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ABSTRACT 

This PhD project focuses on developing online monitoring approaches for suspension 

systems based on vibration analysis, aiming at guaranteeing the safe and efficient operations 

of vehicles including the railway and autonomous vehicles. 

Based on Operational Modal Analysis (OMA), which has been proven more effective in the 

field of structural health monitoring, a novel OMA algorithm, entitled the Correlation Signal 

Subset-based Stochastic Subspace Identification (CoSS-SSI), is proposed in this thesis to 

identify the inherent vibration modes of a car body and railway bogie frame to assess the 

health of the vehicle suspension system. The proposed novel OMA method is developed in 

the knowledge that the basic framework of SSI makes it applicable to nonlinear systems with 

nonstationary responses in the presence of high noise levels.  

For the CoSS-SSI method, the measured raw signals are divided into short segments; then 

the correlation function of each data segment is calculated, which performs the first noise 

reduction. After that, the obtained correlation function for the segments are divided into 

subsets according to their minimum amplitudes, and then each subset is averaged to further 

reduce the noise. Different correlation signal subsets can reduce nonlinear effects such as 

high damping, on OMA. Lastly, each subset of the averaged correlation signals is utilised to 

accurately identify the modal parameters based on SSI.  

A 3-DOF vibration system was developed in an initial simulation study developed to 

evaluate the performance of CoSS-SSI, which showed that CoSS-SSI was superior to other 

conventional OMA methods like Cov-SSI in extracting useful modal information on system 

behaviour. In addition, a quarter vertical vehicle model was constructed to investigate the 

effects of periodic pulses and harmonics on OMA. It was found that periodic pulses have no 

impacts on OMA, but harmonics can cause significant adverse effect. Then, cepstrum editing 

was introduced to eliminate the harmonic effect on OMA, and its performance was first 

verified by simulated data and later by experimental data obtained from full-scale rig tests.  

Experimental studies were carried out to verify the feasibility of applying the proposed 

method for the online monitoring of suspension systems. In the first set of experiments, 

accelerometers were installed at the four corners of a car body and it was shown that with 
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CoSS-SSI these comprised a robust and cost-efficient system for monitoring the suspension 

system. These results were confirmed by using CoSS-SSI to identify the modal parameters 

of a road vehicle suspension using the measured vibrations of a real car running normally on 

a traditional country road near Huddersfield, UK. These experiments confirmed that CoSS-

SSI had the capability to extract the inherent vibration modes of the vehicle suspension 

system. 

Importantly, a 1/5th scale roller rig and then an Y25 bogie were employed to verify the 

potential of CoSS-SSI for railway vehicle suspension monitoring. The outcomes from roller 

rig experiments showed that the novel CoSS-SSI proposed here is also feasible for the 

successful online monitoring of railway vehicle suspension systems. 
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CHAPTER 1 INTRODUCTION 

A vehicle’s suspension system is vital to its performance, and therefore it is important to 

have a condition monitoring (CM) mechanism to continually assess its condition.  

CM has become increasingly important to modern vehicles to ensure safe and efficient 

operation. In the past few years, online CM has drawn special attention as it can 

continuously evaluate the status of the monitored system, which is of particular significance 

with critical systems such as the suspension of a vehicle.  

This chapter begins by describing the background and motivation of this research. Then the 

research aim and objectives are presented. Finally, it briefly outlines the contents of this 

thesis. This chapter also serves to introduce this PhD project which intends to develop an 

online monitoring method for vehicle suspension systems based on identification of relevant 

parameters within the vehicle system dynamics through operational modal analysis (OMA). 
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1.1 Research background 

It is well known that the suspension system plays a vital role in ensuring the comfort and 

safety of those within and around a vehicle. The conventional vehicle suspension system is 

composed of springs and shock absorbers, which provides the connection between the 

wheels and the body of the vehicle for the purpose of reducing the vibration or shocks caused 

by road or track irregularities, maximising vehicle safety, driving performance and passenger 

comfort. The suspension system is essential for vehicle safety because it has the ability to 

resist the roll of the vehicle and allow the vehicle to follow the road/track. It is also critical 

for steering control which is related to the maneuverability of a vehicle. Because of the 

importance of the suspension system to a vehicle, it has attracted increased attention in recent 

years, especially with the rapid and significant increase of the speed of railway vehicles, and 

the rapid development of autonomous vehicle for transport by road.  

Condition Monitoring (CM) is a powerful and efficient approach to improve the reliability 

of the critical components in a machine, reduce maintenance costs and prevent accidents [1]. 

For instance, numerous techniques have been developed to monitor or diagnose the condition 

of gears and bearings which are the most common components in machinery [2]. Because 

the suspension system is an essential part of a vehicle, numerous CM techniques to monitor 

its status have been proposed and explored.  

Generally, available vehicle suspension system monitoring techniques can be classified into 

model-based and data-based methods [3]. However, these are rarely applied in an operating 

vehicle on account of their limitations. Specifically, the main limitation of model-based 

approaches is that a model of the monitored system of great accuracy is required, but a 

sufficiently accurate model is difficult or even impossible under some circumstances, and so 

the application of model-based methods is restricted. For data-based techniques, the major 

challenge is developing a database which includes baselines for all the many different fault 

cases and various degrees of those faults. Besides, computation cost is another big issue for 

data-based methods.  

CM techniques for railway vehicle suspension systems can be grouped differently according 

to the position of the sensors used: in-depot, wayside and on-board. As the name implies, 

the in-depot method is for use in the depot which, of course, will usually interrupt the 
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vehicle’s usage. The wayside method is to detect suspension system faults via transducers 

installed beside the track or on sleepers, so detection is possible only when the vehicle passes 

the sensor sites. The on-board method measures the vehicle’s responses to diagnose the 

condition of the vehicle suspension which is achieved by installing transducers at appropriate 

positions on the vehicle. Both in-depot and wayside methods are unsuitable for vehicle 

suspension online monitoring. In contrast, the on-board method has the potential to achieve 

online monitoring if the drawbacks of model-based and data-based methods can be 

overcome.  

Operational Modal Analysis (OMA) has become a hot topic in recent years because of its 

successful application to monitoring the status of civil engineering structures such as high-

rise buildings and long-span bridges [4]. Numerous OMA approaches have been developed 

and perfected by many researchers to meet different application scenarios. For instance, 

Frequency-Domain Decomposition (FDD) and Stochastic Subspace Identification (SSI) 

methods are the most popular frequency-domain and time-domain OMA approaches, 

respectively. As the application of OMA has been proved successful for structural health 

monitoring (SHM) in buildings, increased attention has been focused on utilising OMA in 

mechanical areas for structure optimisation, CM or fault diagnosis [5]–[7]. The results 

presented in the published papers, see Chapter 2, Literature Review, show that the 

application of OMA for CM of mechanical systems is a fruitful area for research, and has 

the potential to achieve online monitoring of vehicle suspension systems. 

1.2 Research motivation 

With the significant increase of achievable vehicle speeds with high-speed railways [8] and 

rapid development of self-driving techniques and autonomous vehicles, a CM technique 

which can achieve online monitoring of the vehicle’s suspension system is highly desirable 

to ensure enhanced vehicle safety. Based on a comparative literature review (see Chapter 2), 

it has been found that employing OMA to analyse vehicle dynamic systems has the 

possibility to achieve online monitoring of vehicle suspension systems.  

However, the Literature Review identifies the following gaps that have to be filled before 

using OMA for vehicle suspension system monitoring: 
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1) Most OMA methods have been developed under the assumption of a linear system 

with white noise excitation, which means the system response should be stationary. 

However, the excitation from road/track is not white noise. Therefore, the vehicle 

response will, almost certainly, be nonstationary.  

2) Most present OMA methods are unable to cope adequately with nonlinear systems. 

However, vehicle suspension systems are high nonlinear. 

3) Measurement noise is exceptionally high in field experiments.  

1.3 Research aim and objectives 

This PhD research aims to develop an effective and robust on-board measurement system 

and a novel OMA approach which allows online monitoring of the vehicle suspension 

system.  

To achieve this research aim, the main objectives are identified and prioritized as follows: 

Objective 1: To perform a comprehensive literature review of CM techniques which 

highlights their applications to vehicle suspension monitoring; 

Objective 2: To review existing OMA techniques and their applications to identify 

their advantages and disadvantages; 

Objective 3: To present a novel OMA method to enable the use of OMA in vehicle 

dynamic identification based on a framework of SSI; 

Objective 4: To review OMA in the presence of harmonics and evaluate the 

performance of cepstrum editing for removing harmonic effects;  

Objective 5: To assess the performance of the novel SSI method which was 

presented in this thesis for road vehicle suspension online monitoring; 

Objective 6: To evaluate the performance of the novel SSI method which was 

presented in this thesis for railway vehicle suspension online monitoring; 

1.4 Structure of thesis 

This thesis is organised into nine chapters to present the work done to achieve the research 

aim and objectives. The structure of this thesis is presented in Figure 1-1, and the contents 

of each chapter are briefly listed below: 

Chapter 1 – The first chapter presents the research background, motivation and aim.  
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Chapter 2 – This chapter presents a comprehensive literature review of CM and 

OMA, with emphasis on CM of the vehicle suspension system. The knowledge gaps 

blocking the use of OMA for analysis of the vehicle dynamics and suspension CM 

have been extracted from the review. 

Chapter 3 – The framework of SSI is presented in this chapter, which serves as the 

foundation of the novel OMA method proposed in the following chapter. 

Chapter 4 – A novel OMA method, denoted as Correlation Signal Subset based SSI 

(CoSS-SSI), is proposed as a means of extracting modal parameters of a nonlinear 

system with nonstationary responses. The performance of CoSS-SSI was evaluated 

by a 3-DOF vibration model and compared with conventional OMA approaches.  

Chapter 5 – This chapter begins with a brief overview of OMA in the presence of 

harmonics as this scenario will occur in the subsequent experimental study. Cepstrum 

editing (CE) was selected as the tool to remove the effects of harmonic excitations 

on the OMA. A quarter vehicle model was utilised to evaluate the performance of 

CE. In the meantime, the influence of periodic pulse excitations on OMA was 

investigated using the quarter vehicle model.  

Chapter 6 – This chapter begins the experimental verification of the capability of 

CoSS-SSI to identify the dynamic parameters of the vehicle suspension system for 

CM. Initially, a simplified suspension system was developed and employed in the 

experiment. Then, tests were conducted on a road vehicle on a traditional countryside 

road in the UK.  

Chapter 7 – This chapter presents and assesses the potential of utilising CoSS-SSI 

for railway vehicle suspension online monitoring via experiments on a 1/5th scale 

roller rig. 

Chapter 8 – This chapter further verifies the performance of the proposed novel 

method for railway vehicle suspension monitoring via an Y25 bogie tested on a full-

scale roller rig. Additionally, the performance of CE for removing harmonic effects 

on OMA was assessed in the same experiment.  

Chapter 9 – The conclusions, achievements of the research and suggestions for future 

work are presented in the last chapter. 
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Figure 1-1 Schematic structure of the thesis 
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CHAPTER 2 LITERATURE REVIEW 

As machines have become more complex and expensive, condition monitoring (CM) has 

attracted increasing interest. In particular, online CM systems are highly desirable for 

vehicle suspension systems, especially for railway vehicles which already travel at hundreds 

of km/hr, with the expectation of these speeds increasing significantly.  

This chapter begins by reviewing published material concerning CM techniques, after which 

the focus shifts to CM of vehicle suspension systems. The primary purpose is to identify gaps 

in existed methods that stop them being used for online monitoring of vehicle suspension 

systems. An overview of Operational Modal Analysis (OMA) follows to demonstrate the 

potential use OMA for vehicle suspension monitoring. Finally, the findings of knowledge 

gaps identified are presented.  
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2.1 Background of condition monitoring 

Condition Monitoring (CM) has attracted considerable attention in recent decades because 

of the rapid development of modern industry [9]. Modern industrial equipment is becoming 

larger, running at higher speed, of increasing complexity and increasingly expensive. It is 

inevitable that such sophisticated equipment, built at minimum cost, will experience a wide 

variety of faults and failures. However, any failure will lead to a decrease in machine 

performance and may result in economic losses, even catastrophic accidents [10]. CM allows 

for such costly faults and failures to be detected in their early stages and hence corresponding 

actions to be taken to prevent losses and accidents.  

CM is the procedure of measuring the continuous response data of a machine via proper 

sensors, and then analyzing and interpreting the collected data to diagnose its status; whether 

healthy or faulty [9], [11]. After which, the appropriate maintenance decision will be 

recommended, depending on the diagnostic analysis.  

The significance of CM for modern machinery is obvious, and the following advantages 

should be highlighted: first and foremost, CM can prevent catastrophic accidents; secondly, 

CM can decrease economic losses caused by unforeseen faults or failures; thirdly, timely 

maintenance is helpful in prolonging the machine’s operation life and achieving substantial 

economic benefits.  

Because of the significance of CM, there are a considerable number of techniques that have 

been developed for monitoring the health of machinery. In the following sub-section, the 

most common CM techniques will be reviewed, and vibration-based methods will be 

highlighted. 

2.1.1 Condition monitoring techniques 

The conceptual basis of CM can be traced back to the earliest development of machinery, 

and the methods for CM are continually evolving [9], [12]. Generally, CM techniques 

involve an arrangement of transducers, data acquisition and analysis systems, plus diagnostic 

methods for the objective of maintaining the equipment in a planned way [13]. 

Nowadays, a great many of CM techniques have been developed to fit a wide variety of 

application scenarios. It is well known that vibration analysis is the most commonly used 
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methods for CM [1], [2], [14], other popular techniques include airborne acoustic analysis, 

current signal analysis, and lubricant analysis. Airborne acoustic analysis was employed in 

[15], [16] to monitor the condition of diesel engines. In [2], [17], [18], acoustic emission 

technology was reviewed and explored for use with the CM of rotating machinery. Current 

signal analysis is widely used in the detection and localization of faults in induction motors 

[19], [20]. It has been proven that lubricant analysis [21] and infrared thermography [22] are 

also effective CM approaches. However, amongst these techniques, vibration analysis 

continues to be the dominant technology applied for CM [14] because of the merits of the 

vibration response, which is relatively easy to measure, non-destructive, and sensitive to a 

wide range of faults [10]. In consequence, vibration analysis has become a comprehensive 

and low-cost but robust method, which holds great promise for future development.  

The accelerometer is the most popular transducer for vibration measurement in practice 

because of its high reliability, broad frequency response, high dynamic range and 

insensitivity to temperature [13], [14]. In addition, the widespread application of 

accelerometers is supported by its decreased manufacturing cost resulting from the rapid 

development of electronics [14].  

Because of the extensive use of accelerometers, a large number of signal processing 

techniques have been developed to analyse vibration responses, which will be introduced 

briefly in the next subsection. 

2.1.2 Vibration signal processing techniques 

It is common knowledge that signal measurements invariably suffer interference from 

various noise sources, which results in the submersion of information useful for CM. 

Therefore, a high quality signal processing technique is critical to extract the diagnostic 

information from the data for reliable and accurate CM. To date, many valuable signal 

processing techniques have been used to explore and develop effective monitoring systems 

suitable for different applications. Generally, these techniques can be categorised into four: 

time domain, frequency domain, time-frequency domain and others such as blind source 

separation [13]. These will be introduced separately below. 
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2.1.2.1 Time-domain analysis 

The time-domain analysis directly analyses the time series of the collected signals. There are 

several popular time-domain analysis methods which are simple but powerful, such as 

correlation analysis and Time Synchronous Averaging (TSA).  

The most straightforward approach, however, is to calculate statistical parameters. 

Numerous statistical parameters are used as indicators of the status of the monitored machine. 

The frequently used statistical parameters can be divided into two groups: the first group is 

dimensional parameters, including minimum/maximum value, mean value, variance, 

standard deviation and root mean square, etc.; the second group is non-dimensional 

parameters such as shape, crest, impulse and peak factors, kurtosis, etc. [10].  

Correlation is another widely used time-domain method, including auto-correlation and 

cross-correlation. The auto-correlation function is frequently employed to reduce random 

noises and extract periodic features [23]. The cross-correlation function is the result of 

comparing the similarity between two signals [23]. It is worth highlighting that the cross-

correlation function will contain the periodic component if both signals contain the same 

regular component over a specific time, and such a feature is invariably meaningful for fault 

diagnosis.  

For random noise reduction, TSA is frequently employed in the CM of rotating equipment, 

especially machinery with random impulse loads [24], [25]. TSA re-samples the time 

domain signals to the angle domain, which can remove background noise, and other 

unrelated impulses in the responses.  

In addition, many adaptive filters have been designed to extract fault signals from loud 

background noise [26], [27]. The adaptive filter can be successfully applied under the 

assumption that the fault signal contains particular frequency components compared with 

the noise. 

2.1.2.2 Frequency-domain analysis 

Frequency-domain analysis is on the basis of the Fourier transform, which provides the 

possibility to observe the signal from a new aspect. Typical frequency-domain analysis 

methods include spectrum analysis, cepstrum analysis and envelope analysis. Of these three, 

spectrum analysis is the oldest and most common approach for CM [10]. The spectrum 
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presents the distribution of the signal in the frequency domain, and the fault features will 

become visible when the noise is filtered out.  

In recent decades, cepstrum analysis has become popular due to its capability of identifying 

complex periodic components. For instance, it is possible to discern on a cepstrum, a fault 

on a bearing or gear via the gearbox responses. However, multiple clusters of modulation 

sidebands on the spectrum can result in difficulties in fault location [28].  

Another popular frequency domain analysis method is envelope analysis, which is also 

called demodulation analysis. It can extract the low-frequency signals modulated by a high-

frequency carrier signal [29].  

2.1.2.3 Time-frequency domain analysis 

In reality, nonstationary responses are common because of the intrinsic dynamic 

characteristics of the machinery itself, or from external excitations [30]. Nonstationarity 

indicates that the statistical parameters and main frequency components of a signal are time-

varying. Various time-frequency analysis methods have been developed to suppress the 

challenge of nonstationary signal analysis for CM [30].  

The traditional time-frequency analysis techniques include Short-time Fourier Transform 

(STFT) and Wavelet Transform (WT). STFT reveals the time-varying features of a signal 

by slicing it into short segments with appropriate overlapping by a window function and then 

analysing each part via the Fourier transform [31]. The window length is a critical parameter 

because it is related to the resolutions of both time and frequency domains.  

WT employs not sinusoidal functions but wavelets to decompose a signal. Moreover, a scale 

variable is added to the time variable in the inner product transform. The scale variable 

makes the WT a powerful technique for time-frequency localization, and therefore it is 

suitable for transient signal analysis [30].  

The Wigner-Ville Distribution (WVD) is widely used for signal time-frequency analysis. 

Nonetheless, the WVD is not suitable for multi-component signals on account of cross 

interference. Unfortunately, most real signals are not a single component, and many 

improved WVD methods have had to be developed, for example, the adaptive optimal kernel 

method, Cohen class distribution and reassignment method, etc. [30]. Reference [30] is a 

decent review of time-frequency analysis methods which can be applied to machinery CM. 
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Apart from the referred signal processing method, some other effective and useful methods 

can be employed for CM, these include spectral kurtosis and bispectrum. However, these 

methods are high order spectrum analysis techniques which can provide better noise 

suppression ability at the cost of calculation efficiency.  

The techniques referred in this section are general approaches, for CM of vehicle 

suspensions, numerous methods have been developed, and they will be presented in the 

following section. 

2.2 Condition monitoring techniques for vehicle suspension systems 

The purpose of this PhD project is to develop an online CM method which is suitable for 

monitoring the suspension systems for both road and railway vehicles. Therefore, CM of 

suspension systems for both road and railway vehicles will be reviewed in this section.  

2.2.1 Road vehicle suspension monitoring 

Numerous methods have been investigated by various researchers for the effective 

monitoring of road vehicle suspensions. Generally, these methods can be categorised as 

model-based or data-based. More detail about the classification of these CM methods is 

given in Figure 2-1.  

 
Figure 2-1 General classification of condition monitoring methods 

2.2.1.1 Model-based methods 

An analytical model is required for model-based methods, the residual between the real 

system and the analytical model, can be used for fault diagnosis. Model-based fault detection 

is one of the most common techniques for CM of road vehicle suspension. For instance, a 
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model-based fault detection method using the so-called quarter-car model was presented in 

[32]. The results indicated that estimating the characteristic curve of shock absorber has the 

inherent capability of diagnosing suspension faults. In addition, the resonance frequency has 

the potential to detect loss of tyre pressure. Similarly, parameter estimation was employed 

in [33] to diagnose faults in an active suspension. The local linear model tree algorithm was 

applied in [33] to address the nonlinear dynamics in a real suspension system. The 

practicability of this method has been confirmed in an experimental study on a test rig [34]. 

Moreover, the same research team has claimed to have realised the monitoring of an active 

suspension system using the model-based method proposed by them [35]. 

In [36], intelligent neural networks using a gradient descent training algorithm were used for 

the identification of an active suspension system based on a half-car model with the aid of 

accelerometers placed on the car body. However, only half of the actuator faults were 

detected, and the defects of springs and dampers were not detected.  

In [37], a model-based fault detection and isolation method, using redundant analytical 

relationships, was employed to monitor the passive suspension system of a 4-wheeled 

vehicle using a bond graph model. The simulation study in [37] illustrated the possibility to 

identify and monitor faults in dampers and springs in a passive suspension system.  

Two model-based fault detection proposals for semi-active dampers were presented in [38]. 

The first one estimated damper parameters by the least-squares method, and the second 

predicted loss of force on the basis of an unknown input observer. The effectiveness of the 

proposed method was evaluated and compared via simulations using a quarter vehicle model. 

Comparative results showed that the parameter estimation method could produce a more 

reliable diagnosis. However, a Linear-Parameter-Varying (LPV) control was proposed in 

[39], and its ability to diagnose oil leakage from a magnetorheological damper was 

demonstrated by a simulation study. Recently, the LPV system was adopted in [40] to 

diagnose faults in an Electro-Rheological damper and its performance demonstrated through 

simulation and validation tests. The results showed that a damper fault could be estimated 

efficiently using the proposed scheme.  

Semi-active damper fault diagnosis was investigated experimentally in [41]. Two fault 

detection and isolation methods; one frequency-based and the other model-based, were 

proposed for the diagnosis of damper faults. Both methods required the quarter vehicle 
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model; it was found that the requirements of model accuracy for the frequency-based 

approach were lower but that the experimental results showed that the model-based approach 

was more robust, though computational cost was higher.  

A novel model-based method combing commonly available computational and intelligence 

techniques was recently proposed for the monitoring of active suspension systems [42] . And 

in [43], several filters in different finite-frequency domains were designed to solve the fault 

detect scheme of active suspension systems. The general process of model-based fault 

detection was presented in [44], and it was illustrated by applying to diagnose degradation 

of a vehicle suspension system.  

Based on the reviewed literature, it can be seen that the common challenge of model-based 

approaches is developing an accurate model for the diagnosed system.  

2.2.1.2 Data-based methods 

The second category of CM techniques is data-based methods, which does not need to 

develop an analytical model for the diagnosed system but does need a large quantity of data. 

A detailed classification of data-based methods is shown in Figure 2-1. As an example of 

statistical-based methods, the Bayesian statistical framework was adopted in [45] to identify 

potential unsafe suspensions, the effectiveness was evaluated by simulated data. In [46] the 

Gaussian-Monte Caro method was used to investigate the mechanism of crack propagation 

in an automobile suspension coil spring, and then to predict the likely life cycle of that coil 

spring.  

In [47], a method based on the continuous wavelet transform (CWT) was proposed to detect 

faults in the suspension of a road vehicle. This method was assessed by an ADAMS full 

vehicle model and laboratory experiments. It was demonstrated that the CWT-based 

approach has the capability to analyse frequency-time dependent signals for detection of 

faults in vehicle suspensions.  

In [48], the transmissibility of a suspension was monitored to detect a fault present in a 

magneto-rheological damper. However, the effectiveness of this method was only assessed 

by simulations. The same research team compared the effectiveness of a force sensor with 

accelerometer-based transmissibility measurements for fault detection of vehicle suspension 

systems, and demonstrated that the latter was superior to the former [49].  
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A similar study was presented in [50] based on transmissibility measurement. In this paper 

both linear and nonlinear dampers were considered, and the simulation results obtained 

indicated that the proposed method is a promising way to identify suspension damper faults. 

A pure data-driven fault diagnosis method for road vehicle suspension system was proposed 

in [51]. Four accelerometers at the four corners measured the responses of a car body and 

were used to diagnose the condition of the suspension system by using possibilistic C-means 

clustering (PCM) and Fisher discriminant analysis (FDA). The proposed method was 

assessed by benchmark simulation. The same approach was further evaluated via fuzzy 

positivistic C-means clustering in [52]. 

Recently, a SHM method denoted the Dual-Tree Complex Wavelet enhanced Convolutional 

Long Short-Term Memory (DTCWT-CLSTM) neural network, was proposed in [53] and 

applied to road vehicle suspension monitoring. The method was evaluated by an 

experimental study which showed it was effective in refining valuable information for fault 

detection from the measured vibration signals, and was particularly suitable for vehicle 

suspension faults. OMA was employed in [54] and [55] for automobile suspension 

monitoring. This will be discussed further in Section 2.3.  

Based on the reviewed literature, it can be seen that the main drawback of data-based 

methods for CM is the high computational cost and obtaining the appropriate baseline for 

the various faults.  

In short, Section 2.2.1 present an overview of researches related to fault detection of road 

vehicle suspensions, and the next section will review fault detection schemes proposed for 

railway vehicle suspension systems.  

2.2.2 Railway vehicle suspension monitoring 

Railways are one of the most crucial transportation systems for passengers and wares. In 

order to ensure safety, a large number of techniques have been developed to monitor the 

status of critical systems within the railway vehicles, especially for high-speed railways, 

including suspension systems. These techniques can be clustered into three categories 

according to the location of sensors: in-depot, wayside and on-board. A survey of associated 

researches is presented below. 
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2.2.2.1 In-depot methods 

Although the disadvantages of in-depot methods are well-known, especially having to 

withdraw the unit from service and send it to a maintenance depot, they are the most common 

techniques in practice on account of reliability and cost-efficiency. Usually, a maintenance 

depot will consist of a storage yard, a car cleaning area, an inspection and light maintenance 

shed, a large maintenance shop and a separate locomotive shop [56].  

One of the primary purposes of in-depot detection is to ensure the proper operation of safety 

suspension systems to prevent disastrous accidents such as derailing, which is directly 

related to the condition of wheels. Thus, the wheels of a railway vehicle are regularly 

inspected in-depot [57]. Common diagnostic methods used by workers is to touch the rail 

wheel’s surface or listen to the sound produced when a hammer strikes the wheel. However, 

the reliability of this method depends on the experience of the worker and it can take some 

considerable time. Thus, appropriate equipment is in high demand to inspect hundreds of 

wheels in a day in a depot. The most common equipment for wheel inspection includes 

ultrasonic, infrared and magnetic-based systems, and many thousands of investigations have 

been carried out which verify their capabilities.  

The ultrasonic inspection technique was explored in [58] for the detection of wheel sub-

surface cracks, and the research team designed a multi-probe holder with 14 shear waves to 

detect tangential-oriented defects and radial defects in different areas of the wheel disk. 

Similarly, ultrasonic waves were employed in [59]–[61] for adequate assessment of wheel-

rail contact anomalies and sub-surface cracks.  

The basis of an infrared camera to detect cracks is that the thermal conductivities of steel 

and air are different. In [62], infrared cameras were employed for crack detection by 

recording the expansion of the surface of a wheel as it was heated. Magnetic monitoring is a 

popular non-destructive test and has the potential to monitor the tread surface of wheelset 

[63].  

As mentioned earlier, in-depot detection is the most popular method for railway vehicle fault 

detection because of its reliability. This reliability can be improved further by combining 

established techniques with more modern methods. 
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2.2.2.2 Wayside methods 

To overcome the main drawback of in-depot methods and to improve railway vehicle 

monitoring and enhance vehicle safety and reliability, numerous wayside CM methods have 

been developed.  

The common wayside methods applied in the railway industry for CM have been 

summarised in [64]–[66], like stress-based and optical fibre-based approaches. Of the 

suspension systems, wheels have attracted most attention because wheel faults will damage 

the rails, sleepers and, in an extreme scenario, will result in derailment. A typical wheel fault 

is called out-of-round, such as slid flats, spalling and shelling [67]. The out-of-round wheel 

will result in impact loads on the rail, which will damage the track and increase the risk of 

derailment. Therefore, numerous schemes have been developed to monitor and detect out-

of-round wheels, these are mainly strain-based, accelerometer-based and mechanical profile 

monitors [65], [68]. Moreover, cameras and lasers are frequently employed to monitor the 

wheel profile [64]. 

In [66], the statics and dynamics of ballasted railway tracks were reviewed, and a sensor 

configuration scheme proposed for guidance when choosing wayside monitoring. More 

wayside monitoring methods for wheel fault detection can be found in [57].  

Wayside methods can monitor other critical components, such as axle bearings, sliding 

wheels and brake systems. It is clear that wayside methods provide a suitable means to 

monitor the condition of specific aspects of vehicles, but the elastic components of 

suspension systems cannot be monitored via wayside methods. Thus, wayside methods 

cannot meet the requirement of online monitoring which is necessary for high-speed railway 

vehicles. Therefore, numerous researches of on-board methods have been carried out to 

achieve online monitoring, and an overview of these methods will be presented in the next 

subsection.  

2.2.2.3 On-board methods 

As mentioned earlier, many studies into on-board methods for use with monitoring of the 

suspension system have been conducted, and these can be divided into model-based and 

data-based. 
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(a) Model-based methods 

As shown in Figure 2-1, the model-based methods for fault diagnosis can be categorised as 

observer/Kalman filter-based methods, parameter estimation based methods and parity 

equation-based methods. Specifically, for rail vehicle suspension monitoring, the first two 

categories are most common and have been studied widely. 

i) Observer/Kalman filter-based methods 

Kalman filter-based fault detection and isolation (FDI) methods are the most common 

model-based techniques for railway vehicle suspension monitoring [69]. The Kalman filter 

was proposed in 1960 by Kalman, to address the general problem of estimating the state of 

a system with a subset of measured state data [70]. A block diagram of the Kalman filter is 

presented in Figure 2-2. As can be seen from the figure, a mathematical model is used to 

predict the system state and the corresponding measurement. A gain matrix is constructed 

based on the statistical covariance of the system process noise and sensor measurement noise 

for the correction of model predictions. The Kalman filter can be employed to estimate 

parameters by extending the estimated state to include unknown parameters [70]. 

 
Figure 2-2 Block diagram for the Kalman filter [70] 

Since the Kalman filter was first proposed, hundreds of enhanced versions have been 

developed and applied for different purposes. A Kalman filter-based innovation method was 

proposed in [71] to detect the lateral suspension faults in railway vehicles and it was 

demonstrated that the proposed method had the potential for online detection because it was 

computationally efficient. An interacting multiple-model algorithm was presented in [72], 

[73] to detect lateral suspension faults by applying the Kalman filter to each sub-model. This 

method was verified through a simulation study and it was found that it could identify the 

failure of the lateral damper. Multiple model Kalman filters were used in [74] to detect and 

isolate faults in a secondary vertical damper, secondary lateral damper and the anti-yaw 

damper all operating at the same time. 
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A robust fault detection observer was designed based on generalised Kalman-Yakubovich-

Popov (GKYP) lemma to diagnose lateral damper failure [75]. The same research team 

adopted the Kalman filter to generate residuals for detecting a suspension system fault in a 

railway vehicle [76]–[78]. A distributed fault detection method was proposed by the same 

team in [79] for a light rail vehicle suspension system based on state estimation via the 

Kalman filter. However, all of the methods offered in [76]–[79] were verified by simulation 

not by experiment.  

An observer-based fault detection was proposed in [80] for light rail vehicle suspension 

systems considering their nonlinearity, and the nonlinear characteristics of dampers in rail 

vehicle suspension systems were captured by a hybrid extended Kalman filter for fault 

detection and isolation [81]. In [82], a method denoted as a total measurable fault 

information residual was used to detect faults in high-speed rail vehicle suspension systems. 

This paper included a comparison study with classical observer residual-based methods and 

demonstrated the superiority of the total measurable fault residual method.  

Recently, a cubature Kalman filter has been proposed as a solution for the CM of rail vehicle 

suspension systems [83]. The simulation results show that the cubature Kalman filter has the 

capability to identify secondary vertical damper faults accurately.  

ii) Parameter estimation based methods 

Parameter estimation means estimating the stiffness or damping values of railway vehicle 

suspension systems, and then the fault diagnosis can be performed by comparing the 

estimated values with the actual/theoretical values. As mentioned earlier, the Kalman filter 

can be used to estimate parameters, though there are many other methods suitable for 

parameter estimation, such as least-squares methods and subspace methods, etc.  

An extended Kalman filter-based approach was employed to estimate the wheelsets conicity, 

the anti-yaw damping and the lateral damping [84]. Similarly, two types of extended Kalman 

filter and two types of unscented Kalman filter were employed for parameter estimation of 

rail vehicle secondary suspensions which considered uncertainties due to the track [85].  

A Rao-Blackwellized particle filter-based method was presented in [86] for estimation of 

railway vehicle suspension parameters. The results indicated this is a promising method and 

it is worth noting the method was verified by real test data. An efficient recursive least 
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square-based method was proposed in [87] for CM of rail vehicle suspension systems, and 

this method was also verified by field test data.  

A sliding mode-based parameter identification algorithm was proposed in [88] for fault 

detection of railway vehicle suspension systems. This method can identify the constant as 

well as time-varying parameters in a finite time. However, the method was validated only 

by simulated data.  

An accurate model is desirable for the referred model-based approaches. However, 

developing an exact model is a big challenge in reality, and this restricts the application of 

model-based methods. Two decent overviews for model-based fault-detection of railway 

vehicle suspension systems can be found in [3], [69]. 

(b) Data-based methods 

As is well known, data-based approaches are widely used in CM, especially with the rapid 

development of computerised technology. Many of data-based methods are used for railway 

vehicle suspension monitoring. As shown in Figure 2-1, data-based methods can be 

classified into statistics-based, knowledge-based (neural networks) and signal-based.  

i) Statistics-based methods 

The approach presented in [89] is an excellent example of the statistics-based technique. The 

statistical parameters were treated in a multidimensional way to decrease their sensitivity to 

the track excitations. A further study by the same author is presented in [90] and shows that 

their statistics-based method is enable to detect different kinds of faults in railway vehicle 

suspension systems.  

Wei et al., have explored various statistics-based methods for railway vehicle suspension 

monitoring [91]–[96]. In particular, Principle Component Analysis (PCA) and Canonical 

Variate Analysis-based methods were investigated in [91], [94], while Dempster-Shafer (D-

S) evidence theory-based methods and Fisher Discriminant Analysis (FDA) were examined 

in [92], [93], [96]. From these investigations, the consensus was that PCA can identify early 

fault in suspensions, while the D-S evidence theory-based approach is more robust than the 

FDA based approach. Furthermore, the same research team compared data-based and model-

based methods in [95] and by simulation found that the D-S evidence-based approach 

outperformed the FDA model based approach.  
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ii) Knowledge-based methods 

Big data has become a hot topic in recent years, and many researchers are focusing on big 

data-based methods for railway vehicle suspension monitoring. In [97], a k-nearest fault 

classification method was proposed for rail vehicle suspensions based on collected mass data, 

and this method has been proven to be more reliable than using an artificial neural network.  

Later, a new deep neural network was proposed in [98] for high-speed train suspension faults. 

Compared with classical intelligent diagnostic methods, the superiority of the latest deep 

neural network has been demonstrated but only by simulation. This deep neural network was 

further studied in [99]. The results shown that the average diagnosis rate of deep neural 

network could reach 98.3% with the quickest speed of converging to a critical value. 

A similar fault diagnosis method for high-speed railway vehicles was presented in [100], 

which employed a long-short-term memory (LSTM) recurrent neural network as its basis. 

The effectiveness of this method was verified by fault data which was generated by a model 

developed in the multi-body simulation software SIMPACK. The results indicated that the 

LSTM recurrent neural network could extract the spatial and temporal correlation of fault 

features from collected signals with no need to preprocess the data or obtain the prior 

knowledge [100]. The accuracy of this method can be as high as 96.6%. 

The convolutional recurrent neural network (CRNN) was explored in [101] as a means of 

high-speed railway vehicle suspension monitoring. The CRNN not only gave higher 

accuracy than conventional methods such as the LSTM recurrent neural network referred 

earlier but also had higher computational efficiency [101]. 

Fault diagnosis for high-speed train suspension systems was proposed in [102], using a 

single-layer neural network voting method to fuse multiple channels of data for diagnosing 

fault. This method was shown to achieve high accuracy for fault datasets generated by a 

SIMPACK model. The same authors have proposed another novel fault diagnosis method 

using the residual-squeeze net (RSNet) [103]. The RSNet combines the advantages of one-

dimensional convolutional neural networks, residual structure and data fusion. Therefore, 

the RSNet method has high accuracy, up to 100%, and is robust under various running speeds 

[103].  

iii) Signal-based methods 
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Signal-based methods are the oldest techniques for CM, and still dominate in real 

applications. A typical application of the signal-based method for railway vehicle suspension 

monitoring is correlation signal analysis. In 2008, a technique denoted as the “model-less 

technique” was presented in [104] for the fault detection of railway vehicle suspensions 

using cross-correlation of two signals collected from each of two bogies. The model-less 

technique has shown sensitivity and ability to diagnose different fault conditions. As the 

name of the method indicates, the major superiority of this method is that there is no need to 

deal with modelling the complex dynamics and nonlinearities of suspension systems. The 

model-less technique as applied to CM of rail vehicle suspension systems was extended by 

the same author in [105].  

Recently, cross-correlation analysis was adopted by Li et al., to detect faults in heavy goods 

wagons, focused mainly on bogie bolster spring faults [106]. Only two tri-axial 

accelerometers were applied on the car body of each wagon to reduce cost while maintaining 

accuracy of fault diagnosis. However, the detectability of bolster spring faults obtained with 

this method was validated only through simulation studies. Further research on this topic by 

the same authors was reported in [107].  

Cross-correlation analysis was again used in [108] to detect primary damper faults in railway 

vehicle suspension systems. The cross-correlation coefficient was obtained as the diagnostic 

parameter and it is worth noting that the feasibility of this method was verified by field test 

data.  

Section 2.2.2 has reviewed the most common methods for fault detection and CM of railway 

vehicle suspension systems. The methods have been classified into different groups 

according to their algorithms.  

2.3 OMA for condition monitoring 

Operational Modal Analysis (OMA) methods have developed dramatically in recent decades 

and could be used for railway vehicle suspension monitoring. In particular, OMA is 

promising as a means to achieve online monitoring, which is highly desirable for railway 

vehicle suspension systems. Therefore, as part of this PhD project, a novel method based on 

OMA is explored for use for vehicle suspension online monitoring. First, the conventional 

OMA methods are reviewed in this section. 
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OMA, also called output-only modal analysis, is used for dynamic system modal parameter 

identification. In other word, OMA methods only need responses to extract the modal 

parameters when the system is under ambient excitation. OMA is considered superior to 

conventional modal analysis techniques: Experimental Modal Analysis (EMA). Compared 

with EMA, the main advantages of OMA are [109]: 

1) OMA is cheaper and more convenient than EMA since there is no need for artificial 

excitation; 

2) OMA can obtain the dynamic characteristics of the whole tested system rather than 

just a part; 

3) OMA can obtain a system’s dynamic features under real operational conditions but 

not experimental conditions; 

4) OMA is able to identify close modes; 

5) OMA has the capability for online CM.  

Because of these advantages, numerous OMA methods have been developed, and these are 

usually divided into frequency-domain and time-domain methods. The time-domain 

techniques can be further classified as two-stage and one-stage. The framework and 

processes of the most popular OMA methods are presented in Figure 2-3. The relevant 

studies and applications are reviewed below. 
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Figure 2-3 Framework and processes of popular OMA methods 

2.3.1 Frequency-domain methods 

For the frequency-domain methods, Peak-Picking (PP) is the simplest technique to estimate 

the modal parameters. PP is named after the key step of the method: picking the peaks from 

a spectrum plot as the identified eigenfrequencies [110]. The major issue with the PP method 

is the accuracy of the identified results, especially for a system with close modes.  

Frequency Domain Decomposition (FDD) has been proposed based on the PP method [111]. 

The FDD technique overcomes the disadvantages of PP by decomposing the spectral density 

matrix into a set of Single-Degree of Freedom (SDOF) systems via Singular Value 

Decomposition (SVD). The FDD was widely used, and many enhanced methods were 

proposed based on FDD, such as Enhanced FDD (EFDD) [112], and Frequency-spatial 

Domain Decomposition (FSDD) [113].  
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In 2001, the Least Squares Complex Exponential (LSCE) method, a frequency domain 

method, was presented to cope with high system orders and high modal overlap, and to make 

the selection of the model order and relevant physical system poles easier [114]. Moreover, 

a Poly-reference LSCE method was proposed later to provide considerably improved pole 

stabilization [115]. Poly-reference LSCE is widely used in commercial modal test systems: 

LMS Test.Lab [115].  

In 2004, an updated Poly-reference LSCF, called PolyMAX is employed by LMS system 

because this method has the capability to identify the closely space modes and high damping 

modes compared with other conventional approaches [115]. Such capability is on the basis 

of the clear Stabilization Diagram (SD) which contains frequency, damping and participation 

information. The SD identified by PolyMAX is clearer than the ones identified by other 

approaches. In order to increase the noise suppression ability, a PolyMAX Plus method was 

proposed by the same research team in 2012 [181]. The main development of PolyMAX 

Plus method is adding some maximum likelihood estimation features to proper handle the 

effects of uncertainty and estimate the confidence bounce, which can improve the 

identification results in case of very noisy data [181].  

2.3.2 Time-domain methods 

As shown in Figure 2-3, time-domain methods can be divided into two groups: two-stage 

and one-stage methods. The first stage for the two-stage methods is usually to obtain the 

correlation, pulse response or free-response functions, and then the obtained functions are 

used to extract modal information in the second stage.  

A good example of the two-stage approach is the Ibrahim Time Domain (ITD) method. The 

ITD method was first proposed in 1977 based on the Random Decrement Technique (RDT) 

for modal identification of structures [116], where RDT was employed in the first stage to 

obtain a free-response signal for the system under random excitation.  

In 1985, Juang et al. proposed the Eigensystem Realization Algorithm (ERA) [117], [118] 

which also uses the free-response signal as obtained in the first stage. In 1995, the Natural 

Excitation Technique (NExT) was presented as a means of modal testing the permitted 

structures to be investigated in their actual environments. NExT, as ERA, also uses pulse 

response function obtained in the first stage [119]. The Covariance-Driven SSI (Cov-SSI) 
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was proposed in 1999 [120]. This is a robust OMA method employing the correlation 

function of system response as input. 

For the one-stage methods, Data-Driven SSI (DD-SSI) [120] and Autoregressive Moving 

Average (ARMA) [121] methods are the two most popular approaches, using the collected 

raw data for modal identification.  

2.3.3 Other methods 

Besides the classical time-domain and frequency-domain OMA methods reviewed, there 

have been many related techniques developed in recent years. For instance, a Bayesian 

approach was proposed, and appears to be becoming popular, for OMA [122], [123]. The 

uncertainty of system identification is addressed by the Bayesian approach, as the Bayesian 

approach take modal identification as an inference problem where probability is used as a 

measure for the relative plausibility of outcomes given both a model of the system and 

measured data [122].  

In addition, transmissibility measurements for OMA are drawing increasing attention 

because of its ability to successfully extract modal parameters in the presence of harmonics 

[124]–[128]. While the poles of transmissibility measurements did not match with the poles 

of the measuring system, it was shown that modal parameters could be extracted by 

measuring the system’s transmissibility when the system was under subject to different 

excitations [124].  

Recently, an output-only damage identification method was presented in [129], [130], which 

was also developed on the fundamentals of OMA theory. This method combined with PCA 

theory can be a baseline-free approach. Its performance has been proved by numerical and 

experimental studies to detect and locate a damage site. 

Several reviews of approaches for OMA can be found in [4], [110], [131], [132].  

2.3.4 OMA applications 

As mentioned earlier, OMA has been widely used for CM in different areas and has been 

used to estimate the health status of historic buildings [133]–[135]. OMA is popular in the 

field of civil engineering for monitoring the health of structures, because it is hard to 

artificially excite buildings, whereas state-of-the-art OMA can accurately extract modal 
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parameters. For example, SSI was employed in [120] for SHM of a steel mast excited by 

wind and a bridge subject to normal traffic usage. The condition of an in-service three-span 

highway bridge was successfully assessed by SSI combined with a wireless sensor networks 

[136]. Also the dynamic behaviour of the Tamar Suspension Bridge have been investigated 

by SSI which took into account operational and environmental influences [137]. Generally, 

a real-time monitoring system is required for the monitoring of important buildings or 

bridges, with many of the monitoring systems based on OMA [138].  

Secondly, OMA is widely used with wind turbines as a powerful means of CM [139]–[143]. 

In fact, the NExT was initially developed to identify the modal parameters of a parked wind 

turbine [119]. Moreover, there are many improved OMA algorithms to make them suitable 

for wind turbines operating under real conditions, these include the automated OMA 

methods presented in [141].  

Last but not least, OMA is a powerful technique for the CM of mechanical systems, and 

numerous methods have been investigated [6], [117], [144]–[147]. For example, the Poly-

reference LSCE and SSI were employed to identify the modal characterisation of the rear 

suspension of a family car during road tests as early as 1999 [144]. Recently, an improved 

SSI method was successfully applied to identify the dynamic characteristics of a car 

suspension system with the aim of using it for CM [54].  

Besides, some researches compared the performance between different OMA approaches by 

implementing to identify the same structure using the same response. In [182], SSI, 

PolyMAX, ERA and FDD were employed to monitor a confederation bridge using the same 

datasets. The identification results from these four methods were compared with the modes 

calculated by the finite element model of the bridge. The identified results show a good 

correlation with the modal properties calculated by finite element model. Among the four 

methods, SSI is more consistent in the estimation of frequency, damping and mode shape. 

Furthermore, it is worth to highlight that SSI outperforms PolyMAX method in mode shape 

estimation. However, it is noticeable that all four method exhibit higher variance in damping 

estimation especially for ERA and FDD. Another comparative study can be found in [183] 

which presents similar conclusions.  

It can be seen from this short review, OMA is a powerful and robust approach for SHM or 

CM of a system under ambient excitation or operating scenario. Note that SSI is an 
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outstanding algorithm on account of its robustness and accuracy, especially for vehicle 

suspension system monitoring which is mainly diagnosed according to the change of mode 

shape. 

2.4 Findings 

This chapter has presented an overview of literature related to this PhD project. Based on 

the review, the following conclusions can be drawn: 

1) CM is meaningful and significant for critical subsystems or components in a 

mechanical system; 

2) Vibration-based CM methods are achievable, reliable and cost-efficient; 

3) The vehicle suspension system has drawn considerable attention because it is critical 

to the safety and comfort of a vehicle, especially autonomous and high-speed railway 

vehicles; 

4) An online CM is desirable for vehicle suspension systems, and the demand is 

growing with the rapidly increasing speed of railway vehicles and dramatically 

development of self-driving techniques;  

5) OMA is a promising technique to achieve online CM; 

6) SSI is one of the most robust OMA methods and has the potential to attain the goal 

of online monitoring of vehicle suspension systems. 

Based on these findings, this thesis will try to develop an onboard, vibration-based vehicle 

suspension online CM technique based on SSI.  
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CHAPTER 3 FRAMEWORKS OF STOCHASTIC 

SUBSPACE IDENTIFICATION 

A number of OMA approaches have been developed in recent years, and from the literature 

review presented in Chapter 2, it follows that Stochastic Subspace Identification (SSI) is one 

of the most robust output-only modal identification methods. 

This chapter gives an overview of the theoretical basis of SSI, with the main focus on 

Covariance-driven SSI (Cov-SSI). In particular, this chapter describes the theoretical 

background of the state space model, SSI implementation, modal extraction and possible 

limitations.  

This chapter lays the foundation for improving SSI performance for the online monitoring 

of vehicle suspension systems which will be demonstrated in the next chapter. 
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3.1 Introduction 

The literature review, Chapter 2, has shown that OMA is a practical approach to CM. It is 

worth mentioning that all basic OMA techniques are established on the fundamental 

assumptions that the identified system is linear, stationary and observable. Generally, a linear 

system implies that the response of the system under a specific combination of inputs is 

equal will always give the same combination of corresponding outputs; the stationarity of a 

system means its dynamic performances does not change over time, and the observability 

requires all interested dynamic characteristics can be measured by a proper sensor layout 

[148], [149]. 

The excitation is always assumed to be a stationary zero-mean Gaussian white noise. This is 

a fundamental premise in the field of OMA, and suggests the input is broadband excitation, 

and therefore all modes of the system can be equally excited [148]. 

Based on these assumptions, a number of OMA methods have been developed which were 

reviewed in Section 2.3. Among these referred to, SSI is an excellent OMA method, because 

of its strong mathematical basis. The first milestone in the development of the SSI method 

was in 1996 with the publication of Subspace Identification for Linear Systems: Theory – 

Implementation – Application by Van Overschee and Moore [150]. The second milestone in 

the development of SSI was in 1999 when reference-based SSI was proposed by Peeters and 

De Roeck [120]. After that, SSI was widely applied in a number of different areas, and many 

improved SSI methods were proposed for various applications.  

It has been demonstrated in [54], [55], [144], [146] that SSI is a promising approach for 

vehicle suspension real-time CM, and this chapter will present a framework for SSI which 

acts as a basis for its development and application in the following chapters.  

3.2 Vibration system dynamic models 

A dynamic system can be expressed in different formats for different purposes. The typical 

dynamic models of vibration systems include the Frequency Response Function, Impulse 

Response Function, state-space model, Auto-Regressive Moving Average Vector model 

(ARMAV) and fraction polynomial models. This chapter introduces a framework for SSI, 
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which is based on the state-space model, and therefore only the state-space model will be 

explained here. Details of other dynamic models can be found in [149]. 

3.2.1 State-space model 

The dynamic behaviour of a linear vibration system can be represented by a set of differential 

equations. Generally, the differential equations describe the motions of masses which are 

connected by springs and dampers within the system. For a vibration system with �� Degree 

of Freedom (�� -DOF) and �  inputs, the dynamic behaviour can be described by the 

following linear, second-order differential equation in matrix form [118], [120], [149]: 

 ��̈(�) + ���̇(�) + ��(�) = �(�) = ���(�)  (3-1) 

Where � , ��  and � ∈ ℝ��×��  denote the mass, damping, and stiffness matrices, 

respectively; �̈(�), �̇(�), and �(�)  ∈ ℝ��×� are the acceleration, velocity, and displacement 

vectors at a continuous-time �, respectively; �(�) ∈ ℝ��×� is the excitation force. It can be 

seen that the excitation force vector �(�) can be factorised into two matrices, where �� ∈

ℝ��×�  describes the location of excitation, and �(�) ∈ ℝ�×�  represents the � inputs in 

time.  

The purpose of developing a state-space model is to convert the second-order problem into 

two first-order problems. The conversion process is as follows: 

Firstly, the state vector can be defined as: 

 �(�) = �
�(�)

�̇(�)
�   (3-2) 

Secondly, two new matrices are introduced and defined as: 

 � = �
�� �
� �

�, � = �
� �
� −�

�   (3-3) 

And the inverse matrix of � is: 

 ��� = �
� ���

��� −���������  

Based on Equations (3-2) and (3-3), the second-order differential equation, Equation (3-1) 

can be converted into the first-order format:  
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 ��̇(�) + ��(�) = �
��

�
� �(�) (3-4) 

Then, the continuous state-space equation can be obtained by pre-multiplication by ��� of 

Equation (3-4): 

 �̇(�) = ���(�) + ���(�)  (3-5) 

Where:  

 �� = −���� = �
� �

−���� −�����
�  (3-6) 

 �� = ��� �
��

�
� = �

�
�����

�  (3-7) 

�� ∈ ℝ�×� is the state matrix (� = 2��) and �� ∈ ℝ�×� is the input matrix.  

In practice, however, it is impossible to measure all the different motions of a dynamic 

system. If � sensors (accelerometers, velocity or displacement transducers) were employed 

to measure the dynamic response at different locations, the observation equation could be 

written as [118]:  

 �(�) = ���̈(�) + ���̇(�) + ���(�) (3-8) 

Where �(�) ∈ ℝ�×�  are outputs; �� , ��  and �� ∈ ℝ�×��  are the output matrices for 

acceleration, velocity and displacement, respectively, with the following definitions: 

 �� = [�� − ������ �� − �������]  (3-9) 

 �� = �������   (3-10) 

The observation Equation (3-8) can be transformed into: 

 �(�) = ���(�) + ���(�)   (3-11) 

Where �� ∈ ℝ�×� is the output influence matrix and �� ∈ ℝ�×� is the direct transmission 

matrix.  

Equations (3-5) and (3-11) constitute a continuous-time state-space model. However, the 

measured signal is invariably sampled at discrete time instants, and therefore the continuous-



 Chapter 3 Frameworks of SSI 

33 
 

time state-space model must be converted into a discrete-time format for convenience of 

application.  

The continuous-time state-space model can be discretized according to the sampling rate 

(��) during a test, by evaluating the continuous-time equation at all discrete-time instants, 

� = �∆�, (� ∈ ℕ, ∆� = 1 ��⁄ ) . Under the Zero Order Hold (ZOH) assumption, the discrete 

state-space model can be written as [149]: 

 ���� = ��� + ���  (3-12) 

 �� = ��� + ���  (3-13) 

Where �� = ��(�∆�) is the state vector in discrete-time; the subscript � is the time index of 

discrete signal; � is the discrete state matrix; � is the discrete input matrix; � is the discrete 

output matrix and � is the direct transmission matrix. In addition, the ZOH assumption 

indicates the input is piecewise constant over the sampling period [148], [151]. 

The relations between discrete-time matrices and the corresponding continuous-time 

matrices can be expressed as follows [149]: 

 � = ���∆�   (3-14) 

 � = (� − �)��
����  (3-15) 

 � = ��    (3-16) 

 � = ��   (3-17) 

Where � is a unit matrix in size of � × �. The details of discretization are outside the scope 

of this study, but can be found in the literature, such as [118]. 

3.2.2 Stochastic state-space model 

As only deterministic inputs are considered, it follows that the state-space model represented 

by Equations (3-12) and (3-13) is deterministic. However, stochastic components (noise) are 

inevitable in a field test. In particular, the stochastic components include process noise and 

model inaccuracies, and measurement noise that is the result of sensor inaccuracies. A 

combined deterministic-stochastic state-space model can be developed when stochastic 

components are considered, as follows [149]: 
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 ���� = ��� + ��� + ��  (3-18) 

 �� = ��� + ��� + ��  (3-19) 

Where �� ∈ ℝ�×� is the process noise; �� ∈ ℝ�×� is the measurement noise. These noises 

are both unmeasurable, and therefore are usually assumed to be zero-mean Gaussian white 

noise [149]:  

 �[��] = 0, �[��] = 0  (3-20) 

with covariance matrices [120], [149]: 

 � ��
��

��
� ���

� ��
�� � = �

� �

�� �
� ���  (3-21) 

Where � is the expected value of the operator; ��� is the Kronecker delta (if � = �, ��� =

1 , otherwise ��� = 0 ), �  and �  represent two arbitrary time instants. Moreover, the 

framework of OMA concerning the input ��  is unmeasurable. Hence the input ��  is 

implicitly modelled in the noise terms �� and �� [148]. As a consequence, a discrete-time 

stochastic state-space model is obtained: 

 ���� = ��� + ��   (3-22) 

 �� = ��� + �� (3-23) 

It is worth mentioning that the white noise zero-mean assumption concerning �� and �� is 

significant for the OMA method. If the assumption of white noise input is violated, extra 

poles (false modes) may appear in the state matrix, �, and the spurious modes cannot be 

distinguished from true ones. Besides the input white noise assumption, the stochastic state-

space model is also characterized by other properties [148]. Firstly, the stochastic process 

has to be stationary with zero mean: 

 �[����
�] = �, �[��] = �  (3-24) 

Where � is the state covariance matrix. Equation (3-24) indicates � is independent of time 

� . Moreover, as the stochastic noises ��  and ��  are independent of the state �� , the 

following equations can be obtained: 

 �[����
�] = �, �[����

�] = � (3-25) 
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Based on the referred properties of the stochastic state-space model, the covariance matrix 

of the state vector �� can be calculated as follows: 

 

� =  �[��������
� ]

    = �[(��� + ��)(��� + ��)�]

    = ��[����
�]�� + ��[����

�]

    
    +�[����

�]�� + �[����
�]

= ���� + � 

 (3-26) 

�, the covariance matrix of the state vector �� and output ��, can be calculated as: 

 

� = �[������
�]

    = �[(��� + ��)(��� + ��)�]

    = ��[����
�]�� + ��[����

�]

 
       +�[����

�]�� + �[����
�]

   = ���� + �            (� ∈ ℝ�×�)

 (3-27) 

The covariance matrix of the output vector ��, ��, can be calculated as: 

 

�� =  �[����
�]

      = �[(��� + ��)(��� + ��)�]

      = ��[����
�]�� + ��[����

�]

          +�[����
�]�� + �[����

�]

      = ���� + �

 (3-28) 

Moreover, the state ���� can be obtained by iterative computing of Equation (3-22): 

 

���� = ��� + ��

���� = ����� + ����

          = �(��� + ��) + ����

          = ���� + ��� + ����

           ⋮
���� = ���� + ������ + ��������

              + ⋯ + ������� + ������

 (3-29) 

Where the subscript � is the time lag.  

Then, the covariance matrix of ���� and ��, ��, can be calculated based on Equation (3-29): 
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�� =  �[������
�]

     = �[(����� + ����)(��� + ��)�]

     = �{[������ + ������ + ��������

             
+ ⋯ + ������� + ������) + ����]

(��� + ��)�}
 
     = ����[����

�]�� + ������[����
�]

     = ������ + ������
     = �����(���� + �)

     = ������                         (�� ∈ ℝ�×�)

 (3-30) 

The properties represented by Equations (3-26), (3-27), (3-28) and (3-30) imply that the 

measured data can estimate the output covariance sequence of a stochastic system. In other 

words, the state-space matrix of the tested system can be obtained by decomposing the 

estimated output covariance sequence, ��, according to Equations (3-26), (3-27), (3-28) and 

(3-30), and then the modal parameters of interest can be extracted from the state-space matrix.  

3.3 Stochastic Subspace Identification (SSI) 

This section introduces a basic SSI method for modal parameter identification. 

Numerous OMA schemes have been developed on the basis of state-space theory which was 

introduced in Section 3.2, such as the ARMA and SSI. Two basic SSI methods were 

proposed: Covariance-driven SSI (Cov-SSI) and Data-Driven SSI (DD-SSI) [114], [142], 

and [145]. However, the DD-SSI is more time-consuming than Cov-SSI since DD-SSI has 

to perform QR decomposition [120], [148], [149]. The purpose of this PhD project is to 

develop an online monitoring system, so computational efficiency is a significant issue, and 

Cov-SSI is selected as the framework of the following study. Therefore, this section will 

introduce the Cov-SSI procedure in detail. The introduction will begin with some notations 

used for SSI. 

3.3.1 Notations of Stochastic Subspace Identification 

In a real field test, the tested structure could be enormous, and therefore, a vast number of 

sensors would be needed to obtain all full mode shapes. However, increasing the number of 

sensors means increasing the cost of a test. Therefore, the reference outputs of the SSI as 

recommended in [114] and [145] are employed to cope with such a challenge. Notably, the 

outputs of a large structure will be determined by dividing the scheduled measuring points 
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into several groups with overlapping sensors, where the overlapping sensors are the 

reference outputs. Moreover, the candidates for reference outputs are the sensors mounted 

at locations which contain all the modes in the measured data [120]. That is to say, the 

reference outputs should not be located at structural nodes. Another advantage of using 

reference outputs is retaining phase information when averaging to reduce the noise. 

If there are �  sensors arranged to measure the response and �  of them were selected as 

reference outputs, the response can be written as [120]: 

 �� = �
��

���

��
∽���

� , ��
���

= ���, � = [�� �] (3-31) 

Where ��
���

∈ ℝ�×� are the reference outputs; ��
∽���

∈ ℝ(���)×� are the other outputs; the 

subscript �  is the index of discrete sampling time; � ∈ ℝ�×�  is the matrix of selected 

reference outputs; �� is a unit matrix in size of � × �. Then, the covariance matrices between 

all outputs vector ���� and the reference outputs ��
���

 can be calculated as [120]: 

 ��
���

= � �������
����

� = �� �
� ∈ ℝ�×� (3-32) 

As can be seen, Equation (3-32) is similar to (3-30). The covariance matrices between state 

vectors ���� and reference outputs ��
���

 can be obtained as Equation (3-33), which is similar 

to (3-27): 

 ���� = � �������
����

� = � �� ∈ ℝ�×� (3-33) 

The import property expressed in Equation (3-30) can also be written as: 

 ��
���

= � �������
����

� = ��������� (3-34) 

A block Hankel matrix, with 2� rows and � columns and constant along its anti-diagonal, can 

be constructed using the measured outputs �. Where � is also the time lag. In particular, the 

first �  blocks have � rows, the last �  blocks have �  rows, and �  is assumed to be infinite 

(� → ∞) for the statistical proof of the method. In addition, the Hankel matrix � ∈ ℝ(���)�×� 

can be partitioned into two sub-matrices: “past” reference matrix ��
���

 and “future” matrix 

��:  
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 � = �
��|���

���

��|����
� = �

��
���

��
�

↕ ��
↕ ��

"����"

"������"
∈ ℝ(���)�×�  (3-36) 

In reality, the data length (��) of the sampled signal is not infinite, so we have to ensure 

 2� + � − 2 < �� when we select the time lag � and �. Usually, we set � =  �� − 2 ∗ � − 1. 

The outputs are scaled by 1 ��⁄  to maintain their compatibility with the definition of the 

correlation function as given in the following calculation. The extended observability matrix 

is defined as: 

 �� =

⎝

⎜
⎛

�
��
���

⋮
�����⎠

⎟
⎞

∈ ℝ��×� (3-37) 

The matrix pair {�, �} is assumed to be observable, that is to say, all the dynamic modes of 

a system can be observed from the measured data [120]. Additionally, the reference reversed 

extended stochastic controllability matrix is defined as:  

 ��
���

= (�������� ��������
⋯ ����� ����) (3-38) 

Where ��
���

∈ ℝ�×��, and the matrix pair {�, ���� } is assumed to be controllable, which 

implies that all the dynamic modes of the system can be excited by the stochastic input.  

In short, this subsection introduced the frequently used notations in the SSI algorithms, more 

details of these notations can be found in [120], [148] and [149]. In the following section 

details of Cov-SSI will be outlined. 

3.3.2 Covariance-Driven Stochastic Subspace Identification (Cov-SSI) 

Essentially, the Cov-SSI method solves the stochastic realisation problem, which is 

concerned with identifying a stochastic state-space model using output data only. This 
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method derives from classical system realisation theory which knows input and output, and 

the minimal realisation theory as developed by Ho and Kalman [118], [148], [149]. 

According to its character, Cov-SSI can be classified as a time-domain, parametric, 

covariance-driven OMA method. The first step is to calculate the covariance matrices using 

Equation (3-34). Then, these covariance matrices can be gathered into a block Toeplitz 

matrix which is constant along its diagonal [120]: 

 ��|�
���

=

⎝

⎜
⎛
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���

����
���

⋯ ��
���

����
���
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�����
���

⋮

�����
���

⋱
⋯

⋮
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���

⎠

⎟
⎞

∈ ℝ��×�� (3-39) 

It can be seen from Equations (3-35) and (3-36) that the block Toeplitz matrix ��|�
���

 is equal 

to [120]: 

 ��|�
���

= ����
����

 (3-40) 

Based on Equations (3-34), (3-37) and (3-38), the Toeplitz matrix ��|�
���

 can be decomposed 

as [120]: 

 
��|�

���
=

⎝

⎜
⎛

�
��
���

⋮
�����⎠

⎟
⎞

(�������� ⋯ ����� ����)

          
    

= ����
���

 (3-41) 

The observability matrix �� and controllability matrix ��
���

can be obtained by conducting 

Singular Value Decomposition (SVD) of the block Toeplitz matrix ��|�
���

 [120]: 

 

��|�
���

= ���� = (�� ��) �
�� �
� �

� �
��

�

��
��

          = ������
� = �����

�

�� ���
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���
�� = ����

���

 (3-42) 

Where � ∈ ℝ��×�� and � ∈ ℝ��×�� are orthonormal matrices, which means ��� =  ��� =

� ∈ ℝ��×��  and ��� =  ��� = � ∈ ℝ��×�� ; � ∈ ℝ��×��  is a diagonal matrix which contains 
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the singular values in descending order. Because ��|�
���

∈ ℝ��×�� and its inner dimension is �, 

it means the number of block � has to fulfil the condition that: 

 �� ≥ �  

Moreover, it is apparent from the last equality of Equation (3-42) that: 

 
   �� = ����

�

�

��
���

= ��

�

���
�

 (3-43) 

Where the zero singular values in �� are omitted, and the corresponding vectors are also 

eliminated.  

With the observability matrix �� and controllability matrix ��
���

, the state matrix � can be 

directly identified from a shifted block Toeplitz matrix ��|���
���

: 
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Where (∎)� represents the pseudo-inverse of a matrix.  

Moreover, it can be seen from Equations (3-37) and (3-38) that the first �  rows of the 

observability matrix �� is the output matrix �.  

At this point, the problem of the stochastic state-space model identification is theoretically 

solved. Nonetheless, the Cov-SSI has two shortcomings in real applications, which are 

significant. First, in the real world, the data length is not infinite (� ≠ ∞), and therefore the 

covariance values computed by Equation (3-40) are only estimates [120]. Secondly, the 

system order � is difficult to determine. In theory, it can be determined by inspecting the 

number of non-zero singular values of the Toeplitz matrix ��|�
���

 calculated by SVD in 

Equation (3-42). However, the higher singular values are not exactly zero on account of 
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measurement and computational noises [120]. As a consequence, the model order is usually 

over-specified. 

Eliminating the spurious numerical poles by constructing a Stabilisation Diagram (SD) will 

be introduced in detail in Section 3.3.4.  

3.3.3 Modal parameter extraction 

From Section 3.3.2 a stochastic state-space model has been identified which uses output data 

only, and which belongs to the area of system identification. Modal analysis is also 

considered as a particular type of system identification which describes the behaviour of a 

system by means of vibration modes, rather than in terms of mathematical parameters. The 

parameters used to describe a vibration mode include a resonant frequency, a damping ratio 

and a mode shape [120].  

A system’s modal parameters can be extracted analytically from the state matrix �: 

 � = ����� (3-46) 

Where � = ����{��} is a diagonal matrix containing the discrete-time complex eigenvalues, 

� is a matrix containing the corresponding discrete-time eigenvectors as columns. � and � 

can be obtained by performing an eigenvalue decomposition on the state matrix �. On the 

basis of the relations expressed in Equations (3-12) and (3-13), the following equation can 

be obtained [118]: 

 � = ���(��Δ�) (3-47) 

Therefore, the continuous-time eigenvalues, ���, and corresponding eigenvectors, ��, can 

be expressed as: 

 
��� =

��(��)

��

�� = �
  (3-48) 

Where the �� is the eigenvalues of discrete state matrix �. The continuous-time eigenvalues, 

���, occur in complex conjugate pairs and can be written as: 

 ���, ���
∗ = �� ± ���, (� = √−1)  (3-49) 
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Where �� and �� are the real and imaginary parts, respectively. At this point, the system’s 

resonant frequencies and damping ratios can be calculated using the following equations 

[120]: 

 �� =
���

����
�

��

 (3-50) 

 �� =
���

���
����

� (3-51) 

In addition, the mode shapes can be calculated as: 

 � = ��  (3-52) 

Where �  is the discrete output matrix. Thus the modal parameters, including natural 

frequencies, damping ratios and mode shapes, of a system have been identified.  

In order to clarify the Cov-SSI process it is summarized in a flow chart, as shown in Figure 

3-1. 

 
Figure 3-1 Flowchart of Cov-SSI 
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3.3.4 Stabilisation Diagram (SD) 

The stabilization diagram (SD) is a powerful tool and frequently employed to filter out 

spurious modes which can be either due to noise or the mathematical processes used. A SD 

presents the poles of a system at different model orders [151], that is to say, the Hankel 

matrix expressed in Equation (3-35) has different block rows by setting continually varying 

time lag �. According to Equations (3-39), (3-42) and (3-45), the time lag � can determine 

the size of the identified state matrix �, so � is also denoted as the order or the row number 

of the state matrix.  

The stable poles are obtained by comparing the errors in modal parameters obtained from 

two successive orders. The errors include frequency error����, damping error���� and mode 

shape error(����). Where MAC stands for Modal Assurance Criterion. An error threshold 

is set for the stable pole which has to satisfy the three error thresholds simultaneously. The 

errors can be calculated as follows: 

 
�������

��
× 100% < �� (3-53) 

 
�������

��
× 100% < ��  (3-54) 

 MAC(�: � − 1) =
�(��)����

�

(��)���(����)�����

 (3-55) 

 1 − MAC(�: � − 1) < ����  (3-56) 

Where ��, �� and �� are the modal parameters identified when the system order (number of 

Hankel matrix rows) is �, which is same as the � in Eq. (3-34). The spurious modes caused 

by noise can be filtered out using a SD. However, the SD will not remove the spurious modes 

resulting from harmonic excitation, this will be discussed in Chapter 5. 

Moreover, in this thesis a second threshold is set to identify the relative stable modes based 

on the SD results. The second threshold is obtained as a percentage by dividing the number 

of stable points, N, by the calculated maximum number of orders, M: 

 � =
�

�
× 100% (3-57) 

� is called the rate of stable points, which is an important threshold to identify the system’s 

modes and filter out the false modes. The value of � is determined by the real application 
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scenario, or the experience. However, it is worth to highlight that a higher value of � 

indicates a more reliable identification results. According to the previous studies [54], [155], 

the value of � should be over 0.5 to ensure the reliability of the identified results. 

3.4 Findings 

The primary purpose of this chapter was to review the theoretical background of Cov-SSI 

and the following advantages of Cov-SSI have been determined: 

1) Cov-SSI is a reliable and robust approach for OMA since it has been developed on 

the basis of linear algebra theory; 

2) Cov-SSI is effective for noise reduction due to the application of SVD during the 

process; 

3) Cov-SSI needs lower computation sources with respect to other OMA methods such 

as DD-SSI and Poly-reference LSCE; 

4) Cov-SSI is suitable for the identification of close modes. 

Based on these advantages, Cov-SSI has been selected as the fundamental algorithm to 

develop the online monitoring system for vehicle suspension systems. However, Cov-SSI is 

developed under the assumption that the excitation is white noise and the system is linear, 

but the white noise assumption is not valid for a real vehicle running on a road/track, and 

real suspension systems are highly nonlinear. Therefore, Cov-SSI has to be modified and 

improved for reliable online modal identification of vehicle suspension systems. The 

enhanced method will be introduced in the next chapter. 
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CHAPTER 4 CORRELATION SIGNAL SUBSET-BASED 

STOCHASTIC SUBSPACE IDENTIFICATION 

A novel method, Correlation Signal Subset-based SSI (CoSS-SSI), based on the fundamental 

SSI method as introduced in Chapter 3 is proposed in this chapter as a basis for the online 

monitoring of vehicle suspensions.  

First, the theoretical background of CoSS-SSI is presented, and then the detailed procedure 

of CoSS-SSI is given. Last but not least, a 3-DOF vibration system is employed to evaluate 

the performance of the CoSS-SSI.  

The results indicate that the CoSS-SSI has the capability to identify modal parameters from 

nonstationary responses contaminated with high noise levels, producing results which are 

superior to conventional OMA methods. 
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4.1 Introduction 

The aim of this PhD project is to develop an online monitoring system for vehicle 

suspensions via OMA. Based on a literature review and overview of its mathematical 

background, Cov-SSI has been selected as the appropriate approach for OMA. However, 

Cov-SSI, as other output-only methods, must fulfil the two critical assumptions regarding 

white noise excitation and linear system which are difficult to satisfy in the field tests. 

For instance, the excitation from the road/track is never entirely a white noise source for a 

running vehicle. In addition, vehicle suspension systems are highly nonlinear. As a 

consequence, the vehicle response is nonstationary, nonlinear and invariably with a low 

Signal to Noise Ratio (SNR). Hence, direct application of basic Cov-SSI is not appropriate 

for the OMA of vehicle suspension systems, but an enhanced version of Cov-SSI 

(Correlation Signal Subset-based SSI, CoSS-SSI) has been developed to reduce the effects 

of nonlinearity and nonstationary responses. CoSS-SSI will be introduced in detail in Section 

4.2, and its effectiveness will be verified in Section 4.3 through numerical studies. 

4.2 Correlation Signal Subset-based SSI (CoSS-SSI) 

This section presents CoSS-SSI in detail: first, the theoretical background, and then the 

details of the process. 

4.2.1 Theoretical background of CoSS-SSI 

As previously stated, white noise excitation and linear system assumptions are the 

fundamentals of OMA. However, these two assumptions are difficult to meet in practice. 

Real road and railway vehicles are complicated dynamic systems and normally run under 

harsh conditions which result in high noise levels during any measurement process [152]. 

The vehicle will be subject to time-varying excitations resulting from random local 

irregularities, humps or potholes on roads or joints on a track. There will also be 

nonlinearities in the suspension which are inevitable due to the inclusion of nonlinear 

components such as dampers. As a consequence, the vehicle response is significantly 

nonstationary, so that the modal parameters will change with responses at different times. 

As a specific example, the covariance values in the Cov-SSI scheme may vary due to the 
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response being nonstationary and data length being limited, both of which have an 

immediate effect and may lead to variation in the results.  

Based on these considerations, one can conclude that the nonstationary responses have 

significance impact on the OMA, which is a common challenge to OMA methods. Numerous 

studies have been conducted to solve the nonstationary issue. First and foremost, it was 

proved in principle in [119] that the cross-correlation functions of two stationary processes 

could be expressed in the same form as a free impulse function [152], [153]. Based on the 

principle presented in [119], it has been theoretically proven [154] that the nonstationary 

correlation functions of a structural response evaluated at fixed time instants have the same 

form of expression form as a structural free response with certain initial conditions [152]. 

In summary, the theory presented in [154] indicates that the nonstationary problem could be 

reduced to a stationary problem by evaluating the nonstationary correlation functions at a 

fixed time instant [152].  

A novel method based on Cov-SSI was developed in [7], [155] using the correlation signal 

rather than original response signal to construct the Hankel matrix to identify the modal 

parameters of a chassis frame in a heavy-duty dump truck under working conditions. This 

novel use of Cov-SSI is known as the Average Correlation Signal based Cov-SSI (ACS-

Cov-SSI). The average correlation signals are obtained by averaging several correlation 

signals from several measurements, or one measurement dividing into several segments [7].  

It is worth mentioning that the foundation of ACS-Cov-SSI is the correlation function which 

has the same form as the impulse response function and which contains all the system’s 

modal information. This theoretical fundament is implicit in the Data Correlation-based 

ERA (DC-ERA), and it has been proven that the DC-ERA is effective for noise reduction 

[118]. Cov-SSI has the capability to identify close modes and ACS-Cov-SSI was developed 

to combine the advantages of DC-ERA and Cov-SSI. As referred to earlier, an additional 

averaging step was added in the ACS-Cov-SSI to enhance the effectiveness of the noise-

suppressing. A reference channel is used during the correlation calculation process to retain 

the phase information for the average action.  

The capability of ACS-Cov-SSI has been verified in [7], [155], and the results indicated that 

ACS-Cov-SSI has excellent ability to suppress high noise levels and strong non-stationarity 
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in signals collected from the heavy-duty truck when running on an unpaved road. However, 

the amplitudes of the correlation signals can spread over an extensive dynamic range on 

account of the strong nonstationary characteristics in the response signals [152], [153]. For 

ACS-Cov-SSI, the average correlation signals are calculated by simultaneously averaging 

all correlation signal segments, which means the correlation signals with very low 

amplitudes could be overwhelmed or neglected [152].  

However, low amplitude correlation signals often contain information associated with 

modes with high damping coefficients [152]. For example, it is well known that vibration 

modes with high damping are difficult to excite. Hence the low amplitude correlation signals 

are necessary for modal identification and cannot be neglected. In other words, averaging 

over a full set of correlation signals in ACS-Cov-SSI could result in inadequate mode 

identification, losing those which are highly damped [152].  

Given nonlinearity is inevitable in vehicle suspension systems, different vibration 

amplitudes of correlation signal may result from different regimes of a nonlinear system 

[152]. That is to say, the responses with higher amplitudes may overlap and hide modal 

parameters which have lower amplitudes. Consequently, the modal parameters identified by 

ACS-Cov-SSI could appear inconsistent and unrepeatable [152]; the most direct result is that 

the identified SD is unstable. 

From the above analysis a novel method, the Correlation Signal Subset-based Stochastic 

Subspace Identification (CoSS-SSI) founded on the fundamentals, is proposed to overcome 

the deficiencies and limitations of the ACS-Cov-SSI. For CoSS-SSI, the correlation signal 

segments are classified into several subsets according to their magnitudes. Then, each subset 

of correlation signals is separately averaged, rather than synchronous averaging over all the 

correlation signal segments. Later, the Cov-SSI is applied to each averaged correlation signal 

subset to identify the system’s modal parameters. The detailed procedure of the CoSS-SSI 

is presented below. 

4.2.2 Procedure for CoSS-SSI 

This subsection will present the detailed procedure of CoSS-SSI. The first step is to obtain 

several raw signal segments, which is the same procedure as for ACS-Cov-SSI. The raw 

signal segments can be obtained by repeating the experiment or dividing long segments of 
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data into several smaller segments, or a combination of both approaches. For example, a 

dataset of raw signals is recorded from � channels, which can be divided into � segments, 

see Figure 4-1. It can be seen that each segment has the same length (�) with � channels of 

data. 

 
Figure 4-1 Schematic for dividing raw data from � channels into � segments each containing � data points 

The second step is to calculate the correlation signals concerning each data segment as 

follows[7], [152], [153], [155]: 

 ���(�) =
�

�
∑ ��(�)�����

��� ��(� + �) (4-1) 

Where � is the data length of each segment; � = 1, 2, 3, ⋯ , � is the channel number; � is the 

delay time; �  is the time sequence; �  refers to the ���  channel selected as reference. 

Generally, the ��� channel should have the highest SNR of all channels. The purpose of 

choosing a reference channel is to retain the signal phase information for the averaging 

operation [7], [120], [155]. The FFT algorithm can be applied to improve the correlation 

signal calculation speed. 

With � channels in total, the number of correlation signals for each segment will be � × �, 

and therefore the total number of correlation signal segments will be � × ��. As mentioned 

earlier, in order to overcome nonstationary effects, the correlation signals will be classified 

into several groups with respect to their magnitudes before averaging them.  

The Root Mean Square (RMS) value is adopted to represent the signal magnitude in this 

project. Thus, the third step is to develop an RMS matrix by calculating the RMS values of 

all correlation signal segments. The size of RMS matrix will be � × ��.  
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Specific intervals have to be set up to categorise all correlation signals, which is the fourth 

step. Firstly, the minimum RMS value in each row of the RMS matrix will be selected to 

form a vector �� of size of � × 1. Secondly, the maximum and minimum values of �� will 

be selected, represented by ���(��)  and ���(��) . Thirdly, the intervals will be 

calculated using ���(��) to minus ���(��) and then the result will be divided by the 

subset number �, where the value of � is always chosen between 2 and 5 to achieve a balance 

between the accuracy of identification results and the requirement of calculation speed for 

online application. 

With the obtained specific intervals, the fifth step is to categorise the correlation signal 

segments into corresponding subsets according to their RMS values as calculated in the third 

step.  

After that, the sixth step is to average the correlation signal segments with respect to each 

subset, as follows:  

 ���(�) =
�

��
∑ ���

��(�)
��

����    (4-2) 

Where �� is the number of correlation signal segments in a single subset.  

Then, the seventh step is to use the averaged correlation signals to construct the Hankel 

matrix, shown as Equation (3-35), and identify the modal parameters for each subset 

according to the Cov-SSI process introduced in Section 3.3.  

According to the process, � group modal parameters will be identified. However, many of 

them could be quite close due to some of them being same mode in reality. Therefore, the 

eighth step, which is also the final step, is integrating the system modes with the modes from 

all subsets based on the frequency differences and MAC values.  

For clarity, the procedure of CoSS-SSI is further summarised in the flow chart shown in 

Figure 4-2. 
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Figure 4-2 Flow chart of CoSS-SSI 
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4.3 Effectiveness verification of CoSS-SSI 

The CoSS-SSI was introduced in detail in Section 4.2. In this section, the effectiveness of 

CoSS-SSI will be verified via a 3-DOF vibration system developed to investigate the 

superiority of CoSS-SSI when the measured signals have low SNR values and are strongly 

nonstationary. Its efficiency will be demonstrated by comparing the identified results 

obtained from Cov-SSI and ACS-Cov-SSI. 

4.3.1 3-DOF model description 

The linear 3-DOF vibration system is shown in Figure 4-3, which is a mass-spring-damper 

system. The physical parameters of the system are also given in Figure 4-3. The theoretical 

modal parameters can be calculated by developing a state-space model according to the 

theory summarised in Section 3.2.1. The results are tabulated in Table 4-1. It is noted that 

the third mode has the highest damping ratio. 

 
Figure 4-3 3-DOF linear vibration system 

Table 4-1 Theoretical modal parameters of the 3-DOF linear vibration system  

 

This simulation case is to verify the effectiveness of the proposed novel SSI approach which 

is an output-only method. Three independent random excitations acting horizontally were 

separately loaded onto the three masses, and the response of the 3-DOF vibration system 

was obtained through the ‘lsim’ function in MATLAB, and was used as the raw signal for 

the Cov-SSI, ACS-Cov-SSI and CoSS-SSI methods.  
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Random excitations band-pass stationary white noise was added to represent multiple 

random impulsive impacts, mimicking the excitation caused by road bumps or potholes. 

Some measurement noise is inevitable in reality, so some random noises are added to the 

obtained noise-free responses, �(�) . The final response ��(�)  of the 3-DOF vibration 

system was expressed as: 

 ��(�) = �(�) + γ�(�) (4-3) 

Where �(�)  is a band-pass white noise with �(0, 1) ; the amplitude factor of �(�)  is 

defined as follows, which allows for adjusting the SNR of the responses [7], [152], [153], 

[155]: 

 � =
�∑ �(�)��

���

��� ∑ �(�)��
���

 (4-4) 

In this simulation case, the sampling rate was set at 500 Hz because the highest resonance 

frequency in the system was 28.39 Hz. Since ACS-Cov-SSI and CoSS-SSI need several data 

segments to extract the modal parameters, twenty Monte Carlo simulations were conducted 

with the data length for each segment 60 s. In order to illustrate the superiority of CoSS-SSI, 

two SNR scenarios were simulated, high SNR (��� = 10), and low SNR (��� = 0.5). 

An example of the acceleration time-domain responses under these two SNR scenarios is 

presented in Figure 4-4, from which it can be seen that the signal amplitudes are higher when 

more measurement noise is added to the responses. It is also noticeable that the responses 

are nonstationary. In order to visually enhance the nonstationary features, the mean values 

of the time-domain responses were calculated every two seconds, see Figure 4-5. It can be 

seen that the mean values fluctuated over time. Moreover, it is apparent that the range of 

amplitude fluctuation for the high measurement noise scenario (��� = 0.5) is wider than 

low noise which, as would be expected, means the nonstationary character is severer when 

SNR is smaller. 
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Figure 4-4 Time-domain response of the linear 3-DOF vibration system 

 
Figure 4-5 Amplitude mean values of time-domain responses for every two seconds 

In addition, the corresponding Power Spectrum Density (PSD) of the time-domain responses 

are presented in Figure 4-6. When the SNR is 10 only two peaks are observable, which 

correspond to the first and second modes of the 3-DOF system. The third mode is not that 

much prominent because of its higher damping ratio, 4.55%. It can also be seen from Figure 

4-6 that the energy distribution of the system response is affected by measurement noise. 

Although the main peaks under these two SNR scenarios are almost the same responses for 

�� and ��, the second peak (19.65 Hz) and third peak (28.39 Hz) of �� are submerged. 

Therefore, it is reasonable to conclude that the presence of noise will lead to difficulty in 

modal extraction. 

 
Figure 4-6 PSD of the linear 3-DOF vibration system responses 
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This subsection introduced a linear 3-DOF vibration system and the characteristics of system 

responses under two different SNRs. It has been found that noise will lead to severer 

nonstationary responses and can submerge some modal information, but in the next 

subsection, the responses collected with the two SNR levels will be used to illustrate the 

superiority of CoSS-SSI. 

4.3.2 Modal identification results and analysis 

In order to illustrate the superiority of the novel CoSS-SSI method, two other basic methods, 

Cov-SSI and ACS-Cov-SSI, are used to extract the modal parameters of the linear 3-DOF 

vibration system from the simulated responses. As mentioned earlier, twenty Monte Carlo 

simulations were carried out, which yielded twenty segments of response data. The sampling 

rate was 500 Hz, and the data length for each segment was 60 s. For the Cov-SSI, one data 

segment is enough for identification, whereas both ACS-Cov-SSI and CoSS-SSI used all 

twenty data segments. Of course, CoSS-SSI would be identical to ACS-Cov-SSI if the 

number of subsets � was reduced to one. In this case, for CoSS-SSI, the subset number � is 

set at 3 which can reach a good balance between identification accuracy and computational 

efficient. Then, according to the procedure introduced previously, the modal parameters of 

the linear 3-DOF system will be identified.  

Firstly, Figures 4-7, 4-8 and 4-9 present the SDs (see Section 3.3.4) for each of the three 

methods for the linear 3-DOF vibration system is under ��� = 10  and ��� = 0.5. It is 

worth to noting that the thresholds of frequency error ����, damping error ����, and mode 

shape error (����),  are set at 0.1, 0.2 and 0.5, respectively. Besides, the row number of the 

left vertical axis of SD is the time lag of � in Equation. (3-34), because the row number of 

the state matrix � is determined by the time lag � according to Equations. (3-44) and (3-45). 
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Figure 4-7 SDs identified by Cov-SSI 

 

 
Figure 4-8 SDs identified by ACS-Cov-SSI 

It can be seen from Figure 4-7(a) and Figure 4-8(a) that three relatively stable modes were 

identified by both Cov-SSI and ACS-Cov-SSI when the SNR was 10. It can be seen from 

Figure 4-7(b) that none of the stable modes were identified by Cov-SSI, and only two 

relatively stable modes are identified by ACS-Cov-SSI, when the SNR is 0.5, see Figure 

4-8(b). 

However, as can be seen in Figure 4-9(a1, a2, a3), for which the SNR=10, the SDs identified 

by CoSS-SSI are messier than for both Cov-SSI and ACS-Cov-SSI. Such a result could be 

due to correlation signal categorisation before the averaging step, which helped to improve 

the quality of the signals. Therefore, the threshold ��, �� and ����, introduced in Section 
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3.3.4, should be stricter or set to a smaller value. In other words, CoSS-SSI has no advantage 

if the collected responses are high quality.  
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Figure 4-9 SDs identified by CoSS-SSI 

Nonetheless, the superiority of CoSS-SSI is demonstrated when the signal quality is poor 

(��� = 0.5). In contrast to the relatively poor performances of Cov-SSI, and ACS-Cov-

SSI, when the SNR is 0.5, all three target modes are successfully identified in the three 

subsets, as shown in Figures 4-9(b1, b2, b3). The benefits of CoSS-SSI can be seen. 

As mentioned in Section 3.3.4, a second threshold (�) is set according to Equation (3-57) to 

identify the relatively stable modes. In this simulation the maximum number of calculated 

orders is set at 45 (� = 45). Two examples of calculated stable rates are presented in 

Figures 4-10 and 4-11. Figure 4-10 shows the stable rates of the SD identified by Cov-SSI 

and ACS-Cov-SSI when the SNR is 10. Three relative stable modes are selected out for both 

methods when the second threshold is set at 50%. Figure 4-11 is an example of stable rates 

of the SD for CoSS-SSI when the SNR is low, 0.5. It can be seen that a stricter second 

threshold, set at 70%, enabled extraction of the true modes. A more stringent threshold 

makes the identified results more reliable. In this simulation, the second threshold for Cov-

SSI and ACS-Cov-SSI was set at 50%, and for CoSS-SSI was set at 70% for both two SNR 

scenarios: 10 and 0.5. 
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Figure 4-10 Stable rates of the SDs identified by: (a) Cov-SSI; (b) ACS-Cov-SSI 

 
Figure 4-11 Stable rates of the SD identified by CoSS-SSI 

R
at

e

6.
95

8H
z

19
.7

8H
z

28
.3

2H
z

R
at

e

7H
z

19
.7

H
z

28
.4

H
z

7H
z

19
.5

H
z

27
.5

H
z



 Chapter 4 CoSS-SSI 

60 
 

Based on the identified SDs and the second threshold, the final identified natural frequencies 

and damping ratios by Cov-SSI, ACS-Cov-SSI and CoSS-SSI are tabulated in Tables 4-2, 

4-3 and 4-4, respectively, which also show the errors between identified results and 

theoretical values. As can be seen from these three tables, Cov-SSI is unable to extract any 

mode when the SNR is 0.5, and ACS-Cov-SSI can extract the first two modes but not the 

third. However, CoSS-SSI successfully identified all three modes in all subsets with 

acceptable level of errors; even when the second threshold is stricter. 

It can be seen that all of the frequency errors are extremely small; most below 1%. However, 

the error in the damping ratios is comparatively quite large in spite of the signal quality. 

Nonetheless, such results are reasonable since damping estimation is a challenge common 

to all modal identification methods, even Experimental Modal Analysis (EMA) methods 

[153]. The main reason for this challenge is the damping mechanisms are not completely 

clear. Therefore, the damping ratio performs only a reference role for CM, not a critical one. 

Table 4-2 Modal results identified by Cov-SSI with errors 

 

Table 4-3 Modal results identified by ACS-Cov-SSI with errors 

 

Table 4-4 Modal results identified by CoSS-SSI with errors 
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Besides the frequency and damping ratio, mode shape is another significant modal parameter. 

One of the most well-known indicators of mode shape accuracy is the MAC value, which 

can be calculated by Equation (3-55). The MAC values of the mode shapes identified by the 

three methods are presented in Figures 4-12, 4-13 and 4-14, where the reference mode shape 

is the theoretical mode shape. As can be seen from these figures, all of the MAC values for 

the successfully identified modes are close to unity, which indicates the accuracy and 

reliability of the proposed method. CoSS-SSI, identifies all mode shapes accurately in all 

subsets, even under severe measurement noise (��� = 0.5).  

 
Figure 4-12 MAC for mode shapes identified by Cov-SSI  

  
Figure 4-13 MAC for mode shapes identified by ACS-Cov-SSI 
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Figure 4-14 MAC for mode shapes identified by CoSS-SSI 

Based on the above numerical simulation, the superiority of CoSS-SSI has been clearly 

demonstrated, especially in nonstationary and high noise scenarios. In reality, field 

measurements are usually nonstationary and contain high noise levels; as a consequence, 

CoSS-SSI could be a desirable approach within OMA.  
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Besides, according to the flowchart of Cov-SSI, Figure 3-1, the modal parameters are 

extracted from the state matrix �. For this 3-DOF system, it is possible to identify the 

system’s matrices of mass(�), stiffness(�) and damping(�) through the identified state 

matrix(�). Then, the physical parameters like system’s stiffness and damping can be used 

as good indexes for CM. However, the dimension of the identified � is determined by the 

row number � in Equation. (3-34), where the dimension of � is 2� × 2�. It can be seen from 

the previous identification process that the minimum � is 12. Therefore, a model reduction 

method has to be developed to extract system’s real state matrix. This is a fruitful area which 

could be investigated further in the future.   

4.4 Findings 

A novel OMA method, CoSS-SSI, has been proposed in this chapter and verified by 

numerical vibration analysis. The following conclusions can be drawn on the basis of the 

simulation results: 

1) Conventional OMA methods, such as Cov-SSI and ACS-Cov-SSI, are unable to 

identify a system’s modal parameters when the responses are nonstationary and 

contain high noise levels;  

2) CoSS-SSI has the capability to successful extract modal information from 

nonstationary and low SNR signals; 

3) CoSS-SSI outperforms traditional OMA methods and could be a promising approach 

for vehicle suspension online monitoring.  

As stated above, real vehicle responses are usually with high noise and nonstationary due to 

complex road/track excitations and highly nonlinear suspension systems. It has been shown 

that CoSS-SSI could be utilized for identification of vehicle suspension modal parameters 

using the car body responses, which is a core part of the online monitoring system for vehicle 

suspension.  

However, the harmonic effects are a common issue occurring during OMA and the next 

chapter will investigate how to eliminate the effects of harmonic excitations during OMA. 
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CHAPTER 5 OPERATIONAL MODAL ANALYSIS IN THE 

PRESENCE OF HARMONICS 

This chapter focuses on the use of Operational Modal Analysis (OMA) in the presence of 

harmonics. It begins by reviewing the key methods of removing harmonic effects from OMA 

and selecting cepstrum editing (CE) for eliminating the harmonic effects as it is more 

efficient and robust for online implementation. The procedure of CE is introduced in detail 

in Section 5.2, and the effectiveness of CE is verified by investigating the response of a 

quarter vehicle model under various excitation scenarios. 

The simulation results show that pulse train excitation has no influence on OMA via CoSS-

SSI, but a harmonic load will result in false modes. It is demonstrated that CE can remove 

such harmonic effects. 
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5.1 Introduction 

As mentioned earlier, most OMA methods are developed under the assumption of white 

noise excitation. However, harmonic excitations are very common in mechanical systems, 

especially for those machines which include rotating parts, such as bearings and gears. 

Conventional OMA approaches are unable to filter out the effects of harmonic excitations 

and as a result can fail to identify a system’s modal parameters accurately [156].  

Generally, harmonic excitation can cause failure of OMA in three different ways [157]. First, 

the harmonic frequency will be identified as one of the structural modes. Second, the 

harmonic excitation will lead to inaccurate results for damping if the frequency is close to a 

resonance. Last, harmonic excitations could increase the difficulty of modal identification 

since the main power of the responses could be around the harmonic frequency, not the 

natural structural frequencies [157]. 

Because of the adverse influence of harmonic excitation, a great many extended OMA 

methods have been developed by numerous researchers to cope with this problem. A review 

of the related literature can be found in [157], according to which, extended OMA techniques 

can be categorised into four groups: 

i) Statistics-based methods which employ statistical parameters to filter out the 

spurious modes resulted from the harmonics. For instance, the Probability Density 

Function (PDF) is a popular statistical parameter for harmonic mode identification 

[158], while Kurtosis is also a powerful tool to distinguish false modes which result 

from harmonics generated by e.g. mechanical systems [159]. However, statistics-

based methods are useless if the harmonic frequency is close to one of the system’s 

resonance frequencies or if the system were highly damped.  

ii) Enhanced techniques, which are modified general OMA methods which take 

harmonic effects into account, such as the modified LSCE [160], modified ERA 

[161], modified ITD [156] and modified data-driven SSI [162]. Nevertheless, all of 

these modified OMA methods need to obtain the harmonic frequencies before the 

identification process, which can be a challenge.  

iii) Transmissibility based OMA (TOMA), a new technique for using OMA usefully in 

the presence of harmonics, which has developed rapidly in recent years [124]–[128]. 
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However, the resonance frequency range has to be excited persistently for the TOMA 

methods, which can be difficult to achieve [127], [128]. 

iv) Signal pre-process, a technique which is a robust tool for eliminating the harmonic 

effects before conducting the OMA. In other words, the harmonic influence is 

removed in advance via particular signal processing techniques. The most popular 

methods for this purpose include nonparametric Time Synchronous Averaging (TSA) 

[163] and cepstrum editing (CE) [164], [165]. For TSA, an additional sensor such as 

a separate encoder is required for the synchronisation, so that CE is the easier and 

cheaper method.  

Moreover, considering computational efficiency, robustness and feasibility, CE outperforms 

statistics-based methods, modified OMA methods and TOMA methods for OMA in the 

presence of harmonics. Therefore, in this project, CE will be utilised for removing harmonic 

sources before applying the proposed novel OMA procedure: CoSS-SSI. The detailed 

process of CE will be presented in the next section. 

5.2 Cepstrum editing (CE) 

It is over fifty years since the cepstrum was first time proposed as a powerful signal 

processing tool [165]. References [160] and [161] review the history of the cepstrum which 

nowadays is widely used [166]. The concept of applying CE to remove harmonics before 

using a standard OMA procedure was first presented in [167].  

The cepstrum is defined as “the inverse Fourier transform of the log power spectrum” [165]–

[167]: 

 ��(�) = ℱ��{��(�(�))} = ℱ��{��(�(�)) + ��(�)} (5-1) 

Where �(�) is the spectrum obtained by taking the FFT of the raw signal �[�], as follows: 

 �(�) = ℱ{�[�]} = �(�)���(�) (5-2) 

The real cepstrum is utilised for CE before the OMA, which is defined by setting the phase 

�(�) to zero, and the real cepstrum can be written as: 

 ��(�) = ℱ��{��(�(�))} (5-3) 
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Where � is the quefrency. 

The procedure for utilizing CE to filter out harmonic effects is presented in Figure 5-1. The 

first step is obtaining amplitude (�(�)) and phase (�) information of the response signal via 

the FFT. Then the amplitude data, after the logarithmic operation (��|�(�)|) is used to 

calculate the real cepstrum (��(�)) by conducting an Inverse Fast Fourier Transform (IFFT), 

according to Equations (5-1) and (5-3). Afterwards, to obtain the edited cepstrum (���(�)), 

a short-pass lifter is applied to filter out the influence of harmonics because useful modal 

information is contained in the start and end portions of the real cepstrum [165]–[167]. 

Subsequently, a FFT is employed to transfer the edited cepstrum back to the spectrum by 

combining with the original phase information (�), which can provide the complex spectrum. 

Last but not least, the filtered time-domain signal which can be utilized for the OMA, can 

be obtained by applying an IFFT to the complex spectrum ��(�), acquired in the previous 

step. 

 
Figure 5-1 Cepstrum editing procedure to filter harmonic effects for OMA 

During the CE, extra damping will be introduced into the OMA results if an exponential 

function is used as the short-pass lifter, in order to overcome this shortcoming, a piecewise 
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function is defined to play the role of a short-pass lifter. The piecewise function is expressed 

as Equation (5-4), and the effect of a short-pass lifter is shown in Figure 5-2.  

 �(�) = �
1 (� < �   ��  � > �)
0 (� < � < �)

 (5-4) 

 
Figure 5-2 Short-pass lifter 

Where � is the data length of the signal, and � is the data length for the data segment which 

contains all modal information. Because a cepstrum is a symmetrical signal, the data at the 

end have to be preserved and the length of the preserved signal at the end should also be �, 

so � = � − �.  

In the next section, the effectiveness of CE for removing the harmonic effects before OMA 

will be verified using a quarter vehicle model. 

5.3 Feasibility of cepstrum editing for removing harmonics 

In this section, a quarter vehicle model will be developed to simulate the responses of a 

vehicle under various excitation scenarios, and then, the simulated signal will be utilised to 

evaluate the effectiveness of CE for removing harmonics. Note, CoSS-SSI will be employed 

as the OMA method. 

5.3.1 Quarter vehicle model description 

A quarter vehicle model was constructed, as shown in Figure 5-3. The initial purpose of this 

model is to simulate a railway vehicle bogie being tested on a roller rig, as will be introduced 

in Chapter 8. The physical parameters of the model are given in Figure 5-3. Based on the 

given parameters, the system frequency response function can be calculated, and the results 

are presented in Figure 5-4. It can be seen that the resonance frequencies of this quarter 

model for bogie frame and wheel are 13.21 Hz and 56.35 Hz, respectively. The 

corresponding damping ratios for these two modes are 13.10% and 6.33% respectively.  
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Figure 5-3 Quarter vehicle model 

 
Figure 5-4 Frequency response function of the quarter vehicle model 

5.3.2 Excitation model 

For brevity, a model of inputs is developed to simulate various excitation scenarios, based 

on the railway vehicle bogie on a roller rig, shown in Figure 5-3. The input model includes 

three parts: random signal, harmonics and pulse train. Firstly, the random input is due to the 

roughness of wheel and rail drum surfaces. Harmonic inputs can result from manufacturing 

and installation errors of rotating parts. Lastly, the pulse train is caused by junctions on the 

rail drum as shown in Figure 5-3 which are included to emphasise that the rail drum is 

composed of four rail segments formed into quarters of a circle, which resulted in four 

junctions on the rail drum and four corresponding pulse train inputs to the system. 

Based on the model, the inputs can be written as: 
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 �(�) = ����(�) + ����(�) + ����(�) (5-5) 

Where ��(�) , ��(�)  and ��(�)  stand for random, harmonic and pulse train excitations, 

respectively, ��, �� and �� are their corresponding amplitudes. 

These three excitations can be expressed as: 

 ��(�) = �����(�) (5-6) 

 ��(�) = ∑ sin(2���� + ��)
�
���  (5-7) 

 ��(�) = �
1 � = � ∗ 1 ���⁄ ,   � = 1, 2, 3 …
0 ��ℎ������                                       

 (5-8) 

Where �  is the number of harmonics; ��  and ��  are the frequency and phase of the ��� 

harmonic; ���  is excitation frequency of the pulse train which is equal to four times the 

rotating frequency. 

5.3.3 Simulation results 

In this section, the effectiveness of CE for removing harmonic effects on OMA results will 

be verified by loading different excitations. Specifically, in order to investigate the impact 

of the pulse train and harmonic excitations on the OMA results, the quarter vehicle model 

was excited first by random input, and then random input in combination with pulse train 

and harmonic excitation. The modal parameters of the car body responses were identified by 

using CoSS-SSI. 

The sampling rate was 1000 Hz, and the data length of each dataset was 60 �. Each case was 

simulated ten times to obtain ten datasets. 

5.3.3.1 Modal parameters extracted from raw signals  

(a) Case 1: Random excitation only 

In the first test case the quarter vehicle model was excited only by random inputs, when the 

excitation modal parameters were: 

�� = 0.0001m; �� = 0; �� = 0; 

and Equation (5-5) reduced to: 

�(�) = 0.0001�����(�) 
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An example of the responses of car body under random excitation in the time- and frequency-

domains is presented in Figure 5-5. As can be seen from the frequency-domain response that 

the main power of the signal is around the system’s natural resonance frequencies, which are 

13.21 Hz and 56.35 Hz.  

The SD identified by CoSS-SSI using the ten simulated datasets is shown in Figure 5-6. The 

correlation signal could be classified in a single subset because the quarter vehicle model is 

a linear model, and the excitation was pure white noise. Two stable modes, of frequencies 

13.19 Hz and 56.42 Hz can be identified based on this SD. The errors between the identified 

frequencies and theoretical results were 0.15% and 0.12%, respectively. The identified 

damping ratios were 13.03% and 6.66% respectively for these two modes, with 

corresponding errors of 0.53% and 5.21%. It can be seen that when the quarter vehicle model 

was excited only by stationary white noise the modal parameters were identified accurately 

via CoSS-SSI. 

 
Figure 5-5 Car body responses under random excitation only 

 
Figure 5-6 SD identified by CoSS-SSI for quarter vehicle model excited by white noise random input only 

0 10 20 30 40 50 60

Time/(s)

-2

-1

0

1

2
10-4 Carbody responses (Displacement)

0 1 2 3
-2

0

2
10-4

0 7.3 14.6 21.9 29.2 36.5 43.8 51.1 58.4 65.7 73 80.3 87.6 94.9

Frequency/(Hz)

0

1

2

3

4
10-6 FFT of carbody responses (Displacement)

 



 Chapter 5 OMA in the presence of harmonics 

73 
 

(b) Case 2: Pulse train and random excitations 

The second case is with the pulse train excitation added to the random excitation. The 

additional parameters of the excitation model (Section 5.3.2) are: frequency of the pulse train 

is as derived from an experimental study on the roller rig (��� = 3.65 Hz) which will be 

presented in Chapter 8, and amplitude of the pulse train is �� = 0.005 �. The ratio of two 

signal amplitudes were determined according to the real signal characteristics collected in 

Chapter 8. 

�� = 0.0001 �; �� = 0; �� = 0.005 �; ��� = 3.65�� 

Equation (5-5) reduces to:  

�(�) = 0.0001�����(�) + 0.005��(�) 

where ��(�) = �
1 � = � ∗ 1 3.65⁄ ,   � = 1, 2, 3 …
0 ��ℎ������                                       

 

The responses of the quarter vehicle model under simultaneous pulse train and random 

excitations are presented in Figure 5-7. As can be seen from the time-domain signal the 

responses resulting from the pulse train input are clearly apparent. The effect of the pulse 

train excitation can be seen more clearly in the frequency-domain, where the peaks appear 

at the integral multiples of the pulse train frequency ��� = 3.65 Hz. It can be seen that the 

peaks at 14.6 Hz and 54.75 Hz are higher than the adjacent ones as they are close to the 

natural response frequencies. 

 
Figure 5-7 Car body responses under pulse train and random excitations 

0 10 20 30 40 50 60

Time/(s)

-2

-1

0

1

A
m

p
lit

u
d
e
/(

m
)

10-3 Carbody responses (Displacement)

0 1 2 3
-1

0

1
10-3

0 7.3 14.6 21.9 29.2 36.5 43.8 51.1 58.4 65.7 73 80.3 87.6 94.9

Frequency/(Hz)

0

0.5

1

A
m

p
lit

u
d

e
/(

m
)

10-4 FFT of carbody responses (Displacement)

 



 Chapter 5 OMA in the presence of harmonics 

74 
 

The SD identified by the CoSS-SSI utilising the responses obtained in this case is presented 

in Figure 5-8. It can be seen the identified stable modes were the same as the SD identified 

in Case 1 (Figure 5-6). Such results indicate that pulse train excitation has little or no effect 

on the OMA results. Furthermore, the identified frequencies, in this case, were 13.20 Hz and 

56.12 Hz, which were very close to the theoretical resonance frequencies (13.21 Hz and 

56.35 Hz). The identified damping ratios for these two modes were 12.11% and 6.40%, 

respectively, with errors of 7.56% and 1.11%. It can be seen that both frequency and 

damping ratio were accurately identified.  

 
Figure 5-8 SD identified by CoSS-SSI for quarter vehicle model excited by pulse train and random inputs 

(c) Case 3: One harmonic, pulse train and random excitations 

In the third case, a harmonic excitation, where � = 1 in Equation (5-7), was added to the 

excitations of Case 2. As mentioned earlier, harmonic excitation is a common phenomenon 

in mechanical systems containing a rotating component which invariably means an eccentric 

load. The harmonic frequency �� was set to same as the pulse train frequency ��� = 3.65 ��, 

and the harmonic amplitude was set equal to that of the random excitation (0.0001 m).  

�� = 0.0001 m; �� = 0.0001 m; �� = 0.005 m; 

��� = 3.65 ��; �� = 3.65 ��, �� = � 3⁄ ; 

Equation (5-5) reduces to: 

�(�) = 0.0001�����(�) + 0.0001 sin(2�(3.65)� + � 3⁄ ) +  0.005��(�) 

where ��(�) = �
1 � = � ∗ 1 3.65⁄ ,   � = 1, 2, 3 …
0 ��ℎ������                                       

 

Under such excitations, the car body responses are presented in Figure 5-9. The time-domain 

signal was comparable to the responses obtained in Case 2, and shown in Figure 5-7. This is 

because the amplitude of the harmonic was small. However, the frequency domain signal 
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was different from Case 2, specifically, the peak at 3.65Hz was substantially higher than the 

peak for Case 2, shown in Figure 5-7.  

 
Figure 5-9 Car body responses under one harmonic, pulse train and random excitations 

In this case, the identified SD is presented in Figure 5-10. Firstly, it can be seen that three 

relative stable modes are seen at frequencies of 3.56 Hz, 13.14 Hz and 56.37 Hz. The 

corresponding damping ratios for these three frequencies were 1.71%, 13.06% and 6.43%, 

respectively. It is evident that the second and third modes at 13.14 Hz and 56.37 Hz were 

the true ones, but the mode at 3.56 Hz was false, resulting from the harmonic excitation. 

Secondly, it can be observed that the mode at 13.14 Hz was unstable until the row number 

greater than 27, and contained fewer stable modes than the first two cases. Based on these 

analyses, it can be seen that harmonic excitation has significant effects on the OMA results. 

 
Figure 5-10 SD identified by CoSS-SSI for quarter vehicle model excited by one harmonic, pulse train and 

random inputs 
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(d) Case 4: Two harmonics, pulse train and random excitations 

It has been proved in Case 3 that harmonic excitation has a significant effect on the OMA 

results. Here we added a second harmonic excitation to the excitations present in Case 3, 

equivalent to � = 2 in Equation (5-7). The excitation parameters for the second harmonic 

frequency are: amplitude 0.0001 m, frequency 17.0 Hz, and phase � 4⁄ . The frequency and 

phase were chosen to avoid vibration superposition with the first harmonic.  

�� = 0.0001 �; �� = 0.0001 �; �� = 0.005 �; ��� = 3.65 ��; 

�� = 3.65 ��;  �� = � 3⁄ ; �� = 17.0 ��, �� = � 4⁄  

Equation (5-5) reduces to 

�(�) = 0.0001�����(�) + 0.0001 sin(2�(3.65)� + � 3⁄ )

         + 0.0001 sin(2�(17.0)� + � 4⁄ ) +  0.005��(�)
 

where ��(�) = �
1 � = � ∗ 1 3.65⁄ ,   � = 1, 2, 3 …
0 ��ℎ������                                       

 

The car body responses to such excitations is presented in Figure 5-11. It can be seen from 

the frequency domain signal that a peak appears at 17 Hz which resulted from the second 

harmonic excitation. Otherwise the features of Figure 5-11 are similar to Figure 5-9.  

 
Figure 5-11 Car body responses under two harmonics, pulse train and random excitations 

The SD identified by CoSS-SSI in this fourth case is presented in Figure 5-12. There were 

three relatively stable modes presented in the SD. The first two modes are close to 3.56 Hz 
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in the excitations. The identified damping ratios for these two modes were 17.74% and 

5.64%. The third mode was close to 56.39Hz, the resonance frequency of the system’s 

second-order mode. However, the first mode of the quarter vehicle system which was around 

13.21 Hz is not seen. The failure to identify the system’s first natural mode is attributed to 

the second harmonic frequency being too close to the first resonance frequency.  

 
Figure 5-12 SD identified by CoSS-SSI for quarter vehicle model excited by two harmonics, pulse train and 

random inputs 

In summary, OMA in the presence of harmonics will lead to false modes which could be 

challenging to filter out. Furthermore, the harmonic excitation could lead to true modes being 

overwhelmed if the harmonic frequency was too close to a system natural frequency. Thus, 

harmonic effects have to be filtered out before conducting OMA. 

5.3.3.2 Modal parameters extracted from filtered signals 

It has been demonstrated in Section 5.3.3.1 that harmonics can result in false modes, see 

Cases 3 and 4 above. Therefore, the signals obtained in these two cases will be filtered via 

CE to filter out the harmonics before conducting modal identification. The modal parameters 

as extracted from the filtered signal will be presented in the following subsections.  

(a) Case 1: Excitations contained one harmonic 

An example of a real cepstrum applied to the signal obtained in Case 3 of Section 5.3.3.1 

(which contained one harmonic frequency in the excitation load) is presented in Figure 5-13. 

The cepstrum is shown as the blue line, a short-pass lifter is applied to filter out the 

harmonics which had been introduced. The length of the short-pass lifter � is set to 0.25 

second to filter out all the periodic components and keep the modal information only, as 

shown in Figure 5-13 as a black line, and the edited cepstrum is the red dash line.  
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Figure 5-13 Cepstrum, window function and edited cepstrum 

According to the CE process, see Section 5.2, an example of the filtered signal in the time- 

and frequency-domains is presented in Figure 5-14. The raw signal is also presented in 

Figure 5-14. It can be seen from the time-domain that the amplitude of the signal decreased 

visibly after the filter process via CE. Moreover, it can be seen from the frequency-domain 

that the effects of the pulse train and the corresponding harmonic excitations have been 

filtered out by the CE. We see that the main power contained in the filtered signal is close to 

system’s first natural resonance frequency. 

 
Figure 5-14 Carbody responses raw signal and filtered signal 
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The filtered signals were used to extract the modal parameters of the quarter vehicle model 

through CoSS-SSI. The identified SD is shown as in Figure 5-15. Comparing with Figure 

5-10, it can be seen that CE improve the SNR for modal identification: that the false mode 

resulted from the harmonic excitation was successfully filtered out, and the identified stable 

modes were more stable. In particular, we see the frequency of the first mode is 13.18 Hz 

and the second one is 56.02 Hz, which are very close to the natural resonant frequencies of 

13.21 Hz and 56.35 Hz. The short-pass lifter did not introduce addition damping ratio during 

the filtering process and the corresponding damping ratios for these two modes are 12.37% 

and 5.76%, respectively close to the theoretical values of 13.10% and 6.33% calculated for 

the simulated railway vehicle model. Comparing the identified results with the theoretical 

values, the frequency errors were 0.23% and 0.59% for the first and second modes 

respectively; and the damping errors were 5.57% and 9.0%, respectively. These errors are 

small and quite acceptable. In other words, CE is an effective method for removing harmonic 

effects from OMA.  

 
Figure 5-15 SD identified by CoSS-SSI for quarter vehicle model excited by one harmonic, pulse train and 

random inputs using filtered signal 

(b) Case 2: Excitations contained two harmonics 

The effectiveness of CE with OMA to remove the effects of one harmonic has been 

demonstrated. The next stage was to apply CE to Case 4 of Section 5.3.3.1 with two 

harmonic excitations. The same CE process as the above was employed, and the identified 

SD is shown in Figure 5-16. It can be seen that two stable modes of frequencies 13.15 Hz 

and 56.53 Hz are identified, with damping ratios of 13.01% and 5.65%, respectively. The 

frequency identification errors are 0.45% and 0.32%, respectively; and the damping ratio 

identification errors are 0.69% and 10.74%, respectively. The modal parameters were 

accurately identified using the filtered signal via CE. The effectiveness of CE is evident 

when comparing Figure 5-16 with Figure 5-12.  
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Figure 5-16 SD identified by CoSS-SSI for quarter vehicle model excited by two harmonics, pulse train and 

random inputs using filtered signal 

On the basis of the results obtained in the two last cases of this subsection, it can be 

concluded that the effectiveness of CE to eliminate harmonic effects has been demonstrated. 

Therefore, CE will be employed in the following experimental study. 

5.4 Findings 

In this chapter, CE was introduced as a suitable approach to remove harmonic effects 

contaminating the OMA. Firstly, a quarter vehicle model and an excitation model were 

developed to verify the influence of a pulse train and harmonic excitations on the OMA 

identification results. Then, CE was utilised to filter out the harmonic effects. Based on the 

simulation results, the following conclusions can be drawn: 

1) The pulse train excitation has no impact on OMA. 

2) OMA in the presence of harmonics could result in false modes related to the 

harmonic frequencies. 

3) OMA in the presence of harmonics could lead to true modes of the system being 

overwhelmed. 

4) CE is an effective and achievable approach to remove the harmonic effects contained 

in OMA results in the presence of harmonic excitation. 

Therefore, CE will be employed to filter out the harmonic effects in the following full-scale 

roll rig experimental study. 
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CHAPTER 6  CONDITION MONITORING OF ROAD 

VEHICLE SUSPENSION SYSTEMS USING 

CoSS-SSI  

This chapter focuses on the CM of a vehicle suspension system using OMA, CoSS-SSI, as 

proposed in Chapter 4. Firstly, a brief overview of a general road vehicle suspension system 

is presented. Then, a simplified suspension system is developed and employed to evaluate 

the performance of CoSS-SSI. Last but not least, a field test was conducted on a 

commercially available car, a Vauxhall Zafira running on a traditional country road near 

Huddersfield, UK, at an off-peak time. The road vehicle tests included the vehicle suspension 

subject to normal and abnormal conditions. 

The experimental results indicated that CoSS-SSI performed excellently in extracting the 

modal parameters of the road vehicle’s suspension systems, and thus offers an attractive 

possibility for online monitoring.  
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6.1 Introduction 

Considerable research has been conducted to ensure the effective performance of vehicle 

suspension systems because of their decisive role in determining the comfort and safety of a 

vehicle [50], [51], [104], [105], [168]–[170]. It has long been understood that CM is an 

efficient approach for ensuring the continued good performance of vehicle suspension 

systems. However, while few studies have been conducted to achieve online CM for vehicle 

suspension systems, it has been demonstrated that OMA is able to provide online CM of, 

e.g., the structural health of bridges and buildings, and is widely applied [138], [171].  

A novel OMA method, CoSS-SSI, was proposed in Chapter 4, for assessing the signal 

characteristics of vehicle responses. The performance of CoSS-SSI was successful when 

evaluated by a 3-DOF numerical vibration model. In this chapter, the performance of CoSS-

SSI for online CM of a road vehicle’s suspension will be verified via two experimental 

studies. The first on a simplified suspension system, and the second on a real vehicle.  

6.2 Simplified suspension system 

6.2.1 Overview of road vehicle suspension 

It is well known that suspension systems for road vehicle are an assembly which contains 

springs, dampers and auxiliary devices to connect the vehicle body and wheels. The spring 

plays the role of absorbing impacts and provides cushioning in the case of a vehicle hitting 

a sudden bump. The spring also has the function of resisting movement, such as the rebounds 

of the wheel [172]. The damper, which is also called a shock absorber, is an energy 

consuming component and is employed to prevent continuous vibration of the suspension 

system once it has been set into motion. The location, type and number of springs will vary 

according to the suspension system with, typically, one damper for each wheel. However, 

the auxiliary devices are totally different in different types of suspensions. As an example, 

one of the most popular suspension system, the McPherson suspension, is presented in 

Figure 6-1.   
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Figure 6-1 Photograph of McPherson suspension system [54] 

Vehicle suspension systems can be categorised as dependent, independent and semi-

dependent. The categorisations are presented in Figure 6-2, and the MacPherson strut 

suspension belongs to the independent category. Different types of suspension systems are 

applied in various vehicles according to their relative advantages, but all suspension systems 

are designed to safeguard the safety of the occupants, and ensure their comfort. The 

suspension system will also ensure the vehicle has excellent handling capability. To meet 

these requirements vehicle suspension systems are complex and nonlinear. Nonetheless, the 

models developed to investigate a vehicle’s dynamic performance invariably describe the 

suspension system as a combination of a linear spring and a viscous damper, these models 

are commonly called quarter, half and full vehicle models. The proposed CoSS-SSI, OMA 

method is also linear. 

 
Figure 6-2 Categories of popular road vehicle suspension systems [54], [172] 

A primary study to verify the effectiveness of CoSS-SSI, was undertaken using a simple test 

rig suspension system with four springs. This simplified suspension system, which is close 

to being a linear system, is introduced in detail in the following sub-section. 
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6.2.2 Introduction of the simplified suspension system 

The simplified suspension system is shown as in Figure 6-3. As can be seen, a steel plate 

was hung up on a frame via four coil springs. M4 bolts connected the spring with the steel 

plate and support frame, the dimensions of the steel plate are given in Figure 6-4.  

In this test rig, the steel plate was considered as the car body, and the coil springs considered 

as the vehicle’s suspension system. A hammer with a rubber head was used to knock the 

steel plate at random time intervals and positions to mimic the random excitation from the 

road profile. Four acceleration sensors were installed under the four corners of the steel plate, 

as shown in Figure 6-3, to collect the responses of the system under random excitation.  

 
Figure 6-3 Photograph of simplified suspension system test rig 

 
Figure 6-4 Dimensions of the steel plate (car body) 

For the performance evaluation of CoSS-SSI, a reliable mathematical model is needed to 

obtain the theoretical modal parameters. The coil spring employed in this test rig had nearly 

linear characteristic as its damping ratio was relatively low and the coil spring were loaded 

vertically. So a reasonably accurate model can be developed due to the system’s relative 
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simplicity and the related inertial parameters can be accurately measured. Such a model will 

be developed in the following sub-section.  

6.2.3 3-DOF model and theoretical modal parameters 

6.2.3.1 Measurement of inertia parameters 

In order to establish a correct mathematical model, the first step is to obtain the precise 

inertial parameters. These parameters include the mass and rotational inertia of the steel plate, 

and the stiffness of the coil spring.  

The mass was the easiest parameter to measured, via a balance. The mass of the steel plate 

including the four accelerometers was � = 1.7138 ��. The moment of inertia of the steel 

plate can be calculated from its mass and dimensions. A schematic of the simplified 

suspension system was drawn, see Figure 6-5, to define the moments of inertia for pitching 

(�) and rolling(�). The long side (�) of the steel plate was defined as the direction of the � 

axis, the �  axis was defined as the direction of the short side (�), and �  axis was the 

direction of the thickness (�). Based on these definitions, the pitch inertia moment �� and 

the roll inertia moment �� can be calculated according to Equations (6-1) and (6-2).  

 �� =
�

��
(�� + ��) (6-1) 

 �� =
�

��
(�� + ��) (6-2) 

The results for �� and �� are: 

�� = 1.630 × 10���� ∙ ��; 

�� = 9.987 × 10���� ∙ ��; 

 
Figure 6-5 Schematic of the simplified suspension system 
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Another significant parameter in this test rig is the stiffness of the springs. As the employed 

spring is small in size, its stiffness can be measured according to Hook’s law: � = �∆�. The 

spring was suspended vertically, and a series of masses 50� were added as the load on the 

spring, as shown in Figure 6-6. The stiffness of the spring can be calculated according to the 

change of the measured spring length (∆�) after adding a known mass. The change of spring 

length and added mass were measured eight times, and the average calculated stiffness was 

� = 157.5�/�. 

 
Figure 6-6 Spring stiffness test 

6.2.3.2 3-DOF model and theoretical modal parameter calculation 

The theoretical modal parameters of the simplified suspension system can be calculated by 

developing a 3-DOF model and substituting the measured inertia parameters into the model. 

The 3-DOF model considered the bounce (�), pitch (�) and roll (�) of the steel plate shown 

in Figure 6-5. The dynamic equations of this 3-DOF model are given as follows, where the 

damping of the spring has not been taken into account: 

 ��̈ = −���� − ���� − ���� − ���� (6-3) 

 ���̈ =
�

�
(−���� − ���� + ���� + ����) (6-4) 

 ���̈ =
�

�
(−���� + ���� − ���� + ����) (6-5) 

Where ��, ��, ��,  ��  are the vertical response of the four accelerometers installed on the 

four corners of the steel plate. The following relationships can be obtained: 
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 �� = � +
�

�
� +

�

�
� (6-6) 

 �� = � +
�

�
� −

�

�
� (6-7) 

 �� = � −
�

�
� +

�

�
� (6-8) 

 �� = � −
�

�
� −

�

�
� (6-9) 

Where � is the distance along the � axis between the springs and � is the distance along the 

� axis between the springs, see Figure 6-4. Note that given the small size of the rig the 

relative differences between � and �, and � and � are significant, so care must be taken to 

use the correct values when calculating modal parameters.  

The stiffness of the four springs are ��, ��, ��,  �� in this system, it is assumed they are 

identical (�� = �� = �� =  �� = �) because these four springs are the same type and have 

nearly the same load. Based on these relationships, these three dynamic equations can be 

expressed in the format of Equation (3-1) by arranging the inertia parameters in a matrix. 

The mass and stiffness matrices can be expressed as:  

 � = �
� 0 0
0 �� 0
0 0 ��

� (6-10) 

 � = �
4� 0 0
0 ��� 0
0 0 ���

� (6-11) 

Then the state matrix of this system can be obtained according to Equation (3-6). Based on 

the state matrix, the theoretical modal parameters can be calculated, and the results are 

presented in Figure 6-7. It can be seen from Figure 6-7 that the bounce, pitch and roll modes 

corresponding to the 3-DOF of the model were successfully determined, and their resonance 

frequencies were found to be 2.73 Hz, 3.81 Hz and 4.53 Hz, respectively.  

 
Figure 6-7 Theoretical modal parameters of the simplified suspension system 
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In the following subsection, experiments will be conducted to evaluate the performance of 

the OMA method proposed in Chapter 4. 

6.2.4 Experimental results and analysis 

6.2.4.1 Experiment set-up 

As mention earlier, experiments were conducted on the simplified suspension system to 

identify the modal parameters via CoSS-SSI. The random inputs were given by a hammer 

with a rubber head, shown as in Figure 6-8. The randomness of the inputs includes the 

position and time of the excitations. That is to say, the hammer can deliver a vertical blow 

at any place on the steel plate, and the time interval between two consecutive blows was 

random.  

 
Figure 6-8 Photograph of excitation hammer 

The responses of the simplified suspension system under random excitation were collected 

by the four piezoelectric accelerometers shown in Figure 6-9. The specifications of these 

transducers are given in Table 6-1. It can be seen that the dynamic measurement frequency 

range of the employed accelerometer is wide, 0.5 Hz - 5,000 Hz. The resonance frequencies 

of the simplified suspension system are within the measurement range.  

 
Figure 6-9 Photograph of the four (CA-YD-185) accelerometers used 

Table 6-1 Specifications of the accelerometer 
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A dynamic data acquisition system (DAQs) with four channels was used for the test, see 

Figure 6-10. The DAQs was model 6231 manufactured by SINOCERA. Each of the four-

channels had an independent Analogue/Digital (A/D) converter with sampling rate up to 

96,000 Hz. The four channels of the DAQs are synchronised so that data acquisition can be 

simultaneous for all four channels. This DAQs is convenient for field tests as a USB 

connection with a laptop enables data transfer and power supply.  

 
Figure 6-10 Photograph of the four-channel data acquisition system 

For the accelerometers the sampling frequency was set at 2,000 Hz and sampling time was 

180 s for each test. The test was repeated four times, which means four datasets were 

generated as the inputs for modal parameter identification. The collected data and the modal 

identification results are presented in the following sub-sections.  

6.2.4.2 Characteristics of simplified suspension system responses 

An example of the measured response of the steel plate is presented in Figure 6-11, where 

the blue dashed line is the raw signal, and the red line is the signal filtered with a low pass 

Butterworth filter. The titles on the figure, front left, front right, rear left and rear right, refer 

to the positions of the accelerometers.  

In the time-domain signal, numerous pulses can be observed due to the random blows. The 

portion of the plots between 15s to 30s was magnified to allow easier observation of the 

characteristics of the filtered signal. It can be seen that the amplitudes of filtered signals were 

significantly decreased, especially the pulse responses. Moreover, it can also be observed 

that the responses at the four positions were almost identical, this was because the steel plate 

was of small size.  
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Figure 6-11 Responses of simplified suspension system in time-domain 

The PSDs corresponding to the filtered signals are presented in Figure 6-12. Two peaks can 

be observed in the PSD, around 2.7 Hz and 3.7 Hz, respectively. Figure 6-7, strongly 

suggests these two peaks are the first (2.73 Hz) and second (3.81 Hz) resonance frequencies. 

However, the third resonance frequency (4.53 Hz) cannot be seen in Figure 6-12. It is noted 

that the peak amplitudes at the four corners do differ slightly which is related to the mode 

shapes. The modal parameters will be identified in the following sub-section.  

 
Figure 6-12 PSD of the simplified suspension system responses 

6.2.4.3 Modal parameters of a simplified suspension system 

In this sub-section, the modal parameters of the simplified suspension system are identified 

via CoSS-SSI using the four datasets. According to the flowchart of CoSS-SSI (Figure 4-2), 

the first step is dividing each dataset into �  segments, here set equal to 21. Thus, 84 

segments of data were obtained, and then correlation functions were calculated for each of 

the 84 segments. The next step should categorise the 84 correlation signal segments into � 

subsets. However, the given suspension system is so simple, and with low damping, that it 
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can be considered a linear system, which allowed all the correlation signal segments to be 

categorised as one subset (� = 1).  

Then, following the flowchart of CoSS-SSI, the SD can be identified, and this is presented 

in Figure 6-13. The stable thresholds for Equations (3-53), (3-54) and (3-56) were set at 0.1, 

0.2 and 0.5, respectively. Three relatively stable modes are presented in the SD. These three 

stable modes were obtained by setting the second threshold at 70%, which was by dividing 

the number of stable points by the calculated maximum number of orders (see Equation (3-

57)), see Figure 6-14. The identified modal parameters are presented in Figure 6-15.  

 
Figure 6-13 SD identified by CoSS-SSI for the simplified suspension system 

 
Figure 6-14 Stable modes selected by the ratio of stable points 

 
Figure 6-15 Modal parameters of simplified suspension system identified by CoSS-SSI 

According to the identified mode shapes, the bounce, pitch and roll modes of the simplified 

suspension system were identified. Table 6-2 compares theoretical and identified modal 

parameters, but the damping ratios were not considered in the model. It can be seen from 

Table 6-2 that both frequency and mode shape were accurately identified. Moreover, it can 

be observed that the maximum errors in frequency and mode shape occurred for the third 
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mode (roll), because of the higher damping ratio, which was over 10%. Nonetheless, the 

maximum errors are still acceptable, which means CoSS-SSI has the capability of extracting 

modal parameters from highly damped systems. 

Table 6-2 Modal parameters identification errors of the simplified suspension system 

 

Based on the results and analysis, it can conclude that CoSS-SSI has provided outstanding 

enhancement of OMA, even for a system with high damping. In the next section, the 

performance of CoSS-SSI will be evaluated by a field test. 

6.3 Vehicle suspension system field test 

A Vauxhall Zafira, a compact Multi-Purpose Vehicle (MPV) with seven seats, as shown in 

Figure 6-16, was utilised in this field test. The Vauxhall Zafira is front-wheel drive by a 5-

cylinder petrol engine and its suspension is a conventional McPherson suspension, see 

Figure 6-1. In this test, a suspension fault was introduced by artificially changing the car’s 

tyre pressure which will change the stiffness of the tyre.  

 
Figure 6-16 Photograph of employed car for field test 

In this section, a 7-DOF lumped mass model for the tested car will be presented followed 

the experimental results and discussion. 
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6.3.1 7-DOF full vehicle model and theoretical modal parameters 

6.3.1.1 Kinematic equations of a vertical vehicle model 

The lumped mass model is widely used to investigate the dynamic behaviour of the vehicle, 

and a 7-DOF full vehicle model is developed in this section because pitch and roll modes of 

the car body have to be considered for the purpose of suspension system monitoring. The 7-

DOF includes bounce (��), pitch (�) and roll (�) of the car body just as in the 3-DOF model, 

but with the addition of bounce of the four wheels (��), see Figure 6-17. The kinematic 

equations developed on the basis of Newton’s law, are listed below [54], [153]. It is worth 

noting that this model is assumed symmetry about � axis because the centre of gravity of the 

vehicle is nearly on � axis according to the calculation in [54]. 

 
Figure 6-17 Schematic of the 7-DOF vehicle model [153] 

Bounce of car body [54], [153]: 

 

���̈� = − ��������� − ����� − ��������� − �����

                − ����(���� − ����) −  ����(���� − ����)

                 − ������̇��� − �̇���� − ���� ��̇��� − �̇����

             −����(�̇��� − �̇���) − ����(�̇��� − �̇���)

 (6-12) 

Pitch of the car body [54], [153]: 

 

���̈ = −������������ − ����� + ��������� − �����

                    +������̇��� − �̇���� + ���� ��̇��� − �̇�����

        +��[����(���� − ����) +  ����(���� − ����)

                     +����(�̇��� − �̇���) + ����(�̇��� − �̇���)]

 (6-13) 

Roll of the car body [54], [153]: 
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���̈ = −����������� − ����� + ����(���� − ����)

                     +������̇��� − �̇���� + ����(�̇��� − �̇���)�

           +����������� − ����� + + ����(���� − ����)

                      +���� ��̇��� − �̇���� + ����(�̇��� − �̇���)�

(6-14) 

Bounce of the four wheels [54], [153]: 

 
�����̈��� =  ��������� − ����� +  ������̇��� − �̇����

                         − ��������� − �����
 (6-15) 

 
�����̈��� =  ��������� − ����� +  ������̇��� − �̇����

                          − ��������� − �����
(6-16) 

 
�����̈��� =  ����(���� − ����) +  ����(�̇��� − �̇���)

                        − ����(���� − ����)
 (6-17) 

 
�����̈��� =  ����(���� − ����) +  ����(�̇��� − �̇���)

                        − ����(���� − ����)
 (6-18) 

Where ��� (� = ��, ��, ��, ��)  are the vertical responses of the front-left  (��) , front-

right (��), rear-left (��) and rear-right (��) corners of the car body; ��� (� = ��, ��, ��, ��) 

are the vertical responses of the wheels; ��� (� = ��, ��, ��, ��) are the road profile inputs 

for the four wheels. The meanings and values of other symbols are tabulated in Table 6-3. 

Table 6-3 Parameters of 7-DOF full vehicle model [54] 
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Moreover, the relationships between the displacement at the vehicle’s four corners and 

centre of gravity can be expressed as follows using the given symbols, where the angles of 

pitch and roll are considered small: 

 ���� = �� − ��� + �� (6-19) 

 ���� = �� − ��� − �� (6-20) 

 ���� = �� + ��� + �� (6-21) 

 ���� = �� + ��� − �� (6-22) 

On the basis of the kinematic equations and the displacement relationships, the 7-DOF 

vehicle model can be expressed in matrix format according to Equation (3-1). The mass (�), 

stiffness (�) and damping (�)matrices are presented in Equations (6-23), (6-24) and (6-25), 

respectively. 

According to equations (3-6) and (3-7), the state-space model of this 7-DOF vehicle model 

can be constructed, and this model can evaluate the vertical dynamical characteristics. 

� =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
�� 0 0 0 0 0 0

0 �� 0 0 0 0 0

0 0 �� 0 0 0 0

0 0 0 ���� 0 0 0

0 0 0 0 ���� 0 0

0 0 0 0 0 ���� 0

0 0 0 0 0 0 ����⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

  (6-23) 
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� =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

����� + ����

+���� + ����)

������� + �����

−��(���� + ����)

������ − ����

+���� − ����)
−���� −���� −���� −����

������� + �����

−��(���� + ����)

��
������ + �����

  +��
�(���� + ����)

�������� − �����

 −���(���� − ����)
−������−������−������−������

������ − ����

+���� − ����)

�������� − �����

−���(���� − ����)

������� + ����

+���� + ����)
−����� ����� −����� �����

−���� −������ −�����

����

+����
0 0 0

−���� −������ ����� 0
����

+����
0 0

−���� ������ −����� 0 0
����

+����
0

−���� ������ ����� 0 0 0
����

+���� ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (6-24) 

� =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

����� + ����

+���� + ����)

������� + �����

−��(���� + ����)

������ − ����

+���� − ����)
−���� −���� −���� −����

������� + �����

−��(���� + ����)

��
������ + �����

+��
�(���� + ����)

�������� − �����

−���(���� − ����)
−������−������−������−������

������ − ����

+���� − ����)

�������� − �����

−���(���� − ����)

������� + ����

+���� + ����)
−����� ����� −����� �����

−���� −������ −����� ���� 0 0 0

−���� −������ ����� 0 ���� 0 0

−���� ������ −����� 0 0 ���� 0

−���� ������ ����� 0 0 0 ���� ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (6-25) 

6.3.1.2 Theoretical modal properties of suspension systems 

The Frequency Response Function (FRF) of the 7-DOF full vehicle model can be calculated 

by substituting the parameters in Table 6-3 into the developed state-space model. The results 

are presented in Figure 6-18. It can be observed that the bouncing, pitching and rolling 

frequencies of the car body were around 1.5 ~ 2 Hz, and the bouncing frequencies of the 

wheels were around 12 Hz.  
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Figure 6-18 FRF of 7-DOF full vehicle model 

The mode shapes of the car body were calculated and are presented in Figure 6-19. The 

theoretical resonance frequencies for the bounce, pitch and roll were 1.53 Hz, 1.77 Hz and 

2.17 Hz, respectively; the corresponding damping ratios were 16.3%, 20.5% and 23.8%, 

respectively. In addition, it is worth noticing that the bounce mode was not totally horizontal, 

the rear part is lower than the front part. There are several reasons for this. Firstly, the centre 

of gravity of the car is not central; secondly, the stiffness of the front suspension is greater 

than the rear, which indicates that these results are reasonable. 

 
Figure 6-19 Theoretical modal parameters of the vehicle with healthy suspension systems 

Moreover, the theoretical modal parameters when the stiffness of front-left suspension was 

decreased by 50% were calculated using the 7-DOF full vehicle model. The results are 

presented in Figure 6-20. When compared with Figure 6-19, differences are apparent. We 

see all the resonance frequencies are decreased and the mode shapes changed significantly, 

especially the bounce mode. Such results indicated that modal parameters could be employed 

M
a

g
n

it
u

d
e

 



 Chapter 6 CM of road vehicle suspension systems using CoSS-SSI 

98 
 

for the CM of vehicle suspension systems. In the following sub-section, a field test is 

conducted to verify the performance of CoSS-SSI for vehicle suspension monitoring.  

 
Figure 6-20 Theoretical modal parameters of the vehicle with abnormal suspension systems (Stiffness of FL 

suspension decreased by 50%) 

6.3.2 Vehicle field test and result analysis 

6.3.2.1 Experiment set-up 

The same Data Acquisition System (DAQs) and transducers used with the simplified 

suspension system experiments, see Section 6.2.4.1, were employed in the road vehicle field 

tests. The accelerometers were installed on the car body, upon or close to the suspension 

connecting points. A schematic of the measurement system is presented in Figure 6-21(a). 

The DAQs was fastened on the car’s instrument panel via tape, and the accelerometers were 

fastened by ceramic glue which can provide high stiffness, see Figure 6-21(b).  

The field tests were carried out on a traditional country road near Huddersfield at times that 

were off-peak for traffic. During the tests the speed of the car was between 20 ��/ℎ to 40 

��/ℎ. The responses were collected for the car with a normal suspension system, and when 

the suspension was artificially changed by lowering the tyre pressure of the front-left tyre 

from 2.2 ��� to 1.5 ���. The tests were repeated four times for each suspension condition, 

driving the car along the same length of road and as close to the same speed as possible. Four 

data segments were acquired of length 240 s with a sampling rate of 2,000 Hz for each 

condition.  
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Figure 6-21 Schematic and photographs of the measurement system 

6.3.2.2 Characteristics of vehicle responses 

The four datasets were each divided into six segments (total of 24 segments each of 40 � 

duration) and the corresponding correlation signals calculated. An example of the divided 

data segment in the time domain is presented in Figure 6-22. The segment shows non-

stationary signals since the holes and humps were randomly located on the road, and the 

speed of the vehicle changed on account of the presence of other vehicles and traffic lights. 

Because the vehicle suspension is a nonlinear system it will also result in nonstationary 

responses, besides the measurement noise is inevitable in field tests. All of these factors will 

increase the difficulty of extracting the system’s modal parameters.  
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Figure 6-22 Vehicle response in time-domain as measured by accelerometers at the four corners 

The PSD corresponding to the time-domain signal shown in Figure 6-22 is presented in 

Figure 6-23. It can be seen that the main power of the signal was around 2 Hz, which resulted 

from the bounce of the car body. Secondly, there is a small but discernible peak around 12 

Hz  generated by wheel bounce. Thirdly, it is apparent that the peaks measured by the 

transducers placed at the front of the vehicle are smaller than those at the rear. The main 

reason for this is that the engine of this car is in the front and therefore, the front of the car 

is heavier than the rear. This arrangement could lead to the pitching of the vehicle, making 

it is easier to excite. This will be addressed in the following sub-sections. 

 
Figure 6-23 PSD of vehicle response at each of the vehicle’s four corners 
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6.3.2.3 Vehicle suspension under normal condition 

In this section, ACS-Cov-SSI and CoSS-SSI were employed to identify the modal 

parameters of the vehicle’s suspension system under normal operating condition. As 

mentioned earlier, all of the correlation signal segments were averaged over a time for ACS-

Cov-SSI; and for CoSS-SSI, the correlation signal segments were segregated into several 

subsets according to the amplitudes before the average step. In this case, the correlation 

signal segments were segregated into three subsets according to the amplitudes before the 

average step. The thresholds of the SDs were the same for the two methods:  �� = 0.1, �� =

0.2 and ���� = 0.5. The orders of the Hankel matrix were calculated from 12 to 48 while 

developing the SDs.  

The SD identified by ACS-Cov-SSI is presented in Figure 6-24. It can be seen that only one 

relatively stable mode appeared around 2 Hz. The rate of the stable points over calculated 

orders (see Equation (3-57)) are presented in the panel below the SD. Two modes can be 

identified when the threshold of rate of stable points was set at 45%. The modes identified 

by ACS-Cov-SSI and MAC are presented in Figure 6-25. The second mode around 12 Hz 

resulted from the bounce of wheels according to the FRF shown in Figure 6-18. The first 

mode which was around 2 Hz, was related to the suspension system. It can be observed that 

the first mode was a pitch mode, which was confirmed by calculating the MAC values. 

However, it can be seen that only the pitch mode, which was the most accessible mode, was 

identified by ACS-Cov-SSI.  
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Figure 6-24 SD identified by ACS-Cov-SSI and the rate of stable points 

 
Figure 6-25 Modal parameters identified by ACS-Cov-SSI and MAC values 

The threshold of the stable rate for the pitch mode was quite, below 50%. That means the 

reliability of the modal parameters identified by ACS-Cov-SSI is not so high. Therefore, 

CoSS-SSI was tested, and the results are presented below. 

As mentioned above, with CoSS-SSI the correlation signals were segregated into three 

subsets and therefore, three SDs were obtained during the identification process. The three 

SDs are presented in Figures 6-26(��), (��) and  (��). As can be seen, two relatively stable 

modes, around 2 Hz, were found, most clearly for the SD identified by the third subset (J=3). 

Both of these stable modes are related to the dynamic characteristics of the suspension 

system. The rates of the stable points over calculated orders are presented in Figures 6-26(��), 

(��) and (��) for each SD. The stable modes could be selected out when the threshold was 

set at 70%. The identified modal parameters are presented in Figure 6-27 on the basis of 

selection of high stable rates, and the corresponding MAC values as presented below.  
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Figure 6-26 SDs identified by CoSS-SSI and corresponding rates of stable points 

First of all, it can be seen from Figure 6-27 that only one mode was identified from the first 

subset when the threshold of state rate was 70%, and two modes were extracted from each 

of the second and third subsets. Secondly, it can be observed from the MAC values that the 

two modes identified from the second subset (J=2) are bounce and pitch. The frequencies of 

the identified bounce and pitch modes are 1.62 Hz and 2.18 Hz, respectively which, when 

considering the errors from model development and signal measurement, are in good 

agreement with the theoretical results (Figure 6-19). It can be seen that the bounce mode 

identified in the second subset has lower amplitude at the front which was also in line with 

the theoretical analysis.  
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Figure 6-27 Modal parameters identified by CoSS-SSI and corresponding MAC values when the suspension 

under normal condition 

However, both modes identified from the third subset were for pitch, the frequency of the 

first mode was 1.63 �� which is close to the bounce frequency. Such a result could be due 

to the difference in stiffness between of front and rear suspensions, when the suspensions 

suffer significant relative displacement. This as a good example to illustrate the non-linear 

effects of the suspension system and is one more reason why the stable modes in the SDs 

identified by CoSS-SSI were more stable than those in the SD identified by ACS-Cov-SSI. 

In summary, CoSS-SSI has successfully identified the bounce and pitch modes which are 

related to the vehicle suspension system where the stable rate has a high threshold. These 

two modes could be used for CM of the vehicle suspension system. However, it is noticeable 

that the roll mode was not identified by any of the OMA schemes used. Nevertheless, this is 

reasonable because the vehicle has an anti-roll system for safety purposes. Thus, the roll 

mode cannot be identified from when the vehicle is operated in normal condition, but it is 
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possible that it could be identified by collecting data on a car body’s response when the 

vehicle is travelling along a curve. 

6.3.2.4 Vehicle suspension under abnormal condition 

In order to verify the ability of CoSS-SSI for vehicle suspension system monitoring, a field 

test of the vehicle with a faulty suspension system was conducted. The suspension fault was 

introduced by decreasing the tyre pressure of the front-right wheel 2.2  ���  to 1.5 ��� . 

Otherwise the experimental setup was the same as for the experiment with healthy 

suspension. The same parameters were selected for CoSS-SSI as in Section 6.3.2.3.  

The identified SDs and the corresponding stable rates were as given in Figure 6-28. 

Comparing Figure 6-26 and Figure 6-28 shows the identified modes of the vehicle with an 

abnormal suspension system were not as stable as modes with the normal suspension system. 

Therefore, the threshold of the stable rate was set at 60%, which was lower than the 

identification with the healthy suspension system. However, it can be observed in Figure 

6-28(��) that the modes extracted from the third subset appeared extremely stable, similarly 

for Figure 6-26(��). Hence, the modal parameters identified from the third subset were 

utilized as the main reference for the diagnosis of vehicle suspension systems.  
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Figure 6-28 SDs identified by CoSS-SSI for fault suspension and corresponding rates of stable points 
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Figure 6-29 Modal parameters identified by CoSS-SSI and corresponding MAC values when the suspension 

under abnormal condition 

When the identified modal parameters presented in Figure 6-29 were compared with Figure 

6-27, the difference of the mode shapes identified in the third subset is evident. There is a 

lower level of response in the front-right corner. This could be the consequence of the 

decrease in pressure in the tyre on the front-right wheel. Specifically, the decrease in tyre 

pressure will lead to a reduction of wheel stiffness, i.e. suspension stiffness. The effects of 

stiffness reduction were illustrated by the decrease in value of the natural frequencies. 

On the basis of the above discussion, it can be concluded that CoSS-SSI has the capability 

to achieve road vehicle suspension monitoring using only car body responses.  

6.4 Findings 

In this chapter, experimental studies were conducted on the road vehicle to verify the 

performance of CoSS-SSI for CM of the suspension system. Initially, a simplified 
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suspension system was constructed for a primary investigation. A 3-DOF mathematical 

model was developed for this simplified suspension system. Then, vehicle field tests were 

conducted on a traditional countryside road during off-peak times. A 7-DOF full vehicle 

model was developed to investigate the theoretical dynamic performance of the suspension 

system. Based on the results presented in this chapter, the following conclusions can be 

drawn: 

1) CoSS-SSI has the capability to identify the modal parameters of the simplified 

suspension system; 

2) CoSS-SSI is superior to ACS-Cov-SSI in identifying modal parameters of road 

vehicle suspension systems when measuring the car body responses in a road test. In 

particular, the rate of the stable points in the SD identified by ACS-Cov-SSI is lower 

than the SDs identified by CoSS-SSI. Besides, CoSS-SSI has the capability to 

identify the bounce and pitch modes synchronously, but ACS-Cov-SSI can identify 

the pitch mode only. 

3) CoSS-SSI is a promising method to extract the modal parameters of the nonlinear 

system by dividing the response into several subsets according to their amplitudes. 

4) CoSS-SSI has the potential for successful online CM of road vehicle suspension 

systems. 

In the next chapter, the CoSS-SSI will be implemented to identify the modal parameters of 

a 1/5th scale bogie for online CM of railway vehicle primary suspension system, which has 

much more complicated excitations and greater nonlinearities than a car’s suspension system. 
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CHAPTER 7 CONDITION MONITORING OF RAILWAY 

VEHICLE SUSPENSION SYSTEMS BASED ON 

A 1/5TH SCALE BOGIE, USING CoSS-SSI  

This chapter explores the performance of CoSS-SSI when used for monitoring railway 

vehicle suspension via a 1/5th scale bogie. Initially, a 7-DOF model was constructed for the 

bogie to predict the target frequency range for the experiments. Experiments were carried 

out on the bogie with the primary suspension system subjected to different test parameters. 

Conventional OMA methods, like Cov-SSI and ACS-Cov-SSI, were utilised to identify the 

rigid modes of the bogie frame when the suspension system operated under normal 

conditions. The results show that CoSS-SSI was superior to both Cov-SSI and ACS-Cov-SSI, 

and was the only method of the three with the potential for online CM of railway vehicle 

suspension systems. 
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7.1 Introduction 

Many approaches to the CM of railway vehicle suspensions have been investigated by 

different researchers because suspension faults are extremely dangerous for an operating 

vehicle, and these reviewed in Section 2.2.2. However, few of the proposed methods have 

been verified by field tests because the cost of railway vehicle field testing is extremely high. 

Today, the roller rig is becoming popular for the investigation of railway vehicle dynamic 

characteristics and wheel-rail contact, because roller rigs can replicate numerous railway 

vehicle dynamics phenomena which could occur in practice [173]. Fortunately, experiments 

on a roller rig are flexible, easy to control and repeatable, and test instrumentation is 

relatively easy to set up and use.  

Roller rigs can be categorised into full- and scale-size. One of the most famous, a 1/5th scale 

roller rigs constructed at the University of Huddersfield, has been used to investigate the 

lateral dynamic behaviour of railway vehicles [174], the critical speed [175] and fault 

diagnosis of wheels [176], [177]. In this chapter, the same 1/5th scale roller rig was employed 

to examine the effectiveness of the proposed OMA method, CoSS-SSI, for the CM of 

railway vehicle suspension systems. The details of the roller rig are presented in the next 

sub-section.  

7.2 7-DOF model of 1/5th scale roller rig 

7.2.1 Roller rig introduction 

It is well known that the bogie is a critical component in the suspension systems of railway 

vehicles, it connects to the car body via a secondary suspension system and to the wheelsets 

via the primary suspension system. For the given rig, a 1/5th scale bogie was installed on 

rollers, as shown in Figure 7-1.  

This roller rig is composed mainly of: two wheelsets, a bogie frame, eight mount bushings 

and two rollers. A pair of mount bushings at each corner performed as the primary 

suspension system. The layout of the main parts of the scale roller rig can be seen in Figure 

7-1(b) which is the schematic of the side view. As can be seen, the two rollers are driven by 

a motor via a belt. The speed of the motor is continuously adjustable through a control panel. 

Two joints and a frame, see Figure 7-1(a), were employed to constrain the DOF of the scale 
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bogie in the longitudinal direction. In addition, two weights, each of mass 2 ��, were added 

on the centerline of the bogie frame to separate the bounce and pitch modes because these 

two modes would be extremely close together without loading the secondary suspension. 

However, the separation and identification of close modes is a great challenge, even for SSI 

which has a better close mode identification performance compared with other methods.  

The wheel profile of the wheelset was machined as British Rail (BR) P8 in proportion, and 

the roller profile was machined as the scale of BS110a rail profile with no cant [174]. 

Therefore, the response of the bogie frame was similar to the response of a real vehicle 

because the excitation from the roller and wheel contact is close to the real scenario. 

 

 
Figure 7-1 1/5th scale roller rig and schematic of the side view 

7.2.2 Model parameter estimation 

7.2.2.1 Primary suspension stiffness estimation 

In order to obtain accurate theoretical results, the parameters in the developed model are 

critical. The stiffness of the primary suspension is one of the most vital parameters 

determining the dynamic characteristics of a suspension system. Thus, the mount bushings 
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used were tested on a universal testing system. Then, other parameters, such as mass and 

moment of inertia, were obtained by using the measurement function of SOLIDWORKS, as 

present below.  

Three different types of mount bushings with different stiffness were employed in this study 

to simulate various fault scenarios. Figure 7-2 shows the mount bushings were all male to 

male with the same overall heights (� = 30 �� ), to fit the installation, but different 

diameters (�) and materials to obtain different stiffness and damping.  

 
Figure 7-2 Schematic and photographs of employed stud mounts 

According to their stiffness, the three mount bushings were categorised as normal, harder 

and softer. All were tested on a Universal INSTRON 3369 test machine as shown in Figure 

7-3, to obtain their force-displacement curves.  

 
Figure 7-3 INSTRON 3369 Universal Testing System 
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During the force-displacement tests, the same maximum compressive extension (3 ��) was 

loaded on the tested specimen under a speed of 2 ��/���, and the corresponding force on 

the specimen was measured. Each stud mount was loaded for three cycles and the measured 

force versus displacement (F-D) curves are presented in Figure 7-4 to illustrate the hysteresis 

effect. The magnitude of the maximum applied for the three sub-figures in Figure 7-4 was 

different to obtain the same degree of compression.  

From Figure 7-4 the hysteresis, which is a major characteristic of nonlinearity, of the mounts 

is clearly evident. However, the roller rig model is considered as a linear lumped mass, so 

the stiffness of the primary suspension should be a simple value. In this case, the stiffness 

was calculated when the deformation of the stud was around 1 ��, as produced by the 

weight of the bogie frame. The stiffness of the normal stud was  113 0.001⁄ = 1.13�5 �/�. 

As can be seen from Figures 7-4(b) and (c) the stiffness of the harder mount was about 

double that of the normal, and the stiffness of the softer mount was nearly half the normal.  

 
Figure 7-4 Force-displacement curves of mounts 
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It can be observed in Figure 7-5 that the mount was installed in an angle of  � 3⁄  to the 

vertical. Therefore, the stiffness of the normal primary suspension can be estimated as 2 ×

1.13�5 × cos( � 3⁄ ) = 1.13�5 �/�. In the suspension fault cases: (i) one of the normal 

mounts at the front-left (FL) corner was replaced by a harder mount, which resulted in the 

stiffness at the FL corner increasing by 50%; and (ii) both normal mounts at the rear-left 

(RL) corner were replaced by softer mounts, which resulted in the stiffness at the RL corner 

decreasing by 75%. 

 
Figure 7-5 Detail of mount installation (� =  � 3)⁄  

7.2.2.2 Mass and moments of inertia of bogie frame  

A 3D model was developed in SOLIDWORKS to determine the moments of inertia of the 

bogie frame, shown as in Figure 7-6. Firstly, the mass of the bogie frame was measured by 

a balance. Then, the mass was used as a reference to adjust the density of the 3D model. The 

moments of inertia of the bogie frame were then provided by subroutines within 

SOLIDWORKS. All of the measured parameters are tabulated in Table 7-1. The damping 

coefficients of the primary suspension and the contact stiffness were obtained from [176]. 

The referred nominations in Table 7-1 can be found in Figure 6-17. 

 
Figure 7-6 3D model of the bogie frame 
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Table 7-1 Specifications of the roller rig [176] 

 

7.2.3 Theoretical modal parameters of the 1/5th scale bogie 

The theoretical modal parameters of the scale bogie are calculated in this section via a 7-

DOF model. As mentioned earlier, only the rigid modes of the bogie frame were utilised for 

suspension monitoring. However, the flexural modes of the bogie frame could have 

significant effects on the results so these flexural modes were calculated to confirm whether 

or not they did have a significant effect on the rigid modes.  

7.2.3.1 Theoretical modal parameters of the 1/5th scale bogie 

The same 7-DOF model as developed in Section 6.3.1, see Figure 6-17, was used for the 

roller rig to consider bounce, pitch and roll of the bogie frame, and bounce of the four wheels. 

Thus, the kinematic equations are the same as Equations (6-12)-(6-25). The meaning and 

values of the symbols in these equations are as presented in Table 7-1. The theoretical rigid 

modes of the bogie frame can be obtained by substituting these values into the kinematic 

equations. The results are presented in Figure 7-7. It can be seen that the resonant frequencies 

for bounce, pitch and roll modes are 19.15 Hz, 20.1 Hz and 25.4 Hz, respectively. The 

corresponding damping ratios are 6.99%, 7.34% and 9.27%.  

 
Figure 7-7 Theoretical rigid modes of the bogie frame 
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7.2.3.2 Flexural modes of the bogie frame 

The flexural modes of the bogie frame were calculated using a Finite Element Model in 

ANSYS/Workbench software. Firstly, a 3D model of the bogie frame was developed using 

SOLIDWORKS. Then the 3D model was imported into the ANSYS/Workbench. The model 

was meshed into 9828 elements which included 21124 nodes.  

The first four flexural modes of the bogie frame are presented in Figure 7-8 and the 

corresponding resonant frequencies are 86.43 Hz, 111.42 Hz, 142.38 Hz and 284.70 Hz, 

respectively, and we can see that the modes have different shapes. Moreover, it is obvious 

that the resonant frequency of the first flexural mode is much higher than any of the resonant 

frequency of the rigid modes. The resonant frequency of the first flexural mode is around 

three times that of the first rigid mode so that the flexural modes of the bogie frame have 

little effect on the rigid modes. 

 
Figure 7-8 First four flexural modes of the bogie frame 

7.3 Experimental investigation 

In this section, experiments were conducted on the roller rig to investigate the effectiveness 

of CoSS-SSI for the monitoring of railway vehicle suspension system. The experiment set-

up is introduced, then, the bogie with healthy primary suspension system was tested. Last 

but not least, two cases of fault suspension were examined.  

7.3.1 Experiment set-up 

Four accelerometers and a four channels DAQs were employed in the test, which is the same 

arrangement as described in Section 6.2.4. The photograph of the accelerometers and DAQs 
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can be seen in Figures 6-9 and 6-10. Besides, the accelerometer’s specifications are in Table 

6-1. 

The accelerometers were installed on the four corners of the bogie frame, as shown in Figure 

7-1(a). The schematic of the measurement system can be found in Figure 6-21(a). During 

the test, the sampling rate was set at 1500 Hz. The frequencies of interested range from 15 Hz 

to 30 Hz, and therefore a sampling rate at 1500 Hz was an order of magnitude higher than 

that required by the Nyquist criterion. Selecting such a high sampling rate helped ensure the 

reliability of CoSS-SSI, however, the sampling rate could be set around 150 Hz in the real 

applications in order to enhance calculation efficiency, which is critical for online 

monitoring.  

In a real scenario, the responses collected from a railway vehicle will be for varying speeds 

which will be more complicated than for a constant speed. This is because the changing 

speed will lead to more severe, nonstationary responses. However, the scenario of varying 

speed is closer to the real operating conditions of a railway vehicle, which increases the 

challenge to suspension monitoring. The responses of the bogie under varying speed 

condition were collected in this experiment. 

7.3.2 Characteristics of roller rig responses 

The sampling length for each test was 40 s, and the experiment was repeated ten times for 

each condition when the suspension system was under the three different conditions. An 

example of the collected signal and the corresponding PSD is given in Figure 7-9. First of 

all, it can be seen that the amplitudes of the responses change with time, which means the 

speed of the roller rig has a significant effect on the magnitude of the responses. Secondly, 

it is apparent that the responses were nonstationary because of the nonlinearity of the 

suspension and the changing speed of the roller. Thirdly, it can be seen from the 

corresponding PSD that two major peaks can be observed at around 20 Hz and 26  Hz. 

According to the theoretical modal results these two peaks could result from the resonances 

in the bounce and roll modes, see Figure 7-7. However, the pitch mode (24.03 Hz) cannot 

be found in the PSD.  

It can also be seen that the amplitudes of the spectrums at the four corners are significantly 

different. The spectrum amplitudes of the signal collected from the Front-Right (FR) and the 
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Rear-Right (RR) positions are higher than the other two positions. One reason for such 

differences could be the coupling of pitch and roll modes since their resonance frequencies 

are quite close, 24.03 Hz and 25.4 Hz. We can observe different peaks in the spectrum, such 

as about 37 Hz, which is caused by various asymmetric excitations between the corners, 

nonlinearities in the suspension, wheel-rail contact, and even measurement deviations.  

 
Figure 7-9 Raw signals of roller rig responses and corresponding PSD (FL: Front-Left; FR: Front-Right; RL: 

Rear-Left; RR: Rear-Right) 

All of these phenomena confirm that to obtain an accurate result, minimising noise in the 

responses is necessary before carrying out OMA. The CoSS-SSI method has been proven to 

be a practical scheme to suppress such noise effects. Hence, it was employed here to extract 

the modal parameters. Cov-SSI and ACS-Cov-SSI were again used to confirm the 

superiority of CoSS-SSI. 

7.3.3 1/5th scale bogie with normal suspension 

In this sub-section, the data collected from the 1/5th roller rig was used to comprehensively 

evaluate the performance of CoSS-SSI as compared with Cov-SSI and ACS-Cov-SSI. With 

sampling rate of 1500 Hz, and time length was 40 s, the data length was 60,000 points for 

each test. For CoSS-SSI, the 60,000 points of data were divided into 14 segments, with each 

segment containing 4096 points (� = 4096) more than 50 periods of the lowest mode of 

interest. Then, the correlation functions of the four channels were calculated, and as the test 

was repeated ten times there were 140 segments of correlation functions. The thresholds of 

the SDs were the same for the three methods, which were �� = 0.1, �� = 0.2 and ���� =
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0.5; and the orders of the Hankel matrix were calculated from 12 to 82 while developing the 

SDs. 

For the Cov-SSI, the conventional OMA approach, only the signal collected from one test 

was utilised to extract the modal parameters. The identified SD and the corresponding rate 

of stable points are presented in Figure 7-10. Two relatively stable modes around 20 Hz and 

21 Hz can be seen in Figure 7-10(a). These two modes can be selected out when the threshold 

of the stable rate (�) , Equation (3-57), is set at 0.6, as shown in Figure 7-10(b).  

 
Figure 7-10 (a) SD identified by Cov-SSI and (b) Rate of stable points 

The frequencies, damping ratios and mode shapes of these two stable modes are presented 

in Figure 7-11(a). The MAC values of the modes are given in Figure 7-11(b). It can be 

observed from Figure 7-11(b) that the identified modes are bounce and pitch. The resonant 

frequencies of bounce and pitch are 19.97 Hz and 21.12 Hz, respectively. The differences 

between theoretical values and identified frequencies for bounce and pitch modes are 4.28% 

and 4.66%, respectively, which are acceptable. However, the roll mode was not identified as 

a result of the low noise suppression ability of Cov-SSI.  
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Figure 7-11 (a) Modes of bogie frame identified by Cov-SSI and (b)MAC values compared with theoretical 

mode shapes 

The SD identified by ACS-Cov-SSI is presented in Figure 7-12(a), and the corresponding 

stable rate presented in Figure 7-12(b). It can be seen that the most stable mode appears 

around 25.5  Hz . Two stable modes can be extracted from the identified SD when the 

threshold of stable rate (�), Equation (3-57), was set at 0.6, the same as for the threshold in 

the Cov-SSI. The identified mode shapes and corresponding MAC values were shown in 

Figure 7-13. 

 
Figure 7-12 (a) SD identified by ACS-Cov-SSI and (b) Rate of stable points 

 
Figure 7-13 (a) Modes of bogie frame identified by ACS-Cov-SSI and (b) MAC values compared with 

theoretical mode shapes 
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As can be seen in Figure 7-13(b), which is the MAC value of the identified modes, pitch and 

roll with frequencies of 20.55 Hz and 25.59 Hz, respectively. ACS-Cov-SSI failed to extract 

the bounce mode. The bounce mode could be identified if the stable rate threshold was set 

at 0.3, but in that case two false modes at around 10 Hz and 36 Hz were also identified. Such 

results show that the threshold value of the stable rate should be sufficiently high as to filter 

out the false modes and obtain reliable results. At the same time, the true modes have to be 

identified which means the stable rate for the true mode has to be increased, which is a 

challenge for OMA. The CoSS-SSI proposed in Chapter 4 has been shown to be a novel and 

efficient method able to meet this challenge. ACS-Cov-SSI averages all of the correlation 

signal segments into one. Where, as stated earlier, correlation signal with small amplitudes 

will make less contribution to the final identification results, while often containing 

information of modes with lower excitations or higher damping. 

Once again with CoSS-SSI, to extract the modes contained by small-amplitude correlation 

signals, the correlation segments were categorised into three subsets (� = 3) according to 

their amplitudes before the averaging operation. The number of subsets was determined by 

the required accuracy of identification and efficiency of the identification process. The 

results identified by CoSS-SSI are presented below. 

The SDs with respect to the three subsets are shown as in Figure 7-14(��), (��) and (��). The 

corresponding stable rates of each SD are presented in Figure 7-14(��), (��) and (��). It can 

be observed that the three stable modes appeared on the SDs compared to the two on the 

SDs identified by Cov-SSI (Figure 7-10) and ACS-Cov-SSI (Figure 7-12). As a result, the 

threshold of the stable rate for CoSS-SSI was set at 0.8 (� = 0.8), Equation (3-57), which 

is higher than the threshold for Cov-SSI and ACS-Cov-SSI. As mentioned earlier, a higher 

stable rate threshold means the identified results are more reliable.   
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Figure 7-14 (a) SDs identified by CoSS-SSI, and (b) Corresponding rate of stable points 
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The modal parameters extracted from the three subsets by CoSS-SSI are presented in Figure 

7-15(��), (��) and (��). The corresponding MAC values which compare the identified mode 

shapes with theoretical results are also shown, Figure 7-15(��), (��) and (��). In particular, 

it can be observed from Figure 7-15(��) that the bounce, pitch and roll modes of the bogie 

frame are successfully identified from the first subset. The results were confirmed in a further 

step and, as can be seen in Figure 7-15(��), the mode shapes extracted from the first subset 

by CoSS-SSI are largely in agreement with the theoretical mode shapes. In addition, it can 

be seen from Figure 7-15(��) and (��) that the bounce and pitch modes have been extracted 

from the second subset of correlation signal segments. Pitch and roll modes are identified in 

the third subset, shown in Figure 7-15(��) and (��).  

 
Figure 7-15 Modes of bogie frame identified by CoSS-SSI and corresponding MAC values compared with 

theoretical mode shapes 

In summary, the bounce, pitch and roll modes of the bogie frame which are related to the 

suspension system were successfully identified with high reliability by CoSS-SSI. Although 



 Chapter 7 CM of railway vehicle suspension systems based on a 1/5th scale bogie, using CoSS-SSI 

126 
 

the results identified by CoSS-SSI are not precisely identical with the theoretical modes, the 

differences are tolerable. 

It is worth to noting that the resonant frequency of the same mode as identified in different 

subsets is not entirely the same, there are small differences between the three subsets due to 

nonlinearities in the primary suspension. Furthermore, such a result can help explain why 

CoSS-SSI can provide much more stable SDs compared with ACS-Cov-SSI. Specifically, 

CoSS-SSI has the capability to reduce these nonlinearity effects, and therefore the SD is 

more stable. 

It is apparent that all the rigid modes of the bogie frame have been successfully identified by 

CoSS-SSI and accord with the theoretical predicted performance of the suspension system. 

Therefore, the identified modes can be used for the CM of the suspension systems. It is worth 

highlighting that the mode shapes could be employed as the main criterion for fault diagnosis 

because they are inherent properties of dynamic systems. Then, the identified resonant 

frequencies could perform as the secondary criterion since they could change in mass of the 

bogie frame, but not the performance of the suspension system. Besides, the damping ratio 

should not be used as a criterion for CM because it is a big challenge to accurately quantify 

its value, in either experimental modal analysis (EMA) or operational modal analysis (OMA). 

Last but not least, it is worth referring to the computation time required when employing 

CoSS-SSI for online CM. Here, a desktop computer with 8G RAM and four Intel(R) 

Cores(TM) of i5-2310 CPU was employed to carry out the computation. The computation 

time was counted by the tic/toc function in MATLAB. The result showed that 29.56 s was 

enough to obtain the final results, which is much shorter than the data length of a full set 

data which can be as much as 400 s. The computation time could be shortened further if the 

MATLAB program were converted into a C or C++ program which is computationally more 

efficient. Moreover, the sampling rate could be lower in a real application to further improve 

computation efficiency. All of these considerations suggest that CoSS-SSI has the potential 

for online CM.  

7.3.4 1/5th scale bogie with abnormal suspension 

The performance of CoSS-SSI has been demonstrated by its application to a 1/5th scale bogie 

with normal suspension system. In this section, the same scale bogie is used with an 
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abnormal suspension system to further test the performance of CoSS-SSI for CM of a 

railway vehicle suspension system. Two suspension fault cases were examined, where the 

faults were artificially introduced by changing the stud mounts at one corner, see Section 

7.2.2.1.  

7.3.4.1 Fault case 1: Aging of the rubber (harder mount) 

The first fault case was to simulate the ageing of primary suspension components by 

replacing the normal stud mounts with harder ones since the ageing will result in an increase 

in stiffness. As described in Section 7.2.2.1, one stud mount at the front-left (FL) corner was 

replaced with a harder one, which resulted in the stiffness of the FL corner being increased 

by 50%. Except the replacement of this single stud mount, the tests were the same as for the 

normal suspension, see Section 7.3.1.  

The modal parameters identified by CoSS-SSI are presented in Figure 7-16(��), (��) and 

(��), and the MAC values, in which identified modes are compared with theoretical results, 

are presented Figure 7-16(��), (��) and (��). It can be observed from Figure 7-16(��), (��) 

and (��) that the first mode identified in all three subsets is the bounce, and the second mode 

identified in the latter two subsets is the pitch and the third mode identified in only the last 

subset is the roll. 
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Figure 7-16 Modes of bogie frame with the harder suspension at FL corner identified by CoSS-SSI and 

corresponding MAC values compared with theoretical mode shapes 

As can be seen in Figure 7-16(��), (��) and (��), it is evident that the amplitude of the bounce 

modes in the front-left corner is smaller than for the other three corners. Such results are due 

to the increase in the stiffness of the front-left suspension. It can also be observed that the 

resonance frequencies of pitch and roll modes increased by around 2 Hz. Based on this 

analysis, it is possible to diagnose that the suspension system has a fault and place the fault 

at the front-left corner. 

7.3.4.2 Fault case 2: Fatigue of the rubber (Softer mount) 

The second fault case was to simulate the fatigue of the stud mount which would result in 

stiffness decrease. In this case, the two stud mounts at the rear-left (RL) corner were replaced 

with two softer ones, see Section 7.2.2.1, so that the stiffness of the rear-left suspension 

decreased by 75%. Except for the replacement of these two mounts, the tests were the same 
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as for the normal suspension, see Section 7.3.1. The modes identified by CoSS-SSI and the 

corresponding MAC values are presented in Figure 7-17.   

 
Figure 7-17 Modes of bogie frame with the softer suspension at RL corner identified by CoSS-SSI and 

corresponding MAC values compared with theoretical mode shapes 

As can be seen from the identified mode shapes shown in Figure 7-17(��), (��) and (��), the 

amplitude of displacement of the rear-left corner is larger than for the other three corners, 

which results from the stiffness reduction of the rear-left corner. Such a result compares well 

with the results obtained in Section 7.3.4.1, where higher stiffness resulted in smaller 

amplitude of displacement. It can also be observed from Figure 7-17(��), (��) and (��) that 

all three subsets identify pitch mode, even the second mode around 25 Hz identified in first 

and second subsets which should be roll. We do not observe bounce and roll modes. In other 

word, a rear-left suspension fault could lead to a change of mode shape which leads to the 

conclusion that CoSS-SSI has the ability to diagnose this suspension fault of the 1/5th scale 

bogie. 



 Chapter 7 CM of railway vehicle suspension systems based on a 1/5th scale bogie, using CoSS-SSI 

130 
 

7.4 Findings 

In this chapter, experimental studies were conducted on a 1/5th scale bogie to evaluate the 

performance of CoSS-SSI for CM of railway vehicle suspension systems. Initially, a 7-DOF 

model of the 1/5th scale bogie was developed to obtain the theoretical values of the rigid 

modes of the bogie frame. Then, experiments were conducted on the scale bogie for the 

primary suspension systems were under three stiffness conditions. Based on the numerical 

and experimental studies, the following conclusions can be drawn: 

1) The responses of the bogie are nonstationary because of the nonlinearities inherent 

in suspension and the wheel-track contact; 

2) Cov-SSI and ACS-Cov-SSI are unable to identify all of the rigid modes of the bogie 

frame, whereas CoSS-SSI has this capability, which demonstrates the superiority of 

CoSS-SSI for railway vehicle suspension monitoring;  

3) CoSS-SSI has the potential to fulfil online CM since its computational efficiency is 

high;  

4) CoSS-SSI was able to identify the two suspension faults seeded into the 1/5th scale 

bogie. 

In the next chapter, a full-size Y25 bogie will be employed to further verify the performance 

of CoSS-SSI for railway vehicle suspension monitoring in a further step. 
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CHAPTER 8 CONDITION MONITORING OF THE 

SUSPENSION SYSTEM OF AN Y25 BOGIE 

USING CoSS-SSI 

The purpose of this chapter is to further evaluate the performance of CoSS-SSI for railway 

vehicle suspension monitoring. An Y25 bogie was tested on a full-scale rig in the Institute of 

Railway Research at the University of Huddersfield. 

A SIMPACK model of the Y25 bogie was developed to calculate the theoretical modal 

parameters of the primary suspension system, which is helpful in determining the frequency 

range to be analysed in the experimental tests. Because the tested bogie was excited by the 

rotation of a rail drum, harmonics were unavoidable and cepstrum editing (CE), which was 

introduced in Chapter 5, was employed to suppress them. 

The results show that CoSS-SSI can extract the dynamic parameters of the primary 

suspension system of the Y25 bogie using the output signal only, which again demonstrated 

the capability of CoSS-SSI for railway vehicle suspension system monitoring. The 

effectiveness of CE for eliminating the adverse influence of harmonics on OMA was also 

evaluated during the experiments.  
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8.1 Introduction 

Roller rigs are popular laboratory devices used to investigate the dynamics of railway 

vehicles. They are easy to control, flexible to configure, produce repeatable and accurate 

results, and are cost-efficient compared to field tests [178]. Numerous roller rigs have been 

constructed worldwide based on different rules for different study purposes. The earliest 

roller rig was built in 1904 at Swindon by the Great Western Railway [173]. The 1/5th scale 

roller rig which was employed in Chapter 7 was constructed at Manchester Metropolitan 

University to investigate the dynamic behaviour of railway vehicles [174]. However, a 1/5th 

scale roller rig cannot perfectly represent the dynamic behaviour of a real vehicle in field 

tests, even though the scale roller rig was designed and built to realistically represent the 

input of track irregularities and vehicle dynamic performance [173].  

In order to further evaluate the performance of CoSS-SSI for railway vehicle suspension 

monitoring, additional experiments were carried out on a full-scale roller rig in the laboratory 

of Institute of Railway Research (IRR) laboratory at the University of Huddersfield (UoH). 

The main components of the full-scale rig were a 2  m  diameter rail drum with two 

circumferential rails, a bogie manipulation platform and a loading cell [179], as shown in 

Figure 8-1. The loading cell consists of a load frame and two actuators, which can provide 

vertical and roll motions on the test bogie through the secondary suspension. This roller rig 

can accurately represent the contact conditions between wheel and rail, which means the 

response of the bogie is close that of a field test.  



 Chapter 8 CM of the suspension system of an Y25 bogie using CoSS-SSI 

133 
 

 
Figure 8-1 Photograph of the full-scale roller rig in the IRR laboratory at UoH 

8.2 SIMPACK model of tested bogie 

The Y25 is popular for modelling the suspension of a freight wagon since it is robust and 

cheap. Here, a multi-body dynamic model is developed using a commercial software 

package, SIMPACK, to calculate the theoretical modal parameters of the bogie frame, which 

are related to the primary suspension. First SIMPACK is introduced briefly, then, the model 

which took into account the loading of the Y25 test bogie is presented and followed by the 

theoretical modal parameters of the primary suspension system. 

8.2.1 SIMPACK introduction 

SIMPACK is a powerful and popular general multi-body simulation software tool widely 

used for predicting and visualising the dynamic behaviour of mechanical or mechatronic 

systems by generating and solving virtual 3D models. SIMPACK includes several modules 

for specific areas such as bearing, wind turbines, and automotive and rail vehicles [103].  
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The rail module in SIMPACK has been used for railway vehicle simulation for more than a 

decade. It provides all the necessary functionality for creating accurate railway dynamics 

models. The most frequently used features in the rail module include the rail-wheel contact 

model, and many specialised modelling elements commonly used for research into railway 

vehicles, as well as an easy-to-use graphical user interface. SIMPACK has been 

demonstrated to be good at handling ‘stiff’ dynamic systems such as metal to metal 

wheel/rail contact and is uniquely suitable for shock contact [180]. All of these features have 

helped placing SIMPACK amongst the top dynamic simulation software used by the railway 

industry [180]. Therefore, SIMPACK was employed here as the simulation tool to consider 

the complicated system comprising the test rig. 

8.2.2 Y25 bogie SIMPACK model 

A model of a Y25 bogie is applied in this sub-section which considers the experimental 

boundary conditions to which the bogie is subjected. In particular, a model of the Y25 bogie 

on rails with vertical loads was developed within SIMPACK. The main components of the 

bogie model are: a bogie frame, two wheelsets, four axle-boxes, a load mass, primary 

suspension and secondary suspension systems, see Figure 8-2.  

 
Figure 8-2 SIMPACK model of Y25 bogie 

Standard and well-tested elements within SIMPACK were employed to simulate the 

behaviour of various components of the Y25’s suspension system, for instance: bearing 

forces by the 43rd force element (Bushing Cmp); to model the primary suspension and its 

behaviour, the 86th force element (Spring-Damper Ser/Par Cmp); and to model the secondary 

suspension the 79th (Shear spring Cmp) and 6th (Spring-Damper Serial PtP) force elements. 

The properties, masses and related moments of inertia of the suspension systems are 
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tabulated in Table 8-1 and Table 8-2, respectively, where the values are obtained from 

previous study [106], [107] and a SIMPACK rail training class. The moments of inertia of 

the load mass were zero as the load mass plays the role of placing a vertical load on the bogie, 

and ���, ��� and ��� are the moments of inertia of roll, pitch and bounce, respectively. 

Table 8-1 Main properties of the suspension system  

 

Table 8-2 Mass properties of the mass components 

 

The theoretical modal parameters of the rigid modes of the Y25 bogie related to the primary 

suspension system can be calculated using the Eigenvalue function within SIMPACK, and 

are presented in the following sub-section. 

More information, specifications and functions of the full-scale rig in the IRR laboratory can 

be found in [179]. 

8.2.3 Theoretical modal analysis 

All of the rigid modes of the Y25 bogie can be extracted from the developed SIMPACK 

model. Nonetheless, it is well known that only the modes of the bogie frame are related to 

the behaviour of the suspension system [96] and therefore, only the modes of the bogie frame 

are presented in Figure 8-3. 
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It is shown in Figure 8-3 that the first mode of the bogie frame is bounce and its resonance 

frequency is 11.42 Hz. The second mode is roll with a natural frequency of 13.59 Hz, and 

the third mode is pitch with a natural frequency of 14.77 Hz. The damping for each mode is 

shown in the figure. It can be seen that the interest frequency range is 10 Hz to 20 Hz.  

 
Figure 8-3 Rigid modes of bogie frame related to primary suspension  

8.3 Experimental investigation 

In this section, experiments were conducted on the full-scale rig to investigate the 

effectiveness of employing CoSS-SSI to monitor the railway vehicle suspension system. The 

experimental set up is introduced, and then the characteristics of collected data and the modal 

parameter identified by CoSS-SSI are presented.  

8.3.1 Experiment set-up 

CoSS-SSI was used to identify the modal parameters of the Y25 bogie in a manner similar 

to the process of identifying the modal parameters of the 1/5th scale roller rig, presented in 

Chapter 7. Four accelerometers were installed on the bogie frame upon the axle boxes, as 

shown in Figure 8-4. It can also be seen that another two accelerometers were mounted on 

the attachment of the axle box to measure the response of the axle box. The accelerometers 

were installed on the enclosure, not directly on the axle box because the space between axle 

box and bogie frame was insufficient for safe sensor installation. Besides, the enclosure was 

attached on the axle box via four long bolts, so the response of the enclosure was similar to 

that of the axle box because the condition for accurate transmission of a vibration signal is 

that the attachment is rigidly fixed to the axle box  
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Figure 8-4 Accelerometer installation positions on the Y25 bogie  

The end of the bogie over the rail drum was designated as the front, and the other end was 

the rear. The accelerometers installed on the bogie frame were denoted as Acc-FL (Front-

Left), Acc-FR (Front-Right), Acc-RL (Rear-Left) and Acc-RR (Rear-Right). The other two 

accelerometers installed on the axle box were denoted as Acc-AL (Axle-Left) and Acc-AR 

(Axle-Right). A schematic of the full scale test rig and accelerometer positions is presented 

in Figure 8-5, and the accelerometers are shown in Figure 8-6. 
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Figure 8-5 Schematic of the full-scale test rig and accelerometer positions 

Because six transducers were used for these tests the four channels DAQs employed in 

previous experiments was unsuitable. A SINOCERA model 6232B DAQs with sixteen 

channels was employed in the full-scale rig test, see Figure 8-6(a). These sixteen channels 

had independent Analogue/Digital (A/D) converters and a sampling rate of up to 96,000 Hz. 

All channels of the DAQs are synchronised, which means the data acquisition process can 

be synchronised. Given the frequency range of interest the sampling rate was set at 1,000 Hz. 

The tests were repeated six times.  

The four accelerometers installed on the bogie frame were those employed previously, and 

their details can be found in Table 6-1. The specifications of additional two accelerometers 

were given in Table 8-3. A photograph of the accelerometers is presented in Figure 8-6(b) 

and (c).  
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Figure 8-6 Photograph of (a) YE6232B DAQs (b) CA-YD-185 accelerometers (c) YMC 121A20 

accelerometers 

Table 8-3 Specifications of accelerometers YMC 121A20 

 

8.3.2 Loading profile and response analysis 

8.3.2.1 Loading profile of the load cell 

The data utilised in this study was collected when the rig was operated for other test purposes, 

so it is worth briefly discussing the loading profile of the hydraulic load cells in the control- 

side and driven-room sides shown in Figures 8-4 and 8-5. Using the hydraulic driven load 

cell, the tested bogie can be loaded in two ways. The first is to set a maximum load, and the 

second is to set the maximum displacement of the load cell. The second loading strategy was 

employed in this case, and the load profile and the corresponding loads were as presented in 

Figure 8-7. The load cell, with zero load, was kept in its original position (568 mm) for the 

first 78 s. Then, at constant speed, the displacement of the load cell increased from 568 mm 

to 628 mm in 60 s. The load cell then returned to its original position during the following 

60 s. It can be seen that the load cell keeps in line with the change of its displacement.  
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Figure 8-7 Load profile and corresponding load force during the test 

It is worth noting that the system became time-varying when the load cell started increase 

the load on the test bogie. It can be seen that the slope of load-time plot changed at around 

105 s (about 17 s after the load cell commenced moving), which resulted from a change in 

the primary suspension stiffness as the innerspring was engaged. This phenomenon showed 

the test rig was a time-varying system. However, as this is a preliminary study to demonstrate 

that OMA can be used for railway vehicle suspension monitoring, the test bogie was 

considered as a time-invariant system. Therefore, the bogie responses without load applied 

by the load cell were used in the following identification process. Specifically, the data 

segment considered relevant was the response from 14 s to 74 s, because during the first 14 s 

the rotation speed of the rail drum increased from zero to 55 rpm, after which the speed was 

maintained constant until 210 s. The responses of the first 14 s were neglected as the speed 

of the rail drum was not constant. The characteristics obtained from analysis of the given 

data segment will be presented in the following sub-section.  

8.3.2.2 Characteristics of the Y25 bogie responses 

The relevant data segment, from 14 s to 74 s, was cut from the collected data and time 

domain signal of the first five seconds is presented in Figure 8-8. First of all, it can be 

observed that the amplitudes of axle box vibrations are higher than for the bogie frame, this 

is due to the attenuation provided by the primary suspension system. However, this 

attenuation alone cannot provide the comfort requirement of a railway vehicle, and so 
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secondary suspension is usually employed in passenger vehicles. Secondly, it is noticeable 

that the responses of the front bogie have higher amplitudes than the rear because the front 

wheelset was directly excited by the rail drum. Thirdly, it can be observed from the time-

domain signal that the bogie was excited by periodic pulse inputs which were caused by the 

junctions on the rail drum. Fourthly, the amplitudes of responses from accelerometers on the 

left were slightly higher than from those on the right which could be due to the installation 

errors.  

 
Figure 8-8 Example of a time-domain signal of bogie response 

More information from the responses can be found from the frequency-domain, presented in 

Figure 8-9. The analysed frequency range was 0~21 Hz as the interested frequency range is 

between 10 Hz and 18 Hz according to the result of the simulated modal analysis.  
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Figure 8-9 Example of a frequency-domain signal of bogie response 

It can be seen in Figure 8-9 that the amplitudes of the spectrum at integral multiples of 

3.65 Hz were higher than other frequencies, where 3.65 Hz is related to the rotational speed 

of the rail drum. The rotational speed of the rail drum was measured and shown it was 

between 54~55 rpm, which means the rotational frequency was between 0.9~0.92 Hz. But, 

the rail drum contains four junctions, and therefore, the period pulse excitation frequency 

would be at, or very close to, 3.65 Hz. This periodic excitation generates large amplitude 

peaks in the spectrum at integral multiples of 3.65 Hz. Moreover, it can be seen that there 

are some small peaks, which are multiples of 0.91 Hz, between the higher peaks.  

Because of the power of this periodic pulse, the resonance frequencies of the system cannot 

be observed. Nevertheless, it can be observed from Figure 8-9 that the amplitudes of the 

peaks caused by the rotational frequency also change, which could result from modulation 

of the system’s resonance frequencies, such as the pulse amplitude of the front bogie at 14.6 

Hz is higher adjacent peaks. Lastly, it is worth highlighting that the collected signals 
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contained harmonic components as the excitation is a rotational part and the manufacture 

and installation errors are unavoidable.  

8.3.3 OMA via CoSS-SSI combined with cepstrum editing 

In this section, the data segments cut from the raw data were employed to identify the modal 

parameters related to the primary suspension system. As the superiority of CoSS-SSI has 

already been demonstrated in Chapter 6 and Chapter 7, only CoSS-SSI was utilized in this 

chapter to extract the modal parameters. We also know that CE can efficiently remove 

harmonic effects that adversely affect OMA. Therefore, CE was employed here to filter the 

signal before using CoSS-SSI for OMA. 

8.3.3.1 Cepstrum editing before OMA 

The process of CE can be found in Section 5.2. Similar to the simulation studies in Section 

5.3, a short-pass lifter was employed to edit the cepstrum. An example of the cepstrum, 

window function and edited cepstrum is presented in Figure 8-10(a). It can be observed that 

all the periodic components were filtered out using the short-pass lifter. An example of the 

raw signal and the recuperated or filtered signal is presented in Figure 8-10(b). As can be 

seen in Figure 8-10(b) that the main difference between the raw signal and filtered signal is 

their relative amplitude. The amplitude of the filtered signal was reduced significantly by a 

factor of about 40, because the periodic component in the original signal contained most of 

the power of the signal.  

 
Figure 8-10 (a) Example of cepstrum; (b) Example of raw and filtered signals in the time-domain 
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A comparison of raw and filtered signals in the frequency-domain is given in Figure 8-11. 

The periodic frequencies resulting from the rotation of the drum have been successful filtered 

out. It can also be seen that the amplitude of the filtered signal was heavily reduced, which 

is in agreement with the time-domain signal.  

 
Figure 8-11 Example of raw and filtered signals in the frequency-domain 

8.3.3.2 CoSS-SSI identification results 

In this sub-section, the collected signal before and after filtering was employed to identify 

the modal parameters and to verify the effectiveness of CE for OMA in the presence of 

harmonics, and offer further confirmation of the results regarding CoSS-SSI presented in 

Chapter 6 and Chapter 7.  

The sampling rate during the test was 1,000 Hz, and the time length over which data collected 

from each test was 60 s. Thus for both filtered signal and original signal, the employed data 

segment included 60,000 data points for each test. In accord with the CoSS-SSI flowchart 

(Figure 4-2), the 60,000 data points were divided into eight segments and the length of each 

segment set to 7168 points (� = 1024 ∗ 7). The divided data segment contained about 70 

periods of the first mode which is needed to suppress noise effects.  

Consequently, 48 data segments were obtained as the test was repeated six times, and 

therefore 6*8 correlation signal segments were obtained. As previously, the correlation 

signal segments were categorised into two subsets (� = 2) according to their average RMS 

value. The number of subsets was selected according to the number of total segments and 
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their minimum and maximum RMS values, and considering the balance between the 

calculation efficiency and identification accuracy. Then, each subset of correlation segments 

was averaged and used to conduct modal identification.  

The SDs identified by CoSS-SSI using the raw signal and filtered signal are presented in 

Figure 8-12 and Figure 8-13, respectively. The error thresholds of the stable points were set 

at the same value for identification process using either raw or filtered signals, which were 

�� = 0.1, �� = 0.2 and ���� = 0.5. The formulas for these error thresholds can be found in 

Section 3.3.4.   

As can be seen in Figure 8-12, stable points are rare and most of the stable points are 

distributed around pulse responses. If the threshold of the rate of stable point over maximum 

orders was set at 0.5, none of the stable modes could be identified. Such results could lead 

to domination by the harmonic effects, according to the simulation studies conducted in 

Chapter 5. However, it can be observed from Figure 8-13 that three relative stable modes 

were identified in these two subsets, which indicated the effectiveness of CE to remove the 

harmonic effects.  

 

 
Figure 8-12 SDs identified by CoSS-SSI using raw signal 
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Figure 8-13 SDs identified by CoSS-SSI using filtered signal 

The stable modes identified from the filtered signal are presented in Figure 8-14 when the 

threshold of the stable rate of stable points over maximum calculated order was set at 0.5 

(� = 0.5). The mode shapes of the different modes selected out from the SDs are presented 

in Figure 8-15.  

 
Figure 8-14 Rate of stable points over maximum calculated orders 
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Figure 8-15 Rigid modes of Y25 bogie frame identified by CoSS-SSI 

Firstly, it can be seen from Figure 8-15 that the mode shapes identified from the two subsets 

are similar, but the resonance frequencies have small differences. Secondly, it can be 

observed that the first identified mode (~ 11.06 Hz) is bounce, the third mode (~ 15.00 Hz) 

is pitch, and the fourth mode (~ 18.3  Hz) could be roll. This result is in line with the 

frequency domain characteristics of the bogie responses. It can be seen in Figure 8-9 that the 

amplitudes of frequencies around 10.95 Hz, 14.6 Hz and 18.25 Hz are higher as a result of 

resonance frequency modulation. Thirdly, it can be seen that the frequency of the second 

identified mode is close to the resonance frequency of pitch; the mode shape is also close to 

pitch mode. This result is explained as being caused by the nonlinearity of the vehicle 

suspension system. Fourthly, it is observed that the roll mode is not as regular as the bounce 

and pitch modes. Such a result is because only one of the wheelsets of the bogie was excited 

by the rail drum. In this excitation condition, the pitch mode is easy to excite, but the roll 

mode is hard to excite because the left and right excitations and loads on bogie are nearly 

the same.  
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In summary, it can be seen that CoSS-SSI successfully identifies the bounce, pitch and roll 

modes of the bogie frame with the assistance of CE to remove harmonic effects. The 

identified modes are related to the behaviour of the primary vehicle suspension system and, 

consequently, the identified modes can be utilised to monitor the condition of the primary 

suspension system of a railway vehicle. Although the Y25 bogie with faulty primary 

suspension was not tested in this study due to experimental limitations, the effectiveness of 

CoSS-SSI for suspension system fault diagnosis has again been demonstrated by accurate 

identify the modal parameters of health suspension. In a word, CoSS-SSI could be a reliable 

and achievable approach for railway vehicle suspension online CM. 

8.4 Findings 

In this chapter, experiments were conducted on a full-scale rig in the IRR laboratory to 

investigate the performance of CoSS-SSI for railway vehicle suspension monitoring. A 

SIMPACK model of the tested Y25 bogie was developed to obtain the theoretical modal 

parameters of the primary suspension system. CE was employed to remove harmonic before 

using OMA. Based on the results and analysis, the following conclusions can be drawn: 

1) CE is an effective approach to remove the influence of the harmonic on OMA; 

2) CoSS-SSI can identify the bounce, pitch and roll modes of the bogie frame, which 

are related to the primary suspension system of an Y25 bogie, using the response 

signal only.  

It is intended that the Y25 bogie with a faulty suspension system will be investigated to 

verify the performance of CoSS-SSI for CM of railway vehicle suspension systems. The 

final purpose will be to apply the proposed method to an operational vehicle to contribute to 

enhancing vehicle safety. 
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CHAPTER 9 CONCLUSIONS AND FUTURE WORK 

First, this chapter reviews the aim and objectives proposed in Chapter 1, and summarizes 

the achievements according to the stated aim and objectives. Second, the conclusions drawn 

from this research project are presented. Third, the contributions made by this research to 

knowledge are given. Last but not least, the chapter provides some recommendations for 

future work in this field of study.  
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9.1 Thesis objectives and achievements 

The research aim was to develop an effective and robust onboard CM approach which 

allowed online monitoring of vehicle suspension systems. A novel development of OMA, 

denoted as CoSS-SSI, has been proposed and successfully tested on a road vehicle, a 1/5th 

scale and a Y25 bogie to analyse and identify vehicle suspension dynamics for the purpose 

of online monitoring.  

All of the objectives proposed in Section 1.3 have been achieved: 

Objective 1: To perform a comprehensive literature review of CM techniques which 

highlights their applications to vehicle suspension monitoring. 

Achievement 1: The significance of CM and common CM technologies were reviewed. A 

detailed appraisal of existing methods for vehicle suspension system monitoring has been 

presented, and it was found that an online monitoring method is needed for practical 

application. On this basis, vibration analysis, which is the most popular technology for CM 

on account of its robustness and cost-efficiency was selected for use in this project. The 

common vibration signal processing techniques were reviewed including time domain, 

frequency domain and time-frequency analysis. 

Objective 2: To review existing OMA techniques and their applications to identify their 

advantages and disadvantages. 

Achievement 2: The existing OMA techniques and their applications were reviewed in 

detail. The common OMA methods can be categorised as frequency-domain and time-

domain methods. The popular frequency domain OMA methods include FDD, EFDD, LSCF 

and Poly-LSCF. However, it was found that frequency domain OMA methods are weak in 

the extraction of close modes. The popular time domain OMA methods can be divided into 

single-stage methods like ARMA, and two-stage methods such as LSCE, ERA and Cov-SSI. 

The two-stage method gives better noise reduction than the single-stage method. Besides, it 

has been found that the robustness of SSI is superior to other OMA methods as SSI was 

developed on the basis of linear algebra theory. Therefore, Cov-SSI was selected as the 

fundamental algorithm to be used for modal identification of vehicle suspension systems in 

the presence of nonstationary responses with high noise levels. 
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Objective 3: To present a novel OMA method to enable the application of OMA in vehicle 

suspension system dynamic identification based on the framework of SSI. 

Achievement 3: The literature review found the main gaps stopping the employment of 

OMA for vehicle suspension monitoring were the assumptions of white noise excitation and 

a linear system. A novel OMA method, denoted as CoSS-SSI, intended to overcome these 

difficulties was proposed to identify the dynamics of vehicle suspension systems for online 

suspension monitoring. The effectiveness of CoSS-SSI was evaluated by a 3-DOF vibration 

system, and the results show that this novel OMA method has the potential to achieve vehicle 

suspension online monitoring.  

Objective 4: To review OMA in the presence of harmonics and evaluate the performance of 

CE for removing harmonic effects.  

Achievement 4: The presence of harmonics is a common problem when using OMA, and 

has occurred in full-scale roller rig experiments. The conventional approaches for removing 

harmonic effects on OMA are reviewed and it was found that cepstrum editing is the 

preferred method for full-scale roller rig experiments. A quarter vehicle model with periodic 

pulses, harmonics and random excitations was used to evaluate the performance of cepstrum 

editing for eliminating the effects of harmonics on OMA results. The results showed that 

pulse train had no influence on OMA, and cepstrum editing is an excellent means of 

removing harmonic effects in OMA.  

Objective 5: To assess the performance of the novel SSI method which was presented in 

this thesis for road vehicle suspension monitoring. 

Achievement 5: The effectiveness of CoSS-SSI was first evaluated on a simplified 

suspension system, and then field tests were conducted on a traditional countryside road near 

Huddersfield, UK. The results indicated that CoSS-SSI had the ability to identify the modal 

parameters of the vehicle suspension system as detected by accelerometers installed 

appropriately on the car. It was demonstrated that CoSS-SSI can identify the suspension fault 

of a wheel with abnormally low tyre pressure. 

Objective 6: To evaluate the performance of the novel SSI method which was presented in 

this thesis for railway vehicle suspension online monitoring. 
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Achievement 6: A 1/5th scale bogie on the roller rig was utilised to evaluate the performance 

of CoSS-SSI for online CM of a railway vehicle primary suspension system. A 7-DOF 

mathematical model of the scale roller rig was developed to calculate the theoretical modal 

parameters. The theoretical modal parameters played the role of determining the frequency 

range of interest in the experimental study. In order to provide a relatively accurate 

theoretical value, the components of the primary suspension were tested to obtain the force-

displacement curve. The 1/5th roller rig with healthy and faulty primary suspension systems 

was tested. The experiment results showed that CoSS-SSI can achieve the online monitoring 

of the suspension system of the railway vehicle.  

Importantly, experiments conducted on a full-scale roller rig with an Y25 bogie again 

confirmed CoSS-SSI for the successful online monitoring of railway vehicle suspension 

systems. 

9.2 Conclusions 

Overall, from the theoretical and experimental investigations conducted in this thesis, the 

following key findings or conclusions can be drawn: 

Conclusion 1: The suspension system plays a decisive role in determining vehicle safety, 

comfort and driving performance. An online CM system is desired to enhance vehicle safety 

with the rapid and significant speed increases of the modern vehicles, especially autonomous 

and railway vehicles.  

Conclusion 2: OMA is a powerful and achievable approach for conducting CM either for 

mechanical systems or buildings, and that SSI is an excellent and fruitful method to enhance 

the performance of OMA.  

Conclusion 3: CE is effective in filtering out the effects of harmonic excitation on OMA. 

While pulse train input had no influence on OMA. 

Conclusion 4: The novel OMA method, proposed in this thesis, named CoSS-SSI, has the 

capability to extract the modal parameters of a 3-DOF vibration model with extremely low 

SNR and strong nonstationary responses. Moreover, it was shown that the performance of 

CoSS-SSI is better than other conventional OMA methods, i.e. Cov-SSI and ACS-Cov-SSI. 

This capability is critical in selecting CoSS-SSI for vehicle suspension system monitoring.  
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Conclusion 5: The experimental study showed that CoSS-SSI was able to accurately 

identify the modal parameters of a simplified suspension system (in Chapter 6) by using the 

car body responses as determined at the four corners. It was shown that CoSS-SSI is feasible 

means to identify the condition of the road vehicle suspension system. Furthermore, the 

abnormal tyre pressure of one wheel was detected via CoSS-SSI. It showed that CoSS-SSI 

can extract the modal parameters of a nonlinear system by categorising the correlation 

function of responses into different subsets. 

Conclusion 6: A 7-DOF model can represent the vertical dynamic characteristics of a bogie. 

The resonance frequencies of the bounce, pitch and roll modes of the bogie frame of the 

tested 1/5th scale bogie were found to be 19.15 Hz, 24.03 Hz and 25.4 Hz, respectively.  

Conclusion 7: CoSS-SSI can identify the dynamic characteristics of the primary suspension 

system of the tested 1/5th scale bogie using the responses measured at the four corners of the 

bogie frame. It has been proved that the primary suspension faults, such as ageing and fatigue 

of the suspension components, can be detected by CoSS-SSI and the computational time 

shows that such detection can be online.  

Conclusion 8: CoSS-SSI can identify the rigid modes of the bogie frame of the Y25 bogie 

which are related to the primary suspension system by using the signals provided by four 

accelerometers mounted on the bogie frame close to the axle boxes. In other words, CoSS-

SSI can be applied to monitor the status of railway vehicle suspension systems.  

9.3 Novelty and contributions to knowledge 

The novelty and contributions to knowledge of this research are highlighted and listed as 

follows:  

Contribution 1: The main novelty of this thesis is the development and testing of CoSS-

SSI method. It makes conventional SSI applicable to nonstationary and nonlinear systems. 

In addition, it is very robust to noise such as occurs with online monitoring of the condition 

of vehicle suspension systems. It overcomes the limitation of SSI due to the assumption of 

a linear system with white noise excitation. 

Contribution 2: In implementing CoSS-SSI for monitoring the suspension system of on-

road vehicles, the success in determining the main modes reveals for the first time that the 
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road excitation has high degree of nonstationary and nonlinear effect. This finding will 

provide more supports for develop more accurate models that are traditionally taken as 

stationary processes in vehicle dynamics.  

Contribution 3: OMA has been, for the first time, applied to monitor a railway vehicle 

suspension system. It shows that CoSS-SSI is a promising approach to achieving online 

monitoring of railway vehicle suspension systems even highly nonlinear systems with 

complex excitation sources. 

9.4 Future work  

While a great deal of preliminary work for online monitoring of vehicle suspension systems 

has been done in this research, further study in this research area would be useful, especially: 

Recommendation 1: Conduct a railway vehicle field test to verify the effectiveness of the 

proposed method under “real conditions”. Any experiment with a railway vehicle with a 

seeded fault in the suspension should, of course, be conducted under safe conditions. 

Recommendation 2: Optimize the sensor position to achieve simultaneous monitoring of 

the primary and secondary suspension systems of railway vehicles. Both the primary and 

secondary suspension systems can be considered as parts of a whole vibration system. 

Recommendation 3: Explore the possibility of using wireless sensors during the test to 

simplify the measurement system, especially in field tests. The frequency range of interest 

for the suspension is usually low, which means the required sampling rate of the wireless 

sensor is readily achievable. 

Recommendation 4: Investigate the lateral dynamics of the railway vehicle, which is also 

significant to railway safety. This could be part of monitoring the condition of the lateral 

components of the suspension system. 

Recommendation 5: Employ existing sensors such as the sensors in the Anti-Lock Braking 

System (ABS) of modern vehicles, to measure the required parameters for CM of the 

suspension system and identification of possible faults. 
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