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Abstract 

In a binary choice task, switching refers to whether an individual will switch from a previously 

selected option to the alternative option. Previous research within the field of decision making has 

shown that the outcome of a previous decision may heavily affect future decision-making strategies. 

Building on previous research investigating switching behaviour (Sun et al., 2018), the current study 

investigated the relationship rewards and punishments have on subsequent decision-making 

strategies within a switching task. Moreover, the current study utilised VBM (Voxel-Based 

Morphometry) to identify the neuroanatomical correlates of switching behaviour on a large cohort 

of healthy individuals (N = 851) taken from the Human Connectome Project. Switching was 

measured using an adapted reward paradigm, originally developed by (Delgado et al., 2000), 

whereby an individual was asked to choose whether a card was higher or lower than 5 on each trial. 

The results indicate increased frequency of switches after punishment which correlated negatively 

with grey matter volumes within the Left Superior Temporal Gyrus, Left Lingual Gyrus, Left Superior 

Occipital Gyrus, Right Insula, Right Medial Temporal Gyrus and left Parahippocampal Gyrus. No 

morphometric correlates were identified in relation to switches after rewards. Furthermore, 

comparing our results with 14371 fMRI studies on Neurosynth, meta-analytic co-activation revealed 

correlations amongst the areas identified within the structural analysis, ultimately showing increased 

involvement of the Insula. These findings indicate the outcome of a previous trial may directly 

influence the decision to switch, highlighting the potential of this study to further improve our 

understanding of the relationship between individual differences in both brain structure and 

decision making on healthy individuals.  
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Introduction  

 

Throughout life we are bombarded by decisions that will require us to choose between two courses 

of action, the outcome of which, is often uncertain. The ability to make advantageous decisions in 

the face of uncertain outcomes is a required skill for survival. For example, booking a doctor’s 

appointment may result in the detection of a problem, or it may result in long waiting times, only to 

be told you are in good health. According to subjective utility theory (Manktelow et al., 2012), in 

cases of uncertain decision making, people will weigh up the subjective probability of a certain 

outcome  (the probability there is something medically wrong) against its subjective expected utility 

(early detection of illness, peace of mind etc). During these types of decisions, one must evaluate the 

future benefit versus previous experience. If these match, then the logical inference is that a certain 

decision making strategy may be optimal for survival, if not, then an alternative course of action may 

be required. By contrast, results found by previous studies suggest decision making may be informed 

by the outcome of preceding decision, which then updates an individuals subsequent decision 

making strategy (Xue, Lu, Levin & Bechara, 2010), consequently, they focus less on the overall 

outcome of a series of decisions (Ma, Zang, Cheung & Chan, 2015). This thought process is known as 

adaptive decision making (Sun et al., 2018). 

Adaptive decision making suggests that based on previous experiences, people will often adapt and 

change their decision-making strategies in order to elicit more beneficial outcomes (Christakou, 

Brammer, Giampietro & Rubia, 2009). One of the factors that influences decision making is 

perspective value. When an individual makes a decision, they will assign value to the decision, 

dependant on the nature of the outcome. If an outcome is positive, they are more likely to pursue 

similar decision making strategies in the future. However, if the outcome is negative, they are less 

likely to pursue similar decision making strategies. Behavioural Theory (Dreher & Tremblay, 2017) 

suggests that rewards in general, following a decision strategy, illicit a positive response meaning the 

individual is more likely to pursue similar behavioural tactics that allowed them to receive rewards, 

providing the behaviour with positive value. For example, if an individual went to the doctors with 

an ailment, and received a correct diagnosis leading to the treatment of an ailment, then the 

behaviour of going to visit that doctor is assigned with a positive value. Inversely, if an individual is 

punished for making a decision, they are more likely to avoid the behaviour that resulted in a 

punishment or a loss, therefore the behaviour is valued as negative (Dreher & Tremblay, 2017). For 

example, if an individual went to the doctors with an ailment, and is misdiagnosed which led to the 

ailment getting worse, then the behaviour of going to visit that doctor is assigned with a negative 

value as it is seen as detrimental to the individual’s health and survival. 
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Dreher and Tremblay’s (2017) Behavioural Theory posits that when an individual is presented with a 

consequence of a decision (positive or negative), this will inform future decision making within a 

similar context. How an individual views a positive or negative consequence of a decision is subject 

to individual differences, which consequently can lead to illogical decision making strategies. 

Prospect Theory, developed by Kahneman and Tversky (1979), suggested an individual’s view of a 

circumstance is limited based on the information available at that given point, leading to decision 

making that may be less logical and consistent. Kahneman and Tversky’s (1979) model provided an 

explanation for individual differences in decision making as it suggested that individuals are more 

averse to losses than they are to potential gains. Thus, Prospect Theory posited, individuals are more 

likely to focus on losses rather than potential gains. Furthermore, the model suggests that an 

individual will make a decision, based on both the utility of the decision (probability of outcome and 

time outcome will occur) and a reference point (what the decision maker currently has) which will 

lead to individual differences in decision making due to these factors. For example, if a wealthy man 

is given the option to make a large bet with a high probability of a rewarding outcome or to not take 

the bet, according to Prospect Theory, they are more likely to proceed with the decision to bet. 

Inversely, if a poor man is given the option to make a large bet, with a high probability of a 

rewarding outcome, according to Prospect Theory, they are less likely to proceed with the decision 

to bet as the risk of losing would impact them more. Due to these reasons, Prospect Theory 

highlights the importance of investigating individual differences in decision making relating to 

reward and loss processing.  

The current study aims to investigate the individual differences of reward and loss processing by 

investigating anatomical differences within brain structure that underlie decision making, and how 

this is influenced by prior outcomes. Understanding individual differences in brain structure is 

important to identify how neural underpinnings can influence subsequent cognitions, actions and 

behavioural outcomes (Finn et al., 2017). Moreover, from a scientific standpoint, it is important to 

correlate brain structure and function associated with behaviours in order to identify biomarkers of 

the behaviour that can be applied within real world contexts (Finn et al., 2017). Moreover, there is a 

clear need to better understand the neural correlates of behaviours due to the various problems 

that can arise due to maladaptive decision making (Finn et al., 2017) . For example, structural 

differences within brain regions have shown to be associated with; alcohol addictions (Van Holst et 

al., 2012), gambling addictions (Jousta et al., 2011) and internet addictions (Zhou et al., 2011). In 

order to better understand the neural underpinnings of certain behaviours, neuroimaging methods 

such as; Functional Magnetic Resonance Imaging (fMRI), Positron Emission Topography (PET) and 
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Voxel-Based Morphometry (VBM) have been used, alongside behavioural tasks measuring 

performance.   

Much of the research employing the use of neuroimaging techniques such as PET (Elliott ,Frith & 

Dolan, 1997; Pappata et al., 2002) and fMRI (Delgado et al., 2000; McClure, Berns & Montague, 

2003; O'Doherty et al., 2003; Klein-Flügge et al., 2011) have identified that rewards (i.e: the sense of 

a win) activate mesolimbic reward pathways associated with the dopaminergic system (Delgado et 

al., 2000; McClure, Berns & Montague, 2003; O'Doherty et al., 2003) and that losses activate regions 

of the brain associated with emotional and visceral processing such as the Insula (Krawitz, Fukunaga 

& Brown, 2010; Xue, Lu, Levin & Bechara, 2010) and Amygdala (Xue, Lu, Levin & Bechara, 2011). 

Moreover, research investigating individual differences in decision making have highlighted, the way 

in which an individual processes a loss may be a contributing factor into the development of  

addictive behaviours. Campbell-Meiklejohn, Woolrich, Passingham & Rogers (2008) conducted a 

study to investigate whether individuals would chase a loss (continue with the current strategy 

despite encountering a series of losses) or retire from the task (stop chasing the loss). They found 

decisions to retire were associated with increased activation in the Dorsal Anterior Cingulate Cortex, 

Left Anterior Insula, Posterior Cingulate Gyrus, Thalamus and Bilateral Parietal Gyrus. Moreover, 

individuals who decided not to chase losses showed reduced activation in the Ventromedial 

Prefrontal Cortex (vmPFC) and Subgenual Anterior Cingulate Cortex. Inversely they found individuals 

who decided to chase losses showed increased activation in the vmPFC and Subgenual Anterior 

Cingulate Cortex. They suggested that excessive loss chasing may be involved in the development of 

addictive behaviours due to a dysfunction of mesolimbic reward pathways associated with the 

vmPFC and Subgenual Anterior Cingulate Cortex, a similarity also seen in individuals with addictions 

(Qiu et al., 2014).  

 Prior investigations have suggested that aberrant decision making (such as loss chasing) may be a 

core component underlying the development of addictive behaviours. (Bechara, 2005; Diekhof, 

Falkai & Gruber, 2008). Initially, neurostructural studies utilising Voxel-Based Morphometry (VBM) 

have attempted to understand the structural underpinnings underlying aberrant decision making by 

investigating the relationship between brain structure in healthy participants in comparison to 

addicted populations. These studies are disparate in their findings, with some studies showing  

significant differences in brain structure between these populations (Rahman, Xu, & Potenza, 2014; 

Grant, Odlaug, & Chamberlain, 2015; Koehler et al., 2015; Zois et al., 2017; Ruiz de Lara et al., 2018) 

and others showing no differences (Joutsa et al., 2011; Van Holst et al., 2012; see section 2.1). 

Subsequent task based analyses suggest that grey matter volumes may be linked with disorders of 

aberrant decision making such as pathological gambling (Owens et al., 2019). Thus, it is important 
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for subsequent investigations to identify the neural basis associated with maladaptive decision 

making strategies. In contrast to the numerous investigations on the structural differences between 

addicted populations and healthy controls, few studies have investigated the effects of individual 

differences in brain structure associated with reward and loss processing on healthy populations. 

This is surprising considering studies have shown large variabilities between specific behaviours 

associated with individual differences in brain structure (Kanai et al., 2011 ; Banissy et al., 2012; Lai 

et al., 2012 ; Gu & Kanai, 2014; Krause et al., 2014 ; Owens et al., 2017; Sun et al., 2018). Moreover, 

lesion studies have shown that focal damage to specific brain regions can have an impact on how an 

individual views an outcome (reward or loss) and their decision making thereafter (Clark et al., 2014; 

Weller, Levin, Shiv, & Bechara, 2007) Therefore, there exists a need to further elucidate the 

association between neuroanatomy and individual differences in decision making following reward 

or loss.  

In the current study, we aimed to investigate how receipt of either a reward or a punishment 

influenced future decision making; whether people would stick, or switch, from one of two response 

options after receiving a reward or loss. In addition, the study will replicate previous research by Sun 

et al. (2018) which identified significant associations between neuroanatomical structure and 

general switching behaviour (switching regardless of preceding trial). Moreover, this thesis will aim 

to build on existing research (Sun et al., 2018) by investigating the associations between brain 

structure and switches after rewards in comparison to switches after losses on a large sample of 

healthy subjects. Given previous research has suggested individuals may be generally more loss 

averse (Kahneman & Tversky, 1979), we predict that there will be an association with grey matter 

volumes and increased frequency of switches following loss trials. Initially, this thesis will provide a 

brief review of the current literature surrounding the neuroanatomical correlates of decision making 

relating to reward and loss processing. Moreover, we will employ Voxel-based Morphometry (VBM) 

to analyse grey matter volumes and will measure switching behaviour by adapting and utilising a 

previously used fMRI reward paradigm (Delgado et al., 2000). 
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Literature review 

2.1 Brain structure and maladaptive decision making   

In order to identify the neural underpinnings of reward processing, a large number of previous 

studies have utilised fMRI. fMRI is a non-invasive brain scanning method to measure the 

differentiation between oxygenated and deoxygenated haemoglobin, which reflects metabolic 

changes in areas of the brain that are more active. Several fMRI studies have suggested that receipt 

of a reward recruits the Ventral Striatum, located within the Basal Ganglia, showing increased 

activation within this region when a reward is presented (Delgado et al., 2000; McClure, Berns & 

Montague, 2003; O'Doherty et al., 2003; Klein-Flügge et al., 2011; Galtress, Marshall, & Kirkpatrick, 

2012; Haber & Knutson, 2010; O'Doherty et al., 2004). Given the large amount of comparative 

findings highlighted by fMRI studies, researchers are now moving to investigate the associations 

between reward processing and brain structure, in order to further investigate the involvement of 

these regions in reward processing. 

Initially, in order to investigate whether structural differences influence decision making relating to 

reward processing, previous studies have assessed the relationship between anatomical brain 

structure within healthy individuals in comparison to individuals with addictive disorders. To 

investigate morphometric differences in brain structure and associations with behaviour, studies will 

employ Voxel-based Morphometry (VBM). VBM is a technique using structural MRI scans, that 

allows for voxel-wise comparison of local grey matter concentrations across individuals, using the 

statistical approach of parametric mapping (Ashburner & Friston, 2000; Ashburner, 2007). When 

investigating structural differences of problem gamblers versus healthy individuals, preliminary VBM 

studies have identified little evidence of differences in brain morphometry associated with these two 

populations. One of the first studies to use VBM in relation to problem gambling disorder was 

conducted by Joutsa et al. (2011). Interestingly, they found no significant differences to controls 

within both grey matter and white matter volumes in individuals with gambling disorders. They also 

conducted Diffusion Tensor Imaging in relation to white matter volumes and found that 12 problem 

gamblers in comparison to 12 healthy controls showed lower white matter integrity in multiple brain 

regions; Corpus Callosum, the Cingulum, Anterior Limb of Internal Capsule (white matter tract from 

Thalamus to Frontal Lobe), Anterior Thalamic Radiation, Inferior Longitudinal Fascicle (white matter 

tract between Temporal and Occipital Lobe; Ashtari (2012) and Inferior Fronto-Occipital Fascicle. 

Although no grey matter differences were identified, the study by Jousta et al. (2011) was the first to 

identify differences in brain structure that may be associated with gambling addiction, highlighting 
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how differences in brain structure may be associated with reward malfunction, which could underlie 

some aspects of addiction.  

Van Holst et al. (2012) investigated whether grey matter atrophy within problem gamblers were 

neuroadaptations to increased recruitment of reward regions or whether there is a common 

neurobiological vulnerability for addictive behaviours that relates to brain structure. Previous 

research has shown that individuals who are addicted to alcohol are also more likely to perform 

poorly on gambling-based tasks. For example; Fein et al. (2006) investigated grey matter atrophy in 

relation to performance on the simulated gambling task and found individuals with alcohol use 

disorder (AUD) showed lower grey matter volumes within the Amygdala which correlated with 

poorer performance on the simulated gambling task. Further to this research Van Holst et al. (2012), 

investigated grey matter volumes in 36 individuals with AUD, 40 participants who were identified as 

problem gamblers in comparison with 54 healthy controls. Whole brain VBM analysis revealed 

individuals with AUD showed significant grey matter atrophy within the Right Insula Cortex, Right 

Putamen, Left Superior Frontal Cortex, Right Supermarginal Cortex, Left Precentral Cortex, Left 

Thalamus and Bilateral Superior Parietal Cortex in comparison to both problem gamblers and 

healthy controls. Similar to findings by Joutsa et al. (2011), there were no significant differences in 

grey matter volumes between problem gamblers and healthy controls. Although differences in grey 

matter volumes found within Van Holst et al. (2012) study could be due to toxic effects of alcohol, it 

is a significant finding as it shows individuals with maladaptive reward related behavioural strategies 

may be associated with structural differences, prompting studies to further investigate the 

relationship between brain structure and behaviour. Consequently, future studies investigating 

structural differences between problem gamblers and healthy controls, have yielded significant 

findings (Rahman, Xu, & Potenza, 2014; Grant, Odlaug, & Chamberlain, 2015; Koehler et al., 2015; 

Zois et al., 2017; Ruiz de Lara et al., 2018; see Table 1 for summary of VBM literature.), showing grey 

matter differences within both frontal and reward regions of the brain.  

VBM studies investigating structural correlates of addictions such as; internet addiction in 

conjunction with online gaming (Han, Lyoo, & Renshaw, 2012); general internet addictions (Hong et 

al., 2013) and video game addictions (Kühn et al., 2011) have found associations between grey 

matter volumes and behavioural addictions, again showing that maladaptive decision making 

strategies show a relationship with structural differences. In relation to internet addictions, VBM 

studies found that individuals with internet addictions had lower grey matter volumes within the 

Right Orbitofrontal Cortex (Hong et al., 2013) and lower grey matter volumes within Left Anterior 

Cingulate Cortex, Left Insula, Left Posterior Cingulate Cortex, and Left Lingual Gyrus (Zhou et al., 

2011). These results and the results identified above, highlight structural differences in regions 
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associated with reward processing, emotion and executive function, providing further evidence of 

the relationship between brain structure and maladaptive decision making.  

Studies using VBM have also been conducted to investigate the relationship between structural 

differences among other clinical populations in relation to reward and loss processing. Moreno-

López et al. (2012) conducted a study assessing neuroanatomical correlates of impulsivity and 

reward sensitivity in adolescents with excessive weight versus healthy controls. Using a region of 

interest approach, they found individuals with excessive weight was associated with higher volumes 

of grey matter within the Right Hippocampus. Within healthy controls they also found that grey 

matter volumes may be associated with reward sensitivity and positive urgency, highlighting that 

individuals with a higher weight measurement have structural differences within areas that have 

been previously associated with sensory processes and motivational decision making. Other studies 

investigating reward processing relating to obesity (Shott et al., 2015) have shown that obese 

individuals tend to show lower grey matter and white matter volumes within the Orbitofrontal 

Cortex, Striatum and Insula in comparison to healthy controls. Moreover, they found an association 

between obese individuals and increased sensitivity to negative reinforcement, measured by the 

reward and punishment sensitivity questionnaire.  

Given the increased volume of research highlighting associations between structure and addictive 

behaviours, Koehler et al. (2015) replicated previous studies investigating brain structure in 

individuals with gambling addictions, by conducting a further VBM analysis on structural MRI scans 

of 20 problem gamblers versus 21 healthy controls. They found that problem gamblers had 

increased grey matter volumes in both the Right Ventral Striatum and Right Middle Frontal Gyrus in 

comparison to healthy controls.  Functional studies have also identified increased activation of the 

ventral striatum in problem gamblers in comparison to healthy controls (Linnet et al., 2010). This 

showed an increase in problem gambling behaviours which may also reflect in structural differences 

within brain regions implicated in reward processing. This highlights the importance of structural 

studies to constantly investigate the relationship between structural differences in the brain and 

decision making strategies.  
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 Table 1. VBM studies measuring grey matter reductions within problem gamblers in comparison to healthy 

controls. Studies have different methodologies so are not directly comparable.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VBM studies  Grey matter reductions in gamblers compared with 

healthy controls  

Joutsa et al. (2011).  No differences 

Van Holst et al. (2012),  No differences 

Rahman, Xu, & Potenza (2014) Left Hippocampus, Right Amygdala  

Grant, Odlaug, & Chamberlain (2015) Right Superior Frontal Cortex, Right Middle Frontal 

Cortex, Right Orbitofrontal Cortex, Left Inferior parietal 

Lobe, Right Post-central Gyrus, Right Supermarginal 

Gyrus, Right Superior Frontal Gyrus  

Koehler et al. (2015) Right Ventral Striatum, Right Middle Frontal Gyrus 

Zois et al. (2017) Superior Medial Frontal Cortex, Orbitofrontal Cortex 

Ruiz de Lara et al. (2018)  Dorsal Medial Prefrontal Cortex  
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2.2 Lesion studies and decision making  

Investigations into the neuroanatomical differences between healthy individuals in comparison to 

individuals with addictions has highlighted some differences in brain anatomy which may be 

associated with maladaptive decision making strategies. Another way in which brain structure has 

shown to be associated with decision making ability, is through investigation of the impact brain 

damage has on decision making. Damasio (1994), found that individuals with damage to the 

ventromedial prefrontal Cortex had normal intelligence, normal neuropsychological function, and 

normal frontal lobe function. However, they were shown to have severe impairment in both 

personal and social conduct, and impairment within decision making abilities that were based on 

these factors. He found these individuals had difficulties with both immediate and future planning, 

were unable to make decisions that would be personally advantageous, and often could not 

maintain relationships with people and suffered social and economic losses. He concluded that 

deficits in these abilities and associated structures would lead to deficits within the emotional 

mechanism that would assess consequences of a particular action (Bechara, & Damasio, 2005). In 

order to investigate the processes that underlie damage to the ventromedial prefrontal Cortex, 

Bechara, Damasio, Damasio and Anderson (1994) developed the Iowa Gambling Task (IGT) in order 

to assess how individuals make decisions that would be personally advantageous based on the 

trade-off between immediate and future planning strategies. 

The IGT is one of the most widely used paradigms to investigate decision making processes. 

Originally designed by Bechara, Damasio, Damasio and Anderson (1994), the task involves four 

virtual card decks (A, B, C & D) from which participants are instructed to choose a card from any of 

the four decks. Following each choice, participants are either rewarded (monetary reward) or 

punished (monetary loss).  Participants can change decks at will, and are instructed to win as much 

money as they can, and to lose as little money as possible. Unknown to the participants, decks A and 

B are advantageous in the short term as they have higher immediate reward amounts given, 

however disadvantageous in the longer term due to higher punishment amounts (participants have 

to pay more penalties). Inversely, decks C and D are less rewarding in the short term however 

advantageous in the long term due to lower punishment rate, meaning participants are more likely 

to retain money using these decks. The optimal strategy for task completion, defined by Bechara, 

Damasio, Damasio and Anderson (1994), was to gradually learn the rules of the task and to select 

decks that benefited them in the long run rather than choosing disadvantageous decks resulting in 

immediate gratification. Thus, the metrics extracted from the Iowa gambling task are the sum of 

cards selected from the advantageous decks compared with the sum of cards selected from 

disadvantageous decks. In their study Bechara, Damasio, Damasio and Anderson (1994) revealed 
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that individuals with damage to prefrontal areas chose more cards within the disadvantageous decks 

in comparison to healthy controls. This initial finding provides evidence that performance in reward 

related tasks is related to brain structure, leading to further studies investigating how performance 

on tasks such as the IGT is influenced by both brain structure and function.   

Overall, the purpose of the IGT is to focus on how individuals react to rewards and their ability to 

monitor reward frequency, in order to maximise reward amount by choosing advantageous decks 

leading to increased task performance (Higher amount of money won). As highlighted in a review of 

the Iowa gambling task by Lin, Song, Chen, Lee and Chiu (2013) the task can also be used to assess 

punishment frequency and can assess how this influences future decision making behaviours. Ma, 

Zang, Cheung and Chan (2015) aimed to investigate how punishment frequency influences brain 

activation on participants completing the IGT. They recruited 24 participants and instructed them to 

perform the original version of the IGT designed by (Bechara, Damasio, Damasio & Anderson, 1994). 

Using fMRI, they found that during risky decks (A & B) significantly greater activation was seen in the 

Right Anterior Cingulate Cortex, Right Middle Temporal Gyrus, Right Inferior Frontal Gyrus and Right 

Thalamus. In order to examine the impact of punishment frequency they investigated the difference 

in activation under high punishment frequency in comparison to low punishment frequency 

(comparing decks A & C to decks B & D). They found significantly greater activation within the 

Anterior Cingulate Cortex under high punishment frequency decks in comparison to low punishment 

frequency decks. When conducting further analysis, they revealed participants would change 

preference for card decks depending on long term outcomes, however throughout the task 

participants would avoid decks with high punishment frequencies. These findings build on research 

by Kahneman and Tversky (1979), as they provide support that individuals may be more aversive to 

losses and highlight the involvement of brain function which may be associated with the way in 

which an individual responds to a punishment  

 

2.3 Anatomical correlates of decision making  

Damasio (1994) identified the Insula Cortex to be a critical neural substrate involved within emotion-

based decision making. He suggested the Insula may be involved in emotional feelings that can arise 

when an individual is presented with an emotionally triggering stimulus, such as a reward or loss, 

later measured by the Iowa gambling task (Bechara, Damasio, Damasio & Anderson, 1994; Krawitz, 

Fukunaga & Brown, 2010; Lin, Song, Chen, Lee & Chiu, 2013). As mentioned within numerous studies 

utilising the Iowa gambling task (Krawitz, Fukunaga & Brown, 2010), the somatic marker hypothesis 

suggests that the Insula may play an important role (Bechara, & Damasio, 2005) in emotional based 
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decision making by forming a circuitry system with the ventromedial prefrontal Cortex and  

somatosensory Cortex. Craig (2002) suggested the Insula was involved with conscious interoceptive 

awareness, which continually tracks the ongoing physiological processes within the body. Supportive 

evidence for the role of the Insula is shown within studies investigating the role of the Insula and its 

relationship with addictive behaviours (see review by Naqvi & Bechara, 2010). In studies 

investigating smoking cessation and Insula damage (Naqvi, Rudrauf, Damasio & Bechara, 2007; Naqvi 

& Bechara, 2010), individuals following focal damage to the Insula (Insula lesion) have stopped 

smoking without complications or difficulty, in comparison to individuals with other brain injuries, 

highlighting the role of this area in decision making relating to addictive behaviours and ultimately 

suggesting this area may be involved In conscious urges or cravings.  

Given the Insula has been associated with the maintenance of maladaptive decisions, further studies 

investigating Insula damage suggest that damage to the Insula Cortex may lead to altered decision-

making strategies, in comparison to healthy individuals, involving risky gains and losses. Weller, 

Levin, Shiv and Bechara (2009) compared risky decision-making strategies in Insula lesion patients to 

healthy controls using a computerised version of the cups task developed in an earlier study (Weller, 

Levin, Shiv, & Bechara, 2007). Modified from the original cups task developed by Levin and Hart 

(2003), the task consists of an array of 2, 3 or 5 cups shown on each side of the computer screen. 

One side of the screen was designated as ‘certain’, in which choosing a cup would lead to a 

designated win or loss amount (win or lose $0.25). The other side corresponded to a ‘risky side’ in 

which a selection of a specific cup could lead to a win or loss of a designated number of quarters ( 

$0.25). Selection of any other cup on this side lead to a no win/no loss outcome. They found that 

patients with Insula damage made fewer risky decisions regardless of whether the trial was a risky 

reward or risky loss in comparison to healthy individuals. Differing reactions to rewards and losses 

following Insula damage, highlights the involvement of this area in how an individual makes decision 

based on potential reward or loss outcomes, and consequently provides further evidence that brain 

structure may influence reward related behaviours.  

Insula damage has also been associated with reductions in cognitive biases within gambling tasks 

(Clark et al., 2014). Decision making within a gambling setting has often highlighted certain cognitive 

distortions that may play a role in the maintenance of maladaptive decision-making strategies. 

Gamblers fallacy is a cognitive bias in which the individual believes previous events influence future 

outcomes within a gambling setting when the probability of subsequent outcomes remains constant 

(Xue, Lu, Levin, & Bechara, 2011). An example of this would be a coin toss in which the probability of 

the coin landing on either heads or tails is 50%. Gamblers fallacy bias would lead an individual to 

believe that because a certain number of outcomes have been constant (i.e. landing on heads three 
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times) then the outcome must change even though the outcome of the next trial will always be 50% 

probability of landing on either heads or tails. Clark et al. (2014) investigated how lesions within the 

Insula affected cognitive bias within gambling tasks.  Using a roulette task, they found that within 

healthy individuals, binary choice patterns displayed negative recency (whereby the choice of either 

red or black decreased due to the previous run of that colour) associated with gamblers fallacy. 

Inversely they found that in individuals with Insula damage presented no avoidance of recent 

outcomes. Moreover, when conducting a slot machine task, Clark et al. (2014) found that near miss 

outcomes (an outcome marginally close to a win) increased motivation to continue the game. 

Inversely, individuals with Insula damage showed no evidence of increased motivation. This provides 

compelling evidence that the Insula may be involved in managing future decision-making strategies 

that are dependent on previous outcomes.  

Structural differences in affective and cognitive brain regions may play a role in how individuals 

respond to rewards compared to losses which may affect future decision making strategies. 

Research using the Wisconsin Card Sort Task (where participants are asked to match cards to 3 

categories; shape, colour, number of designs on the face of the cards) has shown that individuals 

with damage to the Prefrontal Cortex tend to stick with a learned rule rather than switch to 

alternatives, even when presented with negative task feedback (Liu, Braunlich, Wehe & Seger, 

2015). Furthermore, in a study where rewards and punishments are determined by a coin flipping 

task, Shiv et al. (2005) assessed risky behaviours in 20 participants who had lesions in areas 

associated with emotional circuitry (15 patients with lesions within Bilateral Amygdala and damage 

to Hippocampus, 3 patients with lesions located within the Bilateral Orbitofrontal Cortex, 8 patients 

with lesions in the Right Insula Cortex and 4 patients with lesions in the Somatosensory Cortex) 

against 19 healthy participants with the inclusion of 7 control patients with lesions in brain regions 

not associated with emotional processing (lesions in the Dorsolateral Prefrontal Cortex). They found 

that both healthy participants and control participants invested in 40.5% of rounds following losses 

whereas participants who had lesions in areas associated with emotional processing (Orbitofrontal 

Cortex Frontal Cortex, Insula Cortex and Amygdala) invested in 85.2% of rounds following losses. 

This research provides evidence that structural differences in brain regions may affect decision 

making after an individual experiences a reward or loss. It is however important to note that, 

although finding similar results, it is difficult to draw conclusions from brain lesion studies identified 

above. Damage to the brain can be caused by a variety of different factors meaning the areas in 

which lesions have formed provide a degree of inconsistency, as it is likely no two lesions will be 

exactly the same. Also, when a lesion is present, it is often unclear how the brain compensates for 

the damage (Rick, 2011). Therefore, it is important to conduct research investigating how structural 
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differences among healthy individuals correlate with behaviour. One of the methods used to analyse 

this is Voxel Based Morphometry which the current study uses to investigate neural anatomical 

correlates of switch behaviour.  

 

2.4 Voxel-Based Morphometry  

Studies investigating focal brain damage and how this impacts decision making have shown that 

structural damage may be associated with atypical behavioural patterns in comparison to healthy 

individuals. However, research investigating how brain structure in healthy individuals (individuals 

without lesions or addictions) influences reward and loss processing is less well understood, due to 

the limited number of studies, leading to further studies to investigate structural correlates of 

decision making on healthy individuals. One task used to measure adaptive decision making in 

healthy individuals, is the Delay Discounting Task. The Delay Discounting Task is designed to assess 

whether the participant will restrain from immediate gratification in the knowledge that if they do 

they will receive a larger future reward. An example of a Delay Discounting Task is the Stanford 

Marshmallow Experiment (Mischel, Ebbesen & Raskoff-Zeiss, 1972). In this study children were given 

a marshmallow and told that if they refrained from consuming the first marshmallow, they would 

receive another 15 minutes later. Following this initial experiment, researchers replicated the tasks 

on adults using monetary rewards (Kirby, Petry & Bickel, 1999) within numerous event related fMRI 

studies (McClure, Laibson, Loewenstein & Cohen, 2004; Ballard & Knutson, 2009; Albrecht et al., 

2011; de Water et al., 2017) finding significant positive correlations between activation and future 

reward magnitude within the mesolimbic reward pathway (Ballard & Knutson, 2009). Following 

significant results in recurrent fMRI studies, researchers set out to investigate the structural 

correlates of choice behaviour within the Delay Discounting Task using VBM (Cho et al., 2013; 

Tschernegg et al., 2015; Mohammadi et al., 2016; Owens et al., 2017). One of the first studies to 

investigate structural correlates of delay discounting among healthy individuals, conducted by Cho 

et al. (2013), found grey matter volumes of the Bilateral Medial Frontal Gyrus, Bilateral Anterior 

Cingulate Gyrus, Left Middle Cingulate Gyrus and Right Orbitofrontal Gyrus positively correlated with 

discounting rates, whereas, grey matter volumes within Bilateral Ventral Putamen, negatively 

correlated with discounting rates. This initial study, highlighted the importance of looking at 

structure within healthy individuals and highlighted the importance of bringing functional and 

structural studies together to provide a more holistic picture, prompting future studies to also 

investigate similar effects.  
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Tschernegg et al. (2015) further investigated the relationship between brain structure in healthy 

individuals and performance on the Delay Discounting Task, however they found disparate results in 

comparison to previous research by Cho et al. (2013). Tschernegg et al. (2015) recruited 51 women 

and 19 men who were assessed as healthy individuals via self-report questionnaire. Each participant 

was given a structural MRI scan and completed the Delay Discounting Task after the scan. The VBM 

analysis revealed there was a significant positive correlation between discounting rates and grey 

matter volume within the Right Caudate, with further subcortical Freesurfer analysis revealing a 

positive correlation between grey matter volumes in both the Left and Right Caudate, however 

these were measured at an uncorrected level.  

In order to consolidate the effects brain structure has on decision making in relation to rewards, a 

large scale VBM study, conducted by Owens et al. (2017) replicated previous VBM studies using a 

large open source data set; The Human Connectome Project (Van Essen et al. HCP, 2013). They 

found that grey matter volumes within the bilateral Middle Temporal Gyrus and Bilateral Entorhinal 

Cortex positively correlated with discounting rates, again showing different results from the results 

obtained from previous literature (Cho et al., 2013; Tschernegg et al., 2016). The disparate literature 

identified in previous studies highlights the importance of using large scale studies to continually 

investigate structural correlates and to improve understanding of how the brain processes choice 

between two alternatives when influenced by a reward.  

An alternative way which VBM can investigate the relationship between brain structure and reward 

processing on a decision-making paradigm, is to compare healthy individuals to individuals with 

addictive disorders. Using the delayed discounting task, Mohammadi et al., (2016) investigated how 

both healthy participants and problem gamblers performed on an intertemporal task and how 

performance in this task correlated with structural volume. In order to assess this, they conducted 

two studies; the first study, investigating intertemporal choice on 40 healthy individuals, and the 

second study consisting of a group comparison examining the effects of brain structure on 15 

problem gamblers versus 15 healthy individuals. Using VBM analysis, Mohammadi et al. (2016) 

found that within the first study, discounting rates among healthy participants positively correlated 

with grey matter volumes within the left Insula Cortex, superior division of Right Lateral Occipital 

Cortex and Right Orbitofrontal Cortex however showed a negative correlation of grey matter 

volumes within the Left Frontal Pole. Results from study two revealed, in comparison to healthy 

individuals, problem gamblers showed decreased grey matter within the Right Orbitofrontal Cortex, 

Right Precentral Gyrus, Right Insula, Right Amygdala, Right Hippocampus, Right Anterior Cingulate 

Gyrus and Bilateral Supplementary Motor Area. The results identified within the first study provide 

evidence that healthy individuals show individual differences in brain structure that is associated 
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with altered decision making strategies within a reward task. Moreover, the results from the second 

study provide a comparison between healthy and clinical populations, providing supportive evidence 

for the involvement of brain structure within individuals diagnosed with gambling additions, a 

maladaptive decision making disorder involving reward regions of the brain. Research by 

Mohammadi et al. (2016) and others highlighted above, provide evidence that structural differences 

are not purely identified within individuals with addictions. Structural differences can also extend to 

healthy individuals and may be associated with individual differences in decision making strategies, 

therefore it is important for research to further investigate the relationship of brain structure in 

healthy individuals and decision making.  

 

2.7 Switching  

 Prospect Theory (Kahneman & Tversky, 1979) has highlighted that individual differences in decision 

making can be a result of prior outcomes and suggests that individuals will update their decision-

making strategy based on prior outcomes, which can lead to illogical decision making strategies such 

as; The Gamblers Fallacy strategy. Xue et al. (2012) investigated how healthy individuals reacted to 

previous decisions and how this can lead to maladaptive decision-making strategies. Using a 

gamblers fallacy task, in which a participant had to choose between a red or black card over a series 

of repeated trials, Xue et al. (2012) identified that increased activation within the left prefrontal 

Cortex (LPFC) was associated with increased the use of gamblers fallacy. Moreover, using 

Transcranial Direct Current Stimulation (tDCS) of the LPFC increased the use of gamblers fallacy 

which resulted in individuals sticking with current decisions and switching within the next trial after 

long streaks, indicating the LPFC is strongly associated with switching frequency within a binary 

choice task. The use of corroboratory evidence from the combined methods of tDCS and fMRI within 

this study providing further evidence that prefrontal regions of the brain may also be involved in 

maladaptive decision making strategies.  

VBM studies have also highlighted individual differences relating to sensitivity to reward or 

punishment outcomes. Adrián-Ventura, Costumero, Parcet & Ávila (2019) assessed reward and 

punishment sensitivity using The Reward and Punishment Sensitivity Questionnaire (Torrubia, Ávila, 

Moltó & Caseras, 2001). They found a significant positive correlation with grey matter volumes 

within the Amygdala and sensitivity to punishment, whereas they found a significant negative 

correlation between grey matter volumes within the Left Lateral Medial Prefrontal Cortex and Left 

Medial Prefrontal Cortex. This recent study, provides good evidence that brain structure may be 

associated with how an individual views either a reward or a punishment. Functional studies have 
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also identified associations between activation of brain regions and decision making following 

reward or loss outcomes. Using fMRI, Xue, Lu, Levin & Bechara (2010) investigated how the Insula 

was involved in future decision making based on the results from a previous choice in relation to 

risky decision making. They found, if an individual took a decision with less risk initially, the 

subsequent decision was riskier, recruiting stronger activation within the Insula. This may suggest 

that the Insula tracks previous outcomes that may inform future risky decision making strategies.  

Furthermore, a subsequent fMRI study (Xue, Lu, Levin & Bechara, 2011) investigated the effect of 

prior outcomes on subsequent decision making found young adults displayed increased amounts of 

risky decision making after losing a gamble in comparison to winning the gamble. They found risky 

decisions were positively correlated with increased activation in frontoparietal network and left 

lateral orbitofrontal Cortex, however correlated negatively with activation in the Amygdala and the 

Caudate Nucleus. The results from these studies further highlights how previous outcomes can 

affect future decision making, and provides support of the involvement of brain regions, evidenced 

from both functional and structural studies. Moreover, the results from this study suggest 

individuals are more sensitive to punishments and change their behaviour following a punishment in 

comparison to a reward. To our knowledge, no study has addressed how the combination of both 

prior outcomes and reward and punishment processing have on future decisions. The current study 

aims to build on previous research (Xue, Lu, Levin & Bechara, 2010; Xue, Lu, Levin & Bechara, 2011; 

Xue et al., 2012; Adrián-Ventura, Costumero, Parcet & Ávila, 2019) by addressing the structural 

correlates of reward and loss processing within a switching task. Building on the work by Sun et al. 

(2018), we aim to investigate how grey matter volumes are associated with increased frequency of 

switches following reward or punishment trials.  

 Sun et al. (2018) investigated repeated binary choice patterns in decision making and assessed how 

often an individual would stick with a specific choice or switch to an alternative, and whether this 

behaviour correlated with structural differences in the brain. Alongside measuring frequency of 

switches, Sun et al., (2018) also investigated cognitive flexibility using persistence error measured by 

the Wisconsin Card Sorting Task (Liu, 1999), and personality traits of persistence were measured 

using the Temperament and Character Inventory-Revised (Cloninger, Svrakic & Przybeck, 1993). In 

order to accurately measure ‘switching’ behaviour, they used a card guessing task in which 

participants were asked to match a computer-generated sequence of either a red or black card Xue, 

Lu, Levin & Bechara, 2010; Xue et al., 2012). They informed the participants that the computer 

generated sequence was random, however the programme followed a sequence to which the 

computer picked an equal amount of both options (50% red and 50% black) For every correct guess 

they would win 1 CNY (Chinese Yuans) and for every incorrect guess, they lost 1 CNY. The optimal 
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strategy was for participants to guess, however they found that switching rate for participants was 

significantly lower (43%) than the switching rate for the computer (50%) suggesting the majority of 

participants will stick with an option rather than switch to an alternative. Results from the VBM 

analysis revealed that grey matter volumes in the Posterior Cingulate Gyrus, left Insula Cortex and 

Frontal Pole positively correlated with card switching frequency. Moreover, they found card 

switching frequency negatively correlated with grey matter volumes in the Medial Temporal Lobe 

and Right Insula Cortex. Although providing evidence that switching behaviour is correlated with 

grey matter volumes in specific areas, this study did not assess how switching behaviour could be 

motivated by the outcome of the previous trial. The current study aims to replicate the findings from 

the study conducted by Sun et al. (2018) by investigating general switching on a large cohort of 

healthy individuals. We also aim to extend the findings of Sun et al. (2018) by investigating whether 

grey matter volumes relate to switching behaviour following either a win or a loss trial. 

 

The Current study 

In the literature surrounding rewards and loss processing, a number of inconsistencies arise. Studies 

investigating structural differences in relation to gambling tasks have been mostly either lesion 

studies or studies investigating structural differences in comparison to clinical populations. 

Therefore, it is difficult to draw conclusions in relation to brain structures involved in reward and 

loss processing on healthy individuals, given the limited number of studies using VBM to investigate 

associations between brain structure and decision making in healthy individuals. Additionally, 

studies utilising VBM, have been conducted using medium (Sun et al., 2018 - N = 350) to low sample 

sizes (Koehler et al., 2015 – N = 41). Given the surrounding literature highlighting the potential issues 

with using small samples sizes within neuroscience (Button et al., 2013; Lorca-Puls et al., 2018), such 

as; low statistical power, increased effect sizes, low reproducibility and inflated false discovery rate 

(see Button et al. 2013), there is sufficient scope to assess the morphometric correlates of decision 

making on a large sample size.  

One of the main limitations surrounding several of the neuroscientific studies mentioned in this 

thesis is low statistical power. Given that publishing within any scientific field is a competitive 

enterprise, and that studies are more likely to be published with a significant result (p = <.05), this 

has led to scientists publishing studies that are often underpowered (Button et al., 2013). As a result, 

this leads to false positives and low reproducibility rates due to the quick execution of the studies 

and low sample sizes as a resulting factor. One assessment of this issue revealed that a typical 

underpowered dataset would reveal a false positive result at a rate equivalent to 97% (Sullivan, 

2007). In order to address this issue within neuroscience literature, the current study will reproduce 



26 
 

the results of the previous study by Sun et al. (2018) using a large well-characterised sample of 851 

participants gathered from the Human connectome project (HCP). Owens et al. (2017) utilised HCP 

data, and a large sample size to replicate prior studies investigating the relationship between grey 

matter volume and delay reward discounting, identifying several disparages in comparison to the 

results of previous literature conducted on small samples. The authors conclude that one reason for 

the difference in results is due to the underpowering of studies within neuroscience. Yet, due to the 

limited number of studies using high sample sizes, this conclusion is only speculative. Therefore, 

there exists a need for more research with high-powered studies to elucidate whether these 

disparages within the literature are due to underpowered studies or other factors. Given the current 

study aims to replicate a prior investigation using a high sample size, the current study aims to 

contribute findings to the process of addressing this issue within the field of neuroscience.  

In the current study we aimed to investigate the neuroanatomical correlates of the effect previous 

outcomes to rewards or losses had future decision making in a large cohort of healthy individuals. 

Similar to Owens et al. (2017), we utilised the Human Connectome Project (Van Essen et al., HCP, 

2013) data. The Human connectome project is a large open-access dataset, developed by Van Essen 

et al. (2013) in order to make neuroimaging data available to researchers to further understand the 

underlying neural correlates of cognition, behaviour and other specialties. To investigate how grey 

matter volumes relate to switching behaviour following either a win trial or a loss trial, the current 

study downloaded and utilised structural scans and behavioural data from the HCP dataset. In order 

to measure switching behaviour, we used an adapted version of Delgado et al. (2000) reward 

paradigm previously used in numerous fMRI studies (May et al., 2004; Delgado, Locke, Stenger & 

Fiez, 2003; Forbes et al., 2009). The paradigm consists of a gambling task whereby participants were 

instructed to guess whether the value of a card is either higher or lower than 5. Within this task we 

aimed to replicate the results found by (Sun et al., 2018) by measuring the frequency in which 

participants switch following wins versus losses. To build on previous research (Sun et al.,2018; 

Adrián-Ventura, Costumero, Parcet & Ávila, 2019) the current study measured the frequency 

participants switch when the previous trial was a reward in comparison to the frequency of switches 

following a punishment trial. The current study will provide a novel approach to understanding how 

prior outcomes effect future decision making, regardless of overall task performance.  
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Hypotheses 

 1.    As in Sun et al. (2018), there will be a significant positive correlation between grey matter 

volume of the Frontal Pole, Posterior Cingulate, and Left Insula and the tendency to switch 

behaviour in the gambling task (regardless of preceding trial). 

 2.   As in Sun et al. (2018), there will be a significant negative correlation between grey matter 

volumes of the Medial Temporal Lobe and Right Insula Cortex in relation to switching frequency 

(regardless of preceding trial). 

3. There will be a significant correlation between grey matter volumes within the Right Insula Cortex 

and Medial Temporal Lobe and increased frequency of switching after loss trials (punishment). 
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Methodology and research design 

 

4.1: Participants or Subjects 

Participants were taken from Human Connectome Project (HCP) 1200 subject release data set (Van 

Essen et al. HCP, 2013). The HCP data set is an existing, open source, secondary dataset that includes 

T1 structural MRI scans, demographic and behavioural data for 1200 participants (aged 22-35). Our 

study utilised T1 scans and behavioural data for 851 participants (461 Females and 390 males) see 

data exclusion section for further exclusion criteria). Participants were medically assessed and had 

no significant history of psychiatric disorder, neurological disorders, cardiovascular disease, or 

Mendelian genetic disease (e.g., cystic fibrosis, xeroderma pigmentosa and stickle cell anaemia). 

Record of assessment is given within the HCP manual and release publications (Van Essen et al. HCP, 

2013). Due to the current study utilising secondary data from the HCP project, the current study did 

not control any of the scanning criteria set out by the HCP dataset.  The current study was 

conducted with approval from the University of Huddersfield’s ethical review procedure in 

compliance with APA and BPS ethical standards. The current study was also preregistered on the 

Open Science Framework (https://osf.io/ - see appendix A)  

4.2: Reward Paradigm 

The behavioural measures consisted of an adapted version of Delgado et al. (2000) reward paradigm 

that was used as part of the Human Connectome Project, and data publicly available, which the 

current study utilised. The task is a reward paradigm, that originally assessed how people responded 

to rewards and losses whilst undergoing an fMRI scan. The way in which we analysed the data was 

adapted in a novel fashion to suit the nature of the current study (see below).  

 In this behavioural task participants were instructed to predict whether a hidden number behind a 

playing card was greater or less than the value of 5. Trials began with a question mark (presented for 

up to 1500 ms) indicating the participant had to make a guess. In order to make a prediction that the 

card was higher they were instructed to push the button in their right hand, and to make a 

prediction the card was lower, they were instructed to push the button in their left hand. Feedback 

numbers ranged from 1 to 9 to equate a 50% balance either side of the value of 5. For every 

https://osf.io/
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successful prediction the participant gained $1, and lost $0.50 for every unsuccessful prediction. 

There were three types of trials, reward trials to which the participant were rewarded $1, loss trials 

where they lost $0.50, and neutral trials where the number 5 would appear and participants did not 

gain or lose any reward. The feedback of each trial was predetermined by the computer categorising 

trials into either a reward trial, punishment trial or neutral event. The feedback was presented for 

1000 ms, followed by an intertrial interval in which a fixation (“+”) was presented for 1000 ms (See 

Figure 1). The task feedback is equal in probability (50% reward trials, 50% loss trials) therefore 

unlike previous studies there is no optimal strategy to maximise rewards and mitigate losses.  

The task was presented in blocks of 8 trials that were either mostly reward or mostly loss, but still 

contained a mix of trial types. In each of the two runs there were two mostly reward and two mostly 

loss blocks interleaved with four fixation blocks (duration 15 sec). Each participant completed a total 

of 64 trials. The task data was collected as part of the HCP dataset and the data made available for 

researchers to download from the HCP site. (see release documentation for further information – 

HCP Manual). 

 

Figure 1. Gambling task used in HCP data set. Feedback based on a trial in which a participant picked ‘higher’ on both 

reward and punishment trial 

 

https://www.humanconnectome.org/storage/app/media/documentation/s1200/HCP_S1200_Release_Reference_Manual.pdf


30 
 

In order to assess switching behaviour, the total number of switches after both reward and 

punishment trials were computed in MATLAB for each participant from the raw behavioural data. 

Responses preceding and after neutral trials were excluded from the analysis as responses after 

these trials do not assess switching behaviour to either a reward or a punishment. Therefore, for 

each participant 6 trials (neutral trials) were discounted leaving a total of 58 trials (29 reward and 29 

punishment) for each participant that were included. These Figures were then converted into 

percentages and imputed into the regression model.  

 

4.3: Structural MRI data collection procedure 

Structural MRI scans were acquired using a customised Siemens 3.0 T “Connectome Skyra” (Siemens 

AG, Erlanger, Germany) using a 32-channel head coil located at Washington University in St Louis. 

Two separate averages of the T1-weighted image were acquired using 3D, gradient echo pulse 

sequence (MPRAGE) with a resolution of 0.7 mm3 isotropic (FOV = 224 × 224, matrix = 320 × 320, 

256 sagittal slices; TR = 2400 ms and TE = 2.14 ms). The use of T1 structural MRI scans are suitable 

for the current analysis as it allows us to segment the data into separate tissue volumes; grey 

matter, white matter and cerebrospinal fluid (see diagram below) 

Following the structural MRI, all scan images were reviewed by a HCP technician to ensure scans did 

not have any problems (i.e. excessive data noise from substantial movement and artefacts). If any 

problems were identified the original scan was discarded and a new structural scan was initiated 

immediately. After any immediate issues were identified with scan acquisition, all scans were 

examined by HCP quality control experts. They assessed the scans based on motion, other previously 

unidentified artefacts, image quality and accuracy of defacing. From this assessment scans were 

given a score from 1 to 4 (1; poor 2; inadequate, 3; good, and 4; excellent). Scans were all rated 

above the value of 3 indicating they had good quality control, ensuring a good signal to noise ratio. 

For further information on quality control procedure see HCP quality control documentation; Marcus 

et al. (2013).  

The structural MRI data collection procedure outlined above was taken from the HCP Data set 

structural pre-processing information, see manual (Van Essen et al. HCP, 2013). The current study 

utilised this data however was not involved with the acquisition of these scans, nor the parameters 

set within this procedure. 
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4.4: VBM pre-processing  

Voxel based morphometry (VBM) was used in order to analyse grey matter volumes. The raw T1 

data were re-processed using statistical parametric mapping software (SPM12; Wellcome 

Department of Cognitive Neurology, London, UK, https://www.fil.ion.ucl.ac.uk/spm/) implemented 

in MATLAB (Mathworks Inc., Natick, MA). Initially, T1 weighted images were segmented into grey 

matter, white matter and cerebrospinal fluid using an extension of the standard unified 

segmentation model in SPM12. The resulting grey matter volumes from the segmentation step were 

normalised to Montreal Neurological Institute (MNI) standard space generating template images and 

flow fields. Grey matter volumes were spatially normalised across all participants using the DARTEL 

algorithm (Diffeomorphic Anatomical Registration Through Exponentiated Lie Algebra; Ashburner, 

2007) voxel size: 1.5 mm × 1.5 mm × 1.5 mm in MNI space. Finally, the data was smoothed with an 

8mm FWHM (full width half maximum) Gaussian Filter. Images were then modulated to create 

Jacobian scaled grey matter images using deformations estimated in the DARTEL step (see Figure 2 

below). 
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Figure 2. Diagram illustrating VBM pre-processing steps 

 

4.5: Explanation of VBM pre-processing  

4.6: Statistical analysis   

In order to initially test the prevalence of switching behaviour within the sample, a paired samples t 

test was conducted to test the difference between switches after reward trials in comparison to 

switches after loss trials. Data normality was assumed (see Figure 1 and 2). Statistical analysis was 

conducted using IBM SPSS 26 (IBM, SPSS Statistics, Chicago, IL, USA).  
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Whole brain corrected statistical analysis was performed on normalised and smoothed grey matter 

maps using SPM12. A multiple regression model was set up in SPM12 in order to assess the 

association between whole brain grey matter volumes against the percentage of switches following 

reward trials versus loss trials, controlling potential confounding variables of Total Intracranial 

Volume, age and gender. All variables were imputed into the regression simultaneously. Total 

intracranial volume was calculated by summing the values of grey matter, white matter, and 

cerebrospinal fluid using the 'tissue volumes' option within SPM12. Total intracranial volume was 

added as a covariate within the global calculation option in SPM12. Absolute masking was used at a 

threshold of 0.2 and no explicit mask was added.  

 

4.7: Data exclusion   

A total of 889 participants were identified as having both T1 scans and behavioural data on the 

gambling task within the HCP dataset. Following further investigation we found 16 participants had 

incomplete behavioural data and 3 were missing a full T1 structural scan. Within the data set 19 

participants measured as a 100% response rate on either option (higher or lower). Any participants 

that had 100% response rate on one of the options were discounted as responses do not result in 

data suitable for the purposes of the experiment. After all data exclusions, sample size for this study 

was 851. 

 

4.8: Ethical procedure    

This study was approved by the University of Huddersfield’s ethical review procedure. The data used 

secondary data taken from the HCP data set. In line with the guidelines set out by HCP ethics (Van 

Essen, 2013) all T1 scans and behavioural data was kept secure within a password protected folder. 

HCP assigns a unique reference number in order to protect participant’s anonymity. All data was 

discarded after data analysis was conducted and participants remained anonymous conforming to 

GDPR regulations. 

 

4.9. Data consolidation and reconciliation   
The current study required a total of 1702 (851 T1 files and 851 behavioural files) files to be 

downloaded and converted into a usable format for data analysis. In order to mitigate any data loss 

and keep track of data files, scripts were written using both Virtual Basic (VBA) and MATLAB. For the 

first analysis, behavioural results had to be converted from text file into Excel files. Due to the large 
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amount of datafiles containing behavioural data, they required a script to be written to convert 

them into workable formats. In order to do this, VBA code was written to convert 1702 files (each 

subject had two runs of data; run1 and run2) and were then transferred to the server at the 

University of Huddersfield in order to ensure data security. Following the conversion of these files, 

code was executed in MATLAB to extract information of interest. This included (run number, Trial 

type, consecutive smaller guesses, consecutive larger guesses and HCPID). This was then converted 

to a text file and loaded into the regression model within SPM12. In order organise T1 structural 

scans, 851 files were renamed, using basic code in VBA, adding the HCPID to each file, along with a 

“+” symbol in order to symbolise files that will be used within the analysis to avoid data loss. In order 

to ensure accurate detection and transfer of the required files, data reconciliation was also 

conducted in comparison with the HCP data manifest before data input into analysis software to 

ensure no loss of data (See Appendix B for script examples).  
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Results  

5.1: Behavioural Results   

Initially, in order to assess the prevalence of switching behaviour within the HCP reward paradigm, 

percentage frequency of switches both overall and following rewards and punishments were 

computed from the behavioural data. The results showed that overall, participants displayed a 

switching frequency of 39.54% and a stick frequency of 60.46%. Moreover, switching behaviour was 

marginally lower following a punishment trial in comparison to a reward trial. A paired samples t-

test revealed there was a significant difference between amount of switches after rewards (M = 

50.29% SD = 4.90) compared with amount of switches after punishments (M = 49.78%, SD =4.17), 

t(850)= 3.121, p = .002 (two-tailed). The mean difference between the two conditions was 0.597 

with a 95% CI ranging from 0.222 to 0.972. The eta statistic (.01) indicated a small effect size (see 

Table 1 & Appendix D).  

Table 2.  Descriptive statistics showing switch frequencies of reward and punishments separated by 

sex and age range  

 

Demographics Mean Switch after reward 

(Standard deviation)  

Mean switch after punishment 

(Standard deviation) 

Sex     

Male (n= 390) 11.48 (4.962) 10.54 (4.327) 

Female  (n = 461)  12.00 (4.829) 11.70 (3.954) 

Age     

22-25 (n = 187) 11.35 (5.152) 10.40 (4.493) 

26-30 (n = 336) 11.57 (4.943) 11.07 (4.160) 

31-35 (n = 290) 12.26 (4.643) 11.76 (3.909) 

36+ (n = 8)  11.76 (4.895) 11.17 (4.167) 
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5.2: VBM Results  

 A whole brain corrected VBM analysis (FWE = .05) was conducted to assess whether grey matter 

volumes were associated with switching frequencies after both reward and punishment trials. The 

VBM analysis revealed greater switches after punishment negatively correlated with grey matter 

volume (Table 3). VBM t maps were also created for both positive and negative grey matter clusters 

associated with switches following rewards, however no clusters were identified within this analysis. 

Moreover, no positive grey matter volume clusters were identified to be associated with switches 

following punishments. Within the regression both age and gender were included as covariates of 

interest, however no associations were identified between grey matter volumes or switching in 

relation to age or gender.  

 

Table 3. Brain regions with negative cluster volumes associated with punishment switch 

 

 Cluster threshold = .05 , intensity = 4.48 and cluster size threshold = 5; FWE = .05 

 

The results presented in Table 3 show reduced grey matter volumes within the Left Superior 

Temporal Gyrus (r = - 0.1741, z = 5.04, p= <.05), Left Lingual Gyrus; Medial Occipital Lobe (r = -  

0.1741, z = 5.06, p = <.05), Left Superior Occipital Gyrus (r = - 0.1725, z = 4.94, p = <.05), Right Insula 

(r = - 0.1626, z = 4.57, p= <.05), Right Middle Temporal Gyrus (r = - 0.1563, z = 4.46, p = <.05) and Left 

Parahippocampal Gyrus (r = - 0.1556, z = 4.41, p = <.05) correlated with increased frequency of 

switches after punishment trials after correction for family wise error (FWE = .05).  See Figures 

(3,4,5,6,7, and 8) showing statistical maps of grey matter volumes that correlated with frequency of 

switching after punishment. Slices were chosen in order to clearly identify brain regions associated 

with switches after punishment trials. All statistical maps (images) were shown in radiological format 

(reflective inversion, I.e: Left = Right, Right = Left).  

Brain region  Hemi Z score Cluster size X y z p 

Superior Temporal Gyrus (BA22) L 5.04 272 -44 -21 2 0.002 

Occipital Lobe, Lingual Gyrus (BA18) L 5.06 99 -32 -72 -12 0.009 

Superior Occipital Gyrus (BA19) L 4.94 36 -33 -80 -26 0.021 

Insula (BA13) R 4.57 35 39 -23 6 0.021 

Middle Temporal Gyrus (BA21) R 4.46 6 56 -53 -5 0.039 

Parahippocampal Gyrus (BA36) L 4.41 5 36 -32 -20 0.04 
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Figure 3. Above: Whole brain statistical maps showing negative correlations between GMV and switching after 

punishment (Sagittal X, Coronal Y). Slices chosen to best display area of interest. Below: Plot comparing grey matter cluster 

volumes in Left Superior Temporal Gyrus (r = - 0.1741)  against switches after punishment (FWE = .05): 
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Figure 4.  Above: Whole brain statistical maps showing negative correlations between GMV and switching after 

punishment (Sagittal X, Transverse Z). Slices chosen to best display area of interest. Below: Plot comparing grey matter 

cluster volumes in Left Lingual Gyrus( r = -  0.1741) against switches after punishment (FWE = .05) 
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Figure 5. Above: Whole brain statistical maps showing negative correlations between GMV and switching after 

punishment (Sagittal X, Transverse Z). Slices chosen to best display area of interest. Below: Plot comparing grey matter 

cluster volumes in Left Superior Occipital Gyrus (r = - 0.1725) against switches after punishment (FWE = .05) 
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Figure 6. Above: Whole brain statistical maps showing negative correlations between GMV and switching after 

punishment (Coronal Y, Transverse Z). Slices chosen to best display area of interest. Below: Plot comparing grey matter 

cluster volumes in Right Insula (r = -  0.1626) against switches after punishment (FWE = .05) 
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Figure 7. Above: Whole brain statistical maps showing negative correlations between GMV and switching after 

punishment (Coronal Y, Transverse Z), Slices chosen to best display area of interest. Below: Plot comparing grey matter 

cluster volumes in Middle Temporal Gyrus ( r = - 0.1563) against switches after punishment (FWE = .05) 
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Figure 8. Above: Whole brain statistical maps showing negative correlations between GMV and switching after 

punishment (Coronal Y, Transverse Z). Slices chosen to best display area of interest. Below: Plot comparing grey matter 

cluster volumes in Left Parahippocampal Gyrus (r = - 0.1556) against switches after punishment (FWE = .05) 
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5.3. Neurosynth 

Finally, in order to better understand the association between the significant areas identified within 

the previous VBM analysis, task co-activation meta-analyses were conducted within Neurosynth 

(https://www.neurosynth.org/locations). Neurosynth is a large-scale brain mapping database 

containing fMRI data, extracted from previously published articles, that allows for comprehensive 

meta-analyses based analysis on a region of interest. The resulting data reveals other brain regions. 

within previous literature utilising fMRI, that have showed common activations associated with the 

region of interest. 

The purpose of utilising Neurosynth within the current study, was to investigate whether the areas 

identified within our VBM analysis were involved in any networks previously identified within fMRI 

literature. Following the input of MNI coordinates for each region of interest identified within the 

VBM, Neurosynth analysis identified correlations within the Insula and Lingual Gyrus for five of the 

six areas identified within the VBM analysis (see Figures; 9, 10, 11, 12, 13 and 14). The Superior 

Occipital Gyrus was the only area not to show activation within these regions (see Figure 11).  

Neurosynth analysis also revealed other coactivations with areas previously shown to be involved in 

reward processing such as; Middle Frontal Gyrus (Koehler et al., 2015), Frontal regions (Bechara, 

Damasio, Damasio & Anderson, 1994) and Anterior Cingulate Cortex (Campbell-Meiklejohn, 

Woolrich, Passingham & Rogers, 2008). 

 Neurosynth co-activation meta-analyses of all regions identified within the VBM analysis were set at 

a false discovery rate of p <0.05. At the time of analysis Neurosynth had 150,000 brain regions, in 

14371 studies, consisting of 507891 activations (analysis conducted on 14th June 2020). The blue 

areas (white identifies seed region) within the Figures display positive co-activations, no negative co-

activations were found in the analyses completed. See Figures Below (9, 10, 11, 12, 13 and 14). 

Given the Insula showed meta-analytic coactivations within the majority of the brain regions 

identified within the current VBM, we conducted a further analysis using MRIcroGL (Rorden, 2012). 

Within MRIcroGL, Neurosynth maps were combined and overlayed to form one image in order to 

accurately determine which regions showed common meta-analytic coactivation within all 6 

Neurosynth coactivation maps. The MRIcroGL map revealed the Insula as the most commonly 

activated region throughout the coactivation maps (see Figure 15). 
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Figure 9. Neurosynth co-activation meta-analysis of the Left Superior Temporal Gyrus (BA22; MNI coordinates: -44, -21, 

2) thresholded at false discovery rate criterion of p < 0.05. Figures display activation within the Bilateral Insula, Left Lingual 

Gyrus, Bilateral Middle Temporal Gyrus, Right Anterior Cingulate and Right Middle Frontal Gyrus (Colour key: white; 

represents seed region, blue; represent the regions with meta analytic coactivation). 

 

  

 

 

 

 

Figure 10 . Neurosynth co-activation meta-analysis of the Left Occipital Lobe, Lingual Gyrus (BA18; MNI coordinates: -

32, -72, -12) thresholded at false discovery rate criterion of p < 0.05.  Figures display activation within the Motor Cortex, 

Cingulate Cortex, Parietal Lobe, Bilateral Medial Temporal Lobe, Bilateral Superior Temporal Lobe, Middle Occipital Gyrus, 

Left Parahippocampal Gyrus, Putamen, Bilateral Insula Cortices and Medial Frontal Gyrus (Colour key: white; represents 

seed region, blue; represent the regions with meta analytic coactivation). 

 

  

 

 

 

 

Figure 11. Neurosynth co-activation meta-analysis of the Left Superior Occipital Gyrus (BA19; MNI coordinates: -33, -80, 

-26) thresholded at false discovery rate criterion of p < 0.05. Figures display activation within the Bilateral Frontal Lobe, 

Brainstem, Cingulate Gyrus and Right Occipital Lobe (Colour key: white; represents seed region, blue; represent the regions 

with meta analytic coactivation). 
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Figure 12 Neurosynth co-activation meta-analysis of the Right Insula (BA13; MNI coordinates: 39, -23, 6) thresholded at 

false discovery rate criterion of p < 0.05. Figures display activation within the Left Insula, Lingual Gyrus, Bilateral Brain 

Stem, Bilateral Middle Frontal Gyrus (Colour key: white; represents seed region, blue; represent the regions with meta 

analytic coactivation). 

  

 

 

 

 

 

 

Figure 13 Neurosynth co-activation meta-analysis of the Right Middle Temporal Gyrus (BA21; MNI coordinates: 56, -53, -

5) thresholded at false discovery rate criterion of p < 0.05. Figures display activation within the Bilateral Insula, Bilateral 

Middle Frontal Lobe, Right Brainstem, Bilateral Occipital Lobe, Bilateral Lingual Gyrus (Colour key: white; represents seed 

region, blue; represent the regions with meta analytic coactivation). 

 

  

 

 

 

 

 

Figure 14. Neurosynth co-activation meta-analysis of the Left Parahippocampal Gyrus (BA36; MNI coordinates: 36, -32, -

20) thresholded at false discovery rate criterion of p < 0.05. Figures display activation within the Left Parietal Lobe, Bilateral 

Occipital Lobe, Bilateral Middle Temporal Lobe, Left Inferior Frontal Lobe, Right Insula, Right Brainstem (Colour key: white; 

represents seed region, blue; represent the regions with meta analytic coactivation). 
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Figure 15. Overlap constructed within MRIcroGL (Rorden, 2012). Colours represent brain areas identified within all 6 

Neurosynth meta analytic coactivation maps and reflect each coactivation matrix. Lower right corner; shows anterior Insula 

is a common area of activation indicated by the colour white. 
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Discussion  

Using a novel approach, the purpose of this study was to identify the anatomical correlates of 

switching behaviour following previous reward and loss trials. Behavioural analyses revealed a 

higher stick frequency in comparison to switch frequency, when measuring general switching 

behaviour irrespective of the previous trial. Following a reward, the frequency of switches increased 

compared to those trials following punishments. In order to identify neuroanatomical correlates of 

switching, whole brain VBM analyses were conducted. When investigating the relationship between 

grey matter volumes and switching, irrespective of previous trials, no significant positive correlations 

were identified. Moreover, no significant negative correlations were identified regardless of previous 

trial, consequently rejecting the first and second research hypothesis. Interestingly, when 

investigating the relationship between whole brain grey matter volumes, and switching following 

rewards and punishments, as hypothesised, significantly lower grey matter volumes were seen 

within the right Insular and right Medial Temporal Lobe as well as reduced grey matter correlates 

within the Left Superior Temporal Gyrus, Left Lingual Gyrus and Left Superior Occipital Gyrus. Follow 

up analysis exploring fMRI co-activation analysis between regions that were strongly associated with 

switching were conducted within Neurosynth. We found these areas showed strong meta analytic 

coactivation with each other, findings which may indicate that these regions are integral in this type 

of decision making. 

The behavioural results of the current study show a 60.46% stick rate and only a 39.54% switch rate 

irrespective of previous outcome, similar to the result Sun et al. (2018) found (57% average stick 

rate, 43% average switch rate). Given the similarities identified within the behavioural results, it is 

surprising the results identified by the VBM analysis conducted in the current study revealed no 

significant correlations between grey matter volumes and switching frequency, irrespective of 

previous trials. Although no associations in grey matter volume were found relating to general 

switching behaviour within the current study, we also evaluated the impact rewards and losses had 

on subsequent switching behaviour. The behavioural results show a significant increase in number of 

switches after rewards in comparison to switches after punishments. Increased frequency of 

switches following rewards may be a strategy in order to maximise reward outcomes and avoid 

losses. The results from the behavioural analysis may provide support for Prospect Theory 

(Kahneman and Tversky, 1979) as Prospect Theory suggests individuals are much more sensitive to 

losses than they are to potential gains. Therefore, participants may posit that switching after 

rewards may be a worthwhile strategy, as the subsequent impact of a potential loss would be less 

damaging.  
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Whole brain VBM analysis revealed several significant negative correlations between increased 

tendency to switch following punishments in six clusters comprising of the Right Insula, Right Medial 

Temporal lobe, Left Superior Temporal Gyrus, Left Lingual Gyrus, Left Parahippocampal Gyrus and 

Left Superior Occipital Gyrus. Similar to the results of Sun et al., (2018) the correlations identified 

within this study are weak correlations however, prior investigations show evidence that these areas 

identified are associated with similar types of behaviour. Within the field of decision making, the 

Insula has often been associated in the detection of aversive stimuli (Clark et al., 2008; Craig, 2009; 

Caria et al., 2010) and loss processing (Palminteri et al., 2012). In the current study, grey matter 

volumes within the Insula showed a significant negative correlation with frequency of switches after 

punishment. Similar findings were also reported by Markett et al. (2016) who identified increased 

loss aversion was associated with lower grey matter volumes within the Insula. Additionally, another 

VBM study (Nasiriavanaki et al., 2015), investigating structural correlates of decision making, found a 

positive correlation with the grey matter volumes within the Anterior Insula and increased risk-

taking behaviour and inversely, found negative grey matter volumes in the Anterior Insula correlated 

with less risk-taking behaviour.  Although the current study did not measure loss aversion, the 

results identified by previous studies (Nasiriavanaki et al., 2015; Markett et al., 2016) may help 

elucidate our findings, as individuals with lower grey matter volumes within the Insula may show 

increased switches following a previous experience of a punishment, as it is an undesirable outcome 

and may be viewed as a more aversive consequence. Evidence for the involvement of the Insula, 

relating to the previous outcomes have been corroborated within lesion studies, suggesting 

disruption of Insula function is associated with decision making that is unaffected by previous 

experiences. Clark et al. (2014), found that healthy individuals displayed increased use of the 

gamblers fallacy strategy whereas lesion patients showed decision making strategies that were 

seemingly independent from prior outcomes. Furthermore, Clark et al. (2008) found lesions located 

in the Insula led to a disruption in the ability to update future decision making strategies based on 

the probabilities of occurring a loss in a gambling task. Other lesion studies have also shown 

comparative findings (Weller, Levin, Shiv, & Bechara, 2007) highlighting that Insula damage is 

associated with reduced sensitivity to prior outcomes. These studies provide some evidence relating 

to the involvement of the Insula in tracking the previous consequences of a decision, and ultimately 

could explain why increased switch frequency was associated with lower grey matter volumes within 

this area. However, any comparisons between lesion studies and the results found within the 

current study should be taken with a degree of caution, as no lesion is directly comparable to 

another (Rick, 2011). Correlates between punishment switches and reduced Insula volume may be a 

result of a unique effect resulting in individuals with lower grey matter volume to behave differently 
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in switching tasks. Although previous research provides good evidence for the implication of the 

Insula in loss processing, it is currently unclear as to the extent structural differences in grey matter 

volume within the Insula affect switching. Future studies are needed to further understand the 

involvement of this area in increased switching following punishment trials both in healthy and 

clinical populations in order to further solidify the relationship between grey matter volumes and 

switching behaviour. 

An alternative explanation of the associations found within the Insula could be due to subjective 

versus objective value. Within the current task, participants could either win $1 or lose $0.50. 

Objective value of a reward/loss is the amount of reward given or amount of money lost, whereas 

the subjective value of a reward is how the participant personally views the reward/loss. This can be 

influenced by several factors such as; an initial reference point relating to how much money they 

currently have (Kahneman and Tversky, 1979), or inborn beliefs and attitudes (Nasiriavanaki et al., 

2015; Dreher & Tremblay, 2017). Thus, individual differences in these values could have affected 

how loss averse someone is, which may result in increased switches following punishments. 

Evidence to support (Craig, 2009) suggests that the Right Insula Cortex is involved in risk prediction 

and visual and auditory awareness of the present moment. It is possible that individual differences 

relating to how an individual views receipt of either a reward or loss, may have had an impact on 

subsequent switching frequency, given the findings from previous studies (Kahneman and Tversky, 

1979; Nasiriavanaki et al., 2015; Dreher & Tremblay, 2017). Furthermore, Harrison et al. (2016) 

found that inducing a negative mood within participants can increase Insula activity when they are 

presented with a punishment, suggesting that they see the punishment more negatively when in a 

negative mood in comparison to a positive mood. Self-esteem can also be a contributing factor, 

showing individuals with higher self-esteem, are more likely to keep going when presented with a 

threat or a loss whereas individuals with lower self-esteem are impacted by the threat of losses 

more, and are more likely to be risk averse (Josephs, Larrick, Steele & Nisbett, 1992). Future studies 

could investigate the impact of individual differences such as financial position, values and mood 

influences have on switching behaviour and how this relates to brain structure of regions such as the 

Insula. 

 The current VBM analysis also revealed lower grey matter volumes within the Parahippocampal 

Gyrus and increased switching after punishment trials. Similar to the Insula, there is also evidence to 

suggest the Parahippocampal region may be involved in emotional processing. A study by Lutz et al. 

(2014), investigating the neural correlates of emotion regulation to mindfulness-based practice 

found that, during perception of negative stimuli, reduced activation was seen within both the 

amygdala, Insula and right Parahippocampal Gyrus following mindfulness practice in comparison 
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with no intervention, providing evidence that these areas are associated with negative affect. This 

suggests that individuals who have less activation within both the Insula and Parahippocampal Gyrus 

are less affected by negative stimuli. This could explain why grey matter reductions were seen in 

relation to increased frequency of switching after punishments. Grey matter reductions within both 

the Insula and Parahippocampal Gyrus may result in differences in how an individual views a loss, 

leading to an increased tendency to switch following a punishment.   

The Parahippocampal Gyrus may also be strongly connected to the ventromedial prefrontal Cortex 

in relation to future time perspective decision making. A study using VBM to investigate 

procrastination found that grey matter volumes within these areas negatively correlated with 

procrastination scores and an individual’s future time perspective (Liu, & Feng, 2019).  A supportive 

study (Schacter & Addis, 2009) has also shown both the Parahippocampal Gyrus and medial 

temporal lobe (encompassing both Parahippocampal and Hippocampal regions) have been involved 

in the perception of future events. Hassabis, Kumaran, and Maguire (2007) using fMRI  found that 

when subjects are asked to construct imaginary scenes in the future, activation was seen within an 

extended brain network involving the Hippocampus and Parahippocamus, Posterior Parietal Cortices 

and the vmPFC. The current study identified correlates with switching after punishments and grey 

matter reductions within both the Parahippocampal Gyrus and Medial Temporal Lobe. Given this, it 

would be reasonable to propose that grey matter reductions within these areas may impact overall 

future planning. Sun et al. (2018) also found negative correlations within the Medial Temporal Lobe, 

Insula and Superior Temporal Gyrus and increased switching frequency, regardless of preceding trial. 

Morphometric differences within these areas may result in differences relating to the effectiveness 

of future planning, resulting in increased tendencies to switch. Within the task (Sun et al., 2018), 

participants were instructed to randomly guess in order to match the computers choice, which 

resulted in an average switch frequency of 43% in comparison to the computers 50% switching 

frequency. Thus, in Sun et al. (2018) if an individual switched more, they were more likely to be 

closer to the computers switching frequency, which would be an optimal overall strategy. This 

comparison may suggest neuroanatomical differences within the Temporal Lobe could be related to 

different strategies involving future planning which results in increased overall switching. Given, the 

results identified within Sun et al. (2018) were only related to switching regardless of previous trial 

outcomes, and the task used in the current study had no optimal strategy, further research is 

needed in order to further elucidate whether perception of the task as a whole, impacts an 

individual’s likelihood to switch following a reward or loss.  

Interestingly, the current study revealed associations between switching following punishment 

outcomes and lower grey matter volume within the Lingual Gyrus (Occipital lobe) and the Superior 



51 
 

Occipital Gyrus, areas which we had not predicted in our hypothesis. Currently, it is not clear as to 

why we may see lower grey matter volumes within this region that are associated with switches 

after punishment. One explanation is that it could be due to a network involved within this type of 

decision making. The Neurosynth findings suggest that both these areas show strong meta analytic 

coactivation between the cingulate cortex, which could be indicative of the cinglo-operculium 

network, which may be associated with tracking the previous outcomes of decisions (Dosenbach et 

al., 2007). Moreover, another study investigating the functional correlates of reward and loss 

processing using HCP data on a large sample, found activation within the Occipital cortex in relation 

to both reward and loss outcomes (Van de Streen et al., 2020). Thus, this result could be due to the 

increased power within the current study (Button et al., 2013). More research is needed to further 

investigate the role of the occipital cortex in relation to switches following punishment outcomes.  

In order to better understand the association between the brain regions identified within the VBM 

analysis, a Neurosynth coactivation meta-analyses was conducted for each region. Once collated 

within MRIcroGL, the results revealed strong meta-analytic coactivation within the Insula for five of 

the six clusters identified within the VBM analysis, excluding the Superior Occipital Gyrus. The strong 

meta analytic coactivation seen within the Insula and other areas may suggest the involvement of a 

decision making network associated with switching, with the Insula being heavily involved in this 

process. The Insula has previously been identified as a potential hub which is involved in other large 

scale brain networks, such as; the salience network, a network which may be implicated in the 

generation of appropriate behavioural responses to external stimuli (Menon & Uddin, 2010). 

Moreover, Menon & Uddin (2010) proposed that the Insula provides a bottom up signal to the 

Anterior Cingulate when the consequence of a decision is negative. Coactivations of the Anterior 

Cingulate Cortex, another important region within the salience network, and an area previously 

associated with loss aversion (Tom, Fox, Trepel, & Poldrack, 2007), were also seen in relation to the 

Left Superior Temporal Gyrus and the Left Superior Occipital Gyrus. We therefore speculate that the 

Insula may be heavily implicated in a network of decision making that is associated with switching 

behaviour. It is important to note that structural studies and functional studies do not always 

overlap as the size of a brain region does not necessarily relate to its function or efficiency. Although 

research is progressing in order to create both structural and functional connection maps of brain 

networks, the role that function plays in cortical thickness is still unclear (Honey, Thivierge & Sporns, 

2010). Therefore, further investigations are required, potentially using a combination of 

neuroimaging methods, to better understand the networks involved in this type of decision making. 
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6.1: Strengths and limitations 

In order to measure switching, the current study adapted an fMRI reward paradigm developed by 

Delgado et al. (2000). Although we found structural differences that may be related to future 

thinking, more specifically located within the Medial Temporal Lobe and Parahippocampal Gyrus 

(Andrews-Hanna et al., 2010; Buckner, Andrews-Hanna & Schacter 2008; Andrews‐Hanna, 

Smallwood & Spreng, 2014) the task did not give the participants an optimal strategy for task 

completion. The reward paradigm was adapted to suit the current study in order to measure 

switching after rewards compared with switching after losses, which may explain why the current 

study found no differences relating to general switching behaviour. Giving individuals incentive to be 

able to maximise rewards rather than just offering a 50% probability ratio on either option, could 

potentially lead to increased task involvement and task attention, and may lead to differing results 

than those found within the current study. Therefore, a task that is specifically designed to measure 

switching, such as the one used in Sun et al. (2018) may be a more comprehensive measure of 

switching behaviour. It is important to note, for selection of the current task we were limited to the 

data held within the HCP dataset. The amount of trials used within the current study may be another 

reason for differences in results. Delgado et al. (2000), conducted their study on a total of 190 trials 

utilising the reward paradigm, whereas in the current study, only 58 were included in the analysis 

due to the time constraints associated with conducting a study on a large sample. Consequently, 

future studies could increase time on the task and measure the effect this has on responses to 

switches after either rewards or punishments. It is important to note, for selection of the current 

task we were limited to the data held within the HCP dataset. Although, task differences may play a 

role in the differing results, this is unlikely to have a high impact on the results as these 

disadvantages were outweighed by the advantages of using a large sample size, which may provide 

another explanation for the disparate results found within the current study.  

Studies that have used large samples to replicate findings from smaller have often found different 

results. In a study investigating delay discounting, Owens et al. (2017) found significant correlations 

within the Bilateral Middle Temporal Gyrus and Bilateral Entorhinal Cortex on a sample size of 1113 

subjects. However, they did not find any differences within areas identified in studies with small 

sample sizes such as Right Orbitofrontal Cortex, Right Anterior Cingulate (Cho et al., 2013; 

Mohammadi et al., 2016; sample sizes: 34 and 70 respectively). An advantage of the current study is 

that it was conducted on a large cohort of healthy individuals, given the majority of previous studies 

have investigated the impact of rewards and losses on healthy participants versus individuals with 

behavioural addictions (Moreno-López et al., 2012; Koehler et al., 2015; Mohammadi et al., 2016). A 

possible explanation accounting for differing results found by Owens et al. (2017) may be due to 
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cognitive impulse control (Cho et al., 2013). Considering that both the current study and the study 

conducted by Owens et al. (2017) utilised a large cohort of healthy individuals, this could also 

provide an explanation of the results found in the current study as we did not see any structural 

differences in relation to reward switches. Individuals who tend to be more impulsive could show 

increased grey matter within this area as they have to exert more effort to be able to control 

impulses than healthy individuals (any individual that does not show signs of addictive behaviours, 

disease or dysfunction). 

To analyse the association between grey matter volumes and switching, the current study used VBM 

analyses. Although VBM is a widely used technique in measuring structural differences, there are 

certain problems with the use of the method that can arise. The first of which is smoothing kernel 

size, as previous studies have shown that using a different kernel can influence how the method 

detects atrophy from statistical maps (Shen, Szameitat & Sterr, 2007). Using different kernel sizes on 

studies with smaller samples can vastly affect the results. A strength of the current study, is the use 

of a high sample size, resulting in the mitigation of any errors within this stage of the VBM process. 

The current study utilised a kernel size of 8mm, a recommended kernel size for a study of this 

nature. However, according to the study conducted by Shen and Sterr (2013), using a smaller kernel 

may yield different results, therefore future studies should investigate this by using a kernel of 6mm 

or less, as to our knowledge, this has not previously been investigated. Ultimately, due to the high 

sample size in the current study, errors that occur within the VBM analysis on smaller sample sizes 

are slightly mitigated, resulting in the study providing a valuable and valid addition to current 

literature investigating the relationship between VBM and decision making 

6.2: Future Directions 

Given some of the limitations identified above, future research could employ a task that is 

specifically designed to measure switching such as the random card guessing task utilised in Sun et 

al. (2018) study, in order to further investigate the impact the outcome of a previous decision has on 

future decision making, and the relationship with neuroanatomy. In addition, there is room for 

further progress in determining the involvement of the Insula as it remains unclear as to why this 

area was heavily involved in switching after punishments but not after rewards. Moreover, future 

studies could investigate how individual differences in circumstance, differing moods and individual 

values, affect how an individual reacts to either a reward or loss, and how this impacts future 

decision making strategies.  

 In this study, we performed a VBM analysis to investigate associations between whole brain grey 

matter volumes and frequency of switching following reward trials, in comparison to frequency of 
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switches following loss trials. The results revealed weak negative correlations between increased 

tendencies to switch following punishment trials and grey matter volumes within the Left Superior 

Temporal Gyrus, Left Lingual Gyrus, Medial Occipital Lobe, Left Superior Occipital Gyrus, Right Insula, 

Right Middle Temporal Gyrus and Left Parahippocampal Gyrus. The significant correlation between 

punishment switches and reduced Insula volume may be a result of a unique effect causing 

individuals with lower grey matter volume to behave differently following receipt of a punishment. 

Another significant finding was overall, individuals switched more after rewards in comparison to 

losses. Both these findings suggest the outcome of a previous trial may directly influence the 

decision to switch, providing new insights into the effects that a previous decision can have on 

subsequent choices. However, the extent to which these structural differences affect neural 

processing relating to future decision making remains unresolved  due to the weak associations 

between grey matter volume and switching, and may benefit from future studies using a 

combination of neuroimaging methods to further understand the neural underpinnings of decision 

making based on the receipt of a previous reward or loss. 

This study differs from prior investigations in two principle aspects. First, it assesses an individual’s 

tendency to switch based on previous reward or loss outcomes, building on the work of Sun et al. 

(2018). Second, the study is conducted on a large sample size of healthy individuals. Our findings 

highlighting the Insula, an area previously associated with the integration of emotions within 

decision making processes, provide further support for prior investigations of loss aversion 

suggesting structural differences within this region may be strongly associated with how an 

individual processes a loss. Our findings also have the potential to further improve our 

understanding of the relationship between brain structure and decision making, highlighting 

individual differences relating to how healthy individuals respond after the impact of a prior reward 

or loss. 
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Appendix  

 

Appendix A – preregistration  

Examining neuroanatomical correlates of switch behaviour following rewards and 

losses: a voxel-based morphometry study  

Matt Westerman, Glyn Hallam & Chris Retzler  

  

Background  
Functional neuroimaging studies have demonstrated the role of areas such as the striatum and the 

frontal Cortex in the differential processing of rewards and punishments (Delgado et al., 2000). 

Structural analyses suggest that grey matter volume in these areas may be linked with disorders 

such as pathological gambling (Koehler, Hasselmann, Wüstenberg, Heinz & Romanczuk-Seiferth, 

2015; Mohammadi et al., 2016). However, very little research has looked at the relationship 

between brain structure and the effect of rewards and punishments on subsequent choices in 

healthy individuals.  

This study will utilise a large secondary dataset (Human Connectome Project) which includes an 

adapted version of the task used by Delgado et al. (2000) in which participants are asked to guess 

whether the value of a card will be higher or lower than five. The aim is to investigate the effects of 

monetary wins and losses on subsequent choices, and whether these choices correlate with 

anatomical volume of relevant brain areas.  

Within lab-based gambling tasks, losses have been shown to motivate individuals to switch response 

(e.g. Knutson et al., 2003) or to stop gambling (e.g. Campbell-Meiklejohn, Woolrich, Passingham & 

Rogers, 2008).  Similarly, an fMRI study demonstrated that losses were more likely to result in risky 

decisions and that this was positively correlated with increased activation in the frontoparietal 
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network and left lateral orbitofrontal Cortex, and negatively correlated with activation in the 

amygdala and the caudate nucleus (Xue, Lu,  

Levin & Bechara, 2011). However, it is less clear how wins and losses motivate participants’ choices, 

to stick or switch response and whether these strategies are related to brain anatomy.  

To address this question, a recent voxel-based morphometry (VBM) study investigated the 

relationship between grey matter volume and switching behaviour (Sun et al., 2018). In a binary 

choice game, a greater likelihood of switching behaviour was associated with increased grey matter 

volume in brain areas including the frontal pole, posterior cingulate Cortex, and left Insula, and with 

reduced grey matter volume in the medial temporal lobe and right Insula. However, this study did 

not look at differences that might have been driven by the outcome of the previous trial (i.e. a win or 

a loss). We therefore aim to extend this finding utilising a large open-access dataset (Human 

Connectome Project) to see if grey matter volume relates to switching behaviour following a win or a 

loss.   

 Hypotheses  
1. As in Sun et al. (2018), there will be a significant positive correlation between grey 

matter volume of the frontal pole, posterior cingulate, and left Insula and the tendency 

to switch behaviour in the gambling task (regardless of preceding trial).  

2. As in Sun et al. (2018), there will be a significant negative correlation between grey 

matter volumes of the medial temporal lobe and right Insula Cortex in relation to 

switching frequency (regardless of preceding trial)  

3. Grey matter volumes will be associated with frequency of switching after loss trials 

(punishment) compared to win trials (reward).  

   

Explanation of existing data  
This study will utilise data collected by the Human Connectome Project (Van Essen et al. HCP, 2013). 

This open source dataset includes T1 structural MRI scans, demographic and behavioural data for 

1113 participants (aged 22-35). Participants were medically assessed and had no significant history 

of psychiatric disorder, neurological disorders, cardiovascular disease or Mendelian genetic disease.   

   

Reward paradigm  
In order to assess participant’s responses to rewards and losses, we will be using an adapted version 

of Delgado et al. (2000) reward paradigm. In this study, participants were asked to guess whether 

the value of a card is higher or lower than five.    

  

Trials began with a question mark (presented for up to 1500 ms) indicating that participants had to 

make a guess between 1 and 9. For every successful prediction the participant gained $1 (reward) 

and lost $0.50 (loss) for every unsuccessful prediction. In order to make the predictions participants 

were given two buttons to respond; the first button indicating a guess greater than 5 and the second 

button indicating a value lower than 5. There were three types of trials in the experiment, reward 



68 
 

trials to which the participant were rewarded $1, loss trials where they lost $0.50 and neutral trials 

where the number 5 would appear and participants did not gain or lose any reward. The outcome of 

each trial was predetermined as a reward, punishment or neutral event. The feedback was 

presented for 1000 ms, followed by an intertrial interval in which a fixation (“+”) was presented for 

1000 ms.    

The task was presented in blocks of 8 trials that were either mostly reward or mostly loss, but still 

contained a mix of trial types. In each of the two runs there were two mostly reward and two mostly 

loss blocks interleaved with four fixation blocks (duration 15 sec). Each participant completed a total 

of 62 trials.  

    

Structural MRI data collection procedure  
Structural MRI scans were acquired using a customised Siemens 3.0 T “Connectome Skyra” (Siemens 

AG, Erlanger, Germany) using a 32-channel head coil. Two separate averages of the T1-weighted 

image were acquired using 3D, gradient echo pulse sequence (MPRAGE) with a resolution of 0.7 

mm3 isotropic (FOV = 224 × 224, matrix = 320 × 320, 256 sagittal slices; TR = 2400 ms and TE = 2.14 

ms). All scans have undergone quality assurance procedures as outlined in Marcus et al. (2013).  

   

VBM pre-processing  
In order to analyse grey matter volumes, we will use Voxel based morphometry (VBM). The data will 

be pre-processed using statistical parametric mapping software (SPM12; Wellcome Department of 

Cognitive Neurology, London, UK, https://www.fil.ion.ucl.ac.uk/spm/) implemented in Matlab 

(Mathworks Inc., Natick, MA). T1 weighted images will be segmented into grey matter, white matter 

and cerebrospinal fluid using an extension of the standard unified segmentation model in SPM12. 

Grey matter will then be normalised to Montreal Neurological institute (MNI) standard space 

generating template images and flow fields.  

Grey matter segmentations will be spatially normalised across all participants using the  

DARTEL algorithm (Diffeomorphic Anatomical Registration Through Exponentiated Lie  

Algebra) voxel size: 1.5 mm × 1.5 mm × 1.5 mm in MNI space. The data will then be smoothed with a 

8mm FWHM (full width half maximum) Gaussian filter. Images will then be modulated to create 

Jacobian scaled grey matter images using deformations estimated in the previous step.   

  

Measured variables  
Whole brain VBM analysis (grey matter density and concentration will be analysed) will be 

conducted on T1 weighed images. Further region-of-interest analyses may be carried out for areas 

identified as having a priori interest.   

  

Switching behaviour will be measured by the following three outcomes; percentage of switches 

following reward trials, percentage of switches following loss trials, and overall percentage switches.  
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Statistical models  
In order to identify which regions play a role in switching behaviour dependent on prior trials, a full 

factorial design will be used in SPM12 in order to conduct a multiple regression analysis. Whole-

brain statistical analysis will be performed on normalized and smoothed grey matter maps using 

SPM12. In order to assess how this uniquely contributes to switching behaviour, percentage of 

switches after rewards and percentage of switches after losses will be entered into a regression 

model against total intercranial volume, age and gender. Further analysis will be conducted of any 

regions that show significance differences in relation to switching behaviours.  

  

Data exclusion  
Participants will only be included if they have complete behavioural data from the gambling task and 

a T1 structural MRI scan. Participants who show 100% response rate for either the higher or lower 

option will be excluded from the analysis due to task noncompliance as participants were instructed 

to guess on each trial. After exclusions, our dataset contains 889 participants.  
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Appendix B - VBM pipeline settings 

Pre-processing steps  
 

Step 1: File conversion 
Conversion of files into NIfTI format using check reg function. Display will be used to check the files 
have converted correctly   
 

Step 2: Segmentation 

 Data:  
• Channel- only need one channel as not T2 data   
• Volumes: Number of scans to be segmented   
• Bias regularisation: light regularisation (0.001)  
• Bias FWHM: 60mm cutoff  
• Save Bias Corrected: Not needed yet    
Tissue 1  
Tissue: Grey matter   
• Tissue probability map: Located in SPM programme files   
• Num. Gaussians: 1  
• Native Tissue: Native + Dartel imported.   
• Warped Tissue: None  
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Tissue 2   
Tissue: White matter  
• Tissue probability map: Located in SPM programme files   
• Num. Gaussians: 1.  
• Native Tissue:  Native + Dartel imported.  
• Warped Tissue: Leave at None.  
Tissue 3  
Tissue: Cerebrospinal fluid   
• Tissue probability map: Located in SPM programme files  
• Num. Gaussians: 2  
• Native Tissue: Native Space  
•  Warped Tissue: None.  
  
 Tissue 4  
Tissue: skull tissue.  
• Tissue probability map: Located in SPM programme files  
• Num. Gaussians: 3  
• Native Tissue: None.  
• Warped Tissue: None.  
Tissue 5  
Tissue: soft tissue outside the brain (meningocele)  
• Tissue probability map: Located in SPM programme files  
• Num. Gaussians: 4  
• Native Tissue: None.  
• Warped Tissue: None.  
Tissue 6  
Tissue: Extraneous factors (air around the head)   
• Tissue probability map: Located in SPM programme files  
• Num. Gaussians: 2  
• Native Tissue: None.  
• Warped Tissue: None.  
Warping & MRF  
• MRF Parameter: 1  
• Clean Up: Light clean   
• Warping regularisation: 1x5 double  
• Affine regularisation: ICBM space template- European brains?   
• Smoothing: 0mm  
• Sampling distance: 3  
• Deformation fields: None  
  

Step 3: Run DARTEL to create templates 
Images  
• Images: Imported grey matter images   
• Images: imported white matter images  
Settings   
• Template basename: template   
• Regularisation form: Linear Elastic energy  

  
Outer iteration: New: Outer iteration   

• Inner iteration: 3  
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• Reg Params: 4    2    1e-06  
• Time steps: 1   
• Smoothing Parameter: 16  

Outer iteration 2   
• Inner iteration: 3  
• Reg Params: 2    1    1e-06  
• Time steps: 2  
• Smoothing Parameter: 8  

Outer iteration 3   
• Inner iteration: 3  
• Reg Params: 0.5    0.25    1e-06  
• Time steps: 4   
• Smoothing parameter: 2  

Outer iteration 4  
• Inner iteration: 3  
• Reg Params: 0.25    0.125    1e-06  
• Time steps: 16   
• Smoothing parameter: 1  

  
Outer iteration 5  

• Inner iteration: 3  
• Reg Params: 0.25    0.125    1e-06  
• Time steps: 64  
• Smoothing parameter: 0.5  

Outer iteration 6  
• Inner iteration: 3  
• Reg Params: 0.1    0.01    0.001  
• Time steps: 64  
• Smoothing parameter: 1  

Optimisation settings   
• LM Regularisation: 0.01  
• Cycles: 3  
• Iterations: 3  

 
 

Step 4 Normalisation to MNI Space 

MNI space  
• Dartel template: using final template created in previous step  
• Select according to: Many subjects   
• Voxel sizes: 1.5x1.5x1.5  
• Bounding Box: 2x3 double   
• Preserve: preserve amount (modulation)   
• Gaussian FWHM (8, 8, 8)   
 
 
 

Step 5. Statistical analysis  
Factorial design specification   

Directory – create directory prior to analysis and select this   
  
Design   
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• Multiple regression   
• Scans: previously computed files selected   
• Intercept: include intercept   

Covariates: new covariate- the plan will be to include covariates here  
Masking   
• Threshold masking: Absolute masking   
• Threshold: 0.2  

Global calculation   
• Globals (GM and WM) will be computed by adding the values in each image and 

multiplying by the volume of each voxel   
• Total intercranial volume = GM + WM+ CSF. These will then be used within MATLAB.  

  
Global normalisation  
• Overall grand mean scaling: No   
• Normalisation: proportional scaling   

  
  
  

  
  

  
  
 

 

Appendix C – Virtual Basic Code  

 

 

Code 1: VBA code to change name of T1 files to corresponding HCPID 
(comments in green) 

Note: In order for the code to be run, file locations were included within an excel document which 

this code extracted and utilised. The examples below are purely examples for the purposes of the 

thesis and cannot be run without this additional information. 

 

Sub gett1file() 

Dim myworkbook As String 

myworkbook = "COde for t1" 

Range("J1").Select 

Do Until ActiveCell.Value = "" 

directory = ThisWorkbook.Path & "\" 'uses files directory to identify file' 

filetext = Selection.Value & "" 

Filename = ActiveCell.Offset(0, 1) 'renames file to corresponding HCPID' 
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Name directory & filetext As directory & filetext & Filename 

ActiveCell.Offset(1, 0).Select 'moves to next file' 

Loop 

End Sub 

 

Code 2: VBA code to complete file reconciliation 
Sub getfiles() 

Dim oFSO As Object 

Dim oFolder As Object 

Dim oFile As Object 

Dim i As Integer 

 Set oFSO = CreateObject("Scripting.FileSystemObject") 

 Set oFolder = oFSO.GetFolder("D:") 'insert folder to find’ 

 For Each oFile In oFolder.Files 

 Cells(i + 1, 1) = oFile.Name 

 i = i + 1 

Next oFile ‘Returns filenames within an Excel document’ 

End Sub 

 

Code 3: Example of VBA code to extract and save behavioural data 
Sub behfilechangecode() 

Dim path1 As String 

Dim path2 As String 

Dim myrow As String 

myrow = ActiveCell.Row ‘extracts filename from excel doc template’ 

Dim filename As String 

path1 = "D:\Filename\" 

myfilename = ActiveCell.Value 

path1 = "D:\HCP\filename\MNINonLinear\Results\tfMRI_GAMBLING_RL\GAMBLING_run1_TAB.txt" 

Range("A1").Select 

Do Until ActiveCell.Value = "" 
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Workbooks.OpenText 

filename:="D:\HCP\myfilename\MNINonLinear\Results\tfMRI_GAMBLING_RL\GAMBLING_run1_TA

B.txt", _ 

DataType:=xlDelimited, Tab:=True 

ActiveWorkbook.SaveAs filename:="D:\filename \myfilename_1.xlsx" 

Workbooks.OpenText 

filename:="D:\HCP\myfilename\MNINonLinear\Results\tfMRI_GAMBLING_LR\GAMBLING_run2_TA

B.txt", _ 

DataType:=xlDelimited, Tab:=True 

ActiveWorkbook.SaveAs filename:="D:\filename\myfilename_2.xlsx" 

ActiveSheet.ActiveCell.Offset (1,0 ).select 

Loop 

End Sub 
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Appendix D: SPSS Descriptive statistics output.  

 

 

NEW FILE. 

DATASET NAME DataSet1 WINDOW=FRONT. 

DESCRIPTIVES VARIABLES=Switchafterrewards Switchafterpun 

  /STATISTICS=MEAN STDDEV MIN MAX. 

 

 

 

 

Descriptives 

 

 

 

Notes 

Output Created 14-APR-2020 11:33:27 

Comments  

Input Active Dataset DataSet1 

Filter <none> 

Weight <none> 

Split File <none> 

N of Rows in Working Data File 851 

Missing Value Handling Definition of Missing User defined missing values are 

treated as missing. 

Cases Used All non-missing data are used. 
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Syntax DESCRIPTIVES 

VARIABLES=Switchafterrewards 

Switchafterpun 

  /STATISTICS=MEAN STDDEV MIN 

MAX. 

Resources Processor Time 00:00:00.00 

Elapsed Time 00:00:00.00 

 

 

[DataSet1]  

 

 

 

Descriptive Statistics 

 N Minimum Maximum Mean Std. Deviation 

Switchafterrewards 851 0 25 11.76 4.895 

Switchafterpun 851 1 25 11.17 4.167 

Valid N (listwise) 851     

 

T-TEST PAIRS=Switchafterrewards WITH Switchafterpun (PAIRED) 

  /CRITERIA=CI(.9500) 

  /MISSING=ANALYSIS. 

 

 

 

 

T-Test 
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Notes 

Output Created 14-APR-2020 11:34:13 

Comments  

Input Active Dataset DataSet1 

Filter <none> 

Weight <none> 

Split File <none> 

N of Rows in Working Data File 851 

Missing Value Handling Definition of Missing User defined missing values are 

treated as missing. 

Cases Used Statistics for each analysis are based 

on the cases with no missing or out-of-

range data for any variable in the 

analysis. 

Syntax T-TEST PAIRS=Switchafterrewards 

WITH Switchafterpun (PAIRED) 

  /CRITERIA=CI(.9500) 

  /MISSING=ANALYSIS. 

Resources Processor Time 00:00:00.00 

Elapsed Time 00:00:00.00 

 

 

Paired Samples Statistics 

 Mean N Std. Deviation Std. Error Mean 

Pair 1 Switchafterrewards 11.76 851 4.895 .168 

Switchafterpun 11.17 851 4.167 .143 
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Paired Samples Correlations 

 N Correlation Sig. 

Pair 1 Switchafterrewards & Switchafterpun 851 .250 .000 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Paired Samples Test 

 

Paired Differences 

t df Sig. (2-tailed) Mean Std. Deviation Std. Error Mean 

95% Confidence Interval of the 

Difference 

Lower Upper 

Pair 1 Switchafterrewards - 

Switchafterpun 

.597 5.580 .191 .222 .972 3.121 850 .002 
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MEANS TABLES=rew pun BY gen 

  /CELLS=MEAN COUNT STDDEV. 

 

Means 

 

 

 

Notes 

Output Created 03-FEB-2021 18:45:07 

Comments  

Input Active Dataset DataSet1 

Filter <none> 

Weight <none> 

Split File <none> 

N of Rows in Working Data File 873 

Missing Value Handling Definition of Missing For each dependent variable in a table, 

user-defined missing values for the 

dependent and all grouping variables 

are treated as missing. 

Cases Used Cases used for each table have no 

missing values in any independent 

variable, and not all dependent 

variables have missing values. 

Syntax MEANS TABLES=rew pun BY gen 

  /CELLS=MEAN COUNT STDDEV. 

Resources Processor Time 00:00:00.02 

Elapsed Time 00:00:00.00 

 

 

Case Processing Summary 
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Cases 

Included Excluded Total 

N Percent N Percent N Percent 

rew  * gen 851 97.5% 22 2.5% 873 100.0% 

pun  * gen 851 97.5% 22 2.5% 873 100.0% 

 

 

Report 

gen rew pun 

female Mean 12.00 11.70 

N 461 461 

Std. Deviation 4.829 3.954 

Male Mean 11.48 10.54 

N 390 390 

Std. Deviation 4.962 4.327 

Total Mean 11.76 11.17 

N 851 851 

Std. Deviation 4.895 4.167 
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MEANS TABLES=rew pun BY age 

  /CELLS=MEAN COUNT STDDEV. 

 

Means 

 

 

 

Notes 

Output Created 03-FEB-2021 19:04:57 

Comments  

Input Active Dataset DataSet1 

Filter <none> 

Weight <none> 

Split File <none> 

N of Rows in Working Data File 873 

Missing Value Handling Definition of Missing For each dependent variable in a table, 

user-defined missing values for the 

dependent and all grouping variables 

are treated as missing. 

Cases Used Cases used for each table have no 

missing values in any independent 

variable, and not all dependent 

variables have missing values. 

Syntax MEANS TABLES=rew pun BY age 

  /CELLS=MEAN COUNT STDDEV. 

Resources Processor Time 00:00:00.02 

Elapsed Time 00:00:00.00 

 

 

Case Processing Summary 
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Cases 

Included Excluded Total 

N Percent N Percent N Percent 

rew  * age 851 97.5% 22 2.5% 873 100.0% 

pun  * age 851 97.5% 22 2.5% 873 100.0% 

 

 

Report 

age rew pun 

22-25 Mean 11.35 10.40 

N 187 187 

Std. Deviation 5.152 4.493 

26-30 Mean 11.57 11.07 

N 366 366 

Std. Deviation 4.943 4.160 

31-35 Mean 12.26 11.76 

N 290 290 

Std. Deviation 4.643 3.909 

36+ Mean 12.50 12.00 

N 8 8 

Std. Deviation 4.811 2.777 

Total Mean 11.76 11.17 

N 851 851 

Std. Deviation 4.895 4.167 

 

 


