <Ref>28</Ref> 

  <GPU>true</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>28</ID> 

 <Type>0</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>1,15,19,20</Signals> 

 <DataPoints>18,4,5</DataPoints> 

</Function> 

 

 

 

 

 

 

 

<Function> 

 <FunctionConfig> 

  <Name>Divide4</Name> 

  <Ref>31</Ref> 

  <GPU>true</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>29</ID> 

 <Type>0</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>19,19</Signals> 

 <DataPoints>19,5,26</DataPoints> 

</Function> 

<Function> 

 <FunctionConfig> 

  <Name>Divide5</Name> 

  <Ref>31</Ref> 

  <GPU>true</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>30</ID> 

 <Type>0</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>20,20</Signals> 

 <DataPoints>19,5,26</DataPoints> 

</Function> 

<Function> 

 <FunctionConfig> 

  <Name>saveCSV</Name> 

  <Ref>47</Ref> 

  <GPU>false</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>31</ID> 

 <Type>0</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>19</Signals> 

 <DataPoints>20,22,5</DataPoints> 

</Function> 

<Function> 

 <FunctionConfig> 

  <Name>saveCSV</Name> 

  <Ref>47</Ref> 

  <GPU>false</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>32</ID> 

 <Type>0</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>20</Signals> 

 <DataPoints>20,23,5</DataPoints> 

</Function> 

</configurationProperties> 

  



219 

11.2.2.2 GPU 

<Signal> 

 <ID>0</ID> 

 <Name>Lambda</Name> 

 <Type>float</Type> 

 <Length>640</Length> 

 <Width>1</Width> 

 <Depth>1</Depth> 

</Signal> 

<Signal> 

 <ID>1</ID> 

 <Name>interSampleX</Name> 

 <Type>float</Type> 

 <Length>1424</Length> 

 <Width>1</Width> 

 <Depth>1</Depth> 

</Signal> 

<Signal> 

 <ID>2</ID> 

 <Name>Background</Name> 

 <Type>byte</Type> 

 <Length>640</Length> 

 <Width>480</Width> 

 <Depth>1</Depth> 

</Signal> 

<Signal> 

 <ID>3</ID> 

 <Name>Background_f</Name> 

 <Type>float</Type> 

 <Length>640</Length> 

 <Width>480</Width> 

 <Depth>1</Depth> 

</Signal> 

<Signal> 

 <ID>4</ID> 

 <Name>interSampleX_c</Name> 

 <Type>float</Type> 

 <Length>1326</Length> 

 <Width>1</Width> 

 <Depth>1</Depth> 

</Signal> 

<Signal> 

 <ID>5</ID> 

 <Name>Signal</Name> 

 <Type>byte</Type> 

 <Length>640</Length> 

 <Width>480</Width> 

 <Depth>1</Depth> 

</Signal> 

<Signal> 

 <ID>6</ID> 

 <Name>sampleYt1</Name> 

 <Type>float</Type> 

 <Length>640</Length> 

 <Width>480</Width> 

 <Depth>1</Depth> 

</Signal> 

<Signal> 

 <ID>7</ID> 

 <Name>interSampleYt1</Name> 

 <Type>float</Type> 

 <Length>1424</Length> 

 <Width>480</Width> 

 <Depth>1</Depth> 

</Signal> 

<Signal> 

 <ID>8</ID> 

 <Name>fftResult</Name> 

 <Type>Complex</Type> 

 <Length>1424</Length> 

 <Width>480</Width> 

 <Depth>1</Depth> 

</Signal> 

 

 

 

 

<Signal> 

 <ID>9</ID> 

 <Name>fftResult_Real</Name> 

 <Type>float</Type> 

 <Length>1424</Length> 

 <Width>480</Width> 

 <Depth>1</Depth> 

</Signal> 

<Signal> 

 <ID>10</ID> 

 <Name>MaxID</Name> 

 <Type>int</Type> 

 <Length>480</Length> 

 <Width>1</Width> 

 <Depth>1</Depth> 

</Signal> 

<Signal> 

 <ID>11</ID> 

 <Name>MaxValue</Name> 

 <Type>float</Type> 

 <Length>480</Length> 

 <Width>1</Width> 

 <Depth>1</Depth> 

</Signal> 

<Signal> 

 <ID>12</ID> 

 <Name>LowCutFreq</Name> 

 <Type>int</Type> 

 <Length>480</Length> 

 <Width>1</Width> 

 <Depth>1</Depth> 

</Signal> 

<Signal> 

 <ID>13</ID> 

 <Name>HighCutFreq</Name> 

 <Type>int</Type> 

 <Length>480</Length> 

 <Width>1</Width> 

 <Depth>1</Depth> 

</Signal> 

<Signal> 

 <ID>14</ID> 

 <Name>ifftResult</Name> 

 <Type>Complex</Type> 

 <Length>1424</Length> 

 <Width>480</Width> 

 <Depth>1</Depth> 

</Signal> 

<Signal> 

 <ID>15</ID> 

 <Name>Phase</Name> 

 <Type>float</Type> 

 <Length>1424</Length> 

 <Width>480</Width> 

 <Depth>1</Depth> 

</Signal> 

<Signal> 

 <ID>16</ID> 

 <Name>unwrapedPhase</Name> 

 <Type>float</Type> 

 <Length>1424</Length> 

 <Width>480</Width> 

 <Depth>1</Depth> 

</Signal> 

<Signal> 

 <ID>17</ID> 

 <Name>phase_final_c</Name> 

 <Type>float</Type> 

 <Length>1326</Length> 

 <Width>480</Width> 

 <Depth>1</Depth> 

</Signal> 

 

 

 



220 

 

 

<Signal> 

 <ID>18</ID> 

 <Name>Polynomial</Name> 

 <Type>float</Type> 

 <Length>2</Length> 

 <Width>480</Width> 

 <Depth>1</Depth> 

</Signal> 

<Signal> 

 <ID>19</ID> 

 <Name>getHeight</Name> 

 <Type>float</Type> 

 <Length>480</Length> 

 <Width>1</Width> 

 <Depth>1</Depth> 

</Signal> 

<Signal> 

 <ID>20</ID> 

 <Name>getHeight2</Name> 

 <Type>float</Type> 

 <Length>480</Length> 

 <Width>1</Width> 

 <Depth>1</Depth> 

</Signal> 

<DataPoint> 

 <ID>0</ID> 

 <Name>Lambda_A</Name> 

 <Type>Double</Type> 

 <ReadOnly>true</ReadOnly> 

 <Value>-0.0000032722</Value> 

</DataPoint> 

<DataPoint> 

 <ID>1</ID> 

 <Name>Lambda_B</Name> 

 <Type>Double</Type> 

 <ReadOnly>true</ReadOnly> 

 <Value>0.083694</Value> 

</DataPoint> 

<DataPoint> 

 <ID>2</ID> 

 <Name>Lambda_C</Name> 

 <Type>Double</Type> 

 <ReadOnly>true</ReadOnly> 

 <Value>604.99</Value> 

</DataPoint> 

<DataPoint> 

 <ID>3</ID> 

 <Name>Width</Name> 

 <Type>int</Type> 

 <ReadOnly>true</ReadOnly> 

 <Value>640</Value> 

</DataPoint> 

<DataPoint> 

 <ID>4</ID> 

 <Name>SamplingPoints</Name> 

 <Type>int</Type> 

 <ReadOnly>true</ReadOnly> 

 <Value>1424</Value> 

</DataPoint> 

<DataPoint> 

 <ID>5</ID> 

 <Name>Height</Name> 

 <Type>int</Type> 

 <ReadOnly>true</ReadOnly> 

 <Value>480</Value> 

</DataPoint> 

<DataPoint> 

 <ID>6</ID> 

 <Name>pointSpacing</Name> 

 <Type>float</Type> 

 <ReadOnly>true</ReadOnly> 

 <Value>0.007</Value> 

</DataPoint> 

 

 

 

 

<DataPoint> 

 <ID>7</ID> 

 <Name>lCutOff</Name> 

 <Type>float</Type> 

 <ReadOnly>true</ReadOnly> 

 <Value>0.3</Value> 

</DataPoint> 

<DataPoint> 

 <ID>8</ID> 

 <Name>hCutOff</Name> 

 <Type>float</Type> 

 <ReadOnly>true</ReadOnly> 

 <Value>0</Value> 

</DataPoint> 

<DataPoint> 

 <ID>9</ID> 

 <Name>window_Start</Name> 

 <Type>int</Type> 

 <ReadOnly>true</ReadOnly> 

 <Value>49</Value> 

</DataPoint> 

<DataPoint> 

 <ID>10</ID> 

 <Name>SamplingPoints2</Name> 

 <Type>int</Type> 

 <ReadOnly>true</ReadOnly> 

 <Value>1326</Value> 

</DataPoint> 

<DataPoint> 

 <ID>11</ID> 

 <Name>Area</Name> 

 <Type>int</Type> 

 <ReadOnly>true</ReadOnly> 

 <Value>307200</Value> 

</DataPoint> 

<DataPoint> 

 <ID>12</ID> 

 <Name>FFT_Forward</Name> 

 <Type>int</Type> 

 <ReadOnly>true</ReadOnly> 

 <Value>1</Value> 

</DataPoint> 

<DataPoint> 

 <ID>13</ID> 

 <Name>HalfSamplingPoints</Name> 

 <Type>int</Type> 

 <ReadOnly>true</ReadOnly> 

 <Value>712</Value> 

</DataPoint> 

<DataPoint> 

 <ID>14</ID> 

 <Name>zero_Start</Name> 

 <Type>int</Type> 

 <ReadOnly>true</ReadOnly> 

 <Value>0</Value> 

</DataPoint> 

<DataPoint> 

 <ID>15</ID> 

 <Name>zero_End</Name> 

 <Type>int</Type> 

 <ReadOnly>true</ReadOnly> 

 <Value>2</Value> 

</DataPoint> 

<DataPoint> 

 <ID>16</ID> 

 <Name>FFT_Backward</Name> 

 <Type>int</Type> 

 <ReadOnly>true</ReadOnly> 

 <Value>-1</Value> 

</DataPoint> 

 

 

 

 

 



221 

 

<DataPoint> 

 <ID>17</ID> 

 <Name>polynomialOrder</Name> 

 <Type>int</Type> 

 <ReadOnly>true</ReadOnly> 

 <Value>2</Value> 

</DataPoint> 

<DataPoint> 

 <ID>18</ID> 

 <Name>SamplingCenter</Name> 

 <Type>int</Type> 

 <ReadOnly>true</ReadOnly> 

 <Value>711</Value> 

</DataPoint> 

<DataPoint> 

 <ID>19</ID> 

 <Name>scaleChange</Name> 

 <Type>int</Type> 

 <ReadOnly>true</ReadOnly> 

 <Value>1000</Value> 

</DataPoint> 

<DataPoint> 

 <ID>20</ID> 

 <Name>saveFolder</Name> 

 <Type>string</Type> 

 <ReadOnly>true</ReadOnly> 

 <Value>E:\Platform\</Value> 

</DataPoint> 

<DataPoint> 

 <ID>21</ID> 

 <Name>flipBMP</Name> 

 <Type>bool</Type> 

 <ReadOnly>true</ReadOnly> 

 <Value>true</Value> 

</DataPoint> 

<DataPoint> 

 <ID>22</ID> 

 <Name>FileName1</Name> 

 <Type>string</Type> 

 <ReadOnly>true</ReadOnly> 

 <Value>getHeight1</Value> 

</DataPoint> 

<DataPoint> 

 <ID>23</ID> 

 <Name>FileName2</Name> 

 <Type>string</Type> 

 <ReadOnly>true</ReadOnly> 

 <Value>getHeight2</Value> 

</DataPoint> 

<DataPoint> 

 <ID>24</ID> 

 <Name>importBackground</Name> 

 <Type>string</Type> 

 <ReadOnly>true</ReadOnly> 

 <Value>background.bmp</Value> 

</DataPoint> 

<DataPoint> 

 <ID>25</ID> 

 <Name>importSignal</Name> 

 <Type>string</Type> 

 <ReadOnly>true</ReadOnly> 

 <Value>measurement47nm.bmp</Value> 

</DataPoint> 

<DataPoint> 

 <ID>26</ID> 

 <Name>singleHeight</Name> 

 <Type>int</Type> 

 <ReadOnly>true</ReadOnly> 

 <Value>1</Value> 

</DataPoint> 

<DataPoint> 

 <ID>27</ID> 

 <Name>cameraOffset</Name> 

 <Type>int</Type> 

 <ReadOnly>true</ReadOnly> 

 <Value>2596</Value> 

</DataPoint> 

<DataPoint> 

 <ID>28</ID> 

 <Name>cameraRowOffset</Name> 

 <Type>int</Type> 

 <ReadOnly>true</ReadOnly> 

 <Value>8</Value> 

</DataPoint> 

<DataPoint> 

 <ID>29</ID> 

 <Name>cameraFileLocation</Name> 

 <Type>string</Type> 

 <ReadOnly>true</ReadOnly> 

 <Value>D:\\FringeOrder\\LSDI.cxf</Value> 

</DataPoint> 

<DataPoint> 

 <ID>30</ID> 

 <Name>cameraChannel</Name> 

 <Type>int</Type> 

 <ReadOnly>true</ReadOnly> 

 <Value>1</Value> 

</DataPoint> 

<Function> 

 <FunctionConfig> 

  <Name>importBMP</Name> 

  <Ref>45</Ref> 

  <GPU>false</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>0</ID> 

 <Type>1</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>2</Signals> 

 <DataPoints>20,24</DataPoints> 

</Function> 

<Function> 

 <FunctionConfig> 

  <Name>createLamda</Name> 

  <Ref>48</Ref> 

  <GPU>false</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>1</ID> 

 <Type>1</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>0</Signals> 

 <DataPoints>0,1,2,3</DataPoints> 

</Function> 

<Function> 

 <FunctionConfig> 

  <Name>linspace</Name> 

  <Ref>49</Ref> 

  <GPU>false</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>2</ID> 

 <Type>1</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>1,0</Signals> 

 <DataPoints>3,4</DataPoints> 

</Function> 

<Function> 

 <FunctionConfig> 

  <Name>GaussianFilter</Name> 

  <Ref>50</Ref> 

  <GPU>false</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>3</ID> 

 <Type>1</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>2,3</Signals> 

 <DataPoints>3,5,6,7,8</DataPoints> 



222 

</Function> 

<Function> 

 <FunctionConfig> 

  <Name>copyToGPU</Name> 

  <Ref>24</Ref> 

  <GPU>true</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>4</ID> 

 <Type>1</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>3</Signals> 

 <DataPoints></DataPoints> 

</Function> 

<Function> 

 <FunctionConfig> 

  <Name>copyToGPU</Name> 

  <Ref>24</Ref> 

  <GPU>true</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>5</ID> 

 <Type>1</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>1</Signals> 

 <DataPoints></DataPoints> 

</Function> 

<Function> 

 <FunctionConfig> 

  <Name>windowSignal</Name> 

  <Ref>38</Ref> 

  <GPU>true</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>6</ID> 

 <Type>1</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>1,4</Signals> 

 <DataPoints>9,10,4,26</DataPoints> 

</Function> 

<Function> 

 <FunctionConfig> 

  <Name>copyToCPU</Name> 

  <Ref>25</Ref> 

  <GPU>true</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>7</ID> 

 <Type>1</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>4</Signals> 

 <DataPoints></DataPoints> 

</Function> 

<Function> 

 <FunctionConfig> 

  <Name>startCamera</Name> 

  <Ref>52</Ref> 

  <GPU>false</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>8</ID> 

 <Type>1</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>5</Signals> 

 <DataPoints>29,30</DataPoints> 

</Function> 

 

 

 

 

 

 

 

<Function> 

 <FunctionConfig> 

  <Name>importBMP</Name> 

  <Ref>45</Ref> 

  <GPU>false</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>0</ID> 

 <Type>1</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>5</Signals> 

 <DataPoints>20,25</DataPoints> 

</Function> 

<Function> 

 <FunctionConfig> 

  <Name>copyToGPU</Name> 

  <Ref>24</Ref> 

  <GPU>true</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>10</ID> 

 <Type>0</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>5</Signals> 

 <DataPoints></DataPoints> 

</Function> 

<Function> 

 <FunctionConfig> 

  <Name>divide</Name> 

  <Ref>30</Ref> 

  <GPU>true</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>11</ID> 

 <Type>0</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>5,3,6</Signals> 

 <DataPoints>3,5</DataPoints> 

</Function> 

<Function> 

 <FunctionConfig> 

  <Name>copyToCPU</Name> 

  <Ref>25</Ref> 

  <GPU>true</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>12</ID> 

 <Type>0</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>6</Signals> 

 <DataPoints></DataPoints> 

</Function> 

<Function> 

 <FunctionConfig> 

  <Name>Interpolation</Name> 

  <Ref>44</Ref> 

  <GPU>false</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>13</ID> 

 <Type>0</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>0,6,1,7</Signals> 

 <DataPoints>3,5,4</DataPoints> 

</Function> 

 

 

 

 

 

 



223 

 

<Function> 

 <FunctionConfig> 

  <Name>copyToGPU</Name> 

  <Ref>24</Ref> 

  <GPU>true</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>14</ID> 

 <Type>0</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>7</Signals> 

 <DataPoints></DataPoints> 

</Function> 

<Function> 

 <FunctionConfig> 

  <Name>FFT</Name> 

  <Ref>41</Ref> 

  <GPU>true</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>15</ID> 

 <Type>0</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>7,8</Signals> 

 <DataPoints>4,5</DataPoints> 

</Function> 

<Function> 

 <FunctionConfig> 

  <Name>copyComplexToCPU</Name> 

  <Ref>55</Ref> 

  <GPU>true</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>16</ID> 

 <Type>0</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>8</Signals> 

 <DataPoints></DataPoints> 

</Function> 

<Function> 

 <FunctionConfig> 

  <Name>copyComplexToGPU</Name> 

  <Ref>54</Ref> 

  <GPU>true</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>17</ID> 

 <Type>0</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>8</Signals> 

 <DataPoints></DataPoints> 

</Function> 

<Function> 

 <FunctionConfig> 

  <Name>Divide2</Name> 

  <Ref>32</Ref> 

  <GPU>true</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>18</ID> 

 <Type>0</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>8,8</Signals> 

 <DataPoints>4,3,5</DataPoints> 

</Function> 

 

 

 

 

 

 

 

<Function> 

 <FunctionConfig> 

  <Name>copyComplexToCPU</Name> 

  <Ref>55</Ref> 

  <GPU>true</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>19</ID> 

 <Type>0</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>8</Signals> 

 <DataPoints></DataPoints> 

</Function> 

<Function> 

 <FunctionConfig> 

  <Name>copyComplexToGPU</Name> 

  <Ref>54</Ref> 

  <GPU>true</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>20</ID> 

 <Type>0</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>8</Signals> 

 <DataPoints></DataPoints> 

</Function> 

<Function> 

 <FunctionConfig> 

  <Name>Absolute</Name> 

  <Ref>26</Ref> 

  <GPU>true</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>21</ID> 

 <Type>0</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>8,9</Signals> 

 <DataPoints>4,5</DataPoints> 

</Function> 

<Function> 

 <FunctionConfig> 

  <Name>copyToCPU</Name> 

  <Ref>25</Ref> 

  <GPU>true</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>22</ID> 

 <Type>0</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>9</Signals> 

 <DataPoints></DataPoints> 

</Function> 

<Function> 

 <FunctionConfig> 

  <Name>copyToGPU</Name> 

  <Ref>24</Ref> 

  <GPU>true</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>23</ID> 

 <Type>0</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>9</Signals> 

 <DataPoints></DataPoints> 

</Function> 

 

 

 

 

 

 



224 

 

<Function> 

 <FunctionConfig> 

  <Name>Zero_Start</Name> 

  <Ref>39</Ref> 

  <GPU>true</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>24</ID> 

 <Type>0</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>9</Signals> 

 <DataPoints>14,15,4,5</DataPoints> 

</Function> 

<Function> 

 <FunctionConfig> 

  <Name>copyToCPU</Name> 

  <Ref>25</Ref> 

  <GPU>true</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>25</ID> 

 <Type>0</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>9</Signals> 

 <DataPoints></DataPoints> 

</Function> 

<Function> 

 <FunctionConfig> 

  <Name>copyToGPU</Name> 

  <Ref>24</Ref> 

  <GPU>true</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>26</ID> 

 <Type>0</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>9</Signals> 

 <DataPoints></DataPoints> 

</Function> 

<Function> 

 <FunctionConfig> 

  <Name>Zero_End</Name> 

  <Ref>39</Ref> 

  <GPU>true</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>27</ID> 

 <Type>0</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>9</Signals> 

 <DataPoints>13,4,4,5</DataPoints> 

</Function> 

<Function> 

 <FunctionConfig> 

  <Name>copyToCPU</Name> 

  <Ref>25</Ref> 

  <GPU>true</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>28</ID> 

 <Type>0</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>9</Signals> 

 <DataPoints></DataPoints> 

</Function> 

 

 

 

 

 

 

 

<Function> 

 <FunctionConfig> 

  <Name>copyToGPU</Name> 

  <Ref>24</Ref> 

  <GPU>true</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>29</ID> 

 <Type>0</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>9</Signals> 

 <DataPoints></DataPoints> 

</Function> 

<Function> 

 <FunctionConfig> 

  <Name>getMax</Name> 

  <Ref>34</Ref> 

  <GPU>true</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>30</ID> 

 <Type>0</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>9,10,11</Signals> 

 <DataPoints>4,5</DataPoints> 

</Function> 

<Function> 

 <FunctionConfig> 

  <Name>copyToCPU</Name> 

  <Ref>25</Ref> 

  <GPU>true</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>31</ID> 

 <Type>0</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>10</Signals> 

 <DataPoints></DataPoints> 

</Function> 

<Function> 

 <FunctionConfig> 

  <Name>copyToCPU</Name> 

  <Ref>25</Ref> 

  <GPU>true</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>32</ID> 

 <Type>0</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>11</Signals> 

 <DataPoints></DataPoints> 

</Function> 

<Function> 

 <FunctionConfig> 

  <Name>copyToGPU</Name> 

  <Ref>24</Ref> 

  <GPU>true</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>33</ID> 

 <Type>0</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>10</Signals> 

 <DataPoints></DataPoints> 

</Function> 

 

 

 

 

 

 



225 

 

<Function> 

 <FunctionConfig> 

  <Name>Logic</Name> 

  <Ref>43</Ref> 

  <GPU>true</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>34</ID> 

 <Type>0</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>10,12,13</Signals> 

 <DataPoints>5</DataPoints> 

</Function> 

<Function> 

 <FunctionConfig> 

  <Name>copyToCPU</Name> 

  <Ref>25</Ref> 

  <GPU>true</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>35</ID> 

 <Type>0</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>12</Signals> 

 <DataPoints></DataPoints> 

</Function> 

<Function> 

 <FunctionConfig> 

  <Name>copyToCPU</Name> 

  <Ref>25</Ref> 

  <GPU>true</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>36</ID> 

 <Type>0</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>13</Signals> 

 <DataPoints></DataPoints> 

</Function> 

<Function> 

 <FunctionConfig> 

  <Name>copyToGPU</Name> 

  <Ref>24</Ref> 

  <GPU>true</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>37</ID> 

 <Type>0</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>10</Signals> 

 <DataPoints></DataPoints> 

</Function> 

<Function> 

 <FunctionConfig> 

  <Name>copyToGPU</Name> 

  <Ref>24</Ref> 

  <GPU>true</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>38</ID> 

 <Type>0</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>12</Signals> 

 <DataPoints></DataPoints> 

</Function> 

 

 

 

 

 

 

 

<Function> 

 <FunctionConfig> 

  <Name>Subtract</Name> 

  <Ref>35</Ref> 

  <GPU>true</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>39</ID> 

 <Type>0</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>10,12,12</Signals> 

 <DataPoints>5</DataPoints> 

</Function> 

<Function> 

 <FunctionConfig> 

  <Name>copyToCPU</Name> 

  <Ref>25</Ref> 

  <GPU>true</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>40</ID> 

 <Type>0</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>12</Signals> 

 <DataPoints></DataPoints> 

</Function> 

<Function> 

 <FunctionConfig> 

  <Name>copyToGPU</Name> 

  <Ref>24</Ref> 

  <GPU>true</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>41</ID> 

 <Type>0</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>10</Signals> 

 <DataPoints></DataPoints> 

</Function> 

<Function> 

 <FunctionConfig> 

  <Name>copyToGPU</Name> 

  <Ref>24</Ref> 

  <GPU>true</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>42</ID> 

 <Type>0</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>13</Signals> 

 <DataPoints></DataPoints> 

</Function> 

<Function> 

 <FunctionConfig> 

  <Name>Add</Name> 

  <Ref>36</Ref> 

  <GPU>true</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>43</ID> 

 <Type>0</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>10,13,13</Signals> 

 <DataPoints>5</DataPoints> 

</Function> 

 

 

 

 

 

 



226 

 

<Function> 

 <FunctionConfig> 

  <Name>copyToCPU</Name> 

  <Ref>25</Ref> 

  <GPU>true</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>44</ID> 

 <Type>0</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>13</Signals> 

 <DataPoints></DataPoints> 

</Function> 

<Function> 

 <FunctionConfig> 

  <Name>copyComplexToGPU</Name> 

  <Ref>54</Ref> 

  <GPU>true</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>45</ID> 

 <Type>0</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>8</Signals> 

 <DataPoints></DataPoints> 

</Function> 

<Function> 

 <FunctionConfig> 

  <Name>copyToGPU</Name> 

  <Ref>24</Ref> 

  <GPU>true</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>46</ID> 

 <Type>0</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>12</Signals> 

 <DataPoints></DataPoints> 

</Function> 

<Function> 

 <FunctionConfig> 

  <Name>zeroComplex_Start</Name> 

  <Ref>40</Ref> 

  <GPU>true</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>47</ID> 

 <Type>0</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>8,12</Signals> 

 <DataPoints>14,4,5</DataPoints> 

</Function> 

<Function> 

 <FunctionConfig> 

  <Name>copyComplexToCPU</Name> 

  <Ref>55</Ref> 

  <GPU>true</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>48</ID> 

 <Type>0</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>8</Signals> 

 <DataPoints></DataPoints> 

</Function> 

 

 

 

 

 

 

 

<Function> 

 <FunctionConfig> 

  <Name>copyComplexToGPU</Name> 

  <Ref>54</Ref> 

  <GPU>true</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>49</ID> 

 <Type>0</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>8</Signals> 

 <DataPoints></DataPoints> 

</Function> 

<Function> 

 <FunctionConfig> 

  <Name>copyToGPU</Name> 

  <Ref>24</Ref> 

  <GPU>true</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>50</ID> 

 <Type>0</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>13</Signals> 

 <DataPoints></DataPoints> 

</Function> 

<Function> 

 <FunctionConfig> 

  <Name>zeroComplex_End</Name> 

  <Ref>40</Ref> 

  <GPU>true</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>51</ID> 

 <Type>0</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>8,13</Signals> 

 <DataPoints>4,4,5</DataPoints> 

</Function> 

<Function> 

 <FunctionConfig> 

  <Name>copyComplexToCPU</Name> 

  <Ref>55</Ref> 

  <GPU>true</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>52</ID> 

 <Type>0</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>8</Signals> 

 <DataPoints></DataPoints> 

</Function> 

<Function> 

 <FunctionConfig> 

  <Name>copyComplexToGPU</Name> 

  <Ref>54</Ref> 

  <GPU>true</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>53</ID> 

 <Type>0</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>8</Signals> 

 <DataPoints></DataPoints> 

</Function> 

 

 

 

 

 

 



227 

 

<Function> 

 <FunctionConfig> 

  <Name>IFFT</Name> 

  <Ref>42</Ref> 

  <GPU>true</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>54</ID> 

 <Type>0</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>8,14</Signals> 

 <DataPoints>4,5,16</DataPoints> 

</Function> 

<Function> 

 <FunctionConfig> 

  <Name>copyComplexToCPU</Name> 

  <Ref>55</Ref> 

  <GPU>true</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>55</ID> 

 <Type>0</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>14</Signals> 

 <DataPoints></DataPoints> 

</Function> 

<Function> 

 <FunctionConfig> 

  <Name>copyComplexToGPU</Name> 

  <Ref>54</Ref> 

  <GPU>true</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>56</ID> 

 <Type>0</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>14</Signals> 

 <DataPoints></DataPoints> 

</Function> 

<Function> 

 <FunctionConfig> 

  <Name>divide3</Name> 

  <Ref>32</Ref> 

  <GPU>true</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>57</ID> 

 <Type>0</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>14,14</Signals> 

 <DataPoints>4,3,5</DataPoints> 

</Function> 

<Function> 

 <FunctionConfig> 

  <Name>copyComplexToCPU</Name> 

  <Ref>55</Ref> 

  <GPU>true</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>58</ID> 

 <Type>0</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>14</Signals> 

 <DataPoints></DataPoints> 

</Function> 

 

 

 

 

 

 

 

<Function> 

 <FunctionConfig> 

  <Name>copyComplexToGPU</Name> 

  <Ref>54</Ref> 

  <GPU>true</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>59</ID> 

 <Type>0</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>14</Signals> 

 <DataPoints></DataPoints> 

</Function> 

<Function> 

 <FunctionConfig> 

  <Name>complexLog</Name> 

  <Ref>29</Ref> 

  <GPU>true</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>60</ID> 

 <Type>0</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>14,14</Signals> 

 <DataPoints>4,5</DataPoints> 

</Function> 

<Function> 

 <FunctionConfig> 

  <Name>copyComplexToCPU</Name> 

  <Ref>55</Ref> 

  <GPU>true</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>61</ID> 

 <Type>0</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>14</Signals> 

 <DataPoints></DataPoints> 

</Function> 

<Function> 

 <FunctionConfig> 

  <Name>copyComplexToGPU</Name> 

  <Ref>54</Ref> 

  <GPU>true</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>62</ID> 

 <Type>0</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>14</Signals> 

 <DataPoints></DataPoints> 

</Function> 

<Function> 

 <FunctionConfig> 

  <Name>getImag</Name> 

  <Ref>33</Ref> 

  <GPU>true</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>63</ID> 

 <Type>0</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>14,15</Signals> 

 <DataPoints>4,5</DataPoints> 

</Function> 

 

 

 

 

 

 



228 

 

<Function> 

 <FunctionConfig> 

  <Name>copyToCPU</Name> 

  <Ref>25</Ref> 

  <GPU>true</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>64</ID> 

 <Type>0</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>15</Signals> 

 <DataPoints></DataPoints> 

</Function> 

<Function> 

 <FunctionConfig> 

  <Name>copyToGPU</Name> 

  <Ref>24</Ref> 

  <GPU>true</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>65</ID> 

 <Type>0</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>15</Signals> 

 <DataPoints></DataPoints> 

</Function> 

<Function> 

 <FunctionConfig> 

  <Name>unWrapPhase</Name> 

  <Ref>37</Ref> 

  <GPU>true</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>66</ID> 

 <Type>0</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>15,16</Signals> 

 <DataPoints>4,5</DataPoints> 

</Function> 

<Function> 

 <FunctionConfig> 

  <Name>copyToCPU</Name> 

  <Ref>25</Ref> 

  <GPU>true</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>67</ID> 

 <Type>0</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>16</Signals> 

 <DataPoints></DataPoints> 

</Function> 

<Function> 

 <FunctionConfig> 

  <Name>copyToGPU</Name> 

  <Ref>24</Ref> 

  <GPU>true</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>68</ID> 

 <Type>0</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>16</Signals> 

 <DataPoints></DataPoints> 

</Function> 

 

 

 

 

 

 

 

<Function> 

 <FunctionConfig> 

  <Name>windowSignal</Name> 

  <Ref>38</Ref> 

  <GPU>true</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>69</ID> 

 <Type>0</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>16,17</Signals> 

 <DataPoints>9,10,4,5</DataPoints> 

</Function> 

<Function> 

 <FunctionConfig> 

  <Name>copyToCPU</Name> 

  <Ref>25</Ref> 

  <GPU>true</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>70</ID> 

 <Type>0</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>17</Signals> 

 <DataPoints></DataPoints> 

</Function> 

<Function> 

 <FunctionConfig> 

  <Name>copyToGPU</Name> 

  <Ref>24</Ref> 

  <GPU>true</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>71</ID> 

 <Type>0</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>17</Signals> 

 <DataPoints></DataPoints> 

</Function> 

<Function> 

 <FunctionConfig> 

  <Name>polyFit</Name> 

  <Ref>51</Ref> 

  <GPU>true</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>72</ID> 

 <Type>0</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>4,17,18</Signals> 

 <DataPoints>17,10,5</DataPoints> 

</Function> 

<Function> 

 <FunctionConfig> 

  <Name>copyToCPU</Name> 

  <Ref>25</Ref> 

  <GPU>true</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>73</ID> 

 <Type>0</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>18</Signals> 

 <DataPoints></DataPoints> 

</Function> 

 

 

 

 

 

 



229 

 

<Function> 

 <FunctionConfig> 

  <Name>copyToGPU</Name> 

  <Ref>24</Ref> 

  <GPU>true</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>74</ID> 

 <Type>0</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>18</Signals> 

 <DataPoints></DataPoints> 

</Function> 

<Function> 

 <FunctionConfig> 

  <Name>calcHeight1</Name> 

  <Ref>27</Ref> 

  <GPU>true</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>75</ID> 

 <Type>0</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>18,19</Signals> 

 <DataPoints>5</DataPoints> 

</Function> 

<Function> 

 <FunctionConfig> 

  <Name>copyToCPU</Name> 

  <Ref>25</Ref> 

  <GPU>true</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>76</ID> 

 <Type>0</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>19</Signals> 

 <DataPoints></DataPoints> 

</Function> 

<Function> 

 <FunctionConfig> 

  <Name>copyToGPU</Name> 

  <Ref>24</Ref> 

  <GPU>true</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>77</ID> 

 <Type>0</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>15</Signals> 

 <DataPoints></DataPoints> 

</Function> 

<Function> 

 <FunctionConfig> 

  <Name>copyToGPU</Name> 

  <Ref>24</Ref> 

  <GPU>true</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>78</ID> 

 <Type>0</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>19</Signals> 

 <DataPoints></DataPoints> 

</Function> 

 

 

 

 

 

 

 

<Function> 

 <FunctionConfig> 

  <Name>calcHeight2</Name> 

  <Ref>28</Ref> 

  <GPU>true</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>79</ID> 

 <Type>0</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>1,15,19,20</Signals> 

 <DataPoints>18,4,5</DataPoints> 

</Function> 

<Function> 

 <FunctionConfig> 

  <Name>copyToCPU</Name> 

  <Ref>25</Ref> 

  <GPU>true</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>80</ID> 

 <Type>0</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>20</Signals> 

 <DataPoints></DataPoints> 

</Function> 

<Function> 

 <FunctionConfig> 

  <Name>copyToGPU</Name> 

  <Ref>24</Ref> 

  <GPU>true</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>81</ID> 

 <Type>0</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>19</Signals> 

 <DataPoints></DataPoints> 

</Function> 

<Function> 

 <FunctionConfig> 

  <Name>Divide4</Name> 

  <Ref>31</Ref> 

  <GPU>true</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>82</ID> 

 <Type>0</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>19,19</Signals> 

 <DataPoints>19,5,26</DataPoints> 

</Function> 

<Function> 

 <FunctionConfig> 

  <Name>copyToCPU</Name> 

  <Ref>25</Ref> 

  <GPU>true</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>83</ID> 

 <Type>0</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>19</Signals> 

 <DataPoints></DataPoints> 

</Function> 

 

 

 

 

 

 



230 

 

<Function> 

 <FunctionConfig> 

  <Name>copyToGPU</Name> 

  <Ref>24</Ref> 

  <GPU>true</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>84</ID> 

 <Type>0</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>20</Signals> 

 <DataPoints></DataPoints> 

</Function> 

<Function> 

 <FunctionConfig> 

  <Name>Divide5</Name> 

  <Ref>31</Ref> 

  <GPU>true</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>85</ID> 

 <Type>0</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>20,20</Signals> 

 <DataPoints>19,5,26</DataPoints> 

</Function> 

<Function> 

 <FunctionConfig> 

  <Name>copyToCPU</Name> 

  <Ref>25</Ref> 

  <GPU>true</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>86</ID> 

 <Type>0</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>20</Signals> 

 <DataPoints></DataPoints> 

</Function> 

<Function> 

 <FunctionConfig> 

  <Name>saveBMP</Name> 

  <Ref>46</Ref> 

  <GPU>false</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>87</ID> 

 <Type>0</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>5</Signals> 

 <DataPoints>20,3,5,21</DataPoints> 

</Function> 

<Function> 

 <FunctionConfig> 

  <Name>saveCSV</Name> 

  <Ref>47</Ref> 

  <GPU>false</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>88</ID> 

 <Type>0</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>19</Signals> 

 <DataPoints>20,22,5</DataPoints> 

</Function> 

 

 

 

 

 

 

 

<Function> 

 <FunctionConfig> 

  <Name>saveCSV</Name> 

  <Ref>47</Ref> 

  <GPU>false</GPU> 

  <Hidden>false</Hidden> 

 </FunctionConfig> 

 <ID>89</ID> 

 <Type>0</Type> 

 <Platform>0</Platform> 

 <Thread>0</Thread> 

 <Signals>20</Signals> 

 <DataPoints>20,23,5</DataPoints> 

</Function> 

 

</configurationProperties> 



 

11.3 DRI PDDL Files 

11.3.1 Sample Domain File 

(define (domain DRI) 
    (:requirements :strips :fluents) 
    (:functions 
        (total-cost) 
    ) 
    (:predicates 
        ;Variables 
        (Camera ?sig)           ;0 
        (Interferogram ?sig)    ;1 
        (Derivative ?sig)       ;2 
        (FilteredDeriv ?sig)    ;3 
        (Autoconv ?sig)         ;4 
 
        ;Function completion 
        (done-getSignal ?sig) 
        (done-convertBytes ?sig) 
        (done-getDerivative ?sig) 
        (done-filterDerivative ?sig) 
        (done-autoConvolution ?sig) 
        (done-outputData1 ?sig) 
        (done-outputData2 ?sig) 
 
        ;Misc Parameters 
        (CPU ?dev) 
        (GPU ?dev) 
        (data-onHost ?sig) 
        (data-onDevice ?sig) 
         
        (device-inUse ?dev) 
    ) 
 
    ;##########################Memory Copy################################## 
 
    (:action Camera_ToGPU 
        :parameters(?cpu ?gpu ?sig0) 
        :precondition(and 
            ;Check Hardware Status 
            (CPU ?cpu) 
            (GPU ?gpu) 
            ;Check Signals 
            (Camera ?sig0) 
            ;Check Memory Location 
            (data-onHost ?sig0) 
        ) 
        :effect(and 
            (data-onDevice ?sig0) 
            (increase (total-cost) 151) 
        ) 
    ) 
     (:action Interferogram_ToGPU 
        :parameters(?cpu ?gpu ?sig1) 
        :precondition(and 
            ;Check Hardware Status 
            (CPU ?cpu) 
            (GPU ?gpu) 
            ;Check Signals 
            (Interferogram ?sig1) 
            ;Check Memory Location 
            (data-onHost ?sig1) 
        ) 
        :effect(and 
            (data-onDevice ?sig1) 
            (increase (total-cost) 95) 
        ) 
    ) 
 
  



232 

    (:action Derivative_ToGPU 
        :parameters(?cpu ?gpu ?sig2) 
        :precondition(and 
            ;Check Hardware Status 
            (CPU ?cpu) 
            (GPU ?gpu) 
            ;Check Signals 
            (Derivative ?sig2) 
            ;Check Memory Location 
            (data-onHost ?sig2) 
        ) 
        :effect(and 
            (data-onDevice ?sig2) 
            (increase (total-cost) 93) 
        ) 
    ) 
 
    (:action FilteredDeriv_ToGPU 
        :parameters(?cpu ?gpu ?sig3) 
        :precondition(and 
            ;Check Hardware Status 
            (CPU ?cpu) 
            (GPU ?gpu) 
            ;Check Signals 
            (FilteredDeriv ?sig3) 
            ;Check Memory Location 
            (data-onHost ?sig3) 
        ) 
        :effect(and 
            (data-onDevice ?sig3) 
            (increase (total-cost) 92) 
        ) 
    ) 
     (:action Interferogram_ToCPU 
        :parameters(?cpu ?gpu ?sig1) 
        :precondition(and 
            ;Check Hardware Status 
            (CPU ?cpu) 
            (GPU ?gpu) 
            ;Check Signals 
            (Interferogram ?sig1) 
            ;Check Memory Location 
            (data-onDevice ?sig1) 
        ) 
        :effect(and 
            (data-onHost ?sig1) 
            (increase (total-cost) 125) 
        ) 
    ) 
 
    (:action Derivative_ToCPU 
        :parameters(?cpu ?gpu ?sig2) 
        :precondition(and 
            ;Check Hardware Status 
            (CPU ?cpu) 
            (GPU ?gpu) 
            ;Check Signals 
            (Derivative ?sig2) 
            ;Check Memory Location 
            (data-onDevice ?sig2) 
        ) 
        :effect(and 
            (data-onHost ?sig2) 
            (increase (total-cost) 121) 
        ) 
    ) 
 
     
  



233 

(:action FilteredDeriv_ToCPU 
        :parameters(?cpu ?gpu ?sig3) 
        :precondition(and 
            ;Check Hardware Status 
            (CPU ?cpu) 
            (GPU ?gpu) 
            ;Check Signals 
            (FilteredDeriv ?sig3) 
            ;Check Memory Location 
            (data-onDevice ?sig3) 
 
        ) 
        :effect(and 
            (data-onHost ?sig3) 
            (increase (total-cost) 134) 
        ) 
    ) 
     (:action Autoconv_ToCPU 
        :parameters(?cpu ?gpu ?sig4) 
        :precondition(and 
            ;Check Hardware Status 
            (CPU ?cpu) 
            (GPU ?gpu) 
            ;Check Signals 
            (Autoconv ?sig4) 
            ;Check Memory Location 
            (data-onDevice ?sig4) 
        ) 
        :effect(and 
            (data-onHost ?sig4) 
            (increase (total-cost) 127) 
        ) 
    ) 
 
    ;################## CPU Functions ############################# 
 
    (:action getSignal 
        :parameters(?cpu ?sig0) 
        :precondition(and 
            ;Check Hardware Status 
            (CPU ?cpu) 
            ;Check Signals 
            (Camera ?sig0)  
            ;Check Function Status 
            (not(done-getSignal ?sig0)) 
        ) 
        :effect(and 
            (data-onHost ?sig0) 
            (not(data-onDevice ?sig0)) 
            (done-getSignal ?sig0) 
            (increase (total-cost) 4152) 
        ) 
    ) 
 (:action convertBytes 
        :parameters(?cpu ?sig0 ?sig1) 
        :precondition(and 
            ;Check Hardware Status 
            (CPU ?cpu) 
            ;Check Signals 
            (Camera ?sig0)  
            (Interferogram ?sig1)  
            ;Check Function Status 
            (done-getSignal ?sig0) (not(done-convertBytes ?sig1)) 
            ;Check Memory Location 
            (data-onHost ?sig0) 
        ) 
        :effect(and 
            (data-onHost ?sig1) 
            (not(data-onDevice ?sig1)) 
            (done-convertBytes ?sig1) 
            (increase (total-cost) 16) 
        ) 
    ) 
     



234 

     (:action getDerivative 
        :parameters(?cpu ?sig1 ?sig2) 
        :precondition(and 
            ;Check Hardware Status 
            (CPU ?cpu) 
            ;Check Signals 
            (Interferogram ?sig1)  
            (Derivative ?sig2)  
            ;Check Function Status 
            (done-convertBytes ?sig1) (not(done-getDerivative ?sig2)) 
            ;Check Memory Location 
            (data-onHost ?sig1) 
        ) 
        :effect(and 
            (data-onHost ?sig2) 
            (not(data-onDevice ?sig2)) 
            (done-getDerivative ?sig2) 
            (increase (total-cost) 8) 
        ) 
    ) 
     (:action filterDerivative 
        :parameters(?cpu ?sig2 ?sig3) 
        :precondition(and 
            ;Check Hardware Status 
            (CPU ?cpu) 
            ;Check Signals 
            (Derivative ?sig2)  
            (FilteredDeriv ?sig3)  
            ;Check Function Status 
            (done-getDerivative ?sig2) (not(done-filterDerivative ?sig3)) 
            ;Check Memory Location 
            (data-onHost ?sig2) 
        ) 
        :effect(and 
            (data-onHost ?sig3) 
            (not(data-onDevice ?sig3)) 
            (done-filterDerivative ?sig3) 
            (increase (total-cost) 322) 
        ) 
    ) 
 
    (:action autoConvolution 
        :parameters(?cpu ?sig3 ?sig4) 
        :precondition(and 
            ;Check Hardware Status 
            (CPU ?cpu) 
            ;Check Signals 
            (FilteredDeriv ?sig3)  
            (Autoconv ?sig4)  
            ;Check Function Status 
            (done-filterDerivative ?sig3) (not(done-autoConvolution ?sig4)) 
            ;Check Memory Location 
            (data-onHost ?sig3) 
        ) 
        :effect(and 
            (data-onHost ?sig4) 
            (not(data-onDevice ?sig4)) 
            (done-autoConvolution ?sig4) 
            (increase (total-cost) 878) 
        ) 
    ) 
  



235 

     (:action outputData1 
        :parameters(?cpu ?sig1) 
        :precondition(and 
            ;Check Hardware Status 
            (CPU ?cpu) 
            ;Check Signals 
            (Interferogram ?sig1)  
            ;Check Function Status 
            (done-convertBytes ?sig1) (not(done-outputData1 ?sig1)) 
            ;Check Memory Location 
            (data-onHost ?sig1) 
        ) 
        :effect(and 
            (done-outputData1 ?sig1) 
            (increase (total-cost) 8) 
        ) 
    ) 
 
    (:action outputData2 
        :parameters(?cpu ?sig4) 
        :precondition(and 
            ;Check Hardware Status 
            (CPU ?cpu) 
            ;Check Signals 
            (Autoconv ?sig4)  
            ;Check Function Status 
            (done-autoConvolution ?sig4) (not(done-outputData2 ?sig4)) 
            ;Check Memory Location 
            (data-onHost ?sig4) 
        ) 
        :effect(and 
            (done-outputData2 ?sig4) 
            (increase (total-cost) 6) 
        ) 
    ) 
    ;################## KERNEL Functions ############################# 
 
    (:action convertBytes_Kernel 
        :parameters(?gpu ?sig0 ?sig1) 
        :precondition(and 
            ;Check Hardware Status 
            (GPU ?gpu) 
            ;Check Signals 
            (Camera ?sig0)  
            (Interferogram ?sig1)  
            ;Check Function Status 
            (done-getSignal ?sig0) (not(done-convertBytes ?sig1)) 
            ;Check Memory Location 
            (data-onDevice ?sig0) 
        ) 
        :effect(and 
            (data-onDevice ?sig1) 
            (not(data-onHost ?sig1)) 
            (done-convertBytes ?sig1) 
            (increase (total-cost) 117) 
        ) 
    ) 
  



236 

(:action getDerivative_Kernel 
        :parameters(?gpu ?sig1 ?sig2) 
        :precondition(and 
            ;Check Hardware Status 
            (GPU ?gpu) 
            ;Check Signals 
            (Interferogram ?sig1)  
            (Derivative ?sig2)  
            ;Check Function Status 
            (done-convertBytes ?sig1) (not(done-getDerivative ?sig2)) 
            ;Check Memory Location 
            (data-onDevice ?sig1) 
        ) 
        :effect(and 
            (data-onDevice ?sig2) 
            (not(data-onHost ?sig2)) 
            (done-getDerivative ?sig2) 
            (increase (total-cost) 113) 
        ) 
    ) 
    (:action filterDerivative_Kernel 
        :parameters(?gpu ?sig2 ?sig3) 
        :precondition(and 
            ;Check Hardware Status 
            (GPU ?gpu) 
            ;Check Signals 
            (Derivative ?sig2)  
            (FilteredDeriv ?sig3)  
            ;Check Function Status 
            (done-getDerivative ?sig2) (not(done-filterDerivative ?sig3)) 
            ;Check Memory Location 
            (data-onDevice ?sig2) 
        ) 
        :effect(and 
            (data-onDevice ?sig3) 
            (not(data-onHost ?sig3)) 
            (done-filterDerivative ?sig3) 
            (increase (total-cost) 639) 
        ) 
    ) 
 
    (:action autoConvolution_Kernel 
        :parameters(?gpu ?sig3 ?sig4) 
        :precondition(and 
            ;Check Hardware Status 
            (GPU ?gpu) 
            ;Check Signals 
            (FilteredDeriv ?sig3)  
            (Autoconv ?sig4)  
            ;Check Function Status 
            (done-filterDerivative ?sig3) (not(done-autoConvolution ?sig4)) 
            ;Check Memory Location 
            (data-onDevice ?sig3) 
        ) 
        :effect(and 
            (data-onDevice ?sig4) 
            (not(data-onHost ?sig4)) 
            (done-autoConvolution ?sig4) 
            (increase (total-cost) 1168) 
        ) 
    ) 
) 

  



237 

11.3.2 Problem File 

(define (problem DRI-p1) 
        (:domain DRI) 
        (:objects _Camera  

_Interferogram  
_Derivative  
_FilteredDeriv  
_Autoconv  
_CPU  
_GPU) 

        (:init 
        ;Init Signals 
        (Camera _Camera) 
        (Interferogram _Interferogrm 
        (Derivative _Derivative) 
        (FilteredDeriv _FilteredDeriv) 
        (Autoconv _Autoconv) 
 
        (CPU _CPU) 
        (GPU _GPU) 
      
        ;Init Durative Paramters 
        (= (total-cost) 0)) 
         
        (:goal (and (done-outputData1 _Interferogram)  

(done-outputData2 _Autoconv))) 
        (:metric minimize (total-cost)) 
) 
  



238 

11.3.3 Solution Files 

11.3.3.1 CPU 

; Version LPG-td-1.4 

; Seed 115643919 

; Command line: ./lpg-td -o Domain.pddl -f Problem.pddl -n 10 -p CPU/ -out CPU  

; Problem Problem.pddl 

; Actions having STRIPS duration 

; Time 0.01 

; Search time 0.01 

; Parsing time 0.00 

; Mutex time 0.00 

; MetricValue 1307.00 

 

0:   (GETSIGNAL CPU CAMERA) [1] 

1:   (CONVERTBYTES CPU CAMERA INTERFEROGRAM) [1] 

2:   (OUTPUTDATA1 CPU INTERFEROGRAM) [1] 

2:   (GETDERIVATIVE CPU INTERFEROGRAM DERIVATIVE) [1] 

3:   (FILTERDERIVATIVE CPU DERIVATIVE FILTEREDDERIV) [1] 

4:   (AUTOCONVOLUTION CPU FILTEREDDERIV AUTOCONV) [1] 

5:   (OUTPUTDATA2 CPU AUTOCONV) [1] 

 

11.3.3.2 GTX 520 

; Version LPG-td-1.4 

; Seed 45288303 

; Command line: ./lpg-td -o Domain.pddl -f Problem.pddl -n 10 -p 520/ -out 520  

; Problem Problem.pddl 

; Actions having STRIPS duration 

; Time 0.01 

; Search time 0.00 

; Parsing time 0.01 

; Mutex time 0.00 

; MetricValue 9973.00 

 

0:   (GETSIGNAL CPU CAMERA) [1] 

1:   (CAMERA_TOGPU CPU GPU CAMERA) [1] 

2:   (CONVERTBYTES_KERNEL GPU CAMERA INTERFEROGRAM) [1] 

3:   (INTERFEROGRAM_TOCPU CPU GPU INTERFEROGRAM) [1] 

3:   (GETDERIVATIVE_KERNEL GPU INTERFEROGRAM DERIVATIVE) [1] 

4:   (OUTPUTDATA1 CPU INTERFEROGRAM) [1] 

4:   (FILTERDERIVATIVE_KERNEL GPU DERIVATIVE FILTEREDDERIV) [1] 

5:   (AUTOCONVOLUTION_KERNEL GPU FILTEREDDERIV AUTOCONV) [1] 

6:   (AUTOCONV_TOCPU CPU GPU AUTOCONV) [1] 

7:   (OUTPUTDATA2 CPU AUTOCONV) [1] 

 

11.3.3.3 GTX 650Ti 

; Version LPG-td-1.4 

; Seed 32093033 

; Command line: ./lpg-td -o Domain.pddl -f Problem.pddl -n 10 -p 650/ -out 650  

; Problem Problem.pddl 

; Actions having STRIPS duration 

; Time 0.01 

; Search time 0.01 

; Parsing time 0.00 

; Mutex time 0.00 

; MetricValue 2367.00 

 

0:   (GETSIGNAL CPU CAMERA) [1] 

1:   (CAMERA_TOGPU CPU GPU CAMERA) [1] 

2:   (CONVERTBYTES_KERNEL GPU CAMERA INTERFEROGRAM) [1] 

3:   (INTERFEROGRAM_TOCPU CPU GPU INTERFEROGRAM) [1] 

3:   (GETDERIVATIVE_KERNEL GPU INTERFEROGRAM DERIVATIVE) [1] 

4:   (OUTPUTDATA1 CPU INTERFEROGRAM) [1] 

4:   (FILTERDERIVATIVE_KERNEL GPU DERIVATIVE FILTEREDDERIV) [1] 

5:   (AUTOCONVOLUTION_KERNEL GPU FILTEREDDERIV AUTOCONV) [1] 

6:   (AUTOCONV_TOCPU CPU GPU AUTOCONV) [1] 

7:   (OUTPUTDATA2 CPU AUTOCONV) [1] 

 



239 

11.3.3.4 GTX 780Ti 

; Version LPG-td-1.4 

; Seed 19134684 

; Command line: ./lpg-td -o Domain.pddl -f Problem.pddl -n 10 -p 780/ -out 780  

; Problem Problem.pddl 

; Actions having STRIPS duration 

; Time 0.01 

; Search time 0.01 

; Parsing time 0.00 

; Mutex time 0.00 

; MetricValue 6564.00 

 

0:   (GETSIGNAL CPU CAMERA) [1] 

1:   (CAMERA_TOGPU CPU GPU CAMERA) [1] 

2:   (CONVERTBYTES_KERNEL GPU CAMERA INTERFEROGRAM) [1] 

3:   (INTERFEROGRAM_TOCPU CPU GPU INTERFEROGRAM) [1] 

3:   (GETDERIVATIVE_KERNEL GPU INTERFEROGRAM DERIVATIVE) [1] 

4:   (OUTPUTDATA1 CPU INTERFEROGRAM) [1] 

4:   (FILTERDERIVATIVE_KERNEL GPU DERIVATIVE FILTEREDDERIV) [1] 

5:   (AUTOCONVOLUTION_KERNEL GPU FILTEREDDERIV AUTOCONV) [1] 

6:   (AUTOCONV_TOCPU CPU GPU AUTOCONV) [1] 

7:   (OUTPUTDATA2 CPU AUTOCONV) [1] 

 

11.3.3.5 GTX 1070 

; Version LPG-td-1.4 

; Seed 117664417 

; Command line: ./lpg-td -o Domain.pddl -f Problem.pddl -n 10 -p 1070/ -out 1070  

; Problem Problem.pddl 

; Actions having STRIPS duration 

; Time 0.01 

; Search time 0.01 

; Parsing time 0.00 

; Mutex time 0.00 

; MetricValue 2663.00 

 

0:   (GETSIGNAL CPU CAMERA) [1] 

1:   (CAMERA_TOGPU CPU GPU CAMERA) [1] 

2:   (CONVERTBYTES_KERNEL GPU CAMERA INTERFEROGRAM) [1] 

3:   (INTERFEROGRAM_TOCPU CPU GPU INTERFEROGRAM) [1] 

3:   (GETDERIVATIVE_KERNEL GPU INTERFEROGRAM DERIVATIVE) [1] 

4:   (OUTPUTDATA1 CPU INTERFEROGRAM) [1] 

4:   (FILTERDERIVATIVE_KERNEL GPU DERIVATIVE FILTEREDDERIV) [1] 

5:   (AUTOCONVOLUTION_KERNEL GPU FILTEREDDERIV AUTOCONV) [1] 

6:   (AUTOCONV_TOCPU CPU GPU AUTOCONV) [1] 

7:   (OUTPUTDATA2 CPU AUTOCONV) [1] 

 

11.3.3.6 Heterogeneous CPU and GPU 

; Version LPG-td-1.4 

; Seed 97952378 

; Command line: ./lpg-td -o Domain.pddl -f Problem.pddl -n 10 -p C1070/ -out C1070  

; Problem Problem.pddl 

; Actions having STRIPS duration 

; Time 0.00 

; Search time 0.00 

; Parsing time 0.00 

; Mutex time 0.00 

; MetricValue 1307.00 

 

0:   (GETSIGNAL CPU CAMERA) [1] 

1:   (CONVERTBYTES CPU CAMERA INTERFEROGRAM) [1] 

2:   (OUTPUTDATA1 CPU INTERFEROGRAM) [1] 

2:   (GETDERIVATIVE CPU INTERFEROGRAM DERIVATIVE) [1] 

3:   (FILTERDERIVATIVE CPU DERIVATIVE FILTEREDDERIV) [1] 

4:   (AUTOCONVOLUTION CPU FILTEREDDERIV AUTOCONV) [1] 

5:   (OUTPUTDATA2 CPU AUTOCONV) [1] 

 

(All heterogeneous plans are the same due to the CPU being the fastest architecture. 

  



240 

11.4 LSDI PDDL Files 

11.4.1 Sample Domain File 

(define (domain LSDI) 
    (:requirements :strips :fluents) 
    (:functions 
        (total-cost) 
    ) 
    (:predicates 
        ;Variables 
        (Background ?sig) 
        (Signal ?sig) 
        (Background_f ?sig) 
        (Lamda ?sig) 
        (sampleYt1 ?sig) 
        (Polynomial ?sig) 
        (MaxID ?sig) 
        (MaxValue ?sig) 
        (LowCutFreq ?sig) 
        (HighCutFreq ?sig) 
        (getHeight ?sig) 
        (getHeight2 ?sig) 
        (interSampleX ?sig) 
        (interSampleYt1 ?sig) 
        (fftResult_Real ?sig) 
        (Phase ?sig) 
        (unwrapedPhase ?sig) 
        (interSampleX_c ?sig) 
        (phase_final_c ?sig) 
        (fftResult ?sig) 
        (ifftResult ?sig) 
 
        ;Function completion 
        (done-divide1 ?sig) 
        (done-interpolation ?sig) 
        (done-fft ?sig) 
        (done-absolute ?sig) 
        (done-zeroData1 ?sig) 
        (done-zeroData2 ?sig) 
        (done-getMax ?sig) 
        (done-Logic ?sig) 
        (done-zeroComplexData1 ?sig) 
        (done-zeroComplexData2 ?sig) 
        (done-ifft ?sig) 
        (done-complexLog ?sig) 
        (done-getImag ?sig) 
        (done-unwrapPhase ?sig) 
        (done-windowSignal ?sig) 
        (done-polyFit ?sig) 
        (done-calculateHeight1 ?sig) 
        (done-calculateHeight2 ?sig) 
        (done-divide4 ?sig) 
        (done-divide5 ?sig) 
         
;Misc Parameters 
        (CPU ?dev) 
        (GPU ?dev) 
 
        (data-onHost ?sig) 
        (data-onDevice ?sig) 
         
        (device-inUse ?dev) 
    ) 
  



241 

    ;##########################Memory Copy################################## 
 
    (:action Signal_toGPU 
        :parameters(?cpu ?gpu ?sig1) 
        :precondition(and 
            ;Check Hardware Status 
            (CPU ?cpu) 
            (GPU ?gpu) 
            ;Check Signals 
            (Signal ?sig1) 
            ;Check Memory Location 
            (data-onHost ?sig1) 
            (not(data-onDevice ?sig1))  
        ) 
        :effect(and 
            (data-onDevice ?sig1) 
            (increase (total-cost) 875) 
        ) 
    ) 
 
    (:action interSampleYt1_toGPU 
        :parameters(?cpu ?gpu ?sig6) 
        :precondition(and 
            ;Check Hardware Status 
            (CPU ?cpu) 
            (GPU ?gpu) 
            ;Check Signals 
            (interSampleYt1 ?sig6) 
            ;Check Memory Location 
            (data-onHost ?sig6) 
            (not(data-onDevice ?sig6))  
        ) 
        :effect(and 
            (data-onDevice ?sig6) 
            (increase (total-cost) 3092) 
        ) 
    ) 
 
    (:action fftResult_toGPU 
        :parameters(?cpu ?gpu ?sig7) 
        :precondition(and 
            ;Check Hardware Status 
            (CPU ?cpu) 
            (GPU ?gpu) 
            ;Check Signals 
            (fftResult ?sig7) 
            ;Check Memory Location 
            (data-onHost ?sig7) 
            (not(data-onDevice ?sig7))  
        ) 
        :effect(and 
            (data-onDevice ?sig7) 
            (increase (total-cost) 13714) 
        ) 
    ) 
 
    (:action fftResult_Real_toGPU 
        :parameters(?cpu ?gpu ?sig8) 
        :precondition(and 
            ;Check Hardware Status 
            (CPU ?cpu) 
            (GPU ?gpu) 
            ;Check Signals 
            (fftResult_Real ?sig8) 
            ;Check Memory Location 
            (data-onHost ?sig8) 
            (not(data-onDevice ?sig8))  
        ) 
        :effect(and 
            (data-onDevice ?sig8) 
            (increase (total-cost) 3844) 
        ) 
    ) 
      



242 

    (:action LowCutFreq_toGPU 
        :parameters(?cpu ?gpu ?sig11) 
        :precondition(and 
            ;Check Hardware Status 
            (CPU ?cpu) 
            (GPU ?gpu) 
            ;Check Signals 
            (LowCutFreq ?sig11) 
            ;Check Memory Location 
            (data-onHost ?sig11) 
            (not(data-onDevice ?sig11))  
        ) 
        :effect(and 
            (data-onDevice ?sig11) 
            (increase (total-cost) 491) 
        ) 
    ) 
     (:action MaxID_toGPU 
        :parameters(?cpu ?gpu ?sig9) 
        :precondition(and 
            ;Check Hardware Status 
            (CPU ?cpu) 
            (GPU ?gpu) 
            ;Check Signals 
            (MaxID ?sig9) 
            ;Check Memory Location 
            (data-onHost ?sig9) 
            (not(data-onDevice ?sig9))  
        ) 
        :effect(and 
            (data-onDevice ?sig9) 
            (increase (total-cost) 389) 
        ) 
    ) 
 
    (:action HighCutFreq_toGPU 
        :parameters(?cpu ?gpu ?sig12) 
        :precondition(and 
            ;Check Hardware Status 
            (CPU ?cpu) 
            (GPU ?gpu) 
            ;Check Signals 
            (HighCutFreq ?sig12) 
            ;Check Memory Location 
            (data-onHost ?sig12) 
            (not(data-onDevice ?sig12))  
        ) 
        :effect(and 
            (data-onDevice ?sig12) 
            (increase (total-cost) 461) 
        ) 
    ) 
 
    (:action ifftResult_toGPU 
        :parameters(?cpu ?gpu ?sig13) 
        :precondition(and 
            ;Check Hardware Status 
            (CPU ?cpu) 
            (GPU ?gpu) 
            ;Check Signals 
            (ifftResult ?sig13) 
            ;Check Memory Location 
            (data-onHost ?sig13) 
            (not(data-onDevice ?sig13))  
        ) 
        :effect(and 
            (data-onDevice ?sig13) 
            (increase (total-cost) 11031) 
        ) 
    ) 
 
     
  



243 

     (:action Phase_toGPU 
        :parameters(?cpu ?gpu ?sig14) 
        :precondition(and 
            ;Check Hardware Status 
            (CPU ?cpu) 
            (GPU ?gpu) 
            ;Check Signals 
            (Phase ?sig14) 
            ;Check Memory Location 
            (data-onHost ?sig14) 
            (not(data-onDevice ?sig14))  
        ) 
        :effect(and 
            (data-onDevice ?sig14) 
            (increase (total-cost) 3274) 
        ) 
    ) 
 
    (:action unwrapedPhase_toGPU 
        :parameters(?cpu ?gpu ?sig15) 
        :precondition(and 
            ;Check Hardware Status 
            (CPU ?cpu) 
            (GPU ?gpu) 
            ;Check Signals 
            (unwrapedPhase ?sig15) 
            ;Check Memory Location 
            (data-onHost ?sig15) 
            (not(data-onDevice ?sig15))  
        ) 
        :effect(and 
            (data-onDevice ?sig15) 
            (increase (total-cost) 3037) 
        ) 
    ) 
 
    (:action phase_final_c_toGPU 
        :parameters(?cpu ?gpu ?sig16) 
        :precondition(and 
            ;Check Hardware Status 
            (CPU ?cpu) 
            (GPU ?gpu) 
            ;Check Signals 
            (phase_final_c ?sig16) 
            ;Check Memory Location 
            (data-onHost ?sig16) 
            (not(data-onDevice ?sig16))  
        ) 
        :effect(and 
            (data-onDevice ?sig16) 
            (increase (total-cost) 3087) 
        ) 
    ) 
 
     (:action Polynomial_toGPU 
        :parameters(?cpu ?gpu ?sig18) 
        :precondition(and 
            ;Check Hardware Status 
            (CPU ?cpu) 
            (GPU ?gpu) 
            ;Check Signals 
            (Polynomial ?sig18) 
            ;Check Memory Location 
            (data-onHost ?sig18) 
            (not(data-onDevice ?sig18))  
        ) 
        :effect(and 
            (data-onDevice ?sig18) 
            (increase (total-cost) 357) 
        ) 
    ) 
 
    
  



244 

 (:action getHeight_toGPU 
        :parameters(?cpu ?gpu ?sig19) 
        :precondition(and 
            ;Check Hardware Status 
            (CPU ?cpu) 
            (GPU ?gpu) 
            ;Check Signals 
            (getHeight ?sig19) 
            ;Check Memory Location 
            (data-onHost ?sig19) 
            (not(data-onDevice ?sig19))  
        ) 
        :effect(and 
            (data-onDevice ?sig19) 
            (increase (total-cost) 360) 
        ) 
    ) 
 
    (:action sampleYt1_toCPU 
        :parameters(?cpu ?gpu ?sig3) 
        :precondition(and 
            ;Check Hardware Status 
            (CPU ?cpu) 
            (GPU ?gpu) 
            ;Check Signals 
            (sampleYt1 ?sig3) 
            ;Check Memory Location 
            (data-onDevice ?sig3) 
            (not(data-onHost ?sig3))  
        ) 
        :effect(and 
            (data-onHost ?sig3) 
            (increase (total-cost) 1393) 
        ) 
    ) 
 
     (:action fftResult_toCPU 
        :parameters(?cpu ?gpu ?sig7) 
        :precondition(and 
            ;Check Hardware Status 
            (CPU ?cpu) 
            (GPU ?gpu) 
            ;Check Signals 
            (fftResult ?sig7) 
            ;Check Memory Location 
            (data-onDevice ?sig7) 
            (not(data-onHost ?sig7))  
        ) 
        :effect(and 
            (data-onHost ?sig7) 
            (increase (total-cost) 12685) 
        ) 
    ) 
 
    (:action fftResult_Real_toCPU 
        :parameters(?cpu ?gpu ?sig8) 
        :precondition(and 
            ;Check Hardware Status 
            (CPU ?cpu) 
            (GPU ?gpu) 
            ;Check Signals 
            (fftResult_Real ?sig8) 
            ;Check Memory Location 
            (data-onDevice ?sig8) 
            (not(data-onHost ?sig8))  
        ) 
        :effect(and 
            (data-onHost ?sig8) 
            (increase (total-cost) 3559) 
        )    
    ) 
 
     
  



245 

(:action LowCutFreq_toCPU 
        :parameters(?cpu ?gpu ?sig11) 
        :precondition(and 
            ;Check Hardware Status 
            (CPU ?cpu) 
            (GPU ?gpu) 
            ;Check Signals 
            (LowCutFreq ?sig11) 
            ;Check Memory Location 
            (data-onDevice ?sig11) 
            (not(data-onHost ?sig11))  
        ) 
        :effect(and 
            (data-onHost ?sig11) 
            (increase (total-cost) 465) 
        ) 
    ) 
 
     (:action MaxID_toCPU 
        :parameters(?cpu ?gpu ?sig9) 
        :precondition(and 
            ;Check Hardware Status 
            (CPU ?cpu) 
            (GPU ?gpu) 
            ;Check Signals 
            (MaxID ?sig9) 
            ;Check Memory Location 
            (data-onDevice ?sig9) 
            (not(data-onHost ?sig9))  
        ) 
        :effect(and 
            (data-onHost ?sig9) 
            (increase (total-cost) 665) 
        )    
    ) 
 
    (:action MaxValue_toCPU 
        :parameters(?cpu ?gpu ?sig10) 
        :precondition(and 
            ;Check Hardware Status 
            (CPU ?cpu) 
            (GPU ?gpu) 
            ;Check Signals 
            (MaxID ?sig10) 
            ;Check Memory Location 
            (data-onDevice ?sig10) 
            (not(data-onHost ?sig10))  
        ) 
        :effect(and 
            (data-onHost ?sig10) 
            (increase (total-cost) 476) 
        ) 
    ) 
 
    (:action HighCutFreq_toCPU 
        :parameters(?cpu ?gpu ?sig12) 
        :precondition(and 
            ;Check Hardware Status 
            (CPU ?cpu) 
            (GPU ?gpu) 
            ;Check Signals 
            (HighCutFreq ?sig12) 
            ;Check Memory Location 
            (data-onDevice ?sig12) 
            (not(data-onHost ?sig12))  
        ) 
        :effect(and 
            (data-onHost ?sig12) 
            (increase (total-cost) 460) 
        ) 
    ) 
 
     
  



246 

     (:action ifftResult_toCPU 
        :parameters(?cpu ?gpu ?sig13) 
        :precondition(and 
            ;Check Hardware Status 
            (CPU ?cpu) 
            (GPU ?gpu) 
            ;Check Signals 
            (ifftResult ?sig13) 
            ;Check Memory Location 
            (data-onDevice ?sig13) 
            (not(data-onHost ?sig13))  
        ) 
        :effect(and 
            (data-onHost ?sig13) 
            (increase (total-cost) 10523) 
        ) 
    ) 
 
    (:action Phase_toCPU 
        :parameters(?cpu ?gpu ?sig14) 
        :precondition(and 
            ;Check Hardware Status 
            (CPU ?cpu) 
            (GPU ?gpu) 
            ;Check Signals 
            (Phase ?sig14) 
            ;Check Memory Location 
            (data-onDevice ?sig14) 
            (not(data-onHost ?sig14))  
        ) 
        :effect(and 
            (data-onHost ?sig14) 
            (increase (total-cost) 2700) 
        ) 
    ) 
 
    (:action unwrapedPhase_toCPU 
        :parameters(?cpu ?gpu ?sig15) 
        :precondition(and 
            ;Check Hardware Status 
            (CPU ?cpu) 
            (GPU ?gpu) 
            ;Check Signals 
            (unwrapedPhase ?sig15) 
            ;Check Memory Location 
            (data-onDevice ?sig15) 
            (not(data-onHost ?sig15))  
        ) 
        :effect(and 
            (data-onHost ?sig15) 
            (increase (total-cost) 2916) 
        ) 
    ) 
 
     (:action phase_final_c_toCPU 
        :parameters(?cpu ?gpu ?sig16) 
        :precondition(and 
            ;Check Hardware Status 
            (CPU ?cpu) 
            (GPU ?gpu) 
            ;Check Signals 
            (phase_final_c ?sig16) 
            ;Check Memory Location 
            (data-onDevice ?sig16) 
            (not(data-onHost ?sig16))  
        ) 
        :effect(and 
            (data-onHost ?sig16) 
            (increase (total-cost) 2667) 
        ) 
    ) 
 
    
  



247 

 (:action Polynomial_toCPU 
        :parameters(?cpu ?gpu ?sig18) 
        :precondition(and 
            ;Check Hardware Status 
            (CPU ?cpu) 
            (GPU ?gpu) 
            ;Check Signals 
            (Polynomial ?sig18) 
            ;Check Memory Location 
            (data-onDevice ?sig18) 
            (not(data-onHost ?sig18))  
        ) 
        :effect(and 
            (data-onHost ?sig18) 
            (increase (total-cost) 569) 
        ) 
    ) 
 
    (:action getHeight_toCPU 
        :parameters(?cpu ?gpu ?sig19) 
        :precondition(and 
            ;Check Hardware Status 
            (CPU ?cpu) 
            (GPU ?gpu) 
            ;Check Signals 
            (getHeight ?sig19) 
            ;Check Memory Location 
            (data-onDevice ?sig19) 
            (not(data-onHost ?sig19))  
        ) 
        :effect(and 
            (data-onHost ?sig19) 
            (increase (total-cost) 418) 
        ) 
    ) 
 
     (:action getHeight2_toCPU 
            :parameters(?cpu ?gpu ?sig20) 
            :precondition(and 
                ;Check Hardware Status 
                (CPU ?cpu) 
                (GPU ?gpu) 
                ;Check Signals 
                (getHeight2 ?sig20) 
                ;Check Memory Location 
                (data-onDevice ?sig20) 
                (not(data-onHost ?sig20))  
            ) 
            :effect(and 
                (data-onHost ?sig20) 
                (increase (total-cost) 422) 
            ) 
        ) 
     
     
  



248 

;################## CPU Functions ############################# 
 
    (:action divide1 
        :parameters(?cpu ?sig1 ?sig2 ?sig3) 
        :precondition(and 
            ;Check Hardware Status 
            (CPU ?cpu) 
            ;Check Signals 
            (Signal ?sig1)  
            (Background_f ?sig2)  
            (sampleYt1 ?sig3)  
            ;Check Function Status 
            (not(done-divide1 ?sig3)) 
            ;Check Memory Location 
            (data-onHost ?sig1) (data-onHost ?sig2) 
        ) 
        :effect(and 
            (data-onHost ?sig3) 
            (not(data-onDevice ?sig3)) 
            (done-divide1 ?sig3) 
            (increase (total-cost) 779) 
        ) 
    ) 
 
     (:action interpolation 
        :parameters(?cpu ?sig4 ?sig3 ?sig5 ?sig6) 
        :precondition(and 
            ;Check Hardware Status 
            (CPU ?cpu) 
            ;Check Signals 
            (Lamda ?sig4) (sampleYt1 ?sig3)  

(interSampleX ?sig5) (interSampleYt1 ?sig6)  
            ;Check Function Status 
            (done-divide1 ?sig3) (not(done-interpolation ?sig6))  
            ;Check Memory Location 
            (data-onHost ?sig5) (data-onHost ?sig4) (data-onHost ?sig3) 
        ) 
        :effect(and 
            (data-onHost ?sig6) 
            (not(data-onDevice ?sig6)) 
            (done-interpolation ?sig6) 
            (increase (total-cost) 174914) 
        ) 
    ) 
 
    (:action fft 
        :parameters(?cpu ?sig6 ?sig7 ) 
        :precondition(and 
            ;Check Hardware Status 
            (CPU ?cpu) 
            ;Check Signals 
            (interSampleYt1 ?sig6) (fftResult ?sig7)  
            ;Check Function Status 
            (done-interpolation ?sig6) (not(done-fft ?sig7)) 
            ;Check Memory Location 
            (data-onHost ?sig6) 
        ) 
        :effect(and 
            (data-onHost ?sig7) 
            (not(data-onDevice ?sig7)) 
            (done-fft ?sig7) 
            (increase (total-cost) 57899) 
        ) 
    ) 
 
  



249 

     (:action absolute 
        :parameters(?cpu ?sig7 ?sig8 ) 
        :precondition(and 
            ;Check Hardware Status 
            (CPU ?cpu) 
            ;Check Signals 
            (fftResult ?sig7) (fftResult_Real ?sig8)  
            ;Check Function Status 
            (done-fft ?sig7) (not(done-absolute ?sig8))  
            ;Check Memory Location 
            (data-onHost ?sig7) 
        ) 
        :effect(and 
            (data-onHost ?sig8) 
            (not(data-onDevice ?sig8)) 
            (done-absolute ?sig8) 
            (increase (total-cost) 8926) 
        ) 
    ) 
 
    (:action zeroData1 
        :parameters(?cpu ?sig8) 
        :precondition(and 
            ;Check Hardware Status 
            (CPU ?cpu) 
            ;Check Signals 
            (fftResult_Real ?sig8) 
            ;Check Function Status 
            (done-absolute ?sig8) (not(done-zeroData1 ?sig8))  
            ;Check Memory Location 
            (data-onHost ?sig8) 
        ) 
        :effect(and 
            (data-onHost ?sig8) 
            (not(data-onDevice ?sig8)) 
            (done-zeroData1 ?sig8) 
            (increase (total-cost) 18) 
        ) 
    ) 
 
     (:action zeroData2 
        :parameters(?cpu ?sig8) 
        :precondition(and 
            ;Check Hardware Status 
            (CPU ?cpu) 
            ;Check Signals 
            (fftResult_Real ?sig8) 
            ;Check Function Status 
            (done-absolute ?sig8) (not(done-zeroData2 ?sig8))  
            ;Check Memory Location 
            (data-onHost ?sig8) 
        ) 
        :effect(and 
            (data-onHost ?sig8) 
            (not(data-onDevice ?sig8)) 
            (done-zeroData2 ?sig8) 
            (increase (total-cost) 240) 
        ) 
    ) 
 
     
  



250 

(:action getMax 
        :parameters(?cpu ?sig8 ?sig9 ?sig10 ) 
        :precondition(and 
            ;Check Hardware Status 
            (CPU ?cpu) 
            ;Check Signals 
            (fftResult_Real ?sig8) (maxID ?sig9) (maxValue ?sig10)  
            ;Check Function Status 
            (done-zeroData1 ?sig8) (done-zeroData2 ?sig8)  

(not(done-getMax ?sig9)) (not(done-getMax ?sig10))  
            ;Check Memory Location 
            (data-onHost ?sig8) 
        ) 
        :effect(and 
            (data-onHost ?sig9) 
            (not(data-onDevice ?sig9)) 
            (data-onHost ?sig10) 
            (not(data-onDevice ?sig10)) 
            (done-getMax ?sig9) 
            (done-getMax ?sig10) 
            (increase (total-cost) 5512) 
        ) 
    ) 
 
     (:action Logic 
        :parameters(?cpu ?sig9 ?sig11 ?sig12 ) 
        :precondition(and 
            ;Check Hardware Status 
            (CPU ?cpu) 
            ;Check Signals 
            (maxID ?sig9) (LowCutFreq ?sig11) (HighCutFreq ?sig12)  
            ;Check Function Status 
            (done-getMax ?sig9) (not(done-Logic ?sig9)) 
            ;Check Memory Location 
            (data-onHost ?sig9) 
        ) 
        :effect(and 
            (data-onHost ?sig11) 
            (not(data-onDevice ?sig11)) 
            (data-onHost ?sig12) 
            (not(data-onDevice ?sig12)) 
            (done-Logic ?sig9) 
            (done-Logic ?sig11) 
            (done-Logic ?sig12) 
            (increase (total-cost) 18) 
        ) 
    ) 
 
    (:action zeroComplexData1 
        :parameters(?cpu ?sig7 ?sig11 ?sig12) 
        :precondition(and 
            ;Check Hardware Status 
            (CPU ?cpu) 
            ;Check Signals 
            (fftResult ?sig7) (LowCutFreq ?sig11) (HighCutFreq ?sig12)  
            ;Check Function Status 
            (done-fft ?sig7) (done-Logic ?sig11)  

(done-Logic ?sig12) (not(done-zeroComplexData1 ?sig7))  
            ;Check Memory Location 
            (data-onHost ?sig7) (data-onHost ?sig11) (data-onHost ?sig12) 
        ) 
        :effect(and 
            (data-onHost ?sig7) 
            (not(data-onDevice ?sig7)) 
            (done-zeroComplexData1 ?sig7) 
            (increase (total-cost) 73) 
        ) 
    ) 
 
     
  



251 

     (:action zeroComplexData2 
        :parameters(?cpu ?sig7 ?sig11 ?sig12) 
        :precondition(and 
            ;Check Hardware Status 
            (CPU ?cpu) 
            ;Check Signals 
            (fftResult ?sig7) (LowCutFreq ?sig11) (HighCutFreq ?sig12)  
            ;Check Function Status 
            (done-fft ?sig7) (done-Logic ?sig11)  

(done-Logic ?sig12) (not(done-zeroComplexData2 ?sig7))  
            ;Check Memory Location 
            (data-onHost ?sig7) (data-onHost ?sig11) (data-onHost ?sig12) 
        ) 
        :effect(and 
            (data-onHost ?sig7) 
            (not(data-onDevice ?sig7)) 
            (done-zeroComplexData2 ?sig7) 
            (increase (total-cost) 937) 
        ) 
    ) 
    (:action ifft 
        :parameters(?cpu ?sig7 ?sig13 ) 
        :precondition(and 
            ;Check Hardware Status 
            (CPU ?cpu) 
            ;Check Signals 
            (fftResult ?sig7) (ifftResult ?sig13)  
            ;Check Function Status 
            (done-zeroComplexData1 ?sig7)  

(done-zeroComplexData2 ?sig7) (not(done-ifft ?sig13))  
            ;Check Memory Location 
            (data-onHost ?sig7) 
        ) 
        :effect(and 
            (data-onHost ?sig13) 
            (not(data-onDevice ?sig13)) 
            (done-ifft ?sig13) 
            (increase (total-cost) 49653) 
        ) 
    ) 
 
     (:action complexLog 
        :parameters(?cpu ?sig13 ) 
        :precondition(and 
            ;Check Hardware Status 
            (CPU ?cpu) 
            ;Check Signals 
            (ifftResult ?sig13)  
            ;Check Function Status 
            (done-ifft ?sig13) (not(done-complexLog ?sig13))  
            ;Check Memory Location 
            (data-onHost ?sig13) 
        ) 
        :effect(and 
            (data-onHost ?sig13) 
            (not(data-onDevice ?sig13)) 
            (done-complexLog ?sig13) 
            (increase (total-cost) 79875) 
        ) 
    ) 
 
     
  



252 

(:action getImag 
        :parameters(?cpu ?sig13 ?sig14 ) 
        :precondition(and 
            ;Check Hardware Status 
            (CPU ?cpu) 
            ;Check Signals 
            (ifftResult ?sig13) (Phase ?sig14)  
            ;Check Function Status 
            (done-complexLog ?sig13) (not(done-getImag ?sig14))  
            ;Check Memory Location 
            (data-onHost ?sig13) 
        ) 
        :effect(and 
            (data-onHost ?sig14) 
            (not(data-onDevice ?sig14)) 
            (done-getImag ?sig14) 
            (increase (total-cost) 1779) 
        ) 
    ) 
 
     (:action unwrapPhase 
        :parameters(?cpu ?sig14 ?sig15 ) 
        :precondition(and 
            ;Check Hardware Status 
            (CPU ?cpu) 
            ;Check Signals 
            (Phase ?sig14) (unwrapedPhase ?sig15)  
            ;Check Function Status 
            (done-getImag ?sig14) (not(done-unwrapPhase ?sig15)) 
            ;Check Memory Location 
            (data-onHost ?sig14) 
        ) 
        :effect(and 
            (data-onHost ?sig15) 
            (not(data-onDevice ?sig15)) 
            (done-unwrapPhase ?sig15) 
            (increase (total-cost) 5802) 
        ) 
    ) 
 
    (:action windowSignal 
        :parameters(?cpu ?sig15 ?sig16 ) 
        :precondition(and 
            ;Check Hardware Status 
            (CPU ?cpu) 
            ;Check Signals 
            (unwrapedPhase ?sig15) (phase_final_c ?sig16)  
            ;Check Function Status 
            (done-unwrapPhase ?sig15) (not(done-windowSignal ?sig16))  
            ;Check Memory Location 
            (data-onHost ?sig15) 
        ) 
        :effect(and 
            (data-onHost ?sig16) 
            (not(data-onDevice ?sig16)) 
            (done-windowSignal ?sig16) 
            (increase (total-cost) 1263) 
        ) 
    ) 
 
     
  



253 

     (:action polyFit 
        :parameters(?cpu ?sig17 ?sig16 ?sig18 ) 
        :precondition(and 
            ;Check Hardware Status 
            (CPU ?cpu) 
            ;Check Signals 
            (interSampleX_c ?sig17) (phase_final_c ?sig16) (Polynomial ?sig18) 
            ;Check Function Status 
            (done-windowSignal ?sig16) (not(done-polyFit ?sig18))  
            ;Check Memory Location 
            (data-onHost ?sig16) (data-onHost ?sig17) 
        ) 
        :effect(and 
            (data-onHost ?sig18) 
            (not(data-onDevice ?sig18)) 
            (done-polyFit ?sig18) 
            (increase (total-cost) 62974) 
        ) 
    ) 
 
    (:action calculateHeight1 
        :parameters(?cpu ?sig18 ?sig19 ) 
        :precondition(and 
            ;Check Hardware Status 
            (CPU ?cpu) 
            ;Check Signals 
            (Polynomial ?sig18) (getHeight ?sig19)  
            ;Check Function Status 
            (done-polyFit ?sig18) (not(done-calculateHeight1 ?sig19)) 
            ;Check Memory Location 
            (data-onHost ?sig18) 
        ) 
        :effect(and 
            (data-onHost ?sig19) 
            (not(data-onDevice ?sig19)) 
            (done-calculateHeight1 ?sig19) 
            (increase (total-cost) 4) 
        ) 
    ) 
 
     (:action calculateHeight2 
        :parameters(?cpu ?sig5 ?sig14 ?sig19 ?sig20 ) 
        :precondition(and 
            ;Check Hardware Status 
            (CPU ?cpu) 
            ;Check Signals 
            (interSampleX ?sig5) (Phase ?sig14) 

(getHeight ?sig19) (getHeight2 ?sig20) 
            ;Check Function Status 
            (done-getImag ?sig14) (done-calculateHeight1 ?sig19)  

(not(done-calculateHeight2 ?sig20))  
            ;Check Memory Location 
            (data-onHost ?sig5) (data-onHost ?sig14) (data-onHost ?sig19) 
        ) 
        :effect(and 
            (data-onHost ?sig20) 
            (not(data-onDevice ?sig20)) 
            (done-calculateHeight2 ?sig20) 
            (increase (total-cost) 195) 
        ) 
    ) 
 
    
  



254 

 (:action divide4 
        :parameters(?cpu ?sig19 ) 
        :precondition(and 
            ;Check Hardware Status 
            (CPU ?cpu) 
            (not(device-inUse ?cpu)) 
            ;Check Signals 
            (getHeight ?sig19)  
            ;Check Function Status 
            (done-calculateHeight1 ?sig19) (not(done-divide4 ?sig19))  
            ;Check Memory Location 
            (data-onHost ?sig19) 
        ) 
        :effect(and 
        (data-onHost ?sig19) 
            (not(data-onDevice ?sig19)) 
            (done-divide4 ?sig19) 
            (increase (total-cost) 2) 
        ) 
    ) 
 
     (:action divide5 
        :parameters(?cpu ?sig20) 
        :precondition(and 
            ;Check Hardware Status 
            (CPU ?cpu) 
            (not(device-inUse ?cpu)) 
            ;Check Signals 
            (getHeight2 ?sig20)  
            ;Check Function Status 
            (done-calculateHeight2 ?sig20) (not(done-divide5 ?sig20))  
            ;Check Memory Location 
            (data-onHost ?sig20) 
        ) 
        :effect(and 
            (data-onHost ?sig20) 
            (not(data-onDevice ?sig20)) 
            (done-divide5 ?sig20) 
            (increase (total-cost) 1) 
        ) 
    ) 
 
    ;################# Kernel Functions ############################ 
 
    (:action divide1_Kernel 
        :parameters(?gpu ?sig1 ?sig2 ?sig3) 
        :precondition(and 
            ;Check Hardware Status 
            (GPU ?gpu) 
            ;Check Signals 
            (Signal ?sig1)  
            (Background_f ?sig2)  
            (sampleYt1 ?sig3)  
            ;Check Function Status 
            (not(done-divide1 ?sig3)) 
            ;Check Memory Location 
            (data-onDevice ?sig1) (data-onDevice ?sig2) 
        ) 
        :effect(and 
            (not(data-onHost ?sig3)) 
            (data-onDevice ?sig3) 
            (done-divide1 ?sig3) 
            (increase (total-cost) 310) 
        ) 
    ) 
     
  



255 

     (:action fft_Kernel 
        :parameters(?gpu ?sig6 ?sig7 ) 
        :precondition(and 
            ;Check Hardware Status 
            (GPU ?gpu) 
            ;Check Signals 
            (interSampleYt1 ?sig6) (fftResult ?sig7)  
            ;Check Function Status 
            (done-interpolation ?sig6) (not(done-fft ?sig7))  
            ;Check Memory Location 
            (data-onDevice ?sig6) 
        ) 
        :effect(and 
            (not(data-onHost ?sig7)) 
            (data-onDevice ?sig7) 
            (done-fft ?sig7) 
            (increase (total-cost) 1540) 
        ) 
    ) 
 
    (:action absolute_Kernel 
        :parameters(?gpu ?sig7 ?sig8 ) 
        :precondition(and 
            ;Check Hardware Status 
            (GPU ?gpu) 
            ;Check Signals 
            (fftResult ?sig7) (fftResult_Real ?sig8)  
            ;Check Function Status 
            (done-fft ?sig7) (not(done-absolute ?sig8)) 
            ;Check Memory Location 
            (data-onDevice ?sig7) 
        ) 
        :effect(and 
            (not(data-onHost ?sig8)) 
            (data-onDevice ?sig8) 
            (done-absolute ?sig8) 
            (increase (total-cost) 788) 
        ) 
    ) 
 
     (:action zeroData1_Kernel 
        :parameters(?gpu ?sig8) 
        :precondition(and 
            ;Check Hardware Status 
            (GPU ?gpu) 
            ;Check Signals 
            (fftResult_Real ?sig8) 
            ;Check Function Status 
            (done-absolute ?sig8) (not(done-zeroData1 ?sig8))  
            ;Check Memory Location 
            (data-onDevice ?sig8) 
        ) 
        :effect(and 
            (not(data-onHost ?sig8)) 
            (data-onDevice ?sig8) 
            (done-zeroData1 ?sig8) 
            (increase (total-cost) 508) 
        ) 
    ) 
 
     
  



256 

(:action zeroData2_Kernel 
        :parameters(?gpu ?sig8) 
        :precondition(and 
            ;Check Hardware Status 
            (GPU ?gpu) 
            ;Check Signals 
            (fftResult_Real ?sig8) 
            ;Check Function Status 
            (done-absolute ?sig8) (not(done-zeroData2 ?sig8))  
            ;Check Memory Location 
            (data-onDevice ?sig8) 
        ) 
        :effect(and 
            (not(data-onHost ?sig8)) 
            (data-onDevice ?sig8) 
            (done-zeroData2 ?sig8) 
            (increase (total-cost) 474) 
        ) 
    ) 
 
     (:action getMax_Kernel 
        :parameters(?gpu ?sig8 ?sig9 ?sig10 ) 
        :precondition(and 
            ;Check Hardware Status 
            (GPU ?gpu) 
            ;Check Signals 
            (fftResult_Real ?sig8) (maxID ?sig9) (maxValue ?sig10)  
            ;Check Function Status 
            (done-zeroData1 ?sig8) (done-zeroData2 ?sig8)  

(not(done-getMax ?sig9)) (not(done-getMax ?sig10))  
            ;Check Memory Location 
            (data-onDevice ?sig8) 
        ) 
        :effect(and 
            (not(data-onHost ?sig9)) 
            (data-onDevice ?sig9) 
            (not(data-onHost ?sig10)) 
            (data-onDevice ?sig10) 
            (done-getMax ?sig9) 
            (done-getMax ?sig10) 
            (increase (total-cost) 23756) 
        ) 
    ) 
 
    (:action Logic_Kernel 
        :parameters(?gpu ?sig9 ?sig11 ?sig12 ) 
        :precondition(and 
            ;Check Hardware Status 
            (GPU ?gpu) 
            ;Check Signals 
            (maxID ?sig9) (LowCutFreq ?sig11) (HighCutFreq ?sig12)  
            ;Check Function Status 
            (done-getMax ?sig9) (not(done-Logic ?sig9)) 
            ;Check Memory Location 
            (data-onDevice ?sig9) 
        ) 
        :effect(and 
            (data-onDevice ?sig11) 
            (not(data-onHost ?sig11)) 
            (data-onDevice ?sig12) 
            (not(data-onHost ?sig12)) 
            (done-Logic ?sig9) 
            (done-Logic ?sig11) 
            (done-Logic ?sig12) 
            (increase (total-cost) 1237) 
        ) 
    ) 
 
     
  



257 

     (:action zeroComplexData1_Kernel 
        :parameters(?gpu ?sig7 ?sig11 ?sig12 ) 
        :precondition(and 
            ;Check Hardware Status 
            (GPU ?gpu) 
            ;Check Signals 
            (fftResult ?sig7) (LowCutFreq ?sig11) (HighCutFreq ?sig12)  
            ;Check Function Status 
            (done-fft ?sig7) (done-Logic ?sig11)  

(done-Logic ?sig12) (not(done-zeroComplexData1 ?sig7))  
            ;Check Memory Location 
            (data-onDevice ?sig7) (data-onDevice ?sig11)  

(data-onDevice ?sig12) 
        ) 
        :effect(and 
            (not(data-onHost ?sig7)) 
            (data-onDevice ?sig7) 
            (done-zeroComplexData1 ?sig7) 
            (increase (total-cost) 469) 
        ) 
    ) 
 
    (:action zeroComplexData2_Kernel 
        :parameters(?gpu ?sig7 ?sig11 ?sig12 ) 
        :precondition(and 
            ;Check Hardware Status 
            (GPU ?gpu) 
            ;Check Signals 
            (fftResult ?sig7) (LowCutFreq ?sig11) (HighCutFreq ?sig12)  
            ;Check Function Status 
            (done-fft ?sig7) (done-Logic ?sig11)  

(done-Logic ?sig12) (not(done-zeroComplexData2 ?sig7))  
            ;Check Memory Location 
            (data-onDevice ?sig7) (data-onDevice ?sig11)  

(data-onDevice ?sig12) 
        ) 
        :effect(and 
            (not(data-onHost ?sig7)) 
            (data-onDevice ?sig7) 
            (done-zeroComplexData2 ?sig7) 
            (increase (total-cost) 449) 
        ) 
    ) 
 
     (:action ifft_Kernel 
        :parameters(?gpu ?sig7 ?sig13 ) 
        :precondition(and 
            ;Check Hardware Status 
            (GPU ?gpu) 
            ;Check Signals 
            (fftResult ?sig7) (ifftResult ?sig13)  
            ;Check Function Status 
            (done-zeroComplexData1 ?sig7)  

(done-zeroComplexData2 ?sig7) (not(done-ifft ?sig13))  
            ;Check Memory Location 
            (data-onDevice ?sig7) 
        ) 
        :effect(and 
            (not(data-onHost ?sig13)) 
            (data-onDevice ?sig13) 
            (done-ifft ?sig13) 
            (increase (total-cost) 1710) 
        ) 
    ) 
 
     
  



258 

(:action complexLog_Kernel 
        :parameters(?gpu ?sig13 ) 
        :precondition(and 
            ;Check Hardware Status 
            (GPU ?gpu) 
            ;Check Signals 
            (ifftResult ?sig13)  
            ;Check Function Status 
            (done-ifft ?sig13) (not(done-complexLog ?sig13))  
            ;Check Memory Location 
            (data-onDevice ?sig13) 
        ) 
        :effect(and 
            (not(data-onHost ?sig13)) 
            (data-onDevice ?sig13) 
            (done-complexLog ?sig13) 
            (increase (total-cost) 572) 
        ) 
    ) 
 
     (:action getImag_Kernel 
        :parameters(?gpu ?sig13 ?sig14 ) 
        :precondition(and 
            ;Check Hardware Status 
            (GPU ?gpu) 
            ;Check Signals 
            (ifftResult ?sig13) (Phase ?sig14)  
            ;Check Function Status 
            (done-complexLog ?sig13) (not(done-getImag ?sig14))  
            ;Check Memory Location 
            (data-onDevice ?sig13) 
        ) 
        :effect(and 
            (not(data-onHost ?sig14)) 
            (data-onDevice ?sig14) 
            (done-getImag ?sig14) 
            (increase (total-cost) 469) 
        ) 
    ) 
 
    (:action unwrapPhase_Kernel 
        :parameters(?gpu ?sig14 ?sig15 ) 
        :precondition(and 
            ;Check Hardware Status 
            (GPU ?gpu) 
            ;Check Signals 
            (Phase ?sig14) (unwrapedPhase ?sig15)  
            ;Check Function Status 
            (done-getImag ?sig14) (not(done-unwrapPhase ?sig15))  
            ;Check Memory Location 
            (data-onDevice ?sig14) 
        ) 
        :effect(and 
            (not(data-onHost ?sig15)) 
            (data-onDevice ?sig15) 
            (done-unwrapPhase ?sig15) 
            (increase (total-cost) 6456) 
        ) 
    ) 
 
  



259 

     (:action windowSignal_Kernel 
        :parameters(?gpu ?sig15 ?sig16 ) 
        :precondition(and 
            ;Check Hardware Status 
            (GPU ?gpu) 
            ;Check Signals 
            (unwrapedPhase ?sig15) (phase_final_c ?sig16)  
            ;Check Function Status 
            (done-unwrapPhase ?sig15) (not(done-windowSignal ?sig16)) 
            ;Check Memory Location 
            (data-onDevice ?sig15) 
        ) 
        :effect(and 
            (not(data-onHost ?sig16)) 
            (data-onDevice ?sig16) 
            (done-windowSignal ?sig16) 
            (increase (total-cost) 320) 
        ) 
    ) 
 
    (:action polyFit_Kernel 
        :parameters(?gpu ?sig17 ?sig16 ?sig18 ) 
        :precondition(and 
            ;Check Hardware Status 
            (GPU ?gpu) 
            ;Check Signals 
            (interSampleX_c ?sig17) (phase_final_c ?sig16) (Polynomial ?sig18) 
            ;Check Function Status 
            (done-windowSignal ?sig16) (not(done-polyFit ?sig18))  
            ;Check Memory Location 
            (data-onDevice ?sig16) (data-onDevice ?sig17) 
        ) 
        :effect(and 
            (not(data-onHost ?sig18)) 
            (data-onDevice ?sig18) 
            (done-polyFit ?sig18) 
            (increase (total-cost) 22218) 
        ) 
    ) 
 
     (:action calculateHeight1_Kernel 
        :parameters(?gpu ?sig18 ?sig19 ) 
        :precondition(and 
            ;Check Hardware Status 
            (GPU ?gpu) 
            ;Check Signals 
            (Polynomial ?sig18) (getHeight ?sig19)  
            ;Check Function Status 
            (done-polyFit ?sig18) (not(done-calculateHeight1 ?sig19))  
            ;Check Memory Location 
            (data-onDevice ?sig18) 
        ) 
        :effect(and 
            (not(data-onHost ?sig19)) 
            (data-onDevice ?sig19) 
            (done-calculateHeight1 ?sig19) 
            (increase (total-cost) 309) 
        ) 
    ) 
 
     
  



260 

(:action calculateHeight2_Kernel 
        :parameters(?gpu ?sig5 ?sig14 ?sig19 ?sig20 ) 
        :precondition(and 
            ;Check Hardware Status 
            (GPU ?gpu) 
            ;Check Signals 
            (interSampleX ?sig5) (Phase ?sig14)  

(getHeight ?sig19) (getHeight2 ?sig20) 
            ;Check Function Status 
            (done-getImag ?sig14) (done-calculateHeight1 ?sig19)  

(not(done-calculateHeight2 ?sig20))  
            ;Check Memory Location 
            (data-onDevice ?sig5) (data-onDevice ?sig14)  

(data-onDevice ?sig19) 
        ) 
        :effect(and 
            (not(data-onHost ?sig20)) 
            (data-onDevice ?sig20) 
            (done-calculateHeight2 ?sig20) 
            (increase (total-cost) 320) 
        ) 
    ) 
) 

(:action divide4_Kernel 
        :parameters(?gpu ?sig19 ) 
        :precondition(and  
            ;Check Hardware Status 
            (GPU ?gpu) 
            (not(device-inUse ?gpu)) 
            ;Check Signals 
            (getHeight ?sig19)  
            ;Check Function Status 
            (done-calculateHeight1 ?sig19) (not(done-divide4 ?sig19))  
            ;Check Memory Location 
            (data-onDevice ?sig19) 
        ) 
        :effect(and 
            (not(data-onHost ?sig19)) 
            (data-onDevice ?sig19) 
            (done-divide4 ?sig19) 
            (increase (total-cost) 301) 
        ) 
    ) 
 
    (:action divide5_Kernel 
        :parameters(?gpu ?sig20 ) 
        :precondition(and 
            ;Check Hardware Status 
            (GPU ?gpu) 
            (not(device-inUse ?gpu)) 
            ;Check Signals 
            (getHeight2 ?sig20)  
            ;Check Function Status 
            (done-calculateHeight2 ?sig20) (not(done-divide5 ?sig20))  
            ;Check Memory Location 
            (data-onDevice ?sig20) 
        ) 
        :effect(and 
            (not(data-onHost ?sig20)) 
            (data-onDevice ?sig20) 
            (done-divide5 ?sig20) 
            (increase (total-cost) 293) 
        ) 
    ) 
) 
  



261 

11.4.2 Problem File 

(define (problem LSDI-p1) 
    (:domain LSDI) 

    (:objects _Background _Signal _Background_f _Lamda _sampleYt1  
_Polynomial _MaxID _MaxValue _LowCutFreq _HighCutFreq  
_getHeight _getHeight2 _interSampleX _interSampleYt1  
_fftResult_Real _Phase _unwrapedPhase _interSampleX_c  
_phase_final_c _fftResult _ifftResult _CPU _GPU) 

 
    (:init 
        ;Init Signals 
        (Background _Background) 
        (Signal _Signal) 
        (Background_f _Background_f) 
        (Lamda _Lamda) 
        (sampleYt1 _sampleYt1) 
        (Polynomial _Polynomial) 
        (MaxID _MaxID) 
        (MaxValue _MaxValue) 
        (LowCutFreq _LowCutFreq) 
        (HighCutFreq _HighCutFreq) 
        (getHeight _getHeight) 
        (getHeight2 _getHeight2) 
        (interSampleX _interSampleX) 
        (interSampleYt1 _interSampleYt1) 
        (fftResult_Real _fftResult_Real) 
        (Phase _Phase) 
        (unwrapedPhase _unwrapedPhase) 
        (interSampleX_c _interSampleX_c) 
        (phase_final_c _phase_final_c) 
        (fftResult _fftResult) 
        (ifftResult _ifftResult) 
        (CPU _CPU) 
        (GPU _GPU) 
      
        (data-onHost _Signal) 
        (data-onHost _Background_f) 
        (data-onDevice _Background_f) 
        (data-onHost _Lamda) 
        (data-onDevice _Lamda) 
        (data-onHost _interSampleX) 
        (data-onDevice _interSampleX) 
        (data-onHost _LowCutFreq) 
        (data-onHost _HighCutFreq) 
        (data-onHost _interSampleX_c) 
        (data-onDevice _interSampleX_c) 
        ;Init Durative Paramters 
        (= (total-cost) 0)) 
         
    (:goal (and (done-calculateHeight1 _getHeight)  

(done-calculateHeight2 _getHeight2)  
(data-onHost _getHeight) (data-onHost _getHeight2))) 

    (:metric minimize (total-cost)) 
) 

  



262 

11.4.3 Solution Files 

11.4.3.1 CPU 

; Version LPG-td-1.4 

; Seed 48473465 

; Command line: ./lpg-td -o Domain.pddl -f Problem.pddl -n 50 -p CPU/ -out CPU -cputime 30  

; Problem Problem.pddl 

; Actions having STRIPS duration 

; Time 0.01 

; Search time 0.01 

; Parsing time 0.00 

; Mutex time 0.00 

; MetricValue 451059.00 

 

0:   (DIVIDE1 CPU SIGNAL BACKGROUND_F SAMPLEYT1) [1] 

1:   (INTERPOLATION CPU LAMDA SAMPLEYT1 INTERSAMPLEX INTERSAMPLEYT1) [1] 

2:   (FFT CPU INTERSAMPLEYT1 FFTRESULT) [1] 

3:   (ABSOLUTE CPU FFTRESULT FFTRESULT_REAL) [1] 

4:   (ZERODATA1 CPU FFTRESULT_REAL) [1] 

5:   (ZERODATA2 CPU FFTRESULT_REAL) [1] 

6:   (GETMAX CPU FFTRESULT_REAL MAXID MAXVALUE) [1] 

7:   (LOGIC CPU MAXID LOWCUTFREQ HIGHCUTFREQ) [1] 

8:   (ZEROCOMPLEXDATA1 CPU FFTRESULT LOWCUTFREQ HIGHCUTFREQ) [1] 

9:   (ZEROCOMPLEXDATA2 CPU FFTRESULT LOWCUTFREQ HIGHCUTFREQ) [1] 

10:   (IFFT CPU FFTRESULT IFFTRESULT) [1] 

11:   (COMPLEXLOG CPU IFFTRESULT) [1] 

12:   (GETIMAG CPU IFFTRESULT PHASE) [1] 

13:   (UNWRAPPHASE CPU PHASE UNWRAPEDPHASE) [1] 

14:   (WINDOWSIGNAL CPU UNWRAPEDPHASE PHASE_FINAL_C) [1] 

15:   (POLYFIT CPU INTERSAMPLEX_C PHASE_FINAL_C POLYNOMIAL) [1] 

16:   (CALCULATEHEIGHT1 CPU POLYNOMIAL GETHEIGHT) [1] 

17:   (CALCULATEHEIGHT2 CPU INTERSAMPLEX PHASE GETHEIGHT GETHEIGHT2) [1] 

11.4.3.2 GTX 650Ti 

; Version LPG-td-1.4 

; Seed 82056988 

; Command line: ./lpg-td -o Domain.pddl -f Problem.pddl -n 10 -p 650/ -out 650 -cputime 30  

; Problem Problem.pddl 

; Actions having STRIPS duration 

; Time 0.02 

; Search time 0.01 

; Parsing time 0.01 

; Mutex time 0.00 

; MetricValue 315345.00 

 

0:   (SIGNAL_TOGPU CPU GPU SIGNAL) [1] 

1:   (DIVIDE1_KERNEL GPU SIGNAL BACKGROUND_F SAMPLEYT1) [1] 

2:   (SAMPLEYT1_TOCPU CPU GPU SAMPLEYT1) [1] 

3:   (INTERPOLATION CPU LAMDA SAMPLEYT1 INTERSAMPLEX INTERSAMPLEYT1) [1] 

4:   (INTERSAMPLEYT1_TOGPU CPU GPU INTERSAMPLEYT1) [1] 

5:   (FFT_KERNEL GPU INTERSAMPLEYT1 FFTRESULT) [1] 

6:   (ABSOLUTE_KERNEL GPU FFTRESULT FFTRESULT_REAL) [1] 

7:   (ZERODATA2_KERNEL GPU FFTRESULT_REAL) [1] 

8:   (ZERODATA1_KERNEL GPU FFTRESULT_REAL) [1] 

9:   (GETMAX_KERNEL GPU FFTRESULT_REAL MAXID MAXVALUE) [1] 

10:   (LOGIC_KERNEL GPU MAXID LOWCUTFREQ HIGHCUTFREQ) [1] 

11:   (ZEROCOMPLEXDATA2_KERNEL GPU FFTRESULT LOWCUTFREQ HIGHCUTFREQ) [1] 

12:   (ZEROCOMPLEXDATA1_KERNEL GPU FFTRESULT LOWCUTFREQ HIGHCUTFREQ) [1] 

13:   (IFFT_KERNEL GPU FFTRESULT IFFTRESULT) [1] 

14:   (COMPLEXLOG_KERNEL GPU IFFTRESULT) [1] 

15:   (GETIMAG_KERNEL GPU IFFTRESULT PHASE) [1] 

16:   (UNWRAPPHASE_KERNEL GPU PHASE UNWRAPEDPHASE) [1] 

17:   (WINDOWSIGNAL_KERNEL GPU UNWRAPEDPHASE PHASE_FINAL_C) [1] 

18:   (POLYFIT_KERNEL GPU INTERSAMPLEX_C PHASE_FINAL_C POLYNOMIAL) [1] 

19:   (CALCULATEHEIGHT1_KERNEL GPU POLYNOMIAL GETHEIGHT) [1] 

20:   (CALCULATEHEIGHT2_KERNEL GPU INTERSAMPLEX PHASE GETHEIGHT GETHEIGHT2) [1] 

20:   (GETHEIGHT_TOCPU CPU GPU GETHEIGHT) [1] 

21:   (GETHEIGHT2_TOCPU CPU GPU GETHEIGHT2) [1] 

  



263 

11.4.3.3 GTX 780Ti 

 

; Version LPG-td-1.4 

; Seed 112100601 

; Command line: ./lpg-td -o Domain.pddl -f Problem.pddl -n 10 -p 780/ -out 780 -cputime 30  

; Problem Problem.pddl 

; Actions having STRIPS duration 

; Time 0.02 

; Search time 0.01 

; Parsing time 0.01 

; Mutex time 0.00 

; MetricValue 283388.00 

 

0:   (SIGNAL_TOGPU CPU GPU SIGNAL) [1] 

1:   (DIVIDE1_KERNEL GPU SIGNAL BACKGROUND_F SAMPLEYT1) [1] 

2:   (SAMPLEYT1_TOCPU CPU GPU SAMPLEYT1) [1] 

3:   (INTERPOLATION CPU LAMDA SAMPLEYT1 INTERSAMPLEX INTERSAMPLEYT1) [1] 

4:   (INTERSAMPLEYT1_TOGPU CPU GPU INTERSAMPLEYT1) [1] 

5:   (FFT_KERNEL GPU INTERSAMPLEYT1 FFTRESULT) [1] 

6:   (ABSOLUTE_KERNEL GPU FFTRESULT FFTRESULT_REAL) [1] 

7:   (ZERODATA2_KERNEL GPU FFTRESULT_REAL) [1] 

8:   (ZERODATA1_KERNEL GPU FFTRESULT_REAL) [1] 

9:   (GETMAX_KERNEL GPU FFTRESULT_REAL MAXID MAXVALUE) [1] 

10:   (LOGIC_KERNEL GPU MAXID LOWCUTFREQ HIGHCUTFREQ) [1] 

11:   (ZEROCOMPLEXDATA2_KERNEL GPU FFTRESULT LOWCUTFREQ HIGHCUTFREQ) [1] 

12:   (ZEROCOMPLEXDATA1_KERNEL GPU FFTRESULT LOWCUTFREQ HIGHCUTFREQ) [1] 

13:   (IFFT_KERNEL GPU FFTRESULT IFFTRESULT) [1] 

14:   (COMPLEXLOG_KERNEL GPU IFFTRESULT) [1] 

15:   (GETIMAG_KERNEL GPU IFFTRESULT PHASE) [1] 

16:   (UNWRAPPHASE_KERNEL GPU PHASE UNWRAPEDPHASE) [1] 

17:   (WINDOWSIGNAL_KERNEL GPU UNWRAPEDPHASE PHASE_FINAL_C) [1] 

18:   (POLYFIT_KERNEL GPU INTERSAMPLEX_C PHASE_FINAL_C POLYNOMIAL) [1] 

19:   (CALCULATEHEIGHT1_KERNEL GPU POLYNOMIAL GETHEIGHT) [1] 

20:   (CALCULATEHEIGHT2_KERNEL GPU INTERSAMPLEX PHASE GETHEIGHT GETHEIGHT2) [1] 

20:   (GETHEIGHT_TOCPU CPU GPU GETHEIGHT) [1] 

21:   (GETHEIGHT2_TOCPU CPU GPU GETHEIGHT2) [1] 

11.4.3.4 GTX 1070 

; Version LPG-td-1.4 

; Seed 14150209 

; Command line: ./lpg-td -o Domain.pddl -f Problem.pddl -n 10 -p 1070/ -out 1070 -cputime 30  

; Problem Problem.pddl 

; Actions having STRIPS duration 

; Time 0.01 

; Search time 0.01 

; Parsing time 0.00 

; Mutex time 0.00 

; MetricValue 242646.00 

 

0:   (SIGNAL_TOGPU CPU GPU SIGNAL) [1] 

1:   (DIVIDE1_KERNEL GPU SIGNAL BACKGROUND_F SAMPLEYT1) [1] 

2:   (SAMPLEYT1_TOCPU CPU GPU SAMPLEYT1) [1] 

3:   (INTERPOLATION CPU LAMDA SAMPLEYT1 INTERSAMPLEX INTERSAMPLEYT1) [1] 

4:   (INTERSAMPLEYT1_TOGPU CPU GPU INTERSAMPLEYT1) [1] 

5:   (FFT_KERNEL GPU INTERSAMPLEYT1 FFTRESULT) [1] 

6:   (ABSOLUTE_KERNEL GPU FFTRESULT FFTRESULT_REAL) [1] 

7:   (ZERODATA2_KERNEL GPU FFTRESULT_REAL) [1] 

8:   (ZERODATA1_KERNEL GPU FFTRESULT_REAL) [1] 

9:   (GETMAX_KERNEL GPU FFTRESULT_REAL MAXID MAXVALUE) [1] 

10:   (LOGIC_KERNEL GPU MAXID LOWCUTFREQ HIGHCUTFREQ) [1] 

11:   (ZEROCOMPLEXDATA2_KERNEL GPU FFTRESULT LOWCUTFREQ HIGHCUTFREQ) [1] 

12:   (ZEROCOMPLEXDATA1_KERNEL GPU FFTRESULT LOWCUTFREQ HIGHCUTFREQ) [1] 

13:   (IFFT_KERNEL GPU FFTRESULT IFFTRESULT) [1] 

14:   (COMPLEXLOG_KERNEL GPU IFFTRESULT) [1] 

15:   (GETIMAG_KERNEL GPU IFFTRESULT PHASE) [1] 

16:   (UNWRAPPHASE_KERNEL GPU PHASE UNWRAPEDPHASE) [1] 

17:   (WINDOWSIGNAL_KERNEL GPU UNWRAPEDPHASE PHASE_FINAL_C) [1] 

18:   (POLYFIT_KERNEL GPU INTERSAMPLEX_C PHASE_FINAL_C POLYNOMIAL) [1] 

19:   (CALCULATEHEIGHT1_KERNEL GPU POLYNOMIAL GETHEIGHT) [1] 

20:   (CALCULATEHEIGHT2_KERNEL GPU INTERSAMPLEX PHASE GETHEIGHT GETHEIGHT2) [1] 

20:   (GETHEIGHT_TOCPU CPU GPU GETHEIGHT) [1] 

21:   (GETHEIGHT2_TOCPU CPU GPU GETHEIGHT2) [1] 



264 

11.4.3.5 Heterogeneous CPU and GTX 650Ti 

; Version LPG-td-1.4 

; Seed 44203424 

; Command line: ./lpg-td -o Domain.pddl -f Problem.pddl -n 50 -p C650/ -out C650 -cputime 300  

; Problem Problem.pddl 

; Actions having STRIPS duration 

; Time 0.56 

; Search time 0.54 

; Parsing time 0.02 

; Mutex time 0.00 

; MetricValue 275466.00 

 

0:   (DIVIDE1 CPU SIGNAL BACKGROUND_F SAMPLEYT1) [1] 

1:   (INTERPOLATION CPU LAMDA SAMPLEYT1 INTERSAMPLEX INTERSAMPLEYT1) [1] 

2:   (INTERSAMPLEYT1_TOGPU CPU GPU INTERSAMPLEYT1) [1] 

3:   (FFT_KERNEL GPU INTERSAMPLEYT1 FFTRESULT) [1] 

4:   (ABSOLUTE_KERNEL GPU FFTRESULT FFTRESULT_REAL) [1] 

5:   (FFTRESULT_REAL_TOCPU CPU GPU FFTRESULT_REAL) [1] 

6:   (ZERODATA2 CPU FFTRESULT_REAL) [1] 

7:   (ZERODATA1 CPU FFTRESULT_REAL) [1] 

8:   (GETMAX CPU FFTRESULT_REAL MAXID MAXVALUE) [1] 

9:   (LOGIC CPU MAXID LOWCUTFREQ HIGHCUTFREQ) [1] 

10:   (HIGHCUTFREQ_TOGPU CPU GPU HIGHCUTFREQ) [1] 

10:   (LOWCUTFREQ_TOGPU CPU GPU LOWCUTFREQ) [1] 

11:   (ZEROCOMPLEXDATA2_KERNEL GPU FFTRESULT LOWCUTFREQ HIGHCUTFREQ) [1] 

12:   (ZEROCOMPLEXDATA1_KERNEL GPU FFTRESULT LOWCUTFREQ HIGHCUTFREQ) [1] 

13:   (IFFT_KERNEL GPU FFTRESULT IFFTRESULT) [1] 

14:   (COMPLEXLOG_KERNEL GPU IFFTRESULT) [1] 

15:   (GETIMAG_KERNEL GPU IFFTRESULT PHASE) [1] 

16:   (PHASE_TOCPU CPU GPU PHASE) [1] 

17:   (UNWRAPPHASE CPU PHASE UNWRAPEDPHASE) [1] 

18:   (WINDOWSIGNAL CPU UNWRAPEDPHASE PHASE_FINAL_C) [1] 

19:   (POLYFIT CPU INTERSAMPLEX_C PHASE_FINAL_C POLYNOMIAL) [1] 

20:   (CALCULATEHEIGHT1 CPU POLYNOMIAL GETHEIGHT) [1] 

21:   (CALCULATEHEIGHT2 CPU INTERSAMPLEX PHASE GETHEIGHT GETHEIGHT2) [1] 

11.4.3.6 Heterogeneous CPU and GTX 780Ti 

; Version LPG-td-1.4 

; Seed 88305982 

; Command line: ./lpg-td -o Domain.pddl -f Problem.pddl -n 50 -p C780/ -out C780 -cputime 300  

; Problem Problem.pddl 

; Actions having STRIPS duration 

; Time 2.63 

; Search time 2.62 

; Parsing time 0.01 

; Mutex time 0.00 

; MetricValue 268044.00 

 

0:   (DIVIDE1 CPU SIGNAL BACKGROUND_F SAMPLEYT1) [1] 

1:   (INTERPOLATION CPU LAMDA SAMPLEYT1 INTERSAMPLEX INTERSAMPLEYT1) [1] 

2:   (INTERSAMPLEYT1_TOGPU CPU GPU INTERSAMPLEYT1) [1] 

3:   (FFT_KERNEL GPU INTERSAMPLEYT1 FFTRESULT) [1] 

4:   (ABSOLUTE_KERNEL GPU FFTRESULT FFTRESULT_REAL) [1] 

5:   (FFTRESULT_REAL_TOCPU CPU GPU FFTRESULT_REAL) [1] 

6:   (ZERODATA1 CPU FFTRESULT_REAL) [1] 

7:   (ZERODATA2 CPU FFTRESULT_REAL) [1] 

8:   (GETMAX CPU FFTRESULT_REAL MAXID MAXVALUE) [1] 

9:   (LOGIC CPU MAXID LOWCUTFREQ HIGHCUTFREQ) [1] 

10:   (HIGHCUTFREQ_TOGPU CPU GPU HIGHCUTFREQ) [1] 

10:   (LOWCUTFREQ_TOGPU CPU GPU LOWCUTFREQ) [1] 

11:   (ZEROCOMPLEXDATA2_KERNEL GPU FFTRESULT LOWCUTFREQ HIGHCUTFREQ) [1] 

12:   (ZEROCOMPLEXDATA1_KERNEL GPU FFTRESULT LOWCUTFREQ HIGHCUTFREQ) [1] 

13:   (IFFT_KERNEL GPU FFTRESULT IFFTRESULT) [1] 

14:   (COMPLEXLOG_KERNEL GPU IFFTRESULT) [1] 

15:   (GETIMAG_KERNEL GPU IFFTRESULT PHASE) [1] 

16:   (PHASE_TOCPU CPU GPU PHASE) [1] 

17:   (UNWRAPPHASE CPU PHASE UNWRAPEDPHASE) [1] 

18:   (WINDOWSIGNAL CPU UNWRAPEDPHASE PHASE_FINAL_C) [1] 

19:   (POLYFIT CPU INTERSAMPLEX_C PHASE_FINAL_C POLYNOMIAL) [1] 

20:   (CALCULATEHEIGHT1 CPU POLYNOMIAL GETHEIGHT) [1] 

21:   (CALCULATEHEIGHT2 CPU INTERSAMPLEX PHASE GETHEIGHT GETHEIGHT2) [1] 

 



265 

11.4.3.7 Heterogeneous CPU and GTX 1070 

 

; Version LPG-td-1.4 

; Seed 4375665 

; Command line: ./lpg-td -o Domain.pddl -f Problem.pddl -n 50 -p C1070/ -out C1070 -cputime 

300  

; Problem Problem.pddl 

; Actions having STRIPS duration 

; Time 1.42 

; Search time 1.42 

; Parsing time 0.00 

; Mutex time 0.00 

; MetricValue 225403.00 

 

0:   (DIVIDE1 CPU SIGNAL BACKGROUND_F SAMPLEYT1) [1] 

1:   (INTERPOLATION CPU LAMDA SAMPLEYT1 INTERSAMPLEX INTERSAMPLEYT1) [1] 

2:   (INTERSAMPLEYT1_TOGPU CPU GPU INTERSAMPLEYT1) [1] 

3:   (FFT_KERNEL GPU INTERSAMPLEYT1 FFTRESULT) [1] 

4:   (ABSOLUTE_KERNEL GPU FFTRESULT FFTRESULT_REAL) [1] 

5:   (FFTRESULT_REAL_TOCPU CPU GPU FFTRESULT_REAL) [1] 

6:   (ZERODATA1 CPU FFTRESULT_REAL) [1] 

7:   (ZERODATA2 CPU FFTRESULT_REAL) [1] 

8:   (GETMAX CPU FFTRESULT_REAL MAXID MAXVALUE) [1] 

9:   (LOGIC CPU MAXID LOWCUTFREQ HIGHCUTFREQ) [1] 

10:   (LOWCUTFREQ_TOGPU CPU GPU LOWCUTFREQ) [1] 

10:   (HIGHCUTFREQ_TOGPU CPU GPU HIGHCUTFREQ) [1] 

11:   (ZEROCOMPLEXDATA2_KERNEL GPU FFTRESULT LOWCUTFREQ HIGHCUTFREQ) [1] 

12:   (ZEROCOMPLEXDATA1_KERNEL GPU FFTRESULT LOWCUTFREQ HIGHCUTFREQ) [1] 

13:   (IFFT_KERNEL GPU FFTRESULT IFFTRESULT) [1] 

14:   (COMPLEXLOG_KERNEL GPU IFFTRESULT) [1] 

15:   (GETIMAG_KERNEL GPU IFFTRESULT PHASE) [1] 

16:   (UNWRAPPHASE_KERNEL GPU PHASE UNWRAPEDPHASE) [1] 

17:   (WINDOWSIGNAL_KERNEL GPU UNWRAPEDPHASE PHASE_FINAL_C) [1] 

18:   (POLYFIT_KERNEL GPU INTERSAMPLEX_C PHASE_FINAL_C POLYNOMIAL) [1] 

19:   (CALCULATEHEIGHT1_KERNEL GPU POLYNOMIAL GETHEIGHT) [1] 

20:   (GETHEIGHT_TOCPU CPU GPU GETHEIGHT) [1] 

20:   (CALCULATEHEIGHT2_KERNEL GPU INTERSAMPLEX PHASE GETHEIGHT GETHEIGHT2) [1] 

21:   (GETHEIGHT2_TOCPU CPU GPU GETHEIGHT2) [1] 

 

 

 


	Copyright Statement
	Abstract
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	List of Acronyms
	1 Thesis Overview
	1.1 Introduction
	1.1.1 Surface and Dimensional Measurement Systems for Future Manufacturing
	1.1.2 The Requirement for Optimisation in Signal Processing

	1.1
	1.2 Research Questions
	1.3 Aim
	1.1
	1.4 Objectives
	1.5 Thesis Structure
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.6 Contribution to Knowledge
	1.7 Publications

	2 Future Manufacturing & Industry 4.0
	2.1 Introduction
	1.1
	2.2 Review of the Technologies Driving Industry 4.0
	2.2.1 Cyber-physical Systems (CPS)
	2.2.2 The Internet of Things
	2.2.3 Big Data
	2.2.4 Summary

	2.3 Investigation into Hardware Acceleration Technologies
	2.3.1 Digital Signal Processor (DSPs)
	2.3.2 General Purpose Graphics Processing Unit (GPGPU)
	2.3.3 Field Programmable Gate Array (FPGA)
	2.3.4 Summary

	2.4 Review of Hardware Acceleration in Surface and Dimensional Measurement Processing
	1.1.1
	1.1.1
	1.1.1
	1.1.1
	1.1.1
	1.1.1
	1.1.1
	1.1.1
	1.1.1
	1.1.1
	1.1.1
	1.1.1
	1.1.1
	1.1.1
	2.4.1 Interferometry
	2.4.2 Optical Coherence Tomography (OCT)
	2.4.3 Structured Light
	2.4.4 Summary

	2.5 Analysis of Software Availability and Usage
	1.1.1
	2.5.1 Software Requirements
	2.5.2 Software Cost Estimation
	2.5.3 Review of Commercial Software
	2.5.3.1 MATLAB
	2.5.3.2 LabVIEW

	2.5.4 Survey into the Usage Open-Source Software
	1.1.1.1
	1.1.1.1
	1.1.1.1
	2.5.4.1 ArrayFire
	2.5.4.2 itom
	2.5.4.3 Summary

	2.5.5 Summary

	2.6 Conclusion

	3 Artificial Intelligence Techniques to Increase Performance
	3.1 Introduction
	3.2 Evaluation of Search Algorithms
	3.2.1 Uninformed Search Strategies
	3.2.1.1 Breadth-first
	3.2.1.2 Depth-first

	3.2.2 Informed Search Strategies
	3.2.2.1 Best-first
	3.2.2.2 Dijkstra
	3.2.2.3 A*

	3.2.3 Summary

	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	3.3 Investigation of Automated Planning and Scheduling
	3.3.1 Stanford Research Institute Problem Solver (STRIPS)
	3.3.2 Planning Domain Definition Language (PDDL)
	3.3.2.1 Example: Cup of Tea
	3.3.2.2 PDDL Fluents
	3.3.2.3 PDDL Planner
	3.3.2.4 PDDL vs Monte Carlo Simulation
	3.3.2.5 Summary


	1.1
	3.4 Investigation of Software Optimisation using Artificial Intelligence
	3.5 Review of Artificial Intelligence to Optimisation Manufacturing
	3.6 Conclusion

	1
	4 Case Study: Dispersed Reference Interferometry (DRI)
	4.1 Introduction to Dispersed Reference Interferometry
	4.1.1 Low Resolution, Absolute Measurement
	4.1.2 High Resolution, Relative Measurement

	4.2 Signal Processing Requirements of Dispersed Reference Interferometry
	4.3 Investigation into the Software Requirements for Signal Processing
	4.3.1 Computation Requirements
	4.3.2 User Interface (UI) Requirements
	4.3.3 Summary

	4.4 Initial Proposal of User Interface Design
	4.4.1 Future Improvements

	4.5 Exploration of Data Management Between Two Processes
	4.6 Signal Processing Considerations
	4.6.1 Serial Signal Processing
	4.6.2 Parallel Signal Processing
	4.6.3 GPU Signal Processing
	4.6.4 Signal Processing Engine
	4.6.5 Challenges Faced
	4.6.6 Summary

	4.7 Evaluation of Dispersed Reference Interferometry Performance Improvements
	4.7.1 Image Capture
	4.7.2 Absolute Position Measurement
	4.7.3 High-Resolution Measurement

	4.8 Conclusion

	5 Consideration of a Heterogenous Signal Processing Library
	5.1 Introduction
	5.2 User Interface: Signal Processing Configuration
	5.2.1 Creation and Management of Configuration Files
	5.2.2 Providing the Ability to Configure Signal Processing

	5.3 Investigation of Configurable Signal Processing Methodology
	5.3.1 Standardised Function Files
	5.3.2 Passing Run Parameters for Configuration
	5.3.3 Parsing XML Data to Configure Signal Processing
	5.3.4 Enabling Runtime Polymorphism
	5.3.5 Configuring the Execution of the Correct Functions
	5.3.6 Introduction of CUDA Accelerated Signal Processing Functions
	5.3.7 Prospective List of Signal Processing Functions
	5.3.7.1 Mathematical Functions
	5.3.7.1.1 First Party Functions
	5.3.7.1.2 Third Party Functions
	5.3.7.1.3 Arithmetic Operations
	5.3.7.1.4 Statistical Operations
	5.3.7.1.5 Comparison Operations

	5.3.7.2 Array Manipulation
	5.3.7.3 Data Management


	5.4 User Interface: Visualisation
	5.4.1 Management of Data Streams Between Applications
	5.4.2 Visualisation Objects of Processed Data
	5.4.2.1 Graphs
	5.4.2.2 Images


	5.5 Conclusion

	6 Evaluation of Profiling to Determine AI Heuristics
	6.1 Introduction
	6.2 Consideration of Optimisation Parameters
	6.3 Investigations into Profiling Methodology
	6.4 Comparison of CPU vs GPUs for DRI and LSDI
	6.4.1 Dispersed Reference Interferometry (DRI)
	6.4.2 Line-Scan Dispersive Interferometry (LSDI)

	6.5 Performance Comparison of Throughput vs Latency
	6.5.1 Dispersed Reference Interferometry (DRI)
	6.5.2 Line-Scan Dispersive Interferometry (LSDI)
	6.5.3 Summary

	6.6 Evaluation of OSPW Performance
	6.6.1 Dispersed Reference Interferometry Performance Evaluation
	6.6.2 Line-Scan Dispersive Interferometry Performance Evaluation

	6.7 Conclusion

	7 Optimising OSPW Using Artificial Intelligence (AI) Planning
	7.1 Introduction
	7.2 Mapping Signal Processing Functions to PDDL Actions
	1.1
	1.1
	1.1
	7.3 Evaluation of PDDL Solutions for Dispersed Reference Interferometry
	7.3.1 Solution Results
	7.3.2 Summary

	7.4 Evaluation of PDDL Solutions for Line-Scan Dispersive Interferometry
	7.4.1 Single Architecture Results
	7.4.2 Analysis of Heterogenous Execution of LSDI
	7.4.2.1 CPU and Nvidia GTX 650Ti
	7.4.2.2 CPU and Nvidia GTX 780Ti
	7.4.2.3 CPU and Nvidia GTX 1070

	7.4.3 Summary

	7.5 Conclusion

	8 Discussion
	1.1
	1.1
	8.1 Summary of Investigations
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	8.2 Conclusions
	8.3 Caveats of the Presented Approach
	8.3.1 Signal Processing Engine Recompiling
	8.3.2 Acquisition Devices
	8.3.3 SPE Library Expansion
	8.3.4 Deterministic Measurement Intervals
	8.3.5 Summary

	8.4 Potential Routes to Distribution of OSPW
	8.5 Closing Statement

	9 Further Work
	9.1 Introduction
	9.2 Further Expansion of the User Interface
	9.3 Modifications to the PDDL Configuration
	9.3.1 Introduction of New Heuristics
	9.3.2 PDDL: Durative Actions

	9.4 Consideration of Asynchronous GPU Streams

	10 References
	11 Appendices
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	11.1 Sample of Function Files
	11.1.1 getDerivative
	11.1.2 Autoconvolution
	11.1.3 CopyFromGPU

	11.2 Configuration Files
	11.2.1 DRI
	11.2.1.1 CPU
	11.2.1.2 GPU

	11.2.2 LSDI
	11.2.2.1 CPU
	11.2.2.2 GPU


	11.3 DRI PDDL Files
	11.3.1 Sample Domain File
	11.3.2 Problem File
	11.3.3 Solution Files
	11.3.3.1 CPU
	11.3.3.2 GTX 520
	11.3.3.3 GTX 650Ti
	11.3.3.4 GTX 780Ti
	11.3.3.5 GTX 1070
	11.3.3.6 Heterogeneous CPU and GPU


	11.4 LSDI PDDL Files
	11.4.1 Sample Domain File
	11.4.2 Problem File
	11.4.3 Solution Files
	11.4.3.1 CPU
	11.4.3.2 GTX 650Ti
	11.4.3.3 GTX 780Ti
	11.4.3.4 GTX 1070
	11.4.3.5 Heterogeneous CPU and GTX 650Ti
	11.4.3.6 Heterogeneous CPU and GTX 780Ti
	11.4.3.7 Heterogeneous CPU and GTX 1070




