
University of Huddersfield Repository

Aagela, Hamza

CCRP: A Novel Clone-Based Cloud Robotic Platform for Multi-Robots

Original Citation

Aagela, Hamza (2019) CCRP: A Novel Clone-Based Cloud Robotic Platform for Multi-Robots.
Doctoral thesis, University of Huddersfield.

This version is available at http://eprints.hud.ac.uk/id/eprint/35110/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

CCRP: A Novel Clone-Based Cloud

Robotic Platform for Multi-Robots

Hamza Aagela

Supervisor: Dr. Violeta Holmes

A thesis submitted in partial fulfilment of the

requirements for the degree of

Doctor of Philosophy

University of Huddersfield

United Kingdom

August 2019

Copyright

i The author of this thesis (including any appendices and/or schedules

to this thesis) owns any copyright in it (the “Copyright”) and s/he has

given The University of Huddersfield the right to use such copyright for

any administrative, promotional, educational and/or teaching purposes.

ii Copies of this thesis, either in full or in extracts, may be made only

in accordance with the regulations of the University Library. Details of

these regulations may be obtained from the Librarian. This page must

form part of any such copies made.

iii The ownership of any patents, designs, trademarks and any and all other

intellectual property rights except for the Copyright (the “Intellectual

Property Rights”) and any reproductions of copyright works, for exam-

ple graphs and tables (“Reproductions”), which may be described in this

thesis, may not be owned by the author and may be owned by third par-

ties. Such Intellectual Property Rights and Reproductions cannot and

must not be made available for use without the prior written permis-

sion of the owner(s) of the relevant Intellectual Property Rights and/or

Reproductions.

i

Dedication

To my parents, sisters and brothers, my Dear wife and my kids who provided

me with endless support.

ii

Acknowledgements

Though all things are possible. Therefore, I give special thanks to my God

for giving me the ability and persistence to accomplish this Research. I am

grateful to my supervisor Dr. Violeta Holmes for her precious support during

my PhD journey.

I would like to express my most sincere gratitude to my dear wife Aisha Al

Debri for the countless support and the encouragement, where she was my

source of motivation that allows me to complete this research. Also, I would

like to thank all my family for their continuous support, especially to my

Father ’Yousif’ and my Mother ’Sabah’, my lovely kids ’yamin’, ’Arkan’ and

upcoming ones.

I would like to thank all of my friends for their supports, specially, my colleague

’Dr. Josh Higgins’. Finally, I would also like to thank the School of Comput-

ing and Engineering for providing all the needed facilities and equipment to

conduct this research.

iii

Abstract

Recently, the cloud computing paradigm has evolved from various research

fields. A new path of research, cloud robotics, has emerged which allows robots

to inherit the enormous computing and storage capability of cloud. Advances

in cloud computing technologies, networking, parallel computing and other

evolving technologies, and the integration with multi-robot systems, make it

possible to design systems with new capabilities.The main advantages of cloud

robotics are in overcoming the limitations of on-board robot computing and

storage capabilities and in improving energy efficiency. Nevertheless, there is

a lack of cloud robotics frameworks that can provide a secured environment

for multi-robot application. The implementation of a robust cloud robotic

platform capable of handling multi-robot applications has been shown to be

challenging.

This research proposes a novel Clone-based Cloud Robotic Platform architec-

ture (CCRP) which assigns a Virtual Machine (VM) clone of each individual

robot’s operating system in the cloud, enabling fast and efficient collaboration

between them via the cloud’s inner-network. The system utilises Robot Oper-

ating System (ROS) as a middleware and programmable environment for robot

development. This model is using the OpenVPN as a communication protocol

between the robot and the VM, which provides considerable enhancement for

the security and additional network for the system to allow multi-master ROS

deployment. The Quality of Service (QoS) for the system has been tested and

evaluated in terms of performance, compatibility and scalability via compari-

iv

son study, which examines the CCRP performance against a local system and

a proxy-based cloud system.

Two case studies have been deployed for different robot scenarios. Case study

1 was focused on a navigation task which includes the process of mapping and

teleoperation implemented in Google public cloud. The real time response has

been examined by using the CCRP to teleoperate the NAO and Turtlebot

robots. A response time and video streaming delays were measured to assess

the overall QoS performance. Case study 2 is composed of a face recognition

task performed using the CCRP in a private cloud on an Openstack platform.

The objective of this task was to evaluate the system ability of running the

tasks in the cloud effectively and to assess the collaborative learning capability.

During the CCRP development and deployment stages an optimization study

was conducted to determine optimal parameters for data offloading to the

cloud and energy efficiency of a low-cost robot.

The result of the CCRP performance evaluation proved that it is capable of

running on a public and private cloud platform for self-configuring and pro-

grammable robotic systems, as well as executing various applications on dif-

ferent robot types. The CCRP is facilitating the improvements to QoS perfor-

mance, compatibility and scalability and is providing a secure cloud computing

environment for on-board robots.

v

List of Publications

Journal Publications:

1. Aagela, H., Holmes, V.: “Novel clone-based cloud robotic model to over-

come limitation of the multi robots QoS.”, Robotics and Autonomous

Systems, Elsevier (Under Review)

2. Higgins, J, Al-Jodi, T, Aagela, H., Holmes, V.: “Inspiring the Next Gen-

eration of HPC Engineers with Reconfigurable, Multi-Tenant Resources

for Teaching and Research”, Journal of education, SAGE Journals. (Un-

der Review)

Conference Publications:

1. Aagela, H., Holmes, V.: “Collaborative Cloud-based Face recognition ap-

proach for Humanoid robots.”, EMiT19, ISBN: 978-0-9933426-2-6, Uni-

versity of Huddersfield, Huddersfield, April 2019, UK.

2. Aagela, H., Holmes, V.: “Cloud Robotics-Based System for Robot Teleop-

eration.”, EMiT19, ISBN: 978-0-9933426-2-6, University of Huddersfield,

Huddersfield, April 2019, UK.

3. Al-Aqrabi, H., Hill, R., Aagela, H., Holmes, V.: “Securing Manufactur-

ing Intelligence for the Industrial Internet of Things.”, Springer, ICICT2019,

Brunel, London, UK.

4. Aagela, H., Al-Jodi, T., Holmes, V.: “Web-based Wireless Wake-on-LAN

approach for Robots.”, IEEE, ICAC’18, Newcastle University, Newcastle

upon Tyne, September 2018, UK.

vi

5. Aagela, H., Al-Nesf, M., & Holmes, V.: “An Asus xtion pro based indoor

MAPPING using a Raspberry Pi with Turtlebot Robot.”, IEEE, ICAC’17,

University of Huddersfield, Huddersfield, September 2017, UK.

6. Aagela, H., Holmes, V., Dhimish, M., & Wilson, D.: “Impact of Video

Streaming Quality on Bandwidth and Face Recognition Accuracy in Hu-

manoid Robot NAO.”, ICC ’17, March 2017, Cambridge, UK.

Poster Publications:

1. Antoniades, A., Aagela, H., Holmes, V.: “Black-Box/Tracking System

for Drones using LoRa”, ISBN: 978-0-9933426-2-6, University of Hudder-

sfield, Huddersfield, April 2019, UK.

vii

Contents

1 Introduction 1

1.1 Overview . 1

1.1.1 Communication . 5

1.1.2 Heterogeneity of robots 6

1.1.3 Knowledge representation 6

1.1.4 Brainless robots . 6

1.1.5 Security . 7

1.2 Motivation . 8

1.3 Research Aim and Objectives 9

1.4 Organisation . 10

2 Background and Related Work 13

2.1 Introduction . 13

2.2 Cloud Computing . 14

2.2.1 Cloud Deployment Models 15

2.2.2 Cloud Service Models . 18

2.3 Robots . 20

2.3.1 Simultaneous Localisation And Mapping (SLAM) 20

viii

2.3.2 Robot Teleoperation . 21

2.3.3 Robot Vision . 22

2.3.4 Multi-Robot and Multi-Area Management 24

2.4 Cloud Robotics . 24

2.4.1 Cloud Robotic Connection Models 27

2.5 Related Work . 29

2.5.1 DAvinCi Framework . 29

2.5.2 REALcloud Framework 30

2.5.3 RobotCloud Framework 32

2.5.4 Rapyuta Framework . 35

2.6 Evaluation of Related Work . 37

2.7 Gap in knowledge . 40

2.8 Summary . 41

3 Robot Operating System 42

3.1 ROS Overview . 42

3.2 ROS Structure . 44

3.2.1 File System Level . 45

3.2.2 Computation Graph Level 46

3.2.3 Community Level . 48

3.3 Single ROS Master . 50

3.4 Multi ROS Master . 51

3.5 Summary . 53

4 Research Methodology 54

4.1 Introduction . 54

ix

4.2 Research Methodology . 55

4.3 Research Approach . 56

4.4 Experimental robots . 58

4.4.1 Humanoid robot NAO 58

4.4.2 Turtlebot Robot . 62

4.5 Cloud Platforms . 62

4.5.1 OpenStack . 65

4.6 Case Studies . 66

4.6.1 Real-time robot teleoperation and mapping 66

4.6.2 Collaborative Face Recognition for Multi-robots 67

4.7 Data Collection and Analysis 67

4.7.1 Reliability and Validity 68

4.8 Performance Evaluation . 70

4.9 Summary . 72

5 Clone-based Cloud Robotics Platform (CCRP) 73

5.1 Introduction . 73

5.2 CCRP Architecture . 75

5.3 Network Architecture . 80

5.4 API Manager . 81

5.5 Security . 82

5.6 CCRP Process Handler . 84

5.7 Implementation . 85

5.7.1 Cloud Setup . 85

5.7.2 ROS Installation . 86

x

5.7.3 VPN Setup . 89

5.7.4 Scalability . 90

5.8 Summary . 91

6 Cloud Robotics Optimization 92

6.1 Introduction . 92

6.2 Network Profiling . 93

6.2.1 Experimental setup . 94

6.2.2 Face Recognition Algorithm 95

6.2.3 Experimental Cases . 97

6.2.3.1 Video Streaming over Wi-Fi 97

6.2.3.2 Video Streaming over Ethernet 98

6.2.3.3 Face Recognition Accuracy over Wi-Fi 101

6.3 Low Power and Cost Robot . 104

6.3.1 System Specification . 105

6.3.2 Power Consumption . 107

6.4 Summary . 108

7 CCRP Evaluation 111

7.1 Introduction . 111

7.2 Network Performance . 112

7.3 Quality of Service and Application Performance 113

7.3.1 Experimental setup . 114

7.3.2 Experimental results . 115

7.4 API Manager Performance . 117

7.5 Summary . 120

xi

8 Real Time Robot Teleoperation and Mapping 122

8.1 Introduction . 122

8.2 Robot Teleoperation . 125

8.3 Mapping . 126

8.4 Experimental setup . 127

8.5 Experimental results . 130

8.5.1 Transmission Delay . 131

8.5.2 2D Mapping . 131

8.5.3 3D Object Model . 135

8.6 Summary . 135

9 Collaborative Cloud-based Face Recognition for Multi-robots

Environment 137

9.1 Introduction . 137

9.2 Collaborative Cloud-based FR Algorithm 139

9.3 Experimental setup . 141

9.4 Experimental results . 142

9.5 Summary . 143

10 Conclusion and Future Work 145

10.1 Conclusion . 145

10.1.1 CCRP Availability and Scalability 146

10.1.2 API Integration . 147

10.1.3 Research Outcomes . 147

10.1.4 Research Contributions 150

10.1.5 System Limitations . 152

xii

10.2 Future Work . 152

10.2.1 Cooperative Navigation 153

10.2.2 Face Recognition Application 153

10.2.3 Brainless Robots Issue 154

10.2.4 Web-based Application 154

References 156

Appendices 165

A Engagement with Research Community 166

B OpenStack deployment 174

B.1 MaaS and Juju OpenStack Configuration 175

B.2 DevStack OpenStack Configuration 180

C ROS Installation 184

D Collected Data 187

D.1 Experimental results of the delay time in millisecond for the

response time delay and the video delay. 191

D.2 The response time of the local FR and the cloud FR 193

D.3 Face recognition accuracy rate with different video quality . . . 195

E Web-based Wireless Wake-on-LAN 197

xiii

List of Figures

1.1 General High-level overview of cloud robotics system architec-

ture and applications . 3

1.2 The RoboEarth system architecture 5

2.1 Overview of cloud robotic computing models 28

2.2 Architecture overview of the DAvinCi 31

2.3 The schematic diagram of the REALcloud Framework, Repro-

duced from: . 33

2.4 The schematic diagram for RobotCloud framework architecture,

Reproduced from . 34

2.5 Infrastructures of the Rapyuta platform. Reproduced from . . . 36

3.1 The ROS basic system . 44

3.2 File system level Structure. Recreated from 46

3.3 The Computational Graph Level. Recreated from 48

3.4 Regular hardware arrangement of a single master ROS system.

Reproduced from . 50

3.5 Hardware arrangement of multi-ROS master sub-systems col-

laborating with each other. Reproduced from 51

xiv

4.1 General CCRP Methodology . 57

4.2 NAO H21 Robot design (Aldebaran.com, 2018) 60

4.3 Field of view of NAO video cameras 61

4.4 Turtlebot Robot and schematic diagram 63

4.5 Google cloud platform compute engine global scope 64

4.6 University of Huddersfield OpenStack Private Cloud fabric . . . 65

5.1 CCRP Architecture . 76

5.2 CRI software stack . 76

5.3 The RVIZ visualiser application 78

5.4 The CCRP Network Architecture 80

5.5 The VPN settings on the openvpn dashboard 90

6.1 Network architecture for profiling cases 94

6.2 Sequential behaviours that required to perform FR and face

learning processes using Choregraphe software 96

6.3 FR process stages to perform Face Detection and Recognition

with NAO robot . 97

6.4 Wi-Fi video streaming . 99

6.5 Ethernet video streaming . 100

6.6 Face recognition accuracy rate for different video quality Colour

video streaming . 102

6.7 Face recognition accuracy rate for different video quality Black

and white video streaming . 103

6.8 Utilising a Raspberry Pi as a main computer unit for Turtlebot II105

xv

6.9 Schematic Diagram for Raspberry Pi powered by Turtlebot II

base . 106

6.10 Low cost robot network architecture 108

6.11 Low cost robot power consumption in Kilojoule comparison . . . 109

7.1 RTT measurement between robot and cloud VM with two servers,

EU server and US server and with and without VPN 113

7.2 Response time of Clone-based model ”CBM” and proxy-based

model ”PBM” with 100ms delay 116

7.3 Response time of Clone-based model ”CBM” and proxy-based

model ”PBM” with 500ms delay 117

7.4 Object recognition algorithm . 118

7.5 The object recognition response time with four video qualities . 120

8.1 Teleoperation and mapping CCRP System architecture 124

8.2 CCRP Teleoperation model . 126

8.3 Workflow for the mapping process on the cloud 128

8.4 The experimental robots: A) Turtlebot robot B) NAO Hu-

manoid robot . 129

8.5 Robots are required to move from a point A to point B avoiding

an obstacle placed 2.5m from their initial position 130

8.6 Experimental results of the delay time in millisecond for the

response time delay and the video delay 132

8.7 Map of the University of Huddersfield Robotic Lab 133

8.8 3D model generated by Turtlebot 134

xvi

9.1 CCRP Architecture and Methodology 139

9.2 The cloud-based face recognition algorithm 140

9.3 Response time of the local FR and the cloud FR 144

B.1 The network diagram of the hardware and network components. 175

B.2 MaaS dashboard . 177

B.3 The Juju GUI dashboard . 179

B.4 The Openstack deployment within Juju environment 180

B.5 Successful installation of Devstack output with the URL link of

the dashboard . 182

B.6 Openstack web-based dashboard 183

E.1 The proposed System architecture 198

E.2 Raspberry Pi Zero W . 199

E.3 The Work-flow of the Web-based application WWoL 201

E.4 Dashboard of the Web Application shows states when the but-

ton is turned OFF and turned ON. 202

E.5 The drone state A) turned OFF B) turned ON 203

xvii

List of Tables

2.1 Comparisons of different cloud robotic models 29

3.1 ROS Distribution Releases . 49

4.1 Video Quality Provided By NAO Robot 61

6.1 Average Face Recognition Detection Rate 104

7.1 Outcome of the Google Vision recognition service during the

experiment testing the API manager 119

9.1 Local FR approach accuracy and failure rate 142

9.2 Cloud-based FR approach accuracy and failure rate 142

xviii

Nomenclature

2D two dimensions

3D Three Dimensions

α Cronbach’s alpha

API Application Programming Interface

CCRP Clone-based Cloud robotics Platform

CD Contact Dynamics

CPS Cyber-Physical System

CRI Clone ROS Images

FPS Frames Per Second

FR Face Recognition

GCP Google Cloud Platform

IaaS Infrastructure as a service

JSON JavaScript Object Notation

xix

LAN Local Area Network

M2C Machine to Cloud

Nc Common Network

PaaS Platform as a service

PCA Principal Component Analysis

PKI Public Key Infrastructure

QoS Quality of Service

REST Representational State Transfer

ROS Robot Operating System

RTT Round-trip delay time

SaaS Software as a service

SDN Software Defined Network

SLAM Simultaneous Localisation and Mapping

SPSS Statistical Package for the Social Sciences

TCP Transmission Control Protocol

UDP User Datagram Protocol

VM Virtual Machine

VPN Virtual Private Network

Wi-Fi Wireless Fidelity

xx

xxi

Chapter 1

Introduction

1.1 Overview

Cloud robotics as a concept is a relatively new paradigm which opens vari-

ous research opportunities in the robotics field. Certainly, the remote support

for computing, accessibility and the availability of storage create an attractive

research area that works on enhancing the on-board robot capability for pro-

cessing complex tasks. Whilst networked robotics and web support in robotic

systems can be dated to the end of the 1990s, the first practical cloud robotics

project, RoboEarth, was introduced at the middle of 2009 (Waibel et al., 2011).

The concept of cloud robotics is gradually earning research interest due to the

fast growing cloud computing technology. The term of Cloud computing could

refer to a distributed virtualised computing environment, or “cloud service”,

that is utilised in order to enhance the performance of a robot accomplishing

complex tasks. For example, drawing a 3D model for an object is one of the

1

current challenges for on-board robots, or to find the path direction in random

areas (Doriya, Chakraborty, & Nandi, 2012a). (Agüero et al., 2015) stated

that the use of a parallel system within the cloud is required in order to pro-

vide the robot with real-time operation. All the contemporary cloud providers

(Azure, Amazon, Google Cloud Engine) can provide such massively parallel

cloud systems. In terms of the cloud service architectures available, there are

three different types, namely Infrastructure as a Service (IaaS), Platform as a

Service (PaaS), and Software as a Service (SaaS). Each one of those services

has its own features and implementation, where each cloud service comes with

a certain level of management and control.

Indeed, the impact of cloud on several computer systems and services drives

the transition of systems architecture and business models to be cloud-based

rather than on-board or local network-based services. Therefore, the robotics

field has a potential to inherit the advantages provided by the cloud such

as low maintenance cost, scalability, large storage and high computational

power. Generally, the on-board robot is still limited in terms of computational

power and storage. Therefore, the need of offloading intensive computational

processes to an external computing system become higher, which is able to

process the robot sensor data and feed an action or result back to the robot,

as well as managing the process of storing and sharing knowledge. As shown

in Figure 1.1 the key components of cloud robotics infrastructure consist of

distributed compute and storage resources, which are provided to various type

of robots in order to help them in performing robot tasks in the cloud side or

to connect with other robots.

2

Figure 1.1: General High-level overview of cloud robotics system architecture
and applications

(Hu, Tay, & Wen, 2012)

The environment of multi-robots profits the most from the cloud robotics con-

cept as it allows the collaboration in more scalable way, where the robot is not

restricted by its geographical location. Cloud services could be utilised as a

source of robot knowledge and facilitate sharing and obtaining data between

each other. This open the opportunity for robots to learn from other robot

experiences, for instance, by collecting data from surrounding environments,

sharing conditions, related control policies and path plans. Moreover, they can

share the data on the outcome performance, providing potential for the cloud

to improve the performance of the robot and automation systems around the

world (Doriya et al., 2012a).

The concept of cloud robotics is gradually reaching its peak. With respect to

contemporary literature, the RoboEarth project released a “world wide web”

3

serving robots from a huge distributed database and repository, as shown in

Figure 1.2. This provides a Cloud Robotics infrastructure that includes a cen-

tralised database to keep knowledge produced by humans or robots and trans-

fer it into a machine-readable format. The database kept in the RoboEarth

knowledge base contains various elements, such as maps, object recognition

models, locations and task knowledge (action recipes and manipulation plans)

(Waibel et al., 2011).

The RoboEarth has a Cloud Engine called Rapyuta which is designed and

developed to provide a cloud computation environment for on-board robots

to offload some of their tasks with minimal configuration. The Rapyuta plat-

form provides access to the RoboEarth knowledge repository and database

(Hunziker, Gajamohan, Waibel, & D’Andrea, 2013).

Due to the high demand for cloud resources as a service provider, the computer

industry has a direct influence and different application-service modules are

available that serve robotic technologies. For example, DAvinCi is implement-

ing SLAM (Simultaneous Localisation And Mapping) using a Software-as-a-

Service (SaaS) cloud model (Arumugam et al., 2010).

A project called CORE also utilises a SaaS cloud model for proposing a solution

for object recognition. Rapyuta, described above, uses Platform-as-a-Service

(PaaS) to create the centralised sharing of information as a cloud architecture

for robotics applications.

The concept of Cloud Robotics comes with challenges and limitations that are

facing the system developers and researchers. These challenges are divided

4

Figure 1.2: The RoboEarth system architecture
(Waibel et al., 2011)

into several categories and outlined below:

1.1.1 Communication

The network interconnect between one or more robots and a cloud service is

a major factor in any cloud robotics system, which has a potential impact on

the performance of the systems that will not only depend on the processing

power, but also on the network speed and the ability to provide real-time

communications, the network speed should provide a network latency less than

200 ms in order to be capable to support a real-time applications. In addition,

5

the selection of a suitable network protocol for communication with the cloud

service is a critical factor (Hu et al., 2012).

1.1.2 Heterogeneity of robots

The challenge of sharing knowledge amongst robots that have various hardware

components and physical form factors leads to common problems in robot

planning, such as sharing the robot. If a robot shares a model plan with other

robots, the plan might not be practical for the other one to utilise if it has

different capabilities (Kehoe, Patil, Abbeel, & Goldberg, 2015).

1.1.3 Knowledge representation

Sharing knowledge between various robot platforms will require that knowledge

to be well-defined with a standard data representation which is understandable

from any robot (Doriya et al., 2012a). A representation of the data has to

provide the robot with a clear format and message protocol. The robot data

can be varied in term of its type such as, maps, sensor data, trained object or

face images and so on.

1.1.4 Brainless robots

This problem happens when the network connection breaks down. In this case,

the robot turns back to being “brainless” unless it has a default behaviour

activity once the connection lost (Kehoe et al., 2015).

6

1.1.5 Security

The concept of Cloud Robotics inherits all the cloud security issues such as

an access authorisation, network access between the robot and the cloud, En-

cryption and so on, where the cloud virtual machines are vulnerable for most

hacking activity via its public IP address. In addition, the privacy of the data

that is shared by the robots and stored in the cloud is considered to be a ma-

jor problem as the robotics data can be sensitive. (Kehoe et al., 2015), (Ren,

Wang, & Wang, 2012).

There are several points that need to be considered in terms of offloading the

data or process to the cloud, such as communication, security, latency and

knowledge sharing, and each one of these elements has its own challenges.

Thus, in this study the focus is to establish a multi-robot environment cloud

robotics approach that tries to overcome current framework limitations. This

work develops and examines a new clone-based cloud robotics model that al-

lows various robot platforms to offload intensive processes to a cloud platform,

and allows the robot to share and store data and knowledge on the cloud.

The major driving forces behind the need of developing a new cloud robotics

framework will be carefully analysed based on various aspects: compatibility,

availability, license restrictions, robot cooperative learning, ability of sharing

knowledge, and network performance.

7

1.2 Motivation

• The key motivations of this research are driven from the resource lim-

itation of Humanoid robot NAO, in terms of the processing power and

storage capacity as well as the limited power resources. According to

(Wang, Liu, & Meng, 2012), the data storage is a key problem with

the robot, as physical limitations determine the maximum amount of

storage capacity that a mobile robot could carry on-board. Increasing

the amount of the storage will require increasing the speed of the com-

putational power of the robot, thus, consuming considerable amount of

limited battery power.

• The idea of offloading some of the robot tasks to external cloud resources

becomes a feasible alternative. However, (Kehoe et al., 2015) stated that

the network connection is a key challenge that can face a cloud robotics

implementation for any mobile robot, where the communication delay

can prevent the robot from obtaining adequate real-time performance.

• Most of the current cloud robotic systems are designed to work with ei-

ther certain robot types or only supporting a single robot environment.

Therefore, the current multi-robot framework is limited in terms of avail-

ability, are often proprietary, not available to the researchers and do not

support existing robotic systems.

• The currently available ROS-based framework for multi-robot collabora-

tive applications is complex to configure and has serious limitations given

the high barrier of entry to be used for this style of task collaboration.

8

These are the factors which motivate this research study to investigate a

self-configurable robust cloud robotics solution that can provide users with

single/multi-robot cloud environment, which should be suitable and compati-

ble with all ROS distributions.

1.3 Research Aim and Objectives

The aim of this research is to design a novel clone-based cloud robotics gen-

eralised architecture that is compatible with Robot Operating System (ROS)

based robots and ROS distributions. This architecture will provide a secure,

collaborative and configurable system to allow the robots to offload their on-

board computational and memory intensive tasks onto a single/multi-robot

cloud computing environment.

Objectives

• Devise the network design and the key feature of the CCRP framework,

and profile network performance to enhance the system optimisation.

• Design and deploy multi-robot system in CCRP framework.

• Evaluate the performance of a single and multiple robot population vs a

proxy-based ROS-based cloud robotics platform. In addition, assess the

performance of the system with practical robot applications by designing

and developing two case studies.

9

• Train the systems to acquire knowledge of robot environment and per-

form an intelligent task such as face recognition in single and multi-robot

systems and navigation in the unknown environments.

1.4 Organisation

The following chapters of this thesis are organised as follows:

Chapter 2 outlines the background and related work , starting with an overview

of Cloud Computing, providing information about the deployment methods

and cloud service models types. This chapter provides a brief overview of the

robot technology and some of its applications. The currently available cloud

robotic architectures are identified. The second part of this chapter investigates

the previous work and related Cloud Robotics frameworks in terms of their

architecture and functionality. Finally, it concludes with critical evaluation of

the given related work and summary.

Chapter 3 presents the Robot Operating System (ROS) and breaks down some

of its important concepts and structure. In addition, it demonstrates the multi

ROS master concept and its unique architecture. The chapter closes with a

discussion of using ROS in the cloud.

Chapter 4 discusses the utilised research methodologies and research approach.

In addition, it defines the main hardware and software requirements for the

research that involves providing an overview of each robot used within this

study. This chapter describes the design of the case studies as well as providing

10

information of the collected data. Finally, it will show the adoptive technique

in how the evaluation process of the proposed system performance.

Chapter 5 discusses the network profiling process, the experimental setup of

the face recognition system and provides three case studies. Finally, it eval-

uates the procedure of developing a low-cost robot and analysis of its perfor-

mance.

Chapter 6 introduces our novel cloud robotics solution, CCRP framework,

giving an overview of the framework and providing detailed explanation of

the architecture and its network interconnect. Finally, it will demonstrate a

structure of the developed API manager.

Chapter 7 discusses the performance of CCRP in terms of the network latency

and the QoS performance. In addition, it presents a security evaluation of the

system, and the performance of the API manager through analysis of the test

results.

Chapter 8 discusses the application of real-time cloud-based navigation appli-

cation as a case study of using the CCRP. This consists two major parts - the

mapping and teleoperation processes - which are devised by explaining the ex-

periment setup and the system design. Finally, an evaluation of the navigation

application performance is presented.

Chapter 9 introduces a novel collaborative cloud robotics face recognition (FR)

application and an evaluation of the FR application performance.

Chapter 10 provides a conclusion of the accomplished work in this research,

summarises all the contributions of the work and includes answers for the given

11

research questions, identifying opportunities for future work to continue this

area of study.

12

Chapter 2

Background and Related

Work

2.1 Introduction

This chapter presents an overview of research related background topics as

well as the state of the art of currently available solutions for multi-robots

cloud environments. The background research involves several concepts, such

as cloud computing paradigm. In addition, it defines some of the related

robotic technologies, and the concept of cloud computing and cloud robotic.

An overview of the existing work in the area of the cloud robotic and a critical

appraisal of recent publish work is presented, from which the research gap can

be identified.

13

2.2 Cloud Computing

The concept of cloud computing has emerged as the definitive paradigm for

development of services on-demand and virtualisation technologies. The cloud

computing terms are well-defined. The National Institute of Standards and

Technology (NIST) states that ”Cloud is a model for enabling ubiquitous, con-

venient, on-demand network access to a shared pool of configurable resources

(e.g. Networks, servers, storage, applications, and services), that can be rapidly

provisioned and released with minimal management effort or service provider

interaction” (Peter & TIM, 2010).

Another definition by (Jamsa, 2011) states that cloud based systems are char-

acterised by the ability to dynamically and transparently scale up or down

virtual resources in terms of size, such as to add or remove processors and

disk space, charging the customer whose solution resides in the cloud only for

the resource that is consumed. The cloud providers supply the customer with

abstractions of computational resources and other services that developers can

utilise to implement complex systems without managing physical infrastruc-

ture.

The cloud computing deployment methods can be categorised into three meth-

ods. First one is Public Cloud, where a third-party company develops a com-

mercial system and provide its cloud services over the internet for the public

as a subscription plan or pay-as-you-go. The second type is Private Cloud,

which is only available for authorised users who are part of the business or

organisation. This concept can be expressed with a LAN (Local Area Net-

14

work) and WAN (Wide Area Network). The distinction between these cloud

deployment methods is not binary, and hybrid cloud deployment methods can

be accomplished with a blend of orchestration between the private and public

cloud.

2.2.1 Cloud Deployment Models

Public Cloud can be defined as a third-party computing utility or service

that is provided to users over the Internet. The end-user is charged based on

the usage of storage, CPU cycles and network bandwidth. The key difference

between the public cloud and private cloud is that the users are not responsi-

ble for any management or maintenance, where the user data and services is

hosted in the provider data centres and it is their responsibility for the man-

agement and maintenance of the physical infrastructure. Most public cloud

vendors promise to deliver high QoS only and assurances on the availability

and performance of the provided services. This provides key motivation to

research and examine the performance of the QoS with regards to public cloud

computing. The public cloud service can be provided in various service form

that is explained in Section 2.2.2.

There are several well-known public cloud vendors and the availability of their

technologies at scale drives the path research is taking within the paradigm

of Cloud Computing. In 2006, Amazon introduced a Public Cloud service to

the industry, which provides IaaS and PaaS architectures. The architecture

is advertised as two separate projects: the first one is the Amazon Elastic

Compute Cloud (EC2) and the second one is Amazon Storage Service (S3).

15

Then, other company such as Google, IBM, and Microsoft adopted a similar

approach in developing their own cloud system with unique features (JoSEP

et al., 2010).

Additionally, as a result of the closed source exclusive nature of public cloud,

there are some concerns in terms of user security and privacy in terms of

hosting a sensitive data and applications by third party service provider that

cannot be audited in the public domain. Therefore, some organisation and

business go toward developing their own cloud system as private cloud.

Private Cloud is a specific deployment method of cloud computing that es-

tablishes a cloud-based system in which only specified users can access and

utilise. The definition of the private cloud has a passionate debate, but typ-

ically private cloud can be seen as a highly virtualised data centre that is

sited within an organisation or business network and provides services for only

the authorised customers (Furht, 2010). There are a number of private cloud

systems that can be used for deployment that apply various technique and

technologies, such as, Openstack, VMware, IBM Cloud Private, Microsoft,

Mirantis, Oracle Private Cloud and RightScale. One perceived advantage of

using the private cloud is that it solves the privacy issue, allowing the owner

to benefit from a great deal of the cloud features, without sharing the data or

process with a third party cloud providers.

OpenStack is an open-source software that developed as an associated work

among several developers, who merged several Cloud Computing technologists

in order to build a cloud platform which can be used to build both public

and private cloud infrastructure. The project was initiated by Rackspace and

16

NASA then it became popular between the cloud developer community, who

are working together to establish a highly scalable open source Cloud platform

(Sefraoui, Aissaoui, & Eleuldj, 2012).

The OpenStack software stack is composed of three projects that provide func-

tionality for the formation of private clouds. (Rosado & Bernardino, 2014)

These projects are as follows:

• Nova is the main compute unit within Openstack, which is responsible

for handling the VMs, providing access for the virtual resources through

an API.

• Swift is responsible for the OpenStack Object Store tasks, where it allows

storage and retrieval of data via an API. Swift is designed to provide

robustness and availability for the entire data storage.

• Glance manages VMs and Images. Its image services include various

features such as discovering, recording, and recovering VM images. In

addition, it has an API, which permits querying of VM image metadata

and recovery of the actual image.

• Neutron is responsible for providing networking as a service among vir-

tual network interface devices and real ones. In addition, it is responsible

for managing the components and activities related to network function

virtualisation.

The Image Service offers the capability of creating snapshots for recording and

reproduce VM images. The various Storage APIs and object storage provided

by OpenStack is used as a backend for the Image Service, which can be used

17

to spawn multiple VM instances from template images to create a replaced of

the original VM.

2.2.2 Cloud Service Models

This section provides an overview of the main cloud service model categories

that can be used as classifier of cloud capabilities and usability, based on the

performance, level of control involved and the type of the services provided.

The cloud service models are defined as follows:

Software-as-a-Service (SaaS)

SaaS is defined as a supplier for a remote software through a cloud system

to users, who have no influence in the infrastructure and usually subscribes

to the utility-based charging model of payment. It can provide an online

software alternative solution installed and run on cloud remote server, which

is typically installed and executed on a local machine. The Microsoft Office 365

and Slack can be used as an instance of the SaaS application (Mell, Grance,

et al., 2011).

Platform-as-a-Service (PaaS)

PaaS is defined as an extra layer of abstraction in top of a virtualised in-

frastructure that act as a provider that offers a software platform. Which

is providing the users with tools such as, libraries, programming languages,

and frameworks. In order to allow them to design and develop their personal

18

applications. Examples of PaaS, such as, Amazon web services “AWS” Elas-

tic Beanstalk and Microsoft Azure, include the development of applications

that are fully operated on the cloud.(Keller & Rexford, 2010),(Mell et al.,

2011).

Infrastructure-as-a-Service (Iaas)

IaaS is defined as a provider that supplies a virtualised computing environment

on top of the physical resources, as a virtual machine with various computer

capability such as, CPU, GPU, RAM and storage disk. The users have a full

control of the cloud resource in the same way as a local machine with more

flexibility, but typically cannot utilise the abstractions offered by other cloud

models.(Mell et al., 2011), (Serrano, Gallardo, & Hernantes, 2015).

The current market for cloud services is providing various kind of services based

on virtualisation. However, it does not explicitly provide a direct solution for

robots nor does it offer the appropriate tools to build a robotic application.

Therefore, there is a need to provide a solution that utilise the cloud resources

to build a framework for a developer to create software which can meet the

requirements of robotics applications, and enhance the compatibility with ex-

isting robotics framework.

19

2.3 Robots

A robot can be defined as a machine developed in a cross-disciplinary en-

gineering and science branch including mechanical and electronics engineer-

ing, computers, information system (Tzafestas, 2013), IT and other industries.

Robotics models, builds, operates and utilises robots as well as the computer

systems to control them, provide sensory feedback and process information.

The main reason of developing robots is to create a machine which could re-

place humans and perform complex tasks. Robots can be divided into various

form and categories based on the robot appearance and functionality, such as

humanoid robots, drones, industrial robots, and underwater robots. (Austin,

2018), (Bogue, 2016). Each robot type is unique in their features and appli-

cations. The robot’s applications can vary based on the task specification,

where some robot task may only require a single robot process, or it can be a

companion of robot multi-processes to accomplish single task.

2.3.1 Simultaneous Localisation And Mapping (SLAM)

The Simultaneous Localisation And Mapping (SLAM) within the robots entails

complex computational problems that are focused on dealing with building a

map of an unknown environment, which is able to track down the location of

the robot in the same map (Ghani, Sahari, & Kiong, 2014). Mapping is one of

the most common robot tasks where the robot needs to create constant map

for the surrounding environment by utilising its sensor data, such as ultra-

sound and camera laser. The robots are responsible of processing sensor data

20

as well as storing real-time data in RAM, in order to create an accurate map.

This indicates that most methods cannot make consistent maps for huge ar-

eas, as a result of the higher computational power and storage required (Tuna,

Gulez, Gungor, & Mumcu, 2012). Low cost robots with low on board capa-

bility will struggle to fulfil the required tasks. There was a solution proposed

by (Mohanarajah, Hunziker, D’Andrea, & Waibel, 2014), who suggested a so-

lution that offloads the SLAM process to a cloud service to overcome the lack

of resource availability in the local system. In addition, the generated map

can be shared with other robots. Although the cloud can solve the lack in

resources, the network latency can have negative impact of the SLAM perfor-

mance (Ali, Hammad, & Eldien, 2018). However, as the controls sent to the

actuators requests by only how they want to change position and move, with

high network delay it does not necessarily represent how the robot is moving

(Rehman, 2013).

2.3.2 Robot Teleoperation

Although teleoperation robot task was one of the first robot’s applications

since 1950’s, it is still an vital research field until now, which is posing many

challenges to industrialists, scientists and researchers. The remote robot ma-

nipulation is a major task needs complicated perceptions, decisions and actions

to be taken by human operator or autonomous system, utilising the available

environment and robot sensors data (Small, Lee, & Mann, 2018). Nowadays,

there are several teleoperation systems still depend on a human operators,

however, the inclusion of full or part automatic control is now increasing and

21

become common. Yet, automation rarely completely replaces human opera-

tors, because of sensitivity of certain teleoperation tasks, where the current

technology is not yet capable to replace fully the actions and intuition of the

operator. The real-time robot teleoperation applications have been imple-

mented in various fields, such as transportation, underwater exploration and

telesurgery (Song et al., 2018). These teleoperation applications require a very

reliable system that can securely control the communication between a robot

and the operator, and response to the operator’s actions in real-time. However,

modern applications need larger processing capability and memory, much more

than the resources available in most of robotics system. (Aagela & Holmes,

2019a)

2.3.3 Robot Vision

Robot vision processes visual data from the environment using a combination

of camera hardware and computer algorithms. For example, a 2D camera can

be installed on a robot system that detects an object for the robot. The use

of a 3D stereo camera could be a more complex example to guide a robot to

mount rollers on a moving vehicle. The robot vision can be utilised for different

robot task such as face or object detection and recognition.

The robot Face Recognition (FR) application is a software based on a computer

vision algorithm for the automated detection, identification or verification of

an individual from either a digital picture or a video. This is generally per-

formed by humanoid robot, which is comparing targeted facial features of a

detected person to a pre-processed facial dataset. It is used usually in secu-

22

rity systems; however, it became an important task for any humanoid robot.

Software for facial recognition is based on the ability to recognise a human

by measuring various features of a face. There are several FR approaches

which have been developed, for example, Linear Discriminant Analysis (LDA)

(Li & Yuan, 2005), and Principal Component Analysis (PCA) (Ismail et al.,

2011), (Jolliffe & Cadima, 2016), which are implemented in various studies.

The performance of these methods has shown to be acceptable, yet, they have

limitations of being computationally intensive (Bolotnikova, Demirel, & An-

barjafari, 2017).

Object recognition is a computer vision technology in order to identify one or

more objects in videos or photos. The object recognition process is typically a

result of utilising a deep learning algorithm, where it allows the robot to obtain

a visual detail about the detected object such as the object colours, name and

so on. The process of object recognition can be done either locally (H. Liu,

Li, Xu, & Sun, 2018), or by using external computing resource (Cheng, Bier,

& Mostafavi, 2017). However, this robotics task can be very challenging in

on-board robot as it requires intensive processing power and huge storage, in

order to keep all the trained object images. Moreover, the use of the external

cloud resources can happen over API, where there are a number of API solution

that can be linked with robot to perform object recognition process, such as

Google Cloud Vision API and Azure Computer Vision API. (Hosseini, Xiao,

& Poovendran, 2017).

23

2.3.4 Multi-Robot and Multi-Area Management

(Kumar, Pattnaik, & Pandey, 2017) stated that multi-robot and multi-area

management are a key issue in most of the current cloud robotics system;

managing the cloud resources allocation as well as the network between the

cloud to cloud resources (C2C) or between the robot to the cloud (M2C) are

challenging issues. In terms of the multi-area management issue, to provide

services for the robots, which runs over a wide area and several geographical

locations, the cloud robot needs a mechanism to share the data about each

area, for example, maps, landmarks and so on. This information could be

static like the maps or could be dynamic like the robot location, obstacles,

and objects that have the possibility to change their location constantly. It is

a general belief that multi-robot systems have more advantages than single-

robot systems. The key motivations of emerging multi-robot solutions stem

from the real world applications, where most single robot system struggle

in dealing with complex tasks effectively. In addition, a multi-robot system

can provide parallelism as well as redundancy (Fazli, Davoodi, & Mackworth,

2013).

2.4 Cloud Robotics

The idea of control the robot remotely over the network started at the end of

1994. The first robot was linked to the web by web-based controller that use the

browser to remote control the robot (Kehoe et al., 2015). Then, (Inaba, 1997)

worked on a project titled “remote brained robots” that defined the advantage

24

of distant computing in robot management. In 2001, the IEEE Robotics and

Automation Society created the Practical Group on Networked Robots and

introduced a series of workshops (Doriya et al., 2012a). The RoboEarth cloud

project was introduced at the end of 2009. It was designed to be a global

network of robots, which is allowing the robot to share data, information and

knowledge with other robots. Moreover, the robot could learn the behaviour

based on the environment. The RoboEarth research group developed several

cloud services and designed a cloud robotic network (Waibel et al., 2011).

In 2010, James Kuffner has introduced the term Cloud Robotics, which be-

come the standard of any cloud application that is used by robots and has

been agreed by many academic groups, as well as the IEEE transactions on

automation science and engineering (Kuffner & Robots, 2010).

According to (Waibel et al., 2011) the MyRobots project introduced the idea

of a social network for the robots, by applying the same concept of traditional

social networks for humans, where robots can cooperate with each other, share

the current state and information from its sensors. The RoboEarth and Robo-

Brain dataset were planned to be dynamic with the updated that comes from

connecting robots (Hu et al., 2012).

(Saxena et al., 2014) stated that the ability to ”combine knowledge from the

Internet sources with finer detail about the physical world” will provide a

robot with the significant amount of knowledge, which could help the robot

learn about its environment. The project proposed a robot query library, which

offers a set of ready retrieval functions. The project tries to create a network

of knowledge, such as map information and object details, which could be used

25

by the robots.

The ”Lightning” framework proposes a system for Shared Robot Learning by

indexing path from a number of robots over time, utilising the Cloud platform

for parallel planning and path modification. These systems could be extended

to worldwide networks to ease shared path planning, together with traffic path.

In addition, sharing the information could develop the abilities of robots with

limited compute resources (Kehoe et al., 2015).

A new cloud robotic paradigm concept expands the idea of networked robotics,

suggesting a new research area called Cloud Networked robotics (Kamei, Nishio,

Hagita, & Sato, 2012). In addition, (Manzi et al., 2017) improved the cloud

robotics service by introducing the concept of Cloud Service Robotics as ”the

integration of different agents that allows an efficient, effective and robust

cooperation between robots, smart environments and citizens”.

(Manzi et al., 2017) developed a web service application to serve a robot called

KuBo with ROS middleware. The aim of this study was to increase navigation

and speech recognition capability for the on-board robot KuBo by creating a

smart environments based application that follows the software as a service

(SaaS) cloud model. Therefore, the robot uses those services as an external

source of knowledge. However, the robot is using its own resource to run the

navigation process. Other researchers also utilised the external cloud com-

puting resources to speed up the processing time for intensive robot tasks,

for example SLAM algorithms, navigation, object recognition and video and

image processing (Gouveia, Portugal, Silva, & Marques, 2015), (X. F. Liu,

Shahriar, Al Sunny, Leu, & Hu, 2017).

26

A generic cloud robotics solution should aim to move the computational robot

tasks to a cloud resource via the network using a unified communication pro-

tocol, in other words, the offloaded data and information from linked robots

must have a unified structure, in order to allow the robots to interact with

each other. In the multi-robot cloud robotics environment, the robot system

is able to learn and share the experience of other robot behaviour. However,

it is seeming that any single robot is isolated, and lacks learning capabilities.

Moreover, the programming environment should be familiar for the developer

to all the mass adoption and existing robot algorithm and software can be

used.

2.4.1 Cloud Robotic Connection Models

In this section, the currently available machine-to-cloud M2C cloud robotic

connection models are identified. According to (Hu et al., 2012), There are

three main machine to cloud M2C connection models,which are: peer-based

model, proxy-based model and clone-based model. Each model has its own

feature that defines the level of robustness, interoperability and the mobility.

The three elastic models Were define as summarised in Figure 2.1:

a) Peer-Based Model - in this model one machine connect to a VM in

the cloud, which consider as an additional computer unit. The process

could be executed in both the robot or cloud side.

b) Proxy-Based Model - in this model, one VM works as an edge device

(proxy) for a number of robots, this VM has a single link to each robot.

27

Figure 2.1: Overview of cloud robotic computing models
(Hu et al., 2012)

c) Clone-Based Model - in this model each robot links to a VM that

works as a clone image in the cloud. The connection between the robot

and the cloud use M2C peer-to-peer network. Moreover, a group of clone

images form of an ad-hoc M2M network inside the cloud environment.

Each of these cloud robotic computing models demonstrates a different level of

robustness in its network links and QoS, as illustrated in Table 2.1. The shown

level is based on model capability of offloading intensive process to the cloud.

Robustness defines the strength of network connectivity between a robot or a

set of robots and the cloud infrastructure.

The clone-based model obtains the highest number of links between the robots

and the cloud infrastructure, therefore, it is the most robust model. On the

other hand, the proxy-based model has the lowest robustness in regards of

network availability. QoS defines the quality of the provided service by the

28

Model Type Robustness Interoperability QoS

Peer-based Medium Low High
Proxy-based Low High Low
Clone-based High Medium High

Table 2.1: Comparisons of different cloud robotic models
(Hu et al., 2012)

cloud or the response time that is needed to complete an offloaded task. The

peer-based and the clone-based models have the highest QoS, because of two

factors: network and resource availability. While the proxy-based and the

gateway-based model as the lowest QoS, whereas the network and the resource

are shared by multi robot.

2.5 Related Work

Since 2010, there were several cloud robotics frameworks that were developed

in order to investigate the cloud robotic paradigm. In this section, the ex-

isting multi-robots ROS-based frameworks will be explored to analysis their

capability and determine some key features.

2.5.1 DAvinCi Framework

This work was motivated by regular use of computer complex tasks, for exam-

ple computer vision (object or facial recognition) and mapping, in the DAvinCi

framework outlined in Figure 2.2. The information of the sensors is sent to a

controller, which is made active on request to each robot and enables a task

29

that requires multiple robots to contain sensor information (Roth, Livingston,

Blair, & Kolonay, 2010). DAvinCi can be classified as PaaS and can provide

tasks in the cloud environment to create a global map. The system consists

of a server which connects the robot to Hadoop cluster. The server is running

ROS master node in a server. ROS messages are embedded into requests /

responses for the robot / server communication using the Hypertext Trans-

fer Protocol (HTTP). For data storage, the Hadoop Distributed File System

(HDFS) runs MapReduce for parallel processing. Note that parallel algorithms

are crucial for processing speed. (Arumugam et al., 2010) The data is divided

into blocks to simplify the parallel processes in addition to managing file stor-

age. As already mentioned, the ROS message system is used to connect the

DAvinCi server to robots. On the server side, ROS subscriber nodes function

as HDFS clients are used to collect these messages as well as push the data to

the parallel file system to execute Map Reduce tasks.

The authors present a Map Reduce model fitting grid FastSLAM algorithm,

simulating the implementation of the one, two, 4 and 8 cluster nodes. The

speed is raised noticeable with less time for numerous particles in the four and

eight cluster nodes, which shown the algorithm is parallel.

2.5.2 REALcloud Framework

The REALcloud framework is a cloud service Platform, which offers the RE-

ALabs platform. The public Internet access to this platform is validated and

robotic services are available after a validated access. Robotic applications

on the REALabs server are further developed, which also offers a greater pro-

30

Figure 2.2: Architecture overview of the DAvinCi
(Roth et al., 2010)

31

cessing power than a single or on-board computer and access to specialised

devices such as GPUs and FPGAs. This capability is accessed from an in-

tegrated cloud environment to support a wide range of robotic applications

(Mahmood & Saeed, 2013).

The platform consists of four main cloud-connected packages. The Integrated

package includes HTTP server which is running on mobile robots. The treat-

ment capacity of these robots is expected to be low, so robots only combine

certain fundamental process while the task is carried out completely by the

cloud. All security control, proxy and network address translation is handled

in the Protocol Handler package. The programming interfaces are available to

the users as an APIs. Finally, the system and resource access are conducted

through the management package.

Figure 2.3 demonstrates REALcloud Framework structure, and each client is

limited to the use of their own VM during direct connections to the virtualised

REALcloud environment. Since it is harder for a VM to use another VM’s

resources. The above-mentioned packages are more obvious here: client pack-

ages operate on client side while the controlled packages and Protocol Handler

operate on the server side. (Mahmood & Saeed, 2013).

2.5.3 RobotCloud Framework

RobotCloud has been designed to permit the cheap robots to run computa-

tion intensive tasks on a cloud resources. Figure 2.4 outlines regular working

procedure of the RobotCloud architecture. which is Integrated into the ROS

32

Figure 2.3: The schematic diagram of the REALcloud Framework, Reproduced
from:

(Mahmood & Saeed, 2013)

33

Figure 2.4: The schematic diagram for RobotCloud framework architecture,
Reproduced from

(Doriya et al., 2012b)

Master Node as a central unit (Cloud Controller) to manage the entire system.

The unit transmits all requests for service to the Service Management Point

to check for permission. Registering / removal will then check the availabil-

ity of the service, which will put the request in the queue if not available.

The Cloud Controller is notified when permission is granted to the service is

starting to response to the robot requested. A Map Reduce computing cluster

and robotic services for example, path planning, and map building, which are

services supplied by the RobotCloud system (Doriya, Chakraborty, & Nandi,

2012b).

34

2.5.4 Rapyuta Framework

It is an open-source Framework that was designed to provide the client with

gateway to the RoboEarth knowledge-based repository and provide additional

processing power to the linked robots (Hunziker et al., 2013). The Rapyuta

platform is known as Cloud Engine for the RoboEarth. as a result of additional

processing power provded by the cloud, which can handle the processing power

required to interact with RoboEarth. In addition, it assist the linked robots to

offload robots tasks in a similar way as other cloud robotic frameworks and to

present themselves as a cloud computing platform (PaaS) especially designed

for applications with multi-process high bandwidth robotics (Mohanarajah et

al., 2014).

Rapyuta is a ROS compatible environment that utilises web socket-based com-

munications protocols to allow the connection of ROS robots, as well as other

browser machines. The network connection straight can be considered as limi-

tation for the performance of the system in contrast to other cloud computing

frameworks. (Mohanarajah et al., 2014).

The computer systems are Linux containers that provide a virtualisation envi-

ronment that enables a safe and scalable separation of processes from different

robots. The containers allow memory and processing time to be distributed

while maintaining application speed, as if the process were not isolated. This

method offers clever ways to address the problems of cloud computing security

and scalability. As the Rapyuta is using ROS, therefore, ROS inter process

communicates easily between all processes within one container.

35

Figure 2.5: Infrastructures of the Rapyuta platform. Reproduced from
(Mohanarajah et al., 2014)

The communication protocols are handled by Endpoint processes as shown in

Figure 2.5. This Rapyuta was implemented to balance the complexity and

latency of the system in the communication between processes. Interfaces for

each VM are used by use of the WebSockets protocol to communicate between

a Rapyuta internal and an external process (Mohanarajah et al., 2014).

The core task sets are several functionalists which are grouped as systems man-

agement processes. Each of the four core tasks in a standard case comprises a

process that creates a PaaS. The ROS Master node is the key unit that manage

link amongst robots withing the Rapyuta environment.

The system of the Rapyuta function is centrally organised. The component

network provides a layer of abstraction that the other components take ad-

vantage of. The user is a person who links his robots to the system. The

36

LoadBalancer administers machines running in a computer environment. And

the distributor distributes incoming links to the endpoint processes available

(Mohanarajah et al., 2014).

2.6 Evaluation of Related Work

The Cloud robotic systems presented in the previous section have various pos-

itive features that can be used in enhancing this work. However, only one out

of the four given multi robot framework is available to the public, which is

only Rapyuta. Yet, the DAvinCi project and RobotCloud framework have a

smaller scope, mostly relying on a map reduction cluster for computing and

both running on a single ROS Master Node. Since the transition of a multi-

robot system into the cloud is at the heart of this work, these qualities offer

them some kind of flexibility.

The REALcloud framework has similar issues because it does not provide the

communication mechanisms needed to create a multi-master environment to

the best of knowledge. While a multi-robot system does not require a master

ROS node on each robot, the strategy is to be promoted, as it offers robust and

reliable advantages that are essential when a distributed strategy is in mind.

Chapter 3 provides further information on the concept of ROS Master.

37

DAvinCi Framework

The DAvinCi framework uses an HTTP-based communication is a protocol

with proven results which has been established. While HTTP needs inspec-

tion, real-time task can only be performed in a cloud environment. In addition,

it allows efficient pluralisation by using a Hadoop cluster for running the algo-

rithms in parallel. However, the DAvinCi system is sharing a one ROS master

node operating on the cloud that adopt the proxy-based model. Therefore, it

is less robust and reliable as a result of the high potential for the single node

to fail. Furthermore, applications must be coded using Map Reduce patterns,

therefore decreasing applications flexibility and introducing a higher barrier to

entry than the other solutions. Finally, it is not open source and the design of

the system does not allow for separation of procedures and security.

REALcloud Framework

As with the DAvinCi framework, REALcloud is also based on an HTTP pro-

tocol. Even though inspection is necessary for HTTP, the cloud environment

does not provide real-time task capability and there is no ability to utilise on-

board computational resources in addition to the cloud resources in a hybrid

manner. However, the virtual environment and session validation offers an

additional security layer.

38

Robot Cloud Framework

The Robot Cloud Framework also combines a Map/Reduce cluster with pro-

cessing and storage. It adds additional services for service management, se-

curity layer and resource management mechanisms. However, similarly to

DAvinCi and REALcloud, only a single ROS master node is running on the

server, which means less strength and reliability due to the failure point on the

node. Robot Cloud is also not available under an open source license.

Rapyuta Framework

The Rapyuta framework uses HTTP protocol in addition to WebSockets, which

are the basis for more efficient communication compared to HTTP alone. It

utilises containers which is an easy way to distribute computational resources,

improving the scalability. Finally, it is open source, allows for easy access

to the RobotEarth repository and allows for the architecture of multi-master

environments. However, Rapyuta only supports old versions of both ROS

distributions and Linux distributions. This limits the compatibility of the

software in a heterogeneous environment and makes it difficult to debug the

multi-master environment, especially when containers is deployed in different

VM. Where the traffic has to be routed via the cloud local network. In addition,

automation support is poor.

39

2.7 Gap in knowledge

This research investigates a number of existing solutions that have been con-

ducted to address the challenge of creating a ROS-based multi-robot cloud

robotics development environment. However, those solutions are limited in

terms of integration, compatibility and availability. Most of the designed

frameworks are designed to target specific applications. Considering this, the

research gap this research attempts to address is the unavailability of a unified

multi-robot cloud robotics framework, which can support any standard ROS-

based application and can run in various cloud environments. The security is

not considered as a major factor in the contemporary work.

This research intends to explore the feasibility of integrating a two layer ap-

proach to security to enhance the authority session. The collaboration process

between robots in a multi-robot environment can be a challenge. Therefore,

as a test application for the proposed solution a collaborative FR approach

is to be designed and implemented. Such a collaboration system would allow

a robot to recognise a previously unseen face, based on data that has been

learned by another robot. A robust, secure, self-configurable, compatible and

scalable cloud robotics approach, as per our current knowledge obtained from

previous study, has not been implemented and hence these factors motivate

us to develop a single framework. To the best of my knowledge, there is no

research explore the optimisation of the network and hardware, while using

a cloud robotics system. Furthermore, this research attempts to contribute

knowledge and examine the impacts of the data quality in the network latency

performance, and how it relates to the robot application performance. A new

40

hardware optimisation study will be devised to address this gap in knowledge

while utilising cloud robotics systems.

2.8 Summary

This chapter provided an overview of the cloud computing concept. Then, it

explained the some of the robots application that involved within this research.

In addition, it discussed the cloud robotic topic and the current state of this

concept by looking into its current clanging and most popular deployment

methods. A comprehensive investigation into existing cloud robotics systems,

as well as the robots that could be used during the experiment. In addition,

investigations into a multi robot and multi environment real-time connection

for mobile robots.

Finally, this work has been inspired by the Rapyuta framework which imple-

ments ROS multi-master concept, where the communication is handled by the

framework also naturally leads to the construction of multi-master architec-

tures. However, it has number of limitations as highlighted in this chapter.

The compatibility and sustainability issues are the main factor of designing

this work which can serve as an alliterative solution. Therefore, the design

of the solution presented in this thesis attempts to provide a high level of

flexibility and scalability to multi-robot cloud environments.

41

Chapter 3

Robot Operating System

3.1 ROS Overview

The Robot Operating System (ROS) project introduced at Stanford Univer-

sity in 2000 was started as a platform to support only two robots: Personal

robots’ (PR) program and Standford AI Robot (STAIR). In 2007, a company

called Willow Garage contributed significant resources to creating the system

and contributed to develop robotic packages. Further resources and expertise

were provided by countless developers and study within the scientific commu-

nity. The ROS was released under a BSD open source license and steadily

attracted more specialists. Gradually, it has become one of the most popular

robotics framework for researchers and developers. ROS was moved to be a

global open source project, including the maintenance and main development

activities, in 2013. ROS is effectively implemented by huge number of users

worldwide. The ROS is defined as a development environment for robotic

42

functions, which provides off-the-shelf robot applications and programmable

robot environment.

ROS is an acknowledged license framework for open source code reuse that

enhance the productivity for the robot operating system. The system mainte-

nance and distribution are two main ROS components. In terms of the code

development, ROS is split into two sections: firstly, the essential part of ROS,

developed and maintained at the Willow Garage laboratory. It has most of the

fundamental tools for remote computing, as well as the whole ROS distribution

and core elements of the software. The second part is the “Universe”, which is

the world-wide scope of the code developed and maintained by the global ROS

community. Generally, the Universe includes libraries, software dependencies

and hardware definitions. These define the hardware architecture as well as a

low level of control to manage the linked devices, regardless if the device is a

robot or an individual sensor linked to a computer or smartphone.

In terms of OS, ROS support mainly Linux Operating system such as Ubuntu

and Debian, however, ROS hydro works with several other OS such as Android

and Microsoft Windows. ROS provides support for a wide range of hardware,

sensor and actuators. It defines the hardware architecture as well as a low

level of control to manage the linked devices, regardless if this was a robot or

an individual sensor linked to a computer or smartphone.

In order to run the ROS packages, at least one ROS master should be active

in the network as Figure 3.1 shows, the simple ROS connection system that

allows the ROS node to send and receive messages from other nodes. Once

the node has been registered on the master the message could be sent directly

43

Figure 3.1: The ROS basic system
(ROS : Intro To The Robot Operating System — Robohub, 2013)

between the nodes.

ROS has many elements that require an operational structure to control the

packages. ROS code is structured in packages. Where each Package comprise

a number of nodes, dependency, configuration files, libraries, and so on. The

aim of using a package is to offer a structure that is use easily to enable the

reuse of the software. ROS has flexibility to work with ready algorithms that

can be utilized for improving the robots performing complex tasks. SLAM is

an example that used for robot mapping and navigation (da Silva, Xavier, do

Nascimento, & Gonsalves, 2017).

3.2 ROS Structure

The ROS Framework has several code manageable nodes, messages, services,

tools and library files. There are a number of key concepts in the ROS file

44

system: the package, the stack and the depository. Packages include ROS

framework. Packs contain nodes, libraries of dependencies, setup files, software

from third parties, and so forth. The purpose of a package is to offer an easy-

to-use structure for easier software deployment. The appropriate stack is a

package collection with a complete set of features. The Structure of ROS can

be divided into three level of concepts as follows:

3.2.1 File System Level

The File system is the basic level and an essential building block in order to run

a function in ROS, as shown in Figure 3.2. This function contains structures

of folder and files to be executed. Each of individual folder has its unique

functionality, consisting of six types:

1. Packages The ROS core construction block is called a package. The

package includes the minimum requirement of content for a ROS program

to run, such as configuration files, nodes and libraries.

2. Manifests A manifest presents essential package data, for example, li-

censes, repositories, and dependencies.

3. Stacks Several packages which are merged and interact is referred to as

a stack.

4. Stack manifest Provides the essential stack data, such as dependence

and licenses.

5. Message is available in several data formats that can be sent between

45

Figure 3.2: File system level Structure. Recreated from
(Jusuf, 2016)

nodes.

6. Services determine the data structure for reacting to the request and

response.

3.2.2 Computation Graph Level

The computation graph can be represented as a point-to-point (P2P) connec-

tion form of ROS data processing. The software executes all the data and its

processes will be linked via a P2P network. As shown in Figure 3.3, this level

mainly consists of a number of key concepts:

• Master The Master deals with the name and identification for each

connected node. In addition, it works as a search engine when the nodes

looking for other nodes.

• Node It is a process that runs a task. When several nodes can be exe-

46

cuted simultaneously, the P2P connection involved can easily be drawn

as a graph. The nodes interconnect with the rest of the nodes by sending

messages.

• Message all the communication between nodes is sent and received via

messages. There are several types of message, for example, Integer (Int),

floating-point, and string. In addition, the user can create a customized

type of messages in ROS. The process of exchanging messages is per-

formed using a publish/subscribe model.

• Topic Nodes publish messages into a topic. A node is linked to the

source of the data only if the node is subscribed to topic. The topic-

based publish and subscribe concept is really flexible.

• Parameter Parameters offer the ability to edit the setting of the nodes

whilst they are interacting with each other.

• Service If feedback or response is required from a node, then a service

is a more efficient ROS method to use, as a topic on its own will not

be enough in this case. In addition, services allow interaction between

different nodes. The name of the service has to be unique.

• Bag it is used to store and allow play back of data. It is suitable for

developing robot software that requires collecting data, which may be

stored in a buffer to be processed.

47

Figure 3.3: The Computational Graph Level. Recreated from
(Jusuf, 2016)

3.2.3 Community Level

The ROS Community level is composed of resources for ROS that support

each community member, allowing the discussion of ideas and exchange of

robot applications and knowledge. These are defined as follows:

• Distributions ROS distributions are set of versioned meta-packages of

ROS that available online. There are twelve versions of ROS so far, which

are outlined in Table 3.1. ROS distributions are comparable in their role

to Linux distributions, where they provide an easy way to install and

setup a group of software and packages as well as support them with

steady maintenance for each version.

• Repositories ROS depends on a joined network of code repositories, as

various organisations and research group would be able to develop and

release new robot software projects.

• Wiki The ROS Wiki is the main website that stores and documents

most of the information about ROS distributions and software. As any

48

ROS distribution Release date Supported OS

Box Turtle March 2010 Ubuntu 8.04 to 10.04
C Turtle August 2010 Ubuntu 9.04 to 10.10
Diamondback March 2011 Ubuntu 10.04 to 11.04
Electric Emys August 2011 Ubuntu 10.04 to 11.10
Fuerte Turtle April 2012 Ubuntu 10.04 to 12.04
Groovy Galapagos December 2012 Ubuntu 11.10 to 12.10
Hydro Medusa September 2013 Ubuntu 12.04 to 13.04
Indigo Igloo July 2014 Ubuntu 14.04 LTS
Jade Turtle May 2015 Ubuntu 15.04, macOS, Android, Windows
Kinetic Kame May 2016 Ubuntu 16.04, macOS, Android, Windows
Lunar Loggerhead May 2017 Ubuntu 17.04, macOS, Android, Windows
Melodic Morenia May 2018 Ubuntu 18.04, macOS, Android, Windows

Table 3.1: ROS Distribution Releases
(ROS Distributions — ROS , 2018)

other Wiki users can contribute and upload their own documentation.

• Answers Blog ROS Answers is a forum that allow users to ask ques-

tions, where others can contribute their answers. The blog is other forum

that provides a consistent stream of updates, news articles and so on.

ROS has evolved from the initial Box Turtle release, where many of the stacks

in the ROS system had their initial 1.0 release, which required intensive user

testing and on-robot testing. As the distribution becomes more stable, the

release cadence has slowed down which has allowed robot developers to use

the ROS platform with a high degree of confidence in terms of performance,

reliability and sustainability.

49

Figure 3.4: Regular hardware arrangement of a single master ROS system.
Reproduced from

(Juan & Cotarelo, 2015)

3.3 Single ROS Master

The general network architecture for the ROS framework is designed for single

ROS master implementation, where a single ROS master is responsible for

managing all the connections among the nodes. The ROS master and the nodes

can both run in a single computer or multi-computers in the same network, as

shown in Figure 3.4. Each robot or computer must have at least one connection

method to the network, either Ethernet, wireless or both in order to be part

of a ROS environment (Juan & Cotarelo, 2015).

50

Figure 3.5: Hardware arrangement of multi-ROS master sub-systems collabo-
rating with each other. Reproduced from

(Juan & Cotarelo, 2015)

3.4 Multi ROS Master

The idea of sharing knowledge between various ROS environments open a new

challenge for the ROS community, where generally each ROS environment is

controlled by a single ROS master as mentioned in pervious section. How-

ever, in 2015 a project called Multi ROS master multimaster fkie proposed

a solution for creating collaborative multi-ROS environments. As shown in

Figure 3.5, the project utilises an additional network as a common network

that allows each ROS master to share some or all of their ROS topics, actions

or services among other ROS environments (Juan & Cotarelo, 2015).

51

Since multimaster fkie does not interfere with ROS node launching in other

ROS environments, there is no need to share the public keys between ROS

master nodes, it enables password-free access to shared published topics from

one ROS master to other.

In the case of using multimaster fkie, all the computers, smartphones and

robots in each ROS environment will share their selected topics via the ROS

master in their environment, which will have access to the ROS multi-master

system via the common network.

The major limitation of this framework is apparent when the multi-master

system communication is implemented via wireless interfaces, due to power

issues and interference. This has nothing to do with the framework itself, but

special care should be taken when using wireless connections. However, it has

shown reliable performance with a wired connection.

The multimaster fkie have several advantages in terms of security, scalabil-

ity, ease of installation and ease of use. The operator of each ROS master

is able to select the allowed topic to share and update, which keeps the lo-

cal ROS environment synchronized with the other ROS environments. This

multi-master solution is continually supported since the ”Indigo” ROS frame-

work up to the latest distribution ”Melodic”. Therefore, after critical analysis

and testing for the capability of this project to be moved to cloud network,

it was selected to be part of the proposed solution in this thesis to create

collaborative environment between the robot clone cloud images. The system

limitation identified is not applicable when you consider that the connections

between ROS-masters will only occur in the cloud side, where it has strong

52

network interconnection infrastructure.

3.5 Summary

In this chapter, the ROS framework was discussed, where a contextual overview

was given about the ROS system and its development history. In addition, the

ROS structure - divided into file system, computational graph and commu-

nity levels - was explained. The ROS single master architecture is defined and

it is identified how this limits the communication scalability in a multi-robot

scenario. Finally, an existing architecture for multi-master ROS deployment

identified in related work is discussed in more detail. The suitability of this

architecture is analysed within the context of this project, which aims to cre-

ate a collaborative environment between ROS systems where communication

occurs in the cloud, rather than directly between robots. This architecture

will be incorporated in the design decisions of the system outlined in Chapter

5. The following Chapter describes the methodology that has been applied

within this research.

53

Chapter 4

Research Methodology

4.1 Introduction

The aim of this chapter is to define the research methodologies chosen for

this work, and the reasons for selecting a particular methodology. Detailed

hardware and software specifications for “robot test-bed” are explained. In

addition, the methods of data acquisition and data analysis techniques used

for this research are outlined. The design of the case studies and the experimen-

tal work undertaken is presented, highlighting the need for a mixed method

approach and well defined scope in order to evaluate the system within the

context of the cloud robotic field which is growing in the size and number of

applicable scenarios and circumstances.

54

4.2 Research Methodology

This work adopts the usage of an empirical research methodology to accom-

plish its objectives, which basically means ”An investigation that produces

results based on direct observation rather than theory and preconceived mod-

els” (Paradies, 2006). This method was selected since this study is designed to

examine the defined issues in a real robot as mentioned in section 1.2 instead

of the use of simulated environments.

Firstly, an inductive research method was utilised to build a cloud robot sys-

tem that is capable of handling some of the offloaded robot common tasks

in single robot environment. The idea of the research has been established

by applying a bottom-up approach, where the theory of current CCRP was

gradually improved from observing the performance of various cloud robotic

deployment models. In addition, a deductive research method was utilised in

order to endorse and validate our theory. The design of a novel framework

solution was accomplished to address the issues stated in Section 1.2 and fulfil

the objectives defined in Section 1.3, and ultimately answer the posed research

questions. The CCRP system was tested and evaluated via two case stud-

ies that enabled validation of the performance of our system. A quantitative

research was applied in this study through gathering a large dataset that is

going to be collected from various experiment and case studies, obtained and

analysed using quantitative tools.

Initially the focus is put on developing the CCRP system with both private

and public clouds, and testing if the system was compatible with different in-

55

frastructures. Following the chronological order of activities undertaken during

this research, next an optimisation study is conducted in order to determine the

range of parameters to be used in the case studies when comparing the CCRP

to other approaches. The next step was to observe the system performance

while it is running a fixed time task, in order to evaluate the performance of our

approach in contrast to multi-robot proxy-based model cloud robotic system.

Finally, the proposed solution system was tested and evaluated in a sequence

of representative robotic case study scenarios, which will result in a number of

recommendations for future research and development for the CCRP.

4.3 Research Approach

The topic of the cloud robotics is relatively new, first suggested in 2009 by the

RoboEarth project (Waibel et al., 2011). This project opens the door for a

number of research that focused on applying various kind cloud robotic model

and framework that stated in Chapter 2, in order to improve the on-board

robot performance. The models for cloud robotics solution have been inspired

by the existing systems identified during an appraisal of published work that

is devised and developed further through innovation and new insight in multi-

robot cloud robotic environment, with respect to our robotics lab capability

in terms of hardware and software.

The existing solutions will continue to be assessed via literature published

in academic papers, journals and books. Thus, in a field where the lack of

academic resources is acknowledged, the development and resulting analysis

56

Figure 4.1: General CCRP Methodology

will contribute a major part in this research.

This study proposes a new multi-robot cloud robotic framework that deploys

the clone-based cloud robotic connection model that allow the on-board robot

to offload process and receive control commands or feedback. The proposed

model is developed based on the analysis of the existing model and a novel

solution created in order to overcome their limitations. As shown in Figure 4.1

the general CCRP methodology as each robot (R) connected to a ROS master

VM (RM). The connection between the master nodes done via the common

network. Also, the system suggests the use of configurable API manager to

allow access external resources.

The key issues in the current generation of cloud robotic systems are commu-

nication and latency. This problem grows with increasing number of robots

that must communicate with the cloud system. Therefore, our solution tries

to enhance the usability and availability for the cloud provider by using multi

57

ROS core system. This technique is going to allow each robot to utilise the

cloud machine by itself without sharing the resources. The clone-based model

provides the system with high level of robustness and resource availability;

therefore, it is expected that it can improve the communication performance.

However, the robots will still be able to share data and communicate with

other robots that runs in a different ROS environment via the Multi-master

network layer “Common network”, which is going to be defined in Chapter

5. The CCRP is thus designed to provide sustainability, where the CCRP

can be deployed with most recent ROS distributions and subsequent robot

applications.

4.4 Experimental robots

The research was limited in terms of real robot selection as there was only three

type of robots within the University of Huddersfield robotic lab namely: the

NAO robot, Turtlebot 2 robot and AR. Drone 2.0. Two out of the three avail-

able robots were used: the NAO robot, Turtlebot 2 robot, which explored in

more details in this section. Other robots were considered as ideal robot solu-

tions for the research experiment, such as the humanoid robot ”Pepper”.

4.4.1 Humanoid robot NAO

In 2008 the Aldebaran NAO Robot have been introduced in its final form as

Figure 4.2 shown, which designed to resemble the human appearance. It is

58

one of the most common robots accessible for education. The robot weight

about 4.5 kg and above half a meter in height. The robot has a wide collec-

tion of sensors and actuators, which allow it to interact with the surrounding

environment. it is equipped with a set of sensors (e.g., tactile touch and

four microphones). There are two VGA CMOS cameras are equipped with the

Nao’s head and speakers as shown in Figure 4.3. it has two connection method,

which are: Wi-Fi and Ethernet. In terms of CPU, it comes with an X86 AMD

GEODE 500 MHz CPU. (Ismail et al., 2011)). It has numerous features that

allow it to perform tasks where human-interaction is a key element, such as

face recognition and speaking.

In regards of software, NAO is provided with the NaoQi 2.0 software that runs

on Linux OS. The software manage the access to all the NAO sensors, sending

the control signal to actuators, sensors, control the Wi-Fi network. NaoQi is

capable to perform functions in both parallel and serial. NaoQi’s functions

have bindings for both C++ and Python programming languages. (Aagela,

Holmes, et al., 2017)

The NAO robot has two cameras as shown in Figure 4.3 the Field of view of

NAO video cameras. The cameras support various video qualities and resolu-

tions as shown in Table 4.1, with a maximum frame rate up to 30 fps. The top

camera is used for recording and video streaming during the experiment.(Ismail

et al., 2011).

59

Figure 4.2: NAO H21 Robot design (Aldebaran.com, 2018)

60

Figure 4.3: Field of view of NAO video cameras
(Aagela, Holmes, Dhimish, & Wilson, 2017)

Video Quality Resolution

K4VGA 1280x960
KVGA 640x480
KQVGA 320x240
KQQVGA 160x120

Table 4.1: Video Quality Provided By NAO Robot
(Aagela, Holmes, et al., 2017)

61

4.4.2 Turtlebot Robot

TurtleBot robot is a wheeled robot that was built by Willow Garage (Garage,

2011) which is supported by ROS. It has a various kind of sensors fitted on

its mobile-base that allows for the robot to perform several task such as, navi-

gation, mapping, and path planning on unknown environment. The hardware

part includes several parts as shown in Figure 4.4 such as Microsoft 3D sensor

Kinect or 3D sesor ASUS Xtion Pro. It has a wheeled Mobile base and NiMH

Battery Pack that provides 3000 mAh capacity (TurtleBot2, 2014).

The TurtleBot operation and tasks can be tested by both the real robot or

a simulated one provided in ROS, using the Gazebo simulator together with

Rviz 3D visualisation software (Zamora, Lopez, Vilches, & Cordero, 2016).

Together these offer the most suitable way to inspect the TurtleBot’s features

and capability.

4.5 Cloud Platforms

This section provides information about the cloud platforms used to conduct

the research activities. The research selects two Cloud computing platforms,

which are public cloud (Google Cloud Platform - GCP) as well as private cloud

(Openstack).

Nowadays, Google Cloud Platform is one of the most significant and growing

in the public cloud computing market. It offers users numerous remotely acces-

sible services to design and develop various applications from just a website to

62

Figure 4.4: Turtlebot Robot and schematic diagram
(TurtleBot2, 2014)

63

Figure 4.5: Google cloud platform compute engine global scope
(Google Cloud Platform Overview , 2018)

complex worldwide distributed services. GCP provides a wide range of cloud

service such as compute engine, app engine and storage (Navale & Bourne,

2018).

The selection of GCP was based on various aspects, first of all, it has a large

world-wide region, which allow users to select the physical deployment location

of their VMs in various zone and regions, as shown in Figure 4.5. This choice

relative to the device accessing the cloud services can significantly impact

the network latency. In addition, GCP provides full configurable network

environment which is very important for our system (Google Cloud Platform

Overview , 2018).

64

Figure 4.6: University of Huddersfield OpenStack Private Cloud fabric

4.5.1 OpenStack

In this research OpenStack is used to create a local private cloud platform

within the University of Huddersfield network infrastructure. The reason for

configuring our own cloud platform is to prove the compatibility of our pro-

posed system with the private cloud environment where no external public IP

provided. In addition, our system attempts to enhance the privacy and secu-

rity, therefore, using private cloud platform can be a first option for organisa-

tions which are concerned of sharing their data with a third-party company.

The deployment process of OpenStack can be done via various methods, in this

research the OpenStack cloud was designed and developed using multi-node

Devstack installation, for which the steps of implementation can be found in

Appendix B. In terms of the fabric of the system, it includes one cloud con-

troller and two compute and storage nodes, shown in Figure 4.6. This system

is used to host a number of VMs for the a robot clone images used in the

experimental work in this research.

65

4.6 Case Studies

The field of cloud robotic is growing and the proposed system tries to be a

general solution for single and multi-robot environments. However, evaluating

the performance in terms of all possible scenarios and circumstances is not

feasible. Therefore, this work designs two case studies to assist the CCRP in

two key factors: the ability of supporting various kind of robots with real-

time response time and low latency, which should be less than 400 ms to be

considered as acceptable real-time according to (ITU, 2003). In addition, to

provide the ability to share knowledge amongst several robots in multi-robot

secure environment, and the capability of offloading the regular robot task to

the cloud.

4.6.1 Real-time robot teleoperation and mapping

This case study merge between the process of teleoperation and the mapping,

where both tasks usually needed before the robot is be able to navigate in

unknown environment. As mention in section 2.4.1 the mapping task require

substantial amount of RAM with minimum one Gbyte and high processing

power, which are available via the cloud. Also, the teleoperation process is

allowing the operator to navigate around the unknown area to create a map for

the surrounding environment. The objective of this case study is to analysis the

real-time performance and the capability of both robots “NAO and Turtlebot”

and compare it with the local ROS scenario. Which consist of three major

tasks:

66

1. Teleoperation

2. Offload video

3. Create Map

The scenario of this case study is defined to suit our robotic lab capability and

the available resources. The main task is to create a full map for the room

and teleoperation between two points with obstacles.

4.6.2 Collaborative Face Recognition for Multi-robots

In general, the face recognition task for most of the Humanoid robot is a

key ability that should be performed in order to react with different response

according to the person’s identity. This case study designed to measure FR

Confidence rate and response time performance of the multi-ROS master and

multi-robot environment for the proposed system. As here the scenario is

using two NAO robot to perform learning and recognition faces task for 10

people.

4.7 Data Collection and Analysis

The data is collected in various parts throughout this research by observing

performance and outcome of a number of experiments at the University of

Huddersfield robotics laboratory. The data collected by two main methods:

firstly, by using network analysis advance tools such as Wireshark and Nload

as well as using ROS time measurement tools. There are a several occasions

67

where the data is going to be collected during this study. The second method

is by observing the outcome of executed tasks and gather the result. The

collected data are kept in an Excel Files (.XLSX), in order to perform some

data analysis. The data sample for each experiment is defined with more

details in each related section.

Initially, before analysing the data, the collected data have been checked in

case there are any corrupt results or errors in the values. Some of the data

was plotted onto a graph for distribution analysis to discover and outline the

vital relationships. Other data was processed before plotting as the plotted

graph was for data averages value. Subsequently, an observation was made

to determine the desirable result of the generated graphs. Finally, a com-

paction evaluation looked into the difference in the performance between the

measurements of local ROS performance and measurements of CCRP into the

cloud.

4.7.1 Reliability and Validity

One of the most important factor is assist research outcome is to look into the

reliability and validity of the collected data, this part is presenting the methods

of how the reliability and validity of the gathered data was appraised.

Reliability

The reliability of the obtained data was evaluated by examining the variable

Cronbach’s alpha (α) that was used to determine the data consistency, a soft-

68

ware called Statistical Package for the Social Sciences SPSS have been used to

calculate the value of α, which has to be can be define as a formula (1) shows,

which use the number of data items and the average inter correlation between

the items (Vaske, Beaman, & Sponarski, 2017).

α = N.c̄
v̄+(N−1).c̄ (1)

• N is the number of data items

• c-bar is the average inter correlation between the items

• v-bar is the average variance

The formula (1) suggests that if the number of data items increases the α will

increase. Also, if the average inter-correlation between items is low, therefore,

the α will also be low. As the average inter-correlation rises, α increases as

well.

(Gliem & Gliem, 2003), (Vaske et al., 2017) debated that the level of the reli-

ability of any collected data can be obtained by calculating α, and to consider

collected data as reliable source, the acceptable level should be between 0.65

to 0.80.

Moreover, there is other factor should be considered when measuring the re-

liability is the fact that the study is conducted with an actual robot not a

simulated one. Therefore, the obtained data was measured repetitively to

improve the reliability level.

69

Validity

The validity of the gathered data was weighed by comparing the outcomes of

the experiment in local system performance with normal ROS environment

with the result obtained from the proposed system.

4.8 Performance Evaluation

The process of evaluating the performance was divided into several stages, in

order to determine the system usability, compatibility and performance ca-

pability as a full stack cloud robotics solution. The selected case studies are

going to be used to benchmark the performance of the proposed solution by

stressing out the network and the system, in order to identify the limitation

and bottleneck for the new cloud robotics approach. Moreover, the perfor-

mance of the task functionality and the level accuracy both were observed,

and measured by analysing a set of factors, such as round trip time (RTT) via

the cloud, response time and accuracy level ”confidence”. The system is going

to be deployed with various Linux and ROS distributions in order to verify the

compatibility and functionality of CCRP.

Confidence

This metric measurement is useful in identifying the performance of the robot

task, such as object recognition and navigation. It represents the probability

of the accuracy of the recognised object or face. The evaluation metrics for

70

measuring the performance are related to object and face recognition tasks.

The outcome of those robot tasks has two possible results: succeeded or failed

to perform the given task. The following formulae show how to define the

success and failure rate:

• Success rate percentage of the overall succeeded tasks, defines the level

of the reliability of the running the given task.

Successrate = SucceededtasksTotaltasks ∗ 100(2)

• Failure rate opposite of the success rate.

Failurerate = 100 − Successrate(%)(3)

Response Time

The service response time average is also an important factor that needs to be

measured. It is defined as the overall time required for the system to react to an

action or event. There are a number of variables involved to obtain the average

response time. This includes the network latency and the processing time,

buffering or queuing time. The response time determines the performance of

the given service. The impact of this time was different based on the nature

of the task. There are some tasks, such as object recognition, where a firm

deadline is required to be met in order to run the received action.

Response Time = Network Latency + Processing Time(4)

71

4.9 Summary

This chapter outlined the research methodologies that were applied to fulfil

the research approach aim and objectives, demonstrating the process of the

research approach. The robot equipment used in this research was defined in

addition to the cloud platforms utilized. A brief summary of the designed case

study was provided and the reason behind the selection, in order to address

the key issues of multi-robot communication and latency. The methods used

to collect data are defined along with the analysis technique. It is recognized

that the potential scope of a general purpose multi-robot cloud solution en-

compasses an ever increasing range of scenarios and applications. Therefore,

two key applications have been defined which are - teleoperation and mapping,

and face recognition - and incorporate an optimisation study into the method

to determine the range of parameters which should be used when comparing

the CCRP system to other solutions. Finally, the evaluation performance of

the system was discussed. The following chapter describes the design and the

architecture of our proposed system.

72

Chapter 5

Clone-based Cloud Robotics

Platform (CCRP)

5.1 Introduction

This chapter will describe our novel cloud robotic platform design and imple-

mentation. The CCRP allows the full stack deployment of ROS-based multi-

robot systems on a virtual cloud environment. The main objective is to develop

a standalone, self-contained and re-configurable clone VM, which will allow sin-

gle robot or multi-robots to be connected, providing increased computational

power and storage to the on-board robot’s resources. In addition, this platform

is designed to enable the robots to connect to external cloud services via the

API manager. Finally, it provides a secure communication between robots in

a collaborative environment.

73

As shown in 5.1, CCRP provides a cloud VM per robot, each with the associ-

ated ROS applications installed within it. Each VM is responsible for handling

off-loaded processes from a robot, managing API requests, and providing the

robot with additional storage. This approach defines a model that allows a

ROS workstation or edge device, that would typically serve the robot locally,

to be migrated to the cloud.

In addition, the CCRP proposes a network architecture using a Virtual Private

Network (VPN) and a ROS bridge to establish secure connections between the

robot and its clone image in the cloud. In a multi-robot collaboration scenario,

this model utilises the multi-ROS master that permits robots to “see” each

other via an additional network layer - the ”common network”. The multi-

ROS master allows a clone image executing a master for a particular robot to

share some of the topics with another clone master image. Therefore, robots

can collaborate with others by publishing or subscribing to the topics via the

common network.

From a technical point of view, this model establishes a cloud robotics solu-

tion to increase the mobility and interaction abilities of the robot, where the

collaboration between multiple robots does not depend on the geographical

location of the robot.

This chapter includes a general overview of the CCRP architecture, followed

by a description of the design network architecture that is the backbone of

the CCRP architecture. In addition, API manager is described. Finally, the

low level implementation detail of each component is explained. The following

publication have arisen from my research detailed in this thesis: Novel clone-

74

based cloud robotic model to overcome limitation of the multi robots QoS by

Aagela, H., Holmes, V (2019).

5.2 CCRP Architecture

A general overview of the CCRP architecture is presented in Figure 5.1. Unlike

other multi-ROS master solutions, the CCRP provides the user with a fully

configurable full stack clone-based cloud robotics platform that is compatible

with most ROS recent distribution. Therefore, the user can build a customised

CCRP system based on their needs. In addition, it provides a dynamic scaling

capability as well as providing additional layer of security by using both VPN

and Public Key Infrastructure PKI.The CCRP utilise set of existing software

elements and link them together. As shown in Figure 5.1, the CCRP archi-

tecture is spanning over two sides, the cloud side and a client side, where each

side has its own configuration.

The cloud side contains of several Clone ROS Images (CRI) that run inside

a Virtual Machine (VM). Each CRI must be created within a Linux based

OS (supporting ROS distributions on Ubuntu 14.04 or above). It includes a

number of software components as shown in Figure 5.2; those components are

defined as follows:

• OpenVPN server a containerised secure network with VPN software

network tunnelling solution that works in both client and server sides

(Feilner, 2006).

75

Figure 5.1: CCRP Architecture

Figure 5.2: CRI software stack

76

• ROS core a number of nodes and associated software responsible for

initializing the ROS based system. One ROS core must be launched to

establish a ROS environment (Quigley, et al, 2009, May).

• Navigation Stack a collection of software that support the robot to

navigate in its environment, such as, teleoperation, mapping, localiza-

tion, path planning and navigation (Quigley, et al, 2009, May).

• Perception stack the perception ROS package is a ROS holding all

the perception associated applications, such as object detection, face

recognition, and so forth. Also, the important libraries for example,

PCL, OpenCV and others (Koubâa, 2017).

• API manager a server-based application that provides the robot with

access for a set of external APIs such as Google vision API and others.

• Multi ROS master a key feature in this architecture; built on ROS

software and allows the process of sharing services and topics amongst

several ROS environments (ROS masters).

The client side of this architecture can be composed of three components:

robot, edge or operator. If the client-side acts as the robot and edge, the

installation of ROS will be based on the robot type. If it is an operator, the

installation will include some visualisation tools and exclude the robot ROS

packages. The CCRP integrates a number of key elements that need to be

configured, described as follows:

• VPN client used to connect the robot to the VPN server that is hosted

on the CCRP.

77

Figure 5.3: The RVIZ visualiser application

• ROS with robot packages each robot has its own ROS libraries and

software (robot and edge only).

• ROS bridge a tool used to establish a link between the ROS nodes and

ROS master.

• Rviz and Gazebo (operator only) used for displaying both sensor

data and state information from the ROS.

The operator components Rviz and Gazebo are used to view the robot model

and current position, video streams from onboard cameras, 3D model and any

map that might be created. In addition, the software is able to deal directly

with robot sensor topics, such as infrared distance measurements, camera data

and sonar data, as shown in Figure 5.3.

The connection between the CRIs is using the local cloud network, which is

utilised as a common network to share topics between robots via the respec-

tive clone images. In addition, the cloud side provides the user with an API

78

manager application that can be used to connect to any API in order to access

external services.

An innovation in the CCRP model requires each client to be connected via

the VPN tunnel and have their PKI register with the respective CRI before

establishing an authorised link between the client and the cloud. Once the

link is available, clients use ROS bridge to discover and connect to the ROS

master.

The clone-based model was selected to increase the robustness, security and

reliability of the system. This architecture allows the full potential of utilis-

ing IaaS platforms to deploy a cloud robotics application with a high level of

flexibility and elasticity of implementation. Moreover, the design of CCRP

architecture supports robot mobility, where the networking configuration is

separated from local environment, and each robot will connect to the cloud

provider over the external network. This addresses the lack of travelling dis-

tance in a regular ROS environment. In addition, it allows the process of shar-

ing knowledge between robots regardless to the geographical location.

The VPN network that runs within the CCRP system is expected to introduce

some communication overhead, which is analysed together with the impact

of the physical location of the datacenter. The proposed system is likely to

slightly increase the network latency between robot/edge and their controller

node CRI. In terms of system performance, the impact of this can be longer

response time as demonstrated in Chapter 6. This impact will heavily rely

on the physical distance between the client and its CRI datacenter, and the

resulting network performance.

79

Figure 5.4: The CCRP Network Architecture

5.3 Network Architecture

In this section, the network architecture is described, where in our approach

the network architecture plays a major role in determining the overall system

performance of any cloud robotics system. The design of the network has been

made based on the challenges identified from previous work: compatibility with

ROS local environments, providing secure connections between the robot and

the cloud, and supporting at least three subnet networks which implement the

common network for multi-master ROS. Therefore, a VPN based interconnect

was selected to provide the additional virtual subnet network. OpenVPN has

been implemented to establish connectivity between the local network on the

client side with the one provided by the cloud.

As Figure 5.4 shows, the network architecture is divided into four different

network schemes that run in both cloud sides and Robot/Edge sides. The

first network NP is the public IP network or the internet network, each of the

80

clone instance VM will need a public IP that will be assigned by the cloud

provider. The second network NC is the cloud local ”Common Network”

where each of the instances within the same cloud environment has its own

local IP, accessible by other instances in the same domain. This network is

used as the common network for the multi-master ROS, which establishes a

link between individual ROS environment to share their selected topics. The

third network NV is the VPN network. This is the key network that allows

the Robot/Edge to connect to its respective clone image as well as adding a

secondary virtual subnet network for the VM, which is going to be used by the

local ROS environment. Finally, NRN is the local network for the robot or

the edge, which could be any internet enabled network, such as, LAN, Wi-Fi

and Cellular Mobile network (3G or 4G).

This network architecture is applied for each CRI, therefore, robots will not

be visible directly to each other, where each robot only can access its CRI via

the VPN network. Thus, the security level is enhanced, however, there must

be no conflicts between the topics shared by the robots. The Transmission

Control Protocol (TCP) protocol used to offload and download the traffic over

the VPN network provides a connection-oriented network with lowest packet

loss in contrast to use of User Datagram Protocol (UDP).

5.4 API Manager

The API manager is an additional feature added into the CCRP system to

allow the system to access external Internet resources, which can potentially

81

expose the robot to access huge datasets and advanced algorithms. In addition,

it can minimise the size of the CRI for tasks that require a huge dataset, such

as trained data for object recognition, by not requiring each CRI to store the

data locally in order to perform the function.

The designed API manager suggests using a public cloud API, such as Google

Object recognition or Azure object recognition. The API manager used as a

web application that subscribes to robot data, then a request will be submitted

to the API service provider. Once the result is received, it will be published as a

new topic. The CCRP design demonstrate the usage of the Google vision API

to obtain information about an unknown object which has not been trained to

recognise. The feedback of the API will return with a list of match set. The

best match will be taken after filtering matches. The API manager application

is implemented in each CRI individually.

5.5 Security

Distributed system architectures such as cloud computing, together with the

emergent Cyber-Physical System (CPS) architectures of robotics clouds, present

significant challenges for security and privacy (Ren et al., 2012). The wider

distribution of cloud nodes and the extent and nature of the data collected,

transformed and exchanged between robots and their clones within clouds are

potential system vulnerabilities. In the cloud computing domain, authenti-

cation permits the integration of various robots deployed in various contexts.

However, cloud robot applications are exposed to security and privacy threats

82

by virtue of exploits, eavesdropping, distributed attacks, viruses, malware at-

tacks, and other known attacks upon cloud computing architectures (Al-Aqrabi

& Hill, 2018).

In a multi-robot environment, the authentication frameworks cannot be static.

The business systems running on clouds are dynamic and hence the authen-

tication interactions need to be dynamic, as well ((Al Aqrabi, Liu, Hill, &

Antonopoulos, 2014),(Sotiriadis, Bessis, Antonopoulos, & Hill, 2013). For

robotic clouds, there is the additional interactions between the cyber and phys-

ical systems to take account of, which is inherently dynamic as well. This is

compounded by the fact that the system must manage the authentication of

multiple parties within a multi-robot cloud environment.

There are many factors that could indicate the level of the security of pub-

lic cloud systems, such as encryption techniques, the number of open ports,

rule-based access control and password complexity. The CCRP addresses the

security issue by utilizing a two-level authentication technique: the first level is

VPN authentication using username and password. The second level is a Pre-

shared key (PSK), public key infrastructure (PKI) between the robot/edge

and its clone. As a result, the level of the security between the robots and

cloud is significantly increased, meaning that only an authorised robot will be

able to connect to the cloud services.

The process of sharing knowledge between the robots is managed by the multi-

master ROS application where the robot will share only the authorised topics

that are selected by the robot’s operator. Specifically, in a complex application

there is a need to securely delegate access control mechanisms to one or more

83

parties, who in turn can govern methods that enable multiple other parties to

be authenticated in relation to the services that they wish to consume. The

data privacy in the world of the cloud computing is a major concern for cus-

tomer with sensitive information (Ren et al., 2012). The CCRP try to address

this issue by demonstrating the compatibility of the CCRP with a small-scale

private cloud platform, which can be provide a virtualised environment and it

operated only locally within an organisation network.

5.6 CCRP Process Handler

This section is explaining the procedure of the way our system handles dif-

ferent kind of processes. Initially, the client side is responsible for initiating

the connection to the CRI: first the VPN client connects to the VPN server

using generated script, which will require the client to provide a username and

password for authentication.

The process of offloading the robot task from the on-board robot to the cloud

starts by checking the availability of ROS master from the robot side. Once the

robot is connected to its CRI, then the cloud application deals with the robot

request via its topics. A robot sends a request message to a cloud endpoint

through a ROS bridge. The CRI, through the cloud endpoint node, will reply

with the response for the robot request, which is usually a task needs to be

executed or a data need to be stored.

Finally, the process of sharing knowledge is happening between the CRIs,

where each CRI has a unique machine name that is used to look up other

84

ROS master within the common network by implementing the multi-master

discovery mechanism.

It allows CRIs to share datasets to other robot’s topics. Therefore, the autho-

rised CRI can obtain shared resources over two main methods: the first method

is to obtain a live data via subscribing to targeted CRI topics. The second

method is to pre-share data between the CRI using techniques that work on

merging the new obtained data from one system with others. a method of

merging was used to merge the new obtained files which is provided in the

ROS distribution to create a synchronised unified knowledge dataset among

CRIs, by using the ”merge bag.py script.

5.7 Implementation

This section covers the process of deploying the CCRP, which consist several

steps and include several elements. Therefore, the installation process of the

system is divided into number of subsections.

5.7.1 Cloud Setup

The CCRP system can be hosted in a cloud VM of the operators choice. In

this research, The CCRP was implemented within two cloud platforms, Google

Cloud Platform (GCP) and our local OpenStack cloud. The process of setting

up the VMs were similar in both cases. There are essential configurations that

need to take place with the cloud virtual environment, first, deploying the

85

appropriate operating system OS such as, Ubuntu or CentOS. In case of GCP

the process of building the VM the user should select the zone and region of

the physical datacenter.

The right amount of resources must be allocated (CPU, RAM and storage)

depending on the robot’s requirements. Next, configuring the network pol-

icy rules and cloud local network setting to open the needed protocols and

ports (the default setting for most cloud providers restricts access via a fire-

wall).

Finally, a floating IP address is assigned to the VM as an external way of com-

munication - this IP can be a public IP address when a public cloud platform

is used or a local IP address in an organization that deployed its own private

cloud within the local network.

5.7.2 ROS Installation

The ROS installation is a key process of the deployment of CCRP, which is

explained in detail in Appendix C, both ROS Indigo and kinetic were used in

this research, because of the compatibility with all essential libraries for the

available robots in our lab.

Once the ROS is installed in both side of the network, the Network Identifica-

tion between the robot/edge and its clone must be defined by populating the

IP address and hostname by using the command line in the Linux terminal and

edit the “/etc/hosts” local system file, which is done manually. As the CRI

host has three IP address that is Public IP address, Local cloud IP address

86

and the VPN address. The VPN address is used for the ROS environment

network setup. The following commands used to setup the IP and hostname

configuration for the ROS in the cloud side.

export ROS IP=”VPN IP address o f the c loud s i d e ”

export ROS HOSTNAME=”Hostname o f CRI”

Similarly, for the client side, the VPN IP address and hostname will be con-

figured, but, an additional configuration is required in order to define the IP

of the ROS master.

export ROS IP=”VPN IP address o f robot or edge s i d e ”

export ROS HOSTNAME=”Hostname o f robot or edge s i d e ”

export ROS MASTER URI=http ://”VPN IP o f CRI”:11311

In the robot/edge side, there is extra robot related packages which need to be

installed and those configurations will vary based on the type of robot. In this

research there is a need of installing two software stack that are going to be

used for the experiments conducted in Chapters 7 and 8. The first package is

the navigation stack package that can be installed for most ROS distributions

by using the following command:

sudo apt−get i n s t a l l ros−”ROS d i s t r i b u t i o n”−nav iga t i on

The second package for face recognition case study that must be installed from

source, where a workspace folder named catkin ws must be created and the

87

following commands has to be applied:

cd ˜/ catk in ws / s r c

g i t c l one https : // github . com/ procrob / p r o c r o b f u n c t i o n a l . g i t

−−branch catk in

cd ˜/ catk in ws

catkin make

source ˜/ catk in ws / deve l / setup . bash

One of most important packages to deploy multi-robot environment for CCRP

system is the Multi-master ROS. The installation for the multimaster fkie

system will take place once the ROS environment configured in the CRI. The

following command used for the installation, which again can be used with

various ROS distributions:

sudo apt−get i n s t a l l ros−ROS distr ibut ion−m u l t i m a s t e r f k i e

Once the multi-master software installed in all CRIs then the operator must

run a discovery script to allow the application to search and find the other

ROS master nodes. In each CRI, the operator must also define which topic to

share within the multi-master environment.

In addition, the time synchronization between the ROS master and connected

nodes is a critical factor in the communication, which needs to be always

synchronized. ROS utilizes a software named Chrony to schedule the Network

Time Protocol (NTP) updates.

88

5.7.3 VPN Setup

The OpenVPN application is utilized to create the VPN connection. The

reasons of using this particular software are that it provides a full manageable

VPN web-based solution, where the user can create and manage users and edit

the setting by web dashboard. The server and client sides require two different

installation steps for the OpenVPN as follows:

Server Side

• Install the OpenVPN software type

• Creating new user that to be use by the client via the dashboard

• Edit the SSL library to use the OpenSSL protocol

• The method of accessing the private subnet of the server side must use

routing technique instead of NAT as shown in Figure 5.5

Client Side

On the client side, the OpenVPN software is installed and the VPN profile is

downloaded over the external IP for the CRI. It can then be used to start the

VPN connection as follows:

sudo openvpn −−c o n f i g c o n f i g . ovpn

89

Figure 5.5: The VPN settings on the openvpn dashboard

Once the above command is used a username and password will be required

to allow the connection to be established.

5.7.4 Scalability

The process of deploying the CCRP is not complicated, however, to reproduce

a large number of CRIs can be time consuming for a cloud application, thus,

the deployment time can impact the scalability of the system. Therefore, the

snapshot was used as a method for CRI redeployment. The snapshot allows

90

a user to create a customised image of the VM in certain state, hence, the

operator can create a snapshot of the fully configured CRI that can be quickly

used to recreate a CRI VM when needed.

5.8 Summary

The concept of the CCRP system was outlined in this chapter. Firstly, the

architecture of the CCRP was explained that include a breakdown of the essen-

tial element in the system. Then the network architecture of the system was

defined. In addition, the API manager was explained. Followed by a discussion

about the security that implemented within the CCRP system. Moreover, a

brief explanation of the process handler of the CCRP system was provided.

Finally, the method of implementation was given that provide a clear specifi-

cation of the deployment processes of the CCRP.

The CCRP framework introduces the novel integration of various technologies

applied to multi-robot cloud systems. A VPN is utilised for cloud to robot con-

nectivity, and the interconnection model is devised to allow multi-master ROS

interoperability between both public and private clouds using a single unified

network architecture. This provides flexibility to generally deploy many types

of robot communication typologies, where previous solutions have focused on

narrow use cases. This reduces the operator effort required to take advantage

of cloud offloading and efficient common network communication regardless of

the geographical distance and connectivity limitations (such as availability of

public IP addresses).

91

Chapter 6

Cloud Robotics Optimization

6.1 Introduction

This chapter presents a number of experiments that aim to profile the network

performance and analyse the relationship between the data quality and accu-

racy level of robot face recognition task. The results from these experiments

are used to define the parameters for the CCRP evaluation in Chapters 7 and

9, in terms of video stream resolution, bandwidth, Frames Per Second (FPS),

and the effect this has on the accuracy of the FR algorithm. The second part

considers the optimisation of a low cost and low power consumption robot that

still able to perform some of the robot complex task such as creating 3D model

for objects and maps of the surrounding environment, which will be used to

evaluate the cloud offloading capability of CCRP in Chapter 8.

Indeed, the network connectivity and performance are major issues that face

92

any cloud robotics implementation, therefore, this research considers the per-

formance of the network and studies the impact of the network delay on the

outcome of the robot tasks on the edge device or the cloud platform. The

following publications have arisen from my research detailed in this thesis:

Impact of Video Streaming Quality on Bandwidth and Face Recognition Ac-

curacy in Humanoid Robot NAO by (Aagela, Holmes, et al., 2017)and An

Asus xtion pro based indoor MAPPING using a Raspberry Pi with Turtlebot

Robot by (Aagela, Al-Nesf, & Holmes, 2017).

6.2 Network Profiling

The network profiling is conducted in this research to analyse the impact of

the offloaded sensor data quality such as the video and the accuracy level that

is obtained from a robot’s task, in order to determine the most optimal data

quality that can be used with low bandwidth requirement. In this research

the NAO robot was used with Facial Recognition (FR) activity, in order to

define the optimal video quality by defining the relationship between the data

quality - which sets the size of the needed bandwidth - and the accuracy rate

for the wireless and wire transmission medias. The design of the experiment

was established to connect between the robot with a local workstation PC, as

shown in Figure 6.1. The PC runs both Choregraphe and Monitor software to

receive the NAO sensor data via a local network.

A comparison study was conducted for different network media, such as Eth-

ernet and Wi-Fi. In addition, four different resolutions (KQQVGA, KQVGA,

93

Figure 6.1: Network architecture for profiling cases
(Aagela, Holmes, et al., 2017)

KVGA, K4VGA) for video streaming will be considered. The bandwidth con-

sumption was measured based on a defined Frames Per Second (FPS) which is

sent from the NAO robot to the Edge Node and Cloud. The key Diversity be-

tween black and white video quality and colour video quality will be explained.

In addition, black and white and colour video modes will be evaluated to iden-

tify any potential reduction is bandwidth. To complement this, the accuracy

of the face recognition algorithm for each stream, and the robot learning algo-

rithm, will be considered. Finally, the best video resolution and mode will be

selected based on the observed experiments and discussion (Aagela, Holmes,

et al., 2017).

6.2.1 Experimental setup

The experiments are conducted using two pieces of software: Choregraphe

and Monitor. Monitor was utilised in the first experiment to configure the

video streaming settings. This includes the video resolution / quality, FPS

94

of the video stream and to switch between black and white and colour video

modes. Choregraphe is used to program and control the movements of the

NAO robot based on a timeline of actions that must be carried out, as shown

in Figure 6.2. This illustrates the sequence of actions and behaviours that the

face recognition and learning process is composed from.

Face recognition behaviours are composed through the connection of face track-

ing components and basic awareness, that give NAO the ability to perform

movements in order to follow a face that must be recognised by the algorithm.

The face recognition algorithm to examine the detected face is wired after

the face detection box. The lighting conditions in the room were found to

affect the recognition result. Therefore, to ensure reliable results are obtained,

the face recognition tasks have been performed using the same lighting setup

and the same distance from NAO’s camera to the face being tested. The NAO

robot used to conduct the experiment was monitored using two tools: NLOAD

and Tomato. Tomota v.1.28 runs on the Wi-Fi router to monitor bandwidth

at the physical layer. NLOAD runs on the Linux command line to monitor

bandwidth from the software perspective. These were used to measure the

performance characteristics of the network link between the robot.

6.2.2 Face Recognition Algorithm

The Choregraphe-supported Face Recognition Algorithm is the incremental

Principal Component Analysis (PCA) Algorithm (Luthffi, 2011), which is re-

sponsible for analyzing the identified face to obtain the facial characteristics.

The algorithm passes through a Python code used to compare captured infor-

95

Figure 6.2: Sequential behaviours that required to perform FR and face learn-
ing processes using Choregraphe software

(Aagela, Holmes, et al., 2017)
96

Figure 6.3: FR process stages to perform Face Detection and Recognition with
NAO robot

(Aagela, Holmes, et al., 2017)

mation with the dataset of accessible faces. This process is outlined in Figure

6.3.

6.2.3 Experimental Cases

The following sections describe the results of the 3 experimental cases for the

video streaming and FR optimisation.

6.2.3.1 Video Streaming over Wi-Fi

In this experiment the NAO is connected to a wireless network using Wi-Fi to

test its performance capability with various video streaming quality. Figure

97

6.4a indicates the bandwidth for colour video stream transmission using Wi-

Fi connection in bits per second, while Figure 6.4b indicates the bandwidth

for black and white video quality. In both instances the highest bandwidth

is comparable to 8283 Kbps using four distinct video quality modes. This

outcome demonstrates that in Wi-Fi transmission technology the video stream

bandwidth is constrained.

The bandwidth of the colour video requires about double the bandwidth com-

pared to the black and white mode. For example, using the KQQVGA quality

video stream, for the first 26 frames the colour video bandwidth remains dou-

ble the black and white bandwidth. As shown in Figure 6.4a, when 1 Mbps

bandwidth is being utilised, this results in transmission of only 7 KQQVGA

video quality colour frames.

6.2.3.2 Video Streaming over Ethernet

The objective of this experiment is to further evaluate the performance of the

video qualities. where the bandwidth was constrained with the use of the Wi-

Fi, which was limited to 8.2 Mbps. The maximum data rate of 81.4 Mbps

using Ethernet as shown in Figure 6.5a, four distinct video qualities are used

for the colour video stream. The highest data rates were required by KVGA

and K4VGA resolutions. which were stayed constant after a certain amount of

frames as a result of the bandwidth limit for the connection media. However,

the data rate will continue to increase as the frames number increases for both

KQQVGA and KQVGA video qualities; this is true for both the colour video

stream and the black and white video stream as seen in Figure 6.5b.

98

(a) Colour

(b) Black and White

Figure 6.4: Wi-Fi video streaming
(Aagela, Holmes, et al., 2017)

99

(a) Colour

(b) Black and White

Figure 6.5: Ethernet video streaming
(Aagela, Holmes, et al., 2017)

100

The primary distinction between experiments in Case 1 and Case 2 is that

streaming over Wi-Fi data is limited to up to 8.3 Mbps.However, using Eth-

ernet, it is about 82 Mbps. In addition, the use of the black and white video

streaming required less data rate in contrast to the coloured video, as shown

in both Figures 9.4 and 9.5.

6.2.3.3 Face Recognition Accuracy over Wi-Fi

In this experiment, the NAO robot has been used to examine the level of

precision of the face recognition task using four distinct video qualities. This

experiment investigates the effect of the video stream quality (frames per sec-

ond and resolution) on the accuracy of face recognition. Designed in Choere-

graphe, the face recognition model is defined in Figure 6.2. It has been applied

to eight recognised faces that have been previously captured. For each human

face, the information recorded and the name of the individual are added to the

model.

The experiments were constructed to detect a person’s face using dynamic

video streaming. As detailed in Figure 6.2, the robot will initially track any face

within its field of vision. If a face is detected, the face recognition process will

start working on recognise the individual by comparing it a match between any

of the saved faces. Then it will begin tracking any possible face motion again

ready for the next recognition. The accuracy of face recognition is calculated

by using the machine learning formula outlined in (5), where true positive

indicates a correct recognition of the human face and true negative indicates

a wrong recognition of the human face.

101

Figure 6.6: Face recognition accuracy rate for different video quality Colour
video streaming

Face recognition accuracy =
True Positive+True Negative
Total Number of Iterations

..... (5)

The number of iterations made for each video quality streaming in this case

study is 100, and in each experiment the positive and negative detections

of a human face are added to the face recognition formula (5). Figure 6.6

shows that with KVGA video quality and 5 fps, the maximum accuracy level

in recognising the human face is 96 percent. However, using KQVGA video

quality and 1 fps, the minimum accuracy level is closer to 56 percent. In

addition, the black and white video streaming face detection accuracy shown

in Figure 6.7 still has a high detection accuracy rate compared to the colour

video stream. Using K4VGA, the highest detection accuracy level is 92 percent

and the minimum detection rate using KQVGA is 46 percent. This is the only

result that falls below the minimum acceptable accuracy rate.

It is clear that the FPS has a significant impact on the face recognition per-

formance and overall accuracy. As shown in Figures 6.6 and 6.7, the accuracy

102

Figure 6.7: Face recognition accuracy rate for different video quality Black and
white video streaming

(Aagela, Holmes, et al., 2017)

level for KQVGA video quality increases when the amount of frames is in-

creased. This is due to the rise in bandwidth consumption on the robot side

and low buffering rate. However, as the amount of frames rises, the accuracy

rate for face recognition will reduce for K4VGA. It can be concluded that

there is very high bandwidth consumption and buffering rate for this video

quality.

KQVGA and KVGA’s face detection accuracy will only improve for the first

10 frames. The detection rate will subsequently continue to decline or remain

at the same percentage level. The average detection rate for different video

qualities was calculated from the results acquired in this experiment. Table

6.1 demonstrates that for the KVGA colour video quality, the best possible

face detection rate acquired from the experimental results is 86.86%. Having

said this, it was found that the Black and White detection rate differs only by

3% which suggests it could be a suitable candidate for reducing the network

103

Average Detection Rate (%)
Video Quality
KQQVGA KQVGA KVGA K4VGA

Colour 66.29% 74.86% 86.86% 86.81%
Black and White 59.43% 69.71% 83.43% 82.86%

Table 6.1: Average Face Recognition Detection Rate
(Aagela, Holmes, et al., 2017)

requirements whilst maintaining accuracy.

6.3 Low Power and Cost Robot

This section explains the process of optimising the design of a low cost robot.

The motivation was from the one of the key objectives of the cloud robotics

concept, which is to reduce the need of expansive equipment on the on-board

robot and move the heavy process to the cloud. This can allow a low cost robot

platform to perform a complex task that needs high computational power and

large storage.

The robot design is utilising the Raspberry Pi 3 with the Turtlebot 2 robot

base as an alternative for the default compute unit which is typically a laptop.

The reasons of using the Raspberry pi as a replacement were that the Rasp-

berry pi 3 has a Wi-Fi capability that allow the robot to be mobile and has

got better specifications as mention in section 6.3.1 in contrast to other single

board computer, however, the Raspberry Pi 3 has limitation on its integrated

RAM, therefore, a hot swappable RAM technique has been applied that allow

the Raspberry pi to used some storage from the main SD card in order to

cove this limitation. As Figure 6.8 shows, the Raspberry Pi is mounted on the

104

Figure 6.8: Utilising a Raspberry Pi as a main computer unit for Turtlebot II
(Aagela, Al-Nesf, & Holmes, 2017)

top of the robot and connected to the sensors via USB cables. Moreover, this

robot platform now has a single power system, where the Raspberry Pi uses

the robot battery via available power output in the Turtlebot base as shown

schematic diagram in Figure 6.9, in contrast to the laptop which requires a sec-

ond charging point. In general, the use of the Raspberry Pi proved its usability

and compatibility with the Turtlebot 2 robots. In addition, by installing the

ROS, the robot gets access to a wide range of the desirable robot functionality

as ready to use packages and software with minimal on-board footprint.

6.3.1 System Specification

This approach was planned to offer an affordable and effective indoor mapping

system that can be used remotely with ROS in the cloud, mainly in dangerous

105

Figure 6.9: Schematic Diagram for Raspberry Pi powered by Turtlebot II base
(Aagela, Al-Nesf, & Holmes, 2017)

106

environments for human operations. The key components of the proposed

system are firstly, the Raspberry Pi, which is a single board computer that

has most of the computer components built-in a small board. The Raspberry

Pi 3 uses a 1.2 Ghz ARM processor and 1GB of RAM, (Aagela, Al-Nesf, &

Holmes, 2017), which is used during in this research. The Raspberry Pi 3

runs on Ubuntu 16.04 Operating System that has been installed in a 32 GB

Micro SD card. Moreover, ROS has been installed with its basic packages.

The Raspberry Pi 3 connects to the Turtlebot base and the Asus xtion pro

Sensor via USB cables. The Asus xtion pro is mounted in the middle of the

robot.

A simplified diagram of the network architecture that is used by the robot is

detailed in Figure 6.10. The robot is connected to a master node via a local

Wireless-G network with a bandwidth of 54 Mbps Wi-Fi connection (Aagela,

Holmes, et al., 2017). In order to configure ROS environment over our net-

work, the master node PC and the Raspberry Pi were provided with private IP

addresses as well as the hostname, which is important for the ROS communi-

cation system. Basic functionality tests, such as teleoperation, were successful

demonstrating that the robot system can be used to evaluate the CCRP frame-

work.

6.3.2 Power Consumption

In terms of the power saving and power consumption, the consumed power

between the Raspberry Pi and laptop is contrasted, which has an ARM CPU

and Intel quad core i5 processor respectively. According to (Anwaar & Shah,

107

Figure 6.10: Low cost robot network architecture
(Aagela, Al-Nesf, & Holmes, 2017)

2015), the Raspberry Pi 3 only requires an average of 48 Kilojoule/day in

contrast to the laptop which requires an average of 1050 Kilojoule/day, as

shown in Figure 6.11. Therefore, the native TurtleBot compute unit consumes

about 20 times more than the Raspberry Pi proposed system, allowing the

optimised robot to operate for longer time with lower maintenance cost and

simplified connectivity.

6.4 Summary

Firstly, this chapter explained the value of the conducting an optimisation

evaluation analysis for network profiling and the on-board robot resources re-

quirement before implementing any cloud robotics case studies. This assists

in defining the optimal requirement robot and the cloud system, providing ac-

ceptable range of parameters for subsequent evaluation. The results indicate

that there is a significant impact of the video streaming quality and network

108

Figure 6.11: Low cost robot power consumption in Kilojoule comparison
(Aagela, Al-Nesf, & Holmes, 2017)

buffering on the face recognition process. The finding proves that it is possible

to enhance the network performance and consume less network bandwidth by

selecting the right video streaming quality based on the robot task. Secondly,

a quantitative measure of the video qualities types and the frame rate impact

on the network bandwidth consumption on the distributed robot application

is presented. An understanding of this impact will inform the development

of real-time cloud robotics applications that run on the CCRP platform. Fi-

nally, the optimisation study considers the robot hardware, where a solution

for utilising low cost computational resources on-board the robot which can

support offloading to the cloud is proposed. The use of the Raspberry Pi 3

proved its usability and compatibility with the Turtlebot II robot, which uses

ROS as its main framework and is supported on the low power ARM proces-

sor utilised by the single board computer. Moreover, our approach can save

on-board robot considerable amount of power. The following chapters detail

109

the in-depth evaluation and implementation of real life case studies using the

CCRP framework.

110

Chapter 7

CCRP Evaluation

7.1 Introduction

This chapter provides the performance evaluation of the CCRP that demon-

strates the improvements of the clone-based model over the proxy model in

developing multi-robots cloud robotics application. Indeed, the QoS is a ma-

jor issue that face any cloud robotics implementation, therefore, this research

considers the performance of the system and studies the impact of the re-

sponse time on the overall system performance in both proxy-based model

and clone-based model in a multi-robots ROS environment. The evaluation

process includes, measuring the network latency performance and a test ap-

plication measure the response time for both Clone-based model ”CBM” and

proxy-based model ”PBM”. Therefore, there are several tools and techniques

that will be used to assess the system performance.

111

7.2 Network Performance

Although most of the cloud applications desire real-time communication, the

latency can have a major impact on achieving it. In order to measure the

network latency effectively for the CCRP, the round trip time (RTT) was

measured to analyse the network latency between the robot/edge side and the

public cloud that have been tested with two different geographical destina-

tions as well as with and without the use of the VPN. The network latency

usually occurs because of various reasons such as, type of communication media

(wire/wireless), the distance between the sender and the receiver, and network

protocols. The use of IaaS cloud service model allows us to carry out the mea-

surement in two regions. Unlike the previous work, the CCRP integrates the

VPN as a part of the network, therefore, the analysis of VPN integration is

important to measure the additional network overhead that is added between

the robot and the respective cloud instance. The Wireshark tool was used

to measure the RTT, the result was taken from a 100 sample and calculating

the RTT latency average. As shown in Figure 7.1, the RTT measurement

for communications between the robot and the VMs runs on Google Cloud

Platform across two datacenters, one runs in Europe EU region and other in

United States US region. The result shows that the use of the VPN has miner

impact on the RTT for both cases, however, there was dramatic increase on

the RTT from around 50ms for EU server to about 180ms US server. Note

that the robot/edge system is located at University of Huddersfield, United

Kingdom.Where in the cloud robotics field the network latency is measure fac-

tor in determining the overall application performance, therefore, the selection

112

Figure 7.1: RTT measurement between robot and cloud VM with two servers,
EU server and US server and with and without VPN

of the physical host location should be carefully considered.

7.3 Quality of Service and Application Perfor-

mance

A Cloud solution was always advertised as a trade-off between computer re-

sources (computational power and storage) and the bandwidth of the network.

This exchange was proven to be effectively positive, as nowadays the network

medias are capable of providing a high bandwidth and high availability for

Internet connection. However, the network latency has a negative impact on

the QoS and the application performance, as the sent data will be disrupted

from its normal sequence. Nevertheless, the overall QoS performance defined

by measuring the response time, which include the network latency and the

processing time. In addition, the impact of network congestion that may oc-

cur when the server is busy and needs to hold data in a buffer to be processed

113

later can lead to packet loss and a reduction in endpoint user QoS, negatively

impacting application performance.

The process of controlling the amount and size of the data that needs to be

offloaded is a key factor to improve the QoS of any cloud robotics system.

According to the results obtained from our optimisation study, the low quality

of sensor data can be effective in terms of providing an acceptable accuracy

rate for a robot task like face recognition with low bandwidth requirement.

As a result, assisting the use of sensor data quality with this model is going

to be essential in order to raise the awareness of importance of the network

optimisation to control the use of the available bandwidth and reduce network

latency.

7.3.1 Experimental setup

In order to evaluate and validate the performance of the proposed system,

the system will be exposed to several kinds of testing that cover the best and

worst use case for the system. A critical factor of the performance of offloading

robot processes to a cloud platform is depends heavily on the response time,

which is influenced by the network latency and processing time delay. The

response time is going to be essential factor to analyse the impact of increasing

the number of the linked robots in a multi-robot’s environment. There are a

three real robots (two NAO and one Turtlebot) and seven simulated Turtlebot

robots, which are configured with ROS environment and linked to CCRP as

well as to proxy-based model with one ROS master. For the simulated robot,

both Gazebo and Rviz were used to create and control the virtual robots in

114

local VMs that are hosted in Virtualbox software. The test task was designed

to execute a code that runs in fixed times 100ms and 500ms delay to simulates

a robot tasks that consume various processing time to define the impact of the

processing time on the overall performance of both scenarios. A ROS code has

been developed to establish an application that consume fix time, the following

code was used to control the execution time.

1 double s e c s =ros : : Time : : now () . toSec () ;

2 ro s : : Duration d (0 . 5) ; // 0 .5 equal to 500 ms

3 s e c s = d . toSec () ;

7.3.2 Experimental results

This section illustrates the outcome of the response times of both ”CBM” and

”PBM” with the designed time delay scenarios. Each one was measured by

averaging the result of using each system with different number of robots from

1 to 10 robots, simultaneously. Initially, as shown in Figure 7.2 the result of

running the 100ms delay application that displays both models were around

neck and neck while using up to two robots at around 150ms. Then, the PBM

gradually increase to reach approximate 270ms in case of using 10 robots, while

the result remains steady with the CBM approach at around 153ms.

115

Figure 7.2: Response time of Clone-based model ”CBM” and proxy-based
model ”PBM” with 100ms delay

In the second scenario, where 500ms processing time is applied as shown in

Figure 7.3, similarly to the previous scenario the result was very close at ap-

proximately 550ms between the two model in case of using one or two robots.

However, the results rise significantly by around 2 second for the PBM whilst 10

robots was used. In contrast to CBM, which shows a linear result that remain

steady regardless to the number of used robots. Therefore, the CCRP system

which adopted the use of CBM will provide a higher QoS and thus stable ap-

plication performance, where the number of robots linked to the multi-robots’

environment will not impact the performance.

116

Figure 7.3: Response time of Clone-based model ”CBM” and proxy-based
model ”PBM” with 500ms delay

7.4 API Manager Performance

It is one of the essential robotic task to recognise objects in the surrounding

environment. However, this task could be challenging for the on-board process-

ing capability of robots with limited capacity. Thus, the research suggest to

use the Google Vision API to perform the object recognition by the developed

API Manager. The object recognition process requires access to a huge image

dataset that could be used to identify the object details. Table 7.4 shows the

object recognition algorithm that has been deployed in the system.

117

Figure 7.4: Object recognition algorithm

The object of this use case is to test the performance of the developed API

manager and test the compatibility and usability of the external API in real-

time applications. Table 7.1 illustrates the object recognition confidence rate

for number of objects by using the Google Vision API. The outcome of this

test was approximately 90% confidence. Therefore, it could be considered as

an accurate solution for object recognition.

In addition, in this scenario the humanoid robot NAO will need to say the

recognised object, thus, the API manager is going to use the Text-to-speech

Google API to covert the name of the object to an audio, then send the file to

the NAO.

118

Object Name Confidence µ± σ Failure rate %

Disk 0.81 ± 0.06 3
Chair 0.89 ± 0.08 -
Human 0.93 ± 0.06 -
Door 0.86 ± 0.09 7
Laptop 0.93 ± 0.03 6

Table 7.1: Outcome of the Google Vision recognition service during the exper-
iment testing the API manager

Following the previous performance tests, the API manager was evaluated by

measuring the response time for the object recognition services that uses the

Google Vision API for various image qualities have been examined. As Figure

7.5 shows the object recognition response time with four video qualities, the

result clearly demonstrates the different response time that is needed based

on the picture quality, where increasing the offloaded picture quality will in-

crease the response time correspondingly. The minimum response time that

aims to be obtained with the lowest quality will be just over 200 ms. How-

ever, the impact of reducing the image quality on the obtained accuracy level

was considered as suggested in our optimisation study. Based on the test-

ing result, the KQVGA was selected to be the optimal image quality for this

experiment.

The developed API manager has been designed to control the request event

between the robot and the cloud. In this test the Google Vision API was

used to recognise a number of objects within the lab environment. Table 7.1

illustrates the level of the conference rate µ with the error rate σ that produced

by repeating the test 50 times for each object. In addition, the table shows

the percentage of the failure rate, when the outcome of the API failed in the

119

Figure 7.5: The object recognition response time with four video qualities

recognition process.

As a result of this test give a high level of confidence approximately 90%.

Thus, with the right configuration the API manager is capable of utilise the

Google Vision API to allow the robot recognise object with high accuracy

and response time at around 700 ms. Based on collected results, it can be

considered as a acceptable real-time interactions with humanoid robot.

7.5 Summary

This chapter analyses the QoS and performance of the CCRP system. The

evaluation process consisted of several experiments. The network performance

was examined by measuring the RTT for the network traffic between the robot

and the cloud sides. The objective of this measurement was to identify the

expected network delay in the process of offloading a data or task to the

120

cloud. Moreover, it delivers a critical analysis of the impact of cloud datacenter

location and how it can minimise the network latency significantly. Moreover,

it was proven that the use of VPN did not add drastic overhead delay on the

transmitted traffic.

The second part aimed to evaluate the general application performance and

the QoS of the CCRP demonstrated promising and stable performance on the

given scenarios. The evaluation of the developed API performance and how

it operates with some of the result that showed the performance of the API

manage on running the Google Vision API was acceptable and in practice can

provide response time of around 700ms which is reasonable for ”real-time”

interactions with a humanoid robot. The overall evaluation results showed

that the CCRP capability is effective in keeping the stability while running

simulated robots tasks.

121

Chapter 8

Real Time Robot Teleoperation

and Mapping

8.1 Introduction

This chapter discusses the first robot case study application which utilizes the

CCRP in a real world robot field. Chapter 4 signposted the use of the tele-

operation and mapping tasks with the CCRP. Nowadays, the mobile robots

become more popular with a perceived a great improvement in technology.

However, many obstacles prevent the robots to be used widely in our daily ac-

tivity, such as robot cost and hardware and software performance in operating

tasks, such as mapping, teleoperation and path planning. The real-time con-

trol is an important robot application, where the robot is going to be listening

to the tele-commands the operator sends and respond accordingly.

122

In this chapter the real-time teleoperation is used as a case study for two

reasons, first of all, it is a vital application for robots as well as it can define

the level of the real-time performance of the system. In terms of how fast and

accurate the robot will respond to the given command. In addition, there is

a need to offload the video from the robot to display it on the operator side

and that will cost network bandwidth that can impact the performance. The

objective of this case study is to examine the system capability to run a real-

time remote-control action as well as testing the network behaviours between

the robot and the controller application to identify the impact of the latency

on the real-time teleoperation.

Robot mapping focuses on giving the robot the ability to learn about the

surrounding area and is essential for mobile robots in order to be able to per-

form localisation and the path planning (Hamzeh & Elnagar, 2015), (Aagela,

Holmes, et al., 2017). Therefore, creating a virtual environment for the sur-

rounding area of the robot that could be used as a map would be vital task,

which is needed to be used by another application that could be useful in op-

erations like military, search and rescue and smart cities and so forth. Sending

the robot into rough missions and exploring unknown places that could be

dangerous for a human to explore means that the robot itself will be in dan-

ger, therefore, the cost of the robot that could perform such an operation will

be a vital factor. Hence, decreasing the cost of the hardware and the software

for the robot is desirable. Mapping an indoor environment will require a laser

scan, a mobile robot base and compute unit with wireless communication.

Thus, the robot will gather the depth information by the Asus Xtion pro 3D

123

Figure 8.1: Teleoperation and mapping CCRP System architecture
(Aagela & Holmes, 2019a)

sensor as stated in various implementations. For instance, creating a map for

indoor environment. Localising and mapping within indoor environments is

actually vital for remote controlled robots. There are several approaches for

the mapping that have been researched which utilise laser scanners (Rehman,

2013).

The motivation for this work is to assess the network performance and func-

tionality performance of the teleoperation and mapping processes with the

CCRP system for heterogeneous robots in the real-time. As shown in Figure

8.1, the teleoperation and mapping CCRP system architecture allows the used

robots to be linked via a network with respective VMs in the cloud. Similarly,

an operator can connect directly to the required robot via its CRI, in order

to control the targeted robot. The following publications have arisen from

my research detailed in this thesis: Cloud Robotics-Based System for Robot

Teleoperation by (Aagela & Holmes, 2019a).

124

8.2 Robot Teleoperation

There were number of other related work that considers a teleoperation plat-

form for heterogeneous robots. (Hoffman, 2016) presented the humanoid robot

OpenWoZ software that is implemented as a web service running on ROS, and

a cloud-backed multi-platform client. The OpenWoZ server uses representa-

tional state transfer (REST) protocol to manage the connection requests from

a number user simultaneously. A system proposed by (Magyar et al., 2017),

named CoWoOZ was developed as a cloud-based teleoperation software, which

can be used via a web dashboard to manage and control the robot. (Small

et al., 2018) stated that the teleoperation task is an important part of other

robotic tasks, for instance, grasping, mapping and navigation and so on. The

existing cloud-based teleoperation platforms for controlling robots, which were

proposed in reviewed publications, show that the research focus is on develop-

ing environment for the targeted types of robots and tasks.

The CCRP cloud-based teleoperation model is displayed in Figure 8.2, where

operator will sending teleoperation signals using the CCRP, the ROS tele-

operation package has additional autonomous correction feature that used to

synchronise the state between the operator side and the robot environment.

The response of the operator send back to the robot actuators that act ac-

cordingly. The robot sensors were constantly used to send the feedback such

as video stream from a robot camera, and Odometry data that determines the

robot’s pose and next move. The experiments here used both the Turtlebot

and the NAO robots. Note, NAO only used with the teleoperation task due

to lack of mapping capability.

125

Figure 8.2: CCRP Teleoperation model
(Aagela & Holmes, 2019a)

The idea of the model is to extend the distance between the robot and its

operator, where the robot should receive a tele-command and act accordingly.

The cloud role is to analyse the tele-command by using the tele-command

interpret software, which works as translator between the operator and the

robot actuators. In addition, the autonomous correct algorithm integrates

with the received command to filter the unexpected action based on the sensor

status or changing in the environment. There are a number of supported

controller pads that could be used with ROS, including the keyboard, Xbox

controller and touch screen.

8.3 Mapping

The process of creating a map for unknown area is considered as continuous

process even at times when the robot is steady, the laser scans that are received

126

from the Asus xtion pro that produces 30 depth images per second. The

basic process of SLAM can be summarised in a workflow shown in Figure 8.3,

where map generation is a continuous process initiated by using the depth data

collected from the robot’s sensors, which can define the distance and the shape

of the surrounding walls, people, objects, etc.

Then, the position of the robot is estimated and saved it at certain point of

time. Finally, the local map will be updated by drawing a simulated 2D map

of the floor layout.

8.4 Experimental setup

In this case study, the capability of CCRP running the teleoperation and map-

ping tasks in multi-robot environments were examined. An operator can re-

motely connect to the targeted robot via its robot CRI. The experiments were

conducted by using a number of hardware and software elements. The used

hardware were: NAO robot and Turtlebot robots as shown in Figure 8.4, In

addition, a laptop for NAO robot work as edge computer and Raspberry pi

for Turtlebot robot that used as compute unit. The navigation stack which

include the teleop package was installed for both Turtlebot and NAO in their

CRI.

A fundamental teleoperation movement for both robots are applied in indoor

environment. As shown in Figure 8.5, the teleoperation activity is designed

so that the robots are required to move from point A to B and avoid an

one obstacle placed after 1.5m from point A. The Wireshark and rostopic

127

Figure 8.3: Workflow for the mapping process on the cloud
(Aagela & Holmes, 2019a)

128

Figure 8.4: The experimental robots: A) Turtlebot robot B) NAO Humanoid
robot

(Aagela & Holmes, 2019a)

delay/bandwidth ‘bw’ tools were used to measure the network performance

between the operator and robots, it is important to recognise that there are

two side of the connection, between robot to cloud and robot to the cloud.

Normally, the depth information that is received through the 3D sensor, in our

case the Asus sensor, is converted into a laser 12-format data on a real-time

basis, which is deemed as the initial data that is needed by the entire process.

Thus, to be able to begin the generation of the first local grid map as well as

the first pose of the robot, where the middle of the map gives the provision for

the initial location of the robot, an application called Gmapping is used which

initiates the process of generating a local grid map for limited area (Balasuriya

et al., 2016), (Aagela, Al-Nesf, & Holmes, 2017). The process of creating the

map requires the robot to move around the room and scan it by using the 3D

129

Figure 8.5: Robots are required to move from a point A to point B avoiding
an obstacle placed 2.5m from their initial position

(Aagela & Holmes, 2019a)

sensor. The scan has been conducted whilst the robot is moving at a speed

of 25cm/s forward, which is considered an average speed given the Turtlebot

robot which is capable of a maximum speed of 50cm/s. The Asus xtion Pro

sensor has the ability to provide depth information by the use of an IR beam

that is reflected from the facing wall against the robot. In this test the design

system is linked to CCRP system to allow the remote process for the map to

be done by the cloud.

8.5 Experimental results

To evaluate the CCRP teleoperation algorithm performance, the robot re-

sponse delay, video transmission delay and response time delay were measured,

by processing the gathered data from 30 experiments for each robot. In addi-

tion, to evaluate the capability of the low cost robot in producing an accurate

map for the surrounding environment by comparing it with a map created by

130

the native system.

8.5.1 Transmission Delay

As shown in Figure 8.6, the video transmission delay was about 150ms, where

the result were similar in the performance for both robots. The response delay

represents a time delay between sending a tele-command signal to receiving

the control message in the robot side. It was on average at about 250 ms for

Turtlebot robot and 273ms for NAO robot. The NAO robot shows slightly

slower in response time. However, it took around 70s compared to the Turtle-

bot which takes only around 25s to accomplish the given task. The difference

in time here was due to the difference in robots movement speed. The results

of the experiments illustrated that the CCRP cloud robotics system was effec-

tive in handling teleoperation and mapping tasks, and can enable a real-time

remote control for different kind of robots in multi-robot environments (Aagela

& Holmes, 2019a).

8.5.2 2D Mapping

As shown in Figure 8.7a, the low cost robot defined in Chapter 6 was able to

create a 2D map for the room. In contrast, the same experiment was repeated

with using the laptop and with local ROS system instead as Figure 8.7b dis-

plays. The indoor map task for unknown environment was challenging for the

Raspberry Pi on board the Turtlebot, where the generated map had unclear

edges for some of the room walls compared with the map generated by the na-

131

Figure 8.6: Experimental results of the delay time in millisecond for the re-
sponse time delay and the video delay

(Aagela & Holmes, 2019a)

tive robot resources, which had more accurate and sharper for wall edges and

objects position. However, the first result was still enough to perform naviga-

tion process on the obtained map. The mapping process depends on defining

the location of the robot according to the last time pose that the was done

by the scanner sensor in the previous map, this process can fail for a number

of reasons, particularly when the robot start rotating or moving with a high

speed. This issue occurs because it needs more processing power to process

the generated map grid as well as the network latency. Thus, the proposed

solution was sensitive for the robot speed and movement. It is suitable to run

the SLAM process while moving the robot with slow speed up to 30cm/s to

obtain an accurate 2D map (Aagela & Holmes, 2019a) as the speed ranged

from 5cm/s up to 30cm/s provided a clear map that can be used for the navi-

gation task. however, speed from 35cm/s up to the maximum speed 50 cm/s

provide a poor map that lead to failure in the navigation process.

132

(a) RPi with CCRP

(Aagela, Al-Nesf, & Holmes, 2017)

(b) Laptop with local ROS

(Aagela, Al-Nesf, & Holmes, 2017)

Figure 8.7: Map of the University of Huddersfield Robotic Lab
(Aagela, Al-Nesf, & Holmes, 2017)

133

(a) RPi with CCRP

(b) Laptop with local ROS

Figure 8.8: 3D model generated by Turtlebot
(Aagela, Al-Nesf, & Holmes, 2017)

134

8.5.3 3D Object Model

One of the processes that uses intensive processing power and requires high

bandwidth is to create a 3D model for the environment using a point cloud

application, which use the depth image data collected by Asus Xtion pro sen-

sor.

In addition to the response measurements and 2D mapping functionality, the

difference between the Raspberry Pi in contrast to the laptop were bench-

marked, in terms of the network and processing capability in generating a 3D

model of the surrounding environment. Based on a subjective analysis of the

results shown in Figure 8.8, the quality of the 3D model that generated by the

Raspberry Pi with the CCRP was very close to the one that generated by the

laptop with the local ROS.

8.6 Summary

This chapter presents a cloud-based robot teleoperation and mapping appli-

cation which aims to evaluate the performance capability of the CCRP in

executing some sensitive real-time robot tasks for two kind of robots. The

teleoperation was an effective method in merging a robot skill and a human

operator ability, through remote manual control. The proposed CCRP sys-

tem was able to resolve the lack of the resources in our available robots and

overcome constraints posed by lack of information and communication con-

straints. The outcome of those experiments displays that the CCRP is capable

135

of running manual teleoperation and mapping application (with an operator’s

control) due to a low robot response time of between 250ms and 273ms. In

addition, it can support heterogeneous robots within the multi-ROS environ-

ment. However, for Simultaneous Localisation and Mapping application, there

was a trade-off between the movement speed of the robot and the quality of the

created map. The speed of the robot may impact the performance of the map-

ping and teleoperation tasks with the current network latency level, therefore,

the controlled robot need to go through speed test performance before can be

used. Moreover, the operator in our experiments can view a video streaming

from the robot camera, where the result shows the delay on receiving the video

was less than the response time of the robot at around 150ms.

136

Chapter 9

Collaborative Cloud-based Face

Recognition for Multi-robots

Environment

9.1 Introduction

This chapter discusses the use of Face Recognition (FR) application with the

CCRP. The FR is a key task for humanoid robots, which includes both face

detection and recognition (Abbas Shangari, Sadeghnejad, & Baltes, 2016).

But, they require extensive computing capability and storage, but develop-

ing a robot with high processing and storage characteristics can be expensive.

Collaboration between robots can overcome the limitation of tasks processed

using on-board resources. The key task for the FR applications is defining

unique features of the elements in a human face. There are various FR al-

137

gorithm available, such as Linear Discriminant Analysis (LDA) (Li & Yuan,

2005), and Principal Component Analysis (PCA) (Ismail et al., 2011). The

performance of those algorithms are tested and fairly acceptable amongst re-

search in the field of FR. However, they have issues of being computationally

intensive (Bolotnikova et al., 2017). There were other projects that attempt to

move the FR task to the cloud, according to (Tian, Saitov, & Lee, 2014), who

developed a peer-based cloud robotic system which allows a humanoid robot

to perform a FR in real-time by utilising the intensive computational power

of the cloud. The project utilised ROS as middleware and programming envi-

ronment. Nevertheless, a knowledge-sharing mechanism was not available in

this system and there was a lack of published information on the performance

of the system. Similarly, a project called Cloudlet, which was a mobile fog

computing system, allows a robot to send images to the cloud via a wireless

network linked the robots with a smartphone to perform FR task(Stojmenovic,

2014). The Cloudlet was limited in terms of the mobility and coverage, where

the system can only support the robot in the local network reach. in addition,

it also lack the capability of sharing the knowledge.

The objectives of this case study is design and implement a real-time FR

cloud robotics application, which can allow NAO humanoid robot to perform

the FR task in the cloud with acceptable response time and accuracy rate.

Additionally, evaluating the use of CCRP with a real life robot application

by analysing the FR application performance of CCRP against the local ROS

environment, quantifying the impact of the latency on the respective tasks.

The CCRP aims to address the lack of sharing knowledge between robots

138

Figure 9.1: CCRP Architecture and Methodology
(Aagela & Holmes, 2019b)

by providing a collaborative learning environment. Also, the system aims to

reduce the computational complexity in the robot and offload computation

and storage to a cloud as shown in Figure 9.1. The following publications have

arisen from my research detailed in this thesis: Collaborative Cloud-based Face

recognition approach for Humanoid robots by (Aagela & Holmes, 2019b).

9.2 Collaborative Cloud-based FR Algorithm

In this section devises our new cloud-based FR algorithm, which can be ex-

plained in Figure 9.2. The algorithm suggest offloading the FR task to the

cloud. The robot upload the captures video to the CCRP system. The al-

gorithm has several elements that are used for basic face awareness, face de-

tection, and FR. These elements are responsible identifying the human face.

The Faceserver application in ROS will look for a human face in the received

images. which is going to be compared against the existing trained images

139

Figure 9.2: The cloud-based face recognition algorithm
(Aagela & Holmes, 2019b)

dataset that stored in the cloud. If the face is found, the cloud sends back the

person name back to the robot; but, if the face is unknown, the application

starts a learning process, which give the the operator chance to add a new

record to the face dataset. The learning mechanisms works by merging the

newly-learned face to the existing records to be shared between robots every

5 minutes to allow the data to be updated meanwhile not do the update too

often. Each robot is capable of storing new faces in a cloud and sharing the

trained image data with other robots via the common network. The FR al-

gorithm was executed with 2D coloured video captured by the NAO robot’s

main camera, with a Video Quality KQVGA, which has resolution of 320x240

and frame rate of 5 fps. The selection of the video quality and frame rate was

based on our previous optimisation study as mentioned in chapter 6 (Aagela,

Holmes, et al., 2017), (Aagela & Holmes, 2019b).

140

9.3 Experimental setup

The University’s private cloud was deployed using OpenStack and utilised for

this experiment. For this experiment two VMs were created on the cloud that

runs Ubuntu 16.04 OS. Each VM was created with four cores and eight GByte

of RAM. In terms of the edge machine for the NAO robots, two laptops with

Ubuntu 16.04 were used. The CCRP system was installed and configured in

the cloud VMs as well as the robot edge machines.

All the FR experiments were conducted within the same environment, whereas,

the room lighting, image background and the distance between the individuals’

faces to the robots attempted to be similar in each test, Hence, those factors

can have an impact on the obtained results. The distance between the robot

and the individuals’ face were between 50 to 70 cm. In the experiments,

each robot captured and trained the images for five people. Then, the system

synchronised and merge the data between the two robots. The overall collected

data by the two robot are over 300 trained images taken from 10 individuals.

The experiments were conducted in two scenarios, first performing FR using

local ROS environment, and using CCRP. The comparison between these two

scenarios will define the impact of offloading the task of FR to the cloud,

and will examine the diversity in the algorithm response time and accuracy

rate.

141

Trained image count Confidence Failure rate

1 0.21 55
5 0.33 35
10 0.69 15
20 0.76 0
30 0.82 0

Table 9.1: Local FR approach accuracy and failure rate
(Aagela & Holmes, 2019b)

Trained image count Confidence Failure rate

1 0.18 65
5 0.32 40
10 0.63 15
20 0.77 5
30 0.83 0

Table 9.2: Cloud-based FR approach accuracy and failure rate
(Aagela & Holmes, 2019b)

9.4 Experimental results

This section shows the outcome of offloading the FR task to the CCRP system.

which proven its capability of acquiring knowledge of new human faces and

preforming FR task real-time using created datasets. in addition, it was able

to share the knowledge of new faces with other robots. The outcome of the FR

tasks in the multi-robot system with local ROS environments were illustrated

in Table 9.1. which is evident that the level of the accuracy increases when the

number of the trained images increases, whilst the failure rate decreases.

The outcome of the CCRP FR approach are shown in Table 9.2. The accuracy

of FR is very close to the one obtained by the local (edge) FR. Therefore, the

CCRP approach demonstrated the capability of offloading the FR tasks in the

142

cloud with a miner affecting on the accuracy rate. Note, each result that shown

in previous tables was an average of 20 attempts in FR for a given scenario.

The response times performance for FR using local and CCRP are shown in

Figure ??. The result shows the local approach response time were increasing

as the number of image increases, from approximately 200 ms with 1 trained

image to more that 400ms with 30 trained images for 10 people. However, the

CCRP shows a slight increase in the response time, from about 250ms while

processing 1 trained image to just above 300 ms, while processing 30 trained

images for each individual. The CCRP FR system was able to outperforms the

local FR system when there were more than 20 trained images per individual

in the dataset. The proposed CCRP has an additional communication delay,

due to the distance between the robot and the cloud, Thus, initially, it shows

lower performance than the local system. The process of exchange the trained

images was done successfully between the robots (Aagela & Holmes, 2019b).

9.5 Summary

This chapter presented part of this research that attempted to reduce the com-

putational complexity in the humanoid robot system by moving the process

of FR to the CCRP. A new Collaborative Cloud-based FR Approach Was de-

signed , which was implemented with the NAO humanoid robots, however,

it should be applicable for other robots that support by ROS and the ability

to capture video data. As shown in the results section, the CCRP proved

143

Figure 9.3: Response time of the local FR and the cloud FR
(Aagela & Holmes, 2019b)

its capability in running the FR tasks effectively and it managed to outper-

form the native local system with limited computational power and storage

after 20 trained image for each individual. The robot (edge) solution will be

less effective as the dataset increases, which lead to longer response times as

shown in 9.3. In addition, the CCRP was able to facilitate knowledge sharing

between the robots in adequate way. The new learned trained faces images

were kept at the dataset of the robots’ CRI, then they will be shared with

other robots within the same ROS multi-master environment managed by the

CCRP framework.

144

Chapter 10

Conclusion and Future Work

10.1 Conclusion

In conclusion, the cloud robotics concept is an emerging paradigm providing

access to computing services as a utility for robot applications remotely. Based

on the initial review of the published work in the field, the cloud was already

used as a solution to improve the on-board robot performance for both single

and multi-robot environments.

ROS was used as a key element in most of the cloud robotics solutions, however,

the deployment of multi-robot environments was limited and there were some

previous works that vary in their approaches. On one hand, some research

suggests the use of the proxy-based model, which is limited in terms of the

resource availability. Others have used the clone-based model, such as Rapyuta

project, which adopted the use of multi-master ROS approach, in order to

145

increase the robot robustness in multi robotics framework solution. However,

due to the continuous upgrades released by the ROS framework authors, the

robot applications usually supported are in limited ROS distribution groups, as

Rapyuta only support the early ROS distributions. Other issues, namely, the

difficulty of configuration of the multi-master environment and the additional

network overhead due to the use of the container.

10.1.1 CCRP Availability and Scalability

As the research developed, the lack of availability of a unified compatible multi-

robot’ environment becomes visible. Therefore, the need of an alternative

solution is important. In this thesis a novel multi-robot cloud robotics plat-

form was demonstrated that addresses the shortcoming of QoS performance,

compatibility and scalability in ROS cloud robotics framework, though the

clone-based cloud robotics platform CCRP.

CCRP was inspired from the Rapyuta framework, but, the design of the sys-

tem has distinguishing features and supports more modern versions of ROS

and Ubuntu. The clone-based cloud robotics has a generalised architecture

that inherited the ROS capability and is compatible with ROS-based robots

and ROS distributions. This architecture provides a secure, collaborative and

configurable system to allow the robots to offload their on-board computational

and memory intensive tasks onto the single/multi-robot cloud computing envi-

ronments, which can be deployed into public or private cloud infrastructures.

Moreover, the Multi-ROS approach allows the CCRP to be a scalable solution

that provides robots with dedicated resources, while allowing secure knowl-

146

edge sharing with other robots. In terms of the network design, the use of a

VPN technology provided the system with two main advantages: enhancing

the security and allowing the deployment of the multi-master ROS in a variety

of network typologies.

10.1.2 API Integration

The CCRP can provide the linked robots with external cloud application ac-

cess by using the API manager, motivated by the fact that the robots are

increasingly required to work in the same environment with other robots and

share some of the tasks such as navigation, mapping, and image processing.

Therefore, collaborative learning between the robots is becoming more impor-

tant. It will optimise the robots performance and use of resources by reducing

common task repetitions. Collaborative learning will help the robots to inherit

the knowledge that have been acquired previously by other robots.

10.1.3 Research Outcomes

The initial evaluation attempts to measure the impact of the physical location

of the cloud provider on the network latency as well as analysing the effect of

using the VPN. The outcome of this test has proven that it is vital for the

selected VM to be as close as possible to the linked robot. Also, the use of

the VPN has a minor effect on the overall network delay. In addition, the

quality of Service (QoS) and Application Performance took place to evaluate

the performance of the Clone Based Model (CBM) against the Proxy Based

147

Model (PBM), where CBM had no impact when the number of robot increases,

while it had a negative impact on the response time for the PBM and this

impact rise more as the number of robots increases. The response time can

be a major factor that determines the QoS and Application Performance for

most cloud robotics tasks. As part of the evaluation process for CCRP, there

were two cloud robotics tasks that were designed and implemented. The first

case study was the mapping and teleoperation task, which aimed to assist the

CCRP capability in handling a hard real-time robot application as well as

handling various robots type. The CCRP was able to accomplish the the real-

time mapping and teleoperation. where the tasks were fully offloaded to the

cloud the CCRP system and were able to deliver response time in a range of

250ms to 273ms depending on the robot used. However, the TurtleBot robot

highlights a limitation in the communication network while moving in a speed

more than 30 cm/s, which is about two third of the maximum Turtlebot robot

speed.

The other case study conducted face recognition, which aimed to examine the

capability of the CCRP in running complex tasks and testing the knowledge

sharing capability over the multi-master network. Our new FR algorithm was

capable of detecting and recognising human faces and send back feedback to

the robot.

The result shows the local approach response time were increasing as the num-

ber of image increases from 1 to 30 trained image the response time was dou-

bled from 200ms to more than 400ms. On the other hand, the CCRP shows

a better performance, where with the same trend the response time increased

148

from about 250ms to 300ms. Therefore, the cloud approach proves its capa-

bility to exceed the local system with bigger dataset, which is more applicable

when dealing with a realistic scenario for FR applications. The result showed

that the number of the trained images for each individual have a direct impact

on the confidence and failure rate of the system. where when the trained im-

age increase the FR confidence rate improved and the failure rate decreased.

The new approach was able to facilitate knowledge sharing between the robots

without any difficulties. The new learned facial images were stored at the data

set of the robots CRI, then they were shared and were able to be accessed by

other robots within the same ROS multi-master environment. The case study

in Chapter 9 evaluates this capability within the context of CCRP, fulfilling

the research objective to perform tasks in an unknown environment based on

multi-robot acquired knowledge.

From this evaluation, the outcome of this work addresses the initial research

aim, to create a generalised architecture for offloading intensive processes to

the cloud, proven by utilising the system to execute several complex tasks re-

motely. In terms of the communication issues, which can be defined as one

of the fundamental problems which limits the adoption of cloud robotics im-

plementations, our results validate the possibility of running robot tasks in a

real-time manner by raising the awareness of the impact of network optimi-

sation in enhancing the efficiency of using the available network bandwidth

and managing the network latency. This can be controlled by the use of the

IaaS cloud services model and can have a major impact on determining the

real-time cloud robotics application performance. In addition, the CCRP has

149

been tested with both public cloud and private cloud deployments. Privacy

was a key factor in deciding to develop the private cloud support, a factor

that leads organisations to develop their own cloud providers, avoiding the

need of the third party provider in case of running a sensitive data or appli-

cation. Therefore, validating the use of the private cloud with our system was

essential.

10.1.4 Research Contributions

There is no need to say that one thesis will not be able to solve all chal-

lenges of cloud robotics research field. However, when devising complete multi-

robots’ cloud-based framework, it will have to deal with these challenges at

least marginally. Especially, system integration and compatibility must be

addressed whenever a new element is introduced and whenever an existing el-

ement is utilized in a way that was not expected by the original developers.

The key objectives of the work, which led to the results defined in this thesis, is

to permit a various type of robots to offload complex tasks to a unified cloud

platform that allow robots to collaborate with each other. In order to ac-

complish those objectives, numerous well-known tools and robot libraries and

software were integrated in a single system. The main contributions of this

thesis are attempting mainly to address the Security, Communication, Het-

erogeneity and Knowledge representation challenges. The contributions are

defined as follows:

• The main achievement of this work is that design a unified clone based

multi-robots cloud robotics platform, which is support the integration of

150

the ROS applications with every supported robot that has networking

capability. The lack of the performance of the Proxy-based environment

discussed in chapter 6 led to increase the need of developing such as ro-

bust platform. Although, a number of other frameworks tried to tackle

this issue, which have been explained individually in chapter 2. They

still have some critical issues such as compatibility, security, availability

and so on, which have to be considered while designing our new architec-

tures. The evaluation of the new system will require testing the system

performance and applicability for some complex robot’s scenarios.

• Current robot perception systems allow robots to operate several vision

tasks such as face recognition and object recognition. Due to high re-

quirement of computational and storage for those robot’s applications, in

addition to challenge in the sharing knowledge procedure between robots.

In Chapter 8 it will be established how face recognition vision task can

be improved by moving the process to the cloud and developing a col-

laborative approach that allow robot to share the new learned data with

others. This should limit the requirement in the robot side and increase

the optimization where the process of learning one individual will not be

repeated.

• The network and hardware optimization is a challenge that can deter-

mine cloud robotics application performance. Chapter 9 investigates the

question of whether there is an significant impact of the transmitted

data quality selection on the network and task performance, and how

can analysing those factors can led toward increasing efficiency of the

151

system. In addition, investigating the potential of developing a low cost

robot that can work almost as efficient as the high aspect robot with the

integration of the proposed solution.

10.1.5 System Limitations

Despite the demonstrated advantages, the CCRP still has some limitations:

• The brainless state issue, which can occur in case of network failure.

The robot will not be able to complete the given task on-board if the

connection with the master node / clone image is lost.

• The CCRP still limited in terms of automation and self-manageability,

where several configurations still need to be done manually by the oper-

ator in both the cloud and robot sides.

• In terms of using the raspberry pi as alternative solution to develop a

low cost robot, the lack of the available RAM on the model raspberry pi

3 lead to reduce the performance of the map creation.

10.2 Future Work

As the CCRP presents itself as a general cloud robotics solution for ROS

supported robots, the features will need to be verified with different kind of

robots, as well as more case studies. There are a number of future research

path and idea can be accomplished based on this work.

152

10.2.1 Cooperative Navigation

• The navigation task can be further developed on the cloud in order to

allow the generated map to be shared between the robots in the same

workspace.

• The teleoperation process can be investigated more by combining an

autonomous and operator-based control of remote robots to achieve the

best teleoperation result. The installation process can be developed to

be more autonomous and simpler, by creating two scripts contain the

basic elements for both cloud and robotic sides. In addition, running the

robots though more complex tasks and complicated maps, i.e. Using the

robot to create a MAP of the University and use it as shared general

map by other robot via the CCRP.

10.2.2 Face Recognition Application

• The result of the FR experiments task can be verified further by using

larger faces datasets, in order to verify and validate the FR with CCRP

in the case of using big data. In addition, introducing the system with

some real life application for the FR.

• Improving the knowledge sharing process of the learned faces can be

vital, where an autonomous mechanism can be developed that only start

the update of the faces database when one of the robot acquiring a new

trained data.

153

10.2.3 Brainless Robots Issue

• A network awareness application that can run in the robot side to eval-

uate the strength and the state of the connection between the robot and

the cloud provider is a potential solution to this problem which can apply

machine learning. Basically, the application can work as an autonomous

switch that helps in allocating the robotic tasks based on the state of the

network or a possibility to trigger a default application. It is necessary to

overcome one of the most important cloud robotics challenges, which is

the potential for a brainless robot, which might happen when the robot

loses the connection to the cloud.

10.2.4 Web-based Application

• Developing a web-based application that provides the authorised users

with a direct link to their robots, which can make the process of con-

nection to the cloud VM much easier. The website can contain various

function such as robot section, where the same user can have multi-robot

direct access to the VM file system. In addition, this would enable an

online terminal that will allow the users to write or run their ROS ap-

plication faster as well as allow user visualise some of sensor data such

as video, battery level and so on.

• The web application can include the Wireless wake-on-LAN, which de-

fined in details in Appendix E, adding the function of controlling the

power status of listed robots to the main dashboard. By enabling the

154

user ability to turn ON or OFF the robots remotely, it can add more

optimisation to the cloud robotics system, where robot only works upon

request. Finally, it would facilitate a notification channel providing alerts

to the user in case of any error which occurs on the robot.

155

References

Aagela, H., Al-Nesf, M., & Holmes, V. (2017). An asus xtion probased indoor

mapping using a raspberry pi with turtlebot robot turtlebot robot. In

Automation and computing (icac), 2017 23rd international conference on

(pp. 1–5).

Aagela, H., & Holmes, V. (2019a). Cloud robotics-based system for robot

teleoperation. In Emit19, isbn: 978-0-9933426-2-6, 2019 conference on

university of huddersfield (pp. 1–3).

Aagela, H., & Holmes, V. (2019b). Collaborative cloud-based face recognition

approach for humanoid robots. In Emit19, isbn: 978-0-9933426-2-6,

2019 conference on university of huddersfield (pp. 1–4).

Aagela, H., Holmes, V., Dhimish, M., & Wilson, D. (2017). Impact of video

streaming quality on bandwidth in humanoid robot nao connected to the

cloud. In Proceedings of the second international conference on internet

of things and cloud computing (p. 134).

Abbas Shangari, T., Sadeghnejad, S., & Baltes, J. (2016). Importance of

humanoid robot detection. Humanoid Robotics: A Reference, 1–9.

Agüero, C. E., Koenig, N., Chen, I., Boyer, H., Peters, S., Hsu, J., . . . oth-

156

ers (2015). Inside the virtual robotics challenge: Simulating real-time

robotic disaster response. IEEE Transactions on Automation Science

and Engineering , 12 (2), 494–506.

Al-Aqrabi, H., & Hill, R. (2018). Dynamic multiparty authentication of data

analytics services within cloud environments. In 20th ieee international

conference on high performance computing and communications (hpcc-

2018), ieee computer society.

Al Aqrabi, H., Liu, L., Hill, R., & Antonopoulos, N. (2014). A multi-layer

hierarchical inter-cloud connectivity model for sequential packet inspec-

tion of tenant sessions accessing bi as a service. In High performance

computing and communications, 2014 ieee 6th intl symp on cyberspace

safety and security, 2014 ieee 11th intl conf on embedded software and

syst (hpcc, css, icess), 2014 ieee intl conf on (pp. 498–505).

Ali, S. S., Hammad, A., & Eldien, A. S. T. (2018). Fastslam 2.0 tracking and

mapping as a cloud robotics service. Computers & Electrical Engineering ,

69 , 412–421.

Anwaar, W., & Shah, M. A. (2015). Energy efficient computing: a comparison

of raspberry pi with modern devices. International Journal of Computer

and Information Technology , 4 (02).

Arumugam, R., Enti, V. R., Bingbing, L., Xiaojun, W., Baskaran, K., Kong,

F. F., . . . Kit, G. W. (2010). Davinci: A cloud computing framework for

service robots. In Robotics and automation (icra), 2010 ieee international

conference on (pp. 3084–3089).

Austin, G. (2018). Robots writing chinese and fighting underwater. In The

political economy of robots (pp. 271–290). Springer.

157

Balasuriya, B., Chathuranga, B., Jayasundara, B., Napagoda, N., Ku-

marawadu, S., Chandima, D., & Jayasekara, A. (2016). Outdoor robot

navigation using gmapping based slam algorithm. In 2016 moratuwa

engineering research conference (mercon) (pp. 403–408).

Bogue, R. (2016). The role of robots in the battlefields of the future. Industrial

Robot: An International Journal , 43 (4), 354–359.

Bolotnikova, A., Demirel, H., & Anbarjafari, G. (2017, Sep 01). Real-time

ensemble based face recognition system for nao humanoids using local

binary pattern. Analog Integrated Circuits and Signal Processing , 92 (3),

467–475. Retrieved from https://doi.org/10.1007/s10470-017-1006

-3 doi: 10.1007/s10470-017-1006-3

Cheng, A. L., Bier, H., & Mostafavi, S. (2017). Deep learning object-

recognition in a design-to-robotic-production and-operation implemen-

tation. In 2017 ieee second ecuador technical chapters meeting (etcm)

(pp. 1–6).

da Silva, B. M., Xavier, R. S., do Nascimento, T. P., & Gonsalves, L. M.

(2017). Experimental evaluation of ros compatible slam algorithms for

rgb-d sensors. In 2017 latin american robotics symposium (lars) and 2017

brazilian symposium on robotics (sbr) (pp. 1–6).

Doriya, R., Chakraborty, P., & Nandi, G. (2012a). Robotic services in cloud

computing paradigm. In Cloud and services computing (iscos), 2012

international symposium on (pp. 80–83).

Doriya, R., Chakraborty, P., & Nandi, G. (2012b). ‘robot-cloud’: A framework

to assist heterogeneous low cost robots. In 2012 international conference

on communication, information & computing technology (iccict) (pp. 1–

158

https://doi.org/10.1007/s10470-017-1006-3
https://doi.org/10.1007/s10470-017-1006-3

5).

Fazli, P., Davoodi, A., & Mackworth, A. K. (2013). Multi-robot repeated area

coverage. Autonomous robots , 34 (4), 251–276.

Furht, B. (2010). Cloud computing fundamentals. In Handbook of cloud

computing (pp. 3–19). Springer.

Garage, W. (2011). Turtlebot. Website: http://turtlebot. com/last visited ,

11–25.

Ghani, M. F. A., Sahari, K. S. M., & Kiong, L. C. (2014). Improvement of the

2d slam system using kinect sensor for indoor mapping. In 2014 joint 7th

international conference on soft computing and intelligent systems (scis)

and 15th international symposium on advanced intelligent systems (isis)

(pp. 776–781).

Gliem, J. A., & Gliem, R. R. (2003). Calculating, interpreting, and reporting

cronbach’s alpha reliability coefficient for likert-type scales..

Google cloud platform overview. (2018, Dec). Retrieved from https://cloud

.google.com/docs/overview/ (Accessed: 2019-01-11)

Gouveia, B. D., Portugal, D., Silva, D. C., & Marques, L. (2015). Computation

sharing in distributed robotic systems: A case study on slam. IEEE

Transactions on Automation Science and Engineering , 12 (2), 410–422.

Hamzeh, O., & Elnagar, A. (2015). A kinect-based indoor mobile robot local-

ization. In 2015 10th international symposium on mechatronics and its

applications (isma) (pp. 1–6).

Hoffman, G. (2016). Openwoz: A runtime-configurable wizard-of-oz framework

for human-robot interaction. In 2016 aaai spring symposium series.

Hosseini, H., Xiao, B., & Poovendran, R. (2017). Google’s cloud vision api

159

https://cloud.google.com/docs/overview/
https://cloud.google.com/docs/overview/

is not robust to noise. In 2017 16th ieee international conference on

machine learning and applications (icmla) (pp. 101–105).

Hu, G., Tay, W. P., & Wen, Y. (2012). Cloud robotics: architecture, challenges

and applications. IEEE network , 26 (3).

Hunziker, D., Gajamohan, M., Waibel, M., & D’Andrea, R. (2013). Rapyuta:

The roboearth cloud engine. In Icra (pp. 438–444).

Inaba, M. (1997). Remote-brained robots. In Ijcai (pp. 1593–1606).

Ismail, L., Shamsuddin, S., Yussof, H., Hashim, H., Bahari, S., Jaafar, A.,

& Zahari, I. (2011). Face detection technique of humanoid robot nao

for application in robotic assistive therapy. In 2011 ieee international

conference on control system, computing and engineering (pp. 517–521).

ITU, T. S. S. O. (2003). Itu-t recommendation g. 114-one-way transmission

time. May.

Jamsa, K. (2011). Cloud computing. Jones & Bartlett Publishers.

Jolliffe, I. T., & Cadima, J. (2016). Principal component analysis: a review and

recent developments. Philosophical Transactions of the Royal Society A:

Mathematical, Physical and Engineering Sciences , 374 (2065), 20150202.

JoSEP, A. D., KAtz, R., KonWinSKi, A., Gunho, L., PAttERSon, D., &

RABKin, A. (2010). A view of cloud computing. Communications of

the ACM , 53 (4).

Juan, S. H., & Cotarelo, F. H. (2015). Multi-master ros systems. Institut de

Robotics and Industrial Informatics , 1–18.

Jusuf, F. (2016). Auto-navigation for robots. implementation of ros. Automa-

tion Engineering .

Kamei, K., Nishio, S., Hagita, N., & Sato, M. (2012). Cloud networked

160

robotics. IEEE Network , 26 (3), 28–34.

Kehoe, B., Patil, S., Abbeel, P., & Goldberg, K. (2015). A survey of research

on cloud robotics and automation. IEEE Trans. Automation Science and

Engineering , 12 (2), 398–409.

Keller, E., & Rexford, J. (2010). The” platform as a service” model for

networking. INM/WREN , 10 , 95–108.

Kuffner, J., & Robots, C.-E. (2010). In proc. of the ieee intl. In Conf. on

humanoid robots, nashville.

Kumar, R., Pattnaik, P. K., & Pandey, P. (2017). Detecting and mitigating

robotic cyber security risks. IGI Global.

Li, M., & Yuan, B. (2005). 2d-lda: A statistical linear discriminant analysis

for image matrix. Pattern Recognition Letters , 26 (5), 527–532.

Liu, H., Li, F., Xu, X., & Sun, F. (2018). Multi-modal local receptive field

extreme learning machine for object recognition. Neurocomputing , 277 ,

4–11.

Liu, X. F., Shahriar, M. R., Al Sunny, S. N., Leu, M. C., & Hu, L. (2017).

Cyber-physical manufacturing cloud: Architecture, virtualization, com-

munication, and testbed. Journal of Manufacturing Systems , 43 , 352–

364.

Magyar, G., Sinčák, P., Magyar, J., Yoshida, K., Manzi, A., & Cavallo,

F. (2017). Cowooz—a cloud-based teleoperation platform for social

robotics. In 2017 ieee 15th international symposium on applied machine

intelligence and informatics (sami) (pp. 000049–000054).

Mahmood, Z., & Saeed, S. (2013). Software engineering frameworks for the

cloud computing paradigm. Springer.

161

Manzi, A., Fiorini, L., Esposito, R., Bonaccorsi, M., Mannari, I., Dario, P., &

Cavallo, F. (2017). Design of a cloud robotic system to support senior

citizens: The kubo experience. Autonomous Robots , 41 (3), 699–709.

Mell, P., Grance, T., et al. (2011). The nist definition of cloud computing.

Mohanarajah, G., Hunziker, D., D’Andrea, R., & Waibel, M. (2014). Rapyuta:

A cloud robotics platform. IEEE Transactions on Automation Science

and Engineering , 12 (2), 481–493.

Navale, V., & Bourne, P. E. (2018). Cloud computing applications for

biomedical science: A perspective. PLoS computational biology , 14 (6),

e1006144.

Paradies, Y. (2006). A systematic review of empirical research on self-reported

racism and health. International journal of epidemiology , 35 (4), 888–

901.

Peter, M., & TIM, G. (2010). The nist definition of cloud computing. associa-

tion for computing machinery. Communications of the ACM. New York:

Association for Computing Machinery .

Rehman, U. A. (2013). Using robots and slam for indoor wi-fi mapping in

indoor geolocation [revised and extended version].

Ren, K., Wang, C., & Wang, Q. (2012). Security challenges for the public

cloud. IEEE Internet Computing , 16 (1), 69–73.

Rosado, T., & Bernardino, J. (2014). An overview of openstack architecture. In

Proceedings of the 18th international database engineering & applications

symposium (pp. 366–367).

Ros distributions — ros. (2018, Dec). Retrieved from http://wiki.ros.org/

Distributions (Accessed: 2019-03-13)

162

http://wiki.ros.org/Distributions
http://wiki.ros.org/Distributions

Ros : Intro to the robot operating system — robohub. (2013, Jun). Retrieved

from Robohub.org (Accessed: 2018-12-22)

Roth, G., Livingston, J., Blair, M., & Kolonay, R. (2010). Create-av

davinci: computationally-based engineering for conceptual design. In

48th aiaa aerospace sciences meeting including the new horizons forum

and aerospace exposition (p. 1232).

Saxena, A., Jain, A., Sener, O., Jami, A., Misra, D. K., & Koppula, H. S.

(2014). Robobrain: Large-scale knowledge engine for robots. arXiv

preprint arXiv:1412.0691 .

Sefraoui, O., Aissaoui, M., & Eleuldj, M. (2012). Openstack: toward an open-

source solution for cloud computing. International Journal of Computer

Applications , 55 (3), 38–42.

Serrano, N., Gallardo, G., & Hernantes, J. (2015). Infrastructure as a service

and cloud technologies. IEEE Software, 32 (2), 30–36.

Small, N., Lee, K., & Mann, G. (2018). An assigned responsibility system for

robotic teleoperation control. International journal of intelligent robotics

and applications , 2 (1), 81–97.

Song, Y., Guo, S., Yin, X., Zhang, L., Wang, Y., Hirata, H., & Ishihara, H.

(2018). Design and performance evaluation of a haptic interface based

on mr fluids for endovascular tele-surgery. Microsystem Technologies ,

24 (2), 909–918.

Sotiriadis, S., Bessis, N., Antonopoulos, N., & Hill, R. (2013). Meta-

scheduling algortithms for managing inter-cloud interoperability. Inter-

national Journal of High Performance Computing and Networking , 7 (2),

156–172.

163

Robohub.org

Stojmenovic, I. (2014). Fog computing: A cloud to the ground support for

smart things and machine-to-machine networks. In 2014 australasian

telecommunication networks and applications conference (atnac) (pp.

117–122).

Tian, S., Saitov, D., & Lee, S. G. (2014). Cloud robot with real-time face

recognition ability. Adv. Sci. Technol. Lett , 51 , 77–80.

Tuna, G., Gulez, K., Gungor, V. C., & Mumcu, T. V. (2012). Evaluations of

different simultaneous localization and mapping (slam) algorithms. In

Iecon 2012-38th annual conference on ieee industrial electronics society

(pp. 2693–2698).

TurtleBot2. (2014). Turtlebot2 open-source robot development kit for apps on

wheels. Retrieved from https://www.turtlebot.com/turtlebot2/

Tzafestas, S. G. (2013). Introduction to mobile robot control. Elsevier.

Vaske, J. J., Beaman, J., & Sponarski, C. C. (2017). Rethinking internal

consistency in cronbach’s alpha. Leisure Sciences , 39 (2), 163–173.

Waibel, M., Beetz, M., Civera, J., d’Andrea, R., Elfring, J., Galvez-Lopez, D.,

. . . others (2011). Roboearth. IEEE Robotics & Automation Magazine,

18 (2), 69–82.

Wang, L., Liu, M., & Meng, M. Q.-H. (2012). Towards cloud robotic system:

A case study of online co-localization for fair resource competence. In

2012 ieee international conference on robotics and biomimetics (robio)

(pp. 2132–2137).

Zamora, I., Lopez, N. G., Vilches, V. M., & Cordero, A. H. (2016). Extending

the openai gym for robotics: a toolkit for reinforcement learning using

ros and gazebo. arXiv preprint arXiv:1608.05742 .

164

https://www.turtlebot.com/turtlebot2/

Appendices

165

Appendix A

Engagement with Research

Community

Refereed Publications

Aagela, H., Holmes, V.: “Novel clone-based cloud robotic model to overcome

limitation of the multi robots QoS.”, Robotics and Autonomous Systems, El-

sevier Journals.

Abstract: “Cloud computing technologies have had a critical impact on var-

ious research fields. Recently, a new path of research, cloud robotics, has

emerged enabling robots to exploit the capabilities of cloud computing. This

can enhance the robots’ performance dramatically and help to overcome the

lack of on-board robot resources. Nevertheless, implementing a cloud robotic

platform that is capable of handling multi-robot applications can be challeng-

166

ing. This paper presents a new clone-based cloud robotic architecture Platform-

as-a-Service (PaaS) for individual client robots via a reserved Virtual Ma-

chine(VM). The system uses Robot Operating System (ROS) as a middleware

environment for robot systems development. Collaboration between robots is

managed with multi-ROS master software, where several ROSs run in the same

cloud environment, each being connected via a Virtual Private Network(VPN).

The robots’ real-time responses define an overall Quality of Service(QoS) that

is measured in two environments. First, in a Clone-Based Model(CBM) and

second, in a Proxy-Based Model (PBM). The results show that the average re-

sponse time in PBM changes significantly when the number of robots in a sys-

tem increases. However, the CBM shows that average response time remains

steady regardless of the number of robots used. We conclude that the CCRP

demonstrates an efficient and secure way of utilising external resources via the

application programming interface (API) manager, to extend the capability of

individual robots”.

Higgins, J, Al-Jodi, T, Aagela, H., Holmes, V.: “Inspiring the Next Generation

of HPC Engineers with Re-configurable, Multi-Tenant Resources for Teaching

and Research”, Journal of education, SAGE Journals.

Abstract: “There is a tradition at our university for teaching and research

in High Performance Computing (HPC) systems engineering. With exascale

computing on the horizon, and a shortage of HPC talent, there is a need for

new research computing specialists to secure the future of research computing.

Whilst many institutions provide research computing training for users within

167

their particular domain, few offer HPC engineering and infrastructure related

courses, making it difficult for students to acquire these skills. This paper out-

lines how and why we are training students in HPC systems engineering skills,

including technologies used in delivering this goal. We demonstrate a potential

for a multi-tenant system for education and research which can be supported

by other institutions, using novel container and cloud based architecture. An

evaluation of our activities over the last 2 years is given in terms of recruit-

ment metrics, skills audit feedback from students, and research outputs enabled

by the multi-tenant usage of the resource.”.

Aagela, H., Holmes, V.: “Collaborative Cloud-based Face recognition approach

for Humanoid robots.”, EMiT19, ISBN: 978-0-9933426-2-6, University of Hud-

dersfield, Huddersfield, April 2019, UK.

Abstract: ”The ability to recognise human faces in real time is an important

requirement for most humanoid robots. One of the challenges in face recog-

nition (FR) applications is the time it takes a robot to search through a large

dataset of known faces. As a database of known images is increasing, a robot’s

ability to store and process the data in real time is decreasing. In this paper we

present a new cloud-based FR algorithm which will enable faster processing of

data in face detection and recognition by humanoid robots. An improvement in

robot’s performance will be achieved by offloading storage and processing tasks

from limited on-board robot resources to the resources in the cloud. In the

case of multi-robot systems, their performance can be further improved through

cloud-based collaborative learning and information sharing. We created a new

168

dataset containing over 300 trained facial images of 10 people. The result

shows that the proposed FR can achieve 83% accuracy rate and exceeds the lo-

cal FR performance in terms of the response time which is slightly increased in

comparison to local system performance which sees significant increase when

the dataset size grows. The system proved its capability to share knowledge

between robots in the same multi-robot environment.”

Aagela, H., Holmes, V.: “Cloud Robotics-Based System for Robot Teleoper-

ation.”, EMiT19, ISBN: 978-0-9933426-2-6, University of Huddersfield, Hud-

dersfield, April 2019, UK.

Abstract: “Robots are now able to assist humans in many demanding tasks.

Teleoperation is one way to combine robot skills and human operator abilities,

through remote automatic or manual control. However, modern applications

require larger processing and memory resources than those currently available

in most robotic systems. The main challenges associated with networked robots

occur due to resource constraints, information and learning constraints, and

communication constraints. In this paper we present our approach in dealing

with teleoperation processes in multi-robot environments that attempt to tackle

the Heterogeneity robot challenge. We have implemented clone-based cloud

robotic platform (CCRP) which is designed to provide platform-as-a-service

(PaaS) for the client robots. In this system, a virtual machine (VM) is assigned

in a cloud for every robot. The platform uses Robot Operating System (ROS)

as a middleware environment for robot development. The result show that the

response time in teleoperation was on average 240ms for Turtlebot robot and

169

273ms for NAO robot”.

Al-Aqrabi, H., Hill, R., Aagela, H., Holmes, V.: “Securing Manufacturing In-

telligence for the Industrial Internet of Things.”, Springer, ICICT2019, Brunel,

London, UK.

Abstract: “Widespread interest in the emerging area of predictive analytic

is driving industries such as manufacturing to explore new approaches to the

collection and management of data provided from Industrial Internet of Things

(IIoT) devices. Often, analytic processing for Business Intelligence (BI) is an

intensive task, and it also presents both an opportunity for competitive ad-

vantage as well as a security vulnerability in terms of the potential for losing

Intellectual Property (IP). This article explores two approaches to securing BI

in the manufacturing domain. Simulation results indicate that a Unified Threat

Management (UTM) model is simpler to maintain and has less potential vul-

nerabilities than a distributed security model. Conversely, a distributed model

of security out-performs the UTM model and offers more scope for the use of

existing hardware resources. In conclusion, a hybrid security model is proposed

where security controls are segregated into a multi-cloud architecture”.

Aagela, H., Al-Jodi, T., Holmes, V.: “Web-based Wireless Wake-on-LAN ap-

proach for Robots.”, IEEE, ICAC’18, Newcastle University, Newcastle upon

Tyne, September 2018, UK.

Abstract: “The ability to remotely wake-up robots over a wireless LAN can

170

improve the performance and the power consumption of remote robots or cloud

robotics system. This paper presents a solution for power management of a

mobile robot, using web-based wireless Wake-on-LAN (WWoL). The focus in

on power management of a mobile robot, but this approach is also suitable

for most of the IoT mobile devices, and other systems that are designed to be

used remotely. The proposed solution allows the targeted device to be powered

ON and OFF remotely via a web-based dashboard. This approach is validated

in a case study with an AR. Drone 2.0. and demonstrated substantial power

optimisation for the drone. In addition, security issues are explored when

WWoL is deployed in remote control of mobile devices. It was established

that a power consumption is reduced when the drone is in a standby mode

waiting for an operator to send a wake-on request message wirelessly, without

compromising security posed by wireless remote access to the devices”.

Aagela, H., Holmes, V.: “An Asusxtionpro based indoor MAPPING using a

Raspberry Pi with Turtlebot Robot.”, IEEE, ICAC’17, University of Hudder-

sfield, Huddersfield, September 2017, UK.

Abstract: “The developers of path planning algorithms and localisation have

significantly improved the usability of the robot those days. By using software

such as a Gmapping, the robot will be able to create a map of the surrounding

area. This research utilises the 3D sensor Asusxtionpro to create an indoor map

using SLAM and create 3D models for surrounding objects with a Turtlebot

robot. In the first case, we used the Turtlebot to generate an indoor map of

the robotic lab room using the Gmapping ROS packet. In the second case, we

171

used the robot to create 3D models for the surrounding objects in the room.

We used the Raspberry Pi 3 as a replacement of the laptop that was used

to control the Turtlebot. The same implementation of the first and second

tasks have been repeated to compare the performance. The Raspberry Pi

accomplishes the given tasks successfully; however, there is some delay due

to the different on the CPU power. Finally, the low cost proposed solution

is capable of running ROS based SLAM algorithm and using the point on

cloud to create 3D models. In addition, the use of Raspberry Pi allows the

robot save considerable amount of power in contrast with the use of a normal

laptop”.

Aagela, H., Holmes, V.: “Impact of Video Streaming Quality on Bandwidth

and Face Recognition Accuracy in Humanoid Robot NAO.”, ICC ’17, March

2017, Cambridge, UK.

Abstract: “This paper investigates the impact of video streaming quality on

bandwidth consumption during the transfer of video data from a humanoid robot

‘NAO’ to computing devices, used to perform face recognition tasks, and to the

cloud. It presents the results of profiling the network performance of connecting

NAO with an edge controller, and discusses the effect of using different qualities

of video streaming on the consumed up-link bandwidth. This study considers

the limitation of the up-link bandwidth in the Wi-Fi network. It compares the

performances of Wi-Fi and Ethernet connections between the NAO robot and

a computer. In addition, it examines the accuracy of the face recognition tasks

using various streaming scenarios, such as coloured video and black & white

172

video. It investigates real-time video streaming using a wide range of frame

rates, and video qualities, and their impact on the bandwidth, and accuracy of

face identification. The results of our investigations are used to determine the

acceptable video quality, frame rate, buffering and bandwidth that would give

optimal results in face recognition using NAO robot, and enable efficient data

transfer to the cloud”.

173

Appendix B

OpenStack deployment

This section explains the process of Openstack deployment methods that have

been utilised during this study. The Openstack private cloud was deployed

twice, the section of the deployment method was based on compatibility with

the available hardware and the university network. The first attempt was in

2016, where the we used the metal as a service ‘MaaS’ and Juju. MaaS is

allowing user to get full control and access to the provided hardware. Where

Juju is an automatic service orchestration tool allow easy deployment for var-

ious applications, such as Hadoop cluster, WordPress, Openstack and so on.

(OpenStack Docs: Install Juju, 2019). The second Openstack deployment

method that has been applied is called Devstack, which is basically a sequence

of extensible scripts utilised to rapidly set up a full OpenStack system. Here

are some of the essential steps that needed for configuring both OpenStack

environments. (OpenStack Docs: DevStack, 2019)

174

Figure B.1: The network diagram of the hardware and network components.

B.1 MaaS and Juju OpenStack Configuration

The MaaS and Juju system was installed using 7 machines, which was the min-

imum Openstack requirement at the time of the development. As shown in

Figure the network diagram of the hardware and network components, which

consist of one management node running the MaaS software and 6 other nodes

linked together with two switches, first one connected to the University net-

work and the Internet and the other switch is forming a cloud local private

network.

First step for the installation is adding the required repositories for both MaaS

and Juju. The we need to imitate the MaaS installation by using the following

command line.

175

Once the MaaS software is installed the dashboard for MAAS can be accessed

via the server IP address:

http://<MaaS server IP>/MAAS/

”

The dashboard allow user select and download the OS images that can be

used for remote installation to linked nodes. The administrator can edit the

network or create new one if required via the dashboard. Once the nodes are

added to the MaaS as shown in Figure D.2, user can monitor and control the

state of those nodes.

176

Figure B.2: MaaS dashboard

Install JuJu

Installing Juju require the user to create a configuration script before the

installation and name it environments.yaml, which contains several parameters

as follows:

defult: maas

environments:

maas:

177

type: maas

maas-server: ’http://10.71.x.x/MAAS’

maas-oauth: ’b2WFdyvrucffKV7sfR:KsVnrrC9P4v78qMyhy:MCYxHZ7W5JBd9wpURbW36fjt$

authorized-keys-path: ∼/.ssh/id rsa.pub

admin-secret: ’cloud’

default-series: trusty

bootstrap-timeout: 3600

apt-http-proxy: http://10.71.x.x:8000

lxc-clone: true

no-proxy: localhost,127.0.0.1,10.71.x.x

http-proxy: http://uniproxy:3128

https-proxy: http://uniproxy:3128

data-dir: /tmp/juju

To install Juju with the following command.

At this stage juju should be active, however, the juju GUI will need extra step,

which can be applied by using juju deployment tool. The juju GUI dashboard

shown in Figure D.3.

178

Figure B.3: The Juju GUI dashboard

Install Openstack

The quick start plugin for Juju is allow Juju to deploy all the required nodes

and establish the connection amongst them quickly and easily. As shown in

179

Figure D.4 the Openstack deployment in Juju dashboard.

Figure B.4: The Openstack deployment within Juju environment

B.2 DevStack OpenStack Configuration

The second deployment method of Openstack is Devstack, which have used

three server nodes as shown in Figure 0-3. The nodes linked together via a

switch and the controller node connected to the University network, which

used as a public cloud network. The process of creating Openstack using

the Devstack method is easier and faster than MaaS and Juju companion,

however, the later provide more scalability, redundancy and stability. The

180

implementation initiated by installing the OS in all the nodes, then following

steps should be applied

Step 1: create a new user which must be named ”stack”, this user will be used

to run DevStack.

Step 2: Download the Devstack file from GitHub, then a configuration file must

be edited with the personal information, network configuration and services

that should be runs into each node.

Create the local scripts configuration for both the controller and the compute

nodes. Step 3: Run the Devstack script

As shown in Figure D.5, the result of successful installation of the Devstack,

the terminal should show the URL of the Openstack Dashboard.

181

Figure B.5: Successful installation of Devstack output with the URL link of
the dashboard

As a result of the both deployment method above, the user should have access

to a web-based Horizon dashboard as shown in Figure D.6. Horizon is the

official GUI application of OpenStack’s Dashboard, which offers a web-based

user interface for various OpenStack services such as Nova, Keystone, Swift

and so on.

182

Figure B.6: Openstack web-based dashboard

183

Appendix C

ROS Installation

The ROS framework is a main element in the body of the CCRP, where the

initial CRI will require the user to install the ROS in a cloud VM, the In-

stallation process for ROS into a Ubuntu operating system was accomplished

by following the procedure given by the ROS.org official page.which gives a

guideline on how to execute the installation in the local machine robot/edge

device. The work in this thesis mainly utilises two versions of ROS (Indigo

and Kinect), and the OS that were used Ubuntu 14.04 LTS, 16.04 LTS and

Ubuntu mate 16.04.

The installation is imitated by configuring the source list to allow downloading

the software packages from ROS repositories as well as configuring the security

keys.

184

Next step is to install ROS main package.where there are three different in-

stallation package bundle. 1) the first one is the a full installation option.

which includes all ROS basic packages as well as the ROS GUI software such

as Rviz, Gazebo, rqt and robot-generic libraries. 2) The second option is the

basic desktop installation which has some of the ROS GUI software included

Rqt and Rviz. 3) The third option is the ROS-basic installation, which is

limited to main ROS package,with no ROS GUI software.

185

Once the main ROS package is downloaded, then the rosdep is required to start

the process installation and checking up the system dependencies, in addition,

running some core elements in ROS.

The new ROS environment should be added as a variables to bash session.

This was done by initiating the following commands.

Once the installation is done, the ROS should be ready to run in the Ubuntu

OS environment.

186

Appendix D

Collected Data

This section demonstrates some of the collected data throughout the research,

the presented data are mostly the average of a larger set of data, which were

demonstrated in a graph or table in previous sections. Followed by the relia-

bility analysis table that show the Cronbach’s Alpha value greater than 0.7,

therefore, the dataset can be considered as a reliable source of data.

Response time of Clone-based model “CBM”

and proxy-based model “PBM” delay

Response time of the Clone-based model “CBM” and proxy-based model “PBM”

with 100ms delay, collected averaged results of both CBM and PBM,

187

Number

of

Robots

Response Time

CBM (ms)

Response Time PBM

(ms)

1 152 147

2 153 162

3 153 178

4 154 180

5 153 204

6 151 223

7 154 241

8 155 264

9 153 284

10 154 301

Reliability

Statistics

Cronbach’s

Alpha

Cronbach’s

Alpha

Based

on Stan-

dardised

Items

N of

Items

.726 .872 3

1. Response time of the Clone-based model “CBM” and proxy-based model

“PBM” with 500ms delay, collected averaged results of both CBM and

188

PBM.

Number

of

Robots

Response Time

CBM (ms)

Response Time

PBM (ms)

1 551 542

2 550 620

3 553 718

4 550 821

5 555 951

6 552 1188

7 558 1281

8 555 1712

9 553 1994

10 554 2211

Reliability

Statistics

Cronbach’s

Alpha

Cronbach’s

Alpha

Based

on Stan-

dardized

Items

N of

Items

.723 .731 2

189

190

D.1 Experimental results of the delay time in

millisecond for the response time delay

and the video delay.

Video Response

AttemptNAO Turtlebot NAO Turtlebot

1 142 130 264 241

2 143 131 265 242

3 144 132 266 243

4 145 133 267 244

5 146 134 268 245

6 147 135 269 246

7 148 136 270 247

8 149 137 271 248

9 150 138 272 249

10 151 139 273 250

11 142 140 274 251

12 143 141 275 252

13 144 142 276 253

14 145 143 277 254

15 146 144 278 255

16 147 145 279 256

17 148 146 280 257

18 149 147 281 258

19 150 148 282 259

20 151 149 283 260

191

Reliability

Statistics

for Video

delay

Cronbach’s Al-

pha

Cronbach’s

Alpha

Based

on Stan-

dardized

Items

N of Items

.857 .856 3

Reliability

Statistics

for response

time delay

Cronbach’s Al-

pha

Cronbach’s

Alpha Based

on Stan-

dardized

Items

N of Items

1.000 1.000 3

192

D.2 The response time of the local FR and the

cloud FR

Each of the results presented in the tables is an average of 20 attempts in FR

for a given scenario.

1. The Result of the local FR approach shows the accuracy rate for 10

people and with various trained images.

No

TF/P

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

1 0.22 0.08 0.3 0.18 0.3 0.11 0.23 0.31 0.2 0.17

5 0.28 0.21 0.34 0.36 0.35 0.33 0.34 0.48 0.38 0.23

10 0.59 0.67 0.73 0.72 0.79 0.69 0.63 0.75 0.64 0.69

20 0.72 0.69 0.81 0.79 0.82 0.75 0.78 0.76 0.78 0.7

30 0.75 0.74 0.85 0.79 0.91 0.81 0.88 0.85 0.78 0.84

Reliability

Statistics

Cronbach’s Al-

pha

Cronbach’s

Alpha Based

on Standard-

ized Items

N of Items

0.346 0.997 11

1. The Result of the cloud FR approach shows the accuracy rate for 10

people and with various trained images.

193

No

TF/P

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

1 0.19 0.11 0.22 0.14 0.23 0.18 0.22 0.2 0.16 0.15

5 0.31 0.3 0.34 0.28 0.36 0.32 0.33 0.32 0.3 0.34

10 0.64 0.63 0.66 0.58 0.68 0.6 0.61 0.65 0.64 0.61

20 0.8 0.76 0.81 0.79 0.77 0.75 0.74 0.77 0.72 0.79

30 0.84 0.84 0.8 0.81 0.86 0.83 0.85 0.83 0.84 0.8

Reliability

Statistics

Cronbach’s

Alpha

Cronbach’s Alpha

Based on Stan-

dardised Items

N of

Items

.364 .998 11

1. The response time of the local FR and the cloud FR

Number

Trained Faces

for 10 People

local

FR

Cloud

FR

1 196 261

5 232 280

10 268 287

20 327 304

30 400 320

194

Reliability

Statistics

Cronbach’s

Alpha

Cronbach’s Alpha

Based on Stan-

dardised Items

N of

Items

0.775 0.998 3

D.3 Face recognition accuracy rate with dif-

ferent video quality

1. Face recognition accuracy rate with different video quality Colour video

streaming.

Video

Quality

1 5 10 15 20 25 30

kQQVGA 56 64 68 68 68 68 72

kQVGA 72 76 80 88 88 84 84

kVGA 88 96 92 88 84 80 84

k4VGA 92 92 88 88 84 84 80

Reliability

Statistics

Cronbach’s

Alpha

Cronbach’s Alpha

Based on Standard-

ised Items

N of Items

0.954 0.975 7

195

1. Face recognition accuracy rate for different video quality Black and white

video streaming

Video

Quality

1 5 10 15 20 25 30

kQQVGA 48 56 60 60 64 64 64

kQVGA 68 72 72 76 72 72 76

kVGA 84 88 84 84 84 80 80

k4VGA 92 88 84 84 80 76 76

Reliability

Statistics

Cronbach’s

Alpha

Cronbach’s Alpha

Based on Standard-

ised Items

N of Items

0.970 0.993 7

196

Appendix E

Web-based Wireless

Wake-on-LAN

This section presents an approach that allow to control the robots over a

network remotely can enhance the efficiency of the energy usage performance

for robots. This work try to address the lack of power for a mobile robot,

by deploying the web-based wireless Wake-on-LAN WWoL. which aimed to

permit user to control the power state of a remote robot via a web-based

dashboard. The system was tested by using a case study with an AR drone

2.0 and shows substantial power optimisation for the drone.

The main features of the designed system can be listed as follows:

1. Control the Power state (on/off) of the remote robot.

2. Autonomously establish a secure channel and connect to the web-based

application.

197

3. Easy to set-up and configure.

Figure E.1: The proposed System architecture

The WWoL system architecture shown in Figure E.1 the key components of

the system. The user will get access to the targeted device via a browser and

use the Network to send the signal to the smart switch. which connects the

device to its power supply for the robot, in this case is a drone.

The Wi-Fi was used as the connection media; nevertheless, we can use most

of the wireless internet enable technologies as well. The Raspberry Pi will be

used as a secondary Linux-based OS for the original robot system. The system

used a raspberry Pi Zero-W micro-controller as shown in Figure E.2 to work

as a receiver for the control signal. There is a 5 V DC relay that and 3.7

V battery Lipo 1500 mAh. The key reason for choosing Raspberry Pi Zero

W over other available micro-controllers is its compatibility and support for

most of the internet protocols and low price. Also, the model Raspberry Pi

Zero W is wireless-enabled with an inbuilt 802.11 b/g/n wireless LAN chip

198

Figure E.2: Raspberry Pi Zero W

and Bluetooth 4.1 LE.

The Parrot AR drone 2.0 is remotely controlled quadcopter drone that include

several of sub-elements. It has on-board two boards mounted on the drone

body. First board is a motherboard that uses a 32bits ARM9-core called

Parrot P6 processor (468 MHz). It has a Wi-Fi chip. The second board, a

navigation board, has a 16bits PIC microcontroller running at only 40 MHz,

and used to interact with the drone sensors namely, two cameras, and two

Prowave ultrasonic vertically-oriented sensors. The drone has a 11.1 V Lipo

battery supplying 1500 mAh.

Our approach design a web-based application on both client and server sides.

The client side was implemented using Python and NodeJS. where the Python

is used to control the power status of the DC relay (on or off). The NodeJS

part is responsible for connecting the Raspberry Pi with the web server, which

199

feeds the status of the Switch every 3 seconds (Here the time is optional to

be defined by the user). The server side running a web page as a dashboard

that demonstrate the switch current status and control Raspberry. As shown

in Figure E.3 the system start by acquiring and checking the status of the Pi;

then if it is online, the switch status will be checked that will be reflected in

the state of a switch button on the web site. Therefore, the change the drone

power status accordingly.

The Drone power system is managed by a web application that is hosted

on a cloud virtual machine as an online server. Figure E.4 shows the main

dashboard of the WWoL web application on different power statuses.

The prototype of the web-based WWoL system has been implemented and

tested. The result of implementing the system is that it enables remote user

to manage the power status of the drone, by using the web application as a

smart switch. Figure E.5 shows the system with the done on both statuses

(when the button is turned A) OFF and B) ON). It was established that power

consumption can be optimised when the drone is in a standby mode waiting for

a wake-on request message wirelessly from the operator, without compromising

security posed by wireless remote access to the devices. The use of the system

proved its value in terms of increasing the Idle-time for the Drone in standby

mode. The following publications have arisen from my research detailed in this

thesis: “Web-based Wireless Wake-on-LAN approach for Robots.” by Aagela,

Al-Jodi, Holmes (2018).

200

Figure E.3: The Work-flow of the Web-based application WWoL

201

Figure E.4: Dashboard of the Web Application shows states when the button
is turned OFF and turned ON.

A

202

B

Figure E.5: The drone state A) turned OFF B) turned ON

203

	Introduction
	Overview
	Communication
	Heterogeneity of robots
	Knowledge representation
	Brainless robots
	Security

	Motivation
	Research Aim and Objectives
	Organisation

	Background and Related Work
	Introduction
	Cloud Computing
	Cloud Deployment Models
	Cloud Service Models

	Robots
	Simultaneous Localisation And Mapping (SLAM)
	Robot Teleoperation
	Robot Vision
	Multi-Robot and Multi-Area Management

	Cloud Robotics
	Cloud Robotic Connection Models

	Related Work
	DAvinCi Framework
	REALcloud Framework
	RobotCloud Framework
	Rapyuta Framework

	Evaluation of Related Work
	Gap in knowledge
	Summary

	Robot Operating System
	ROS Overview
	ROS Structure
	File System Level
	Computation Graph Level
	Community Level

	Single ROS Master
	Multi ROS Master
	Summary

	Research Methodology
	Introduction
	Research Methodology
	Research Approach
	Experimental robots
	Humanoid robot NAO
	Turtlebot Robot

	Cloud Platforms
	OpenStack

	Case Studies
	Real-time robot teleoperation and mapping
	Collaborative Face Recognition for Multi-robots

	Data Collection and Analysis
	Reliability and Validity

	Performance Evaluation
	Summary

	Clone-based Cloud Robotics Platform (CCRP)
	Introduction
	CCRP Architecture
	Network Architecture
	API Manager
	Security
	CCRP Process Handler
	Implementation
	Cloud Setup
	ROS Installation
	VPN Setup
	Scalability

	Summary

	Cloud Robotics Optimization
	Introduction
	Network Profiling
	Experimental setup
	Face Recognition Algorithm
	Experimental Cases
	Video Streaming over Wi-Fi
	Video Streaming over Ethernet
	Face Recognition Accuracy over Wi-Fi

	Low Power and Cost Robot
	System Specification
	Power Consumption

	Summary

	CCRP Evaluation
	Introduction
	Network Performance
	Quality of Service and Application Performance
	Experimental setup
	Experimental results

	API Manager Performance
	Summary

	Real Time Robot Teleoperation and Mapping
	Introduction
	Robot Teleoperation
	Mapping
	Experimental setup
	Experimental results
	Transmission Delay
	2D Mapping
	3D Object Model

	Summary

	Collaborative Cloud-based Face Recognition for Multi-robots Environment
	Introduction
	Collaborative Cloud-based FR Algorithm
	Experimental setup
	Experimental results
	Summary

	Conclusion and Future Work
	Conclusion
	CCRP Availability and Scalability
	API Integration
	Research Outcomes
	Research Contributions
	System Limitations

	Future Work
	Cooperative Navigation
	Face Recognition Application
	Brainless Robots Issue
	Web-based Application

	References
	Appendices
	Engagement with Research Community
	OpenStack deployment
	MaaS and Juju OpenStack Configuration
	DevStack OpenStack Configuration

	ROS Installation
	Collected Data
	Experimental results of the delay time in millisecond for the response time delay and the video delay.
	The response time of the local FR and the cloud FR
	Face recognition accuracy rate with different video quality

	 Web-based Wireless Wake-on-LAN

