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𝑏 mm Semi-axis of the contact area (lateral direction) 

𝑏′ mm Approximate semi-axis of the contact area (lateral direction) 

𝐶𝑖𝑗 - Kalker’ creep coefficients 

𝑐𝑤 N.s/m Modal damping constant 

𝐷 1/m Combined principal radius of curvature 

𝐸′ Pa Combined elasticity modulus 

𝐸 Pa Elasticity modulus 

𝐸(𝑚) m Elliptical integral of the first kind of modulus 

𝐹𝑁 N Normal contact force 

𝐹𝐿 N Lateral force 

𝐹𝑉 N Vertical force 

𝑓 Hz Frequency 

𝐺 1/Pa Modulus of rigidity 

𝐻 1/m Combined radii of curvature 

𝐾(𝑚) m Elliptical integral of the second kind of modulus  

𝑘𝑤 N/m Modal stiffness 

𝑚 - Modulus 

𝑚𝑤 kg Modal mass of wheel roller 

𝑛 - Number of nodal diameters 

𝑃𝑚 MPa Maximum contact pressure 

𝑃 MPa Normal contact pressure 

𝑅𝑥1 m Wheel rolling radius (longitudinal direction) 

𝑅𝑦1 m Wheel rolling radius (lateral direction) 

𝑅𝑥2 m Rail rolling radius (longitudinal direction) 

𝑅𝑦2 M Rail rolling radius (lateral direction) 

u  Reduced radius of curvature ratio 
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𝑣𝑥 - Lateral creepage 

𝑣𝑦 - Longitudinal creepage 

𝑣𝑠𝑝𝑖𝑛 - Spin creepage 

  Angle of attack 

𝛾  Ratio of contact ellipse 

µ - Adhesion coefficient 

 - Damping ratio 

𝑥 m Longitudinal/rolling direction 

𝑦 m Lateral/transverse direction 

𝑧 m Vertical direction 
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Abstract 

The railway industry is currently investing in condition monitoring techniques to be able to 

compete with other transportation mediums. One of the reasons for this investment is to be able to 

identify the incipient development of curve squeal in railway systems. The annoying high-pitched 

tonal noise produced because of curve squeal has necessitated the need for mitigation measures to 

be taken by railway operators. However, noise from the surroundings and other trains has affected 

the conventional use of microphones for monitoring curve squeal in tight curves. It is imperative 

that the railway industry introduce additional sensors to help in the characterization and 

identification of curve squeal in railway track as the train negotiates the curve. 

The objective of this research is focused on the evaluation of condition monitoring performances 

using vibrations obtained from the wheel/rail roller and sound obtained remotely close to the 

wheel-rail interface to identify and characterize curve squeal. By the completion of the 

comparative studies, this research has resulted in a number of new findings that illustrate the 

significant contributions to knowledge. This research presents the application of correlation 

method to establish a reliable relationship between acoustic and sound for the detection and 

characterization of curve squeal on the twin disc rig. The sensors used to detect and characterize 

curve squeal are microphone and two accelerometers installed laterally on the wheel and rail roller 

rims. The contact conditions taken into consideration are dry contact, wet contact and friction 

modifier contacts. A MATLAB model was developed to detect and characterize curve squeal. The 

results of the simulated model showed some disparities between the simulated transition yaw 

angles and measured transition yaw angles for which curve squeal occurs. Time and frequency 

domain were employed to extract the features from the sensors. Correlation method was employed 

to classify the features extracted from the microphone and accelerometer data. The results obtained 

showed that a negligible or weak correlation coefficient value indicates the development of curve 

squeal on the twin disc rig in dry contact conditions. A moderate or strong correlation coefficient 

values   is an indication of no curve squeal occur or curve squeal mitigation when contaminants 

(water and friction modifiers are introduced to the wheel-rail interface). The performance of the 

Correlation method for determining and classifying fault feature (curve squeal) extracted from the 

microphone and wheel/rail accelerometers has presented some useful qualities that makes it 

suitable in a real condition monitoring application system.   

 



XIX 

 

Acknowledgement 

I am indebted to the University of Huddersfield for granting me the opportunity to conduct and 

complete this research work. I am particularly grateful to me main supervisor, Prof. Andrew Ball 

for his relentless efforts, encouragements, suggestions and guidance throughout this research work. 

His unflinching support and patience helped me overcome the various obstacles I faced during my 

PhD degree.  

I am also indebted to Dr. Fengshou Gu for his eagerness and willingness to provide me with all 

the equipment required to conduct and perform experiments on the test rig. I am also indebted to 

all the staff at the Railway Research institute at the University of Huddersfield, particularly Prof. 

Simon Iwnicki for his consent to use the twin disc rig for my research. He was supportive in 

providing all new wheel and rail rollers CAD dimensions for my research work.  

Finally, I am particularly grateful to my family for their support and encouragement throughout 

my research work. Their help and advice were of profound help to me. I would like to express my 

profound gratitude to my colleague and friend, Roy Ngigi for his encouragement and confidence 

in my work. He continually challenged me to develop my own ideas and in so doing complete this 

research work. 

 

 

 

 

 

 

 

 

 

 

 

 

 



XX 

 

Copyright 

1. The author of this thesis owns any copyright in it and he has given the University of 

Huddersfield the right to use for any administrative, promotional, educational and/or 

teaching learning process. 

2. Copies of this thesis, either in full or in extracts, may be made only in accordance with the 

regulation of the University library. 

3. The ownership of any patents, design, trademarks and any and all other intellectual 

property right except for the copyright and any reproduction of copy right, which may be 

described in this thesis, may not be owned by author and may be owned by third parties. 

Such intellectual property rights and reproductions cannot and must not be made available 

for use without the prior written permission of owners of the relevant intellectual property 

right and/or reproduction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



XXI 

 

Declaration 

No portion of the work presented in this thesis has been submitted in support of an application for 

another degree or qualification of this or any other university or other institute of learning. 

 

 

 

 

 

 

 

 

 

 

 

 



1 

 

Chapter 1 – Introduction 

This chapter presents an overview of curve squeal monitoring and methods that used to mitigate 

this phenomenon. Condition monitoring of the wheel-rail contact is important in other to 

understand, model, measure and mitigate curve squeal. Most condition monitoring systems 

developed to monitor curve squeal have been applied in the railway industry today. These systems 

focus on measuring and characterising sound, vibration and wheel-rail contact forces emanating 

from the wheel-rail contact especially as the railway vehicle negotiates the curve. Some of the 

advantages and disadvantages of the condition monitoring systems developed are presented and 

discussed in this chapter. The research conducted in this thesis presents an opportunity to address 

some of the difficulties encountered in actually measuring and mitigating curve squeal.  In 

addition, the placement accelerometers on the wheel web rather than the rail track as is used in 

the industry is discussed. The aims and objectives of the thesis is presented and arranged to study 

the research problem. The thesis layout is also presented. 
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1.1 Background on noise generation in the railway industry   

In recent times, railway is regarded as one of the most convenient methods for transporting goods 

and people. Due to their low carbon dioxide (CO2) emission levels, railways are considered as an 

ecologically welcoming means of transportation compared with other forms of transportation in 

the world today. According to the latest EU-28 report conducted in 2017, railways account for 

0.5% of greenhouse gas (GHG) emissions from transportation mode alone in 28 European Union 

member states making it the one of the greenest form of transportation (European Environment 

Agency, 2017).  

 

Figure 1.1: Breakdown of greenhouse gas (GHG) emissions transportation in Europe 

(European Environment Agency, 2017).  

 

Despite the low GHG emissions associated with railways when compared with other means of 

transportation, noise is regarded as an important phenomenon to study and mitigate in present 

railway systems environment. With the growing development of railways systems (metro systems 

and trams) in areas of high population density, it is imperative that the underlying theory and 

mechanisms of railway noise is studied and investigated. Railway noise could be regarded as 

environmental pollution due to its impact on public health (WHO, 2011). Several researches have 

given understanding to the theories that lead to railway noise and ways to mitigate it. However, 
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the cost and maintenance of railway operations further increase with addition of noise mitigation 

measures. Higher costs are incurred because there are different sources of noise. However, wheel-

rail contact forces are known to lead to different types of noise such as rolling noise, flanging 

noise, curve squeal, and ground borne noise. Other sources of noise in railways include, power 

unit noise and aerodynamic noise. It is imperative to note there is no universal standard for 

mitigating any these noise hence each type of noise must be studied individually (Thompson, 

2009).  

Rolling noise is the most prevalent type of railway noise in the industry. It is caused by excitation 

of wheel-rail contact forces due to wheel-rail roughness. As roughness develops on the wheel and 

rail, vertical force oscillations develop which then sets the wheel and rail into vibration. The 

vibrations of the wheel and rail lead to radiation of sound. This kind of noise illustrated in Figure 

1.2 can be mitigated by applying wheel dampers, re-profiling the wheel and rail grinding. However 

no matter how much mitigation measures that are applied, rolling contact noise is always 

predominant in railway vehicles as long as it is moving on the track (Thompson, 2009).  

  

 

Figure 1.2: Rolling noise produced from rail and wheel roughness  

 

Another important type of railway noise that is the concern of this thesis is curve squeal. Curve 

squeal, is a high-pitched tonal screech noise that originates in curve sections of the track. Unlike 

the wheel-rail rolling noise, curve squeal is caused by tangential wheel-rail contact forces 

developed on the wheel-rail contact point. These forces excite the bending oscillations of the 

wheels which is responsible for large wheel amplitude vibrations that are radiated into the 

environment as high pitched sound (Railway noise Technical Measures Catalogue, 2013).  
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Mitigation measures for curve squeal is increasing becoming an important point of discussion for 

railway vehicles, railway operators, administrators, and traffic operators. However, the necessary 

tools to validate new railway designs and tracks by manufacturers is necessary to understand the 

prediction of sound (Thompson, 2009). One of the most widely used commercial tools available 

in the railway industry today is Track-Wheel Interaction Noise Software (TWINS) software 

(Thompson et al., 1999). This software is based on the frequency-domain approach; hence, it is 

limited in processing time information for wheel and rail cases that do not have discrete 

irregularities.  

Despite the plethora of commercial models developed to model curve squeal, the results obtained 

from these models do not usually coincide with experimental results due to several uncertainties 

and non-linearities. It is therefore necessary to develop a robust condition monitoring system 

targeted towards understanding curve squeal phenomenon and methods of mitigating this 

phenomenon. This would enable policy makers in the railway industry to set limits on curve squeal 

levels and enable better curve squeal simulation tools to be developed.  

 

1.2 Introduction to curve squeal phenomenon 

Curve squeal is one of the most annoying form of rolling noise that occurs in a typical railway 

system. It is defined as the high-pitched tonal noise observed when the train negotiates a tight 

curve. The term ‘tight curve’ is defined in accordance to the curve radius-wheelbase (R-W) of the 

railway vehicle. The R-W bogie ratio is a good indicator to detect curve squeal. Although the 

recommended R-W ratio for curve squeal occurrence is R-W < 200, it has been observed that curve 

squeal occurs for ratios of R-W greater than 200 (Remington, 1987) (Rudd, 1976) although 

sparingly. Table 1.1 show the occurrence of curve squeal for various radius track sections as 

defined (Thompson, 2009): 

 

Table 1.1: Guide for occurrence of curve squeal in railways 

R  500 m No curve squeal 

200 m < R < 500 m Intermittent occurrence 

R  200 m Common occurrence 
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Despite the fact that the mechanism and theory or curve squeal has been studied for several years 

now, its underlying cause is still yet to be fully understood. Some research carried out concluded 

the self-excited vibration of the wheel modes in its dominant mode produces curve squeal. From 

literature, it has been observed that there are two major causes of curve squeal, mode coupling and 

negative slope friction. It is established that the leading wheelset on a train when negotiating a 

sharp curve has a very large yaw angle relative to its forward motion. When this occurs, curve 

squeal is observed due to the developed lateral sliding velocity at the wheel-rail contact 

(Thompson, 2009).  

The radiated sound because of curve squeal is dominated by a single frequency usually ranging 

from 250 Hz – 10 kHz. With very high sound pressure levels of up to 130 dB, curve squeal is 

regarded as one of the loudest types of railway noise. Also, with the large number of sharp curves 

in urban areas, a considerable proportion of the population are exposed to squeal noise. This could 

be detrimental to public health in the society (Thompson, 2009), (Glocker et al., 2009), (Koch et 

al., 2006). In addition, the tonal nature of curve squeal leads to excitation of the modal frequencies 

of the axial wheel modes and higher harmonics of the corresponding wheel modes.  

These scenarios define the non-linear nature of curve squeal (Koch et al., 2006). The wheel radiates 

the highest amount of sound since it has a higher vibration response than the rail. Several factors 

lead to or cause curve squeal and they are regarded as energy input to the system (Thompson and 

Jones, 2002), (Thompson, 2009). These factors include lateral creepage, differential longitudinal 

slip and flange rubbing (Rudd, 1976). However, in several field observations and laboratory 

measurements, it was discovered that flange rubbing and differential longitudinal slip are not 

responsible for curve squeal. According to (Liu and Meehan, 2013), the wheel can actually squeal 

due to the presence of lateral creepage. This singles out lateral creepage as the main cause of curve 

squeal and the main energy input source. 

The normalized relative velocity between the wheel and the rail divided with the rolling velocity 

is defined as creepage. The three creepages developed in the wheel-rail contact include the 

longitudinal creepage (𝑣𝑙𝑜𝑛𝑔), lateral creepage (𝑣𝑙𝑎𝑡) and spin creepage (𝑣𝑠𝑝𝑖𝑛). They can be 

defined as: 

𝑣𝑙𝑜𝑛𝑔 =
𝑣𝑥

𝑊 − 𝑣𝑥
𝑅

𝑣
 (1.1) 
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𝑣𝑙𝑎𝑡 =
𝑣𝑦

𝑊 − 𝑣𝑦
𝑅

𝑣
 (1.2) 

𝑣𝑠𝑝𝑖𝑛 =
𝑧

𝑊 − 𝑧
𝑅

𝑣
 (1.3) 

 

where the superscript index W represents the wheel and superscript R represents the rail. Spin 

creepage arises because of the wheel-rail contact angle (wheel conicity) and the yaw velocity of 

the railway vehicle during negotiation of the curve. Longitudinal creepage occurs as a result of the 

acceleration, braking and longitudinal differential slip during negotiation of wheelsets on the 

curve. The lateral creepage is generated because of angle of attack (yaw angle) formed by the 

wheelset on a curved track in the rolling direction. The longitudinal and lateral creepage are 

responsible for the building up of the tangential wheel-rail contact forces necessary for curving, 

braking and acceleration (Kalker, 1990).  

In railway curves, it is observed that the leading wheelset tends to run into the flange contact on 

the outer wheel. This hypothesis was previously propounded as the major cause of curve squeal 

due to the rubbing of the outer wheel flange on the outer rail gauge corner. However, laboratory 

tests carried out on a roller rig observed that curve squeal reduces by 10 dB at flange contact. This 

effect was noticed as wheel in a laboratory test on the twin disc rig. Hence it was concluded that 

the outer wheel does not lead to curve squeal as a result of lateral flange contact while the inner 

wheel is regarded as the largest radiator of curve squeal (Liu and Meehan, 2013). This was also 

confirmed by (Kim et al., 2019) through field experiments on curved sections of the track that 

squeal noise is generated from the inner wheel tread/rail head contact and flange noise is produced 

from the outer wheel flange/rail gauge corner contact as illustrated in Figure 1.3.  



7 

 

 

Figure 1.3: Contact locations of a typical wheelset on a curved track 

 

Hence it is agreed in literature that lateral creepage is the main cause of curve squeal at the wheel-

rail contact (Thompson, 2009), (Liu and Meehan, 2013). When the bogie negotiates the curve 

track, misalignment is observed between the wheel and rolling velocity. This leads to the 

development of angle of attack (yaw angle). As a result of the angle of attack (yaw angle) 

developed between the tangential direction of the rail and the rolling velocity, the inner wheel 

experiences a significant lateral creepage leading to the development of lateral force developed on 

the inner rim of the wheel. The oscillating lateral force developed causes the wheel to vibrate in 

resonance. This results in radiation of large sound of which the consequence is curve squeal.  

Despite the fact that lateral creepage is the main cause of curve squeal, other mechanisms that 

influence curve squeal generation include local kinematic parameters of the wheel-rail contact, 

wheel modal parameters and wheel-rail contact friction (Liu and Meehan, 2013). They would be 

discussed in the next section.  

 

1.2.1 Other causes of curve squeal 

For curve squeal to occur, some other mechanisms interplay together. The most common 

mechanisms of curve squeal include wheel modes geometric coupling and creepage dependent on 

friction curve.  
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Geometric coupling is regarded as one of the mechanism responsible for development and 

persistence of curve squeal. It occurs between the degrees of freedom of the system thus leading 

to stick-slip oscillation in the system. In geometric coupling, two stiffness are at least required to 

model the couple of for example a single degree of freedom system. These stiffness are used to 

describe the coupling of the vertical and lateral displacements and the development of the 

corresponding forces (Jiang et al., 2015). The coupling ability of the system is affected by 

instability and the friction coefficient especially if it is above the required set point value. This 

mechanism was investigated and simulated by (Pieringer, 2014), (Glocker et al., 2009) and (Brunel 

et al., 2006). For railway wheels, several geometric couplings could be present for a single mode, 

which could arise because of close proximity of modal frequencies, and more wheel modes. The 

number of wheel modes depends on the properties of the wheel, friction and contact position of 

the wheel on the rail. According to the investigation carried out by (Glocker et al., 2009) three 

modes were discovered to be present with similar modal frequencies for curve squeal to occur or 

be present. (Pieringer, 2014) found out that the geometric coupling leads to asymmetry in the 

stiffness matrix of the system.  

Creepage dependent on friction curve has been investigated in literature as a major mechanism 

responsible for curve squeal. The phenomenon was discovered by (Rudd, 1976). In his paper, he 

proposed that the falling friction curve is the main cause of curve squeal. He described this 

phenomenon as negative damping that leads to self-induced stick-slip oscillations in the wheel rail 

contact thus resulting in curve squeal. This implies that the falling friction slope is a function of 

the slip velocity and the friction coefficient. Also measurement results taken in (Remington, 1987), 

(Thompson, 2009) shows a decrease in the friction coefficient with increasing creepage. When the 

tangential forces reach the static friction limit µmFz, where Fz is the vertical contact force and µm 

is the maximum friction coefficient. As observed in Figure 1.3, as the slip (s) increases, the friction 

coefficient (µ) decreases. This process continues until a restoration force of the wheel decreases 

below the value of the frictional force. When this occurs, stick is re-established in the wheel-rail 

contact and the friction force increases until it reaches the static friction limit.  
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Figure 1.3: Illustration of friction law dependent on slip velocity for increasing slip velocity 

for decreasing friction coefficient 

 

1.2.2 Measures for mitigating Curve squeal 

Several measures for mitigating curve squeal have been applied in railways. They include the use 

of lubricants, design of asymmetric rail profiles, narrowing rail gauge, special bogie design and 

wheel damping. 

Lubricants are one of the most widely used measures for mitigation of curve squeal. They are used 

to either lower the friction coefficient or change the shape of the friction curve (Railway noise 

Technical Measures Catalogue, 2013). Care is usually taken when using lubricants to avoid making 

the friction coefficient too low, which could affect traction and braking performance of the railway 

vehicle. In the railway industry, friction modifiers are used to control the shape the adhesion curve. 

They are usually applied either on the wheel and rail surfaces to mitigate curve squeal, minimize 

wheel flanging noise, reduce wheel-rail wear and minimize rail corrugation in curves (Railway 

noise Technical Measures Catalogue, 2013), (Arias-Cuevas et al., 2010), (Curley et al., 2015).  

According to (Kim et al., 2019) as the wheelset passes the curved track, lateral creep force is 

generated. The relationship between the friction coefficient and the lateral creep ratio based on the 

contact between the railway track and the train is illustrated in Figure 1.4. The characteristics of 

the wheel and the rail based on the material and geometry results is observed. The friction 

coefficient increases with increase lateral creep. In dry contact conditions, when the friction 

coefficient reaches its maximum value, it decreases as the creepage increases. 
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Figure 1.4: Creep force-creepage characteristic curve (Kim et al., 2019) 

 

Special bogie designs are used for also for improving the curving behaviour of railway vehicles, 

thus reducing lateral creepage and mitigating curve squeal. Several designs such as independent 

wheel axles, steerable axles, active steering and tilt control have been applied (Thompson, 2009), 

(Railway noise Technical Measures Catalogue, 2013). 

Wheel damping (see Figure 1.7) have been used previously to reduce rolling noise of the wheel 

and mitigate curve squeal. It involves applying materials (aluminium plates, cast iron plates) on 

the wheel web to minimize geometric coupling of the wheel modes, minimize wheel vibrations 

amplitudes. (Thompson, 2009) proposed that wheel damping could mitigate curve squeal. 

However, several control field tests carried out observed that wheel damping did not eliminate 

squeal. (Squicciarini et al., 2015) and (Cigada et al., 2008) concluded that the use of resilient 

wheels (damped wheels) did not minimize curve squeal as a result of the vibro-acoustic nature of 

damped wheels. In the study, it was discovered that the wheel mode amplitudes where not damped 

enough to mitigate curve squeal. This study showed that the correct determination of the wheel 

damping value is necessary since small values lead to high variations of the radiated sound for 

small variation and large values of wheel damping do not affect the radiated sound from the wheel. 

(Thompson, 2009).  
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(a) (b) 

Figure 1.7: Different types of wheel damping treatments for curve squeal (a) Wheel 

tuned damper (b) Wheelset section fitted with constrained layer damping (Thompson, 

2009) 

 

1.3 Introduction to condition monitoring for railway vehicles 

Condition monitoring in used to investigate the performance of a system while it is functioning. It 

also entails the periodic or continuous valuation of a machinery component or vibratory system 

while it is in operation. Condition monitoring allows scheduled maintenance or other steps to be 

carried out to prevent results of failure in a system. It is therefore, more cost effective than to allow 

the system to fail in operation. Some of the main aims of condition monitoring are for fault 

diagnosis, fault prediction, ensure safety at work place, improve production by reducing downtime, 

and encourage improved management of spare parts required for systems.  

Noise and vibration signal obtained from a vibratory system usually contain crucial information 

about the running condition of the system. While noise is measured by proximity to the external 

surface of the material at a distance, vibration is measured on the surface of the vibratory system. 

The advantage of noise measurements over vibration is that acoustic signals can be measured at 

sufficient distances far from the vibratory system using microphones while vibratory sensors 

would need to be mounted on the surface for vibration measurement. It is therefore beneficial in 

some situations to measure the sound emanating from the system without having contact with the 

system and then correlate it with the health of the system, which would not have been possible 

using vibration sensors. However, the disadvantage of using acoustic sensors for measurement is 

Tuned dampers installed on 

the wheel web 

Constrained layer damping 

installed on both sides of the 

wheel web 
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that they pick up spurious noise very easily from the environment. Therefore, special care must be 

taken to ensure that only the acoustic sound from the vibratory system is measured and analysed 

and any unwanted noise identified and removed using signal processing methods.  

Condition monitoring is defined as the process of monitoring certain parameters in a system so as 

to identify drastic change that is indicative of developing fault. Condition monitoring allows 

scheduled maintenance, and other actions to be taken to avert damages to a system. In a typical 

condition monitoring system, sensors are used to acquire data about the parameters of the system. 

There are several types of sensors which include strain gauges, microphones, accelerometers, 

ultrasonic transducers and so on. Measured data from these sensors are processed to aid in better 

comprehension of the system conditions. Signal processing techniques differ depending on the 

data acquired from the sensors. The next phase of a condition monitoring system is to provide 

strategy for maintenance depending on the signal processing results obtained (Ngigi et al., 2011). 

In the railway industry, the strategy for maintenance depends on the type of condition monitoring 

system. The condition monitoring systems differ depending on the sensor types utilized. Sensors 

could either be installed inside the railway vehicle or on the wayside. (Ngigi et al., 2011) 

highlighted the key signal processing techniques that are used in railway industry. A summary of 

the techniques mentioned include visual inspection, acoustic emission, noise and vibration and 

ultrasonic methods.  

Visual inspection of the wheels and rails was usually carried out by trained industrial. This method 

relied on the expertise of the personnel to characterize and identify anomalies in the wheel and 

rail. Noise and vibration spectra are widely used in railway industry to identify faults in the 

wheelset, curve squeal, wheel flats, out of roundness of the wheel and cracks in the wheel rim. The 

vibration sensors are usually installed on the rail track while noise is monitored using microphones 

installed at strategic locations close to the track. This method provides better advantages compared 

to the visual inspection method. Acoustic emission is utilized in the industry to monitor faults in 

the axle box and wheel bearing. Measurements conducted on the wheelset without faults is used 

as a baseline to compare with faulty wheelset. Ultrasonic methods are widely used in the railway 

industry to identify cracked wheelset axles and to characterize the size and shape of the wheel-rail 

contact patch area. They have also been applied to monitor railway track faults (Ngigi et al., 2011).  
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1.3.1 Introduction to condition monitoring of curve squeal 

Curve squeal is one of the most disturbing and loudest noise in railways. It is usually a strong tonal 

high frequency noise dominated by a single frequency that occurs in curved sections of the track. 

It is a consequence of intense vibrations of the wheel and the rail structure interaction resulting in 

radiation of sound. Condition monitoring of curve squeal in the railway industry involves the use 

of sensors installed at certain locations on the trackside. Microphones and accelerometers are the 

most widely used sensors used to monitor curve squeal. Microphones are installed at defined 

locations on the curved trackside to measure curve squeal as the railway vehicle negotiate the 

track. Accelerometers in some cases are installed on the rail to monitor its lateral vibrations and 

thereby identify curve squeal.  

However, due to the random nature of curve squeal, it is difficult to predict which wheel will squeal 

in any given train pass on the curved track as a result of interaction of several variables. To tackle 

this problem, accelerometers are installed underside each rail. By comparing the levels of vibration 

for each wheel, the difference in 10dB proved to be a reliable indicator to determine which rail 

curve squeal occurs in the curved track. In addition, optical sensors installed on the wheel and 

matched with noise measurements from the microphone proved useful in the identification of 

which wheel is squealing in the railway vehicle. According to (Squicciarini et al., 2015), if curve 

squeal is not monitored and mitigated, it can result to wear in the wheel rail interface as well as 

noise pollution. Poor wheel and rail profiles produced as a result of excessive curve wheel can 

result in high stresses that can cause other kinds of defects to occur such as rail corrugation and 

wheel flats. The consequence of these problems is increase in emissions and fuel consumption of 

the railway vehicle.  

 

1.4 Aim and scope of research work 

The aims of this research work are to develop a reliable relationship between vibration and sound 

measurements in characterizing and identifying curve squeal using Correlation method. The 

developed method would mainly address curve squeal developed on the wheel and identify how it 

can be mitigated. To ascertain the suitability of the Correlation method, employed in a condition 

monitoring system, its performance would be investigated using a scaled Twin disc rig operated 

at varying contact conditions. The contact conditions include dry, wet and friction modifier 
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contacts. The condition monitoring system would be investigated and simulated using four variable 

wheel speeds and one loading conditions.  

 

1.5 Objectives of research work 

To achieve the aims mentioned in the previous section, the following objectives are stated with 

emphasis on the main research aim: 

(1) Gain understanding of condition monitoring of curve squeal using vibration and acoustic 

based signal processing tools.  

(2) To further detail the disadvantages of traditional signal processing and methods for analysis 

of in time and frequency domains and identify which method is most suitable for analysing 

vibration and acoustic signals from the wheel rail interface. 

(3) Investigate acoustic and vibration generation and its characteristics in identification of 

curve squeal on the twin disc rig. 

(4) Develop a realistic experimental method in situ with adequate system to study acoustic and 

vibration signals for curve squeal characterization. 

(5) Investigate the condition monitoring performance of acoustic and vibration signals using 

time and frequency domain analysis. 

(6) identify suitable condition monitoring indicators in time and frequency domain that can be 

used to predict the incipient development of curve squeal. 

(7) Investigate the effect of water and friction modifiers using acoustic and vibration data for 

curve squeal mitigation. 

(8) Investigate the condition monitoring performance of using vibration and acoustic signals 

using Correlation method for curve squeal identification.  

(9) Propose a condition monitoring system based on the developed Correlation method for 

curve squeal identification.  
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1.6 Outline of thesis 

This thesis is divided into seven main chapters: 

Chapter 2 introduces the topic of curve squeal and problems associated with it. The required 

conditions necessary for curve squeal to occur and its general characterization is presented. The 

underlying mechanism associated with curve squeal are also discussed in detail.  

Chapter 3 presents the experimental facilities for curve squeal monitoring. A complete description 

of parts of the test rig, including the data acquisition system, microphones for curve squeal 

measurement, accelerometers, and strain gauges are presented and discussed in detail in this 

chapter 

Chapter 4 presents the development of an engineering curve squeal model for the test rig. Detailed 

study on Hertz contact theory, creep force modelling, contact area estimation, curve squeal 

vibration model and several other vital topics are discussed and investigated in this chapter. 

Chapter 5 presents the vibration methods for monitoring curve squeal in the test rig. Time domain, 

frequency domain and time frequency domain methods are used to identify the onset development 

and mitigation of curve squeal on the test rig.  

Chapter 6 presents acoustic methods for monitoring curve squeal on the test rig. Time domain, 

frequency domain and time frequency domain methods are used to study and characterize curve 

squeal under different contact conditions and four varying average wheel speeds.  

Chapter 7 presents the development of the correlation method for characterizing and development 

of curve squeal in the twin disc rig. 

Chapter 8 presents conclusions and future work.  
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Chapter 2 – Literature review 

This chapter presents a detailed literature review on curve squeal. An introduction that covers the 

main methods that have been used to study curve squeal is first presented. After the introduction, 

the review on curve squeal is then broken down into two main parts; mathematical models that 

have been developed to study curve squeal and condition-monitoring methods for curve squeal. 

Each of these parts is reviewed in detail especially in line with the aims and objectives of this 

project report. The advantages and disadvantages of each part is addressed. The depth of research 

work that has been conducted in identifying curve squeal and ways to mitigate it are stated and a 

direction for the research work is therefore stated. 
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2.1 Introduction 

Curve squeal is an important phenomenon in the railway industry. It is imperative that adequate 

research is carried out to understand the underlying mechanisms associated with curve squeal and 

how these can be mitigated especially in curve sections of the track. As has already been introduced 

in Chapter 1, curve squeal occurs in sections of the curved track most frequently where the radius 

is less than or equal to 200 m. It is well documented that as the radius increases from this value, 

the likelihood of curve squeal occurring is limited. However due to the complexity in 

understanding the various cause of curve squeal in the railway industry, several research works 

have focused on developing a robust condition monitoring system for identifying and 

characterizing curve squeal. Based on the measurements conducted on the railway track using 

various sensors, an engineering mathematical model for curve squeal is then developed by various 

research groups. The models developed help the railway industry in understanding the mechanisms 

associated with curve squeal and then scheduling a suitable maintenance strategy to mitigate its 

effect (Thompson, 2009).  

In literature, it has been observed that curve squeal study is grouped into two main parts; 

mathematical models for curve squeal, and condition monitoring methods for curve squeal. 

Mathematical models developed for curve squeal in literature is classified into two main parts, 

time and frequency domain. It is unfortunate that most of the frequency domain methods developed 

in literature are derived from simplistic linear models of the wheel-rail contact system. Their 

simplicity is not sufficient to comprehend the underlying causes of curve squeal. It is well 

established that non-linearities are prevalent in most wheel-rail contact systems. The time domain 

method is therefore developed in Chapter 4 to be able to characterize and determine curve squeal 

amplitude as it varies with time in other to the determine its severity (Zenzerovic et al., 2015), 

(Thompson et al., 1999). 

There is a plethora of different condition monitoring methods used to characterize curve squeal. 

However, the challenge is to ensure that the right measuring method is used for condition 

monitoring of the wheel-rail contact. The selection of the appropriate method is a requirement for 

determining the right signal processing technique that can be applied to study and identify curve 

squeal. Signal processing techniques are a crucial part of a condition monitoring system 

application. There are several signal-processing methods available for investigating curve squeal. 

The suitability of each method depends on the application and the result required.  
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One of the main methods for characterising curve squeal is the time domain method. Time-domain 

methods are easy to implement, and are better suited for characterizing curve squeal using several 

statistical parameters. Frequency domain methods have advantages over the time domain methods 

in its ability to study the frequency range necessary for curve squeal to occur. In addition to this 

merit, the curve squeal frequency and the wheel-excited modes can also be easily identified. 

Frequency domain methods however, do not have the ability to show the signal time resolution. 

While it is true that most signals are non-stationary in nature, signal-processing method that can 

identify curve squeal frequency at any particular time instant is of paramount importance. Time-

frequency signal processing method is therefore used to show curve squeal characteristics in a two-

dimensional plane. This is one of the main advantages of using this signal processing technique 

over the conventional time and frequency domain methods (Pieringer et al., 2018). All the 

aforementioned curve squeal methods have been at some stage applied in the railway industry to 

investigate and characterise curve squeal. The next section focuses on the mathematical models 

that have been used to study curve squeal. 

 

2.2 Review on contact model domains 

This section presents a comprehensive review on the domains used for curve squeal model. These 

include time and frequency domain models.  

 

Figure 2.1: Conventional structure used for curve squeal model 
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The structure of the curve squeal model does not depend on whether the model is in the time or 

frequency domain. Most of the blocks in the structure contain two or more sub models but the 

most important model block is the wheel-rail contact model. This block contains the rolling contact 

sub-models and the wheel and rail dynamics. The wheel and rail models generate the wheel and 

rail vibration response for the curve squeal model. The sound radiation model is extended in most 

cases to simulate the sound power and pressure levels generated from the wheel-rail contact model. 

Going back to the two groups of curve squeal model, each of the models blocks in the general 

curve squeal model would be discussed and general conclusions are then given for some of the 

models described. 

 

2.2.1 Time domain models for curve squeal 

Time domain models add several characteristics to the wheel rail system such as non-linearities, 

ability to determine curve squeal amplitude and its severity. Higher harmonic components of the 

system response and squeal amplitudes can be easily determined. Amongst the first squeal models 

formulated in the time domain, (Schneider et al., 1988) model is the most widely used to simulate 

curve squeal. Non-linear differential equations that describe the system model was solved using 

Rung-Kutta routine. Finite Element (FE) model was used to obtain the modal parameters for the 

wheel, while the rail was considered as rigid. The wheel displacement response was determined 

using modal transformation methods. Kraft’s falling friction model was used to describe the 

friction model assuming point contact between the wheel and rail. Finally, Rayleigh integral was 

used to determine the radiated sound from a typical baffled plate.  

A more detailed wheel-rail model was developed by (Fingberg, 1990) which includes semi-

transient rolling contact model and evaluation of the sound radiated model. The semi-transient 

model was implemented to take into consideration transient contact conditions that occur during 

curve squeal. Only half of the wheelset was modelled using FE while the rail was built using two 

models: one for the longitudinal dynamics and one for the lateral dynamics.  

Wheel and rail response functions and were also determined as in the case of (Schneider et al., 

1988) using modal expansion methods. This later technique combined with boundary element 

method was used to determine the radiated sound from the wheel. Each wheel mode contribution 

to the radiated sound was computed separately and then the added up obtain to cumulative sound 

radiation.  
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(Fingberg, 1990) model was extended by (Periard, 1998). The modal parameters of the rail was 

obtained using FE model and included with its differential equations (Vermeulen and Johnson, 

1964) and (Kalker, 1982) with falling friction characteristics was used to extend the model. 

Simulations of the radiated sound and vehicle curving behaviour was calculated using Rayleigh 

integral. The contribution of each mode to the overall sound model was evaluated in the sound 

radiation model. The model developed by (Periard, 1998) is a combination of (Fingberg, 1990) 

approach and (Schneider et al., 1988) approach to the evaluation of radiated sound.  

(Huang et al., 2008) also modelled and simulated sound radiation in the curve squeal model. His 

sound radiation model was based on the (Thompson and Jones, 2002) and (Fingberg, 1990). 

Considerations of the wheel and rail contact mobilities were taken and solved using (Kalker, 1982). 

Different falling friction models were used to simulate the influence of creepages on the lateral 

force. The model also used convolution instead of integration to determine the response of the 

system. Green functions were used to represent the circular disc with Green’s functions (impulse 

response) obtained from the superposition of the disc modes. Only the lateral dynamics was 

considered and the rail was not included in the model. The tangential contact force and Green’s 

function was convolved together to obtain the wheel response (Zenzerovic et al., 2015).  

 

2.2.2 Frequency domain models for curve squeal 

In curve squeal models, frequency domain models are one of the most widely used models since 

they can be either obtained by linearization of non-linear equations from time domain models or 

from simplified linear wheel-rail contact models. However, the accuracy of the developed models 

depends on the attention to modelling details. Several curving situations and parameters influence 

on curve squeal have been investigated in the past using frequency domain models. For instance, 

the stability of wheel modes that are prone to curve squeal was studied in (Koch et al., 2006) and 

(Heckl, 2000) while the influence of wheel damping on mitigation of curve squeal was investigated 

in (Rudd, 1976), (van Ruiten, 1988). Also frequency domain models to determine the stability of 

wheels in a bogie and its effects on bogie was developed in (Glocker et al., 2009), (Monk-Steel 

and Thompson, 2003) and (Xie et al., 2006). Models to investigate the effect of kinematic 

parameters such as curve radius (Rudd, 1976), lateral contact position (de Beer et al., 2003), and 

curve squeal developed in the presence of two wheel-rail contact points (Squicciarini et al., 2015). 



21 

 

Out of the mentioned frequency domain models, one of the first squeal noise model was developed 

by (Rudd, 1976). The wheel system was modelled as a single degree of freedom. (Rudd, 1976) 

determined the impedance of the system experimentally and considered the lateral dynamics of the 

system. The rail was assumed rigid; hence, the rail dynamics was not included in the model. The 

vertical forces and the lateral forces were assumed to be coupled by the law of friction. Rudd 

interpreted the falling friction function as negative damping. He concluded that curve squeal is 

caused by falling friction otherwise called negative damping.  

Several frequency domain models emanated from (Rudd, 1976) model. For instance, (van Ruiten, 

1988) used (Rudd, 1976) model to study the effect of wheel damping and rolling speed on curve 

squeal. He compared the simulation results obtained from the mathematical model with 

experimental results to investigate how curve squeal occurrence could be mitigated. The results he 

obtained compared well with (Rudd, 1976) model.  

The second most widely used frequency domain model from where other models have been 

developed was (Fingberg, 1990) model. The wheel, rail and the contact was used as three sub-

models. From the time domain developed and eventually the frequency domain model, de Beer et 

al developed a frequency domain based on the three sub-models. The contact spring mobility, the 

wheel and rail dynamics was included in the TWINS software. The wheel-rail contact problem 

was solved using (Kalker, 1990) linear theory. The measured falling friction function was used to 

define the model, developed using Kraft’s friction law. The vertical and lateral dynamics was 

coupled together and used to develop the model. This was regarded as an important contribution 

to the development of the wheel-rail contact model. The wheel-rail contact position was taken into 

consideration since it influences the vertical and lateral coupling dynamics. He also came to the 

conclusion by (Rudd, 1976) that falling friction is responsible for the development of curve squeal. 

The conventional stability method; Nyquist Criterion was applied to develop the model.  

(Xie et al., 2006), simulated the effect of curve squeal on vehicle curving behaviour. The falling 

friction model developed by Kraft and (Kalker, 1982) algorithm was used for the simulations while 

different curving scenarios was studied. 

A simplified version of (de Beer et al., 2003) model was simulated by (Hsu et al., 2007). The 

model assumed that the normal force is constant. Test measurements were carried out and 

considerations were made based on (de Beer et al., 2003) model through a simplified version of it 

that was used. (Monk-Steel and Thompson, 2003) adopted the same method similar to (Hsu et al., 
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2007). A finite element (FE) model of the wheel was used to obtain its modal parameters. The rail 

was described using two models one for the vertical dynamics and another for the lateral dynamics. 

The falling friction portion of the curve was modelled using (Vermeulen and Johnson, 1964) while 

(Kalker, 1990) was used to model the increasing portion of the friction curve. From the time 

domain models already discussed, (Heckl and Abrahams, 2000) developed a frequency domain 

model based on finding out the wheel modes prone to curve squeal. Integro-differential equations 

of the linear system was used to determine the complex Eigen-values of the system. Finally 

(Squicciarini et al., 2015) developed a frequency domain model similar to (Hsu et al., 2007) model 

to account for two point contact on the wheel. This was regarded as a major contribution as the 

effect of two-point contact on curve squeal was studied. Mobilities of the wheel and the wheel 

parameters was included and used to tune the measurements. Kraft’s falling friction model and 

(Kalker, 1982) was used to model the friction curve of the system. The unstable frequencies of the 

wheel and the rail was determined using a parameter space.  

 

2.3 Review on wheel-rail contact models 

Wheel-rail contact forces (lateral, longitudinal and vertical forces), tangential traction, normal 

pressure and contact area size and shape can be determined using wheel-rail contact model. From 

vehicle dynamic simulations, curve squeal and evaluation of rolling contact noise, the knowledge 

of contact forces developed in the wheel-rail contact can be investigated. Also, of importance is 

the tangential tractions and normal pressure along with the displacements observed in the contact 

area. The variables of the wheel-rail contact depend on several parameters such as geometric and 

kinematic parameters that influence wheel-rail relative motion, wheel-rail material parameters, 

geometry of the wheel-rail surfaces and contact position. In addition, environmental variables play 

a vital role in influencing friction in wheel-rail contact models. All the parameters mentioned are 

used as input to the wheel-rail contact model.  

Material behaviour and parameters are crucial for the determination of displacements in the wheel-

rail contact area. Since the rail and wheel is made of from the same material (steel), they are 

regarded as linear elastic materials in wheel-rail contact models used for curve squeal modelling. 

In literature, therefore all the wheel-rail contact models used for force displacement relations 

assume linear elasticity. With emphasis on wheel rail geometry, non-conformal and conformal 

contacts are differentiated as shown in Figure 2.2. Non-conformal wheel-rail contact in wheel-rail 



23 

 

contact context occurs in the rail head/wheel tread contact (Figure 2.2(a)) while conformal contact 

occurs when the rail gauge corner and the wheel flange are in contact (Figure 2.2(b). When the 

contact area is in characteristic dimensions of the contact bodies, the contact is said to be 

conformal. The curvature radius of the rail and wheel and the flange contact at the point of contact 

can be compared with the contact size. X are of the opinion that the conformal contact solutions 

require the application of numerical methods. Paul and Hashemi used boundary-element 

approaches and finite element models to solve this kind of problem.  

Compared to conformal contacts, non-conformal wheel-rail contacts are easy to model. The reason 

for this is that the stresses developed in the contact are concentrated close to the region of contact 

thereby not having any effect on the complete body stress distributions. In most literature, the 

contact stresses are determined by the assumptions that the bodies in contact are semi-infinite and 

bounded by a surface plane. This corresponds to the definition of elastic half-space. In addition, 

there are two types of contact, Hertzian contact and non-Hertzian contact. Hertzian contact are 

represented by second order polynomials in the contact area region to equate the deformation 

distance. Hertzian contact assumes that the surface does not have friction, is smooth, the material 

is linearly elastic and the half space approximation holds. Hertz contact results in ellipsoidal 

normal contact pressure distribution and elliptical contact area. Hertzian contacts are strictly non-

conformal contacts. However, non-conformal contacts can be either non-Hertzian or Hertzian. 

Non-Hertzian contacts unlike Hertzian contacts do not result in the use of second order 

polynomials. This is because the curvature radius of the wheel and rail can significantly change on 

the wheel tread for small lateral displacements. For worn rail and wheel contacts, the curvature 

change is obvious. However, curvature radius discontinuities can result in multiple contact areas 

aside the non-elliptical contact patch formed. Another cause of non-Hertzian contact is surface 

roughness. In reality, however, most surfaces have some level of surface roughness resulting in 

contact occurring at distinct locations in the contact patch region. The asperities due to the contact 

surfaces result in contact pressures that are much larger than Hertzian maximum contact pressure. 

In this thesis, curve squeal models are limited to non-conformal contacts. This is motivated by the 

fact that curve squeal happens when the rail head and the wheel tread are in contact. 
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2.3.1 Curve squeal contact conditions 

A review on the general process that occur in the wheel-rail contact area would be reviewed in this 

section. The discussion would be based on the processes that result in curve squeal. Creepages are 

developed in the contact to describe the overall relative motion between the rail and the wheel. 

Two conditions are required for relative motion to occur. They include the local deformations that 

happen in the rail and wheel-rail contact as a result of rail and wheel elasticity and the relative 

motion generated by particles in the wheel-rail contact. In the stick area, the rail and wheel particles 

don’t relatively move with each other due to the fact that the limit of the tangential tractions defined 

by the normal pressure and the coefficient of friction has not been reached. The traction builds up 

from the leading edge of the contact area to the trailing edge. The longitudinal traction at some 

point approaches the traction limit. When this happens, the particles don’t stick together anymore 

and relative motion occurs. This is regarded as the slip region of the contact area. The presence of 

creepage in the contact area results in the occurrence of slip in the contact area. Tangential forces 

arise as a result of the relative motion between the rail and the wheel. When longitudinal creepage 

is involved, the forces generated are called the braking or traction forces. According to (Zenzerovic 

et al., 2015), the particles in slip as a result of contacting particles is defined as: 

𝑠𝜏 = 𝜔𝜏 − 𝑣
𝜕𝑢𝜏

𝜕𝑥
+

𝜕𝑢𝜏

𝜕𝑡
,                     𝜏 = 1,2  (2.1) 

Where 𝜔𝜏 is the creepage to slip velocity contribution (rigid slip), 𝑣 is the rolling velocity, 𝑠𝜏 is 

the local slip between the contacting particles, and 𝑢𝜏 is the difference in displacement between 

the rail and the wheel. The rigid slip depends on creepages developed at the contact patch: 

𝜔1 = (𝛾𝑥 − 𝛾𝜔𝑦)𝑣,                     𝜔2 = (𝛾𝑦 − 𝛾𝜔𝑥)𝑣 (2.2) 

where 𝛾𝑥 is the longitudinal creepage, 𝛾𝑦 is the lateral creepage, and 𝛾𝜔 is the spin creepage. The 

direction x and number 1 denotes the longitudinal direction when the y direction with number 2 

denotes the lateral direction. Equation (2.1) is required to be solved to compute the stick and slip 

distributions in the contact area. This equation is used to illustrate transient rolling. The time 

depending in equation 2.1 (𝜕𝑢𝜏/𝜕𝑡) vanishes for steady state problems (KALKER, 1979).  

Carter studied the effect of tractive steady state rolling on a cylinder. He was the first to find the 

solution for traction in rolling contact problems. This assumption may not hold for curve squeal 

models. This is because during curve squeal, the distributions of the slip and stick in the contact 

area vary with time, resulting in instability in the slip-stick process. For a proper understanding of 
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the slip-stick process, it is imperative to define global and local motion. According to Carter on 

the global level, the continuous variation of the slip and stick regions between the wheel and the 

rail occur at the contact. The regions are illustrated in Figure 2.4. Stick-slip oscillations happen 

with the oscillations of the periods with full contact slip in the contact area. On the stick phase, the 

deformations of the wheel increase. This deformation is limited by the tangential force in the 

contact region. This is defined as the product of the coefficient of friction and the normal load. At 

the deformation limit, the potential energy developed is transformed to kinetic energy. The wheel 

and rail inertia also affect the stick-slip process. In the lateral force time history, stick-slip contact 

regions can be observed as shown in Figure 2.4. The traction limit remains constant throughout 

the stick and slip phases. 

(Knothe and Groß-Thebing, 2008) used the L/ax ratio of the characteristic motion wavelength L 

and the length of the contact region on the rolling direction to investigate contact conditions. 

Transient conditions was characterized with a ratio less than ten. Although the authors took into 

account rail corrugation in their study, the method applied can be used for curve squeal. This is 

because contact conditions are transient for curve squeal. The authors suggested the need for a 

transient model to be developed and applied to other wheel-rail contact problems.  

  

2.3.2 Contact models used for curve squeal: A review 

The contact models that have been commonly used for curve squeal are reviewed in this section. 

Tangential contact models for wheel-rail contact would be reviewed since they are important for 

curve squeal models. The main contact models used in literature include point contact, Kalker’s 

variational theory, Kalker’s simplified theory, Kalker’s linear theory.  

Point contact models are simplified models of the of the wheel-rail contact. They describe the 

contact process on a global scale. They assume point contacts for the normal and tangential 

contacts. One of the main advantages of using point contact model is their fast-computational 

speed, especially in solving tangential contact problem. They are derive using simple analytical 

equations to represent the creep force/creepage relationship. They are formulated in some cases in 

terms of the friction model. Point contact models employ Hertz contact theory to solve the normal 

contact problem. They are normally applied to rail head/wheel tread contact. Further details of the 

analytical expressions for Hertz contact theory would be discussed subsequently. Point contact 

models employ the relationship between the tangential and normal contact forces.  
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𝐹𝜏 = 𝜇(𝑠)𝐹𝑧 ,                     𝜏 = 𝑥, 𝑦  (2.3) 

where 𝐹𝑧 is the vertical force in the z direction, and 𝐹𝜏 is the longitudinal and lateral force in the x 

and y directions respectively. This equation is valid for one tangential direction that is when 𝜏 = 𝑥 

or 𝜏 = 𝑦. The tangential contact model depends on whether the two directions are taken into 

consideration. If the longitudinal and lateral directions are considered, then the slip velocity (s), is 

determined as: 

𝑠 = (𝑠1
2 + 𝑠2

2)1/2 (2.4) 

If only a single tangential direction is taken into consideration, then the point contact model is 

simplified and easy to solve. The disadvantage of point contact models arise from the assumption 

of global contact. They also prevent further study on local contact process that occur in the contact 

area.  

Kalker’s linear theory includes information about local contact process apart from the conventional 

friction model. Kalker developed his theory from the linearization of Carter’s theory. Carter’s 

theory is based on the assumption of a cylinder on a rolling plane. The plane is assumed to be two-

dimensional and non-linear. The force/creepage relationship is expressed as: 

𝐹1

𝜇𝐹𝑧
= {

−𝑐𝛾𝑥 + 0.25𝑘2𝛾𝑥|𝛾𝑥|    𝑖𝑓 𝑐|𝛾𝑥| ≤ 2,

−𝑠𝑖𝑔𝑛(𝛾𝑥)                      𝑖𝑓 𝑐|𝛾𝑥| > 2
  (2.5) 

given that 𝑐 = 4𝑅/(𝜇𝐴) represents creepage coefficient, R is the radius of the cylinder, and a is 

the contact width half length. Equation 2.5 illustrates the transition from full stick to slip contact. 

Carter’s theory is illustrated in Figure 2.5: 

Kalker’s linear theory provides the solution of the tangential contact problem for the stick region. 

Kalker’s linear theory is expressed as follows: 

𝐹𝑥 = 𝑎𝑏𝐺𝐶11𝛾𝑥 (2.6) 

𝐹𝑦 = 𝑎𝑏𝐺𝐶22𝛾𝑦 − (𝑎𝑏)3/2𝐺𝐶23𝛾𝑤 (2.7) 

where a and b are the semi axes of the elliptical contact area, 𝐶11, 𝐶22, 𝐶23 rely on the elliptical 

contact ratio a/b. G is the shear modulus of the contacting materials.  

Finberg extended Kalker’s linear theory to solve semi-transient contact problem in curve squeal. 

This model depended on creepage coefficients dependent on frequency and developed by (Knothe 

and Groß-Thebing, 2008). (Vermeulen and Johnson, 1964) developed a non-linear approximation 

model that is valid for elliptical contact areas. This makes it suitable for the inclusion of Hertz 

contact theory. However, the assumption of the non-slip (stick) region as elliptical lead to errors 
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in the contact model. The disadvantage of using this model is that is does not taken into 

consideration spin creepage. To include the effects of spin.  

(SHEN et al., 1983) extended the Johnson and Vermeulen model to include spin creepage in the 

tangential contact problem. However, this model according to the authors permits small spin 

creepages.  

(Polach, 2005) developed a tangential contact model for the scenario of large creepages. He 

assumed that the slip region is fully encompassed leading to tangential force near the traction limit. 

The effects of spin creepage and contact shear stiffness was applied by Polach. This model is 

however strictly confined to steady state contact and elliptical contact conditions.  

(Piotrowski and Chollet, 2005) addressed multiple contact patch scenarios. They developed the 

approximate multi-Hertzian method for the solution of normal contact problem. Finite element 

(FE) methods produce the most precise solution to the contact problem. However due to the large 

computational cost, they are seldomly used in solution of contact problems 

Kalker’s variation contact theory is dependent on the complementary energy principle. The theory 

comprised of two algorithms, NORM and TANG. NORM is used to solve the normal contact 

problem while TANG is used to solve the tangential contact problem. Kalker’s variational contact 

theory uses the active set algorithm. The theory discretizes the potential contact region and then 

calculates the pressures and traction at each point in the discretized region. The contact area size, 

shape and normal contact problem is solved using the NORM algorithm. TANG algorithm solves 

the transient rolling contact for each element that is discretized in the contact. The division of the 

contact area into slip and stick areas is computed. Kalker’s variational contact theory is application 

to non-Hertzian and Hertz contacts, steady state and transient process, cases of variation in 

creepages and normal force and contact bodies with different materials. The disadvantage of using 

Kalker’s variational contact theory is the high computational cost required to solve the NORM and 

TANG algorithm. To reduce the computation cost and provide efficiency, Kalker introduced a 

simplified theory called the FASTSIM algorithm. However according to Kalker the FASTSIM 

algorithm does not provide accurate solution of the normal contact provide. He suggests that Hertz 

contact theory is most suited for normal contact problem (Kalker, 1990).  

To improve the problems associated with the FASTSIM algorithm, (Spiryagin et al., 2013) 

developed a falling friction law for curve squeal models. (Xie et al., 2006) applied this model to 

compute creepages for curve squeal model.  
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2.3 Review on condition monitoring methods for curve squeal 

In the previous section, a detailed literature review on curve was discussed. Most of these models 

was implemented based on trials and measurements conducted on the railway system. However, 

the difficulties encountered in obtaining measurements from the railway track, such as the cost of 

installation of condition monitoring systems and the uncertainty in predicting which wheel squeals 

in a curved track has necessitated the need for trials to be conducted in controlled laboratory 

conditions. Despite the challenges encountered in investigating the underlying cause of curve 

squeal, some measurements have been conducted experimentally with the permission of railway 

industry to identify and characterize curve squeal. 

(Stefanelli et al., 2006) investigated the cause of curve squeal using a measurement setup 

constructed and placed in a 200 m curve radius section of the track where there is busy train traffic. 

The measurement system for curve squeal comprised of two microphones placed on either side of 

the railway track. Vibration was monitored using two accelerometers installed on the flange of the 

rail. The railway vehicle speed was measured using axle counters. The microphones and the 

accelerometers produced a signal that was converted to digital and stored on a hard drive for further 

signal processing. In other to different between break squeal and curve squeal, only departure 

trains was used for this experiment. The measurement results showed that curve squeal depended 

on the type of train and that the curve squeal frequencies ranged from 3 to 5 kHz. The 

accelerometers placed on the flange of the rail provided accurate information on the actual 

emanation of curve squeal. Using the Doppler Effect, the position of the wheel was determined 

before the curve squeal was measured. The results concluded that the wheel is the main source of 

squeal and it results from the vibration of the wheels. In addition, the trials conducted showed that 

the damping ration, direction of excitation, driving direction and train speed are all influential to 

the generation of curve squeal.  

(Fourie et al., 2016) conducted an experiment to characterise curve squeal in 1000m large radius 

curve section of an export line located in South Africa. The measurement system was setup in such 

a way as to be able to locate the curve squeal source, frequency of curve squeal, and the actual 

wheel in the bogie where curve squeal emanates from. Two microphones were installed at a 

distance of 7.5 m from the railway track line of centre to measure curve squeal. The lateral and 

vertical forces was measured using installed strain gauge bridges at both rails. Due to the Doppler 

Effect, two microphones were installed at both inner and outer rail to characterise the difference 
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between their curve squeal amplitudes and then compare the results simultaneously with sampled 

force signals. Two triangulation laser sensors were used to measure wheelset lateral displacement. 

The surprising results obtained from this experiment showed that the inner wheels are more prone 

to curve squeal than the outer wheels due to longitudinal creepage and very little or no lateral 

creepage. This study disagrees with the study carried out by (de Beer et al., 2003), (Pieringer, 

2011) and (Glocker et al., 2009) where it was concluded that lateral creepage was responsible for 

curve squeal rather than longitudinal creepage.  

(Hanson et al., 2014) in a recent study presented a detailed overview of the study conducted by 

Transport for New South Wales (TfNSW) Freights and Regional development, Australia on curve 

squeal measurement. In the results of the trials, and measurements conducted, they identified 

wheel-rail interface, wheel squeal and rolling stock to be the major contributing factors to curve 

squeal. A detailed investigation on measurement of curve squeal from noise measurements using 

wayside noise measurements, determination of actual wheel that contributes to curve squeal and 

the wheel-rail contact area involved was carried out. They encountered difficulties in 

determination of which wheel is responsible for curve squeal. To solve this problem, the noise was 

measured very close to the railway track to differentiate it from individual noise from other wheels. 

In addition, the curve squeal frequency was obtained and compared with the wheel modal 

frequencies, and lastly, accelerometers were on the underside of each rail. The difference in the 

vibration amplitudes for each wheel squeal was used as a benchmark to differentiate the rail for 

which curve squeal occurs. Mitigation measures for curve squeal was also conducted in the trial 

using top-of-rail friction modifiers for a period of six months over a 300 m curve radius. The results 

obtained from three different locations showed that for gauge face lubrication of both rails, 90% 

reduction in curve squeal amplitude was observed from two locations.  

Despite the fact that these trials were conducted in the railway track, it is necessary to conduct the 

experiment also in controlled conditions. This would help proffer solutions for improving the 

efficiency of wheel-rail maintenance and performance, and reduce the costs that would be required 

for identifying and diagnosing faults on the wheel and rail systems. In addition, most of the 

mathematical models for curve squeal predict accurately the relationship between the creepages 

and tangential creep forces leading to curve squeal. Experimental verification and validation of 

these models is therefore required to characterize the falling friction coefficient that is envisaged 

to happen in theory during unsteady curve squeal.  
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(Hsu et al., 2007) developed a complete validation of mathematical model for curve squeal from 

experiments. The experiment was conducted on a twin disc rig. The dynamic response of the wheel 

and rail rollers and the lateral force was measured for changing values of the creepages during 

curve squeal. The results obtained compared well with developed theoretical models they 

developed for curve squeal. 

(Liu and Meehan, 2013), (Liu and Meehan, 2014) and (Meehan and Liu, 2018) developed a rolling 

contact two disc test rig to identify and characterise curve squeal. Strain gauges was installed on 

the rig to measure the lateral force developed between the upper and lower rollers. The yaw angle 

of the roller was measured using a special digital later distance meter. Microphone placed at a 

distance of 50 mm in line with the upper and lower roller contact was used to measure curve squeal 

amplitude. The results obtained from the experimental two-disc rig compared well with the 

mathematical model developed to predict theoretically the vibration amplitude of curve squeal. In 

addition, the authors concluded that curve squeal is developed when the curve squeal amplitude 

reaches a steady state leading to the crabbing velocity especially for high angle of attack.  

(Kim et al., 2019) analysed wheel squeal and flange noise developed in sharp curve track sections. 

In their study, they used a roller test rig to measure and investigate noise characteristics produced 

when a real wheel and curved railway section track are in contact. Results obtained from the study 

showed that curve squeal is generated in the high frequency region while flange contact noise 

happens depending on the radial wheel modes. The authors in addition to their study measured the 

vibration and noise in a typical curved track section. Accelerometers were installed on at strategic 

points under the rail head while microphones were mounted in line with the accelerometers at 

optimal proximity from the wheel-rail interface. The natural frequency and frequency analysis of 

the noise in the real urban railway curve sectioned track was compared. The results obtained from 

this further study showed that curve squeal is generated as a consequence of the interaction of the 

inner wheel with the rail while flange noise is generated as a result of the interaction between the 

outer wheel and the outer rail. However, their study did not investigate the effect of contaminants 

(water and friction modifiers) in mitigation of curve squeal. Their study, however proved beyond 

all reasonable double that curve squeal noise is significantly louder than flange noise for the 

various sections of the curved track.  

 



31 

 

2.3 Review on mitigation measures for curve squeal 

Noise emanating from the curved sections of the track or switch is a major problem in railways. 

The high tonal frequency noise (curve squeal) attributed to the negotiation of railway vehicles as 

they transverse the curve causes annoyance for people living in the environment of the curve squeal 

railway track as well as passengers waiting to enter the trains at these points on the track.  

Several researches have been conducted to mitigate curve squeal on the railway track. One of the 

foremost projects developed is the Combating Curve Squeal project proposed by the International 

Union of Railways (UIC) to combat curve squeal. The study was grouped phases named phase 1 

and 2. In the first phase, the tools required to mitigate curve squeal was developed and introduced. 

The challenges of the phase 1 project were the inability to predict when these methods are to be 

applied to combat curve squeal. Some of the measures for mitigating curve squeal in phase 1 

includes using wheel-based solutions (resilient wheels, ring dampers), lubricants and friction 

modifiers, coatings, and track-based solutions (rail dampers). The second phase of the UIC project 

was conducted in Switzerland, France and UK. Emphasis was centred on the combating curve 

squeal so as to improve confidence level, costs and safety in the railway system (Muller and Oertli, 

2006).  

The mitigation measures for curve squeal was introduced in the previous chapter. Some of the 

methods include using asymmetric rail profiles /narrower track gauges, wheel and rail dampers, 

friction modifiers, lubricants, improving bogie design etc.  

Asymmetrical rail profiles have been proposed to mitigate curve squeal, reduce wear in track 

curves and improve railway vehicle curving capacity. According to (Thompson, 2009) the main 

concept of this method is the shifting of the inside wheel closer to the flange to improve the 

wheelset rolling radius difference and hereby allow the railway vehicle negotiate the curve 

smoothly. A special asymmetrical rail profile was designed and tested on a 200m curved radius 

section. The results obtained showed that the curve squeal was reduced by 3dB. The conclusion 

was the asymmetric rail profiles do not sufficiently mitigate curve squeal. In a similar test 

conducted on the same rail profile but with the application of tungsten carbide on the profile, a 

significant reduction in curve squeal was achieved from 74% to 26%. However the disadvantage 

of using advanced method is the need to review the application of the element every 5 years 

(Thompson, 2009). (Zeng et al., 2017) proposed an optimization method for asymmetric rail 

grinding in tight curves to minimize wear and curve squeal. The optimized target rail profile was 
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proposed to include a non-uniform B-spline rational curve having tuneable weight factors. Wheel 

and rail dampers do not readily provide the benefit of curve squeal mitigation as is the case with 

asymmetric rail profiles. For example in a recent study carried out by (Setsohhonkul and 

Kaewunruen, 2016), it was concluded that rail and wheel damper do not benefit from reduction of 

curve squeal when compared with other mitigation methods although they have lower maintenance 

cost and longer life cycle. The next viable method that is well researched in literature for mitigating 

curve squeal is friction modifiers. 

(Eadie et al., 2002), (Eadie et al., 2003), (Eadie et al., 2005), (Eadie and Santoro, 2006), (Eadie et 

al., 2008) showed from field trials and tests, application of friction modifiers can be used to 

mitigate curve squeal and change the main friction creep-curve characteristics. It was discovered 

in the experimental study on several curve sections in the track that negative characteristics of the 

slope of the friction curves caused by increased lateral creepage led to stick-slip oscillations in the 

wheel-rail contact. The application of friction modifiers on the top-of the rail was observed to not 

only reduce the adhesion coefficient, but also transform the creep curve characteristics (from 

negative to positive). Thus, the name positive friction modifiers can be used to interchangeably 

with the conventional name to stress its particular role and function. However, most of the work 

carried out was done using oil-based friction modifiers or water-based friction modifiers only. No 

comparisons were made between the two types of friction modifiers. 

(Liu and Meehan, 2016) investigated the effect of applying water and oil-based friction modifiers 

on a rolling contact twin disc rig to mitigate wheel squeal. Its effect on the friction-creep curves 

was also investigated. The main components of the twin disc rig comprised of an upper and lower 

roller. The upper roller was driven by a constant speed vector-controlled motor. The lower wheel 

was driven by the longitudinal creepage generated from the upper and lower roller contact. Lateral 

and vertical forces was measured using strain gauges mounted a leaf spring top while a laser guided 

meter was used to measure the yaw angle of the upper roller to simulate angle of attack. To measure 

curve squeal, microphone was placed sufficiently close to the wheel-rail roller contact at a distance 

of 5 cm. Water and oil-based modifiers was applying by spraying on the top of the rail roller 

contact. The test rig was run for several speeds. The friction coefficient and the curve squeal was 

then measured for various yaw angles. The results obtained for all speeds show that there is a 

significant reduction in the lateral force and the friction coefficient when the friction modifiers 

were applied unlike the dry contact case. The decrease in these parameters was more conspicuous 
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with oil-based friction modifiers. However, at very large speeds and large yaw angles the friction 

modifiers did not mitigate curve squeal completely. The authors developed a simplified time 

domain model to understand this new development. They concluded that curve squeal might still 

be present in high speeds and yaw angles due to increased temperature in the contact region.  

 

2.4 Summary of main points 

This chapter presented detailed literature review on modelling and monitoring curve squeal for 

railway vehicles. The first section presented an introduction to curve squeal review and highlighted 

the important difference between monitoring and modelling methods for curve squeal. A 

comprehensive review on the models developed for curve squeal was then presented and 

discussed. It was observed that most of these models was designed based on trials and experimental 

results conducted on the railway systems over the years. These models have helped in 

understanding the underlying causes of curve squeal although the mechanism behind it is still 

unknown. In most models developed in literature, it was discovered that lateral creepage is the 

most dominant cause of curve squeal although several other causes such as mode-coupling and 

longitudinal creepage have been proposed as major causes.  

In addition, an extensive literature review on condition monitoring methods for curve squeal was 

discussed in detail. It was discovered that difficulties exist in conducting measurements and trials 

on the railway track due to the challenge in determining the wheelset that is prone to curve squeal 

and the added cost of installation of condition monitoring systems for this purpose. Despite these 

challenges, several trials was conducted by organizations in the railway industry to monitor curve 

squeal. The results obtained from these experiments concluded that the main cause of cause squeal 

was due to the development of large wheel-rail contact forces especially lateral contact forces 

resulting in unsteady vibration of the wheel and curve squeal. In the studies conducted, lubricants 

using friction modifiers was discovered as one of the viable methods for mitigating curve squeal. 

The difficulties encountered by most railway operators for identifying and characterising curve 

squeal as already mentioned was minimized by adopting other means of investigation. Controlled 

laboratory conditions were adopted in several research labs to study and understand curve squeal 

phenomenon. Scaled test rigs was used for this purpose to ensure that only noise from the wheel-

rail contact is measured and monitored unlike when compared with track conditions. The results 

obtained from the measurement of curve squeal using test rigs further strengthened the fact that 
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curve squeal is caused mainly by stick-slip oscillations of the contact patch area resulting in the 

development of large lateral forces at the wheel-rail contact area in curves. As the yaw angle 

increases, the lateral force increases and the result of this effect is excessive vibration of the wheels 

thus leading to curve squeal development. 
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Chapter 3 – Scaled test rig facility for modelling and monitoring curve squeal 

This chapter presents the Scaled twin disc rig that will be used to study and validate the research 

project aims and objectives. Although there are differences between the test rig and the railway 

system, their appropriateness in helping understand the condition monitoring tools required are 

presented. The measurement systems and the instruments used for monitoring curve squeal are 

also presented. In this project, a strain gauge amplifier has been designed to measure the normal, 

vertical and lateral forces developed in the test rig. A detailed description of the circuit design is 

presented and discussed. Impact hammer tests to extract the wheel and rail roller modal 

frequencies is illustrated and presented. To differentiate between the modes obtained from hammer 

tests, modal analysis of the wheel and rail roller is illustrated using ANSYS Workbench. 

Comparisons are made between the results obtained and conclusions are drawn.  
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3.1 Twin Disc rig facility at Huddersfield University 

The Twin disc rig facility located in Institute of Railway Research (IRR), University of 

Huddersfield is used to investigate the curve squeal phenomena. Figure 3.1 shows the schematic 

of the Twin disc rig. 

 

 

  

 

Figure 3.1: Twin disc rig schematic 

 

The twin disc rig is a scaled electromechanical system used as alternative means of recreating 

wheel-rail interaction of the train under controlled laboratory conditions. The upper roller (wheel 

roller with diameter equal to 310 mm) is a scaled version (one-third) of the locomotive railway 

wheel, while the lower roller (rail roller with diameter 290 mm) represents the one-third of scaled 

rail track. The rail roller is mounted on its own shaft supported with bearings mounted on a U-

block (Iron frame) fixed onto the lateral movement plate and the rotary table. The rail roller is free 

to rotate about its axis. The wheel roller is mounted on a long stub shaft held together with two 

bearings on either side mounted at the centre of the pivoting arm. The pivoting arm is fixed to the 

rigid frame to hold it together. Also attached to the long stub shaft is the belt and pulley system, 

which is driven by a 10 KW, 3500 rpm, three-phase induction motor. An inverter is used to power 
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the three-phase induction motor and to ensure that the wheel speeds are maintained under any 

loading condition.  

 

 

Figure 3.2: Overview of the twin disc rig 

 

The pivoting arm provides the vertical force acting on the wheel roller through the hydraulic hand 

operated jacking mechanism mounted on the frame. The rig is loaded using a hydraulic hand 

operated actuator, which provides the hydraulic force acting on the pivoting arm. Since the ratio 

of the distance from one end of the pivoting arm to the distance of the axis of the rollers is two is 

to one, the vertical force acting on the rollers is twice that of the applied hydraulic force.  

A rotary table is fitted to the twin-disc rig with a rotary table handle to aid adjustments of the rail 

roller relative to the wheel roller, creating yaw angle. Markings on the handle of the rotary table 

are used to indicate the yaw angle with resolution of 1/60 of a degree. Improved yaw angle 

measurement can be achieved using displacement transducers. The ability to adjust the yaw angle 
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is important to replicate train movements along curves. The rotary table also houses the rotary 

damping plate, used to minimize vibrations on the rotary table assembly. Lateral alignment can be 

made by adjusting and clamping the damping plate on which the bearings of the rail roller shaft is 

mounted. An overview of the twin disc rig is shown in Figure 3.2. The general description of the 

twin disc rig would be discussed in subsequent sub-sections.  

 

3.2 Detailed description of the twin disc rig 

Detailed description of the twin disc rig would be discussed in this section. The main parts of the 

twin disc rig include the inverter, three phase induction motor, belt and pully drive system, 

bearings, wheel roller assembly and rail roller assembly.  

 

3.2.1 Inverter 

The inverter is used to supply steady AC voltage and rotation frequency to the 3-phase induction 

motor irrespective of the load applied such as yawing the rail rollers. Powerflex 753 inverter shown 

in Figure 3.3 was used to provide power to the twin disc rig.  

 

Figure 3.3: PowerFlex 753 inverter (Rockwell Automation Allen-Bradly, 2013). 

 

Some parameters of the inverter are shown in Table 3.1. Other parameters of the inverter can be 

found in reference PowerFlex 750-Series AC drives Technical Data manual (Rockwell 

Automation Allen-Bradly, 2013). 
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Table 3.1: PowerFlex 753 inverter specifications 

Parameters of the Inverter 

Input voltage range/Nominal motor voltage 380V – 480 V 

Frequency range 47 – 63 Hz 

Efficiency 97.5% 

Digital input voltage (DC) 24V – 30 V 

Digital input voltage (AC) 120V – 132V 

Output frequency range 0 – 325 Hz @ 2 kHz carrier 

0 – 590 Hz @ 4 kHz carrier 

Frequency control Speed regulation with 0.5% base speed across 

40:1 speed and operation range. 

 

3.2.2 Three phase induction motor 

The three-phase induction motor was used to drive the wheel roller through the pulley system 

consisting of the drive pulley and the driven pulley. The driver pulley was connected to the shaft 

of the induction motor and a pulley belt was used to link the driven pulley. The pulley system 

ensures a one-third reduction of the speed generated by the three-phase induction motor. The 

scaled down speed at the driven pully is used to drive the wheel roller. Figure 3.4 shows the typical 

three-phase induction motor, while Figure 3.5 shows the pulley system. 

 

Figure 3.4: IMB3 VDF Three phase induction motor (ABB, 2010) 

The parameters of the three-phase induction motor are shown in Table 3.2.  
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Table 3.2: IMB3 VDF VEM CLASS F three-phase induction motor parameters 

Parameters of the 3-phase Induction Motor 

Voltage 400/690 V 

Power 10 kW 

Speed range 0 – 3500 RPM 

Frequency 50/60 Hz 

Motor type Asynchronous motor with cage rotor 

Ambient temperature -20oC – 40oC 

Type of Construction  IMB3 

 

3. 

Figure 3.5 shows the Belt and pully drive system used for scaled down reduction of the wheel 

speed.  

 

 

 

 

Figure 3.5: Belt and pulley drive system 
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3.2.3 Bearings 

Bearings are mounted on the twin disc rig to support the wheel and rail roller shafts. The inner ring 

of the bearing is press fit unto the rotating shafts so that there is no relative movement between the 

two while the shaft is in motion. The outer ring of the bearing is carefully press fit into the bearing 

house for assembly reasons to allow small axial movement and provide differential thermal 

expansion, manufacturing tolerances between the shafts and bearing house (Robert and Tata, 

2014). The type of bearings used are the NTN (P207) pillow block bearings shown in Figure 3.6. 

 

Figure 3.6: NTN (P207) pillow block bearing (Robert and Tata, 2014)  

 

3.2.4 The wheel roller system 

The wheel roller system comprises of the pivoting arm, driven pulley, bearings and the long stub 

shaft. The main component of the wheel roller system is the wheel roller. The wheel roller is a 

large cylindrical wheel scaled down to one-third of a typical UK class 91 locomotive wheel. It is 

made up of EN24T steel material with nominal yield strength equal to 650 MPa, young modulus 

equal to 2.09 x 105 and Poisson’s ratio equal to 0.3. The pivoting arm, driven pulley and the 

bearings make up the surrounding components that are used to hold the wheel roller in position as 

shown in Figure 3.7 
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Figure 3.7: Wheel roller system (a) Isometric drawing (b) Side view 

 

The wheel roller is directly press fit to the centre of the shaft while two bearings are mounted on 

both sides of the shaft unto the pivoting arm.  Hydraulic fore is applied to the wheel roller through 

the rectangular block located on top of the pivoting arm using the four-point bending mechanism 

(details of this would be discussed in subsequent sections). The force experienced at the wheel 

roller central axis is twice the force applied at the right end of the pivoting arm according to the 

principle of moments. The revolute joint located on the left end of the pivoting arm controls its 

motion. Detailed description of the wheel roller is illustrated in Table 3.3 

 

Table 3.3: Parameters of the wheel roller 

Description Value 

Thickness of the wheel and rail roller rim 40 mm 

Longitudinal radius of wheel and rail roller 155 mm 

Lateral radius of wheel and rail roller  

Wheel rail rolling speed range used  75 – 175 RPM 

Normal load on pivoting arm  0 – 4 kN 

Young modulus of wheel roller 2.09 x 105 MPa 

Density 7850 kg/m3 

Poisson ratio 0.3 

Mass  13.59 kg 

Pivot arm 

Bearing 

Wheel roller 

Driven pulley 
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Material EN24T Steel 

 

3.2.5 Rail roller system 

The rail roller system comprises of the rail roller, its shaft, bearings mounted at both sides of the 

shaft, rotary base table, rotary base handle, U-block and lateral movement damping plates. The 

main component of the rail roller system is the rail roller. The rail roller represents a one-third 

scaled version of the railway track in a typical railway system infrastructure. It has the same 

material properties with the wheel roller. The rail roller assembly shown in Figure 3.8 comprises 

of the rail roller, shaft, bearings, u-block, damping plates and the rotary table. The rail roller is 

press fit to the centre of the shaft while two bearings are used to support the rail roller on a u-block 

material made of steel. The rail roller is free to rotate about its axis. Underneath the u-block is the 

damping plates.  

 

Figure 3.8: Rail roller system 

 

The lateral movement damping plates are used to reduce vibrations during operations. They are 

also used to introduce lateral displacement to the rail roller assembly system. They are rigidly fixed 

to the rotary table whereby manual yaw angle adjustments of the rail roller assembly could be 

done. Yaw angle resolution was set to 1/60th of a degree. The parameters of the rail roller are 

illustrated in Table 3.4. 
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Table 3.4: Parameters of the Rail roller 

Description Value 

Thickness of the rail roller rim 40 mm 

Longitudinal radius of rail roller 145 mm  

Lateral radius of rail roller 100 mm 

Wheel rail rolling speed range used  75 – 175 RPM 

Angle of attack (yaw angle) range 0 – 2 degrees 

Young modulus of wheel and rail roller 2.09 x 105 MPa 

Density 7850 kg/m3 

Poisson ratio 0.3 

Mass 12.98 kg 

Material EN24T Steel 

 

3.2.6 Hydraulic hand operated pump  

The hydraulic hand operated pump mounted on top of the twin disc rig is used to apply normal 

load to the wheel-rail roller assembly. The normal load is applied through the four-point bending 

mechanism to the end of the pivoting arm. The normal force applied at this point on the pivoting 

arm is twice the force applied on the wheel-rail roller using the principle of moments. Figure 3.9 

shows the hydraulic hand operated pump. 

 

 

Figure 3.9: Hydraulic hand operated pump 

 

3.3 Devices used for monitoring curve squeal on the Twin disc rig 

Devices used for monitoring curve squeal on the twin disc rig include microphone and 

accelerometers.  
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3.3.1 Integrated Circuit Piezoelectric (ICP) microphone 

Integrated Circuit Piezoelectric (ICP) microphone contains built in impedance conversion 

electronics and integrated amplifiers. The advantage of using this microphone is that it does not 

require additional amplifier circuitry as is the case of other kinds of microphones. The optimal 

distance between the microphone and the wheel rail contact is important to be able to accurately 

measure curve squeal from the twin disc rig. The closer the microphone is to the wheel-rail contact, 

the less surrounding noise the microphone would be pick and the better the measurements. In this 

thesis, a distance of 50 mm was deemed sufficient to measure curve squeal. It is important to note 

that if the microphone is installed too close (less than 50 mm) to the wheel-rail contact, water and 

friction modifier can easily splash on the microphone thus affecting the measurements. Placing the 

microphone farther than the distance used introduced unwanted noise from the laboratory 

surroundings. However, despite the close proximity of the microphone to the wheel-rail contact, 

filtering of the signal is still required to process the sound pressure data because of noise picked 

up from other sources such as the pulley belt, 3-phase induction motor noise and other unknown 

sources. Figure 3.10 shows the ICP microphone, YG-201.  

 

 

Figure 3.10: ICP microphone, YG-201 (Global Sensor Technology, 2007) 

 

Some parameters of the ICP microphone, YG-201 is tabulated in Table 3.5 

 

Table 3.5: Parameters of ICP microphone, YG-201 

ICP Microphone specifications 

Frequency response 16Hz to 100 kHz 

Maximum output voltage 5.0V rms corresponding to 134dB SPL) 

Sensitivity 50mV/Pa 

Connector type BNC 
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The ICP microphone was hoisted on its stand as shown in Figure 3.11 to hold it in position for 

sound measurements from the wheel-rail interface.  

 

Figure 3.11: ICP microphone positioning on the Twin disc rig 

Further information on ICP microphone, YG-201 can be found in (Global Sensor Technology, 

2007).  

 

3.3.2 Slip rings 

Slip rings allow the transmission of electrical signals and power from a stationary to a rotating 

structure. It is an electromechanical device that needs continuous rotation to be able to transmit 

electrical signals. The slip ring using for this experiment is a commercial slip ring with a maximum 

speed of 250RPM. Figure 3.11 show the locations for the installation of the slip rings on the wheel 

and rail roller shafts. These accelerometers and strain gauge wires are connected through the slip 

rings to the Data Acquisition System (DAS).    
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3.3.3 Dytran 3035B accelerometer 

Because of the noise that can be easily picked up during curve squeal measurements, 

accelerometers were required to be mounted on the wheel and rail roller rim to measure lateral 

vibration of the rollers and therefore monitor curve squeal. Integrated electronic piezoelectric 

(IEPE) accelerometer series, Dytran 3035B (see Figure 3.12) was used for modal analysis and 

lateral vibration measurements due to its light weight, small size, low cabling costs, robustness 

and integrated electronics. The parameters of the accelerometer are shown in Table 3.6: 

 

Table 3.6: Parameters of Dytran 3035B accelerometer 

Dytran 3035B accelerometer 

Sensitivity 100mV/g 

Acceleration measurement range 50g 

Frequency range 0.5 to 10 kHz 

Connectors 5-44 radial connector 

Weight  2.5g 

Material Stainless steel 

Type of accelerometer IEPE 

 

 

Figure 3.12: Dytran 3035B accelerometer 

 

The installation of the wheel and rail accelerometers is displayed in Figure 3.13. As can be 

observed, the accelerometers are installed on the wheel and rail rims for both impact hammer tests 

and vibration measurements. The choice of accelerometer location enabled comparisons to be 

made between the natural frequency analysis obtained from the rollers and the actual dynamic 

vibration measurements. Although the accelerometers can be installed on the wheel or rail web to 

investigate its effect in characterizing and identifying curve squeal, this was not investigated in 

this thesis.   
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(a) (b) 

Figure 3.13: Dytran 3035B accelerometer (a) wheel accelerometer (b) rail accelerometer 

 

3.3.4 Data acquisition system 

Sinocera YE6232B data acquisition (DAQ) system (see Figure 3.14) was used to acquire 

measurement data for curve squeal. Details of the DAQ system is listed in Table 3.7. 

 

Table 3.7: Specifications of Sinocera YE6232B  

Sinocera YE6232B DAQ 

Input range 10V 

Number of channels 16  

Sampling rate 96 kHz/channel 

Wheel accelerometer 
Rail accelerometer 

Slip ring 
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ADC conversion resolution 16 bits 

Programmable gain  1,10 or 100 

Temperature range 0oC – 60oC 

Software YE7600 

Interface USB 2.0 

 

The DAQ operates using the YE7600 software. This software is used for analysis and signal 

processing of the measurement data.  

 

Figure 3.14: Sinocera YE6232B  

Sinocera LC-02A impact hammer was used to conduct impact hammer tests on the rollers. Impact 

hammer test, otherwise known as modal testing was used to extract the natural frequencies (modes) 

of the wheel and rail roller over the frequency range of 0 to 9 kHz. This range was chosen from 

modal analysis results of the wheel and rail roller simulated in ANSYS (will be discussed in next 

section) as the dominant modes where curve squeal is likely to occur. Sinocera LC-02A impact 

hammer series (see Figure 3.15) with nylon tip was used to excite the rollers laterally due to its 

structural flexibility and the narrow range of modal frequencies anticipated before testing. 

 

Figure 3.15: Sinocera LC-02A impact hammer  

 

Finally, FLA-3-11 (Hannah, R. L. and Reed S. E., 1992) strain gauges (see specifications on Table 

3.8 and Figure 3.16) was set up in full-Wheatstone bridge configuration to measure the normal 

forces (installed on the wheel roller assembly), vertical forces and lateral forces (strain gauges 

installed on the rail roller). 
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Figure 3.16: FLA-3-11 Strain gauge (Hannah, R. L. and Reed S. E., 1992) 

Further details on the placement of the strain gauges would be discussed in the next section.  

Table 3.8: FLA-3-11 strain gauge specifications 

Gauge base length Gauge base width Gauge length Gauge width Resistance 

8.8 mm 3.5 mm 3 mm 1.7 mm 120 Ω 

 

3.4 Experiments conducted on the Twin disc rig 

Impact hammer testing and calibration tests on the rail roller for normal, vertical and lateral force 

measurement are the two experiments used to establish the test rig parameters. Details of the 

impact hammer test (experimental modal analysis) and vertical and lateral force calibration would 

be discussed in subsequent sections.  

 

3.4.1 Experimental modal analysis of the wheel and rail assembly 

Experimental modal analysis has grown progressively in popularity over the years since the 

introduction in 1970’s of digital Spectrum analyzer. To characterize vibration resonance, natural 

modes of a structure are used. Most structures exhibit what is called resonant vibration on their 

natural modes depending on the excitation force applied to them. Therefore in experimental modal 

analysis, it is imperative that the resonances of the wheel and rail roller is identified in other to 

understand its vibration structure (Schwarz and Richardson, 1999).  

It is necessary to note that the structure resonances of the test rig are due to the force vibrations 

and resonances. These integral vibrations and forced resonances affect the dynamic behaviour of 

the test rig. Since curve squeal is of importance in this study, only the individual resonances 

vibrations of the rollers have been considered and undertaken. There is a possibility that these 

structural vibrations of the rollers would affect the performance of the overall test rig structural 

system.  

The experimental modal analysis of the wheel and rail roller was carried out to determine their 

natural frequencies. This would provide an insight to the identification of the dominant natural 
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frequency associated with curve squeal. The wheel and rail roller was excited axially to determine 

the natural frequencies linked with generation of curve squeal. (Kim et al., 2019) confirmed that 

curve squeal generation is a consequence of excitation of the dominant wheel natural frequency in 

the axial (lateral) direction 

Two accelerometers (Dytran 3035B) was installed laterally on the wheel and rail roller rim for the 

impact hammer tests as shown in Figure 3.17(a) and Figure 3.17(b) respectively. The wheel and 

rail rollers were fixed to the bearings through their respective shafts for the tests. Two separate 

tests; one for wheel and rail roller was carried out. The first test involved the wheel roller isolation 

from the rail roller prior to measurements to extract its natural frequencies and mode shapes. The 

second test involved the isolation of the rail roller assembly from the twin disc rig before 

measurements was carried out. 

Sinocera LC-02A impact hammer with nylon tip was used to ensure that the only the wheel and 

rail roller natural frequencies are excited. The accuracy of the test is dependent on the impact force 

quality. Therefore, to eliminate bad hits from the impact and average only the good hits remaining, 

five hits for each test was carried out. The accelerometers and impact hammer were then connected 

the Computer system through the DAQ and then the YE7600 software was used to identify the 

modal shapes and natural frequencies of the wheel and rail roller. Accelerance frequency response 

function (FRF) (ratio of the acceleration to the excitation force) was then computed for each roller 

based on the extracted hammer test results.   
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(a) (b) 

Figure 3.17: Setup for tests on the (a) rail roller assembly (b) wheel roller assembly 

 

The frequency response functions/phase response in the axial directions on the side face of the 

wheel and rail rollers is shown in Figure 3.18 and Figure 3.19 respectively.  
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(b) 

Figure 3.18: Frequency response function (a) and phase response (b) of the wheel roller 

assembly 

 

The natural frequencies of the wheel roller can be observed from the Accelerance plot in Figure 

3.18(a). The corresponding phase response of the wheel roller indicating the natural frequencies is 

observed in Figure 3.18(b).  

Similarly, the natural frequencies and the mode shapes obtained from the Accelerance plot for the 

rail roller can be observed in Figure 3.19(a). In addition, the phase response of the rail roller (Figure 

3.19(b)) indicates the regions where the natural frequencies on the rail roller occurs. The wheel 

and rail roller natural frequencies are observed to be slightly different from each other in other to 

be able to identify which the dominant frequency responsible for curve squeal. These results 

correlate with the results obtained in (Hsu et al, 2007).  
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(a) 

 

 (b) 

Figure 3.19: Frequency response function (a) and phase response (b) of the rail roller 

assembly 

 

The impact hammer test conducted on the Twin disc rig provided understanding of the wheel and 

rail roller natural frequencies and mode shapes. However, it did not provide sufficient information 
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about which of the natural frequencies in the wheel and rail roller are excited during curve squeal. 

This information would be observed in dynamic measurements conducted on the twin disc rig.  

 

3.5 Finite element model (FEM) of the wheel and rail assembly 

Finite element model (FEM) of the wheel and rail roller assembly (with their respective shafts) 

was performed with ANSYS workbench to examine in detail the modes of vibration. In the FEM 

model, modal and harmonic response analysis of the wheel and rail roller assembly would be 

implemented. In this next section modal analysis of the wheel and rail assembly would be 

discussed in detail while the harmonic analysis of the wheel and rail assembly would be discussed 

in the next section.  

 

3.5.1 Modal analysis of the wheel and rail roller assembly  

Modal analysis is required to determine the natural frequencies, mode shapes and modal damping 

parameters of the wheel and rail roller. The determination of these parameters would help to 

discover the dominant mode and natural frequencies that are responsible for curve squeal. In 

addition, comparisons would be made with the results obtained from the impact hammer tests.  

ANSYS Workbench was the preferred choice to ANSYS mechanical for modal analysis of the 

rollers due to its relative easy interface, ability to interact easily with other CAD (Computer aided 

design) packages, stepwise solving scheme, easy rectification of errors, ability to update 

geometries and boundary conditions, ability to integrate two or more solvers, and its vast analysis 

capabilities (Chen and Liu, 2014). 3D CAD model of the wheel/rail roller attached to their 

respective shafts was generated in SolidWorks to replicate the actual geometry and exported to 

ANSYS Workbench to develop the FEM model. The material properties of the wheel/rail rollers 

including the shafts is displayed in Table 3.9: 

 

Table 3.9: Material properties of the wheel/rail rollers and their respective shafts 

Material Density Poisson’s ratio Young Modulus Tensile Yield strength 

EN24T steel 7850kg/m3 0.3 2.09 x 105 MPa 650MPa 

 

Further details on the geometrical properties of the wheel and rail roller can be found in Table 3.3. 
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The wheel and rail roller assembly were fixed at the shafts ends as shown in Figure 3.20. This is 

to replicate the actual test rig scenario where the bearings are press fit to the same locations on the 

shafts of the wheel/rail system. Multizone and Hex Dominant mesh algorithms was applied to the 

wheel/rail roller and the shafts respectively so as to be optimal for the circular shape. 345,157 

nodes and 99,027 elements was generated for the wheel roller assembly, while 226,301 nodes and 

58,885 elements generated for the rail roller assembly using the described mesh method.  

  

(a) (b) 

Figure 3.20: Boundary conditions for the wheel (a) and rail (b) roller assembly 

Figure 3.21 shows the mesh applied on the wheel and rail roller assembly 

 
 

(a) (b) 

Figure 3.21: Meshed wheel (a) and rail (b) rollers  

 

The modal shapes of the wheel roller assembly from the FEM model are displayed in Figure 3.22. 
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(a) (b) 

  

(c) (d) 

Figure 3.22: Mode shapes for the wheel roller assembly (a) 1095.1Hz, (b) 2869.1Hz, (c) 

5223.5Hz, (d) 7956.4Hz. 

It can be observed that the mode shapes of the wheel roller assembly generated in the axial 

direction are characterized by nodal diameters (n). The nodal diameters represent the vibration 

amplitudes created in the circumferential direction of the rollers for which the maximum response 

is on the wheel roller rim. Figure 3.22(a), Figure 3.22(b), Figure 3.22(c) and Figure 3.22(d) has 

nodal diameters 2, 3, 4 and 5 respectively.  

Similarly, the modal shapes of the rail roller are displayed in Figure 3.23. 

  

(a) (b) 
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(c) (d) 

Figure 3.23: Mode shapes for the rail roller assembly (a) 1454.9Hz, (b) 3127.1Hz, (c) 

5521Hz, (d) 8360.1Hz. 

Similar observations of the nodal diameters of the rail roller are observed. However, the natural 

frequencies locations of the rail roller can be observed to be slightly difference from that of the 

wheel rollers. This was intentionally done from the 3D model of the rollers to differentiate which 

modes are responsible for curve squeal.  

 

3.5.2 Harmonic response analysis of the wheel and rail roller assembly 

To further determine the resonance of the wheel and rail roller assembly, and study the forced 

vibration response, harmonic response analysis is required to be conducted based on the modal 

analysis results. Harmonic response analysis of the wheel and rail roller assembly FEM model was 

conducted using a range of 0Hz to 9kHz at 6.25Hz intervals. The boundary conditions were 

imported from the modal analysis results and the wheel and rail roller was divided in the axial 

directions by a force of 1kN. From the impact hammer test results, the modal damping of the wheel 

and rail assembly was predicted to be about 0.0001 and used to perform the harmonic analysis. 

The frequency response function (FRF) with the corresponding mode shape of the wheel roller is 

shown in Figure 3.24.     
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(a) 

 

(b) 

Figure 3.24: Frequency response function (a) and phase response (b) of the wheel roller 

assembly from harmonic analysis  

 

Similarly, the frequency response function (FRF) with the corresponding mode shape of the rail 

roller assembly is shown in Figure 3.25. 
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(a) 

 

(b) 

Figure 3.25: Frequency response function (a) and phase response (b) of the rail roller 

assembly from harmonic analysis  

 

The axial modes of the wheel and rail roller assembly was successfully extracted using harmonic 

analysis. The phase response of the wheel and rail roller assembly is the imaginary part of the 

frequency response function which is complex. 
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(a) 

 

(b) 

Figure 3.26: Frequency response function comparison of (a) wheel roller assembly and (b) 

rail roller assembly.  

 

Figure 3.25(a) and Figure 3.26(b) shows the comparison between the wheel roller assembly and 

rail roller assembly respectively. The experiments and the simulated results obtained from the 
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FEM model showed good agreement with each other in the axial direction. The difference in the 

total frequency response for the wheel and rail roller assembly was under 2% as shown in Table 

3.10. 

 

Table 3.10: Comparison between experiment and FEM (Wheel roller assembly) 

Wheel roller assembly 

Mode FEM (Hz) Experiments (Hz) Difference (%) Mode shape 

1 1093.98 1094.97 0.091 Axial 

2 2868.8 2868.53 0.0094 Axial 

3 5225 5227.66 0.051 Axial 

4 7956.30 7977.91 0.27 Axial 

Rail roller assembly 

Mode FEM (Hz) Experiments (Hz) Difference (%) Mode shape 

1 1456 1441.41 1.01 Axial 

2 3128 3136.23 0.032 Axial 

3 5520 5520.99 0.018 Axial 

4 8360 8356.93 0.037 Axial 

  

3.6 Lateral force measurement on the Twin disc rig 

Lateral force in the Twin disc rig was determined through the bending moment by a strain gauge 

array installed on two different circular arrays on the rail roller as shown in Figure 3.27(a). The 

lateral force on the wheel is calculated as: 

𝐹𝑌 =
𝑀1 − 𝑀2

𝑟1 − 𝑟2
 (3.1) 

Where 𝑟1 and 𝑟2 are the optimized radii of the two circumferences for which the strain gauges are 

installed on the rail roller web and 𝑀1 and 𝑀2 are the two bending moments on two radius 

measurements. The radii for the strain gauges must be optimized to minimize sensitivity against 

other forces (vertical and normal) and increase the sensitivity of the strain gauges to lateral forces. 
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(a) 

  

(b) (c) 

Figure 3.27: Layout of the strain gauge for the measurement of lateral force on the Twin 

disc rig (a) Strain gauge layout locations on the rail roller (b) Strain gauge layout 1 

connection (c) Strain gauge layout 2 connection  

 

The method for lateral force measurement was derived from (Papini et al., 2013). This method is 

effective in the estimation of lateral force through bending moment using strain gauge arrays 

mounted on two dissimilar circular arrays. The rationale for this approach is to be able to minimize 

the effects of other forces applied on the wheel such as the lateral and vertical forces. This method 

of lateral force measurement uses full bridge configuration (all four strain gauges connected 

together), rather than half or quarter bridge configuration to ensure that the output voltage is 

directly proportional to the applied force. They provide twice the sensitivity of half bridge 

configurations and provide temperature compensation during measurements. Finally, full bridge 
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configurations provide less complexity in circuitry for lateral force measurement than half bridge 

configurations used by (Hsu et al., 2007).  

 

3.6.1 Optimal positioning determination using rail roller FEM model 

A complete FEM model was required to determine the effect of strain gauge position on 

measurement was developed in Ansys Workbench. The optimization for the measurement of the 

lateral forces was simulated using one loading and contact position on the Twin disc rig. The 

vertical and lateral forces was selected based on realistic operating conditions. For example, 

assuming that the coefficient of friction at the wheel rail contact in central position is 0.3, vertical 

force was assumed to be 2.5 kN while the lateral force was assumed to be 2.5 kN x 0.3 = 750 N. 

Longitudinal forces on the test rig was negligible and was therefore not considered in the FEM 

simulation. Figure 3.29 shows the generated mesh for the rail roller using Multizone mesh method. 

This method decomposes the rail roller geometry into pure hexahedral mesh. The advantage of 

using multizone mesh is its ability to handle problems associated with complex geometry 

compared with other mesh methods. The resultant mesh yielded 128,291 nodes and 98,123 

elements.  

 

 

 

 

 

 

 

 

 

Figure 3.29: Mesh results for the rail roller 

 

The result of the FEM simulation with the corresponding optimal radii for the placement of the 

strain gauges are 𝑟1 =73.20 mm and 𝑟2 =113.10 mm as shown in Figure 3.30.  
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Figure 3.30: FEM model showing radial strain on the rail roller for the assumed loading 

condition 

 

Maximum radial strain occurs at the radii location 𝑟1 as expected compared to radii location 𝑟2. 

This is due to the fact that when lateral force is applied, more lateral bending is experienced at this 

radii circumference location. Strain gauges mounted at 𝑟1 circumference would therefore produce 

much higher strain compared to strain gauges installed at 𝑟2. However, the installation of strain 

gauge at 𝑟2 is necessary to eliminate all wheel-rail contact forces to ensure that only lateral force 

is taken into consideration.  

 

3.6.2 Calibration of lateral force using Intron 3369 Table top system 

Using the determined optimal strain gauge location, calibration of the lateral force on the rail roller 

was performed using Instron 3369 tabletop system (see Appendix for detailed specification of the 

instron 3369 tabletop system) to determine the relationship between voltage and lateral force. 

Specially designed test piece was constructed for the application of lateral force on the rail roller 

rim. The Instron 3369 tabletop system is used to apply lateral force to the test piece. The system 

has the capability of applying force up to 50 kN. Considering the twin disc rig design constraints, 

4 kN lateral force was sufficient for lateral force calibration on the rail roller (see Figure 3.31). 

r1 

r2 
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Figure 3.31: Lateral force measurement on the rail roller 

 

Lateral force applied by Instron 3369 tabletop system was in the range of 0 to 4 kN in increments 

of 0.25 kN. Since the lateral force is only possible at one position in the rail roller rim, the applied 

lateral force. Strain gauge amplifier circuit (details in Appendix) was designed to measure the 

corresponding voltages of the strain gauge (VA and VB as shown in Figure 3.32 and Figure 3.33 

respectively).  

 

Figure 3.32: Calibration results for the lateral force on the rail roller (Voltage VA versus 

lateral force) 
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The expression for the line of best fit in Figure 3.30 is expressed as follows: 

𝑉𝐴 = 2.04𝐹𝐿 − 0.164 (3.2) 

 

Where the slope is given as 2.04V/kN, and the voltage intercept is -0.164V.   

Figure 3.33 shows the calibration results for the lateral force versus the lateral voltage (VB). 

 

Figure 3.33: Calibration results for the lateral force on the rail roller (Voltage VB versus 

lateral force) 

The equation for the line of best fit in Figure 3.31 is expressed as follows: 

𝑉𝐵 = 0.23𝐹𝐿 + 0.0218 (3.3) 

As expected, the lateral voltage (VB) plot obtained from the strain gauges installed at the radii r2 

has slope that is much lesser than the slope obtained in equation (3.2). The full bridge configuration 

installed at radii r1 has a sensitivity that is approximately ten times greater than the full bride 

configuration installed at radii location r2. These observations correlate with the FEM results 

obtained in Figure 3.30.  

 

3.7 Calibration of normal force using Intron 3369 Table top system 

Normal force is one of the components of measured force on the wheel-rail contact. In the twin 

disc rig, normal force is directly applied perpendicular to the wheel rail interface. Four-point 

bending mechanism is used to produce the required normal force for the Twin disc rig. Although 

in railway vehicles, the normal force differs from the vertical force as a result of the cant angle and 

the location of the contact point location, in the twin disc rig, the normal force is approximately 
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equal to the vertical force. The reason for this assumption is that the wheel and rail roller are 

aligned at central position always in the twin disc rig for dynamic measurements. Therefore, with 

no lateral displacement and cant angle, the normal force is equal to the vertical force.  

To calibrate the normal/vertical force, Instron 3369 system was used to apply the respective load 

to the four-point bending system along with the designed test pieces (see Figure 3.35).  

 

 
 

Figure 3.35: Vertical/Normal force calibration on the Twin disc rig 

 

For best sensitivity results, full bridge configuration was installed centrally on the rectangular bar 

(See Figure 3.36). 

 

 

 

Figure 3.36: Strain gauge layout for measurement of vertical/normal force 

 

Figure 3.37 shows the plot of the voltage versus the normal force/load:  
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Figure 3.37: Vertical/normal force calibration results 

 

The sensitivity of the full bridge configuration from Figure 3.34 was obtained as 0.89V/kN. The 

results obtained show that the normal force is directly proportional to the voltage obtained from 

the full bridge configuration.  

Figure 3.38 shows the location of the four-point bending mechanism on the twin disc rig. The 

hydraulic hand operated pump in Figure 3.9 is used to apply normal force to the wheel roller. 

Assuming that the hydraulic force is given as FH, then the normal force FN can be determined using 

the principle of moments: 

(𝐹𝐻)(2𝐿) = (𝐹𝑁)(𝐿) (3.4) 

𝐹𝑁 = 2𝐹𝐻 (3.5) 

This implies that the normal force is twice the hydraulic force obtained from the hydraulic hand 

operated pump. For a specified normal load of 2.5kN, the hydraulic force from the calibration tests 

must be equal to 1.25kN to satisfy equation (3.5).  
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Figure 3.38: Hydraulic and normal force determination in the twin disc rig. 

 

3.8 Experimental set-up for curve squeal measurement on Twin disc rig 

Experimental measurement for curve squeal measurement on the twin disc rig was the next 

objective after the wheel-rail contact force calibrations. Figure 3.39 shows the experimental set-

up for monitoring curve squeal.  
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Figure 3.39: Experimental setup for curve squeal measurement on the Twin disc rig 

 

Two full bridge circuits; lateral force measurement I and lateral force measurement II was 

connected through the slip ring installed on the rail roller shaft to the full bridge amplifier. The full 

bridge amplifier is used to amplify the voltage from bridge circuits. The amplified voltages using 

the calibrated results was connected to two channels of Sinocera YE6232B data acquisition system 

in other to measure the dynamic lateral force developed on the wheel-rail interface.  

The full bridge configuration installed on the four-point bending mechanism was connected 

through the full bridge amplifier to the data acquisition system for measurement of vertical forces 

developed on the wheel-rail interface. The normal force 1.25kN was set on the hydraulic arm to 

yield the required normal force for all tests conducted on the twin disc rig (see previous section 

for details of the hydraulic and normal force). Dytran 3035B accelerometers were mounted on the 

wheel roller connected through the wheel’s shaft to the slip ring and DAQ to measure the rollers 

     Lateral force  

    measurement 1 

Lateral force measurement II  

measurement (VB) 
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lateral acceleration. Curve squeal was measured using YG-201 microphone. The unit of squeal 

measurement is pascal. All measurements from the DAQ was sent to the PC system using for 

further data analysis such as conversion of pascals to decibels and so on. The sampling rate for all 

measurements was chosen to be 24 kHz to account for Nyquist sampling rate since the maximum 

modal frequencies do not exceed 9 kHz.  

Digital hand held laser Tachometer was used to measure the wheel speed as the yaw angle is 

manually changed from central position (zero degrees) to the maximum yaw angle. At dry contact 

conditions the experiment was discontinued after 1.4 to 1.5 degrees because of the large tonal 

squeal noise and wear observed at the wheel and rail rollers. The average wheel speed was 

calculated from four sets of wheelset speeds. The average wheel speeds calculated are 

approximately 100RPM, 125RPM, 150RPM and 175RPM. For wet, FM1 and FM2 contact 

conditions, the yaw angles were extended up to 2 degrees. The average wheel roller speed was 

calculated using as approximately equal to the wheel speeds obtained for dry contact conditions.  

 

Finally, before tests were carried out on the test rig, it was necessary to ensure that the rig complies 

with relevant health and safety standards. Health and safety regulation compliance was carried out 

to ensure that the rig is safe for experiments. Front and rear guards were installed to the test rig to 

minimize the risk of entrapment especially at high wheel and rail roller speeds. The rear guard was 

manufactured from a metal mesh that has a removal guard to enable observation of experiments 

conducted on the test rig. Figure 3.40 shows the installed front and rear guards for the test rig. 
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Figure 3.40: Front and rear guard for the test rig 

 

3.8.1 Application of Friction Modifiers on the rollers for curve squeal mitigation 

Two different friction modifiers with distinctive chemical properties was used for the experiments 

on the test rig. They include: 

(1) Friction modifier 1 (FM1): This kind of friction modifier contains solids suspended in a 

water-based solution. The watery solution is designed to evaporate leaving the solid part 

on the rollers. Therefore, for all tests conducted on the test rig, this friction modifier was 

applied on the dry rollers for about 3 minutes before testing to allow the evaporation of the 

water component. FM1 quantity (0.5ml) was applied to the two rollers. This quantity 

ensured that the rollers was lubricated for the entire experiment duration.  

(2) Friction modifier 2 (FM2): This type of friction modifier has thick soluble properties. It 

is greasy and therefore does not have drying time. Tests was therefore conducted 

immediately after application. For comparison between Friction modifier 1, 0.5ml of FM2 

was applied using a syringe to both roller surfaces. Immediately after the application the 

rollers were rotated by hand to evenly distribute the FM2 on the surface. 

For example, Figure 3.41 shows the Friction modifier observed on the wheel anr rail roller surfaces 

after application. After experiments, the friction modifiers applied on the wheel and rail rollers 
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was degreased using abrasive sand paper to return the roller back to the original dry contact 

conditions.  

 

Figure 3.41: Friction modifiers applied to the roller surfaces 

 

3.8.2 Water application on the rollers for curve squeal mitigation 

Applying water to the rail roller is required to simulate wet conditions on the rail, which is 

prevalent in most railway networks in the UK. The rail roller was chosen as the main part for 

application of water since it represented the rail of the wheel-rail interface (WRI) in a typical UK 

rail network. It was required that the constructed water applicator provide steady water flow to the 

rail roller while the test rig tests was conducted. The water applicator consists of a cranked bracket 

firmly attached to the test rig-rotating table. A nozzle and a flexible hose targeted at the surface of 

the rail roller was inserted into the cranked bracket. A small reservoir mounted on the test rig top 

was connected to the flexible hose. This allowed the variable drip-feed mechanism at a steady 

water flow rate to be applied through the flexible hose to the roller. The applicator is shown in 

Figure 3.42. 

 

Friction modifier 2 applied 

on the wheel and rail 

surfaces 
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Figure 3.42: Water application system on the twin disc rig 

 

3.8.3 Experimental procedures for the Twin disc rig 

The experimental procedures conducted on the twin disc rig can be summarized in the following 

table 

Table 3.10: Experimental parameters for the test rig 

Parameters Measurement range Equipment resolution 

Dry contact measurement 0o – 1.5o 0.1o 

Normal load 2.5 kN - 

FM application (FM1 and 

FM2) 

0o – 2o (0.5 ml was applied for 

each Friction modifier) 

0.05o 

Water application 0o – 2o (Rate 0.25 – 0.6 ml/min) 

0.4ml/min was used for all tests 

0.1o 

 

Friction modifiers was applied on the wheel and rail roller surfaces using a syringe. After the 

application of the friction modifiers, the wheel and rail rollers were rotated by hand to distribute 

the modifiers on the rollers. Then the friction modifiers was degreased from the rollers using 600 

grit emery paper. The specified normal load (2.5kN) was applied to the rollers and test rig was run 

for about 5 minutes at central position (0 degrees) to ensure that every trace of friction modifier is 

degreased from the rollers surface.  

Summary of the process conducted on the Twin disc rig include: 
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(a) Hydraulic jacking mechanism was used to apply the desired load to the rollers. 

(b) The wheel and rail roller were aligned together in a straight position. 

(c) Before any tests was recorded using the data acquisition system, the test rig was started 

and allowed to run for approximately one minute at 0o yaw angle.  This was to ensure that 

the rig was ready to take measurements.  

(d) Preliminary tests were conducted to determine the desired wheel roller speed and load 

suitable for monitoring curve squeal on the test rig. These tests were required to ensure 

reliable, consistent and repeatable results on the test rig. These tests were conducted in dry 

contact conditions without the influence of water of friction modifiers. 

(e) For water application on the roller surfaces, a steady flow rate of 0.4 ml/min was used for 

all speeds and all tests. The reason for this choice was that the lowest flow rate 

(0.25ml/min) possible using the water application system and the maximum flow rate (0.6 

ml/min) did not influence the results as the yaw angle of the rollers was increased from 

zero degrees to 2 degrees.  

The two preliminary tests conducted include the effect of varying the normal load on curve squeal 

and the effect of varying the speed on curve squeal. The test results showed that the normal load 

influences the occurrence of curve squeal. According to (Hsu et al., 2007) 2.2kN is sufficient to 

conduct curve squeal experiments on the test rig to replicate real track scenarios. In this work, the 

wheel and rail profiles were subjected to normal force ranging from 1 kN to 3 kN in 0.5 kN 

increments. The rollers were aligned together in a central position and the yaw angle was adjusted 

in 0.1 degrees increments until curve squeal occurs. At normal loads, below 2.5 kN, no curve 

squeal was heard for yaw angles up to 1.5 degrees. For normal loads greater than 2.5 kN, curve 

squeal was observed at certain yaw angles. At 3 kN heavy wear on the wheel and rail rollers was 

observed at the wheel-rail interface with debris falling on Twin disc rig sides. It was also observed 

that curve squeal occurred at yaw angles as low as 0.2 degrees. In research conducted in literature, 

must wheels experience curve squeal at angles greater than 0.2 degrees. Therefore, 2.5 kN was 

chosen at optimal normal load sufficient to generate curve squeal close to what is obtainable in 

literature. After the determination of the normal load required for measurements, the wheel and 

rail profiles were re-grinded to ensure that new profiles devoid of wear are used to commence 

experiments on the Twin disc rig.  

Figure 3.43 shows the flow chart for the experimental procedure conducted on the Twin disc rig.  
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Figure 3.43: Flow chart experiments 

 

The experiment carried out on the twin disc rig was selected carefully to address the main 

objectives of this research work. The steps chosen was used to reduce errors in measurement. At 

the start of experiment, the rollers were aligned in central position using the rotary spindle. The 

accelerometers, microphones and strain gauges were visually inspected to ensure that they are 

correctly installed for measurements. The next step was to set the wheel roller speed to around 

100RPM. This was used as the lowest speed for which the twin disc rig can operate. The next step 

was to set the normal load to 2.5kN. The sampling frequency was chosen to be over twice the 

maximum frequency range of the wheel and rail roller natural frequencies set at around 9kHz. The 
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next step was to select the contact conditions for the set wheel roller speed. The tests were carried 

out up until the last average wheel speed (175RPM) for the specified contact condition. For each 

speed, the yaw angle was adjusted from zero degrees up until about 1.5 degrees. Measurements 

for each yaw angle was taken for 5 seconds. Constraints on the maximum yaw angle was put in 

place to reduce the amount of wear on the wheel rail surfaces and to provide repeatability of 

measurements. The highest speed was the maximum speed that can be run to obtain good results 

from the slip rings since they are limited to operate at about 250RPM in theory. After the dry 

contact condition measurements was conducted, the wheel-rail contact surfaces were cleaned for 

any debris and the next contact condition was applied. Experiments were repeated until all 

measurement results have been obtained.  

 

3.8.4 Initial measurement results from the microphone 

In condition monitoring, it is important to obtain baseline measurements that can be used to provide 

useful insight into the performance of the system at a glance. These measurements are best 

obtained for new wheel-rail profiles that are not worn to provide benchmark for other 

measurements on the twin disc rig. Figure 3.44 shows one of the measurements collected from the 

microphone located 50 mm away from the wheel-rail contact. The recording was done at wheel 

rolling speed set at 100RPM for two different yaw angles. The first yaw angle is at zero degrees 

(no curve squeal) while the second yaw angle is at 1.2 degrees (curve squeal occurrence). The 

results show that for the baseline time domain data at zero degrees yaw angle, the sound magnitude 

is significantly reduced compared to the sound magnitude at 1.2 degrees. At 1.2 degrees yaw angle, 

bursts of energy that occurs periodically in the time frame is observed. The periodic bursts of sound 

energy represent the revolution of the wheel roller. The bursts are distinct as a result of reduction 

in wheel roller speed. As the yaw angle increases, excessive load on the three-phase induction 

motor as a result of the excessive friction and vibration in the wheel-rail contact is observed. The 

causes the wheel roller speed to reduce as the yaw angle increases.  
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Figure 3.44: Microphone data for the system running at average wheel speed of 100RPM at 

2.5kN load in dry contact conditions.  

 

Since the twin disc rig is an open loop system, the three-phase induction motor driving the pulley 

system did not maintain constant wheel speed as the yaw angle increases. However, the focus of 

this study is not on the wheel-speed, but rather on the detection and mitigation of curve squeal. 

The influence of wheel speed and rotation on curve squeal was observed to be of very little effect 

in studies conducted on twin disc rig by (Meehan and Liu, 2018). According to their study, change 

in wheel speed did not affect the natural frequency that was excited on the wheel roller responsible 

for curve squeal.  

Figure 3.45 shows the power spectrum of the time domain data for frequencies up to 9kHz for zero 

yaw angle.  
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Figure 3.45: Power spectrum from the microphone for the system running at average wheel 

speed of 100RPM at zero degrees yaw angle. 

The results show the maximum power spectral energy occurs between 1kHz and 2kHz. Taking a 

detailed look at this frequency range from 1kHz to 1.5kHz, the following is shown in Figure 3.46.  

 

Figure 3.46: Zoomed in power spectrum from the microphone for the system running at 

average wheel speed of 100RPM at zero degrees yaw angle. 
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The results illustrate that the dominant frequency is around 1270 Hz. This frequency is not seen in 

the natural frequency results obtained for the wheel and rail rollers. A strong possibility is that this 

frequency possible represents the rolling contact noise generated as a result of interaction between 

the wheel and the rail. Further details on the signal processing of the microphone data would be 

discussed in detail in the next chapter.  

 

Figure 3.47: Zoomed in power spectrum from the microphone for the system running at 

average wheel speed of 100RPM at 1.2 degrees yaw angle.  

 

Figure 3.47 shows the zoomed in section of the power spectrum when squeal occurs at 1.2 degrees. 

The rolling contact noise around 1250 Hz has been suppressed by the dominant curve squeal 

frequency centred around 1150 Hz. This frequency is about 55 Hz more than the second nodal 

diameter and natural frequency of the wheel roller. A quick observation of the power spectrum 

shows that the wheel roller is responsible for curve squeal on the twin disc rig. The peak around 

1400 Hz to 1450 Hz band is the second nodal diameter and natural frequency of the rail roller. 

 

3.8.2 Initial accelerometer measurements.  

In condition monitoring, it is sometimes imperative that an initial investigation into the nature of 

the acquired signals be carried out to ensure that they are devoid of noise and the measurements 
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are correctly taken. The first five seconds of the baseline measurements for the wheel and rail 

accelerometers at central position (zero degrees yaw angle) is shown in Figure 3.48.  

 

Figure 3.48: Time domain data for the wheel and rail accelerometer at central position 

Hardly any difference can be observed between the two signals. Although there are some peaks in 

the data, it is difficult to tell the performance of the wheel and rail roller with this measurement.  

 

Figure 3.49: Time domain data for the wheel and rail accelerometer at 1.2O yaw angle 
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Figure 3.49 shows the time domain data of the wheel and rail accelerometer at 1.2 degrees yaw 

angle. Similar to the results obtained from microphone data, it can be observed that the set wheel 

speed (100RPM) at baseline for the experiment has significantly dropped. The wheel and rail 

rotations are clearly visible. These results indicate that an increase in the yaw angle results in 

excessive load on the three-phase motor. This leads to a decrease in the speed of the driver pulley 

connected to the wheel roller shaft and a subsequent decrease in speed of the rail roller. The 

excessive load is possible due to the increase in the lateral forces at the wheel-rail interface 

resulting in increased adhesion coefficient. Since no closed loop system is actively installed in 

place to ensure that the wheel and rail roller speeds are constant regardless of the increased yaw 

angle, the twin disc rig operates as an open loop system. This is expected for the current design of 

the test rig.  

Figure 3.50 shows the power spectrum obtained from the wheel and rail accelerometers.  

 

Figure 3.50: Power spectrum from the wheel and rail accelerometer for the system running 

at average wheel speed of 100RPM at central position.  

Maximum peak of the power spectrum plots is observed in the frequency range of 1000 Hz to 2000 

Hz. It is not clear what this peak is. However, some of the peaks above the 2000Hz represent the 

natural frequencies of the wheel and rail roller. Since the focus is on curve squeal condition 

monitoring on the twin disc rig, emphasis would be given to the maximum peak and the surround 
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frequencies that result in curve squeal. A section of the power spectrum plot from 1000Hz to 

1500Hz is shown in Figure 3.51. 

 

Figure 3.51: Power spectrum of the wheel and rail accelerometer data for the system 

running at average wheel speed of 100RPM at central position.  

The result shows that the maximum peak for the wheel and the rail roller is centred around 1270Hz. 

This result correlate with the maximum peak obtained from the microphone data. It can therefore 

be inferred from the results that this is excitation frequency is as a result of the vibration of the 

wheel and rail data in central position when no yaw angle is applied to the rail roller. This results 

in rolling contact noise which was heard when the experiments were taken. This frequency has 

been observed to suppress the natural frequencies of the wheel and rail roller for this frequency 

range. The peaks around 1100 Hz and 1450 Hz indicate the second nodal diameter and natural 

frequency of the wheel and rail roller respectively.  

Figure 3.52 shows the section of the power spectrum plot of the wheel and rail accelerometer for 

the frequency band 1000Hz to 1500Hz at 1.2 degrees yaw angle. The results for the wheel and rail 

accelerometer show a sharp peak around 1150Hz. This definitely represents the curve squeal 

frequency. This excitation frequency is so dominant that it resonates from the wheel roller to the 

rail roller. The second nodal diameter and first natural frequency of the wheel roller around 1095 

is therefore responsible for curve squeal. The shift of about 55 Hz from the natural frequency of 

the wheel roller to the around 1150Hz is probably due to the dynamics of the system.   
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Figure 3.52: Zoomed in power spectrum of the wheel and rail roller data for the system 

running at average wheel speed of 100RPM at 1.2 degrees yaw angle.  

 

3.9 Summary 

This chapter presented a detailed study of the twin disc rig that would be used to investigate and 

validate the research objectives and aims. A detailed presentation of the instrumentation and 

measurement equipment has been discussed. There are 4 different contact conditions that would 

be used in this research to understand what happens in curve squeal mitigation. The Instron 3369 

table top system was used to calibrate the lateral and vertical/normal forces that are developed in 

the wheel-rail interface. The calculated slopes/gradients would be used in this research to obtain 

the tangential creep curves for various contact conditions and wheel speeds. The impact hammer 

test was carried out on the wheel and rail rollers to obtain the respective natural frequencies. 

Finally, initial baseline measurements using wheel/rail accelerometer and microphone data was 

carried out to provide useful insight to the performance of the system. The results obtained showed 

that curve squeal is a strong tonal frequency that resonates from the wheel roller to the rail roller 

and probably to all structural components of the twin disc rig. A flow chart that detailed the 

experimental procedure carried out in the twin disc rig for data acquisition was presented.  
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Chapter 4: Development of curve squeal model for the Twin disc rig 

The main aim of this chapter is to develop a mathematical model for curve squeal on the test rig. 

This model will help in the comprehension of what transpires during the development of curve 

squeal on the test rig. The test rig comprises of the wheel-rail roller and other components. 

However, for this case, only the wheel and rail roller would be considered in the model. The 

equations representing the lateral vibration of the wheel and rail roller are derived from first 

principles. The inputs to the developed model are the lateral forces, yaw angle and the lateral 

creepages. The adhesion coefficient functions for the dry, wet, FM1 and FM2 contact conditions 

are obtained from experimental measurements of the lateral force and curve fitted using Modified 

Fastsim algorithm. The lateral stiffness and damping coefficient of the wheel and rail roller are 

obtained from the impact hammer results. The curve squeal vibration amplitudes calculated are 

then used to determine the squeal noise amplitude in decibels.  
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4.1 Introduction 

An extensive literature review on several curve squeal models have been discussed in Chapter 2.  

Two main modelling approaches were identified; frequency domain solution obtained by 

linearization of the wheel-rail contact equations, and time domain solution of the non-linear wheel-

rail contact equations. However, curve squeal is a non-linear phenomenon involving the wheel-

rail contact dynamics and contact mechanics. The frequency domain solution only determines the 

stability of the model and its frequency. It does not take into consideration the amplitudes of 

vibration and the curve squeal, which is characteristic of time domain models. Therefore, based 

on the limitations of the frequency domain model, this chapter presents a simplified and efficient 

time-domain curve squeal model for the test rig. This model would integrate the vibration modes 

of the wheel and rail roller responsible for curve squeal, wheel-rail contact mechanics and curving 

to predict theoretically the amplitude of the wheel vibration velocity responsible for curve squeal. 

The lateral stiffness and damping coefficients of the wheel associated with curve squeal would be 

obtained by curve fitting the impact hammer tests. The rolling contact model and tangential contact 

model using Fastsim algorithm and adhesion (friction) coefficient model would be used to compute 

the latera creep forces developed in the wheel-rail roller contact. Finally, the vibration amplitude 

of curve squeal would then be calculated from the equations of motion of the wheel and then the 

sound radiation emanating from the wheel would be estimated to compute the curve squeal 

amplitude in decibels.  

The following steps would be used to model and simulate curve squeal on the twin disc rig: 

(2) Determine the shape and size of the wheel-rail contact depending on the normal force and 

yaw angle using Hertz contact theory. 

(3) Estimate the lateral creep force developed in the wheel-rail contact using adapted Fastsim 

algorithm. 

(4) Calculate the vibration velocity amplitude of curve squeal from the wheel and then use 

values to determine the curve squeal amplitude in decibels. 

 

4.2 Hertz contact theory (HCT) 

Hertz contact theory is the most extensively used mathematical theory in contact mechanics. It 

takes into consideration the shape of the contacting bodies and the surrounding contact area. HCT 

is widely used in wheel-rail contact problems to resolve the normal contact forces, size and shape 
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of the contact area and the local deformation because of the normal applied load. (Shabana et al., 

2004), (Yan and Fischer, 2000). 

The summarized assumptions of HCT are stated as follows: 

(1) The contact area is very small compared with the lateral and longitudinal radius of the 

curvature of the contact surfaces.   

(2) The deformations formed because of the applied normal force are considered elastic. 

(3) The contacting surfaces are assumed frictionless, thus resulting in independent analysis of 

the tangential and the normal contact problem. 

(4) The contacting surfaces are assumed smooth without surface roughness. 

(5) The contacting surfaces are non-conformal and continuous. A contact is non-conformal if 

the contacting bodies meet at a point initially and there is no interpenetration of the two 

surfaces at no applied load.  

(6) The traction distributions and contact pressures are ellipsoidal. 

 

4.2.1 Application of Hertz Contact Theory to the test rig 

HCT was applied to the test rig to determine the shape and size of the contact area formed by the 

wheel and rail roller. The HCT developed for the test rig would take into consideration the effect 

of yaw angle applied manually by the rotary table and the normal applied load to the wheel-rail 

interface. The radius of curvature of the wheel and the rail roller (Rx1, Rx2, Ry1, and Ry2) is 

considered as displayed in Figure 4.1 where: 

Rx1 is the wheel roller radius in the longitudinal (x-axis) direction (155 mm) 

Rx2 is the rail roller radius in the longitudinal (x-axis) direction (145 mm) 

Ry1 is the wheel roller radius in the lateral (y-axis) direction () 

Ry1 is the rail roller radius in the longitudinal (x-axis) direction (100 mm) 

Since the applied normal load range for the twin disc rig (0 – 4 KN), and the wheel roller does not 

have flanges as typical railway wheels do, Hertz contact theory was deemed fit for solving the 

normal contact problem and would be used throughout this thesis. 
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Figure 4.1: Wheel and rail roller geometry showing the principle radius of curvatures and 

the contact area 

Figure 4.2 shows the wheel and roller geometry with the principal radii of curvature in the rolling 

direction (x) and lateral direction (y) and the inclusion of yaw angle.  

 

 

Figure 4.2: Wheel and rail roller with the yaw angle adjusted on the rail roller 

 

 



90 

 

Applying Hertz contact theory, the required inputs are the radii of curvature already stated, the 

normal load FN and the Young modulus of elasticity, E (Popovic, 2010).  

Given that the yaw angle,  = 0 as is the case in Figure 4.1, the semi-axes of the contact patch 

ellipse, a and b can be expressed as: 

𝑎 = 𝑎′ (
3𝐹𝑁𝑅

𝐸′
)

1/3

 (4.1) 

𝑏 = 𝑏′ (
3𝐹𝑁𝑅

𝐸′
)

1/3

 (4.2) 

where a’ and b’ are the approximate semi-axes of the contact area and can be expressed as: 

𝑎′ ≈ 𝛾1/3 [
2

𝜋
𝐸(𝑚)]

1/3

 (4.3) 

𝑏′ ≈ 𝛾−2/3 [
2

𝜋
𝐸(𝑚)]

1/3

 (4.4) 

 

R is the resultant radius of curvature expressed as: 

𝑅 =
𝑅𝑥1𝑅𝑦1𝑅𝑥2𝑅𝑦2

𝑅𝑥1 + 𝑅𝑦1 + 𝑅𝑥2 + 𝑅𝑦2
 (4.5) 

FN is the normal applied force and E’ is the combined young modulus of elasticity. The indentation 

(𝛿) as a result of the normal applied force can be expressed as: 

𝛿 = 𝛿′ (
9𝐹𝑁

2

8𝑅(𝐸′)2)

1/3

 (4.6) 

Where 𝛿′ is the approximate indentation and can be expressed as: 

𝛿′ ≈ 𝛾2/3 [
2

𝜋
𝐸(𝑚)]

−1/3

[
2

𝜋
𝐾(𝑚)] (4.7) 

The maximum contact pressure (𝑃𝑚) can be expressed as: 

𝑃𝑚 =
𝐹𝑁

𝜋𝑎𝑏
 (4.8) 

While the maximum Hertzian contact pressure can be defined as follows: 

𝑃0 =
3

2
𝑃𝑚 (4.9) 

The elliptical integrals of the first kind (E(m)) and the elliptical integral of the second kind (K(m)) 

can be expressed as: 

𝐸(𝑚) ≈
𝜋

2
(1 − 𝑚) [1 +

2𝑚

𝜋(1 − 𝑚)
−

1

8
𝐼𝑛(1 − 𝑚)] (4.10) 
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𝐾(𝑚) ≈
𝜋

2
(1 − 𝑚) [1 +

2𝑚

𝜋(1 − 𝑚)
𝐼𝑛 (

4

√1 − 𝑚
) −

1

8
𝐼𝑛(1 − 𝑚)] (4.11) 

and 

𝛾 ≈ [1 + √
𝐼𝑛(16/𝑢)

2𝑢
− √𝐼𝑛(4) + 0.16𝐼𝑛(𝑢)]

−1

 (4.12) 

m is the dimensionless constant that can be expressed as: 

𝑚 = √1 − 𝛾2 and 𝛾 =
𝑎

𝑏
 for a < b 𝛾 =

𝑏

𝑎
 𝑓𝑜𝑟 𝑏 > 𝑎 (4.13) 

𝑢 =
𝑅𝑥

𝑅𝑦
 𝑓𝑜𝑟 0 < 𝑢 < 1 (4.14) 

Note that 𝛾 is the ratio of the semi-axes contact lengths and u is the ratio of the radii of curvature in the 

longitudinal and lateral direction.  

The principal radius of curvature Rx and Ry can be expressed as: 

1

𝑅𝑥
=

1

𝑅𝑥1
+

1

𝑅𝑥2
,

1

𝑅𝑦
=

1

𝑅𝑦1
+

1

𝑅𝑦2
 (4.15) 

When the effect of yaw angle is considered,   0 as shown in Figure 4.2, the principal radius of 

curvature in equation 4.15 can be re-written as: 

1

𝑅𝑥
=

1

2
∑ 𝐷 − √∆ 

(4.16) 
1

𝑅𝑦
=

1

2
∑ 𝐷 + √∆ 

where;  

∑ 𝐷 =
1

𝑅𝑥1
+

1

𝑅𝑦1
+

1

𝑅𝑥2
+

1

𝑅𝑦2
 (4.17) 

and  

∆= 𝐻1
2 + 𝐻2

2 + 2𝐻1𝐻2cos (2) (4.18) 

where;  

𝐻1 =
1

2
(

1

𝑅𝑥1
−

1

𝑅𝑦1
) 𝑎𝑛𝑑 𝐻2 =

1

2
(

1

𝑅𝑥2
−

1

𝑅𝑦2
) (4.19) 

 

where D is the summation of the radius of curvature for the wheel and rail rollers, and Hi is the 

half radius of curvature of the wheel and rail roller.  
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4.3 Finite element model (FEM) of the wheel-rail roller system 

Having derived HCT equations for the test rig in the previous section, to validate further the 

elliptical shape is formed in the wheel-rail roller contact, FEM of the wheel and rail roller was 

designed and simulated. Geometrical modelling was implemented in a CAD environment 

(SolidWorks). The geometry was imported into Ansys Workbench. Significant amount of time is 

required for contact problems since they are non-linear. Taking into account that it would be 

required to carry out different simulations for varying normal load, only a sector of the rail and the 

whole wheel is considered for analysis to reduce computational time.  

The wheel and rail are meshed using Multizone method in as shown in Figure 4.3. The two po 

 

Figure 4.3: Finite element model of the wheel and rail roller 

 

Mesh density in the contact area influences the solution accuracy (Srivastava et al., 2014). 

Therefore, to ensure greater accuracy of the contact solution, an area (10mm x 10mm) was selected 

and mesh density was increased such that the element size was 1mm (See Figure 4.4). The same 

was implemented on the wheel roller. Effects of rotation of the wheel was neglected for this study. 

The wheel and rail roller were assumed to have properties already specified in Table 3.1. The 

coefficient of friction of the wheel and rail was set to be 0.3. The base of the half rail was fixed to 
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prevent rigid body motion of the system. The FEM has a total of 875,543 elements and 232,241 

nodes.  

 

 

Figure 4.4: Section of the rail roller with mesh density concentrated on the contact area 

 

Normal loads with steps of 500N up to 3000N was applied to the wheel roller to obtain the 

corresponding contact area. The contact area semi-axes and the normal contact pressure was 

extracted from the FEM model. For example, the result given that the normal load is 2500N is 

shown in Figure 4.5 

 

Figure 4.5: Contact area for normal applied load of 2500N – Comparison between HCT 

and Finite Element Analysis using Ansys workbench. 
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A noticeable increase in the contact area dimensions for the FEM compared to HCT is observed. 

The reason for the slight increase in contact area is based on the assumption of conformal contact 

for FEM methods. Despite the difference, both methods show good correlation which each other.  

Figure 4.6 shows the contact pressure in the rolling (x) and lateral (y) direction for the HCT and 

FEM models. It can be observed that the maximum contact pressure of the FEM model is greater 

that HCT. The reason for this is the fact that HCT assumes that the wheel-rail contact problem is 

a half space approximation while the FEM method assumes conformity of the wheel and rail 

profiles. These assumptions imply, that the FEM methods would always produce larger values of 

normal contact pressure and contact area.  

  

(a)  (b) 

 

(c) 

Figure 4.6: Normal contact pressure developed the contact area for normal applied load of 

2500N (a) Lateral direction (b) Longitudinal direction (c) 3D plot of the contact pressure 

obtained from FEA.  
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Figure 4.7 shows the effect of normal force on the contact area and the normal contact pressure.  

  

(a) (b) 

Figure 4.7: Effect of varying the normal applied force on the (a) Contact area and (b) 

Normal contact pressure 

There is a positive correlation between the HCT and the FEM methods. As expected, the FEA 

method produces larger values of contact area and pressure as a result of the conformal contact 

assumed in the simulation. Having established the good correlation between HCT and FEM 

methods, the HCT method would be used to model and simulate curve squeal in the Twin disc rig.  

The Twin disc rig is designed to operate with loads up to 4000N. Several normal loads up to 2500N 

was tested to investigate which load is sufficient to generate curve squeal. Normal load 2500 N 

was chosen as appropriate in this study to produce curve squeal on the test rig. Loads below this 

value did not produce the required curve squeal as the yaw angle was increased. The chosen load 

was used therefore used to investigated curve squeal phenomenon on the twin disc rig.  

 

4.4 Tangential contact model for curve squeal.  

The computation of creep forces in multibody simulations is usually time-consuming and complex 

task to deal with. Creep force models that take into consideration large creepages has been 

developed and studied extensively in literature (Polach, 2005), (Spiryagin et al., 2013). To reduce 

computation time of creep forces especially for application in the test rig, it is imperative that a 

fast-simplified algorithm for rolling contact be applied. (Kalker, 1982) developed an algorithm 

called Fastsim. This algorithm is a fast-computational method that simplifies Kalker’s variational 

theory for rolling contact. It accurately computes the creep forces generated at the contact area of 

the wheel-rail roller interface by dividing the contact region into different sub-area. It however, 
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has some disadvantages such that it does not permit creep force-creepage agreement for 

measurement results obtained from railway systems especially for high creepages.  

A modified Fastsim algorithm proposed by (Spiryagin et al., 2013) would therefore be applied to 

the test rig to determine the creep forces and the creepages developed in the wheel-rail contact. 

This approach introduces the variable flexibility constant to cater for different adhesion coefficient 

conditions resulting from contact conditions such as water and friction modifiers.  

It has been established in literature that lateral creepage leading to lateral creep forces is the 

dominant cause of curve squeal in railways (Thompson, 2009), (Liu and Meehan, 2016), (Meehan 

and Liu, 2018), (Monk-Steel and Thompson, 2003). Therefore, in the development of a model for 

curve squeal, only the lateral creepage and creep forces would be considered.  

 

4.4.1 Tangential contact force model using the Modified Fastsim algorithm 

The Modified Fastsim algorithm is based on the modification of Kalker’s original Fastsim 

algorithm (Kalker, 1982) to take into consideration large creepages developed in low adhesion 

conditions on the wheel-rail interface. It assumes that the variable friction coefficient reduces with 

increasing slip velocity below the adhesion limit, thereby predicting negative or positive falling 

slop of the creep-creepage curve obtained from experimental measurements. It also assumes 

constant variable adhesion coefficient over the entire contact patch region. The dynamic friction 

coefficient can be expressed as: 

µ = µ𝑠((1 − 𝐴)𝑒−𝐵𝑤 + 𝐴) (4.20) 

Where µ𝑠 is the static coefficient of friction, A is the ratio of the friction coefficient limit at infinity 

slip to the maximum friction coefficient µ𝑠, w is the slip velocity vector magnitude and B is the 

coefficient of exponential friction decrease, s/m.  

The slip velocity dependent friction coefficient considers the vector sum of the longitudinal and 

lateral creepages while neglecting spin. It can be expressed as (Spiryagin et al., 2013): 

𝑤 = 𝑉(𝑣𝑥
2 + 𝑣𝑦

2) (4.21) 

where V is the linear speed of the train in m/s, 𝑣𝑥 and 𝑣𝑦 are the longitudinal and lateral creepages 

respectively. In the curve squeal model, longitudinal creepage is not considered to be a contributor 

to curve squeal (Pieringer, 2011), (Zenzerovic et al., 2015). It is therefore neglected in this work. 
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The factor k, known as the stiffness reduction factor is used to maintain slip ratio to adhesion ratio 

increase in the contact area. It can be expressed as follows: 

𝑘 = 𝑘0 (𝛽 +
1

1 − 𝜎𝜀
) (4.22) 

where 𝑘0 is Kalker’s initial reduction factor value at creep values close to zero, 𝛽 is the fraction of 

the initial Kalker’s reduction factor at creep values tending to infinity, 0 ≤ 𝛽 ≤ 2, 𝜎 is the non-

dimensional parameter concerned with reduction of the contact stiffness with increasing area of 

slip (0≤ 𝜎), 𝜀 is the tangential stress gradient in the distribution stress transformed to a hemisphere. 

The tangential stress gradient can also be expressed as: 

𝜀 = 0.25𝑣 (
𝐺𝜋𝑎𝑏𝑘0𝐶22

𝜇𝐹𝑁
) (4.23) 

where G is the modulus of rigidity, a and b are the semi-axis of the contact area in the lateral and 

longitudinal direction respectively, C22 is Kalker’s lateral creep coefficient, FN is the normal 

applied force, 𝜇 is the adhesion coefficient and v is the total creepage computed as the sum of the 

lateral and longitudinal creepages defined as (√𝑣𝑥
2 + 𝑣𝑦

2). It is important to note that the influence 

of longitudinal creepages on curve squeal was investigated in detail by (A. D. Monk-Steel, 2006) 

using a scale test rig. The results obtained from the experiments concluded that longitudinal 

creepage has a minimal effect on curve squeal as compared to lateral creepage. Therefore, only 

lateral creepage would be used to model and monitor curve squeal on the test rig. 

Finally, the flexibility constant L used by Kalker can be modified as follows: 

𝐿’ =
𝐿

𝑘
 (4.24) 

This model would be applied to fit lateral creep force measurement data obtained from experiments 

on the test rig. To conclude, the modified Fastsim algorithm would be employed to compute the 

lateral creep forces developed in the test rig for dry, wet and friction modifier 1 (FM1) and friction 

modifier 2 (FM2) contact conditions. The contact area was discretized using the Kalker’s original 

Fastsim algorithm to model processes for each contact particle. This is preferred to the point-

contact model that computes the creep forces on a global contact level. The global contact level 

does not account for the contact variables throughout the whole contact area unlike the 

discretization method. For the test rig, the contact area was discretized as shown in Figure 4.8. 
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Figure 4.8: Creep force computation using discretization method - Kalker’s Fastsim 

algorithm (Red dot indicates areas of slip while green dots indicates area of adhesion). 

 

The red dots in the figure show the area of adhesion while the green dots show the area of slip in 

the wheel-rail contact area. The contact area is discretized into m x n rectangular elements with 

size dx x dy as illustrated in Figure 4.8. The equations for the discretization using Fastsim algorithm 

is shown expressed as follows: 

𝑑𝑦 =
2𝑏

m
 

(4.25) 

𝑦𝑙 = −𝑏 + (𝑗 − 0. .5)𝑑𝑦, 𝑗 = 1 … … … … … … . . , 𝑚 

𝑥𝑗
𝑏𝑛𝑑 = 𝑎√(1 − (

𝑦𝑗

𝑏
)) 

𝑑𝑥𝑗 =
2𝑥𝑗

𝑏𝑛𝑑

n
 

𝑥𝑖,𝑗 = 𝑥𝑗
𝑏𝑛𝑑 − (𝑖 − 0.5)𝑑𝑥, 𝑖 = 1, … … … … … … … … . 𝑛 

Where a and b are the semi-axes of the contact area, 𝑦𝑙 is the distance in the rolling direction,  

The calculation of the total lateral force in the contact area was implemented by summing the 

integral surface tractions (discretized creep forces for each element). 
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4.5 Development of curve squeal model for the test rig 

Having discussed the wheel-rail contact model and creep forces developed in the twin disc rig, the 

development of the curve squeal model is presented in this section. The model is designed and 

simulated in the time domain, as its ability to determine the curve squeal amplitudes is considered 

paramount in this model. The model is based on the detailed squeal model by (Zenzerovic et al., 

2015). The structure of the curve squeal model is shown in Figure 4.9. 

 

Figure 4.9: Curve squeal model structure 

The model comprises of the wheel and rail models, which are the curve fitted frequency response 

functions from experimental modal analysis conducted in chapter 3. The output from the wheel 

and rail model is convulsed with the lateral force to obtain the lateral displacement. The normal 

contact model is the Hertz Contact Theory (HCT) extensively discussed in section 4.2. The 

tangential contact model used is the modified Fastsim algorithm discussed in detail in section 4.4. 

The inputs to the model are the wheel/rail contact surface geometry, normal load and the lateral 

creepage. The lateral creepage is a function of the yaw angle and the lateral velocity. The lateral 

creepage is expressed as follows: 

𝑣𝑦 =  +
𝑑𝑦

𝑉𝑑𝑡
 (4.26) 

where  is the yaw angle,  
𝑑𝑦

𝑑𝑡
 is the lateral velocity of the wheel roller and V is the wheel rolling speed.  

The sound radiation model is based on the simple model developed by (Zenzerovic et al., 2015). This 

model used approximations of the boundary element method (BEM) for sound radiation developed 

by (Pieringer, 2011) and (Monk-Steel and Thompson, 2003). Comparisons between the simple 
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model for sound radiation and BEM model showed good agreement and correlation. As a result of 

the fast-computational time of the simple model, it would be applied in this thesis to compute the 

sound power levels of the dominant curve squeal frequency of the wheel roller. Since the response 

of the wheel and rail roller to excitation has been obtained from impact hammer tests, curve fitted 

frequency response functions of the experimental results can be used for the curve squeal model.  

 

4.5.1 Dynamics of the system 

The dynamics of the wheel and the rail roller are represented using the curve fitted frequency 

response function of the frequency response functions obtained in the Chapter 3. Double 

integration of the frequency response functions for the wheel and rail roller in Figure 3.18 and 

Figure 3.19 was implemented to obtained the receptances of the wheel and rail roller. Receptance 

is defined as the ratio between the displacement and the force. It is expressed as follows: 

𝐺𝑖,𝑗(𝑓)  =
𝑑𝑖(𝑓)

𝐹𝑗(𝑓)
 (4.27) 

Where 𝑑𝑖(𝑓) is the displacement response as a result of excitation force Fj in the coordinate direction i. It 

is assumed that the wheel-rail system is damped such that the response of the system decays to zero after a 

certain time period. Having obtained the curve fitted frequency response function, the real part of the 

receptance is doubled to obtain the frequency spectrum (Zenzerovic et al., 2015): 

𝑆𝑖,𝑗(𝑓𝑑)  = 2𝑅𝑒𝑎𝑙(𝐺𝑖,𝑗(𝑓𝑑)) (4.28) 

where the discrete frequency is 𝑓𝑑. The obtain the system response in the time domain, the inverse 

Fourier transform is applied to equation (4.27). 

𝑠𝑖,𝑗(𝑛∆𝑡)  = 𝐹−1(𝑆𝑖,𝑗(𝑓𝑑)) (4.29) 

Where ∆𝑡 represents the discrete time length, and n ranges from 0 to (N -1). The number of samples is 

represented as N. The time domain signal 𝑠𝑖,𝑗(𝑛∆𝑡) is represented as follows: 

𝐶𝑖,𝑗(𝑛∆𝑡)  = {
0.5∆𝑡𝑠𝑖,𝑗(𝑛∆𝑡)      𝑓𝑜𝑟 𝑛 = 0            

∆𝑡𝑠𝑖,𝑗(𝑛∆𝑡)               𝑓𝑜𝑟 𝑛 = 1 … … 𝑁/2
 (4.30) 

The frequency response function of the wheel and rail roller is assumed to have decayed to zero at 

(𝑁/2)∆𝑡.  

Finally, to obtain the displacement of the wheel and rail roller in the time domain, convolution integral of 

the excitation force and the frequency response functions is applied: 
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𝑑(𝑡) = 𝐹 𝐶 = ∫ 𝐹(𝜏)𝐶(𝑡 − 𝑑𝜏)𝑑𝜏
𝑡

0

 (4.31) 

The discretization of the convolution integral can be expressed as: 

𝑑(𝑡𝑑) = 𝐹 𝐶 = ∑ ∑ 𝐹(𝜏)𝐶(𝑡𝑑 − 𝑑𝜏)

3

𝑗=1

𝑡𝑑

𝜏=0

 (4.32) 

Where the discrete time is represented as 𝑡𝑑. The next section presents the wheel and rail dynamics. 

 

4.5.2 Dynamics of the wheel and rail roller 

The wheel and rail roller parameters used for the development of the curve squeal model is shown 

in Table 3.3 and Table 3.4. Finite elements (FE) of the wheel and rail roller have been discussed 

in chapter 3. The natural frequencies were also determined in the previous chapter for frequencies 

up to 9kHz. The wheel and rail modes obtained in the previous chapter are all axial with zero nodal 

circles and nodal diameters. The wheel and rail receptance were determined by double integration 

of the frequency response functions of the wheel and rail roller in chapter 3. Curve fitting using 

least of squares rational fraction polynomials method was used to fit the experimental wheel and 

rail receptances. This method relies on the fact that the frequency response functions of the 

structure are transfer functions that has poles an zeros. The method fits analytical rational fraction 

polynomial split between poles and zeros to the transfer function of measured frequency response 

function. This method is useful when it is required to curve fit a frequency response function that 

has more than one natural frequencies. The rational fraction polynomial form is given as: 

𝐻(𝑤) =
∑ 𝑎𝑘

𝑚
𝑘=0 𝑠𝑘

∑ 𝑏𝑘𝑠𝑘𝑛
𝑘=0

 (4.33) 

Where is the Laplace transform operator (s = jw), m and n are the order of the numerator and 

denominator polynomials, ak , and bk are the numerator and denominator polynomial coefficients.  

The wheel receptance, 𝐺𝑖,𝑗
𝑊(𝑓) and the rail receptance, 𝐺𝑖,𝑗

𝑅 (𝑓) is shown in Figure 4.11 and Figure 4.12 

respectively. 
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Figure 4.11: Receptance of the wheel roller 

The wheel and rail modal damping factors are determined as shown in Table 4.1. The lateral 

receptance for the wheel and rail roller is assumed to occur at the wheel-rail contact point. In real 

wheel-rail contact, the lateral receptance varies depending on the contact location between the 

wheel and the rail 

 

Figure 4.12: Receptance for the rail roller 
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Wheel rotation effect has been neglected in the development of curve squeal. According to 

(Pieringer, 2011) wheel rotation does not have significant influence on the curve squeal model 

results. Using equation (4.27) and equation (4.28) the lateral displacement in the time domain can 

be obtained by taking the inverse Fourier transform of wheel receptance, 𝐺𝑖,𝑗
𝑊(𝑓) and rail receptance 

𝐺𝑖,𝑗
𝑅 (𝑓).  

 

4.6 Model for sound radiation from the wheel 

The capability to determine the sound radiated from the system is necessary for the curve squeal 

model. The reason for this is that squeal is regarded in literature as strong annoying noise and 

therefore its severity must be evaluated using sound levels. Since it has been established in 

literature that the wheel roller is the dominant contributor of curve squeal, only the sound 

amplitude radiated from the wheel roller would be considered. The contributions of the overall 

sound radiated from the wheel roller are limited for the case of this thesis to only axial motion of 

the wheel roller. Simple sound model developed by (Zenzerovic et al., 2015) would be used to 

simulate the sound radiated from the wheel. Sound power radiated from the wheel at a given 

frequency in a given the wheel velocity field can be expressed as: 

𝑊(𝑛, 𝑓) = 𝜌𝑐0𝜎𝑗(𝑛, 𝑓) ∑(𝑆𝑗𝑘�̅�𝑗𝑘
2 (𝑛, 𝑓))

𝑁𝑗

𝑘=1

 (4.34) 

Where 𝜌 is the density of air and 𝑐0 is the speed of sound, 𝜎𝑗  is the axial motion radiation efficiency 

and 𝑆𝑗𝑘 represents the axial radiation surface cross-section of the wheel roller. The axial surface of 

the rail roller was divided into 𝑁𝑗 annular surfaces with radius R1, R2 …Rk. The radiation cross section of 

the wheel roller is shown in Figure 4.13. 
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Figure 4.13: Radiation surfaces for the wheel roller 

 

The radiated axial motion of the wheel roller can be expressed as (Vincent et al., 2006): 

𝜎𝑗(𝑛, 𝑓) =
1

1 + (
𝑓𝑐𝑗

𝑓
)

2𝑛+4 
(4.35) 

where 𝑓𝑐𝑗 is the transition frequency of the wheel roller cross section expressed as: 

𝑓𝑐𝑗 =
𝑐0𝑘(𝑛)

2𝜋𝑅
 (4.36) 

The coefficient k can be defined as: 

𝑘(𝑛) = 1.9 + 1.015 − 0.0189𝑛2 (4.38) 

The wheel radiation surface is then divided into 5 annular surfaces 𝑆𝑗𝑘 with radius R1, R2 …RK. The 

annuli of the surface areas are determined as: 

𝑆𝑗𝑘 = 2𝜋(𝑅𝑘+1 − 𝑅𝑘) (4.37) 

It is important to note the R is the nominal rolling radius of the wheel roller and both the transition 

frequency and axial radiation efficiency depend on the number of nodal diameters.  

Having established the axial motion of the wheel roller, the wheel velocity field on the wheel roller 

can be determined depending on the axial direction. Since the radial motion of the wheel roller 

was not considered, the wheel velocity is expressed as: 

�̅�𝑗𝑘
2 (𝑛, 𝑓) = 2𝜋𝑓((𝑖𝐺(𝑛, 𝑓)𝐹𝐿(𝑓))) (4.39) 
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4.7 Results 

In this section, the validation of the models for curve squeal based on Figure 4.2 is carried out. 

The tangential contact model using modified Fastsim, and sound radiation model results is 

discussed. It is well established that axial wheel modes with nodal diameters and zero nodal circuits 

are the most excited during curve squeal. It was also discovered that from the initial results 

obtained from the experiments conducted on the twin disc rig, wheel axial mode with 2 nodal 

diameters and zero circuits is the dominant contributor of curve squeal. Therefore, the sound 

validation model is carried out for frequencies around the dominant axial mode. Before the sound 

radiation mode is validated, the tangential contact point model results would be discussed next.  

 

4.7.1 Measured and curve fitted creep curve result analysis 

The model parameters using modified Fastsim algorithm have been obtained from measurements 

of the lateral force on the Twin disc rig. The parameters are presented in Table 4.1 

 

Table 4.1: Creep force model proposed parameters for the Twin disc rig 

Dry contact conditions 

Model parameters 
Average wheel speed (RPM) 

100  125  150  175  

k0 0.44 0.34 0.24 0.24 

 0.01 0.09 0.15 0.18 

 0.30 0.32 0.33 0.35 

A 0.23 0.38 0.34 0.32 

B 61 61 60 50 

µs 0.60 0.60 0.38 0.28 

kinf 0.44 0.8 0.24 0.24 

Wet contact conditions 

Model parameters 
Average wheel speed (RPM) 

100  125  150  175  

k0 0.5 0.4 0.44 0.43 



106 

 

 1.5 0.3 0.29 0.2 

 0.01 0.95 0.95 0.9 

AF 0.77 0.96 9.6 9.6 

BF 60 10 3.1 2.5 

µs 0.32 0.26 0.2 0.15 

kinf 0.5 0.8 0.79 0.79 

FM1 contact conditions 

Model parameters 
Average wheel speed (RPM) 

100  125  150  175  

k0 0.55 0.45 0.44 0.44 

 1.5 0.3 0.29 0.2 

 0.01 0.95 0.95 0.9 

AF 0.77 0.96 9.6 9.6 

BF 70 10 3.1 2.5 

µs 0.15 0.12 0.1 0.06 

kinf 0.5 0.8 0.79 0.79 

FM2 contact conditions 

Model parameters 
Average wheel speed (RPM) 

100 125 150 175 

k0 0.55 0.45 0.44 0.44 

 1.5 0.3 0.29 0.2 

 0.01 0.95 0.95 0.9 

AF 0.77 0.96 9.6 9.6 

BF 70 10 3.1 2.5 

µs 0.15 0.13 0.07 0.06 

kinf 0.55 0.8 0.79 0.79 

 

Figure 4.14 shows the measured and curve fitted results using Modified Fastsim algorithm for 

average speed of 100RPM in dry contact conditions. It can be observed from the plot that up to 
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about 0.50 yaw angle, the adhesion coefficient is directly proportional to the yaw angle. This region 

in the contact area is called the area of adhesion. As the area of adhesion in the contact patch 

increases for large yaw angles negative friction occurs as is shown in Figure 4.10. The sudden 

decreasing adhesion coefficient is due to the oscillations in the contact areas of adhesion and slip 

otherwise called stick-slip of the adhesion curve. The negative  slope of the adhesion coefficient 

agrees with curve squeal models adopted by (Rudd, 1976) to mean instability in the wheel-rail 

contact. The negative friction is a possible indicator of curve squeal for the test rig.  

 

 

Figure 4.14: Measured and curve fitted results of the adhesion ratio – yaw angle curve for 

average wheel speed of 100RPM. 

 

Figure 4.15 shows the measured and curved fitted results of the adhesion ratio – yaw angle curve 

for average wheel speed of 100RPM, 125RPM, 150RPM and 175RPM respectively. The results 

obtained for average speeds of 100RPM and 125RPM showed the negative adhesion coefficient 

effect at large yaw angles. This is probably due to the stick-slip oscillations experienced in the 

contact are as the yaw angle increases. It is important to note that from equation (4.26) that the 

yaw angle is differently proportional to the lateral creepage. For average wheel speeds of 150RPM 
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and 175RPM it can be observed that there is a slight reduction in the adhesion coefficient value 

although there is no significant difference between the curve squeal regions (were a gradual 

reduction in the adhesion coefficient ratio for increasing yaw angle) and the previous average 

wheel speeds already mentioned. Peak adhesion ratio at low average wheel speeds (100RPM and 

125RPM) was observed from the plots to be about 0.3. This value similar to the value obtained in 

real track conditions. As the average wheel speed increased from 125RPM up to 175RPM, the 

peak value of the adhesion coefficient dropped to about 0.2. Although there is a slight reduction 

in the adhesion coefficient ratio, it is still undesirable to operate the test rig or even real track 

conditions at very high speeds. 

 

Figure 4.15: Measured and curve fitted friction creep curves for dry contact conditions 

 

Figure 4.16 shows the measured and curve fitted creep curves for wet contact conditions for 

average wheel speeds of 100RPM, 125RPM, 150RPM and 175RPM. The results showed that for 

all average wheel speeds, positive increase in the adhesion coefficient was observed after about 

0.40. This indicates that the application of water at a controlled rate (0.5ml/min) to the wheel-rail 

interface change the characteristics of the adhesion ratio-yaw angle curves from negative friction 
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to positive friction. The term positive friction is used here to indicate that after the anticipated 

curve squeal region (at a particular yaw angle), there was a positive increase in the adhesion 

coefficient. These results indicate the mitigation of curve squeal. However, the adhesion 

coefficient values are still high with peak values ranging from 0.15 to 0.2. Although positive 

friction characteristics was observed with the application of water to the wheel-rail roller interface, 

the friction coefficient did not reduce as much compared with dry contact conditions. This 

indicates that in wet contact conditions, curve squeal could still probably occur as the yaw angle 

is increased beyond 1.5 degrees.  

 

 

Figure 4.16: Measured and curve fitted friction creep curves for wet contact conditions 

 

Figure 4.17 shows the measured and curve fitted adhesion coefficient – yaw angle creep curves 

for all average wheel speeds under FM1 contact conditions. Decrease in the adhesion coefficient 

of FM1 compared with dry contact conditions (see Figure 4.11), and wet contact conditions (see 

Figure 4.12) is significant. Positive friction is observed for all average wheel speeds. As expected, 

there is a negative correlation between the adhesion coefficient and the average wheel speed. As 

the average wheel speed increases, the adhesion coefficient decreases. FM1 exhibits high positive 
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friction characteristics compared with dry contact conditions and even wet conditions. The 

reduction in adhesion coefficient is desirable in tight curves but afterwards the train negotiates the 

curve, the adhesion ratio must be restored to normal conditions of about 0.3 to avoid the railway 

vehicle skidding off the track.   

 

Figure 4.17: Measured and curve fitted friction creep curves for FM1 contact conditions 

 

Figure 4.18 shows the measured and curve fitted creep curves for all average wheel speeds under 

FM2 contact conditions. An even less reduction in the peak values of the adhesion coefficient ratio 

is observed using the FM2 due to the probably its viscosity. In addition, the adhesion coefficient 

decreases as the average wheel speed increases thus showing negative correlation between each 

other.  

To conclude, the introduction of different contaminants (water, FM1 and FM2 to the wheel-rail 

interface reduces the adhesion coefficient for all average wheel speeds used in this thesis. Mixed 

results was obtained for wet contact conditions. The reduction in adhesion coefficient was not 

significant for wet contact conditions. A further increase in the yaw angle beyond 1.50 would 

probably lead to the development of curve squeal on the test rig.  
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Figure 4.18: Measured and curve fitted friction creep curves for FM2 contact conditions 

 

Having obtained the curve fitted friction creep curves using modified Fastsim algorithm, using 

Table 4.1, the curve fitted adhesion ratio versus yaw angle curves for all average wheel speeds and 

all contact conditions is shown in Figure 4.19. The results obtained especially for average speed 

of 100RPM indicate that at very large yaw angles, the adhesion coefficient values for wet, FM1 

and FM2 contact conditions tend to reach the wheel-rail contact. This does not necessarily mean 

that curve squeal is developed due to the positive increase in the adhesion coefficient value. It is 

noted that for all average wheel speeds, the effect of negative friction associated with dry contact 

conditions has been eliminated with the introduction of contaminants to the wheel-rail interface. 

These adhesion coefficient curves would be substituted in equation 4.27 to determine the lateral 

creep force developed in the wheel rail contact. The adhesion coefficient value is a function of 

lateral creepage.  
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Figure 4.19: Curve fitted friction creep curves for all contact conditions and all average 

wheel speeds 

 

4.7.2 Analysis of results obtained from curve squeal of vibration model for the test rig 

In order to access the performance of the proposed modified Fastsim model for the calculation of 

lateral creep forces, the developed curve squeal model was solved for various contact conditions. 

The generation of curve squeal proposed in this thesis due to transverse vibrations of the wheel for 

large yaw angles. Taking into consideration the dominant curve squeal mode, and its modal 

parameters, the wheel roller vibration was simulated for average wheel speeds 100RPM, 125RPM, 

150RPM and 175RPM. To replicate exactly what happens in the wheel-rail contact, the initial 

displacement and velocity of the simulations was set depending on the maximum peak values of 

the measured lateral vibration from the wheel accelerometer. The measured lateral vibration 

accelerometer values was integrated once and twice to obtain the lateral velocity and displacement 

of the wheel roller respectively. For each yaw angle, the estimated initial conditions for the initial 

lateral displacement and velocity was found and used for analysis. The results for dry, wet, FM1 

and FM2 contact conditions for all four average wheel speeds is shown in Figure 4.20. 
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Figure 4.20: Effect of the yaw angle on the simulated transverse vibration velocity  

 

For dry contact conditions, the transverse vibration velocity of the wheel roller increases with the 

yaw angle for all four average wheel speeds. The vibration velocity for average wheel speed of 

100RPM, 125RPM, 150RPM and 175RPM increased suddenly at around 0.80, 0.70, 0.50 and 0.40 

respectively. These angles are the onset development of curve squeal in the test rig for dry contact 

conditions. In addition, there is an observed negative correlation between the average wheel speed 

and the onset development of curve squeal. As the average wheel speed increases, the yaw angle 

corresponding to the onset development of curve squeal decreases. The sudden increase in the 

vibration velocity at dry contact indicates the existence of negative friction or negative damping 

in the contact area. This leads to the generation of increasing vibration velocity until large non-

linear curve squeal amplitude is reached.  

The transverse velocity for wet contact conditions increases with increasing yaw angle for all 

rolling speeds. There is no sudden increase in the vibration velocity amplitude for all yaw angles. 

This is probably due to the effect of positive friction or positive damping in the wheel-rail contact 

due to the introduction of water to the interface. When the wet contact condition results is 
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compared with the dry contact results, it can be found that curve squeal is mitigated for all average 

wheel speeds.  

Similarly, the results obtained for FM1 and FM2 contact conditions showed a further decrease in 

the vibration velocity of all four average wheel speeds. This is because of the high friction positive 

characteristics associated with friction modifiers. When the FM1 and FM2 simulated contact 

conditions is compared with dry contact results, it is evident that curve squeal is mitigated for all 

average wheel speed values 

 

Figure 4.21: Effect of the yaw angle on the simulated transverse vibration velocity  

 

For the dry contact conditions, sound pressure level increase with increasing yaw angle for all four 

average wheel speeds. The sound pressure level for the average wheel speed of 100RPM, 125RPM, 

150RPM and 175RPM suddenly increase at around 0.90, 0.70, 0.50 and 0.30. These angles represent 

the onset development of curve squeal on the test rig. Also, there is an observed negative 

correlation between the average wheel speed and the onset development of the simulated curve 

squeal amplitude. The same conclusions was realised for the simulated vibration velocity of the 

wheel roller. For wet, FM1 and FM2 contact conditions plots shown in Figure 4.19, the sound 
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pressure level is influenced by the yaw angle. A rather steady increase in the sound pressure level 

for contaminated contacts (water, FM1 and FM2) indicate the absence of curve squeal. This shows 

the positive friction characteristics of water and FM1 and FM2. 

 

4.8 Summary 

Curve squeal model for the twin disc rig has been developed and simulated. The model comprised 

of the wheel and rail models, normal contact model, tangential contact model and sound radiation 

model. The wheel and rail models are the wheel receptance functions obtained from curve fitting 

the receptance results obtained from experimental modal analysis. The normal contact model was 

used to determine the size and shape of the wheel-rail contact. The model depended on the contact 

geometry and the normal load. The tangential contact model employed the modified Fastsim 

algorithm to determine the lateral force developed at the wheel-rail contact.  

The adhesion ratio (ratio of the lateral force to the vertical force) was measured in the twin disc 

rig for different yaw angles, wheel rolling speeds and with friction modifiers/water. It was found 

that when friction modifiers are applied to the wheel-rail contact surface, the adhesion coefficient 

and the lateral force decrease significantly compared with dry contact conditions without friction 

modifier. The decrease is more pronounced with friction modifiers (FM1 and FM2). It was 

observed from the measured adhesion coefficient-creep curve that the curve tilts upwards with 

increasing wheel speed. This is in contrast to the dry case. It was also observed that water and 

friction modifiers (FM1 and FM2) tend to significantly reduce or completely mitigate the negative 

slope associated with dry contacts.  

A simple sound radiation model considering only the dominant wheel axial mode (2 nodal 

diameters and zero circles) was developed and simulated at different yaw angles, wheel speeds 

and with water and friction modifiers. The results show that the development of curve squeal 

occurs at different wheel rolling speeds. The increase in wheel rolling speed results in the faster 

development of curve squeal. The results of the vibration amplitudes of the dominant wheel axial 

mode exhibited the same phenomenon. However the transition yaw angles (angles between no 

curve squeal and curves squeal) did not yield satisfactory result for both the simulated vibration 

velocity and sound pressure levels.  
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Chapter Five: Curve squeal monitoring using acoustics analysis 

This chapter presents the application of acoustic analysis methods for monitoring curve squeal in 

the twin disc rig. Time, and frequency domain methods would be used to identify the onset 

development of curve squeal. An introduction is included to emphasize the important of acoustic 

methods for monitoring curve squeal. The importance of time and frequency domain methods for 

the feature extraction is discussed in detail. Condition monitoring indicators such as kurtosis and 

skewness would be used to extract meaningful features about the time domain sound data for 

different wheel speeds and different contact conditions. In addition, spectrum analysis would be 

applied to the time domain data to further understand the frequency components that hare 

responsible for curve squeal and how it can be mitigated. Condition monitoring indicators peak 

and rms would be applied to the spectrum data to extract useful features about the condition of 

the wheel-rail contact. These would indicate which frequency component is responsible for curve 

squeal, the rolling noise frequency and the harmonics that are generated as a result of the 

dominant curve squeal frequency. Finally, a detailed summary of the results obtained would be 

presented with insight into its application to detect and characterize curve squeal as well as its 

mitigation.  
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5.1 Introduction – Acoustic based condition monitoring for curve squeal 

Acoustic based condition monitoring has the advantage of retrieving important information about 

the condition of a system non-invasively. This advantage has enabled curve squeal to be measured 

and detected in railway track curves for decades.  

Acoustic based condition monitoring has been applied to the measurement of curve squeal in 

railways (Hanson et al., 2014), (Panulinova et al., 2016), (Fourie et al., 2016), (Liu and Meehan, 

2016), (Hsu et al., 2007), (Anderson et al., 2018), (Thompson, 2009). These studies covered in 

detail the application of frequency domain analysis for identification of curve squeal. Little or no 

information about the acoustic measurements for identification and characterization of curve 

squeal was mentioned. Therefore, the objective of this chapter is to identify condition monitoring 

indicators obtained from acoustic measurements that could be applied to identify and characterize 

curve squeal in the twin disc rig. 

The condition monitoring indicators would be extracted from the acoustic measured data. Time 

and frequency domain analysis would be applied to investigate and identify curve squeal. The 

advantage of using time domain analysis is that they can be readily applied in condition monitoring 

systems online because they depend on single value representation. They are not affected by 

spectral leakage, signal aliasing and other effects that are characteristic of frequency domain 

methods. Frequency domain methods, although widely used would be used to identify the natural 

frequencies of the wheel and rail roller responsible for curve squeal. 

The condition monitoring indicators obtained from the acoustic data would be used to analyse the 

effect of different contact conditions and their influence on curve squeal mitigation. The acoustic 

data which was measured by variation for four different wheel speeds at different yaw angles 

would be analysed.  

 

5.2 Acoustic time domain data analysis 

The acoustic time domain data measured from the microphone placed at 50 mm from the wheel 

rail interface was obtained for dry, wet, FM1 and FM2 contact conditions at 2.5kN normal load.  

Figure 5.1 shows the sound measurements obtained from the microphone at average wheel speed 

of 100RPM for four main contact conditions.  The baseline measurements of the test rig at zero 

yaw angle (no curve squeal) is used to compare what transpires when curve squeal is detected on 

the test rig. As would be discovered in the course of this study, curve squeal occurs at higher yaw 
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angles. It is expected that curve squeal would have occurred at angle greater than 1o for all wheel 

rolling speeds. For comparison between no curve squeal and curve squeal, 1.20 yaw angle has been 

chosen to distinguish between the two.  

From the results in Figure 5.1, a noticeable periodic outburst in the sound data occurs in dry contact 

conditions at 1.2 degrees yaw angle. This is probably as a result of the decreased wheel speed at 

the yaw angle. As explained earlier, increase in the yaw angle of the wheel roller results in increase 

in the lateral forces developed on the wheel rail interface. This increase results in excessive loads 

on the three-phase induction motor thus leading to reduction in speed. Since the system operates 

in open loop configuration, a reduction in wheel speed is expected as the yaw angle increases. It 

can also be observed that for dry contact conditions, a distinct increase in the sound pressure peak 

is observed when the yaw angle is increased to 1.2 degrees compared to the baseline time domain 

data at zero degrees yaw angle.  

It can also be concluded from the plots that there is no significant difference in the sound amplitude 

when water, FM1 and FM2 was applied to the rollers. This illustrates at first observation the 

mitigation effect of water, FM1 and FM2 when applied on the wheel-rail interface.  

 

 

Figure 5.1: Sound pressure time domain data for average wheel speed of 100 RPM 
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Figure 5.2 shows the acoustic time domain data obtained from the microphone for dry, wet, FM1 

and FM2 contact conditions at average wheel speed of 125RPM. For dry contact conditions, 

significant difference in sound amplitudes between zero degrees and 1.2 degrees yaw angle is 

observed. This is as a result of the increase in the yaw angle of the rail roller. The sound amplitudes 

for wet, FM1 and FM2 remain fairly similar for zero degrees and 1.2 degrees yaw angles. The time 

domain data shows noticeable increase in the amplitudes at zero degrees yaw angles for the 

contaminants (water, FM1 and FM2) when compared with dry contact conditions at this angle. It 

can therefore be concluded that at zero degrees yaw angle, the sound pressure amplitudes are 

slightly for the contaminant are higher compared to dry contact conditions.  

 

Figure 5.2: Sound pressure time domain data for average wheel speed of 125 RPM 

Figure 5.3 shows the acoustic time domain data obtained from the microphone for dry, wet, FM1 

and FM2 contact conditions at average wheel speed of 150RPM. The periodic bursts due to 

reduction of the wheel and rail roller speeds at 1.2 degrees yaw angle is again observed at this 

wheel speed. A noticeable increase in the sound amplitude is observed at this wheel speed 

compared to the previous wheel speed. Also, a noticeable increase in the sound amplitudes for wet, 

FM1 and FM2 contact conditions is observed compared to the previous average wheel speeds of 

100RPM and 125RPM. This is purely due to increase in wheel roller speed. It is hard to distinguish 
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at this stage the cause for the difference between the sound amplitudes of FM1 and FM2 for zero 

degrees and 1.2 degrees yaw angle.  

 

Figure 5.3: Sound pressure time domain data for average wheel speed of 150 RPM 

Figure 5.4 shows the acoustic time domain data obtained from the microphone for dry, wet, FM1 

and FM2 contact conditions at average wheel speed of 175RPM. The periodic bursts due to 

reduction of the wheel and rail roller speeds at 1.2 degrees yaw angle is again observed at this 

wheel speed. A distinguishable feature from the sound signals obtained from the microphone for 

all contact conditions is the increase in sound amplitude for both no squeal and curve squeal as the 

wheel roller speed increased. The difference between FM1/FM2 contact conditions and water 

conditions is the observable increased sound amplitude. This is probably due to the characteristics 

of the friction modifiers and its effect at high speeds. However, whether this noticeable increase 

helps in mitigation of curve squeal is not clear at this stage. Further feature extraction and signal 

processing would be required to understand what transpires in the wheel-rail interface as it is 

increased.  
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Figure 5.4: Sound pressure time domain data for average wheel speed of 175 RPM 

 

The sound signals represented by Figure 5.1 to Figure 5.4 shows that time domain statistical 

analysis can be applied to further understand what happens during curve squeal. Condition 

monitoring indicators would therefore be employed in the next section to investigate and 

characterize curve squeal and how it can be mitigated. 

 

5.2 Description of curve squeal condition monitoring indicators 

The condition monitoring indicators for curve squeal deal use statistical techniques to extract 

features from the sound signal. Some of the condition monitoring indicators that would be used 

include RMS, Peak and Crest factor, Kurtosis, Skewness and Probability distribution function 

(PDF).  

 

5.2.1 Peak 

The peak value of a time series data is the absolute or maximum value of the data. It can be 

expressed as follows: 

𝑆𝑝𝑒𝑐𝑡𝑟𝑎𝑙 𝑝𝑒𝑎𝑘 = max (𝑥𝑛) (5.1) 
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5.2.2 RMS  

The root mean square (RMS) value is useful in the detection of rotating machine imbalance. RMS 

value describes the power content of a vibration signal. It is defined as the deviation of distributions 

from the vibration signal mean value. The mathematical expression for RMS value calculation of 

a typical vibration data is expressed as: 

𝑅𝑀𝑆 = (
1

𝑁
∑ 𝑥𝑛

2

𝑁

𝑛=1

)

1
2

 (5.2) 

where N is defined as the number of data points for the vibration signal and x is time series data. 

Where 𝑥𝑛 is the time domain series data?   

 

5.2.3 Crest factor 

Another important time domain method is crest factor. It is defined as the ratio of the maximum 

peak value of the vibration signal to the RMS value. Crest factor is important to determine the 

effects of faults in rotating machines. Crest factor can be expressed mathematically as (Igba et al., 

2016): 

 𝐶𝑟𝑒𝑠𝑡 𝑓𝑎𝑐𝑡𝑜𝑟 =
𝑃𝑒𝑎𝑘

𝑅𝑀𝑆
 (5.3) 

A high crest factor indicates the presence of fault in a time series data.  

 

5.2.4 Skewness 

Skewness property defines how symmetrical the sound data is compared with the normal 

distribution. The skewness of a normal distribution function is usually zero. When the vibration 

data is skewed to the left, then the data is negatively skewed while when the data is skewed to the 

right then the distribution is positively skewed. Skewness can be calculated as follows (Ovacikli 

et al., 2013): 

𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 = (
(𝑥 − 𝜇

𝜎
)

3

𝐸 (5.5) 

where x, E,  and µ are the time domain signal, expectation operator, standard deviation and the 

mean respectively. 
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5.2.5 Kurtosis 

Variability and location characterization are one of the fundamental tasks to undertake in statistical 

analysis. Kurtosis is used to characterize the measured sound data further. Both methods rely on 

the normal distribution of the measured data. Kurtosis determines whether the vibration data is 

light-tailed or heavy tailed relative to the normal distribution. It has been established in most 

literature that a kurtosis value of three represents a good functioning vibratory system while any 

value greater that this indicates fault in the system. Kurtosis can be calculated as (Fei, 2016): 

𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠 = 𝐸 (
(𝑥 − 𝜇

𝜎
)

4

 (5.4) 

where x, E,  and µ are the time domain signal, expectation operator, standard deviation and the 

mean respectively.  

 

5.3 Feature extraction using Peak, RMS and Crest factor 

The condition monitoring indicators, Peak and RMS did not yield satisfactory results especially 

for high wheel speeds. The reason for this being that the as the wheel speed increases, the peak 

and RMS of the sound signal increases. For low wheel speeds (100RPM), the peak and RMS 

provided good results. For speeds 125RPM and above, it is difficult to distinguish between curve 

squeal and no curve squeal. For example, in Figure 5.4, there is no significant difference between 

the peak amplitudes at zero degrees and 1.2 degrees when dry and contaminant (wet, FM1 and 

FM2) contact conditions was compared for average wheel speed of 175RPM.   

 

5.4 Feature extraction using kurtosis and skewness 

The effect of varying the yaw angle on the kurtosis values was investigated for four average wheel 

speeds as displayed in Figure 5.5. Comparisons between the dry, wet, FM1 and FM2 contact 

conditions was investigated for the onset development and mitigation of curve squeal on the test 

rig. Similar results were obtained for the crest factor value can be inferred from the results for the 

kurtosis plots. There also exists a negative correlation between the average wheel speed and the 

yaw angle required for curve squeal to occur. As has been established in literature the kurtosis 

value for healthy gears in machine systems is 3. Based on this value, it can be inferred from the 

plots that the average kurtosis value for no curve squeal on the test rig is around the value of 3. 

This indicates that the test rig is in the rolling contact noise region and thus no curve squeal occurs 
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in this region. A large disparity in the kurtosis values after yaw angles 0.90, 0.70, 0.60 and 0.60 

indicate the onset development of curve squeal in the test rig for average wheel speeds 100RPM, 

125RPM, 150RPM and 175RPM respectively. It can also be concluded that the average kurtosis 

value of around 3 for no curve squeal was maintained for all yaw angles and average wheel speeds 

when water, FM1 and FM2 was applied to the rollers. This indicates that curve squeal was 

mitigated on the test rig when these contaminants to the wheel rail interface.  

The onset development and mitigation of curve squeal in the test rig was also investigated using 

the skewness values. The effect of varying the yaw angle on the skewness values for all four 

average wheel speeds is illustrated in Figure 5.6. In the rolling contact noise region, the skewness 

value has an average of about zero for all average wheel speeds. This value according to the 

definition of skewness implies that the time domain signal is not skewed either to the left or right 

but at a central position. This is required condition for all healthy vibratory systems in the industry. 

In the curve squeal region, the time domain data for sound sharply skewed to the right implying 

that they are all negatively skewed. 

 

Figure 5.5: Kurtosis versus yaw angle for all four average wheel speeds 
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This disparity in skewness value beyond 0.7 degrees, 0.7 degrees, 0.6 degrees and 0.5 degrees for 

average wheel speeds 100RPM, 125RPM, 150RPM and 175RPM respectively, indicates the onset 

development of curve squeal. It is important to observe that the application of water, FM1 and 

FM2 maintains the skewness value to about 0 for all yaw angles and all average wheel speeds. 

This indicates the mitigation effect of water, FM1 and FM2 on the curve squeal in the test rig. 

However further information on which roller contribute to the development of curve squeal was 

difficult to predict. Therefore, in the next section the conventional frequency domain analysis 

would be used to understand which rollers are more dominant in curve squeal development on the 

test rig. 

 

Figure 5.6: Skewness versus yaw angle for all four average wheel speeds.  

 

5.5 Frequency domain analysis 

Frequency domain analysis is the foundation for processing signals from several systems in the 

field of science, engineering and mathematics. Unlike time domain analysis, frequency domain 
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determines the frequency components of a signal. The frequency components obtained using 

frequency domain analysis is then used to make observations and conclusions on the condition of 

the system. Several reasons for the application of frequency domain analysis as itemized by Cohen 

include; to study the time domain data, identify the frequency components of the signal and its 

flexibility as a mathematical tool for study purposes. Among all the mathematical tools used in 

engineering and condition monitoring, frequency domain analysis is the most widely used method 

for signal processing and condition monitoring and would therefore be used in this research to 

detect and characterize curve squeal.  

Frequency domain analysis are usually conducted on a time domain signal using Fourier 

transforms. Fourier transforms are used to convert the time domain data to frequency domain 

comprising of frequency components with different amplitudes. The frequency components 

determine the condition of the system. One of the main advantages of using frequency domain 

analysis is the ability to identify and characterize faults in a system by observing the amplitudes 

of the frequency components. Based on these observations, conclusions can be drawn on where 

more energy resides. This makes the identification of faults easier to find and study in most 

engineering systems.   

Frequency domain analysis has been widely applied for the monitoring curve squeal in rolling 

railway vehicles (Vincent et al., 2006), (Liu and Meehan, 2016), (Meehan and Liu, 2018), (Hsu et 

al., 2007). In conclusion, frequency domain analysis for monitoring curve squeal would be 

investigated in this section to detect the onset of curve squeal as has been achieved in time domain 

analysis. In addition, the mitigation of curve squeal using water, and friction modifiers would also 

be investigated using frequency domain analysis by examining which frequency components have 

energy that is more spectral and are the dominant cause of curve squeal.  

 

5.5.1 Spectrum analysis 

Spectrum analysis is used to obtain the frequency characteristics of the time domain signal using 

Fourier transform methods. Fast Fourier transform (FFT) is used to determine the frequency 

components of the time domain signal. Spectrum analysis of a signal can also be defined as the 

plot of the signal amplitudes as a function of frequency. Fast Fourier transforms are useful in 

vibration analysis to detect faults in the vibratory system. However, they suffer from limitations 

based on the length of the time domain signal. Because of the finite nature of time domain signals, 
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spectral leakage is most likely to occur if FFT is applied directly to the signal. To solve this 

problem, windowing functions can be applied to the time domain signal before FFT is 

implemented. Window functions are used to minimize spectral leakage in time domain signals 

(Oppenheim and Schafer, 1975). Hanning, rectangular, hamming and others are some of the 

window functions that could be applied to the time domain signal. Assuming that the time domain 

signal is given as x(t) and the power spectrum is defined as Sxx(), then the power spectrum of a 

signal can be represented as: 

𝑆𝑥𝑥(𝜔) = |𝐹{𝑥(𝑡)}|2 (5.6) 

where F is the Fourier transform of the time domain signal x(t).  

Spectrum analysis finds applications in several areas in machine vibratory systems. Despite the 

advantages of using frequency domain analysis, one of the main issues of its application is the 

condition that the signal is finite majority of the time. To solve this problem, window function is 

applied to the time domain data before the application of Fast Fourier Transform (FFT). Spectral 

leakage can therefore be reduced when window function is applied to the data. Window functions 

are also useful for the reduction of signal discontinuities by finding the maximum in the signal 

middle and decreasing both edges of the signal to zero. There are different types of window 

functions that are utilized for time domain data. However, the common window functions include 

hanning, rectangular and hamming windows. 

For this chapter, the rationale for the application of spectrum analysis is to determine the frequency 

components of the sound signal in other to establish which of these components is responsible for 

curve squeal. In addition, the frequency components of the signal for the different contact 

conditions would be investigated and analysed to investigate the mitigation of curve squeal on the 

test rig.  

 

5.6 Spectrum analysis to the microphone data 

The time domain data for sound obtained in Figure 5.1 to Figure 5.4 describes the changes in the 

amplitude of the signal from the microphone when wheel speed and various contact conditions 

were varied. The same sound signals in the time domain were analysed using spectrum analysis. 

Figure 5.7 illustrates the power spectrum plot for average wheel speed 100RPM. The power 

spectrum was also plotted for wet, FM1 and FM2 contact conditions. The energy content of the 

data for both curve squeal (1.2 degrees yaw angle) and no curve squeal (zero degrees yaw angle) 
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are confined within the frequency range of 0 to 2000Hz. For dry contact condition, there is a 

magnitude of difference between curve squeal and no curve squeal. At curve squeal, a sharp peak 

around 1200 Hz can be observed. However, the actual value of the peak is not clearly visible from 

the plot. A quick glance through the wet, FM1 and FM2 power spectrum plots show more energy 

confined within 0 to 400Hz for both curve squeal and no curve squeal cases. The high-power 

spectrum peak observed at his frequency band indicates the high vibrations of the twin disc rig 

components excluding the wheel and rail rollers.  

 

Figure 5.7: Power spectrum plots from the microphone for average wheel speed of 100 

RPM 

Figure 5.8 shows the section of the plot in Figure 5.7 for dry contact conditions for a frequency 

range of 1000Hz to 1500Hz. The reason for zooming into this frequency range is to be able to  
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Figure 5.8: Zoomed in section of the power spectrum plots from the microphone for 

average wheel speed of 100 RPM 

 

Identify what happens at the around the maximum power spectrum for dry contact conditions. 

Also, since the minimum natural frequency of the wheel and rail roller obtained from impact 

hammer tests and FEM is approximately 1095Hz, limiting the investigation of the frequency 

components of the sound signal to 1000Hz to 1500Hz is deemed sufficient to understand and 

characterize curve squeal. In other to understand the frequency components observed, power 

spectrum plot was divided into four distinctive regions. These regions include: 

(a) Wheel mode band (WMB): This band represents the region where the second nodal 

diameter and natural frequency of the wheel roller. The excitation frequency of the wheel 

roller at this frequency is around 1095 Hz as obtained in impact hammer tests and FEM 

method in chapter 3. 

(b) Curve squeal band (CSB): The rolling noise band represents the region where curve squeal 

is expected to occur. Although the curve squeal frequency tends to be associated with the 

second nodal diameter and natural frequency around 1095Hz, the dynamics of the system 

can cause a shift in this excitation frequency to this band. A high peak identified in this 

region is most likely to be as a result of curve squeal developed at one of the wheels.  
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Figure 5.9: Power spectrum plots from the microphone for average wheel speed of 125 

RPM 

 

(c) Rolling noise band (RNB): Rolling noise band represents the type of noise emanating as a 

result of the interaction between the wheel and rail roller dynamics. This noise dominates 

other excitation frequencies of the wheel and rail roller at central position.  

(d) Rail modal band (RMB): The rail modal frequency band represents the excitation region 

where the second nodal diameter and natural frequency of rail roller is located. From the 

results of the impact hammer tests and FEM, the natural frequency and second nodal 

diameter of the rail roller is at about 1441Hz. This frequency may change as a result of the 

system dynamics but however, the band identification allocated to this natural frequency 

represents this excitation frequency.  
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Figure 5.10: Zoomed in section of the power spectrum plots from the microphone for 

average wheel speed of 125 RPM 

 

Having described in detail the frequency bands of interest for identification and characterization 

of curve squeal, Figure 5.8 shows the zoomed in section of the power spectrum plots for 100RPM 

in dry contact conditions. The highest spectral peak at zero degrees yaw of the rail roller is around 

1270Hz centered around the RNB frequency range. This indicates that when the wheel and rail 

rollers are at central position, the noise emanating from the interaction of the wheel and rail roller 

is predominantly rolling contact noise. This noise does not pose any annoyance to the environment. 

It dominates other natural frequencies and modes of vibration of the wheel and rail roller. Figure 

5.9 shows the power spectrum plots for average wheel speed of 125RPM. For dry contact 

conditions, a noticeable sharp peak about 1000Hz is observed. Although the actual frequency is 

not very visible, this peak indicates curve squeal generated by the wheel roller. For the wet, FM1 

and FM2 contact condition, large sound peaks are recorded in the lower frequency region 0 Hz to 

400Hz. Although this frequency range is not of interest for the development of curve squeal, it 

does indicate the excessive vibration of the twin disc rig components. A close look of the dry 

contact conditions results at average wheel speed of 125RPM is observed in Figure 5.10. A zero 

degrees yaw angle, the rolling noise band (RNB) dominates the other frequency bands. The natural 

frequency of the wheel roller at the wheel modal band (WMB) region is observed. In addition, the 
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rail roller natural frequency at the RMB band is also observed. This indicates that at zero degrees 

yaw angle, the wheel and rail rollers vibrate at their natural frequencies. The dynamics of the wheel 

and rail roller contact generate rolling noise around 1260Hz which suppresses all the other 

frequency bands. In Figure 5.10, a strong tonal peak frequency around 1120Hz is observed at 1.2 

degrees yaw angle. All the other frequency bands have been suppressed by this excitation 

frequency. This frequency indicates the presence of curve squeal as a result of excitation of the 

natural frequency of the wheel roller (second nodal diameter and zero nodal circle).  

 

Figure 5.11: Power spectrum plots from the microphone for average wheel speed of 150 

RPM 

 

Figure 5.11 shows the power spectrum plots for average wheel speeds of 150RPM. The results 

obtained show similar trend with the previous wheel speeds. However, the presence of water, FM1 

and FM2 in the wheel rail interface attenuates the dominate curve squeal frequency and transfers 

the vibration to other rig components. While this may not be harmful, it may be useful in future to 

identify which frequencies in the lower region have been excited as a result of the mitigation of 

curve squeal on the twin disc rig.  

A zoomed in section of the power spectrum for dry contact conditions is shown in Figure 5.12. As 

has been observed for lower wheel speeds, the rolling noise frequency band dominates the other 
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frequency bands. The rolling noise as a result of the normal operation of the wheel and rail contact 

at central position (yaw angle = zero degrees) is around 1280Hz.   

 

 

Figure 5.12: Zoomed in section of the power spectrum plots from the microphone for 

average wheel speed of 150RPM 

 

Figure 5.12 also shows that transpires at curve squeal. A distinct peak at around 1185Hz in the 

curve squeal band (CSB) dominates and suppresses the natural frequencies of the wheel and rail 

roller. Figure 5.13 shows the power spectrum plots for average wheel speed of 175RPM. It can be 

observed from the plots that the dominant peak for dry contact conditions denotes the occurrence 

of curve squeal. However, it can be also be observed that at the highest speed of 175RPM, the 

contribution of the rail roller around the rail modal band (RMB) is observed. This indicates that 

the introduction of water, FM1 or FM2 to the wheel rail interface at high speeds suppresses the 

curve squeal frequency and amplifies the contribution of the rail roller. This observation is critical 

for curve squeal mitigation. The noise generated by the rail squeal (amplification of the second 

nodal diameter and natural frequency of the rail roller) at 175RPM did not cause annoyance as is 

the case of curve squeal.  
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Figure 5.13: Power spectrum plots from the microphone for average wheel speed of 175 

RPM 

 

Figure 5.14 shows the closed in view of the power spectrum for average wheel speeds of 175RPM. 

The results obtained from the study show that the rolling contact frequency excited by the 

interaction between the wheel and the rail at central position observed in the RNB. In addition, 

curve squeal frequency around 1160Hz was observed at the CSB when the yaw angle of the rail 

roller was increased from zero degrees yaw angle to 1.2 degrees.  

The application of spectrum analysis to the sound data has emphasized some vital features that 

where not observed using time domain feature extraction methods. Different excited frequencies 

were observed from the sound data for the various wheel-rail contact conditions. The clear 

disparity between the results obtained for zero degrees and 1.2 degrees yaw angle suggests that the 

spectrum data is suitable for feature extraction. Before feature extraction methods are applied, it is 

important to investigate in detail what happens during curve squeal mitigation on the twin disc rig.  
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Figure 5.14: Zoomed in section of the power spectrum plots from the microphone for 

average wheel speed of 175RPM 

 

5.6.2 Curve squeal mitigation understanding using spectral analysis  

Having discussed in detail the development of curve squeal as a result of the wheel roller, it is 

necessary to understand what happens when water, FM1 and FM2 is applied to the wheel-rail 

interface. This phenomenon has been discussed briefly in the previous chapter. However, there are 

several key frequency components that are excited in the power spectrum when these contaminants 

are applied to the wheel-rail interface.  

Figure 5.15 show the comparison between the power spectrum for dry and FM1 contact conditions 

for the four-wheel speeds and yaw angle of 1.2 degrees. At the lowest average wheel speed of 

100RPM, the introduction of FM1 mitigated the curve squeal frequency in the CSB. However, the 

result of this was the excitation of the axial frequency of the rail roller in the RMB around 1450Hz. 

This indicates that the application of FM1 to the wheel-rail interface leads to rail squeal. This 

intense vibration as a result of the excitation of the rail roller dominant frequency does not cause 

annoyance to the environment. The amplitude of the excitation frequency at the RMB band 

increases with increasing average wheel speed from 100RPM to 175RPM. However, at high 

speeds, 150RPM and 175RPM, the power spectral amplitude at the CSB is noticeable. However, 
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the excitation at the CSB frequency does not matter at this point since it is dominated by the 

excitation frequency of the rail roller.  

 

Figure 5.15: Curve squeal mitigation using FM1 contact conditions obtained from 

spectrum plots for the microphone at 1.2 degrees yaw angle. 

Figure 5.16 shows the power spectrum plot comparison between dry contact conditions and FM2. 

Similar trend is observed by the aforementioned comparison between dry contact and FM1 contact 

conditions. Therefore, similar conclusions can be drawn from the comparisons made for FM1 and 

dry contact conditions. 
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Figure 5.16: Curve squeal mitigation using FM2 contact conditions obtained from 

spectrum plots for the microphone. 

 

Figure 5.17 shows the power spectrum plots for dry and wet contact conditions at 1.2 degrees yaw 

angle. It can be observed that for the four average wheel speeds, the introduction of water to the 

wheel rail interface at a steady rate of 0.4m/min attenuated the excitation frequency responsible 

for curve squeal at the CSB band. However, as the wheel speed increased from 150RPM to 

175RPM, the attenuation of the excitation frequency at the CSB band was not effective. However, 

this resulted in excessive rail squeal due to the excitation of the second nodal diameter and natural 

frequency of the rail roller in the RMB band. It can be concluded that the introduction of water at 

a steady flow rate to the wheel-rail interface succeeded in eliminating curve squeal by increasing 

the contribution of the second nodal diameter and natural frequency of the rail roller. This 

balancing effect was sufficient to mitigate curve squeal from the wheel roller.  
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Figure 5.17: Identification of curve squeal mitigation using wet contact conditions obtained 

from spectrum plots for the microphone. 

 

5.6.3 Curve squeal mitigation understanding using harmonics of the sound data 

Rotating machines are known to be source so harmonics in a typical vibratory system. Harmonics 

are formed as a result of multiples of the dominant frequency. In most bearing applications, 

harmonics are as a result of unbalance and misalignment of the bearing shafts rotating speed. In 

the development of curve squeal, harmonics in the data have been identified by several authors in 

previous research. (Hsu et al., 2007) discovered from their analysis that curve squeal is a result of 

dominant wheel mode natural frequencies and its corresponding harmonics. (Rudi and Joachim, 

2007) also concluded that curve squeal dominant frequency generates corresponding harmonics 

from the radiated sound and vibration data obtained in real track measurements.  

In this study, harmonics of the dominant curve squeal frequency located at the CSB would be 

extensively discussed. In addition, the mitigation effect of water, FM1 and FM2 in curve squeal 

would be investigated.  

Figure 5.18 show the comparison between the dry and FM1 contact conditions for four average 

wheel speeds when the rail roller is yawed at 1.2 degrees angle. At 100RPM, the fundamental 

curve squeal frequency is about 1150hz. The harmonics of this fundamental frequency 2X and 3X 
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are around 2300Hz and 3450Hz respectively. Similarly, for 125RPM wheel speed, the fundamental 

frequency is centered around 1130Hz while the 2nd and 3rd harmonics are approximately 2260Hz 

and 3390Hz respectively. At higher speeds, the 2nd and 3rd harmonic sound amplitudes tend to be 

attenuated compared to the dominant axial modes of the wheel and rail roller.  

 

 

Figure 5.18: Comparison between power spectrum of dry and FMI at 1.2 degrees yaw 

angle for frequencies ranging from 1000Hz to 4000Hz.  

 

It can be observed from Figure 5.19 that at the higher frequency harmonics sound amplitudes 

diminish at higher speeds 150RPM and 175RPM. It can also be inferred from the plots that the 

introduction of FM1 and FM2 eliminates the high frequency harmonics for all four average wheel 

speeds. However, the friction modifier did not completely attenuate the fundamental frequency. 

Therefore, this could suggest that the elimination of the harmonics is associated with the positive 

friction characteristic of the adhesion coefficient associated with friction modifier FM1 as 

discussed in chapter 4. The positive friction characteristics is synonymous with the reduction of 

the transverse forces developed at the wheel rail interface.  
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Figure 5.19: Comparison between power spectrum of dry and FM2 at 1.2 degrees yaw 

angle for frequencies ranging from 1000Hz to 4000Hz.  

 

Figure 5.19 shows the comparison between the power spectrum of dry and FM2 sound data when 

1.2 degrees yaw angle is applied to the rail roller. Similar conclusions can be inferred from the 

analysis of dry and FM1 contact conditions. It is hard to distinguish between the performance of 

FM1 and FM2 in curve squeal mitigation from the results shown in Figure 5.18 and Figure 5.19. 

Both friction modifiers attenuate the fundamental dominant curve squeal frequency, amplify the 

dominant frequency of the rail roller and completely eliminate high frequency harmonics.  

Figure 5.20 show the comparison between the power spectrum of dry and water when 1.2 degrees 

yaw angle is applied to the rail roller. Similar conclusions can be drawn from the comparisons 

between dry contact and the friction modifiers. However, the application of water to the wheel-rail 

interface at a does not attenuate the curve squeal frequency at the highest wheel roller speed. It can 

be observed that the fundamental at X has similar amplitude with sound data at wet contact 

conditions. 
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Figure 5.20: Comparison between power spectrum for dry and wet contact at 1.2 degrees 

yaw angle for frequencies ranging from 1000Hz to 4000Hz.  

 

From Figure 5.14, it can be observed that the transition between the rolling contact noise region 

and the curve squeal region occur at yaw angles around 0.90, 0.80, 0.60 and 0.50 for average wheel 

speeds 100RPM, 125RPM, 150RPM and 175RPM respectively. Notice that the peak amplitude of 

the curve squeal frequency changes for each average wheel speed but is within the 1100Hz to 

1200Hz band. Also, the rolling contact noise band frequency changes is well for each average 

wheel speed but lies within the 1200Hz – 1300Hz frequency band range.  

 

5.7 Onset curve squeal determination in using sound data for dry contact condition 

The previous section has thoroughly analysed frequency components of the wheel and rail roller 

using spectral analysis. This section seeks to identify the incipient development of curve squeal. 

This would help identify the transition between no curve squeal and curve squeal. For dry contact 

conditions sound data was taken every 5 seconds at 0.1 degrees yaw angle increment up till 1.4 to 

1.5 degrees.  

Figure 5.21 shows the effect of yaw angle variation on the CSB and RNB. The sound pressure in 

decibels was measured at the start of experiment for the four average wheel speeds. The measured 
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sound pressure level for the wheel speeds at dry contact conditions was respectively 80dB, 84dB, 

92dB and 100dB. The sound pressure data was converted from pascals to dB and then the measured 

sound pressure level in dB for the respective average wheel speeds was added to obtain the plots 

shown in Figure 5.22. As expected, the rolling contact noise dominates when no curve squeal is 

detected. The transition between no curve squeal and curve squeal for the average wheel speeds 

100RPM, 125RPM, 150RPM and 175RPM are respectively 0.95 degrees, 0.9 degrees, 0.6 degrees 

and 0.5 degrees respectively.  

 

 

Figure 5.21: The effect of varying yaw angle on spectral peak of sound for the dominant 

frequency bands for dry contact conditions 

 

The results show that the increase in the wheel rotation speed results in the decrease in the 

transition between no curve squeal and curve squeal region. (Liu and Meehan, 2013) also obtained 

similar results whereby the increase in speed is inversely proportional to the transition yaw angle 

between curve squeal and no curve squeal.  
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5.8 Feature extraction methods from the acoustic spectrum analysis data 

This section presents the application of feature extraction techniques that are relevant in the 

condition monitoring applications. The feature extraction methods were selected based on their 

relevance and suitability in detecting and characterizing curve squeal from the sound data. Before 

feature extraction was carried out, bandpass filter of the frequency bands CSB, RNB and RMB 

was designed for each sound data and converted to frequency domain using spectrum analysis. 

Thereafter, the condition monitoring indicators are extracted from the data. 

 

5.8.1 Feature extraction using spectral peak analysis method  

This feature represents the maximum sound amplitude of the power spectral density data obtained 

from the microphone. The spectral peak for each band is expressed as follows: 

𝑃𝐶𝑆𝐵 = max(|𝑋𝐶𝑆𝐵|) 

𝑃𝑅𝑁𝐵 = max(|𝑋𝑅𝑁𝐵|) 

𝑃𝑅𝑀𝑃 = max(|𝑋𝑅𝑀𝐵|) 

(5.5) 

where 𝑃𝐶𝑆𝐵, 𝑃𝑅𝑁𝐵 and 𝑃𝑅𝑀𝐵 represent the maximum peak at frequency band CSB, RNB and RMB 

respectively. 𝑋𝐶𝑆𝐵, 𝑋𝑅𝑁𝐵 and 𝑋𝑅𝑀𝐵 represent the bandpass power spectrum for frequency bands CSB, RNB 

and RMB. 

Figure 5.22 shows the variation of the yaw angle with respect to the spectral peak for the aforementioned 

frequency bands CSB, RNB and RMB. No curve squeal is observed at yaw angles lower than 1.1 degrees 

for average wheel speed of 100RPM. The spectral peak obtained from the RNB dominates the other 

frequency bands. Similarly, no curve squeal occurs for yaw angles less than 0.9 degrees, 0.6 degrees and 

0.5 degrees for average wheel speeds 125RPM, 150RPP and 175RPM respectively. The reason for this is 

as a result of the increase in wheel speed. Above these yaw angles for all average wheel speeds, the spectral 

peak in the CSB band dominates. This indicates that the wheel roller is responsible for curve squeal. The 

shift in dominant axial mode of the wheel roller to the CSB band is as a result of the wheel-rail contact 

dynamics.  

The application of spectral peak as a feature extraction method for early detection of curve squeal has 

effectively presented the difference between no curve squeal and curve squeal from the microphone data.  
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Figure 5.22: Effect of varying yaw angle on bandpass filtered rms values from the 

dominant frequency bands for dry contact conditions 

 

5.8.2 Feature extraction using spectral rms analysis method 

The spectral root mean square (RMS) feature utilizes the same expression as equation (5.2). The 

spectral rms of the band pass filtered rms values are calculated as follows: 
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(5.5) 

Where 𝑅𝑀𝑆𝐶𝑆𝐵, 𝑅𝑀𝑆𝑅𝑁𝐵 and 𝑅𝑀𝑆𝑅𝑀𝐵 represent the spectral RMS of the frequency bands CSB, RNB and 

RMB respectively. N represents the sample size of the sound data.  

Figure 5.23 shows the spectral RMS statistical feature applied to the average sound data for the 

average wheel speed of 100RPM, 125RPM, 150RPM and 175RPM.  It can be observed that the 
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transition between the rolling contact noise region and the curve squeal region occur at yaw angles 

around 1.10, 0.90, 0.60 and 0.60 for average wheel speeds 100RPM, 125RPM, 150RPM and 

175RPM respectively. The slight changes in the transition between the rolling contact noise region 

and the curve squeal noise region obtained from the previous section is increase in wheel rolling 

speed. As the wheel roller speed increases, the transition between curve squeal and no curve squeal 

reduces. This implies that wheels are more likely to squeal at higher wheel speeds.  There is a clear 

difference between spectral RMS at curve squeal and spectral RMS at no curve squeal (rolling 

noise dominated).  

 

Figure 5.23: Spectral RMS analysis for the three frequency bands under four average 

wheel speeds.  

 

Figure 5.24 shows the statistical spectral RMS for average wheel speed of 100RPM, 125RPM, 

150RPM and 175RPM respectively under four different contact conditions. The spectral RMS of 

the CSB frequency band was taken for each yaw angle. The yaw angle resolution for FM1 and 

FM2 was 0.05 degrees. The results obtained show a clear disparity between dry contact conditions 

and water, FM1 and FM2 spectral rms at the transition yaw angles between no curve squeal and 

curve squeal. The transition yaw angles between no curve squeal and curve squeal is 1 degree, 0.9 

degrees, 0.75 degrees and 0.5 degrees respectively.  
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Figure 5.24: Spectral RMS analysis for the CSB frequency band four different contact 

conditions. 

Figure 5.25 shows the spectral RMS of the second harmonics (2X) frequency band (2200Hz to 

2400Hz) for all four contact conditions and four average wheel speeds. The results obtained show 

a clear difference between no curve squeal and curve squeal. The transition yaw angles can be 

observed as approximated 1.1 degrees, 0.9 degrees, 0.5 degrees, and 0.5 degrees respectively. 

Beyond the transition yaw angles, a sharp increase in the spectral RMS is observed. This signifies 

that the development of curve squeal in the test rig.  

Figure 5.26 shows the spectral RMS of the third harmonics (3X) frequency band (3400Hz to 

3600Hz) for all average wheel speeds and four contact conditions. The transition yaw angles 

between curve squeal/curve squeal mitigation and no curve squeal are 1.1 degrees, 0.9 degrees, 

0.5 degrees and 0.5 degrees for average wheel speeds of 100RPM, 125RPM, 150RPM and 

175RPM. There is a positive correlation between the spectral rms obtained for the second 

harmonics and the spectral RMS obtained for the third harmonics in terms of the transition yaw 

angles.  
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Figure 5.25: Spectral RMS analysis for the second harmonics for four different contact 

conditions and four average wheel speeds. 

This signifies that the spectral RMS of the second and third harmonics using the specified 200Hz 

bandwidth is provides a strong indication of the onset development of curve squeal and the  

 

Figure 5.26: Spectral RMS analysis for the third harmonics for four different contact 

conditions and four average wheel speeds.  
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mitigative influence of the water, FM1 and FM2 to curve squeal in the test rig. To conclude, the 

application of spectral RMS feature extraction method for the determination of onset development 

of curve squeal and curve squeal mitigation is suitable for the intended application. Even with the 

variation of the wheel speed and yaw angle, this feature extraction method performed efficiently.  

 

5.9 Summary of acoustic analysis performed on the test rig  

The application of time domain methods and spectrum analysis has been applied to the sound data. 

For dry contact conditions, the sudden periodic outputs of the sound data in the time domain at 

large yaw angles is an indication of wheel speed reduction as the yaw angle increases. This trend 

was a result of the excessive load demand applied to the three-phase induction motor as the yaw 

angle of the rail roller increases. The load is as result of the increase in the transverse (lateral) 

vibration and force developed at the wheel rail contact for large yaw angles.  

Five condition monitoring indicators were applied to the sound data for feature extraction. The 

five condition monitoring indicators; peak, rms, crest factor, kurtosis and skewness clearly 

differentiate between regions of rolling contact noise (no curve squeal) and curve squeal region. 

A clear disparity between curve squeal and no curve squeal was observed when peak and rms 

features were extracted from the sound data for four average wheel speeds and yaw angle variation 

from zero degrees to 1.5 degrees. The inclusion of the four contact conditions help to differentiate 

between no curve squeal and curve squeal region. A kurtosis value greater than three indicated the 

development of curve squeal for the sound data as the yaw angle increased. In addition, skewness 

extreme negative skewness of the sound data at high yaw angles indicated the development of 

curve squeal, while skewness values around zero indicated no curve squeal. The kurtosis and the 

skewness conclusions were drawn from the comparison of the dry, wet, FM1 and FM2 contact 

conditions as the yaw angle increased from zero degrees to 1.5 degrees for four average wheel 

speeds. Increase in average wheel speed resulted in decrease in the transition yaw angle (yaw angle 

between no curve squeal and curve squeal region).  

Spectral analysis was applied to the sound data to investigate the frequency components of the 

wheel and rail roller responsible for curve squeal. The result showed that the wheel is the main 

contributor of curve squeal and that the curve squeal frequency is located at the curse squeal band 

(CSB) ranging from 1100Hz to 1200Hz. Four frequency bands were used to identify and 

characterize curve squeal and it mitigation for all four wheel speeds as the yaw angle was increased 
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from zero to 1.5 degrees yaw angles. For the spectral peak and spectral RMS, an initial bandpass 

filter was designed for four frequency band positions WMB (1000Hz to 1100Hz), CSB (1100Hz 

to 1200Hz), RNB (1200Hz to 1300Hz) and RMB (1400Hz to 1500Hz). This was necessary to 

extract the natural frequencies and second nodal diameter of the wheel roller (located in the WMB) 

and rail roller (located in RMB). The curve squeal band (CSB) had the highest spectral energy and 

was therefore used to indicate onset and development of curve squeal on the twin disc rig. The 

actual frequencies in the CSB band responsible for curve squeal are slight deviations of the actual 

axial frequency of the wheel roller around 1095Hz obtained from impact hammer tests and FEM 

analysis.  

The strong tonal frequency in the CSB band extracted using spectral analysis was observed to 

develop second and third harmonics. This indicates that curve squeal is a strong tonal noise that 

resonates throughout the whole test rig along with its corresponding harmonics. Further 

investigation to the onset development of curve squeal was investigated using initial bandpass 

filter applied at the harmonic locations on the power spectrum. The second and third harmonic 

bandpass filter frequency bands are 2200Hz to 2400Hz and 3400Hz to 3600Hz. The spectral peak 

and RMS of the second and third harmonic frequency bands were computed for yaw angle 

variation from zero to 1.5 degrees for all four-wheel speeds and four different wheel rail contact 

conditions. The transition yaw angles obtained are exactly the same for each harmonic band. This 

indicates that the utilization of the harmonic bands is a strong indicator for investigating and 

analysing the early development of curve squeal and curve squeal mitigation.  

Finally, the introduction of water, FM1 and FM2 to the wheel rain interface completely eliminated 

the second and third harmonics developed from the dominant frequency component responsible 

for curve squeal. In addition, the introduction of these contaminants attenuated the dominant 

frequency in the CSB and increased the contribution of the rail roller dominant frequency in the 

RMB.  
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Chapter Six: Curve squeal monitoring using vibration analysis methods 

This chapter covers the application of vibration analysis methods for detecting and monitoring 

curve squeal in the test rig. Time domain methods would be used to investigate and characterize 

curve squeal. Some of the feature extraction techniques that would be employed in this chapter 

include rms, kurtosis, skewness, and crest factor. Initially the time domain methods such as rms, 

crest factor, kurtosis and skewness are used to characterize curve squeal. Then the probability 

density function was then applied to the time domain data. The sudden difference in the pdf heights 

is used to detect and characterize curve squeal. Frequency domain methods was then used to also 

characterize and monitor curve squeal for the test rig. Baseline spectrum analysis and power 

spectral density of the vibration data was applied to the data to extract vital information through 

their respective plots.  
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6.1 Introduction – Vibration analysis for condition monitoring of curve squeal 

The application of vibration analysis has been widely utilised in the field of condition monitoring 

especially for fault diagnosis of rotating machines. Most machines and industrial systems have 

some form of vibration, which might be considered as abnormal or normal. It is understood in 

literature that excessive or abnormal vibration in a machine could be caused by several reasons. 

When a fault is observed in a typical dynamic system, the amplitude of vibration changes 

depending on the fault magnitude. These vibration amplitudes are detected using several sensors 

such as velocity transducers, proximity sensors and accelerometers. Accelerometers are widely 

utilised for vibration analysis amongst the mentioned sensors (Vishwakarma et al., 2017).  

However, in railways excessive vibration of wheelset as it negotiates round a tight curve has been 

associated to result in annoying tonal noise (curve squeal). It is a well-established fact in literature 

that unsteady lateral creepage is the main cause for generation of curve squeal while flange rubbing 

and longitudinal creepage are not relevant to curve squeal (Liu and Meehan, 2013), (Liu and 

Meehan, 2016). Based on this conclusion from literature, accelerometers where installed to 

measure lateral vibrations of the wheel and rail roller for varying yaw angles with the aim of 

identifying and characterizing curve squeal. Two accelerometers mounted laterally on the wheel 

and rail roller (see Chapter 3 for full description of mounting) would therefore be used to extract 

features from the vibration data that relate to curve squeal development as the yaw angle between 

the rollers is increased. In addition, the effect of changing the characteristics of the wheel-rail roller 

interface by the application of water and friction modifiers would be investigated in detail. The 

mitigation measures used to minimize curve squeal in the wheel would be investigated using 

vibration analysis. Several vibration analysis methods would for studying curve squeal phenomena 

would be employed in this chapter. These methods are grouped into three main classes, time 

domain, frequency domain and time-frequency domain. In each class, various range of methods 

are presented and used to characterize curve squeal. The advantages and disadvantages of each 

vibration analysis methods would be highlighted and conclusions would be drawn based on the 

results obtained.  

 

6.2 Time domain analysis  

Time domain methods have been widely applied in condition monitoring fields for several 

systems. The main aim of this vibration analysis method is to determine the statistical 
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characteristics of the vibration data. Time domain analysis assumes that the vibration data is 

random and possesses unique statistical characteristics. The main merit of applying time domain 

analysis is their relative ease of implementation in online condition monitoring systems. They are 

also free of picket-fence effect, sampling rate, spectral leakage and signal aliasing. Figure 6.1 to 

Figure 6.4 displays the vibration data measured from the wheel and rail roller accelerometers. The 

measurements were taken for average wheel speeds of 100 RPM, 125 RPM, 150 RPM and 175 

RPM respectively. Also, different wheel-rail contact conditions such as dry, wet, FM1 and FM2 

was measured for each speed and yaw angle. For the vibration measurements, only yaw angles 

where noticeable curve squeal was observed for each average wheel speed was displayed. As was 

stated in Chapter 3, the wet contact conditions comprised of constant application of water through 

a flexible hose to the rail roller at speeds 0.5 ml/min. In addition, 0.5 ml of FM1 and FM2 was 

applied using syringed tube to the rail roller surface. The test rig was then run for approximately 

3 minutes before vibration measurements commenced. For each yaw angle, measurements were 

taken for a time length of 5 seconds to ensure that adequate time representation of vibration data 

is measured. This time is not too short to miss vital information from the data and at the same time 

not too long which could lead to excessive wear and corrugation of the wheel and rail rollers at 

higher yaw angles.  

Figure 6.1 shows the vibration time series data of the wheel and rail roller on the test rig operating 

at an average speed of 100 RPM. At this speed, for zero yaw angle, it is evident that the magnitude 

of the acceleration signal for dry contact is significantly lower compared to wet contact conditions. 

This is also the case when FM1 and FM2 is applied to the wheel-rail contact. It can be inferred 

from this development that the application of contaminants to the wheel-rail interface reduces the 

wheel-rail contact stiffness and therefore causes the wheel and rail roller to vibrate more compared 

to dry contact conditions. This explains why the friction coefficient is significantly reduced when 

water or friction modifier is applied to the wheel-rail interface. While this is an undesirable 

phenomenon for a typical wheel-rail interface, the application of water of friction modifiers is 

required to mitigate curve squeal in tight curves by reduction of the friction coefficient and the 

lateral creep forces developed. However, once the railway vehicle has negotiated the sharp curve, 

it is necessary to degrease the friction modifier from the wheelset to restore the friction coefficient 

and the lateral stiffness back to its original value to maintain traction. Also, from Figure 6.1, at 1.2 

degrees yaw angle, the magnitude of vibration data obtained from the mounted wheel and rail 
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accelerometers increased compared to zero degrees yaw angle between the rollers. This yaw angle 

was chosen as one of the angles where curve squeal is predicted to occur. For dry contact 

conditions it is discovered that there is a significant increase in amplitude of vibrations for zero 

degrees yaw angle when compared with 1.2 degrees yaw angle envisaged as one of the angles for 

which curve squeal occurs. This is not the case with wet conditions and the application of the FM1 

and FM2 to the wheel-rail contact interface. 

 

Figure 6.1: Wheel and rail lateral vibration data for average wheel speed of 100 RPM 

 

As the average wheel speed increases from 100 RPM to 125 RPM, the magnitude of vibration 

measured from the wheel and rail roller accelerometers increases (See Figure 6.2). There is also a 

significant increase in the wheel and rail accelerometer vibrations as the yaw angle between the 

rollers is increased from zero degrees to 1.2 degrees for dry contact conditions. For wet conditions, 

the amplitude of vibrations on the wheel and rail roller is large compared to the dry contact 

conditions and even the application of FM1 and FM2 on the wheel-rail interface. This is possibly 

due to the reduction of the lateral stiffness of the wheel-rail rollers, which then causes the vibration 
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magnitude to increase. (Meierhofer et al., 2014) also arrived at the same conclusion that the 

introduction of contaminants to the wheel-rail interface results in a reduction in stiffness of the 

anisotropic surface layer between the two contacting surfaces. The vibration amplitude for FM1 

and FM2 friction modifiers are slightly lesser than that of the wet contact conditions at zero degrees 

yaw angle. This explains why it is preferable to apply friction modifiers to the wheel-rail contact 

rather than water to mitigate curve squeal. For the overall plots in Figure 6.2, an increase in 

vibration magnitude at zero degrees is observed compared to the 100RPM average wheel speed.  

 

Figure 6.2: Wheel and rail lateral vibration data for average wheel speed of 125 RPM 

 

Figure 6.3 displays the wheel and rail accelerometer data for average wheel speed of 150 RPM. 

Comparing Figure 6.3 and Figure 6.2, for zero yaw angle (absence of curve squeal), a noticeable 

increase in the vibration magnitude of the plots for dry, wet, FM1 and FM2 contact conditions was 

observed at speed of 150 RPM. As is the case for lesser wheel speed of 125 RPM, there a 

significant increase in the magnitude of vibration of the wheel and rail accelerometer data when 

the yaw angle was increased from zero degrees to 1.2 degrees (angle associated with curve squeal). 

However, for wet, FM1 and FM2 contact conditions, there is a slight increase in vibration 
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magnitude as the yaw angle increased from zero degrees to 1.2 degrees. It is noted that again the 

vibration amplitudes of wet, FM1 and FM2 for zero degrees are significantly higher at zero degrees 

yaw angle when compared with dry contact conditions. The reason for this is possibly due to the 

reduction of the lateral stiffness and friction coefficient thus leading to increased vibration 

magnitude.   

 

Figure 6.3: Wheel and rail lateral vibration data for average wheel speed of 150 RPM 

 

Finally, Figure 6.4 displays the plots of the measurements obtained from the wheel and rail 

accelerometers for an average wheel speed of 175 RPM. The vibration magnitude measured for 

zero yaw angles at dry contact conditions is significantly lesser than wet, FM1 and FM2 contact 

conditions. This is due to the change in lateral stiffness and the friction coefficient as the wheel-

rail interface conditions changes. A large disparity between vibration amplitude at zero degrees 

and 1.2 degrees is observed. This at first observation shows that the curve squeal occurs due to the 

excessive increase in vibrations of the wheel and rail rollers. Minimal differences in the vibration 

amplitudes at zero degrees and 1.2 degrees are observed for wet, FM1 and FM2 contact conditions. 
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Comparing Figure 6.4 and Figure 6.3 in overall, there is a slight increase in the vibration amplitude 

as the speed increased from 150 RPM to 175 RPM for zero degrees yaw angle. 

  

Figure 6.4: Wheel and rail lateral vibration data for wheel average speed of 175 RPM 

 

The vibration results presented in Figure 6.1 to 6.4 shows that they perform reasonably well in 

time domain analysis. It can be deduced from the plots that the application of water and friction 

modifiers to the wheel-rail interface reduces the vibration amplitude significantly when the yaw 

angle is increased from zero degrees to 1.2 degrees. The problem with using only the time domain 

vibration results is the fact that very little information is provided as to which of the rollers is 

actually squealing. The time domain statistical methods employed in the next section would be 

used to investigate which of the roller is prone to curve squeal and how the application of water, 

FM1 and FM2 to the wheel-rail contact mitigate curve squeal. 

Finally, to conclude, the time domain results obtained for the wheel and rail accelerometer showed 

a decrease in the wheel speed as the yaw angle increased. The periodic bursts at 1.2 degrees yaw 

angle of the rail roller indicates the reduced speed of the wheel roller from the set speed of 100RPM 

at central position (zero degrees yaw angle). The average wheel speed of the wheel rollers was 
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calculated as approximately 100RPM, 125RPM, 150RPM and 175RPM. There was no noticeable 

decrease in wheel speed when water and friction modifiers was applied to the wheel rail interface.  

 

6.2.1 Feature extraction using Peak, RMS and Crest factor 

Peak, RMS and crest factor time domain method were applied to the wheel and rail roller vibration 

data of the wheel and rail accelerometer using equation (5.1), (5.2) and (5.3). The problems 

associated with using these condition monitoring indicators in sound measurements are different 

for the case of the wheel and rail rollers. This is because the lateral vibration of the wheel rollers 

increases with increasing yaw angle. This is illustrated in the wheel and rail accelerometer time 

domain data in Figure 6.1 to Figure 6.4 for all average wheel speeds and in dry contact conditions. 

By obtaining the relationship between the condition monitoring indicators and the yaw angle 

variation for the wheel and rail accelerometers, it may be possible to differentiate between regions 

of squeal and curve squeal.  

Figure 6.5 shows the calculated peak values for each yaw angle obtained from the vibration data 

of the wheel and rail accelerometer discussed previous in the last section. The results obtained 

show that at low wheel speed (100RPM), the peak values of the wheel accelerometer data are 

greater than the peak values of the rail accelerometer data at yaw angle greater than 0.9 degrees. 

This angle is called the transition yaw angle defined as the boundary between rolling contact noise 

and curve squeal. For average wheel speeds, 125RPM, 150RPM and 175RPM, the peak values of 

the rail roller are found to be greater than that of the wheel roller beyond the transition yaw angles 

0.9 degrees, 0.6 degrees and 0.5 degrees respectively.  
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Figure 6.5: Effect of yaw angle on Peak value for the wheel and rail accelerometer for four 

average speeds and applied load of 2.5 kN. 

 

The results obtained from the peak value indicate the region of rolling contact noise (no curve 

squeal) and region of curve squeal. However, the peak values do not indicate which of the wheels 

is the dominant contributor of curve squeal for dry contact conditions. 

 Figure 6.6 shows the plot of the calculated RMS values for the wheel and rail roller data for 

varying average wheel speed and yaw angles ranging from zero to 1.5 degrees. The motivation for 

applying RMS to the accelerometer data was to detect when curve squeal occurs. The results show 

that the energy content increases as the yaw angle increases for both the wheel and rail roller 

results. However, for all average speed cases, it is observed that at lower yaw angles, the energy 

content of the wheel and rail roller data remain constant while a significant increase in the wheel 

accelerometer rms value is observed after a particular yaw angle is reached.  
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Figure 6.6: Effect of yaw angle on RMS value for the wheel and rail accelerometer for four 

average speeds and applied load of 2.5 kN in dry contact conditions 

 

The rather larger rms values of the wheel accelerometer when compared to the rail accelerometer 

indicates more energy content in the wheel roller vibration especially at large yaw angles. For 

average speed of 100 RPM, 125 RPM, 150 RPM, and 175 RPM, the large value of the RMS of the 

wheel accelerometer when compared with the rail accelerometer occurred at yaw angles 10, 0.70, 

0.50 and 0.50 respectively. The resultant disparity of the energy content of the wheel accelerometer 

compared to the rail accelerometer at these yaw angles indicates that the wheel roller is responsible 

for curve squeal rather than the rail roller. The rail roller is therefore not the dominant contributor 

to sound radiation leading to curve squeal as can be inferred from the Figure 6.5. This is in 

agreement with the results obtained by (Vincent et al., 2006) although they established this fact 

using frequency domain analysis.  
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Figure 6.7 shows the crest factor value plots for a given load of 2.5 kN, for average wheel speeds 

ranging from 100 RPM to 175 RPM. It is worth noting that crest factor is inversely proportional 

to the RMS value therefore curve squeal is detected when the crest factor of the rail accelerometer 

data is greater than that of the wheel accelerometer data. It can also be observed from Figure 6.6 

that for the average speed of 100 RPM, 125 RPM, 150 RPM and 175 RPM, the yaw angle after 

which curve squeal is detected are 10, 0.80, 0.60 and 0.60. The discovered angles for which curve 

squeal is identified compares well with the angles obtained in Figure 6.6. The higher crest factor 

values of the rail roller after the detection of curve squeal indicates that at certain large yaw angles, 

the wheel vibrates more than the rail at the curve squeal region. This rationale is reached since the 

crest factor is directly proportional to the peak values of the wheel and rail accelerometer data. It 

is important to note from Figure 6.5 and 5.6 that the likelihood of curve squeal occurring for earlier 

yaw angles is higher with increasing average wheel speed. It is therefore imperative that at steep 

curves in railway tracks, low average wheelset speeds is desired to decrease the changes of curve 

squeal occurring. 
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Figure 6.7: Effect of yaw angle on crest factor value for the wheel and rail accelerometer 

for four average speeds and applied load of 2.5 kN. 

 

From the statistical time domain methods applied (RMS and Crest factor) for feature extraction to 

identify and detect curve squeal, the results obtained showed that average wheel speed of important 

for the development of curve squeal. In addition, for the three condition monitoring indicators 

relationship with the yaw angle, no further signal processing was required to establish the potential 

regions of curve squeal and no curve squeal.  

 

6.2.3 Feature extraction using Kurtosis and Skewness 

Kurtosis and skewness were applied to the wheel and rail vibration data to investigate and detect 

curve squeal. Equation 5.4 and 5.5 was used to generate the kurtosis and skewness values for the 

wheel and rail accelerometer respectively.  

Figure 6.8 illustrates the kurtosis values for the wheel and rail accelerometer data. The kurtosis 

amplitude of the wheel and rail vibration data for average wheel speed of 100 RPM ranges from 2 

to 3.8 up to yaw angle of 0.90. Although the required kurtosis value for a fault free system is below 

3, the oscillations of these amplitudes between 2 and 4 for the wheel and rail roller at this speed 

suggest in this case that the test rig is operating at the no curve squeal region (or pure rolling 

contact noise). 
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Figure 6.8: Effect of yaw angle on kurtosis values for the wheel and rail accelerometer data 

operating for four average wheel speeds. 

 

A sharp increase in the kurtosis value for the wheel and rail accelerometer after 0.90 indicates the 

region of curve squeal. For average wheel speeds of 125 RPM, 150 RPM and 175 RPM, the rolling 

contact noise region ranges from zero degrees to 0.70, 0.70 and 0.60 respectively. The kurtosis 

amplitude increased sharply after these angles for both the wheel and rail accelerometer data but 

the rail accelerometer data increased in value more than the wheel accelerometer. The sudden 

change in the kurtosis value of the wheel and rail accelerometer from its steady state value for all 

average wheel speeds indicates the identification of curve squeal.  
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Figure 6.9: Effect of yaw angle on the skewness values for the wheel and rail accelerometer 

data using four average speeds 

 

Figure 6.9 shows the effect of the yaw angle on the skewness values for the wheel and the rail 

accelerometer data. It is evident from observations that the for the four average wheel speeds that 

the skewness value ranges from -0.1 to 0.1 for the rolling contact noise region for the wheel and 

rail roller. The wheel accelerometer data for all four average wheel speeds is negatively skewed 

meaning that the data is skewed to the left. It can also be observed that the rail accelerometer data 

is positively skewed meaning that the value is skewed to the right. The rolling contact region for 

the four average wheel speeds can be clearly observed to be between zero degrees and 0.90, 0.90, 

0.50 and 0.40 for speeds 100 RPM, 125 RPM, 150 RPM and 175 RPM respectively. It can thus be 

concluded that when curve squeal is detected on the rig, the wheel accelerometer data is negatively 

skewed while the rail accelerometer data is more positively skewed. Although this disparity in 

skewness values at the curve squeal region is not the case for average wheel speed of 125 RPM, 

however the significant different in the values of the skewness indicates the detection of curve 

squeal from the vibration data.  
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6.3 Feature extraction methods for curve squeal mitigation 

The previous section discussed in details with the aid of plots several statistical methods that could 

be used to detect curve squeal in the test rig. Figure 6.1 to Figure 6.4 displayed the time domain 

of the wheel and rail accelerometer signal for dry, wet, FM1 and FM2 contact conditions operating 

at four varying speeds. However, it was observed from these figures that the amplitude of vibration 

for dry contact at zero degrees yaw angle for all four average wheel speeds is significantly less 

than the amplitudes of wet, FM1 and FM2 contact conditions. The reason for this was explained 

such that the introduction of contaminants (water and friction modifiers) to the wheel-rail interface 

changes the contact stiffness of the contact thereby causing the wheel and rail roller to vibrate 

more when compared in dry contact conditions.  

With his main conclusion in mind, it is very difficult to investigate the mitigation effect observed 

by the application of water and friction modifiers on the wheel-rail contact interface in the time 

domain. However, the best results were obtained by investigating the effect of the yaw angle on 

the skewness values for all wheel-rail contact scenarios (See Figure 6.10). The results obtained for 

average wheel speeds of 100 RPM, 125 RPM and 150 RPM shows the effect of the application of 

water, FM1 and FM2 on the wheel and rail rollers. It is observed that the skewness values of the 

wheel accelerometer for instance was observed to tend to zero after the application of water, FM1 

and FM2 for average wheel speed of 100 RPM. The skewness was thus shift from being negatively 

skewed to tending to zero skewness. The same effect was observed for average wheel speeds of 

125 RPM, 150 RPM and 175 for the wheel accelerometer data. However, since the wheel roller 

contributes more to curve squeal compared with the rail roller, the skewness values of the rail 

roller did not change considerably much for all contact conditions for all speeds as observed in 

Figure 6.10. This enforces the fact that the wheel roller is the dominant contributor of curve squeal 

in the test rig.   
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Figure 6.10: Skewness plot of the wheel and rail accelerometer data for two average speeds 

(100 RPM and 125 RPM) for dry, wet, FM1 and FM2 contact conditions 

 

For higher average wheel speeds as observed in Figure 6.10, there is no significant change in the 

skewness values for the rail roller. Large disparities in the skewness values are observed in the 

wheel roller data for average speeds 150 RPM and 175 RPM. This again suggests that the wheel 

roller is a greater contributor to curve squeal as established in literature. It is important to note that 

for the average wheel speed of 175 RPM, curve squeal was not eliminated as the yaw angle 

increased. The skewness values for wet, FM1 and FM2 contact conditions was observed to 

increase as the yaw angle increases. No significant change was observed for the rail accelerometer 

results.  
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Figure 6.11: Skewness plot of the wheel and rail accelerometer data for two average speeds 

(150 RPM and 175 RPM) for dry, wet, FM1 and FM2 contact conditions 

 

6.4 Curve squeal identification and characterization using spectrum analysis 

The raw time domain data obtained from the wheel and rail accelerometer in Figure 6.1 to Figure 

6.2 only described the changes in signal amplitude from the two accelerometers when the wheel 

speed and the contact conditions are varied. For power spectrum analysis, the same time domain 

data was analysed. 

Figure 6.12 shows the power spectrum plots of the wheel and rail accelerometer data at average 

wheel speed of 100RPM. The spectrum is obtained for zero degrees and 1.2 degrees yaw angle 

applied to the rail roller. The frequency range was constrained from 500Hz to 4000Hz as this 

represents the region were more energy is found on the spectrum data.  

At zero degrees yaw angle, some peaks can be observed from the power spectrum plot for the 

wheel and rail roller. Most of the peaks observed are the natural frequencies of the wheel and rail 

roller obtained from impact hammer test results. At 1.2 degrees yaw angle, the curve squeal 

frequency (X) is observed around 1150Hz. It is not very clear from the plot exactly which value it 

is. The spectral amplitude from the wheel accelerometer data is much greater than the spectral 
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amplitude obtained from the rail roller. This indicates that the wheel is the main contributor of 

curve squeal in the twin disc rig.  

 

Figure 6.12: Wheel and rail lateral vibration spectrum plots for average wheel speed of 100 

RPM in dry contact conditions 

The harmonics of the dominant curve squeal frequency are observed at 2X (2300Hz) and 

3X(3450Hz) respectively. This signifies that curve squeal produces harmonics of the fundamental 

curve squeal frequency. 
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Figure 6.13: Section of the wheel and rail lateral vibration spectrum plots for average 

wheel speed of 100 RPM in dry contact conditions 

 

Figure 6.13 shows the zoomed in power spectrum plot of the wheel and rail accelerometer data for 

frequency range of 1000Hz to 150Hz. This range was chosen to identify in detail the frequency 

components of the wheel and rail vibration spectrum responsible for curve squeal. As defined 

previous in Chapter 5, the frequency bands WMB, CSB, RNB and RMB was defined for the wheel 

and rail vibration spectrum. The results obtained shows that the dominant frequency for no squeal 

is around 1280Hz. This frequency is in the rolling noise band (RNB). This probably indicates the 

rolling noise frequency generated as a result of the dynamics of the wheel-rail interface at wheel 

speed of 100RPM. The wheel power spectrum plot identified the second nodal diameter with 

natural frequency of around 1095Hz while the second nodal diameter and natural frequency of the 

rail roller can be observed to be excited at zero degrees yaw angle. A sharp peak at the CSB 

frequency band of about 1150Hz is observed when the rail roller is yawed to the angle of 1.2 

degrees. This frequency has been observed to drown all the wheel and rail natural frequencies. 

This strongly indicates the presence of curve squeal in the test rig.  

 

Figure 6.14: Wheel and rail lateral vibration spectrum plots for average wheel speed of 125 

RPM in dry contact conditions.  
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Figure 6.14 shows the power spectrum of the wheel and rail accelerometer time domain data at 

average wheel speed of 125RPM and in dry contact conditions. The results indicate that are dry 

contact conditions the wheel and rail roller are vibrating at their natural frequency as obtained from 

impact hammer test results. The sharp peak around 3000Hz is the third nodal diameter and natural 

frequency of the wheel roller. At 1.2 degrees yaw angle, the vibration amplitude of the wheel and 

rail roller is observed at around 1150Hz. This peak frequency (X) or the dominant frequency is the 

curve squeal frequency as a result of the excitation of the second nodal diameter and natural 

frequency of the wheel roller. The large disparity between the peaks of the wheel and rail roller 

indicate that the wheel roller is the main contributor of curve squeal. This dominant curve squeal 

frequency generates 2nd(2X) and third harmonics at around 2300Hz and 3450Hz respectively.  

 

Figure 6.15: Section of the wheel and rail lateral vibration spectrum plots for average 

wheel speed of 125 RPM (Dry, wet, FM1 and FM2 contact conditions) 

Figure 6.15 shows a section of the plot in Figure 6.14 for a frequency range of 1000Hz to 1500Hz. 

The sharp peak in the WMB band indicates the excitation of the wheel natural frequency around 

1095Hz. The excitation of this frequency is normal especially when there is no curve squeal 

developed on the test rig. The rolling contact noise region has peaks around 1250Hz for both the 

wheel and rail roller accelerometer data. A noticeable peak amplitude in the RMB region indicates 

the excitation of the rail roller natural frequency (second nodal diameter and zero nodal circles). 

At 1.2 degrees the dominant peak observed in the CSB frequency band is the curve squeal 
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frequency. The dominant spectral amplitude is greater than the wheel natural frequency in the 

WMB. This indicates that the wheel is the main contributor of curve squeal in the twin disc rig. 

The same is the case for the rail roller spectrum at 1.2 degrees yaw angle.  

 

Figure 6.16: Wheel and rail lateral vibration spectrum plots for average wheel speed of 150 

RPM in dry contact conditions. 

Figure 6.16 shows the wheel and rail spectrum plots for average wheel speed of 150RPM. The 

dominant peak amplitude for zero degrees yaw angle indicates noise generated as a result of wheel 

and rail contact dynamics at wheel speed of 150RPM. The other frequency components represent 

the excitation of the wheel and rail roller at their natural frequencies. The fundamental dominant 

curve frequency (X approximately equal to 1130Hz) and its corresponding harmonics are observed 

when the yaw angle is set to 1.2 degrees. This indicates the presence of curve squeal development 

in the twin disc rig with the wheel being the most dominant contributor.  

Figure 6.17 shows the section of the wheel and rail lateral vibration spectrum plots for the wheel 

and rail roller for a constrained frequency range of 1000Hz and 1500Hz. A closer look shows that 

the excitation of the natural frequencies of the wheel and rail roller occurs in the WMB and RMB 

frequency band respectively. The rolling contact noise developed in the RNB band is also present. 

The sharp peak amplitude of the power spectrum plot at around 1180Hz indicates curve squeal. 

However, the disparity between the wheel and rail peak amplitudes at 1.2 degrees yaw angle 

signifies that the wheel roller is responsible for curve squeal.  
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Figure 6.17: Section of the wheel and rail lateral vibration spectrum plots for average 

wheel speed of 150 RPM in dry contact conditions. 

 

Figure 6.18 shows the spectrum of the wheel and rail roller accelerometer data for average wheel

 

Figure 6.18: Wheel and rail lateral vibration spectrum plots for average wheel speed of 

175RPM in dry contact conditions 
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speed of 175RPM. The sharp peak amplitude from the spectrum plots for zero degrees yaw angle 

indicate the excitation of the rail roller natural frequency around 3135Hz. The other spectral peaks 

although not clearly visible indicate the presence the excitation of the wheel and rail natural 

frequencies within the specified frequency range of 500Hz to 4000Hz. As has been the case with 

the previous wheel speeds, the dominant curve squeal frequency and the associated harmonics (2X 

and 3X) where X is around 1150Hz is observed in Figure 6.18. This indicates the presence of curve 

squeal in the twin disc rig.  

 

Figure 6.19: Section of the wheel and rail lateral vibration spectrum plots for average 

wheel speed of 175 RPM in dry contact conditions. 

 

Figure 6.19 show the section of wheel and rail roller spectrum for frequency range of 1000Hz to 

1500Hz. The respective frequency bands of interest are clearly defined showing the frequency 

components of the wheel and rail roller excited at their natural frequencies. The only distinct 

frequency from the rest is the rolling contact frequency centred around the RNB frequency band 

at zero degrees yaw angle. When the yaw angle is changed to 1.2 degrees, the dominant curve 

squeal frequency in the wheel and rail roller spectrum plot is excited. This indicates the presence 

of curve squeal with the wheel roller being the main contributor.  

The application of spectrum analysis to the wheel and rail accelerometer data has specified some 

key elements that were not easily observed with the application of time domain feature extraction 
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methods. The respective frequency bands that clearly defines what transpires in the dynamics of 

the wheel rail contact has been observed.  

 

6.5 Curve squeal mitigation using spectrum analysis 

Spectrum analysis would be applied to the wheel and rail accelerometer data for dry, wet, FM1 

and FM2 contact condition to investigate how curve squeal is mitigated.  

 

 

Figure 6.20: Spectrum plots from wheel accelerometer illustrating curve squeal mitigation 

using FM1 applied on the wheel-rail interface for varying wheel speeds 

 

Figure 6.20 shows the spectrum plots of dry and FM1 wheel accelerometer data for average wheel 

speed of 100RPM, 125RPM, 150RPM and 175RPM. 1.20 yaw angle was chosen to illustrate curve 

squeal mitigation since at this value curve squeal has commenced for all average wheel speeds. It 

can be observed from Figure 6.20 the fundamental or dominant excitation frequency for curve 

squeal is 1150.1Hz, 1130.7Hz, 1173.5Hz and 1163.6Hz for average wheel speeds of 100RPM, 
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125RPM, 150RPM and 175RPM respectively all contained in the CSB frequency band. It can also 

be observed from the plots that the second and third harmonics of the dominant curve squeal 

frequency are evident as shown in Figure 6.20. The introduction   

 

 

Figure 6.21: Spectrum plots from wheel accelerometer illustrating curve squeal mitigation 

using FM2 applied on the wheel-rail interface for varying wheel speeds 

 

Curve squeal for test rig can therefore be defined as a strong tonal vibration in the CSB frequency 

band, and its corresponding harmonics. It is important to note that when curve squeal is detected, 

the influence of the other natural modes of vibration of the wheel and rail roller (nodal diameters 

greater than 2) is non-existent. It is also important to observe that FM1 eliminates the second and 

third harmonic frequency components for all four average wheel speeds. In addition, a reduction 

in the amplitude of the fundamental frequency is also observed when FM1 is applied to the wheel-
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rail roller interface. FM1 causes the wheel roller to vibrate at its natural modes while eliminating 

the corresponding harmonics associated with curve squeal in dry contact conditions. 

Figure 6.21 shows the effect of FM2 on the spectrum plots obtained from the wheel accelerometer 

for four varying wheel speeds.  

 

 

Figure 6.22: Spectrum plots from wheel accelerometer illustrating curve squeal mitigation 

using water applied on the wheel-rail interface for varying wheel speeds 

 

The same conclusions stated for the effect of the application of FM1 on the wheel-rail contact can 

be inferred for plot in Figure 6.21. There is no significant difference in the mitigation effect when 

using FM2 as compared with FM1. It is however, necessary to note that for higher average wheel 

speeds (150RPM and 175RPM); there is a notable increase in the amplitude of vibrations around 

the axial modes of the wheel roller (second nodal diameter). This is greater than the fundamental 

frequency associated with curve squeal. Despite the larger amplitude of the axial modes of the 

wheel roller second nodal diameter frequency (centred at around 1093.5 Hz), the main aim of 

application of FM1 and FM2 is to eliminate the high frequency harmonics and allow the wheel 

roller to vibrate at its natural modal frequencies as obtained in the impact hammer test results. 
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Finally, Figure 6.22 shows the spectrum plots for varying wheel speeds obtained from the wheel 

accelerometer in wet contact conditions. The application of water on the wheel-rail roller interface 

was investigated. Similar conclusions for FM1 and FM2 results shown in Figure 6.22 and Figure 

6.23 can be applied as well. Curve squeal and its associate harmonics was eliminated for the 

application of water on the wheel-rail interface. It is also important to note that the water 

application made the wheel roller to start to vibrate at its natural modes as well.  

 

 

Figure 6.23: Spectrum plots from rail accelerometer illustrating curve squeal mitigation 

using FM1 applied on the wheel-rail interface for varying wheel speeds 

 

Figure 6.23 shows the spectrum plots obtained from the rail accelerometer when FM1 was applied 

on the wheel-rail interface. Although the rail roller is not the major contributor to curve squeal, it 

is important or the overall test rig that curve squeal on the rail roller is mitigated as well. It can be 

observed that the application of FM1 eliminates the harmonics associated with curve squeal for all 

four average wheel speeds. As the average wheel speed increases, the amplitude of the harmonics 

reduces while the amplitudes of the rail roller natural modes increase considerably. The increase 

in the vibration amplitudes of the natural frequencies of the rail roller as the speed increases does 



177 

 

not imply that curve squeal exists since the rail roller is just vibrating at its respectively 

frequencies.  

 

 

Figure 6.24: Spectrum plots from rail accelerometer illustrating curve squeal mitigation 

using FM2 applied on the wheel-rail interface for varying wheel speeds 

 

Similar results are obtained for the spectral plots shown in Figure 6.24 and Figure 6.25 for the 

application of FM2 and water to the wheel-rail roller interface.  
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Figure 6.25: Spectrum plots from rail accelerometer illustrating curve squeal mitigation 

using water applied on the wheel-rail interface for varying wheel speeds 

 

To conclude, the effect of water, FM1 and FM2 on the wheel-rail interface mitigated curve squeal 

in the wheel and rail roller. Although the wheel roller is dominate cause of curve squeal due it’s 

higher vibration amplitude for all average wheel speeds when compared with the rail roller spectral 

plots, it is evident that the harmonics associated with curve squeal of both rollers was removed. It 

is therefore important to note the strong vibration centered at the fundamental frequency for curve 

squeal and its harmonics (second and third harmonics) are responsible for curve squeal.  

 

6.5 Curve squeal detection using the frequency bands  

The frequency bands of interest that are associated with curve squeal are the WMB, CSB, RNB 

and RMB. However, to determine the onset development of curve squeal, that is the transition 

between no curve squeal and curve squeal regions, the spectrum plots of the CSB, RNB and RMB 

are a useful feature. The spectral peak in the CSB, RNB and RMB obtained from the power 

spectrum plots in dB/Hz, is plotted for each respective yaw angle.  
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Figure 6.26 shows the effect of varying yaw angle on the peak power spectral density for the three 

frequency bands CSB, RNB and RMB for all four average wheel speeds. The spectrum plots was 

generated from the wheel accelerometer data.   

 

Figure 6.28: The effect of varying yaw angle on the peak power spectral density for the 

wheel accelerometer for three main frequency bands (CSB, RNB and RMB).  

 

It can be observed from the plots that the rolling contact noise region is dominated by the frequency 

CSB when no curve squeal is observed for all average wheel speeds. The onset development of 

curve squeal starts at about 0.90, 0.850, 0.40 and 0.350 for average wheel speeds 100RPM, 125RPM, 

150RPM and 175RPM respectively. The curve squeal region can be observed from Figure 6.26 as 

dominated by the CSB region. The actual curve squeal frequency for the average wheel speeds 

varies within this region. It can be concluded from the results obtained that wheel speed is an 

important factor for the onset development of curve squeal. As the wheel speed increases, the 

chances of curve squeal developing increases. This implies that the actual yaw angle required for 

the development of curve squeal reduces as the wheel speed increases. This explains why in actual 

railway curves, wheelset speeds are crucial to minimize the incipient development of curve squeal.  
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Figure 6.27: The effect of varying yaw angle on power spectral density for the rail 

accelerometer for three main bands (CSB, RNB and RMB) 

 

Figure 6.27 shows the peak power spectral density obtained from the rail accelerometer for varying 

average wheel speeds. The onset yaw angle after which curve squeal is developed are about 1.150, 

0.950, 0.70 and 0.550 for average wheel speeds of 100RPM, 125RPM, 150RPM and 175RPM. 

There is small disparity in the onset yaw angles for the rail accelerometer results when compared 

with the wheel accelerometer results in Figure 6.27. This is probably due to the mounting positions 

of the accelerometers. This explains why there is a delay in the onset detection of curve squeal in 

the rail accelerometer when compared with the wheel accelerometer results. It is also worthy of 

mention that the peak power spectral density values for the wheel accelerometer data for all speeds 

is greater than that of the rail roller. This again explains that the wheel roller is the main contributor 

to curve squeal on the test rig.  

 

6.6 Feature extraction methods applied to the wheel and rail accelerometer 

spectrum data 

In this section, feature extraction methods would be applied to the wheel and rail accelerometer 

spectrum data.  
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Peak and RMS condition monitoring indicators have been selected as the feature extraction 

methods in this chapter due to their ability to precisely detect and characterize curve squeal. 

Kurtosis and skewness condition monitoring indicators was applied to the wheel and rail 

accelerometer spectrum data. They were not presented in this thesis as they did not yield 

satisfactory results.  

 

6.6.1 Spectral peak condition monitoring indicator application for curve squeal detection 

Figure 6.28 shows the spectral peak analysis obtained from the wheel accelerometer spectrum data 

for the three frequency bands (CSB, RNB and RMB). The RNB and RMB spectral peaks values 

remained low for all yaw angles. There is a clear difference between the rolling contact noise 

dominated region and the curve squeal dominated region for all four average wheel speeds. A 

sharp increase in the CSB spectral peak frequency is an indication of early development of curve 

squeal. The transition yaw angles between rolling noise dominated region and curve squeal 

dominated region are 0.9 degrees, 0.8 degrees, 0.35 degrees and 0.35 degrees.  

 

Figure 6.28: Spectral peak analysis obtained from the wheel accelerometer spectrum data 

for the three frequency bands (CSB, RNB and RMB).  

These values show that a decrease in the transition yaw angles is as a result of the increase in the 

average wheel speed.  
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Figure 6.29 shows the increase of the spectral peak analysis plots obtained for the rail 

accelerometer spectrum data for the three frequency bands. The results obtained shows that the 

transition yaw angles are located at around 1.1 degrees, 0.95 degrees, 0.7 degrees, and 0.5 degrees 

for average wheel speeds of 100RPM, 125RPM, 150RPM and 175RPM. The spectral peak 

condition monitoring indicator clearly differentiated between the rolling noise dominated region 

and the curve squeal dominated region.   

 

Figure 6.29: Spectral peak analysis obtained from the rail accelerometer spectrum data for 

the three frequency bands (CSB, RNB and RMB).  

 

6.6.2 Spectral RMS condition monitoring indicator application for curve squeal detection 

This condition monitoring indicator was applied in similar manner the microphone data. The same 

procedure was applied to the wheel and accelerometer spectrum data. Bandpass filter was designed 

around the RMB, CSB and RMB frequency bands. The spectral RMS was calculated using 

equation 5.6, 5.7 and 5.8 for the respective frequency bands.  

Figure 6.30 shows the spectral RMS obtained from the wheel accelerometer spectrum for the three 

frequency bands of interest. The transition yaw angles that demarcate between rolling noise 

dominated region and curve squeal dominated region are approximately equal to 0.9 degrees, 0.8 
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degrees, 0.35 degrees and 0.35 degrees for average wheel rolling speeds of 100RPM, 125RPM, 

150RPM and 175RPM.  

 

Figure 6.30: Spectral RMS analysis obtained from the wheel accelerometer spectrum data 

for the three frequency bands (CSB, RNB and RMB).  

 

Similarly, for the rail accelerometer spectrum plots in Figure 6.31, the transition yaw angle results, 

are around 1.150
, 0.950, 0.70 and 0.550 for average wheel speeds of 100RPM, 125RPM, 150RPM 

and 175RPM respectively.  

The transition yaw angles obtained from the wheel and rail roller spectrum are slightly different 

from each other. The wheel roller identifies the onset development of curve squeal earlier than the 

rail roller. It may be advantageous to use the transition yaw angles of the wheel roller as a yardstick 

for the early detection and characterization of curve squeal.  



184 

 

 

Figure 6.31: Spectral RMS analysis obtained from the rail accelerometer spectrum data for 

the three frequency bands (CSB, RNB and RMB).  

 

6.7 Curve squeal detection and mitigation using harmonics  

Figure 6.32 shows the effect of varying the yaw angle on the spectrum of for the dominant squeal 

band (CSB). It can be observed that for average wheel speeds 100RPM, 125RPM and 150RPM, 

curve squeal was mitigated in this frequency band to an extent. However, it is difficult to tell if 

curve squeal was mitigated for average wheel speed of 175RPM. The spectral RMS value 

increased for increasing yaw angle for dry, wet, FM1 and FM2 contact conditions. For average 

speeds of 100RPM, 125RPM and 150 RPM, the yaw angles were curve squeal mitigation was 

observed are around 1.20, 0.90 and 0.60 respectively. 

The spectral RMS plots for average wheel speed of 175RPM shows the spectrum of the wheel 

accelerometer for wet, FM1 and FM2 contact conditions increasing in the curve squeal region with 

increasing yaw angle. This trend was observed for the average wheel speed of 150RPM. The 

results show that are high yaw angles, it is not always the case that the application of FM1, FM2 

and water would attenuate the dominant curve frequency of the wheel roller at higher speeds 

(150RPM and 175RPM). A useful indicator to understand curve squeal mitigation is to investigate 
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what happens to the bandpass spectrum of the second and third harmonics of the wheel and 

accelerometer spectrum when water, FM1 and FM2 is applied to the wheel-rail interface.  

 

Figure 6.32: Spectral RMS of frequency band (CSB) obtained from the wheel 

accelerometer spectrum 

Figure 6.33 for instance shows the effect of varying the yaw angle on the bandpass filtered RMS 

second harmonic frequency band (2200Hz – 2400Hz). The 200Hz frequency band range has been 

chosen to accommodate the total energy spectra associated with the harmonic frequencies.  

It is observed that for wet, FM1 and FM2 contact conditions, for all average wheel speeds, curve 

squeal was mitigated completely. It is also observed from the plots that the transition yaw angles 

for 100RPM, 125RPM, 150RPM and 175RPM are observed at 1.10 0.90, 0.50 and 0.50 respectively. 

The application of water, FM1 and FM2 mitigated curve squeal for all four average wheel speeds.   
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Figure 6.33: Spectral RMS of the 2nd harmonic frequency band (2200Hz – 2400Hz) 

obtained from the wheel accelerometer spectrum 

Figure 6.34 displays the bandpass filtered spectral RMS values for the 3rd harmonics computed at 

the frequency range of (3400 – 3600Hz) from the wheel accelerometer spectrum.  

 

Figure 6.34: Spectral RMS of the 3rd harmonic frequency band (3400Hz – 3600Hz) 

obtained from the wheel accelerometer spectrum 
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The same transition yaw angles that differentiates between curve squeal and no curve squeal 

obtained from Figure 6.33 is observed. It can also be concluded that the application of water, FM1 

and FM2 to the wheel-rail interface mitigated curve squeal completely for all yaw angle variations.  

Figure 6.35 displays the bandpass filtered spectral RMS values for the dominant curve squeal 

frequency located at the CSB frequency band. For average wheel speeds of 100RPM, 125RPM 

and 150RPM, a clear difference between the region of curve squeal and no curve squeal is 

observed. However, at the highest average wheel speed, the differentiation between the no curve 

squeal and curve squeal region is not clear. The reason for this that the introduction of water, FM1 

and FM2 to the wheel-rail interface does not completely attenuate the spectral RMS values at the 

highest average wheel speed. It can therefore be inferred from this result that the understanding of 

how curve squeal is mitigated is not dependent solely on what transpires at the dominant curve 

squeal frequency. Further investigation as the case maybe on the harmonics produced as a result 

of the dominant curve squeal frequency provides more insight to the mitigation property of water, 

FM1 and FM2 applied to the wheel-rail interface.  

 

Figure 6.35: Spectral RMS of the fundamental frequency band (CSB) obtained from the 

rail accelerometer spectrum 
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Figure 6.36 displays the bandpass filtered spectral RMS values for the 3rd harmonics computed at 

the frequency range of (2200 – 2400Hz) from the wheel accelerometer spectrum.   

The same transition yaw angles obtained from the wheel accelerometer spectrum are observed in 

the spectral RMS results of the rail accelerometer spectrum. The spectral RMS of the 2nd harmonics 

obtained from the rail accelerometer spectrum is a strong indicator that illustrates early 

development of curve squeal and its mitigation on the twin disc rig. The results clearly show that 

curve squeal has been eliminated for all average wheel speeds as the yaw angle increases for wet, 

FM1 and FM2 contact conditions. The transition yaw angles are 1.10, 0.90, 0.50, and 0.50 for 

average wheel speeds 100RPM, 125RPM, 150RPM and 175RPM respectively. 

 

 

Figure 6.36: Spectral RMS of the second harmonics band (2200Hz – 2400Hz) obtained 

from the rail accelerometer spectrum. 

 

Finally, Figure 6.37 shows the spectral RMS calculated from the third harmonic band (3400 Hz to 

3600Hz) obtained from the rail accelerometer spectrum. The transition yaw angles are observed 

to be similar to the spectral RMS plots of the second harmonics obtained from the rail 

accelerometer spectrum in Figure 6.36. This implies that the transition yaw angles obtained from 

the spectral RMS of the wheel and rail accelerometer spectrum have a high positive correlation.  



189 

 

 

 

 

 

Figure 6.37 Spectral RMS of the third harmonics band (3400Hz – 3600Hz) obtained from 

the rail accelerometer spectrum. 

The application of the spectral RMS condition monitoring indicator to determine the onset 

development of curve squeal and how it is mitigated is a suitable feature extraction method. Even 

for the variation of the average wheel speed and contact conditions, this condition monitoring 

indicator performed effectively.  

 

6.8 Summary  

This chapter has presented a signal processing tool that can be used to analyse the vibration data 

obtained from the wheel and rail accelerometer. From the raw signal plots of the time domain data, 

it was observed that there was clear acceleration magnitude difference between data obtained when 

the rollers are at central position to the data obtained when yaw angle is applied to the rail roller 

in dry contact conditions. The vibration amplitudes of the time domain data when water, FM1 and 

FM2 data was applied to the wheel-rail interface was observed to have slightly higher amplitudes 

for all average wheel speeds compared to the vibration amplitudes for dry contact conditions. 
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However, the decrease in wheel speed when water, FM1 and FM2 was applied to the wheel rail 

surfaces was not significant even at high yaw angles due to the change in the wheel-rail contact 

conditions compared to dry contact conditions. The average wheel speed of the wheel roller was 

estimated by finding the mean of all the individual wheel speeds obtained from the time domain 

data at dry contact conditions. Even though the wheel speed was set to operate the twin disc rig, 

the wheel speed was not constant due to the variation in the contact conditions and increase in yaw 

angle. As the yaw angle increases, the lateral creepages increase thereby leading to an increase in 

the lateral forces. This causes unsteady adhesion coefficient thus transferring excessive load to the 

three-phase induction motor. Despite these challenges, curve squeal was investigated using 

condition monitoring indicators for feature extraction applied to the accelerometer data. It was 

possible to identify the transition yaw angle for which curve squeal occurs using the peak, rms, 

crest factor, kurtosis and skewness. The main conclusion established from the five condition 

monitoring indicators is that the accelerometer data for the wheel and rail presented a difference 

between curve squeal and no curve squeal experienced on the twin disc rig. Kurtosis and skewness 

of the data presented a clear difference curve squeal and no curve squeal. Kurtosis values ranging 

from 3 to 5 indicate the pure rolling noise caused by the vibration of the wheel and rail rollers. 

Kurtosis values greater than this range indicated the development of curve squeal in the test rig. 

Skewness values around zero signified the lack of curve squeal. Negative skewness exhibited by 

the wheel accelerometer data for all four-wheel speeds indicate the development of curve squeal. 

Though the condition monitoring indicators provided slightly different transistor yaw angles, they 

were able to estimate the occurrence of curve squeal. However, time domain methods were not 

able to identify the frequency that is responsible for curve squeal.  

The application of spectrum analysis to the wheel and rail accelerometer data was therefore 

necessary to determine the excitation frequency responsible for curve squeal and understand how 

curve squeal is mitigated with the introduction of contaminants to the wheel-rail interface. Four 

frequency bands as was the case with the spectrum analysis of the acoustic data was applied to the 

wheel-rail roller data. The four bands were chosen around the maximum spectral energy of interest 

from the accelerometer spectrum where the dominant curve squeal frequency is located. The four 

bands specified in a band frequency of 500Hz include WMB, CSB, RNB and RMB.  

The results obtained from spectral analysis of the wheel and rail accelerometer data in dry contact 

conditions shows that the dominant frequency responsible for curve squeal is excited when the 
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yaw angle increases beyond a certain value for all four average wheel speeds. This value is called 

the transition yaw angle. This transition yaw angle decreases as the average wheel speed increases. 

The dominant curve squeal frequency was observed to be located in the CSB for all four average 

wheel speeds in dry contact conditions. When the wheel and rail roller is not squealing, the 

spectrum analysis of the results show the excitation of the axial vibrations of the wheel and rail 

roller. This normal trend characterizes the dynamics of the wheel-rail contact for yaw angles less 

than the transition angle. The excitation of the curve squeal frequency beyond the transition yaw 

angle results in the development of harmonics. The harmonics identified were the 2nd and 3rd 

harmonics for the wheel and rail roller accelerometer spectrum results.  

Condition monitoring indicators, peak and RMS was applied to the frequency bands of the wheel 

and rail accelerometer spectrum to extract useful features such as detect curve squeal and 

investigate curve squeal mitigation. It was also useful to understand what happens when water, 

FM1 and FM2 is introduced to the wheel-rail interface. The application of these contaminant was 

observed to attenuate curve squeal dominant frequency for all average wheel speeds, excite the 

rail roller natural frequency located in RMB and completely eliminate the 2nd and 3rd harmonics 

generated from the dominant curve squeal frequency. Therefore, spectral analysis of the harmonics 

band specified in this study to have a bandwidth of 200Hz around the region of interest is a useful 

feature for understanding the development and mitigation of curve squeal on the test rig. Without 

any reasonable doubt, there was a positive correlation between the spectral analysis obtained from 

the wheel and rail accelerometer spectrum data when the spectral RMS was analysed. To conclude, 

the transition yaw angles for the four average wheel speeds 100RPM, 125RPM, 150RPM and 

175RPM are 1.1 degrees, 0.9 degrees, 0.5 degrees and 0.5 degrees respectively.  

The next chapter presents a detailed comparison between acoustic and vibration results. 

Correlation between the acoustic and vibration data is used to establish a reliable relationship 

between the two data. An online scheme would be suggested that could be applied for curve squeal 

detection and mitigation.  
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Chapter Seven: Comparison of acoustic and vibration measurement methods 

for the condition monitoring of curve squeal 

This chapter presents the comparison between acoustic and vibration measurements methods for 

condition monitoring of curve squeal on the twin disc rig. Condition monitoring of progressive 

curve squeal and early diagnosis of possible wear as a result is crucial to railways to avoid 

annoyance in the environment characterized by increase in vibration and/or noise levels. Using 

microphones for acoustic measurement has its unique non-contact advantage of condition 

monitoring of curve squeal. The principal condition monitoring indicator that can be used for 

characterizing incipient development of curve squeal and the correlation between non-contact 

acoustic signal and vibration spectra is unknown. In this chapter the spectrum analysis results of 

the acoustic and vibration data would be compared in the time and frequency domain using signal 

processing techniques. Correlation and reliable relationship between acoustic and vibration 

results would be established. Finally, comparison of what happens when contaminants are 

introduced to the wheel-rail interface would be investigated using acoustic and vibration sensors. 

A suitable online scheme for condition monitoring of curve squeal on the twin disc rig that could 

be applied in the railway industry.   
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7.1 Introduction 

Curve squeal in railways results in associated with interaction between the wheel and the rail. It is 

strongly tonal and associated with the intense lateral vibration of the wheel in its dominant curve 

frequency together with its corresponding high frequency harmonics. Curve squeal is caused by 

the development of unsteady lateral forces developed at the wheel-rail contact occurring at high 

yaw angles or during curving in railways. The development of the unsteady transverse force is as 

a result of lateral creepage developed in the wheel-rail interface.  

Acoustic measurement methods have been applied for decades to identify and detect curve squeal 

in curves. This measurement technique is used because of its low cost and non-contact feature. 

However, spurious noise from the environment from people, passing trains and doppler effect can 

lead to difficulties in feature extraction of the sound data obtained from the microphone. (Kim et 

al., 2019) and (Hanson et al., 2014) pointed out some of the challenges of using only microphones 

for curve squeal measurement. One of the key challenges is in the identification of which wheel is 

responsible for curve squeal in any given train pass on the railway track. One of the main 

propositions for identification of which wheel is squealing was to add an accelerometer mounted 

on the underside of each rail on the railway track. Comparison between the vibration levels from 

each squeal proved to be a reliable differentiator to identify the rail for which curve squeal occurs.  

However, it is difficult to use vibration measurements from accelerometers installed on the wheel 

and rail to monitor curve squeal because of the restrictions of contact sensor installation and high 

cost of vibration system. With the development of cheaper and cost-effective accelerometers, the 

integration of multiple sensors is advantageous to have than information derived solely from one 

sensor alone (Krishnakumar et al., 2018).  

This chapter presents the comparison between the acoustic and vibration measurement features 

obtained from the microphone and accelerometers installed at the wheel and rail. The extracted 

features applied on both sensors have already been obtained from previous chapters. Correlation 

method would be used to establish a reliable relationship between acoustic and vibration data for 

detection and characterization of curve squeal. Correlation in its wide sense is a measure of 

relationship between two variables. In a highly correlated data, the magnitude change of one 

variable is related to a change in another variable either in terms of positive or negative correlation. 

In most cases correlation is used to establish a linear relationship between two variables. Further 

details on the correlation methods used are discussed in the next section. 
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7.2 Correlation coefficient methods for establishing relationship between two 

variables 

Correlation is defined as a measure of monotonic association between two variables. The 

application of correlation is used to determine the strength of relationship between two variables. 

According to the theory of correlation, a monotonic relationship can be established if; the variable 

of one data increase as the other variable, or if the value of the variable decreases and the other 

variable increases. The magnitude change of one variable is associated with a magnitude change 

in another variable. When the values of one variable increases as the other variable increases, a 

positive correlation is established between the two variables. Also, when the values of one variable 

decreases as one variable decreases, then negative correlation is established between the two 

variables. The degree for which the variation in one variable is related to the variation in another 

variable can be defined mathematically in terms of the covariance variables. Covariance is an 

important property that is used to establish how two variables change together. The measurement 

scale of the variables influences the covariance values (Schober et al., 2018).  

There are different methods used to establish correlation between two continuous variables. Some 

of the main methods include Pearson correlation coefficient, Spearman’s correlation coefficient 

and Kendall correlation coefficient. Pearson correlation coefficient is the most widely used method 

for fast interpretation of the covariance scaled from -1 to 1. This correlation method is therefore 

preferred compared to the Spearman and Kendal correlation coefficient methods.  

The definition of Pearson’s correlation coefficient obtained for two random variables to measure 

their linear dependence is expressed as follows (Archdeacon, 1994): 

 

𝑝(𝑋, 𝑌) =
1

𝑁 − 1
∑ (

𝑋𝑖 − 𝜇𝑋
̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝜎𝑋
)

𝑁

𝑖=1

(
𝑌𝑖 − 𝜇𝑋

𝜎𝑌
) (7.1) 

 

Where 𝜎𝑋 and 𝜇𝑋 are the standard deviation and mean of continuous variable X and 𝜎𝑌 and 𝜇𝑌 are 

the standard deviation and mean of continuous variable Y. Pearson correlation coefficient 𝑝(𝑋, 𝑌) 

can also be expressed in terms of the covariance as: 
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𝑝(𝑋, 𝑌) =
𝑐𝑜𝑣(𝑋, 𝑌)

𝜎𝑋𝜎𝑌
 (7.2) 

 

Where the covariance of the two variables X and Y is given as: 

 

𝑐𝑜𝑣(𝑋, 𝑌) =
1

𝑁 − 1
∑(𝑋𝑖 − 𝜇𝑋

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )

𝑁

𝑖=1

(𝑌𝑖 − 𝜇𝑋) (7.3) 

 

The Pearson correlation coefficient 𝑝(𝑋, 𝑌) returns a correlation coefficient matrix which is 

defined as the matrix for each combination variable. 

 

𝑅 = (
𝑝(𝑋, 𝑋) 𝑝(𝑋, 𝑌)
𝑝(𝑌. 𝑋) 𝑝(𝑌, 𝑌)

) (7.4) 

 

Since the variables X and Y are correlated directly among themselves, the diagonal matrix can be 

expressed as 1 while the correlation coefficient value is expressed as: 

 

𝑅 = (
1 𝑝(𝑋, 𝑌)

𝑝(𝑌. 𝑋) 1
) (7.5) 

 

The correlation matrix in equation 7.5 derived from Pearson correlation coefficient equation in 7.1 

is used to define the strength of correlation between the two continuous variables X and Y.  

The assumptions of Pearson’s correlation are stated as follows (Schober et al., 2018): 

(1) As the case may be for statistical inference, data obtained from representative or random 

sample that do not represent the intended application or population of interest cannot give 

meaningful results.  

(2) Pearson’s correlation method requires that both variables are jointly normal distributed 

random variables and continuous. This implies that they must fulfil bivariate normal 

distribution in the intended population sampling.  

The table for the interpretation of Pearson’s correlation coefficient is defined as follows: 
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Table 7.1: Conventional method to for Pearson’s correlation coefficient interpretation 

Correlation coefficient value range Interpreted value 

0.00 – 0.1 Negligible correlation 

0.1 – 0.39 Weak correlation 

0.4 – 0.69 Moderate correlation 

07 – 0.89 Strong correlation 

0.9 – 1.00 Very strong correlation 

 

One of the attractive features of correlation coefficient is its ability to translate the coefficient 

values into descriptors like strong correlation, very strong correlation, weak correlation as shown 

in Table 7.1. However, based on this table, the correlation coefficient can be easily disputable. For 

example, it would be unpredictable to classify a correlation coefficient of say 0.69 as moderate 

correlation and 0.7 as strong correlation. Rather than using this simplistic approach, the correlation 

coefficient would be interpreted in context with the intended application. Despite the uncertainty 

in the correlation coefficient value range, it can still be used to indicate the strength of correlation 

between the two variables.  

 

7.3 The application of Pearson’s correlation coefficient to the time domain feature 

extraction methods. 

The application of the Pearson’s correlation coefficient for the purpose of condition monitoring 

presents a efficient and effective approach in classification and detection of curve squeal. The time 

domain condition monitoring indicators obtained from the microphone and accelerometers data is 

applied in used to establish the correlation between the two sensor measurements to characterize 

and detect curve squeal. The features extracted from the time and frequency domain for the 

identification of curve squeal was first filtered using moving average filter. The reason for the 

application of moving average filter was to smoothen out the features extracted in the time and 

frequency domain to enable the proper application of Correlation method without any ambiguity 

in the data. Given a feature as G the equation for the moving average filter is expressed as follows: 

𝐷[𝑖] =
1

𝑀
∑ 𝐺[𝑖 + 𝑗]

𝑀−1

𝑗=0

 (7.6) 
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Where D is the filtered output data, G is the input data and M represents the number of points in 

the average. A five-point moving filter was sufficiently applied to the features extracted from time 

and frequency domain to smooth out the data. 

To fulfil the criteria of normalized continuous variables as specified in the assumptions using 

Pearson’s correlation coefficient, the filtered extraction data are normalized beforehand using the 

expression as follows (Archdeacon, 1994): 

𝑁𝑐𝑚 =
𝐷 − 𝜇

𝜎
 (7.7) 

Where D is the extracted features obtained from either the acoustic of accelerometer time domain 

data, 𝜇 is the mean of the extracted features for D and 𝜎 is the standard deviation of D.  

After the normalization of the features extracted in in time domain, correlation coefficient is 

computed for the two variables. It is assumed that the features for the microphone data is stored in 

variable X while the features for wheel or rail accelerometer variable is stored in Y. The correlation 

coefficient R is calculated for the combinations of acoustic features and vibration features from 

the wheel accelerometer and acoustic features for the rail acoustic accelerometer.  

For the condition monitoring indicators used for feature extraction application to the time domain 

data of acoustic and vibration signals, only skewness condition monitoring indicator was used for 

evaluation of the Correlation coefficient. The reason for this is that the other extracted features 

such as rms and peak did not detect or characterize curve squeal. There was no significant 

difference between the time domain peak and rms obtained using curve squeal and that of no curve 

squeal.  

Only skewness and kurtosis condition monitoring indicators for the wheel roller was suitable for 

the application of Pearson’s correlation coefficient method. The reason for this is that the skewness 

feature obtained for the wheel accelerometer is negatively skewed at the curve squeal region for 

all average wheel speeds. This was the same for the skewness obtained from the microphone data. 

However, the skewness for the rail roller was positively skewed when curve squeal was detected 

and identified. Therefore, the skewness feature obtained for the wheel roller can be correlated 

further with the skewness feature obtained from the microphone region to identify and characterize 

curve squeal. Also, the Kurtosis values obtained for the wheel and rail accelerometer had different 

transition yaw angles compared with the kurtosis values of the microphone data. Therefore, the 

kurtosis feature extraction results cannot be used for correlation between the sensors.  
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7.3.1 Application of Correlation coefficient to the Skewness Time domain feature. 

Figure 7.1 represents the application of Pearson’s correlation method applied to the wheel 

accelerometer and microphone data for various contact conditions and various all average wheel 

speeds. Skewness feature obtained from the microphone time domain data in dry contact 

conditions in the region of no squeal was correlated with the skewness feature obtained from the 

wheel accelerometer in dry, wet, FM1 and FM2 contact conditions. The transition yaw angles for 

curve squeal used are 1.1 degrees for 100 RPM, 0.9 degrees for 125RPM, 0.5 degrees for 150RPM 

and 0.5 degrees for 175RPM. The transition yaw angles were extracted from the skewness feature 

of the microphone and wheel accelerometer data discussed in previous chapters. In dry contact 

conditions, the correlation coefficient between the microphone data in no squeal region 

(DryMicNoSqueal) and correlation coefficient of the wheel accelerometer data in the curve squeal 

region (DryWheelAccSqueal) exhibits negligible correlation (see Table 7.1 for correlation rank) 

compared to the other contact conditions. However, the correlation coefficient of the microphone 

data in dry contact conditions in the no squeal region correlated with wheel accelerometer 

skewness feature in wet, FM1 and FM2 contact conditions show high moderate to strong 

correlation.  

 

Figure 7.1: Correlation method applied to the skewness feature values from the 

microphone and wheel accelerometer data. 
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This distinctive difference at 100RPM indicates the difference between curve squeal and no curve 

squeal region. Similar trend is observed for average wheel speeds 125RPM, 150RPM and 175RPM 

respectively. For 125RPM, 150RPM and 175RPM, the correlation coefficient for dry contact 

conditions between the wheel and microphone accelerometer data exhibited negligible to weak 

correlation. This value indicates that development of curve squeal in dry contact conditions. The 

correlation coefficient between the skewness feature of the microphone and the rail accelerometer 

data did not provide satisfactory results. As explained, this is because of the positively skewness 

exhibited by the rail accelerometer skewness data. The correlation between the skewness values 

of the rail accelerometer data and other contact conditions yield confusing values that could not be 

used to detect the development and characterization of curve squeal in the twin disc rig.  

The correlation feature has been applied between the skewness feature of the microphone and 

wheel accelerometer data to detect and characterize curve squeal. The disparity in the correlation 

coefficient between the dry contact conditions and the wet, FM1 and FM2 contact conditions 

shows the possible development of curve squeal. 

 

7.3.2 Application of Correlation method to the spectral Peak and RMS of the dominant 

curve frequency in Frequency domain. 

The application of the correlation method to the spectral peak and RMS feature values between 

the microphone and the wheel accelerometer is shown in Figure 7.2. At a glance, it is observed 

that the correlation coefficient of the spectral peak obtained for the microphone and wheel 

accelerometer spectrum in dry contact conditions has a weak correlation for all average wheel 

speeds. Transition yaw angles where used to establish the correlation between the spectral peak 

feature variables. It can also be inferred from the result that there is a clear distinction between the 

correlation coefficient values obtained when the spectral peak of the microphone data spectrum at 

dominant curve squeal band (CSB) is compared with wet, FM1 and FM2 contact conditions. There 

is a strong correlation between the spectral peak feature obtained from the microphone data at no 

squeal region and the wheel accelerometer spectrum at curve squeal region for wet, FM1 and FM2 

contact conditions. This indicates that at dry contact conditions for all average wheel speeds, curve 

squeal can be identified and detected using the correlation method.  
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Figure 7.2: Correlation method applied to the dominant curve squeal spectral peak 

features obtained from the microphone and wheel accelerometer spectrum  

Figure 7.3 shows the correlation method applied to the dominant curve squeal peal feature obtained 

from the microphone and rail accelerometer spectrum. The results obtained is similar to the results 

obtained in Figure 7.2.  

Figure 7.3: Correlation method applied to the dominant curve squeal spectral peak features 

obtained from the microphone and wheel accelerometer spectrum  
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The weak correlation coefficient for the dry contact conditions of the microphone and rail 

accelerometer variables provide weak correlation. A strong correlation between the variables is 

observed using the spectral peak feature for the microphone data and the accelerometer data. This 

indicates the development of curve squeal at dry contact conditions. A strong correlation 

coefficient in dry contact conditions for the variables indicate the lack of curves squeal in the twin 

disc rig.  

Figure 7.4 shows the application of the correlation method to the dominant curve squeal spectral 

RMS feature comparing the microphone and wheel accelerometer spectrum. Addressing the 

statistical significance of the results, the spectral RMS feature values for the microphone and wheel 

accelerometer values exhibit weak correlation. This shows that there is very little relationship 

between the spectral RMS feature variables. This possibly suggests the occurrence of curves squeal 

in dry contact conditions.  

 

Figure 7.4: Correlation method applied to the dominant curve squeal spectral RMS 

features obtained from the microphone and wheel accelerometer spectrum  

A moderate to strong correlation is observed for the correlation of the spectral RMS features of 

the microphone data at no curve squeal region and spectral RMS features of the wheel 

accelerometer at the curve squeal region for wet, FM1 and FM2 contact conditions. This result 

suggests the possible mitigation of curve squeal in the twin disc rig. The presence of high 

correlation in dry contact conditions suggests that no curve squeal is detected.  
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Figure 7.5 shows the application of the correlation method to the dominant curve squeal spectral 

RMS feature comparing the microphone and the rail accelerometer spectrum. A measure of 

negligible to weak monotonic relationship between the spectral RMS features of the microphone 

and rail accelerometer spectrum in dry contact conditions suggests the detection and 

characterization of curve squeal. This presupposes that in when curve squeal is detected in dry 

contact conditions, weak correlation exists between the two variables for all four average wheel 

speeds. This amplitudes of the correlation coefficient in dry contact conditions is redundant for all 

average wheel speeds. The sharp distinction between the correlation coefficients is a clear 

indication of curve squeal development on the twin disc rig.  

 

Figure 7.5: Correlation method applied to the dominant curve squeal spectral RMS 

features obtained from the microphone and rail accelerometer spectrum  

The application of the correlation method to the spectral peak and RMS features is useful for not 

only determination of curve squeal in the twin disc rig, but also the valuable for curve squeal 

mitigation. This method can be applied in condition monitoring systems to characterize regions of 

curve squeal in the railway track using the correlation of the microphone and wheel and 

accelerometer data.  
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7.3.3 Application of Correlation method to the spectral RMS harmonics in the Frequency 

domain. 

Figure 7.6 presents the application of correlation method to spectral RMS harmonic features 

obtained from the microphone and wheel accelerometer power spectrum. The results show that the 

correlation coefficient obtained for dry contact conditions for the two spectral RMS 2nd harmonic 

features are weakly correlated. This implies that there is little or no monotonic relationship 

between the two variables. This confidence interval for the correlation coefficient can be used to 

establish the occurrence of curve squeal detected in the twin disc rig. In addition, a moderate to 

strong relationship exists between the spectral RMS 2nd harmonic features of the microphone and 

wheel accelerometer exist for wet, FM1 and FM2 contact conditions. This possibly suggests the 

mitigation of curve squeal in the twin disc rig.  

 

Figure 7.6: Correlation method applied to the 2nd harmonics spectral RMS features 

obtained from the microphone and wheel accelerometer spectrum  

 

Figure 7.6 presents the application of correlation method to spectral RMS 3rd harmonic features 

obtained from the microphone and rail accelerometer power spectrum. Similar conclusions can eb 

drawn from Figure 7.6. From table 7.1, there is a moderate to strong relationship between the 

spectral RMS 3rd harmonic amplitude features of the microphone and the rail accelerometer 

spectrum when contaminants are introduced to the wheel-rail interface. This is not the case in dry 
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contact conditions whereby negligible to weak monotonic relationship exists between the two 

variables.  

 

Figure 7.7: Correlation method applied to the 3rd harmonics spectral RMS features 

obtained from the microphone and rail accelerometer spectrum  

The performance of the correlation method in the identification of curve squeal was satisfactory 

for the selected features used. In signal processing, as has been applied in this chapter, it was 

necessary to select only condition monitoring indicators that produced satisfactory results in curve 

squeal detection and mitigation. The application of correlation method for statistical feature 

extraction has presented some attribute that would make it useful to be implemented on a typical 

conditional monitoring system for curve squeal.  

 

7.4 Proposed condition monitoring system for curve squeal. 

The suggested structure of the condition monitoring scheme that could be implemented online that 

uses the correlation coefficient of the acoustic and vibration data to identify and characterize curve 

squeal is illustrated in Figure 7.8 
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Figure 7.8: Proposed condition monitoring scheme that uses Correlation method for 

detection an identification of curve squeal 

 

This condition monitoring system was developed in other to be able to provide the characteristic 

condition of wheel and rail in a typical twin disc rig setup. The scope of most railway systems is 

to detect possible curve squeal areas in the railway tracks. To determine the suitability of the 

developed condition monitoring system concept, several tests were developed to evaluate the 

performance of the system. The twin disc rig main components; wheel and rail roller was studied 

to investigate which of the rollers contribute to curve squeal under dry contact conditions. Curve 

squeal mitigation was also investigated using different contaminants introduced to the wheel rail 

interface. 
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However, the functionality of the condition monitoring system depends on the measurement 

signals obtained from the acoustic and vibration measurements. The signals from both are captured 

using data acquisition systems (DAS). In a typical online system, it is required to dynamically 

measure the yaw angle as the train negotiates the track. The twin disc rig currently uses manual 

methods to apply yaw angle to the rollers. For online condition monitoring systems, this should 

not be the case. For the condition monitoring system to be effective, it is suggested that 

measurements begin at zero degrees yaw angle. The reason is to establish a baseline to differentiate 

between curve squeal and no curve squeal. This condition can only work if the wheels are centrally 

aligned on a straight railway track.  

It is suggested that integration of microphone and accelerometers be used to investigate the effect 

of curve squeal on the track. Accelerometers installed on the wheel rim surface or embedded in 

the railway track web do not suffer from doppler effect characterized by measurements from the 

microphone. It is well established in literature that the integration of information obtained from 

different sensors is better than information derived separately. The fusion of microphone and 

accelerometers would provide better signal to noise ratio, reliability in case of failure of one of the 

sensors, higher resolution and reduced uncertainty.  

Having explained the justification for use of two different sensors for identification and 

characterization of curve squeal, the measured data obtained is detrended before being passed for 

data analysis. Condition monitoring indicators are then extracted from the data for feature 

extraction using time and frequency domain methods. The condition monitoring indicators applied 

for microphone data include, kurtosis and skewness while the condition monitoring indicators 

applied for the accelerometer time domain data are peak, rms, crest factor, kurtosis and skewness. 

The feature extraction using these condition monitoring indicators and stored for correlation. Only 

correlation of the condition monitoring indicators used in both acoustic and time domain data is 

used for analysis.  

The signals obtained from the acoustic and vibration data is converted to frequency domain for 

feature extraction using condition monitoring indicators. The condition monitoring indicators 

suitable for the time domain data include peak and rms values. The extracted features are used to 

determine the early development of curve squeal and how it can be mitigated. The spectral peak 

and rms condition monitoring indicators of the dominant curve squeal and its harmonics are used 
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to determine onset development of curve squeal and the effect of application of contaminants in 

curve squeal mitigation.  

Correlation coefficient of the extracted features for the acoustic and wheel/rail accelerometer is 

then determined after the condition monitoring indicators data have been normalized. The rationale 

for the use of correlation coefficient was to determine the correlation between the normalized 

values for acoustic and wheel and rail accelerometer to determine curve squeal. A moderate 

correlation between microphone rail accelerometer features compared with weak correlations of 

the same features differentiates between no curve squeal and curve squeal regions.  

It is suggested from the results that either wheel or rail accelerometer is can be used together with 

microphone to identify and characterize the development of curve squeal on the twin disc rig as 

the yaw angle increases. This condition monitoring system can be extended to real railway track 

conditions to determine and detect curve squeal and how it can be mitigated. This system can also 

be used to solve the challenges of using only one sensor (microphone) for curve squeal detection 

and characterization. The use of added accelerometers installed on the wheel or rail can determine 

which exactly which wheel is responsible for curve squeal. With the reduction in installation costs 

of accelerometers due to better improved technologies used for its manufacture, the fusion of this 

sensor with microphone proves to be a reliable alternative for accurate detection and 

characterization of curve squeal to reduce annoyance and wear on the wheels as the train negotiates 

a sharp curve. It is important to note that is very difficult to install an online condition monitoring 

system to analyse in real time the huge amount of data obtained from the sensors installed for curve 

squeal detection. It is therefore suggested that the results be taken for a short section of the curve 

track and measurement results from the sensors analysed offline to ascertain the development of 

curve squeal. Based on the results obtained, a friction modifier applicator system should be 

installed on the Bogie system. Based on the feature extraction of curve squeal using the offline 

results obtained, the friction modifier applicator system should only be activated at the transition 

yaw angles just before curve squeal occurs to ensure curve squeal mitigation. A cheaper alternative 

can also be explored using a water applicator system installed on the bogie frame for application 

of water to the wheel-rail interface at the transition yaw angles in the curve that lead to curve 

squeal development.  
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Chapter Eight: Conclusion 

8.1 Review of objectives for this thesis 

In this thesis, condition monitoring of acoustic and vibration signals to characterize curve squeal 

has been presented in this research work. The study has emphasized the effectiveness of condition 

monitoring on the twin disc rig. Experimental studies have been put together with theoretical 

analysis of the characteristics of acoustic and vibration signal in relation to curve squeal detection 

has been studied. The main achievements of this thesis include: 

 

 (1) Gain understanding of condition monitoring of curve squeal using vibration and 

acoustic based signal processing tools.  

 With reference to chapter 1 and chapter 2, the author has gained sufficient understanding 

of vibration and acoustic condition monitoring systems for curve squeal. However, the 

vibration and acoustic data baseline for all four average wheel speeds is studied in Chapter 

6. The author examined the frequency components of the acoustic and vibration data 

responsible for curve squeal and rolling contact noise on the twin disc rig. The author is of 

the opinion that it is a useful attempt to utilise the acoustic and vibration baseline data using 

high speeds and loads to identify the presence of curve squeal on the test rig.  

 

(2) To further detail the disadvantages of traditional signal processing and methods for 

analysis of in time and frequency domains and identify which method is most suitable 

for analysing vibration and acoustic signals from the wheel rail interface. 

 Signal processing methods that can be applied to measured acoustic and vibration signals 

have been reviewed by the author for the condition monitoring of the twin disc rig. Power 

spectrum analysis was sufficient to identify the frequency components of the acoustic and 

vibration signals to characterize curve squeal. This has been explained in detail in chapter 

5 and chapter 6. 

(3) Investigate acoustic and vibration generation and its characteristics in identification 

of curve squeal on the twin disc rig. 

 Chapter 4 presented a time domain-based curve squeal model for the twin disc rig. The 

vibration amplitudes and the sound pressure level results were obtained for various yaw 

angle variation and high speeds. The results obtained did not  
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(4) Develop a realistic experimental method in situ with adequate system to study 

acoustic and vibration signals for curve squeal characterization. 

Two accelerometers were attached to the wheel and rail roller and microphone was placed at close 

proximity to the wheel rail interface to measure lateral vibration and sound from the whele 

rail interface.  

(5) Investigate the condition monitoring performance of acoustic and vibration signals 

using time and frequency domain analysis. 

(6) identify suitable condition monitoring indicators in time and frequency domain that 

can be used to predict the incipient development of curve squeal. 

(7) Investigate the effect of water and friction modifiers using acoustic and vibration data for 

curve squeal mitigation. 

(8) Investigate the condition monitoring performance of using vibration and acoustic signals 

using Correlation method for curve squeal identification.  

(9) Propose a condition monitoring system based on the developed Correlation method for 

curve squeal identification.  

 

8.2 Conclusion 

Contributions 

(1) Spectral RMS and Peak of the 2nd and 3rd harmonics extracted from the sound and vibration 

spectrum are sufficient to detect and characterize curve squeal as the yaw angle increased 

for four average wheel speeds.  

(2) The introduction of water and friction modifiers (FM1 and FM2) completely mitigated 

curve squeal in the wheel-rail interface. This was observed in the complete attenuation of 

the spectral RMS and Peaks of the 2nd and 3rd harmonics of the acoustic and vibration 

spectrum. 

(3) A negligible or weak correlation coefficient of sound and vibration features in dry contact 

conditions is an indication of curve squeal development on the wheel-rail interface. 

(4) A moderately or strong correlation coefficient using the correlation method of sound and 

vibration is a strong indicator of no curve squeal developed on the wheel rail interface.  
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7.3 Suggestions for future work 

Suggestions for future work include: 

(1) Develop a FEM model to simulate and characterize curve squeal on the twin disc rig. 

(2) Develop machine learning methods to study and characterize curve squeal using the fusion 

of acoustic and vibration signals. 
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Appendix 

Appendix 1: Sinocera model YE6232B 
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Appendix 2: Dytran 3035BG IEPE Accelerometer 
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Appendix 3: Instron 3369 Tabletop test system 
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Appendix 4: Impact hammer datasheet (Sinocera model version) 
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Appendix 5: FLA-3-11 Foil strain gauge 
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