
University of Huddersfield Repository

Ihnissi, Ragab Basher

Investigation of a Novel Formal Model for Mobile User Interface Design

Original Citation

Ihnissi, Ragab Basher (2017) Investigation of a Novel Formal Model for Mobile User Interface
Design. Doctoral thesis, The University of Huddersfield.

This version is available at http://eprints.hud.ac.uk/id/eprint/34643/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

THE UNIVERSITY OF HUDDERSFIELD

Investigation of a Novel Formal Model for Mobile

User Interface Design

by

Ragab Basher Ihnissi

A thesis submitted in partial fulfilment for the

degree of Doctor of Philosophy

in the

School of Computing and Engineering

November 2017

http://www.hud.ac.uk/
mailto:aa_shahed@yahoo.com

Copyright Statement

 The author of this thesis (including any appendices and/or schedules to this thesis)

owns any copyright in it (the ―Copyright‖) and s/he has given The University of

Huddersfield the right to use such copyright for any administrative, promotional,

educational and/or teaching purposes.

 Copies of this thesis, either in full or in extracts, may be made only in accordance

with the regulations of the University Library. Details of these regulations may be

obtained from the Librarian. This page must form part of any such copies made.

 The ownership of any patents, designs, trademarks and any and all other intellectual

property rights except for the Copyright (the ―Intellectual Property Rights‖) and any

reproductions of copyright works, for example graphs and tables (―Reproductions‖),

which may be described in this thesis, may not be owned by the author and may be

owned by third parties. Such Intellectual Property Rights and Reproductions cannot

and must not be made available for use without the prior written permission of the

owner(s) of the relevant Intellectual Property Rights and/or Reproductions.

i

Abstract

Mobile user interfaces are becoming increasingly complex due to the expanding range of

functionalities that they incorporate, which poses significant difficulties in software

development. Formal methods are beneficial for highly complex software systems, as they

enable the designed behaviour of a mobile user interface (UI) to be modelled and tested for

accuracy before implementation. Indeed, assessing the compatibility between the software

specification and user requirements and verifying the implementation in relation to the

specification are essential procedures in the development process of any type of UI. To

ensure that UIs meet users‘ requirements and competences, approaches that are based on

interaction between humans and computers employ a variety of methods to address key

issues.

The development of underlying system functionality and UIs benefit from formal methods as

well as from user-interface design specifications. Therefore, both approaches are incorporated

into the software development process in this thesis. However, this integration is not an easy

task due to the discrepancies between the two approaches. It also includes a method, which

can be applied for both simple and complex UI applications. To overcome the issue of

integrating both approaches, the thesis proposes a new formal model called the Formal Model

of Mobile User Interface Design (FMMUID). This model is devised to characterise the

composition of the UI design based on hierarchical structure and a set theory language.

To determine its applicability and validity, the FMMUID is implemented in two real-world

case studies: the quiz game iPlayCode and the social media application Social

Communication (SC). A comparative analysis is undertaken between two case studies, where

each case study has three existing applications with similar functionality in terms of structure

and numbers of elements, functions and colours. Furthermore, the case studies are also

assessed from a human viewpoint, which reveals that they possess better usability.

The assessment supports the viability of the proposed model as a guiding tool for software

development. The efficiency of the proposed model is confirmed by the result that the two

case studies are less complex than the other UI applications in terms of hierarchical structure

and numbers of elements, functions and colours, whilst also presenting acceptable usability in

terms of the four examined dimensions: usefulness, information quality, interface quality, and

overall satisfaction. Hence, the proposed model can facilitate the development process of

mobile UI applications.

ii

Acknowledgements

Firstly and most importantly, I would like to thank Allah the Almighty from the depths of my

heart for the guidance and inspiration. Everything great that has happened to me in my life

have resulted from his help, mercy and love.

I wish to send my deepest gratitude and appreciation Professor Joan Lu (my first supervisor)

for her exemplary supervision, help, feedback and for pushing me with encouragement

through the difficult times. I thank her particularly for her patience and valuable efforts to

encourage me to conduct an affluent research.

I also wish to express thanks to my second supervisor, Dr. Gary Allen, and my third

supervisor Dr. Qiang Xu, for their continuous friendly support, encouragement and feedback.

I am sincerely thankful to my parents, and wish to give them huge acknowledgement for their

undying love. I would not have accomplished this goal without their continuous support,

patience and prayers.

I express my deepest thanks to my siblings for their endless love, support, prayers and

encouragement throughout my studies.

I would like to express my gratitude and thanks to my beloved wife. I cannot put into words

how important her inspiration and support have been throughout the course of my PhD. Her

consistent support and encouragement has meant so much to me. Thank you so much my love

for everything you have done for me and our daughter. We have had some truly unforgettable

experiences throughout our journey.

I would like my lovely daughter Awsema to know that she is the light of my life. A consistent

source of motivation and inspiration. Dearest daughter, I envisage my future through your

doting eyes. This thesis is a small present for you. May Allah bless you.

Lastly, I extent my personal thanks to all my colleagues and friends in Britain and Libya for

their continuous support and encouragement.

iii

Table of Contents

Abstract .. I

Acknowledgements ... II

List of Contents .. III

List of Figures .. VII

List of Tables .. VIII

List of Abbreviations .. X

List of Nomenclature ... XI

Chapter 1: Introduction .. 1

1.1 General Background of the Research ... 3

1.2 Outlining the Research Problem .. 5

1.3 Motivation .. 6

1.4 Research Questions and Hypotheses .. 7

1.5 Research Aim and Objectives .. 8

1.6 Contributions .. 8

1.7 Research Structure .. 9

Chapter 2: Literature Review: Methods of Formal Modelling of User Interface

Design………… .. 11

2.1 Introduction .. 11

2.2 Human-Computer Interaction .. 11

2.3 User Interface ... 12

2.4 Instruments for UI Development .. 13

2.4.1 Window Managers ... 13

2.4.2 Toolkits .. 13

2.4.2.1 Direct Graphical Specification Instruments ... 14

2.4.2.2 Model-based Tools... 14

2.5 User Interface Complexity ... 14

2.5.1 Measures of UI Complexity ... 15

2.5.2 Summary .. 17

2.6 Usability of User Interface ... 18

iv

2.7 Software Modelling .. 19

2.8 Development of a UI Based on Modelling ... 21

2.8.1 First- and Second-Generation MBUID Approaches .. 21

2.8.2 Third- and Fourth-Generation MBUID Approaches ... 23

2.8.3 Summary .. 25

2.9 Formal Specification Languages .. 26

2.10 Formal Models ... 27

2.10.1 Development of Interface Models ... 28

2.10.2 Summary .. 32

2.11 Differences between this Thesis and Previous Work ... 33

2.12 Chapter Summary... 34

Chapter 3: Techniques and Methodologies ... 36

3.1 Introduction .. 36

3.2 Process of FMMUID Development .. 36

3.3 Techniques of Analysis .. 37

3.3.1 First Phase .. 38

3.3.1.1 Choice of Case Studies .. 38

3.3.1.2 Choice of Existing Applications .. 39

3.3.1.3 Design Analysis ... 40

3.3.2 Second Phase: Usability Assessment Methods .. 41

 Usability ... 41 3.3.2.1

 Assessment of Usability ... 44 3.3.2.2

 Usability Testing .. 50 3.3.2.3

 Research Participants ... 50 3.3.2.4

 Questionnaire ... 51 3.3.2.5

 Procedure ... 54 3.3.2.6

 Statistical Analysis of Quantitative Data ... 55 3.3.2.7

3.4 Chapter Summary... 58

Chapter 4: Formal Model of Mobile User Interface Design (FMMUID)..................... 59

4.1 Introduction .. 59

4.2 FMMUID Development ... 60

4.3 Summary .. 69

v

Chapter 5: FMMUID Using Case-Studies .. 70

5.1 Introduction .. 70

5.2 Case Study 1: iPlayCode Application .. 71

5.2.1 iPlayCode Application Design Screens ... 72

5.3 Case Study 2: SC Design .. 75

5.3.1 SC Application Design Screens ... 77

5.4 Summary .. 83

Chapter 6: Comparison and Model Validation .. 85

6.1 Introduction .. 85

6.2 Analysis of the Structure of Application Design ... 85

6.2.1 Case Study 1: iPlayCode Comparison Design ... 85

6.2.2 iPlayCode Screen Comparison .. 86

6.2.3 Case Study 2: SC Comparison Design... 89

6.2.4 SC Screen Comparison .. 89

6.3 The Comparison of iPlayCode and SC with Other Application Elements 92

6.3.1 ANOVA Test of Single and Multiple-Screens for iPlayCode and SC 93

6.3.1.1 Outcomes of Case Study 1 ... 93

6.3.1.2 Outcomes of Case Study 2 ... 94

6.4 Questionnaire Analysis and Results ... 95

6.4.1 Sample Distribution ... 95

6.4.2 Reliability ... 95

6.4.3 Case Study 1: Results... 96

6.4.3.1 Usefulness .. 98

6.4.3.2 Information Quality ... 98

6.4.3.3 Interface Quality .. 98

6.4.3.4 Overall Satisfaction .. 98

6.4.4 Case Study 2: Results... 99

6.5 One-way ANOVA Test Results of both Studies ... 100

6.6 Summary .. 101

Chapter 7: Evaluation of Proposed Model .. 104

7.1 Introduction .. 104

7.2 Complexity ... 104

vi

7.2.1 Navigation .. 105

7.2.2 Function ... 109

7.2.3 Colour .. 110

7.3 Assessment of Single and Multiple-Screens in the Two Case Studies 112

7.4 Assessment of Usability ... 113

7.5 Validation ... 114

7.6 Summary and Assessment of Research Questions ... 115

Chapter 8: Conclusions .. 117

8.1 Result Overview... 118

8.2 Research Contributions .. 120

8.3 Research Limitations ... 123

8.4 Further Research .. 124

8.5 Published Papers .. 124

References ... 125

Appendices ... 154

Appendix A: Quiz Game Applications Description and Screen Shoots.......................... 154

Appendix B: Social Media Applications Description and Screen shots 160

Appendix C: Questionnaire of Usability ... 165

Appendix D: Comparative Analysis of UI Design .. 168

Appendix E: Comparative Analysis of UI Elements .. 170

Appendix F: One-way ANOVA Test Results for iPlayCode, DK, Duolingo and C/C++ .. 176

Appendix G: One-way ANoVA Test Results for SC, Google+, Facebook and Gumtree ... 183

Appendix H: One-way ANOVA Test Analysis for Questionnaire 186

vii

List of Figures

Figure 3.1: Hierarchical Structure for FMMUID. .. 37

Figure 5.1: Hierarchical Structure Screen Design for iPlayCode Application. 71

Figure 5.2: Screen Shots of Model Screens for iPlayCode UI. ... 74

Figure 5.3: Hierarchical Structure Screen Design for SC Application. 76

Figure 5.4: Screen Shots of Model Screens for SC UI. ... 79

Figure 5.5: Generating the Third Screen (S3) in a Hierarchical Structure. 81

Figure 5.6: Generating the Fourteenth Screen (S14) in a Hierarchical Structure. 82

Figure 5.7: Generating the Fifteenth Screen (S15) in a Hierarchical Structure. 83

Figure 6.1: Comparison of UI Elements on Screen Ss (single screen) between Quiz Game

Apps. ... 86

Figure 6.2: Comparison of UI Elements on Screen Si. .. 87

Figure 6.3: Comparison of UI Elements on Screen Sg. ... 87

Figure 6.4: Comparison of UI Elements on Screen Sinfo. .. 88

Figure 6.5 Comparison of UI Elements on Screen SS (single screen) between Social Media

Apps. ... 90

Figure 6.6: Comparison of UI Elements on Screen Si. .. 90

Figure 6.7: Comparison of UI Elements on Screen Sg. ... 91

Figure 6.8: Comparison of UI Elements on Screen Sinfo. .. 92

Figure A.1: Screen Shots of Model Screens for DK UI. ... 155

Figure A.2: Screen Shots of Model Screens for Duolingo UI... 157

Figure A.3: Screen Shots of Model Screens for C/C++ UI. .. 159

FIGURE B.1: Screen Shots of Model Screens for Google+ UI. ... 161

Figure B.2: Screen Shots of Model Screens for Facebook UI. ... 162

Figure B.3: Screen Shots of Model Screens for Gumtree UI. ... 164

Figure D.1: Comparison of Hierarchical Structure Design of iPlayCode with Other Mobile

Applications. ... 168

Figure D.2: Comparison of Hierarchical Structure Design of SC with Other Mobile

Applications. ... 169

viii

List of Tables

Table ‎3:1 The Mobile Applications Selected for the First Case Study (iPlayCode) Alongside

their Descriptions. ... 39

Table ‎3:2: The Mobile Applications Selected for the Second Case Study (SC) Alongside their

Descriptions. ... 39

Table ‎3:3: iOS Mobile Applications Selected for Comparative Analysis and their Features. .. 40

Table ‎3:4: Scores Obtained for Each Statement in a Questionnaire Based on the Likert Scale.

 .. 52

Table ‎3:5: The Weighted Mean Criterion in the Likert Scale. .. 52

Table ‎3:6 Parametric and Nonparametric Testing. .. 56

Table ‎6:1: Significance of Variance between Single Screens for iPlayCode and other

Applications. ... 93

Table ‎6:2: Significance of Variance between Single Screens for SC and other Applications. . 94

Table ‎6:3: Sample Distribution of Usability-interface Data on the iOS Mobile Apps. 95

Table ‎6:4: The Reliability of iPlayCode and SC Compared to other Applications. 96

Table ‎6:5: Questionnaire Scores for the iPlayCode, DK, Duolingo and C/C++ Applications. 97

Table ‎6:6: Questionnaire Scores for the SC, Google+, Facebook and Gumtree Applications. 99

Table ‎6:7: Significance of Variance between Case Studies and Existing Applications. 101

Table ‎E:1: The Comparison of UI Elements on Single Screens for Quiz Game Apps. 170

Table ‎E:2: Comparing Different Average Categories of Single Screens for Quiz Game Apps.

 .. 171

Table ‎E:3: The Comparison of UI Elements on Single Screens for Social Media Apps. 172

Table ‎E:4: Comparing Different AVerage Categories of Single Screens for Social Media Apps.

 .. 173

Table ‎E:5: Comparing Different Categories of Multiple Screens for Quiz Game Apps. 174

Table ‎E:6: Comparing Different Categories of Multiple Screens for Social Media Apps. 175

Table ‎F:1: ANOVA Test of Ss Screen for iPlayCode and other Apps. 176

Table ‎F:2: ANOVA Test of Si Screen for iPlayCode and other Apps. 176

Table ‎F:3: ANOVA Test of Sg Screen for iPlayCode and other Apps. 177

Table ‎F:4: ANOVA Test of Sinfo Screen for iPlayCode and other Apps. 177

Table ‎F:5: T-test Results for Si Screen between iPlayCode and DK Apps. 178

Table ‎F:6: T-test Results for Si Screen between iPlayCode and Duolingo Apps. 178

Table ‎F:7: T-test Results for Si Screen between iPlayCode and C/C++ Apps. 179

ix

Table ‎F:8: T-test Results for Si Screen between DK and Duolingo Apps. 179

Table ‎F:9: T-test Results for Si Screen between DK and C/C++ Apps................................... 180

Table ‎F:10: T-test Results for Si Screen between Duolingo and C/C++ Apps. 180

Table ‎F:11: F-Test Results between iPlayCode and DK Apps for Si Screen. 181

Table ‎F:12: ANOVA Test of Multiple-screens for iPlayCode and other Apps. 182

Table ‎G:1: ANOVA TEST of SS Screen for SC and other Apps. ... 183

Table ‎G:2: ANOVA Test of Si Screen for SC and other Apps. .. 183

TABLE ‎G:3: ANOVA Test of Sg Screen for SC and other Apps. .. 184

Table ‎G:4: ANOVA Test of Sinfo Screen for SC and other Apps. ... 184

Table ‎G:5: ANOVA Test of Multiple-screens for SC and other Apps. 185

Table ‎H:1: Usefulness Attribute Results. ... 186

Table ‎H:2: Information Quality Attribute Results. ... 186

Table ‎H:3: Interface Quality Attribute Results. .. 187

Table ‎H:4: Overall Satisfaction Attribute Results. ... 187

Table ‎H:5: Usefulness Attribute Results. ... 188

Table ‎H:6: Information Quality Attribute Results. ... 188

Table ‎H:7: Interface Quality Attribute Results. .. 189

Table ‎H:8: Overall Satisfaction Attribute Results. ... 189

Table ‎H:9: Normal Data Distribution for iPlayCode App. ... 190

Table ‎H:10: Normal Data Distribution for DK App. .. 190

Table ‎H:11: Normal Data Distribution for Duolingo App. .. 191

Table ‎H:12: Normal Data Distribution for C-C++ App. ... 191

Table ‎H:13: Normal Data Distribution for SC App. ... 192

Table ‎H:14: Normal Data Distribution for Google+ App. .. 192

Table ‎H:15: Normal Data Distribution for Facebook App. .. 193

Table ‎H:16: Normal Data Distribution for Gumtree App. ... 193

x

List of Abbreviations

AUI ABSTRACT USER INTERFACE

CBSD COMPONENT-BASED SOFTWARE DEVELOPMENT

CICM COMPONENT INTERFACE COMPLEXITY METRIC

CIM COMPUTATION INDEPENDENT MODEL

CSUQ COMPUTER SYSTEM USABILITY QUESTIONNAIRE

DUI DISTRIBUTED USER INTERFACE

FILL FORMAL INTERACTION LOGIC LANGUAGE

FMMUID FORMAL MODEL OF MOBILE USER INTERFACE DSIGN

GOMS GOALS, OPERATORS, METHODS AND SELECTION

HCD HUMAN-CENTRED DESIGN

HCI HUMAN COMPUTER INTERACTION

IFML INTERACTION FLOW MODELLING LANGUAGE

ISO INTERNATIONAL STANDARDISATION ORGANISATION

ITS INTERACTIVE TRANSACTION SYSTEMS ITS

LOC LINES OF CODE

MBUID MODEL-BASED UI DEVELOPMENT

MBUIDE MODEL-BASED UI DEVELOPMENT ENVIRONMEN

MDA MODEL-DRIVEN ARCHITECTURE

MDE MODEL-DRIVEN ENGINEERING

PIM PLATFORM INDEPENDENT MODEL

SC SCOIAL COMMUNICATION

SUS STUDIED SYSTEM

UE USABILITY ENGINEERING

UEMS USABILITY EVALUATION METHODS

UI USER INTERFACE

UID USER INTERFACE DESIGN

UIDLS UI DESCRIPTION LANGUAGES

UIML USER INTERFACE MARK-UP LANGUAGE

UIMS USER INTERFACE MANAGEMENT SYSTEM

UML UNIFIED MODELLING LANGUAGE

USIXML USER INTERFACE EXTENSIBLE MARKUP LANGUAGE

WYSIWYG WHAT YOU SEE IS WHAT YOU GET

xi

List of Nomenclature

S Screen

I Components

C Colour

F Function

⋃ Union

 Superset

Subscript

 Name or Number of Screen

S Start

l Level

q Question

r Results

fr Final Result

g General (calculate the result, search, etc.)

info Information

 Control Process Components

 Contents/Search

 Vision

i

Number of sub-screens

j

k

l

f

r

w Number of Components, Colours or Functions for Each Screen

t Number of Components that are Available on Each Screen

a Number of Colours or Functions for Each Component

x Number of Colours Including Functions

y Number of Functions for Colours

1

Chapter 1: Introduction

Across various types of electronic devices, the interactivity, complexity, and ubiquity of

mobile interfaces are constantly increasing, as these interfaces are used increasingly often in

daily activities (Golovine, 2013). Both academics and industry specialists are becoming

increasingly aware of how significant the User Interface (UI) element is in an interactive

application, thereby prompting efforts to ensure compatibility between the user interface and

different activities within settings that are accessible to as many users as possible (Santoro,

2005). Indeed, the creation of software and interfaces that satisfy the varying needs of users is

considered paramount nowadays (Golovine, 2013). The ultimate goal is to develop interfaces

that are flexible, efficient, productive, easy to use, and have minimal errors. However, this

goal is far from being achieved, thereby leaving users dissatisfied with the poor usability of

some applications. Therefore, numerous companies, designers and developers are prioritising

the creation of interactive systems with a high degree of usability. Unfortunately, there are

many obstacles opposing the creation of such systems that may cause designers to struggle in

developing user interfaces that are capable of supporting various user activities (Golovine,

2013).

The complexity of the process of software development cannot be underestimated and

expands with the introduction of new hardware types, interaction modes, and usage contexts.

Furthermore, as software systems become ever larger and more complex, a new design

problem emerges in addition to computation algorithms and data configurations, namely, the

design and specification of an entire system structure (Garlan & Shaw, 1993).

Design-based UI components within the context of the computer science branch of software

engineering may provide a potential solution to the issue of growing complexity. In

employing such components, the purpose is to promote the novel approach of Formal Model

of Mobile User Interface Design (FMMUID) to encourage the creation of practical UIs as

well as to make design and development less time- and effort-consuming (see section 2.12).

The approaches to software development change in tandem with emerging software types and

uses. However, some fundamental principles of software development have remained

constant, as the goal of creating efficient and error-free software has stayed the same

throughout the transformations that techniques and practical applications have undergone.

Among these principles is the principle known as the formal model, which maintains that

before software is implemented, it must be designed, developed, and tested with accurate and

2

reliable methods. Grounded in mathematics, formal methods are employed for developing

software systems and offer a structure for methodical system specification, development, and

analysis. Furthermore, these methods have a formal specification language with a formal

syntax and semantics and are underpinned by a logical inference framework. A logical

inference system determines a consequence connection normally specified by related

regulations that specify a set of ideally created sentences in the specification

language to a varied of appropriately created sentences (Wing, 1990). The formal

method is well suited for complex UI applications of medium to large size. It enables

designers not to concern themselves with low-level details but instead focus on the logical

specification and analysis of interactive software applications based on the identification of

pertinent abstractions (Golovine, 2013). This approach also highlights that software

development should be centred on the users and their needs, and design methods should be

employed accordingly (Bowen, 2008).

To ensure the reliability of particular UI designs prior to implementation, compliance with

some major principles should be observed, irrespective of which general development

method is adopted. The purpose of the thesis is to create and implement UIs on the basis of a

robust software engineering approach, namely, the FMMUID, as well as to gain user

feedback about the UI design, its functionality and the extent to which it satisfies user needs

by subjecting the UI design to user testing. In addition to the FMMUID, this thesis employs

the methods of Human-Computer Interaction (HCI) (Satyavathy & RachelBlessie, 2017) in

the process of software development. FMMUID and HCI are increasingly being applied

together in software projects, as they serve to complement one another.

The realisation that it is useless to develop sophisticated software if user interaction with its

interfaces is inadequate prompted the emergence of HCI. It is no easy task to develop a UI

(Myers, 1993); because it depends to a significant degree on the talent or skill of the

designers, UI design can be perceived as a craft or even an art (Duce, 1995). The engineering

issue of creating systems that are capable of meeting user needs is the main problem for HCI,

and in the context of this issue, UI software development makes up the largest part of the

engineering endeavours (Myers & Rosson, 1992). Reflecting what the system is capable of

and its intended use, the functionality that is incorporated into software during the design

process reveals itself during system use. Meanwhile, software usability can be defined as how

effectively the software performs the various tasks or activities that are required by users. For

3

a software system to be considered efficient, its functionality and usability must be balanced

(Institution, 1998; Karray et al., 2008).

A matter of key importance in HCI is the provision of uncomplicated UIs. The formulation of

a system‘s quality attributes is dependent on usability assessment (Odeh & Adwan, 2009). To

improve productivity and experience, minimise the error rate, and ensure system efficiency,

users are often involved in the design or redesign of software system UIs within the field of

Usability Engineering (UE) (Gulliksen et al., 2009; Gulliksen, 2007; Hix et al., 2004;

Macleod, 1994). Redesigning the entire system development process so that it centres on UE

knowledge, techniques, and tasks is the aim of the UE lifecycle. Furthermore, by iterating a

series of UE techniques (e.g., prototyping, usability assessment, and user-interface mock-

ups), the UE lifecycle is geared towards the achievement of the established usability

objectives. Various approaches for user analysis, usability goal specification, and design

assessment are provided by the UE (Metzker & Offergeld, 2001). However, above all, UE

emphasises user feedback, user-system interaction, and the system‘s efficiency in allowing

users to carry out their desired activities.

HCI researchers have introduced a range of usability questionnaires, as these are considered

to be among the best methods for usability assessment. Hence, mobile UIs can be effectively

appraised based on a questionnaire approach. In addition, although different usability aspects

can be measured with usability questionnaires, those aspects are not necessarily the same in

every questionnaire (Ryu, 2005).

1.1 General Background of the Research

Any method or set of methods that are rooted in a rational theoretical foundation is classified

a formal method, which is so called because it involves the use of mathematical, logical

notations. Prior to development, a description of the UI is provided based on these notations,

which are thus referred to as requirements. To ensure that the design functions as it should,

the requirements are subjected to different proofs, since they are defined in a mathematical

language. Two key functions are undertaken regarding the requirements: ensuring that the

requirements provide an accurate description of the software (validation) and ensuring the

precision of the functionality and the reliability of the software (verification). As previously

mentioned, a formal method is adopted in this thesis with the purpose of ensuring the

functionality and proper usability of the proposed software. Furthermore, a hierarchical

4

structure and set theory constitute the foundation of the employed formal model. Set theory

has been demonstrated to be highly valuable and effective in a multitude of contexts

involving modelling based on discrete membership (Hood & Wilson, 2002). The initial

semantics of notations are uncomplicated and amenable to interpretation. Therefore, the

thesis adopts these straightforward notations for reasons of reader clarity and understanding.

After formulation, validation and verification of specifications, the following step is

conversion of the abstract description into an actual implementation, which will involve using

the proposed model to develop case studies.

The reason for adopting the formal method is to ensure that the software functionality fulfils

the requirements and to establish how this can be accomplished most effectively. In the

context of the specification, the ‗how‘ is approached from an abstract perspective to ensure

that it provides high-level and not low-level solutions (i.e., code application).

The feature that is shared by all the various techniques, methods, and approaches that are

included under the umbrella term HCI is that they are centred on the users, namely, the

individuals for whom a certain application is intended and who employ the application in

their daily lives. Based on the structured activities that are represented by HCI methods,

designers can not only attain a comprehensive understanding of users, but also convey their

ideas to the users and improve the design process with the opinions and views that are

expressed by the users. In this thesis, high-fidelity prototypes of two mobile user interfaces

have been created to enable users to become acquainted with the design and obtain various

kinds of feedback from them.

To summarise, the two approaches to software development that are employed in this thesis

are formal methods and HCI. These two approaches have been briefly described in this

chapter, and a more comprehensive discussion about them and their application in this thesis

is provided in the subsequent chapter. These two approaches have been selected because they

enable the issue of effective design and implementation of usable software to be addressed

pragmatically and they encompass the major aspects that are prioritised at present in the

process of software development, namely, system functionality and usability. From one

perspective, formal methods and HCI are similar in that they both aim to develop correct

software that functions according to requirements. However, the two approaches differ in that

formal methods are concerned primarily with system functionality, while HCI prioritises

users and their interaction with the software as a way of meeting the requirements.

5

1.2 Outlining the Research Problem

Several problems are discussed in this thesis in the context of software engineering and the

implementation of a model-based UI design methodology:

The first problem is that simultaneous visualisation of more than one hundred elements of the

UI structure design of large software systems is highly challenging due to the complexity of

such systems, particularly when designers have to deal with certain design details at the same

time (Šnajberk, 2013). Consequently, the design structures are typically difficult to read.

Developing a standard approach for expression of these designs is not easy either, because of

the significant discrepancies that can exist between elements and their attributes.

Among the principles of design that bear the greatest significance are structure and balance. It

is essential for the components of a design to be structured and balanced in an appropriate

way, otherwise the entirety of the design dimensions will be in disarray and their meaning

will be compromised. In addition, and more significantly, the users will have trouble gaining

a good understanding of an interface.

The second issue is that formal methods are still quite limited using in the industry (Moussa

et al., 2002), despite being rigorous and methodical. This may be explained in terms of the

following:

1- Lack of familiarity with the complex formal notations

Formal notations may appear difficult to understand to software engineers, despite being

underpinned by straightforward mathematical principles.

2- Imperfect lifecycle coverage

 No model or notation is capable of supporting every software development process (i.e.,

specification, implementation, verification, and validation).

3- Restricted usage of formal methods for UI development

 The UI takes up a significant amount of the time and effort that are dedicated to

application development. UI formal specification is of great significance not only for

identifying mistakes and problems during the preliminary development stages but also for

demonstrating the target characteristics. However, formal methods are yet to become a

standard approach to UI development, even though they have been the focus of extensive

research.

6

1.3 Motivation

The development of current software systems is no easy task because, on the one hand, the

real-time and stochastic requirements of these systems need to be considered, and on the

other hand, these systems are complex, of large size and frequently critical in the majority of

domains (Meedeniya, 2013). Therefore, robust modelling and analytical techniques are

necessary for creating such software systems (Tang et al., 2010). To facilitate the

development of these systems, it might be useful to first model the system design, which

could then serve as a basis for the analysis and development of the software systems. To this

end, to ensure the completeness and correctness of a system model and, implicitly, the

consistency of the software system itself in terms of specifications, formal methods must be

employed. The abstract mechanisms for software system development that are offered by

model-based software development deal with these problems to some extent (Meedeniya,

2013). However, to enable a software model to be validated and verified during the design

phase, the method of formal modelling is needed.

A formal modelling approach is advantageous primarily because it enables usability results to

be derived at a preliminary stage of prototype implementation, thereby making the design

more cost-effective and less time-consuming. Furthermore, the approach helps the designer

better understand the manner in which user task performance is supported by the design

(Kieras, 2009). In addition, quantitative comparisons of usability among different designs can

be undertaken.

The chosen approach is advantageous for several reasons. Unlike conventional methods for

interface design and development, this approach can contribute to enhanced usability by

guiding designers‘ work. By comparison to the space of interfaces, the space of models for

enhancements is not as large, since models present a higher degree of abstractness than UIs.

Furthermore, designers do not need to create a new model to convert the model of an original

interface into a new interface model, as simple alterations, such as element

addition/elimination and modification of hierarchical structure levels, are sufficient. The

redesign process is made more time-effective and less effort-consuming, as designers‘

decision-making is facilitated by this approach, which provides relevant design directions for

achieving improved usability. Moreover, this thesis employs case studies to show that the

proposed model is applicable and to demonstrate that it is syntactically and semantically

correct.

7

One of the main drivers in undertaking this project is the lack of work done in understanding

the effect of UI design on the overall quality of software and the development process. Very

little has been done to examine the effect of complicated user interfaces. This needs to be

redressed in order to improve user interfaces in the future. This is particularly true of mobile

interfaces. A number of design methodologies have been developed that focus on the users

of software, and published studies can be found in the areas of, for example, UE and HCI.

However, it is important to undertake a project that focuses specifically on mobile interfaces.

1.4 Research Questions and Hypotheses

In keeping with the background theory and the problem statement, the central research

question that this thesis aims to answer is the following:

CQ. How can interactive systems be developed by using a new formal model as a design tool

and how can this tool ensure the low complexity and high usability of the UI design?

Elaborating on this key research question, two supplementary research questions, alongside

related hypotheses, have been formulated to aid in the design and assessment of mobile UIs:

SRQ1. Is the design rationale aided by the new model approach?

SRQ2. Compared to the conventional approach, is the new model approach more effective in

aiding the development of usable UIs?

There are two hypotheses that address the first supplementary question:

H1. By comparison to other UI applications, the new UI approach affords a structural design

of more limited complexity.

H2. The new UI designs (i.e., the case studies) and other UI applications do not differ

significantly in terms of single- and multiple-screen designs.

There is a single hypothesis that addresses the second supplementary question:

H3. The performances of the new UI designs and existing UI applications are not very

different in terms of usefulness, information quality, interface quality and overall satisfaction

dimensions.

To address the above questions, this work attempts UI design based on a new mathematical

model and, following implementation, tests two mobile UI prototype applications. Both

design and comparative analysis are conducted in support of this approach (see sections ‎6.2

8

and ‎6.3), while measurement of usability and application assessment are undertaken based on

data that are derived from users via a questionnaire tool. Sections ‎6.4, ‎6.5 and 6.6 provide the

results regarding the responses to the questions.

1.5 Research Aim and Objectives

The main aim of this research is to develop a new model, namely FMMUID, which is based

on a hierarchical structure and set theory, for coping with the problem of complexity and to

introduce a method that can be applied for simple and complex UI applications. The proposed

model was built by integrating the UI design specifications into a formal model, which can be

classified into four main factors: (a) screens, (b) components, (c) colours, and (d) functions

(Chapter 4). Jacob remarked that ―The user interface is a critical element in a software

system and one is handicapped in trying to design a good user interface without a clear and

precise technique for specifying such interfaces.‖ (Jacob, 1983, p. 259).

To achieve this aim, the following objectives have been outlined:

1- Develop a novel approach to UI design (Chapter 4);

2- Validate the application of the new approach on case studies (iPlayCode and SC;

Chapter 5);

3- Analysing the design structure and UI elements (for case studies and existing

applications) in order to measure the complexity and validate the proposed

approach (Chapter 6);

4- Evaluating the status of the two aforementioned UI case studies (Chapter 5) from

the viewpoint of the end-users (Chapter 7).

1.6 Contributions

The main contribution of this thesis is the proposal of a novel formal model for mobile UI

design. In addition, the obtained results are significant for future directions of investigation

into UI design.

The contributions can be summarised as follows:

 A new model that is rooted in hierarchical structure and set theory, which is intended

to facilitate the creation of usable UIs (Chapter 4).

 Improvement in the quality of the software system and greater cost-effectiveness can

be achieved via the proposed model.

9

 The proposed model demonstrates flexibility in terms of practical implementation,

regardless of designers‘ or developers‘ level of knowledge about formal methods.

 Alternative designs can be supported by the proposed novel model (FMMUID) that

has been legitimated by the empirical findings. (Chapter 5).

 A hierarchy diagram was employed to graphically demonstrate the proposed model

and address different dimensions of design (Chapter 4 and Chapter 5).

 Two approaches were employed to measure the complexity and usability of the

model.

The novelty of the model relies on the establishment of formal rules for modelling,

composition, and integration, whilst ensuring that the model was syntactically and

semantically correct. The model is flexible enough to be used for UIs of various levels of

complexity. This model was implemented as a prototype and assessed based on two example

case studies (Chapter 6 and Chapter 7).

1.7 Research Structure

In Chapter 2, the literature that is available on the topic is reviewed, with special emphasis on

system usability and identification of the most appropriate sources in relation to the research

paradigm. In addition, specific aspects that were addressed by earlier studies are discussed as

well.

Chapter 3 is concerned with the research design and with presentation and justification of the

approaches that are adopted to address the formulated research questions.

As a key part of this thesis, Chapter 4 describes the proposed model for UI design

development, including syntax and semantics.

Chapter 5 describes two case studies for evaluating the proposed model and measuring the

complexity and usability of the UI. These case studies highlight the outcome of the practical

implementation of the suggested model and the model‘s advantages.

Chapter 6 provides an analysis and discussion of the research results and concluding remarks

about the major research findings.

In Chapter 7, the employed approach is assessed from both a technical and a human point of

view using a range of research techniques.

10

Finally, Chapter 8 summarises the proposed model and the achievements of the research. In

addition, potential lines of inquiry for further research are proposed, the final conclusions are

formulated, and the methodology for accomplishment of the overall research aim is

delineated.

11

Chapter 2: Literature Review: Methods of Formal Modelling

of User Interface Design

2.1 Introduction

The implementation of formal techniques in the design of UIs and interactive systems has

been the focus of extensive study. There are two major aspects of this topic, namely, (a)

integration of user interfaces, user concerns and UI-system interactivity into formal methods

and (b) attempts of design process formalisation to enable UI designers and human-computer

interaction practitioners to ensure the accuracy and functionality of different design

components.

In this chapter, the integration of formal methods and user interface design (UID) is outlined.

To this end, only those studies and examples that deal with the approaches of concern to this

work are addressed rather than the entire literature on the topic.

The remainder of the chapter is structured as follows: the interactions between humans and

computers are discussed in section ‎2.2; the user interface is the focus of section ‎2.3; the

instruments of UI development are presented in section ‎2.4; the complexity of the UI and

existing methods for dealing with that complexity are covered in section ‎2.5; usability and

related concepts are addressed in section ‎2.6; the existing literature is systematically

reviewed, and the research deficiencies and matters that still require attention, according to

the findings of the literature review, are considered in sections ‎2.72.5 to ‎2.112.9; and the

concluding remarks are provided in section ‎2.122.10.

2.2 Human-Computer Interaction

This part presents a succinct overview of HCI and discusses its implications for software. The

manner in which humans employ computer technology and strategies for enhancing this

usage are the main concerns of the field of HCI (De Oliveira, 2015). Several studies observed

that convoluted processes of data entry, ambiguous error messages, rigid error management,

and unclear cluttered screen sequences all cause users of advanced hardware machines

significant irritation and dismay (Baecker, 2014; Bertino, 1985; Mital & Pennathur, 2004).

Systems that behave in unintelligible and perplexing ways cause apprehension and

frustration, especially among inexperienced users (Bertino, 1985).

12

Overcoming such issues has been a priority in a great proportion of recently conducted

studies, which have drawn input not just from computer science but also from other

disciplines; this has enhanced the complexity and richness of the HCI field. Contributions of

particular significance have been made by the disciplines of software engineering and

ergonomics (Abowd et al., 1992; Bastien & Scapin, 1993; Bevan, 2001; Coutaz & Calvary,

2012; Imaz & Benyon, 2007; Long, 1989; Vanderdonckt, 1994), both of which focus on

examination of requirements, incremental and iterative design, and quality guarantee (Coutaz

& Calvary, 2012). Indeed, software engineering is essential in HCI for aiding in the design

and development of relevant, usable systems (Dix, 2016; Göransson et al., 2004), while

ergonomics contributes by ensuring that the human-computer interfaces are ergonomic,

relevant, and usable by issuing principles of design and/or assessment (Vanderdonckt, 1994).

Successful HCI is the overall goal of all efforts to enhance human-computer interfaces.

It was only during the 1980s that HCI began to be accorded importance, when computer

systems had already been in use in commercial and industrial applications for a long time.

This may be because, in preceding times, the users acted as the computer system

programmers and designers. From the end of the 1970s onwards, however, there has been a

proliferation in the number of users who are not involved in system programming or design,

owing to the launch of personal computing (Booth, 2014). Comprised of both personal

software, such as text editors, spreadsheets, and computer games, and personal computer

platforms, such as operating systems, programming languages, and hardware, personal

computing simplified computer usage for all but also made it apparent to advanced computer

users that computer systems had considerable limitations (Carroll, 2013). As a result of such

transformations, interactive systems started to attract significant interest.

2.3 User interface

Communication between an interactive computer system and a user is facilitated by the UI of

the system. All aspects of the system that the user can see are incorporated into the UI design

(Jacob, 2003). The UI manages both the display output and the user input (Myers, 1995). The

UI can also be understood as the portion of a computer system that a user can control,

comprehend, or interact with via different senses (i.e., sight, hearing, touch, speech) (Galitz,

2007). Basically, the UI is the software system element that enables a user to interact (i.e.,

interface) with an application (Kennard, 2011).

13

It is quite challenging to develop a robust UI that demonstrates usability and responsiveness

as well as an appealing design. No standard method for ensuring that a UI will be successful

exists, even though there are principles of usability design (Nielsen, 1994a). Ironically, the

complexity of UI development increases as the ease of use and ease of understanding increase

because extra features are added (e.g., run-time validation or help messages) to make the

interaction experience more enjoyable and agreeable for the user (Cerny et al., 2012; Myers,

1994). In addition, the lengthy process that is involved further exacerbates the difficulty of UI

development. According to some studies, almost half of the code development time of an

application is taken up by the UI (Cerny et al., 2012; Kennard & Steele, 2008; Myers &

Rosson, 1992; Schlungbaum, 1996). For all these reasons, acceleration and simplification of

UI development have become a priority for developers.

2.4 Instruments for UI Development

Ample efforts have been made by researchers to devise instruments that facilitate the

development of UIs, accelerate the process and ensure its cost-effectiveness without

compromising UI quality (Myers, 1995).

2.4.1 Window Managers

The output of the display screen can be created and the user‘s input can be recognised with

the basic programming model that is supplied by Window Managers (Myers et al., 2000;

Myers, 1995). Processes are separated by the Windowing System into a series of clear-cut

screen areas, which are called windows. To develop interfaces at this level, all interface

elements must be constructed from the very beginning. This could cause different

irregularities throughout the interface, whilst also showing how slow-paced and cumbersome

the process is (Rosenthal, 1988). Therefore, as it does not prevent irregularities and can slow

the UI development process, such an approach is not a viable solution.

2.4.2 Toolkits

Widget libraries are supplied by toolkits (Myers et al. 2000; Myers, 1995) and implement a

framework on the basis of which user interactions can be manipulated. They necessitate sole

instantiation, as the UI elements are pre-established. This simplifies and speeds up the UI

development process. On the downside, the UI is limited to the widget library owing to its

dependence on the toolkit framework. There are two major types of UI development

14

instruments: direct graphical specification instruments and model-based instruments (Myers

et al., 2000; Myers, 1992, 1995).

2.4.2.1 Direct Graphical Specification Instruments

This category of instruments is comprised of prototype instruments, data visualisation

instruments, and editors for application-specific graphics, as well as interface builders such as

Netbeans GUI builder (Oracle, 2009) and ‗what you see is what you get‘ (WYSIWYG)

(Kalnins et al., 2002). Such instruments enable partial or complete development of the UI by

dragging objects with a pointing device to position them directly on the canvas. However,

automation is largely impeded due to the lengthy and iterative development process.

Additionally, no guidance for the development of effective and robust UIs is provided by

these instruments.

2.4.2.2 Model-based Tools

UI production is achieved by model-based tools with the help of system models of high-level

specification. Their main purpose is to alleviate a common problem that affects other tools,

namely, the high cost of UI development, by automating the development process. Model-

based tools, such as USIXML (Limbourg et al., 2004) and TERESA (Berti et al., 2004), are

advantageous because they can use different numbers and models, achieve different degrees

of automation, and generate various kinds of UIs. Thus, they are considered a more viable

option than other types of tools for rapidly creating UIs of high quality (Meixner et al., 2011).

Additional information about model-based tools is provided in section 2.10 and section 2.12.

2.5 User Interface Complexity

Complexity, which is synonymous with ‗intricacy‘ and ‗convolution‘ Anneberg and Singh

(1993), has been described as an attribute of the connections that exist between the elements

of an object (Zuse, 1993), and usually refers to the multiplicity of those connections or

interactions. Furthermore, a high number of components, high dimensionality, and a wide

range of possibilities have been identified as the characteristics that are demonstrated by all

complex systems (Morowitz, 1995).

According to the IEEE Standard Glossary (std. 610.12), complexity reflects how challenging

it is to understand and assess the design or implementation of a system or element (Radatz et

al., 1990). A different study also defined complexity in terms of difficulty of understanding,

noting that program comprehension takes up nearly half of the time of a software maintainer

15

(Alford, 1994). These definitions indicate a key aspect that is associated with complexity,

namely, understandability. Another study argued that the cognitive complexity of a software

is determined by the influence of the software features on the amount of resources that are

required for the performance of a certain task (Henderson-Sellers, 1995). Similarly, Basili

(1980) described software complexity as the amount of resources that are taken up by a

system during interaction with a software program to carry out a specific task. Software

complexity was considered by Brooks (1993) to be not an accidental characteristic but an

essential one. The difference is that the type of issue and the skill level that is required for

dealing with it determine the essential complexity, whereas the accidental complexity is the

outcome of inappropriate endeavours to address the issue and is best understood as a

complication. An issue is endowed with accidental complexity when an incorrect design is

applied or when an unsuitable data structure is chosen. Complexity was explained by Coskun

and Grabowski (2005) as a measure of difficulty, especially in terms of comprehension of the

multiplicity of connections or interactions between at least two elements of an object. It is

challenging to define and measure complexity because more than one factor influences

understandability and this measure is subjective. Common definitions of complexity are

frequently associated with series of interlinked parts, which are known as ―systems‖.

Different definitions prioritise different aspects when referring to complexity, such as how

the system behaves or its internal structure. Simon (1969) maintained that the system needs to

be conceived as a tree-structured hierarchy to fully understand its complexity.

No unanimous agreement has been reached regarding the precise meaning of complexity,

despite the numerous persuasive definitions that have been put forth (Edmonds, 1995). The

multidimensionality of software is the reason why its complexity can be explained in more

than one way. Therefore, software complexity is a matter that divides researchers and users.

2.5.1 Measures of UI Complexity

The complexity of a user interface, the evaluation of the degrees of complexity of a UI, and

the implications of that complexity for the users of the interface have been thoroughly

investigated in the literature. Over the years, many metrics have been proposed by

researchers for the formal evaluation and prediction of software complexity. The following

section outlines many of the metrics used for measuring the scale of a piece of software‘s

complexity.

16

The first software complexity metrics were designed and applied to software systems in the

mid-seventies. The metrics that developers used included lines of code (LOC), Halstead‘s

complexity metric, McCabe‘s cyclomatic complexity metric, and Kafura and Henry‘s fan-in/

fan-out method (Chhillar & Bhasin, 2011; Kumari & Upadhyaya, 2011; McCabe, 1976; Yu

& Zhou, 2010).

In addition, several metrics were proposed by Salman (2006), for the measurement of a

system‘s complexity via a stringent focus on the structural complexity of the software. He

considered a system‘s connectors, interfaces, composition trees and components as the prime

indicators of structural complexity in a component-based system, even though these metrics

are considered basic. Instead of considering the complexity of individual interfaces, the

metrics focus instead only on the total number of the features described above.

Proposed by Gill and Grover (2004), the Component Interface Complexity Metric (or CICM)

determines complexity via interface signatures, interface constraints, and an interface‘s

packaging for different use contexts.

Significantly, however, CICM lacks an empirical method for evaluating each proposed

metric.

Another paper by Youxin et al. (2009) proposed an architecture that used Component-based

Software Development (CBSD), and then explained the development process according to

the architecture. CBSD proposes that multi-layer architectures are more effective at solving

problems in software and improving the quality of the software, while also making

development easier.

The minimisation of software complexity whilst maintaining quality is vital. The analysis of

software complexity via complexity metrics can result in the reduction of software design

time and complexity, along with the amounts of testing and maintenance needed. According

to CBSD, the size of a piece of software and its interfaces for each component are the two

primary parameters that govern software complexity. In other words, the more methods that

belong to a class, the harder it is for a developer to understand the software due to its

complexity and interconnectedness.

However, interaction complexity is often considered more important. Therefore, the average

number of interfaces per component should not exceed five when used in a CBSD, as greater

numbers of interfaces result in increased levels of complexity and unreliability (Kumari &

17

Upadhyaya, 2011). This methodology, however, requires further research and empirical

evidence.

Gerhardt-Powals et al. (1995) studied complexity in relation to submarine displays, while

metrics associated with real-time UI complexity were explored by (Andriole & Adelman,

1995; Chignell, 1990). According to Kang and Seong (1998), operation, transition and screen

are the three measures on the basis of which UI complexity can be assessed.

Ross and Burnett (2001) also investigated UI complexity in their study on human-machine

interfaces in vehicle navigation systems, while UI complexity was addressed by (Martelli et

al., 2003) in the context of medical informatics. Metrics for UI complexity assessment were

proposed in both studies. Similarly, the metrics that were devised by Xing (2004) were

underpinned by three complexity-related factors: numeric size, element diversity, and inter-

element connections. In a different study, Cataldo et al. (2010) employed data from two

large-scale systems that were developed by two different software organisations to analyse

the extent to which the predisposition to failure of source code files was influenced by UI

complexity. Moreover, Alemerien and Magel (2014) proposed that UI complexity could be

assessed on the basis of its structure by using the GUIEvaluator tool. Another study by

Ašeriškis et al. (2017) have used graph metrics (number of nodes and links) to measure the

complexity.

2.5.2 Summary

Despite the lack of a general definition, it is important to be aware of software complexity, as

it is indicative of a range of aspects, including system development, assessment, maintenance,

rate of malfunction, reliability, and elements that are most likely to generate errors. Complex

software poses challenges not only in terms of a greater rate of error, but also regarding

development, assessment, debugging, and maintenance. Furthermore, as highlighted by most

of the existing definitions, the degree of complexity of a system determines how

understandable that system is.

UI complexity refers to the extent to which users perceive the information displays of the

system to be easy to use and the user screen to be understandable. The usability of the output

of the system depends on decision support and explanation complexity. The results that are

generated by the system must be comprehensible by the users, and the advice that is provided

must be logical and easy to convert into cognitive thinking and decision-making.

18

There are two aspects that are related to the understanding of the implications of UI

complexity: the complexity of the display and the actual UI, and to the decision support that

is offered. To determine the ideal approach for designing and deploying UIs, the implications

of both these aspects of complexity must be clearly comprehended (Coskun & Grabowski,

2005).

This section has succinctly reviewed UI complexity, which is measured in terms of a range of

aspects, including structure, layout, text quantity and graphics in a display, number of nodes

and links, code, and colour. To the best of the author‘s knowledge, investigation of UI

elements and design for measuring UI complexity has not been attempted by any other study,

nor has a design solution for complex interfaces been formulated. The metric that is proposed

by this thesis is based only on the component interface specification. The metric calculates an

interface complexity through its a component‘s complexity, thereby providing an excellent

indication of a component‘s reusability. Thus, this metric can be used for the selection of a

simpler and more usable UI. Lastly, the metric is calculated manually. Therefore, these will

be the focus of the following chapters of the thesis.

2.6 Usability of User Interface

A number of approaches have been used in the past few years to discover problems with

mobile interfaces. For example, it has been proposed that a structured interview be used to

evaluate user experience in using mobile phones (Park et al., 2013). An application called

MastroCARONTE was developed to deliver local information direct to cars while traveling.

Researchers distributed a set of questions to users of the software to ascertain user response

(Gena & Torre, 2004).

The website of the library at Punjab University was the subject of a research project (Iqbal &

Warraich, 2016)) to ascertain users‘ views of the website in five categories: affect;

efficiency; helpfulness; control and learnability. Existing studies were evaluated and their

findings in both theory and practice applied. A group of 300 users were given a carefully

chosen set of questions and the resulting responses processed by SPSS. User responses were

most positive in the categories of affect and efficiency, which indicates that users feel more

benefit from these ‗soft‘ categories than from the other, more practical, categories.

An important consideration in mobile interface design is how quickly and easily users can

‗learn‘ the application, and analysis of this process is a valuable and frequently adopted

19

approach. This is often called a heuristic method and was adopted by Ji et al. (2006) who

evaluated users ability to learn applications against a set of fixed criteria which could then be

used by interface designers. It has been suggested that this approach can be generalised to be

used in a variety of circumstances (Biel et al., 2010). The work of these researchers suggests

a hands-on approach to interface evaluation.

The popular Google Android interface was studied from the point of view of ease of use in

2013. Under laboratory conditions, six testers undertook a ‗Cognitive Walkthrough‘ of three

Android apps – GOSMS Pro, Skype and WhatsApp. These were chosen by taking the three

most commonly used Android apps from a review of five top apps in a popular computer

magazine – in this case PC Magazine (Jadhav, Bhutkar, & Mehta, 2013).

Automated response measuring systems (Lift; Bobby) were used by Alexander and Baravalle

(2012) to look at use profiles of three gov.uk websites and establish whether the criteria of

‗usability‘ and ‗accessibility‘ were interconnected. The ‗heuristic‘ and ‗walkthrough‘

methods were applied. This revealed that the sites, while following WCAG accessibility

guidelines, scored poorly for usability.

2.7 Software Modelling

Design models are essential for successfully developing a software system. As a widely

embraced engineering method, modelling underpins every procedure that needs to be

implemented to deploy effective software (Booch et al., 2005) and its purpose is to

mathematically represent the behaviour of a system or object (Giorgi et al., 2004). A model

can be understood as a simplified version of a system that is created to achieve a particular

objective and address existing issues without using the real system (Bézivin & Gerbé, 2001).

In other words, a model is an abstract representation of an actual system that enables

engineers to concentrate on the key features and not waste time on superfluous details

(Brown, 2004). In addition, as observed by Kühne (2006), a model facilitates the formulation

of estimates or the drawing of inferences. Other definitions have interpreted system

modelling as a characterisation or specification of that system and its context to achieve a

particular aim (Soley, 2000) or a series of statements about the system that is under

consideration (Seidewitz, 2003).

Various different functions can be fulfilled by models, including (Booch et al., 2005):

conveyance of the intended structural and behavioural features of a system; visualisation and

20

management of the system‘s architecture; promotion of a more comprehensive understanding

of the system; visualisation of the end-product for users; formulation of particular theory-

based projections that can then be assessed with data; and determination of how the different

system elements are correlated.

Given that the human capacity for comprehending complexity is limited, modelling provides

a highly useful tool for creating and understanding interactive systems as well as for breaking

down components of great complexity into smaller units that are easier to deal with (Navarre

et al., 2005).

The model-based approach is primarily geared towards uncovering relevant abstractions that

are representative of the key features that need to be taken into account in the development

and design of an interactive system (Marucci et al., 2003).

In the context of this approach, UI design can be understood as the process through which UI

models are developed and perfected (Da Silva, 2000). Thus, the purpose of model-based

design is to determine correlations among different models (Limbourg & Vanderdonckt,

2005).

UI development based on modelling is advantageous because decisions about design can be

made by actually creating the desired task model, thereby enabling designers to explore

interactive software applications from a semantic perspective instead of having to deal with

the implementation process immediately, and because it affords a better understanding of the

system for maintenance purposes as process reconstruction is facilitated by the systematic

and iterative development approach (Sinnig, 2004).

As previously mentioned, a software model is an abstract version of an actual system that has

already been developed or will be developed. Because it is a simplified representation of a

real system, the model enables software designers and/or developers to better assess the

system. In general, the modelling of the requirements of users regarding system functionality

is undertaken in the engineering stage of software development and its formality and

rigorousness vary. Visual and formal models, which are respectively based on diagrams

(Rumbaugh et al., 2004) and formal techniques coupled with mathematical notions

(Fitzgerald & Larsen, 2009; Kohlas et al., 2006; Schoeller et al., 2006), are the two classes of

models that are used most often at the moment. Subsequently, an analysis model is generated

by software engineers by refining the model either manually or electronically. The analysis

model outlines the problem domain. This is followed by the creation of a design model that

21

proposes a solution for the problem that was modelled earlier. The generated solution can

then be coded and tested on the basis of the design model (Pressman, 2005).

2.8 Development of a UI Based on Modelling

During the 1980s, model-based UI development (MBUID) was first introduced. Since then,

there have been four generations of MBUID approaches. Spanning the period 1990-1996, the

first-generation MBUID approaches were concerned with the automatic creation of UIs. The

second-generation approaches were popular during 1995-2000 and facilitated specification,

production and execution of UIs. The third-generation MBUID approaches were in use

during 2000-2004 and attempted to achieve UI development for different interactive

platforms. Last, the fourth-generation approaches, which have been in use since 2004, target

the creation of UIs that demonstrate context sensitivity (Meixner et al., 2011).

2.8.1 First- and Second-Generation MBUID Approaches

The first-generation approaches were mainly geared towards facilitating UI creation and

maintenance by enhancing UI development or generating better methods for achieving this

process.

To aid the cost-effective development of good-quality UIs, a User Interface Management

System (UIMS) that is known as COUSIN (Hayes et al., 1985) is devised to introduce a

degree of abstraction in the manner in which the input/output events of the UI dialog are

ordered. A ITS tool-based architecture with four layers (Wiecha et al., 1990) was proposed as

an option for UI representation with multiple layers by breaking down the implementation,

content, presentation and interaction of the UI into the action layer, dialog layer, style-rule

layer, and style-program layer, respectively. The main advantage of this approach was that it

enabled the presentation of the same UI with more than one style. Although the issue of

improving methods for UI development has not yet been solved, the rapidity with which UI

development approach have evolved caused early UIMSs to fail due to the problem of

moving targets. This highlights the challenge of ensuring that tools can keep up with the

speed at which technology develops (Myers et al., 2000).

The leverage of MBUID for UI creation was the goal of a different set of approaches. For

example, GUIDE (Foley et al., 1991) and HUMANOID (Szekely et al., 1992) sought to

automatically generate UIs to enable designers to consider various design possibilities prior

to finalising the UI. Meanwhile, the methodology with the supporting environment offered by

22

TADEUS (Elwert & Schlungbaum, 1995) was intended to facilitate graphical UI creation

based on a system model. A similar approach for UI creation from data models (entity

relationship diagrams) was provided by GENIUS (Janssen et al., 1993) with its tool-

supported method, in which UI dynamics were visually represented with the dialogue net

model that was underpinned by petri nets. JANUS (Balzert et al., 1996) and FUSE

(Lonczewski & Schreiber, 1996) were also systems that supported UI creation. JANUS had

the additional function of enabling the production of code that established a connection

between the UI and the data.

A straightforward rule-based approach was applied by most early MBUID approaches that

were focused on automatic UI creation. TRIDENT (Vanderdonckt & Bodart, 1993), which

provided tools for automatic creation of UIs for interactive business applications, as well as a

generic architecture model that was relevant for those kinds of applications (Bodart et al.,

1995), was one method that did not adopt this approach. To create UIs, TRIDENT took into

account additional data, such as ergonomic rules, which were represented on the basis of a

complex hierarchy. However, because they were often numerous, the application of such

rules was cumbersome, despite offering a more advanced method for UI creation

(Vanderdonckt & Bodart, 1996).

Enhancement of model-based UI representation was the goal of other systems. For instance,

the design environment ADEPT (Markopoulos et al., 1992) did not simply generate a rapid

tool for prototype production, but integrated the modelling theory. The presentation model

was the main concern of MASTERMIND, which was a UI development environment that

served as an accessory to HUMANOID and GUIDE (Szekely et al., 1996). MECANO

employed the modelling language MIMIC and provided the MIM interface model (Puerta,

1996).

Early systems such as COUSIN, GENIUS, HUMANOID, and GUIDE were deficient in that

they did not describe the UI in detail; instead, they represented it in various ways, such as

with application code and ER diagrams in the cases of HUMANOID and GENIUS,

respectively. However, second-generation systems, including ADEPT and MASTERMIND,

did provide in-depth UI description. However, UIs only began to be represented at the highest

abstraction level towards the end of the second generation, with objects such as the

ConcurTaskTrees (CTT) (Paternò et al., 1997). Meanwhile, systems such as MOBI-D (Puerta

& Eisenstein, 1998) considered novel methods for task model mapping to UI models of lower

23

level. Furthermore, the need to define UI specifications without dependence on technology to

enable the creation of technology-specific UIs prompted the introduction of languages that do

not depend on the technology, such as the User Interface Mark-up Language (UIML)

(Abrams et al., 1999).

This generation of MBUID systems adopted a basic approach to multi-target UI

development. Tool support for interactive system development was provided by AME by

using object-based analysis models to create UIs, which were then customised according to

the requirements of individual users (Märtin, 1996). Meanwhile, facilitation of the

development of different UI features (e.g. display size, resolution, and colour depth)

according to usage requirements was made possible by certain earlier systems such as ITS.

However, most systems, including GENIUS and COUSIN, did not afford as much priority to

adjustment as they did to UI consistency between various applications. User- and

environment-based UI adjustment was supported by some later systems, such as AME, which

employed standardised object categories; however, this support was focused less on adaptive

behaviour than on manual development. Hence, the main limitation of first- and second-

generation MBUID systems is that they employed the model-based approach only to create

UIs and not for development of adaptive behaviour for supporting multi-context UIs.

2.8.2 Third- and Fourth-Generation MBUID Approaches

The third and fourth generations saw the introduction of domain-specific solutions, such as

Teallach, which generated object databases by adopting the MBUID approach (Griffiths et

al., 2001). A reference framework that employed multiple abstraction levels to assist MBUID

and the introduction of novel UI Description Languages (UIDLs) constituted the main

advances that were made in these generations.

Two principles underpinned the unified UI reference framework called CAMELEON

(Calvary et al., 2003): a model-based approach and coverage of the design stage as well as

the run-time stage of UIs with multiple targets (Fonseca, 2010). Within these generations of

MBUID systems, CAMELEON constituted a ground-breaking innovation by using a model-

based approach to offer abstraction assistance for UI development. A similar tool was MDE,

which provided extra abstraction levels to facilitate multi-context UI development, unlike

standard methods of UI development that generated solely a concrete level, such as buttons

and text boxes.

24

CAMELEON can achieve UI representation at numerous abstraction levels. The highest

abstraction level at which UI features are represented as tasks is the task model. The

ConcurTaskTrees (Paterno, 2012) notation can be used to represent such a model, as it

mediates connections between tasks and temporal operators. Representation of the domain

model that is related to the discourse universe of an application can be accomplished with

diagrams of the Unified Modelling Language (UML) category. In the case of MDA, this

abstraction level is associated with the Computation Independent Model (CIM). A UI that is

independent of all modalities (e.g., graphics, voice, gesture, etc.) is called an Abstract User

Interface (AUI) model. UIDLs such as TERESA XML(Berti et al., 2004), UsiXML

(Limbourg et al., 2004) and MARIA (Paterno et al., 2009) (fourth generation) can all enable

representation of the AUI model. In MDA, this model is associated with the Platform-

Independent Model (PIM). The abstraction level of the concrete user interface model depends

on the modality, meaning that it can use graphical widgets (e.g., buttons, labels) in UI

representation. TERESA XML, UIML (Abrams et al., 1999), and XIML (Puerta &

Eisenstein, 2002) are among the UIDLs that can be used to represent concrete user interfaces.

Presentation technology, such as HTML, Windows Forms, WPF and Swing, are used to

develop the final UI, which represents the real UI.

Multipath development (Limbourg et al., 2004), with an emphasis on mobile devices, and

integration with available web services are the two major objectives of MBUID systems of

the fourth generation. To a great extent, the approach that this study puts forward is

orthogonal to these objectives. Using structural models as a foundation, the aim of this

approach is to develop an effective strategy for interface development. The approach that was

adopted by Macik and colleagues (2014) was to achieve streaming of platform-specific UIs

based on integration with UI protocol and to use metrics for applications of automated

element distribution in users‘ screens. This approach is disadvantageous because it does not

pay significant attention to client interaction and the benefits of concern division are

diminished from the clients‘ viewpoint because UI generation occurs at the side of the server.

In a different study, a process of development for UIs with context sensitivity was proposed.

The design component of this process was the central concern and tool support for model

creation, amendment, and visualisation was considered as well. The approach had the

drawback that it was not subjected a usability test to evaluate the usability of the design tool

(Clerckx et al., 2005).

25

2.8.3 Summary

The abovementioned approaches present a range of issues:

1- MBUID is still not widely adopted in everyday industrial software development, even

though it has been studied for over three decades.

 2- Standardisation: The necessity of standard MBUID notations was first realised in 1999.

Notation standardisation would make it easier to employ a common series of constructors for

the characterisation of various UI models. Such constructors would enable UI models and

their MBUIDs to be compared and reused. For example, more than one notation underpins

current UI models, thereby making it harder to reuse them. However, the achievement of

MBUID scalability for actual applications depends significantly on UI model reuse (Da Silva,

2000). Furthermore, although a wide range of UIDLs have been created, they have not been

adopted extensively in the development of actual industrial software.

3- The difficulty involved in model development is the primary limitation of the model-based

approach. Specification of a rich model is challenging because of its complexity, which stems

from the characterisation of every interface feature (Puerta & Szkeley, 1994). Hence, it is

critical that useful and relevant tool support is provided to the various interested parties,

including programmers, UI designers, and interaction designers.

4- With respect to transformations, MBUIDs must be extensible. Standardised notations

would aid the formulation and sharing of more effective transformations for various target

platforms. Moreover, UIs that are developed through automatic generation are not very

usable. Hence, it is inappropriate to employ a completely automatic transformation approach.

This has been an issue since the introduction of MBUID (Calvary & Pinna, 2008; Myers,

1995). Although developers can benefit from transformations in the performance of basic

tasks, they can make manual amendments to the developed UI (e.g., tweaks, beautification,

etc.). However, restoration of other UI draft designs causes the loss of the manual

amendments, which means that, to guarantee round-trip engineering, integration of the

manual amendments into the models is essential. Apart from manual refinement of the

developed UI, another viable strategy for making the UI more usable is to incorporate HCI

patterns into the transformation processes. In addition, to reinforce the manual amendments

by developers and designers, it would be useful to incorporate formalised standards and

26

guidelines into MBUID (Meskens et al., 2011). Moreover, ergonomic criteria should also be

integrated, as their modelling is a persistent problem for HCI (Calvary & Pinna, 2008).

5- Smaller UIs or UI fragments that are produced via MBUID processes are unknown outside

the research community. For the industry to embrace MBUID, UI models, languages and the

related MBUIDE must be developed and adjusted accordingly. Large-scale case studies and

applications in the real world could be of significant relevance to MBUID.

2.9 Formal Specification Languages

To justify a certain rationale regarding software models or specifications pre-implementation,

formal methods are employed. In fact, software models and specifications are developed

using formal language and notations, signifying that their clarity of meaning is ensured by

well-defined syntax and semantics. Furthermore, the models‘ inherent logic makes it possible

to use language manipulation for the purpose of performance of various tasks. Formal

methods are applied to ensure that the developed software will demonstrate adequate and

reliable behaviour under various conditions.

A variety of languages and notations are formal in nature, and, although they have the same

objective, they can be employed in distinct manners. These include mathematically based

languages such as Set Theory (Jech, 2013), Z (Iso, 2002), B (Abrial & Abrial, 2005), VDM

(Andrews et al., 1996) and XML, which create independent and abstract views of any user

interface application (Lepreux et al., 2006; Puerta & Eisenstein, 2002), while languages such

as MARIA and CAP3 use concrete models of dialog flows (Paterno et al., 2009; Van den

Bergh et al., 2011). In addition, for the description of executable user interface models FILL

(Formal Interaction Logic Language) was presented by (Weyers, 2017). ICOs, meanwhile,

focus on user interface behaviour (Navarre et al., 2009), and OMG standard IFML

(Interaction Flow Modelling Language) is used in a support role for an application‘s front-

end. IFML provides an expressive behavioural model (Brambilla & Fraternali, 2014),

although it may be model-based, as in the cases of discrete-event systems (Cassandras &

Lafortune, 1999), interactors (Duke & Harrison, 1993) and model-based testing (Utting &

Legeard, 2010); proof of correctness (Woodcock & Davies, 1996), refinement (Henson &

Reeves, 2000; Wirth, 2002), etc., are also used. This list is not exhaustive, and new formal

methods and notations continue to be introduced. However, they all have a common aim:

describing software prior to its implementation to ease the development and maintenance

processes.

27

Mathematical logic and set theory form the foundation of specification languages such as Z

(Iso, 2002), OCL (Warmer & Kleppe, 1998) and VDM (Sharma & Singh, 2013) as well as

for the mathematical formalism adopted in this thesis.

The formal representation of set theory semantics has been the focus of extensive research

efforts in pursuit of validating and verifying the consistency of design models (Abrial et al.,

2010; Bowen & Reeves, 2008a; Gajos & Weld, 2004; Goh & Case, 2016; Maalem & Zarour,

2016; Muji, 2015; Piroi, 2004; Riza et al., 2015; Takahara & Liu, 2006; Trætteberg, 2002). In

relation to the definition of the formal representation of FMMUID (Chapter 4), this work uses

simple set theory notations, as they are suitable for illustrating every FMMUID development.

2.10 Formal Models

Formal model has been defined in many different ways. Bézivin and Gerbé (2001) defined

that a model simplifies a system built with an overall goal in mind. The model should answer

questions about the system itself. Brown (2004) reported that models of abstract physical

systems allow reasoning about the system without extraneous details. Another study (Kühne,

2006) defined that a model as an abstraction of a system which allows predictions or

inferences about the system to be made. Seidewitz (2003) defined a model as a set of

statements about a studied system (SUS). Meanwhile, Selic (2003) stated that engineering

models aim to reduce risk through increasing understanding of a complex problem and its

solutions before expensive implementations are undertaken.

A set of well-defined methods grounded in mathematics, formal models enable system design

verification through the theoretical support they offer. To comprehensively define a formal

modelling language, the syntax and semantics that make the language readable and

expressive must be described as well. Due to their mathematical basis, formal methods are

generally employed for the description and development of systems demonstrating efficiency,

reliability and safety (Heymann & Degani, 2007).

Because they can improve clarity, overcome design errors and hence prevent system failures,

formal methods are increasingly accepted as a key element of the design of software systems

that demonstrate reliability (Bowles & Bordbar, 2007; Cimatti et al., 2011a, 2011b; Hillston

& Kloul, 2006; Jensen et al., 2007; Mosbahi et al., 2011; Moschoyiannis et al., 2005; Ribeiro

et al., 2005; Yang et al., 2005). These models are especially useful in mathematically

validating system attributes such as performance, reachability, and correctness (Baier et al.,

28

2008; Bowles & Kloul, 2010; Gilmore et al., 2003; Grumberg & Long, 1994; Hillston &

Kloul, 2006; Hinton et al., 2006; Katoen, 2008; Kwiatkowska et al., 2007). Furthermore, the

tangibility of software designs is enhanced by formal models because use of the models can

ensure that those designs are thoroughly validated and verified (Cabot et al., 2008; Jensen &

Kristensen, 2009; Jensen et al., 2007; Rafe et al., 2009; Silva & Santos, 2004). Validation and

verification respectively ensure that the appropriate system is specified by the design and that

the specification is met by the final system.

2.10.1 Development of Interface Models

The issue can be approached somewhat differently by developing formal models of interfaces

as entities that are independent of system specification. The purpose is to apply a formal

treatment to the interface and to its interactive features by developing a model of them, thus

securing the advantages of formal methods based on proof performance to identify favourable

attributes and correctness.

Originally proposed by Dix and Runciman (1985) and then amended, the PIE model was one

of the first manifestations of this approach. Interactive systems are characterised by the PIE

model in terms of abstractions of programmes (P) that comprise a series of commands and

input effects (E) with an interpretation function (I) between them. Interface properties such as

observability, reachability, and undo can be analysed based on these three elements. The

interface abstraction generated by the model is independent both of the functionality of the

underpinning system and of a reliable comprehension of UI visual components and system

users (other than the pre-established inputs). Thus, the interface and application logic are kept

separate in the PIE model. The model enables the interface to be treated more formally, but it

does not ensure that the interface will be compatible with the other system components, nor

does it provide a means of creating a correlation between the model and a system

specification.

To ascertain whether a UI is an amended version of a different UI based on comparison of the

number of functionalities provided by the two UIs in question, a descriptive formal approach

was proposed by Bowen and Reeves, (2008b). The amendment addressed by the authors was

very similar to trace refinement. They maintained that they were concerned with verifying the

accuracy of the requirements in relation to the system of higher refinement, but they largely

disregarded the impact of the refinement levels on the requirements. Moreover, they failed to

address distinct correlation levels and overlooked the appearance of the UI.

29

The formal description of the concept of a Distributed User Interface (DUI) was undertaken

by López-Espin et al. (2011) based on a novel notation that the authors stated was useful in

analysing the key DUI attributes (e.g., decomposability, portability, simultaneity and

continuity). However, the study had a major limitation in that the DUI was not assessed

through a usability test.

UI description was undertaken by (Thimbleby, 2004; Thimbleby et al., 2001) using a

different approach based on matrix algebra and Markov models. In its focus on interface

usability, the study ignored UI design and appearance and addressed solely the potential for

interaction with regard to the likely underpinning state modifications and related possibilities

or probabilities regarding the Markov models.

A less abstract approach has been used in other models to correlate more clearly the visual

elements, models, and behaviours of the UI. For instance, the component-based model

developed by Bumbulis et al. (1995) used a design process based on an iterative approach and

took into account prototype models and feedback from the users. Both a prototype to be

tested by users and a model for formal evaluation could be produced with the generated UI

specification, thus integrating formality and the UCD approach. However, minimal level

description, nearly the same as code, was provided by the proposed language (IL). Instead of

visual designs, interface elements represented the foundation for the models, and they were

generated based on direct translation from IL to the dynamic interface language Tcl/Tk

(Xchange, 2005).

Model verification can also be undertaken on the basis of interface models. Aware of the fact

that interface designers who lacked knowledge of formal interface models did not benefit

much from such models, Loer and Harrison (2000, 2002 & 2006) developed a model

verification framework (IFADIS) that was intended to overcome this difficulty for usability

specialists. It was suggested that model verification enabled systems to be examined in terms

of how reliable and usable they were. The authors recognised that their work remained

limited in terms of facilitating model verification for usability engineers, indicating that the

toolset was still troublesome for usability engineers despite its usefulness to the wider

community of system engineers who lacked knowledge of model verification. Another

limitation of the study is that it did not consider interface visual elements and that it dealt

with user concerns not from the perspective of prototypes but from the perspective of

interaction requirements and opportunities.

30

The development of UI abstractions for purposes of portability and plasticity is one of the

latest trends in UI modelling. The development of software compatible with more than one

platform (e.g., desktop machine, PDA, mobile phone, embedded device, etc.) and operating

system is almost standard practice. This prompted the need to create UIs that are adaptable to

various platforms (portability) and a need for this adaptation to be contextual (e.g., according

to existing hardware and user location) (plasticity). UI modelling for portability and plasticity

has been approached by various research groups based on languages resembling XML. For

instance, the XIML project (Puerta & Eisenstein, 2002) sought to achieve description of

interaction data and hence create an abstract UI model using an XML-based language.

The TERESA tool was created to supply a complete semi-automatic environment to enable

several transformations that would benefit design creation and analysis at various levels of

abstraction, including the task level, with the purpose of producing a concrete UI for a

particular platform type (Mori et al., 2004; Mori et al., 2003). However, the work failed to

address approaches for simplifying the creation of more than one version. The employed

procedure involved the automatic creation of various concrete UIs on the basis of an XML-

abstract UI model developed through an XML task model with ConcurTaskTrees (Paterno,

2012). The visual elements of the design and the formal model were closely correlated due to

the shift from an abstract model to a concrete UI. At the same time, to enable distribution of

different sub-surfaces among different devices, Peñalver and colleagues (2012) put forth a

novel UI definition underpinned by the W3C XML Schema. To this end, a formal notation

followed by an abstract user interface (AUI) model was used for DUI definition. Considering

the restrictions outlined in the schema, the next step was the creation of a new XML instance

(i.e., a concrete DUI) using an XML instance generator algorithm in certain UIDLs. The AUI

model provided the target hierarchy related to all UIs and ensured consistency with the user

task target by helping distribute UI components over various devices. On the downside,

platform-specific native code (Arthur & Olsen Jr, 2011) is essential for the application of

such solutions to software; otherwise, per-element mark-up tags are needed for UI division

classification (Mori et al., 2003; Peñalver et al., 2012). As a result, the tools are cumbersome

for use by developers and take a long time to implement. However, the UI design is derived

from the model, not the other way around, because the process is underpinned by formal

methods.

The USIXML language was used in a different type of XML approach (Limbourg et al.,

2004). The work was intended to make it easier to convert between different versions of the

31

same UI and to develop concrete UIs from abstract models by supplying a mechanism for

translation among various UI abstract models. To support the UI design, several tools were

created, including GrafiXML and SketchiXML; the TERESA tool of the XIML type could

also be used. The value of these tools resided in the fact that they offered design

environments comparable to standard tools, such as Visual Studio (Studio, 2017), that

enabled designers to employ drag-and-drop methods to rapidly develop computerised

prototypes. Because they were intended to support abstract UI models that could be adjusted

to various conditions, these models had no connection to a model of the underpinning system.

Description of the UI and its interaction was undertaken at a level that allowed subsequent

correlation between the models and the system model according to platform or context.

Although preservation of usability over different platforms was the overall goal of the work,

it was not user interaction that underpinned its definition but the underlying task models.

It is advantageous to develop UI models without dependence on system specifications for

several reasons. By formalising UIs, they can be subjected to analysis and verification of

target attributes, just as in cases in which formal methods are employed for application logic.

Furthermore, in relation to UI development for more than one platform or context, UI models

are helpful as a foundation for the transformation approach.

Similarly, a refinement process is available for UIs designed as part of a formal system

specification via the use of Interactors (Duke & Harrison, 1993; Faconti & Paternò, 1990).

This allows UIs to be modified based on the language describing the Interactors. This

language may be Z (Bramwell et al., 1995), VDM (Doherty & Harrison, 1997) or other

formalisms. However, the drawbacks of this work are that usability claims must be

informally validated. This approach is also hard to communicate to designers who are

unaccustomed to formal methods. In contrast, this thesis examines the complexity of a user

interface via notational semantics, making it uncomplicated and easy to understand. This

thesis, therefore, adopts this method of straightforward notation for ease of understanding by

designers.

Calvary et al. (2004) proposed an adaptive model for plastic injectors. The adaptation of the

injectors with the Comet approach. The adaptation of the injectors is based on an interactor‘s

resource descriptions. Resources, in this context, refer to factors such as screen space. This

paper also proposes the encapsulation of all Camelon reference framework models in the

same component and adaptation mechanisms. However, the researcher believes that an

32

encapsulation in the same software component (the comet) will affect all model specifications

and the adaptation mechanism‘s surcharge component. In addition, adaptation aspects and

self-adaptation in base components may affect the system‘s usability. Calvary et al. have yet

to develop a tool that supports this approach. In contrast to this, two case studies were

developed in this research to validate the proposed model.

2.10.2 Summary

The above examples illustrate that the development of independent methods can enhance the

formality of the UI design process, thus conferring the advantages of formal methods, such as

ensuring that the various dimensions of the UI design are correct and providing a more

comprehensive system specification that is inclusive of UI concerns as well as a closer

correlation between UI requirements and the underlying system at a preliminary stage.

Furthermore, as has been highlighted, the existing approaches present some limitations with

regard to the formulation of a cohesive approach to software development. However, in most

cases, those limitations are not so much indicative of research failure than of the goal of

achieving integration. To put it differently, the studies that were reviewed are only deficient

insofar as the current work is concerned, as they do not provide an appropriate solution for

the issue at hand.

The approaches can only partly solve the issues of the integration of UI design with a formal

software development approach because they address only one dimension of the design

process. Furthermore, it is not easy to integrate them into a single, more cohesive approach

because each approach either suggests a different formalism or employs available formal

methods differently. Furthermore, in some works, the proposed models were not used with

complex case studies, nor was usability testing conducted with the involvement of the target

users.

New approaches to UI modelling must be devised to overcome some of the issues outlined

above and to develop formalisms that specialists without knowledge of formal methods can

employ without difficulty. It is advantageous to integrate UI design into the formal process

(based on inclusion of the UI in system specifications, for example) because it concentrates

on the design and thus ensures that all design components work towards the same aim. This

research will apply a novel approach using simple and complex mobile user interface

prototypes (which are given as examples and case studies) to test the flexibility and

effectiveness of the proposed model (see Chapter 5).

33

2.11 Differences between this Thesis and Previous Work

In the following section, the aspects that distinguish the approach proposed in this thesis from

the approaches used in earlier studies are explained on the basis of the foregoing review of

the work that has been conducted on formal methods and UI design.

As presented in section ‎2.9, a number of general UIDLs that share a similar structure and a

set theory foundation have been employed. To reduce the complexity of the approach for

designers and developers, this thesis employs the set theory directly and uses simple symbols

and straightforward expressions. Furthermore, the thesis aims to develop language of greater

flexibility and concreteness and more usable tools. However, along with improvement in

industrial techniques, better integration between languages and tools for system engineering

and development must be achieved.

Apart from abstract presentation or visualisation concepts, abstraction of the visual aspects of

UI and the application of a formal approach to modelling or UI description have been

observed in most of the available studies. This may appear to be a sound approach, since

abstraction is usually among the priorities of specification. On the other hand, UI designers

and HCI specialists, being equally preoccupied with design appearance and functionality,

tend to place great emphasis on visualisation. They are also inclined towards specific

methods and techniques because they consider them appropriate and adequate for

communication with users during the process of design. The functionality of available tools

for UI ―drawing‖ should form the basis of tools for UI structure modelling, thus enabling a

natural conversion between models of abstract interaction objects and concrete interaction

objects. HCI designers consider that approaching the design from the perspective of user

requirements and abilities and including visual prototypes within the design process is an

appropriate strategy. Thus, such methods must be recognised as efficient and should be

retained in this thesis. The intention is to make it easier for UI designers to create

uncomplicated UI that can be reused by employing formal methods in the UI design process

irrespective of the approach adopted to address the issue of integration of UI design and a

formal software development approach.

 The thesis proposes the integration of formal methods into UI design as an approach to

mobile UI design. It is hoped that this can be achieved in a manner that can be replicated

without increasing the burden on the software development process, which already possesses

great complexity. The main technique of usability assessment involves including target users

34

in the testing process to gain insight into the way in which UIs are employed by users and to

identify the issues they encounter in doing so. To this end, the discrepancies between the

proposed method and conventional methods are assessed through measures of complexity

(structure design and number of elements) and through usability tests based on comparative

analysis of two case study interface designs and other existing applications (see Chapter 6).

Hence, this thesis is primarily concerned with improving UI design. After a comprehensive

literature review, a formal model has been developed, which is supported by a hierarchical

structure according to UI elements and specifically screens. A description of the contents of

the interface and how they correlate with one another is provided. This thesis differs from

previous works in that it is the first to undertake a thorough assessment, adopt a formal

method in the investigation of case studies of greater and lesser complexity, and conduct a

comparative analysis of the case studies and existing applications.

2.12 Chapter Summary

The present chapter reviewed the literature on formal methods and UI design and highlighted

differences between literature and this thesis in terms of goals and methodology. Most of the

examined studies took one of two approaches, namely, integration of user interface concerns

and requirements into a formal specification to achieve formalisation of the UI design or

introduction of formality into various components of the UCD process. Each of these

approaches has specific advantages because the user requirements of usability and

functionality and formal UI models are the main determinants of the UI visual design.

The approach that will be adopted in this thesis to apply formal methods and HCI has been

clearly outlined, and the description of every stage of the process will be based on the

language of set theory. The formal process based on set theory and on a UI design process

has been discussed and explained with the aid of several examples (see Chapter 4 and

Chapter 5 for additional details). This direction of research has been adopted due to the desire

to formulate comprehensive solutions of UI design that are capable of offering the assurance

of correctness and robustness that formal methods can offer while at the same time taking

into account aspects related to usability.

Although this thesis is grounded in theory, its contribution to real-life contexts of software

development is not merely theoretical in nature but also practical. Putting forth integration

techniques that are reliable and effective constitutes a significant input because both formal

35

methods and HCI are accorded high priority within the software development industry. To

exemplify the manner in which the proposed model and methods can be employed, practical

illustrations will be provided throughout this thesis. Furthermore, the new model approach

will be outlined and discussed in detail in the fourth chapter, together with the case studies

(see chapter 5) that are referred to throughout the thesis and that incorporate the proposed

method. Each of these aspects will be comprehensively addressed in the chapters that follow.

36

Chapter 3: Techniques and Methodologies

3.1 Introduction

In this chapter, the research methodology and procedures employed in the creation, analysis

and assessment of the proposed FMMUID are presented. More specifically, the creation of

the model based on a hierarchical structure and set theory is elaborated upon in section ‎3.2,

whereas the analysis techniques (i.e., manual analysis and a count-based technique to

measure complexity) and the usability study that is employed to assess four key dimensions

of the two case studies and existing application interfaces (i.e., usefulness, information

quality, interface quality, and overall satisfaction) are presented in section ‎3.3. This section

also describes the questionnaire and the tools that were employed to analyse the statistical

data. An overview of the chapter is provided in section ‎3.4.

3.2 Process of FMMUID Development

The mobile UI design model in this thesis is based on the formal or mathematical principles

at an abstract level. For the purposes of this thesis, a mathematical model is understood as a

mathematical representation of how actual devices and objects behave (Cimatti et al., 2011a).

Hierarchical structure and set theory are the two pillars of the mathematical model. As a

dimension of mathematical logic, which is the foundation of computer science, set theory is

essential for most mathematics and represents a crucial reasoning language and tool. It

facilitates formalisation and rationalisation of computation and its objects. Syntax, semantics

and logic are the key characteristics of set theory (Winskel, 2010). To describe the new

hierarchical-structure-based model, this thesis employed set theory notations.

 Both mobile UI designers and users navigating the UI screens could benefit from mobile

applications with mobile UIs based on hierarchical structures (Chen & White, 2013; Sahami

Shirazi et al., 2013). Munzner (2000) put forth a method whereby a page (screen) is placed on

an abstract level of the link hierarchy established by its primary parent; provided that their

maximum weight on the links to the page is the same, several pages may be candidates for

the primary parent of the page and the one allocated this position is the one appearing first in

the link hierarchy.

A navigable mobile UI application based on a hierarchical structure is proposed in this thesis

(Figure 3.1). The hierarchical structure is advantageous because it enables users to see where

37

they are situated on the mobile UI in relation to other screens, it affords a greater number of

frameworks, and it permits retention of the initial UI design in the model. A variety of

elements make up the system of high complexity that is a mobile UI, and the manner in

which all these elements are interactively correlated can be represented through the assembly

of the structure of hierarchical components.

Employing a hierarchical structure that facilitates users‘ navigation through the hierarchy

based on the selection of various options is a popular strategy. The hierarchical navigation

can be implemented with a basic screen and related sub-screen. Each element of the series of

container sub-screens (Si) that constitute the basic screen (Ss) itself consists of a series of

other sub-screens (S1… Sn). The related screen (Sinfo) can be navigated by choosing one basic

screen or sub-screen (Sg) (Figure 3.1). A certain number of elements representing

components, colours, and functions (I, C, and F) are possessed by every screen or sub-screen.

These elements differ in terms of number and type from one screen to the next. A discussion

of all the elements (Ss, Si, Sg, Sinfo, I, C, and F) is provided in chapter four. The proposal for

mobile UI design based on FMMUID has been inspired by the method of screen-component-

based hierarchical structure.

Figure ‎3.1: Hierarchical structure for FMMUID.

3.3 Techniques of Analysis

This section is divided into two phases. The first phase is geared towards demonstration and

validation of the novel approach and uses a range of methods to address the first research

question (‎1.4). In the second phase, a comparative analysis is undertaken to determine how

38

the usability of the new UI applications in the case studies compares to that of existing

applications, thus addressing the second research question (‎1.4).

3.3.1 First Phase

The new approach is put to the test through the two case studies: iPlayCode (study 1) and SC

(study 2), along with mobile applications with functionalities identical to those of the existing

applications. iPlayCode represents a quiz game that is intended to provide basic programming

skills to users who are completely unfamiliar with programming languages. The social media

application SC is accessible to any group of users and facilitates searches for friends,

services, communities, and other activities. Chapter 5 discusses these two case studies in

detail.

iOS and Android are the two most popular platforms in user communities. Currently iOS and

Android apps are in fierce competition, although iOS apps have ranked higher in quality than

Android apps (Martínez-Pérez et al., 2013). The approach to security used by iOS also

appears to be more attack-resistant (Mohamed & Patel, 2015). In 2013, Android had a 79%

threat level, while iOS, in contrast, had a 0% threat level (Symantec, 2014). Hence, the iOS

platform is the platform of choice for both the case study applications and the chosen

reference applications in this research.

3.3.1.1 Choice of Case studies

The quiz game iPlayCode and the social media SC applications are created by the researcher

of this thesis at the University of Huddersfield. An Apple iMac with Xcode 5.0.2 software

and Photoshop 6 were used to create iPlayCode and SC applications, and carry out the testing

through the iOS 7.0.3 (11B508) simulator.

There are several arguments justifying the selection of the iPlayCode and SC mobile

applications for the purposes of the thesis. To determine how flexible and effective the new

model is, as well as how adaptable it is to various design types, it was necessary to select two

different types of UI designs with different levels of complexity. The quiz game iPlayCode is

highly popular particularly among university students, and compared to social media

applications, it has fewer screens and is not very complex. The SC application is also popular

among numerous users, but it has many screens and is of significantly greater complexity.

39

3.3.1.2 Choice of Existing Applications

According to functionality and user services, two major types of mobile applications are

currently available. In keeping with the design analysis, six mobile applications have been

selected from the app store, three for each of the two case studies, for comparison. Table 3.1

presents the three mobile applications chosen for case study 1; all are educational

applications intended to impart knowledge and skills to users (see Appendix A).

Table ‎3:1 The mobile applications selected for the first case study (iPlayCode) alongside their

descriptions.

Table 3.2 presents the three mobile applications chosen for case study 2, which provide

services associated with dating, making friends, and finding places. Appendix B provides an

overview of all the existing (social media) applications.

Table ‎3:2: The mobile applications selected for the second case study (SC) alongside their

descriptions.

 Three criteria have been applied to select the existing apps, namely, download figures,

rating, and popularity, with some scoring below 4.0 out of 5.0 and others scoring more than

4.0 out of 5.0.

According to Table 3.3, apart from ―C/C++ Quiz‖, which has a small number of users, all

mobile applications that were selected enjoy a high degree of popularity. Differences in

rating, number of users, and design help to determine how flexible the new model is.

No. Name of Mobile Application Purpose of the application

1 iPlayCode (Ihnissi & Lu, 2015) Designed to teach beginners basic programming skills.

2 DK Quiz (Kindersley, 2012) Designed for people to practice and develop their General

knowledge skills.

3 Duolingo (Duolingo, 2012) Designed for people who are interested in learning new languages.

4 C/C++ Quiz (LTD, 2015) Designed for programmers to learn and test their C/C++

programming skills

No. Name of Mobile Application Purpose of the application

1 SC Social networking with classified ads services

2 Google+ (Google, 2011) Interest-based social networking

3 Facebook (Facebook, 2009) Online social media and social networking service

4 Gumtree (Gumtree.com, 2008) Free local classified ads

40

Table ‎3:3: iOS mobile applications selected for comparative analysis and their features.

No. Product

name

Free Rating

5.0

Number of

users

downloading

Quiz

game

Social

media

Platform Published

date

Collection

date

1 DK Quiz Yes 4.6 4305 Yes No iOS Updated

9/7/2015

17/3/2016

2 Duolingo Yes 4.7 114431 Yes No iOS Updated

16/3/2016

17/3/2016

3 C/C++ Quiz Yes 3 10 Yes No iOS Updated

25/2/2015

17/3/2016

4 Google+ -

interests,

communities,

discovery

Yes 4.1 71257 No Yes iOS Updated

2/3/2016

17/3/2016

5 Facebook Yes 2.4 2884179 No Yes iOS Updated

3/3/2016

17/3/2016

6 Gumtree Yes 4.6 15166 No Yes iOS Updated

1/3/2016

17/3/2016

3.3.1.3 Design Analysis

The methods employed to analyse the UI design are presented in the following part.

Validation of the new model based on a comparison between the case studies and the existing

applications in terms of the design of the hierarchical structure (see Appendix D) was

conducted on the basis of manual analysis and a count-based method (Altaboli & Lin, 2011).

The manual analysis involved the case studies and downloading the existing applications on

an iPhone. Their hierarchical structures were drawn on paper and the hierarchical structures

for the case studies were compared with those of existing applications in terms of complexity

(how complex the case studies were compared to the existing apps). Fundamentally, four

primary provenances of UI complexity have been quantified: the number of screens; the

number of elements on each screen; the number of functions on each screen; and the number

of colours on each a screen. The interface complexity and comprehensibility may thus be

heightened by increasing the amount of these elements. In addition, whether the model

screens exist in current applications was investigated.

The count-based method of assessment can be implemented without difficulty and involves

counting the elements on the screen (e.g. the number of components, functions, or colours).

According to their characteristics, there are four categories of mobile app components,

namely, control components (e.g. buttons, segmented, text fields, check boxes, radio buttons,

switches, date pickers and pickers), content components (e.g. screen, table, action sheet, and

alert), vision components (e.g. text view, collection view, image view, default cell styles,

video view, and activity view controller), and navigation components (e.g. navigation bar,

menu, search bar, and tab bar) (Ihnissi & Lu, 2014).

41

Model demonstration involved a comparison between the two case studies and existing

applications in terms of the number of elements on a single screen (Ss, Si, Sg, and Sinfo) and

multiple-screens (all screens). This approach was straightforward to implement in the process

of design and its purpose was to measure the complexity (more discussion in chapter six).

The approach was applied to the mobile UIs to examine it in more depth and the obtained

results were subjected to the ANOVA test, t-test, and f-test (see section ‎3.3.2.7) to determine

whether the case studies differed from the existing applications.

3.3.2 Second Phase: Usability Assessment Methods

User feedback and assessment constituted an essential part of the approach adopted in this

research because determination of the usability of the two case studies from the users‘

viewpoint was the overall aim of the thesis. The reason for allocating so much weight to the

users‘ viewpoint is that the experience of the end-users is a key factor determining whether a

mobile UI application is successful or fails.

 Usability 3.3.2.1

The software industry embraced ―usability‖ during the 1990s, although the concept was

introduced in the early part of the previous decade (Bygstad et al., 2008; Lewis, 2006a;

Nielsen & Molich, 1990). It is relevant for many different disciplines because it is multi-

faceted in nature (Ferré et al., 2001). However, usability is primarily understood in the form

in which it is adopted in Usability Engineering (UE) in relation to the UI, as representing how

easy a software system is to use and learn (González et al., 2008; Juristo et al., 2007a). The

field of UE is geared towards endowing the UI design with usability through the use of

structured approaches in the lifecycle of system development (Scholtz, 2004). To put it

differently, through its goal of enhancing a software system‘s UI, UE can be understood as a

process that makes use of a series of approaches at different stages of development to meet

the usability objectives of that system (Jakob, 1993; Lecerof & Paternò, 1998). Ferré et al.

(2001) emphasised that apart from UI appearance, usability is also concerned with system-

user interaction, given that this concept is a key dimension of the field of HCI (Juristo et al.,

2007a), which seeks to determine the efficiency and ease with which a software or product

enables users to undertake their intended activities (Han et al., 2001). Despite being still a

relatively new concept, usability has come to be considered among the essential implications

42

that are associated with how users, systems, tasks and the environment interact with one

another (Lewis, 2006b).

3.3.2.1.1 Usability Definitions

In 1971, Miller was the first to propose usability as an indicator of ―ease of use‖ (Shackel,

2009). Originally deriving from the term ―user-friendly‖ (Folmer & Bosch, 2004), usability

has been defined in many different ways, as is the case with numerous other terms in

software engineering (Shackel & Richardson, 1991). Indeed, usability has been defined

according to the particular perspectives that have been adopted in different studies (Bevan &

Kirakowski, 1991b; Dubey & Gulati, 2012). The term is closely correlated with a series of

dimensions, including the speed with which an action can be undertaken, performance,

learnability, and user satisfaction. All of these dimensions are associated to some degree with

usability, which can thus be understood as an attribute of quality (Iso & Std, 2001; Juristo,

2009). Usability was comprehensively described by Jakob (1993) as being one of the defining

attributes of a system, and as indicating the extent to which users accept the system and

consider it suitable for meeting their needs and requirements. Usability has been defined in

myriad ways (Abran et al., 2003; Ferré et al., 2001; Juristo et al., 2007a; Juristo et al., 2007b),

but some definitions are more relevant than others (Casaló et al., 2010), particularly those put

forth by the International Standardisation Organisation (ISO) (Abran et al., 2003). For

example, a widely used definition is the one in part 11 of ISO 9241-11 (1998), where

usability is characterised in terms of three user-related dimensions, namely, effectiveness,

efficiency and satisfaction, and the degree to which users consider a software or product as

demonstrating these dimensions in particular settings (Abran et al., 2003; Beckert & Grebing,

2012; Stone et al., 2005). Meanwhile, usability has been defined from both product- and user-

based perspectives in the ISO standard for software qualities (ISO 1991b, cited in (Bevan &

Kirakowski, 1991a)) as a series of software properties that are related to the effort that usage

entails and users‘ evaluations of usage. Conversely, usability was explained by Brinck et al.

(2002) as the ability of users to carry out more than one task. A different study described

usability as the ability to use a product to perform a given task rapidly and without difficulty

(Dumas & Redish, 1999). In addition, Lewis (2006b) considered the interactions among

users, products, tasks and environments to be the cornerstone of usability. The most

straightforward definition of usability was cited by Juristo and colleagues (2007), who

described the concept as ―quality in use‖ (Abran et al., 2003; ISO, 1999).

43

3.3.2.1.2 Prototyping as a Design Solution

In the context of UI design, a procedure of great importance is prototyping (Buchenau &

Suri, 2000). Usability specialists are charged with monitoring users during task performance

as a way of testing prototypes that resemble the actual system (Walker et al., 2002). Thus, a

prototype can be understood as a basic model of a final interactive system, which enables

clarification of the scopes of various solutions and of the requirements of users. A prototype

design is a version of the true software system, but on a much smaller scale, and is intended

to help stakeholders assess the acceptability of the system (Rogers et al., 2011b; Szekely,

1995). Furthermore, prototyping also enables developers to improve the design of the UI by

gaining a better understanding of users and the manner in which they interact with a system

and undertake general tasks (Buchenau & Suri, 2000; Nielsen, 1994b; Sharp et al., 2007).

Moreover, prototyping entails replicating one or more versions of the system UI design that

reflect only the key dimensions of the true system. As observed by Rubin and Chisnell

(2008), it is not necessary to recreate all the functions of a system when prototyping it but

only those functions that are required to achieve the specific goals of testing. Therefore, the

actual system is merely simulated by the original UI prototype through the creation of

representations that are based on a choice of features or users‘ requirements (Carr & Verner,

1997), which can be subjected to comparative analysis.

Prototyping is helpful throughout the process of system development: in the initial stages, it

enables concepts to be brought before stakeholders and assessed to determine users‘

requirements; in the middle stages, it facilitates verification of system specifications; in the

final stages, prototyping can be used to solve issues related to usability or design.

Furthermore, apart from facilitating selection of alternative designs, prototyping can help

address research queries as well (Rogers et al., 2011b). Researchers are divided on the issue

of low- versus high-fidelity prototyping, with some, such as Preece et al. (1994), advocating

the use of both for HCD; however, the majority of researchers argue that the same outcomes

can usually be obtained with low-fidelity prototyping as with high-fidelity prototyping

(Camburn et al., 2017; Jennifer et al., 2002). Hence, this thesis adopts a high-fidelity

prototyping method for the development of UI prototypes.

44

 Assessment of Usability 3.3.2.2

Researchers began to pay attention to the matter of usability assessment when the field of

HCI first took shape (Hartson et al., 2001). As previously highlighted, the acceptability of a

software application hinges significantly on the quality factor of usability (Abran et al., 2003;

Madan & Dubey, 2012). Assessment can be more easily undertaken if usability is interpreted

from the perspective of quality of use, thereby facilitating the amendment of any aspects that

may hinder users from performing their tasks effectively (Macleod, 1994). Therefore, to

determine the efficiency with which users can employ the system, it is essential to measure

this quality factor by considering target users undertaking tasks with the system. Moreover,

given that users‘ perspectives are afforded greater importance than designers‘ abilities,

usability can be considered synonymous with assessment (Quesenbery, 2004). Identification

of the system‘s weak and strong points and formulation of solutions for enhancing system

usability are the main goals of usability assessment (Hamborg et al., 2004).

To ensure product or system usability (Rauf et al., 2010; Trivedi & Khanum, 2012), usability

assessment focuses on the inspection of the UI design in terms of its efficiency, effectiveness,

user satisfaction, error tolerance, and learnability. In addition, usability assessment is geared

towards dealing with any issues or weak points that are flagged by users whilst undertaking

tasks and that may impact system usability. Basically, the purpose of usability assessment is

to determine how suitable a system is in enabling users to achieve their objectives (Buie &

Murray, 2012; Stone et al., 2005). Verification of system functionality and users‘

responsiveness to the UI are important goals of usability assessment as well (Dix et al.,

2004). In addition, the importance of usability assessment in generating feedback about

software development and detecting issues and causative factors that can then be rectified has

been emphasised by Rosson and Carroll (2002). In short, usability assessment represents the

entire methodical process of determining how usable a software system is (Hoegh et al.,

2006).

3.3.2.2.1 Assessment Techniques

A variety of approaches have emerged due to the formulation of techniques for usability

assessment that help ensure that a system or application is usable (Blandford et al., 2008;

Hartson et al., 2001). However, these techniques are not classified in the same way by all

researchers, which gives rise to ambiguities and results in a lack of clarity about which

techniques are most suitable for a particular product and about the weaknesses and

45

shortcomings of the techniques (Zins et al., 2004). To overcome this difficulty and better

comprehend the various usability evaluation methods (UEMs) based on a proper comparative

analysis, several researchers have attempted to develop a series of standardised usability

measures. For instance, Riihiaho (2000) distinguished user testing, including context-based

enquiry, usability testing, cognitive walkthroughs and pluralistic walkthroughs, along with

usability investigation, including heuristic evolution, cognitive walkthroughs and GOMS

(goals, operators, methods and selection rules), as the two major dimensions of usability

assessment. Meanwhile, Harms and Schweibenz (2000) classified usability assessment into

heuristic evaluation and usability testing.

3.3.2.2.1.1 Analytical Techniques

Only HCI or usability specialist assessors can carry out analytical techniques to assessing

how usable a system or application is to identify potential usability issues and provide

feedback as to how the issues can be addressed and system/application usability can be

improved (Abran et al., 2003). This approach is helpful for making design amendments, but it

is not a substitute for usability testing with target users. Furthermore, as discussed in greater

detail in the next part, greater emphasis is put on analytical evaluation because that the results

can be obtained more quickly and it is not usually as expensive as user-based techniques

(Dillon, 2001). On the downside, analytical techniques, which are also known as inspection

techniques, rely greatly on the assessor‘s capabilities; therefore, they have a low degree of

objectivity (Abran et al., 2003; Jakob & Mack, 1994).

3.3.2.2.1.1.1 Heuristic Assessment

Heuristic assessment is a commonly used informal technique for evaluating usability

(Nielsen, 1993a), which is applied by usability specialists to determine whether the

interactive components of a system or application comply with the established usability

standards (Abran et al., 2003; Holzinger, 2005; Nielsen, 1994b; och Dag et al., 2001). The

aim is to abbreviate the improvement iterations and increase the development iterations

(Dillon, 2001; Ferré et al., 2001). This technique simplifies the assessors‘ task, as it provides

a straightforward list of design guidelines for interface evaluation. Thus, the assessors simply

must examine the various interactive components of the interface by going over it repeatedly

and comparing those components to the list of usability design guidelines. The assessors can

disseminate their conclusions upon completion of the evaluation. In a study that was

46

conducted on market-driven packaged software development, in which achievement of user

satisfaction is critical, Dag and colleagues (2001) sought to identify usability issues by

employing two techniques, namely, a questionnaire for collecting information about users‘

views on the software and a heuristic assessment. The heuristic assessment was the standard

assessment that was proposed by Nielsen (1994b) and was comprised of ten guidelines that

target the key dimensions of usability, including ―user control and freedom‖ and ―flexibility

and efficiency in use‖.

3.3.2.2.1.1.2 Cognitive Walkthrough

Different kinds of walkthrough methods are used in the field of HCI (Lewis & Wharton,

1997). Cognitive walkthrough is a task-focused method that requires the UI specialist or

usability assessor to identify the precise order of task performance and anticipate how a user

will behave in relation to a certain task. Concerned with cognitive aspects such as

learnability, based on investigation of users‘ mental processes (Rieman et al., 1993),

cognitive walkthrough relies on a technique of system learning that is popular with users,

namely, exploration, to assess how easy a design is to learn and use (Nielsen, 1994b; Polson

et al., 1992). This type of walkthrough necessitates a more comprehensive analysis of the

order in which a user performs a series of actions, such as communication-based problem-

solving at every stage and verification of whether it is possible to anticipate the simulated

user‘s objectives and memory content to determine the precise action (Dillon, 2001;

Holzinger, 2005). Aside from accurately predicting a user‘s most likely responses, the

usability specialist must justify why a user is likely to have difficulties with particular

interface features.

3.3.2.2.1.2 Model-based Technique

Although the model-based approach is not a widely employed type of assessment, there are a

number of related techniques that can produce precise estimates of particular elements of

user-interface interaction, including the time required to successfully carry out a task and also

the learnability of a task sequence. To determine the precise order of user behaviours, the

specialist carries out a comprehensive task analysis and implements an analytical model to

obtain the usability index. The GOMS techniques, which was proposed by Dillon (2001), is

the most popular model-based approach (Card et al., 1983). This technique involves dividing

user behaviour into a series of basic elements by employing a framework that is underpinned

47

by cognitive psychology. Therefore, this technique allows the assessor to examine any

interface design and determine the amount of time that is required by a user for task

completion.

3.3.2.2.1.3 Empirical or User-based Techniques

Empirical assessment of usability involves a number of users performing specific tasks and

interacting with particular interface designs with the purpose of investigating a system or

application (Bastien, 2010). Upon completion of the tasks, either quantitative approaches

(e.g., questionnaire) or qualitative approaches (e.g., interviews, verbal articulation of

opinions, field observation, and focus groups) are employed to collect data from the users. It

is believed that this method of employing target users to undertake different tasks is the

method of assessment of system or application usability that has the highest reliability and

validity (Dillon, 2001). Assessors use software prototype design to determine usability

according to users‘ opinions (Catarci et al., 2004), which makes it easier to identify not only

possible issues with usability, but also the features of an interactive system that are most

preferred by users (Abran et al., 2003; Freiberg & Baumeister, 2008). The importance of user

testing as a technique of usability assessment has been frequently highlighted, with some

researchers even going as far as calling it ―irreplaceable‖ Nielsen (1994b), because it supplies

invaluable information about the manner in which the users approach task performance as

well as about the difficulties they face when interacting with a particular interface. In

addition, user-based assessment is the most appropriate method for testing usability in this

work, as system implementation has already occurred (Costabile, 2001). By affording such

great significance to human factors, the user-based technique helps determine how effective

and efficient a system is and how satisfied users are with it, as well as whether it contains any

issues or flaws and what kind of amendments are necessary (Dillon, 2001). In addition, there

is agreement that the user-based technique can achieve usability assessment of the highest

degree of reliability and validity (Abran et al., 2003). For all these reasons, it is the preferred

method for assessing how usable a system is.

3.3.2.2.1.4 Comparative Analysis

The comparative analysis assessment technique can be applied at any stage of the lifecycle of

product development. It can facilitate comparison of a range of potential designs in terms of

their suitability for a specific system, in which case it is known as competitive usability

48

testing, or it can aid comparison between a novel interface and existing versions or a similar

system from rival companies. When comparison is undertaken between different designs to

assess their usability, learnability, strengths and weaknesses, the method is applied in an

informal way and is exploratory in nature. In contrast, when the analysis involves a controlled

experiment with various groups of users, the method is carried out in a more formal manner

(Shneiderman, 2010).

3.3.2.2.1.4.1 Query Methods

Taking the form of interviews or questionnaire, query methods are intended to directly

question the users regarding their experience of employing a certain system. Mostly

subjective data are collected from the users with these methods, but objective data can also be

obtained, owing to the ability to capture the users‘ physical reactions to the system.

Questionnaires are usually used when the aim is to gain an understanding of what the users

think about a system or product as well as why they prefer a certain system or product

(Carvalho, 2001).

3.3.2.2.1.4.1.1 Interviews

The interview is a popular tool for acquiring information regarding the system requirements

of users, stakeholders and domain specialists (Maguire, 2001). There are two types of

interview: structured and semi-structured. The structured interview is usually preferred when

the interviewees‘ different responses can be anticipated, but it is necessary to know how

strong each view is (Macaulay, 1996). The semi-structured interview involves asking

interviewees a set of fixed questions but also offering them the opportunity to elaborate on

their answers further. Therefore, the semi-structured interview is most appropriate when

interviewees‘ various responses cannot be anticipated, but there is a good understanding of

general matters.

3.3.2.2.1.4.1.2 Survey

Asking users to provide the necessary information is the most straightforward way of

exploring many of the facets of usability. The questionnaire is a widely used tool for

collecting information about matters that are challenging to assess in an objective fashion,

such as matters related to users‘ subjective satisfaction and the concerns that they might have

(Jakob, 1993; Karat, 1993; Shneiderman & Plaisant, 2005). Demographic information is also

49

commonly collected with the help of the questionnaire (Rogers et al., 2011b). The procedure

of the questionnaire involves gaining insight into users‘ needs and requirements, work

practices, and opinions about novel systems or concepts by administering a series of

questions to a sample of target users that they need to answer in writing. The data that are

collected in this way are quantitative in nature and the procedure is considered particularly

useful, as it enables the rapid questionnaire of a large number of users (Preece et al., 1994).

Among the different user-based methods, the questionnaire method is one of the most

important. However, it is essential for the questionnaire to be formulated appropriately and

the included questions to be relevant, to ensure that the obtained data are of high quality

(Ferré et al., 2001). As observed by Kirakowski (2000), a usability questionnaire is

advantageous because it is a source of feedback from the users‘ perspective, which will be

representative of the larger user population, provided that the questionnaire demonstrates

reliability and it is carried out properly. The questionnaire method has been applied in

numerous studies that focus on usability assessment. For example, Lewis (1993) adopted

psychometric techniques to improve and assess standard questionnaires for gauging

subjective usability in relation to an IBM application. In general, the employed measures of

subjective usability were answers to questionnaire items, which are based on the Likert scale,

that captured users‘ opinions about how easy the application was to use and learn as well as

how appealing the interface was (Alty, 1992). och Dag et al. (2001) chose both quantitative

and qualitative methods in the form of two popular techniques of usability assessment, the

questionnaire being one of them, to assess the usability of a system that was produced by a

leading software development company. In a different study, the Computer System Usability

Questionnaire (CSUQ) was employed to gain information about what users thought of a

prototype (Schnall et al., 2012). Consisting of 19 items, the IBM-developed CSUQ was

geared towards evaluating system usefulness, information quality, interface quality, and

overall satisfaction to determine how satisfied users were with the system usability. A value

of 0.95 was obtained for the coefficient alpha of the entire CSUQ, which was indicative of

the method‘s reliability, while system usefulness had a coefficient alpha of 0.93, information

quality had a coefficient alpha of 0.91, and interface quality had a coefficient of 0.89 (Lewis,

1995). This questionnaire has been adapted for gathering information for the purposes of this

thesis and is discussed in greater depth in section 3.3.2.5.

50

 Usability Testing 3.3.2.3

Stemming from the classical experimental approach, usability testing is believed to be among

the most effective assessment methods of product design (Rubin & Chisnell, 2008), as it

sheds light on the interaction between target users and the system UI and enables

identification of the difficulties that are encountered in that interaction (Lewis, 2006b). As

observed by Evans (2002) , there is a direct correlation between the objectives and

measurable goals of usability testing. Furthermore, usability testing is usually carried out in a

location, such as a laboratory, where the practitioners can control not only the tasks that the

participants have to perform with the system under consideration, but also the environmental

and social factors that may have an effect on participants‘ conduct and behaviour during the

test (Rogers et al., 2011b). Usability testing is considered the most effective way of

ascertaining system usability (Ferre et al., 2017; Rogers et al., 2011b; Spencer, 2004) and is

employed in human-centred design (HCD) at various stages of the development and design

processes to assess the system design (Nielsen, 1993b; Preece, 1993; Rubin, 1994). It is

particularly efficient when it is conducted in the context of the system development process

(Jeffrey & Chisnell, 1994).

Usability testing represents a process whereby a product or system is assessed with the

participation of target users to determine how usable it is (Rubin & Chisnell, 2008). It is

usually conducted in a laboratory or other controlled space, with a sample of target users

being asked to interact with a system or product and perform certain tasks within carefully

established settings and the results being documented for subsequent analysis (Corporation,

2000; Ferré et al., 2001). According to the Microsoft Corporation, usability testing is the gold

standard for measuring the extent to which a system design fulfils users‘ requirements to

improve the task performance (Wichansky, 2000).

 Research Participants 3.3.2.4

The research participants represent a portion of the general population under examination and

are recruited to address the research objectives and to formulate conclusions that can be

extrapolated to the entire population (Pedhazur & Schmelkin, 2013).

With regard to age, experience, background and level of education, a random approach was

adopted in choosing participants from among University of Huddersfield students who

volunteered for the research. The goal of the research was to examine the usability of the

51

mobile UIs for the two case studies and the existing applications from the users‘ viewpoint.

As previously mentioned, the thesis investigated UI usability from the end-users‘ viewpoint

because their feedback contributes significantly to determining whether UIs succeed or fail.

A sample consisting of five participants has been argued by numerous researchers to be

sufficient to detect 80% of usability issues (Turner et al., 2006). A number of 16±4

participants was established by Alroobaea and Mayhew (2014) as sufficient for identifying

not only both significant and less significant issues but also design- and navigation-related

issues as well as issues pertaining to a system‘s functionality and purpose, especially within

the context of comparative research. Nevertheless, a larger number of participants was

targeted by sending invitation to all researchers in Hot Desk Area in Computing and

Engineering School to test the applications. A total of 496 participants responded and

assessed the eight mobile applications. This resulted in obtaining 62 participants for every

application. Tables 3.1 and 3.2 list the chosen applications.

 Questionnaire 3.3.2.5

Because most businesses are concerned with measuring customer satisfaction, a key element

of quality management is the satisfaction questionnaire. Indeed, this issue represents the core

of the new ISO 9000 (2000) norms (Russell, 2000). To determine how humans interact with

device interfaces, usability tests include an empirical evaluation that measures attributes such

as usefulness, information quality, interface quality and overall satisfaction from the

perspective of user experience.

Determining how satisfied users were with the features of usefulness and usability was the

reason for conducting the questionnaire. The answers to the Computer System Usability

Questionnaire (CSUQ) developed by IBM constituted the source for the various measures

(Lewis, 1995). This study adopts the CSUQ questionnaire based approach, which avoids the

need to carry out physical tests under controlled conditions. The CSUQ method can be used

in a wide variety of circumstances, with different sets of users and different physical

environments. In addition, usefully, in 9 out of 10 cases the CSUQ approach yields the same

results regardless of the number of questionnaires returned (Lewis, 1992; 1995; 2002).

Analysis of different sets of questions yields four different sets of results, which reveal

overall user satisfaction with the software, users‘ assessment of the interface, the information

contained in the system and its functionality. In this way, a wider view can be obtained of

users‘ opinions and used to reduce difficulties with the system.

52

The respondents were given a choice of answers based on a five-point Likert scale in which 1

and 5 denoted strong disagreement and strong agreement, respectively (Likert, 1932). The

Likert scale is considered a highly valid and reliable tool for the measurement of social and

political perceptions because it allows respondents to be directly involved in the process,

which is the reason it enjoys such great popularity (Taylor & Heath, 1996). Research in the

field of HCI often makes use of the Likert scale tool (Love, 2005). As explained by Taylor

and Heath (1996), the Likert scale not only ensures the direct participation of the target group

from whom data are collected, but it is also highly reliable and valid. For these reasons, the

Likert scale is one of the tools most frequently employed to measure people‘s attitudes and

perceptions with regard to a wide range of issues of a social, political or other nature.

Furthermore, the questionnaire integrates four metrics that can be examined to enable

particular arguments regarding UI usefulness and usability to be extrapolated.

As mentioned above, a Likert scale was used to determine the participants‘ final views

regarding the statements associated with each research dimension. This required calculation

of the weighted mean of the answers to the statements for each dimension to indicate its

significance. The weighted means that were obtained are presented in in Table 3.4.

Table ‎3:4: Scores obtained for each statement in a questionnaire based on the Likert scale.

Response Weight

Strongly

Disagree
1

Disagree 2

Neutral 3

Agree 4

Strongly Agree 5

To allocate the answers to each statement to a particular category, the procedure outlined in

Table 3.4 was applied. Based on the weighted mean value, measurement and analysis of all

dimensions were conducted in keeping with the procedure shown in Table 3.5, which

indicates the criterion of Likert-scale range, also known as the statistical range.

Table ‎3:5: The weighted mean criterion in the Likert scale.

Response Weight Mean

Strongly Disagree From 1.00 to less than 1.80

Disagree From 1.80 to less than 2.60

Neutral From 2.60 to less than 3.40

Agree From 3.40 to less than 4.20

53

Strongly Agree From 4.20 to less than 5.00

The 19 questions that make up the CSUQ are divided into four sections. Questions 1-7

constitute the first section, which aims to address how useful a system is. The answers to the

questions in this section can be used to gauge whether the users considered the expected

services to be absent or present. Questions 10-15 make up the second section, which focuses

on the quality and relevance of information regarding the interfaces. Questions 9, 16, 17, and

18 are included in the third section, which addresses the interface quality and the extent to

which users are satisfied with the presentation of the assessed interactive system. Questions 8

and 19 are included in the fourth section, which is used to generate an overview of user

satisfaction by considering the entirety of attributes.

Some additional questions are included in the CSUQ to obtain personal information about the

participants, including gender, age, experience, and educational level (see Appendix C).

Closed-ended questions are included in the online questionnaire. Closed-ended or fixed-

response questions are intended to measure how strongly respondents feel with regard to

certain statements (Jordan, 2002).

This thesis is used a questionnaire to evaluate the usability. Questionnaires are widely used in

a broad range of research disciplines (Lazar et al., 2010). They are an excellent way to gather

information for analysis (Zaharias & Poylymenakou, 2009). As discussed by Dix et al. (1998)

the process of questioning users about their use of an application, and gathering their

responses can take place at first hand in an interview setting, as well as more remotely in a

written document. Analysis of responses, as Spencer (2004) points out, yields information

that is invaluable in the development process. Nowadays of course, questionnaires can be

distributed by email or other forms of social media, which is almost instantaneous and can

have negligible costs. These developments are investigated and discussed in the work of Root

and Draper (1983) and Zaharias and Poylymenakou (2009).

3.3.2.5.1 Data Collection Approach

The data necessary for the purposes of this thesis were collected using quantitative method.

In keeping with the suggestion of Rogers et al. (2011a), a quantitative method approach was

adopted to derive quantitative data from a questionnaire (Creswell & Clark, 2011) to attain

optimal outcomes for the usability assessment.

54

Research that generates results that can be subjected to statistical analysis and summary is

classified as quantitative research, and quantitative data analysis yields results in a numerical

form. Questionnaire and experiments are the methods most frequently used to collect data in

quantitative research. Although positivist research makes the greatest use of quantitative data,

critical and interpretive research may use such data as well (Oates, 2005). In this thesis, data

on each of the eight UI applications were derived from the same questionnaire. In addition,

sixty-two users at Huddersfield University were involved with this study, evaluating the user

interfaces of eight applications. This took place in July 2016.

Usability assessment involves the collection of data from users after they have tested specific

applications to learn what they think about them (Teoh et al., 2009). UI app usability can be

determined in various ways. In this work, UI app usability was measured from the

perspective of the users.

UI usability evaluation is most frequently undertaken on the basis of the inspection method

and the user testing method. The inspection method has been applied in earlier studies in the

form of heuristic evaluation and cognitive walkthrough (Jeng, 2005; Nielsen, 1995;

Thompson et al., 2003); in this method, little importance is assigned to input from end-users

(Banati et al., 2006). On the other hand, the user testing method relies primarily on the use of

a questionnaire for data collection (Hsieh & Huang, 2008; Thompson et al., 2003), and it is

recommended that the questionnaire be provided during the time when the system is engaged

by the users (Banati et al., 2006; Hsieh & Huang, 2008; Thompson et al., 2003). The user

testing method yields direct information about the manner in which users interact with the

interfaces; therefore, it is deemed an efficient method for usability measurement (Nielsen,

1994b).

The test questionnaire is intended to gather information about users‘ perspectives and earlier

experiences as well as demographic details related to the process of usability assessment.

Because this questionnaire approach is rapid and inexpensive and permits collection of

quantifiable data, it was chosen for the purpose of the thesis (Lazar et al., 2010).

 Procedure 3.3.2.6

The creation and dissemination of the questionnaire in this work were achieved with the help

of the Google online questionnaire software. Online questionnaires are advantageous because

55

they are inexpensive and easy to produce, distribute, and recover in completed form.

Furthermore, the online questionnaire developed in this thesis was designed to be compatible

not only with PCs and laptops but also with smartphones (Rogers et al., 2011a).

Prior to initiating the research process, the participants were informed of the study aims and

objectives as well as of the experimental goal of assessing the usability of the designed

mobile UI apps (see Appendix C). If the participants indicated that they were familiar with

the concept of usability, they were asked to explain the concept to ensure that they really did

understand it; if they were not familiar with it, they were given a succinct explanation of the

concept and what it entailed. No time limitations were imposed on the participants with

regard to completion of testing the eight mobile UIs. An Apple iMac with Xcode 5.0.2

software was used to conduct the testing through the iOS 7.0.3 (11B508) simulator.

Subsequently, the participants were asked to compare the two case studies with each of the

existing applications.

Once the participants had completed the testing, they were given a questionnaire and asked to

indicate how usable the mobile UIs were with respect to usefulness, information quality,

interface quality, and overall satisfaction as well as to provide recommendations for UI

improvement. The Microsoft Excel programme was used to process and analyse the answers

provided by the participants.

 Statistical Analysis of Quantitative Data 3.3.2.7

The quantitative data were analysed using various methods of statistical analysis. However, a

key consideration was that the statistical tests employed had to permit data analysis during

the research planning stage to permit determination of the validity of the formulated

hypotheses (Wood et al., 2000). The initial procedure was determination of Cronbach‘s alpha

coefficient to measure the reliability of the questionnaire. A result or outcome of a process or

event can be described as reliable if the result can be repeated consistently (Moliterni, 2008).

The value of this coefficient usually falls between 0 and 1. The reliability measurement is

based on a single test that yields a singular reliability estimate (Gliem & Gliem, 2003). In

general, the following standards are adopted: ≥ 0.9 – Excellent; ≥ 0.8 – Good; ≥ 0.7 –

Acceptable; ≥ 0.6 – Questionable; ≥ 0.5 – Poor; and ≤ 0.5 – Unacceptable (George &

Mallery, 2003). Subsection ‎6.4.2 presents the results obtained from the assessment of the

questionnaire reliability based on Cronbach‘s alpha coefficient.

56

3.3.2.7.1 Normality

In a graphic representation of data, as described by, for example (Hair et al., 2003), the

normality of a curve or distribution is a measure of how closely it matches that of an average

or normal dataset. Two distinct properties of the curve are important in determining this.

‗Skewness‘ is a measure of asymmetry in the distribution. ‗Kurtosis‘ is a measure of the

distribution of spikes or peaks in the data curve. Pallant and Manual (2010) provide a full

description of these properties. According to Fidel (2000), Grayetter and Wallnau (2014) and

Trochim (2006) a curve can be considered normal if the skewness and Kurtosis values are

within the range +/- 2. For results in this study see section C in Appendix H.

3.3.2.7.2 Parametric and Non Parametric of Data Analysis

Tests for analysing obtained data can be broadly divided into two types: parametric and non-

parametric. Parametric tests are more stringent in their definitions of constants and variables

and are therefore generally regarded as more accurate. However, non-parametric tests are

often used if either the quality of data is insufficiently rigorous to permit parametric testing,

or the variable which is the actual subject of research has not been measured at a sufficiently

detailed level (Rockinson-Szapkiw, 2013). The following shows the different uses of these

types of tests.

Table ‎3:6 Parametric and Nonparametric testing (from Pallant (2013)).

 Parametric Nonparametric

Assumed Distribution Normal Any

Assumed Variance Homogeneous Any

Level of Measurement Ratio and Interval Any; Ordinal and Nominal

Central Tendency Measure Mean Median, Mode

Statistical Procedures

 Independent samples t test Mann – Whitney test

 Paired Sample t test Wilcoxon

 One way, between group

ANOVA

Kruskal- Wallis

 One way, repeated measures

ANOVA

Friedman Test

 Factorial ANOVA None

 MANOVA None

 Pearson Spearman, Kendall Tau, Chi

Square

 Bivariate Regression None

57

Non-parametric tests do not necessarily use the data obtained in a study, and do not require

data points to follow a particular or ‗normal‘ distribution. Rather they are based on analysis

of results gains a subjective ranking of criteria. They are therefore generally regarded as less

accurate.

3.3.2.7.3 Normality in Parametric Testing

Parametric testing is generally more rigorous and accurate than non-parametric testing but

requires the determination of a ‗normal‘ data distribution for the test, against which actual

test data can be compared. If this is done correctly then variations can be accurately

measured, for example in ANOVA testing or t-testing. According to Marshall and Boggs

(2016), if the test data departs significantly from the ‗normal‘ distribution used in analysis

this does not affect the accuracy of the result. (Marshall & Boggis, 2016).

For purposes of representing and understanding the data, the general attributes were subjected

to descriptive statistical analysis. Calculation of the average (mean) and percentages was

undertaken for all independent attributes. Furthermore, to generate a scoring for each research

dimension indicative of that dimension‘s status, descriptive statistics was applied to the

questionnaire items based on the Likert scale (Rogers et al., 2011b). ANOVA (ANalysis Of

VAriance) is a frequently used method for the evaluation of statistics in many fields, and was

adopted in this study for evaluation of both CSUQ and ordinal data (Acock, 2010). Moreover,

as more than two UI apps were tested, hypothesis assessment was performed using the one-

way ANOVA test to compare the mean of the case studies and the mean of the existing

applications (Acock, 2008). In other words, this method of analysis was intended to

determine whether the means of the answers and number of elements differed significantly.

Since the ANOVA test confirmed the existence of a significant difference, a paired t-test was

conducted afterwards to compare the means of the two UIs and determine what caused the

significant difference between the two UI apps in the independent screens. However, the

determinant of this significant difference could not be revealed through the paired t-test

(Lazar et al., 2010; Sauro & Lewis, 2011). Therefore, an f-test was then performed to shed

light on this issue. This test sought to determine whether the variances of UI1 and UI2 were

identical in different parts. The results revealed that, for both the t-test and f-test, the p-value

was lower than 0.05, meaning that the null hypothesis could be rejected. If the p-value had

been higher than 0.05, the null hypothesis would have been accepted (Ali, 2013; Rosnow &

Rosenthal, 1996). The ANOVA test was applied in both phases, but the t-test and f-test were

58

applied only in the first phase, with a significant difference being discovered in the Si screen

(see subsection ‎6.3.1).

3.4 Chapter Summary

The methodology and approaches employed to achieve the established research aim and

objectives were outlined in this chapter. The chapter presented the research methodology

followed by justification of the choice of model creation method and discussion and

legitimation of the methods of analysis and selection. The approach adopted for the purpose

of data collection was then presented, and the procedures and methods of data analysis were

outlined.

59

Chapter 4: Development of An novel Formal Model of

Mobile User Interface Design (FMMUID)

4.1 Introduction

The new approach, known as FMMUID, is introduced in the current chapter as a solution for

achieving the integration of the UI design with the formal method. Several UI models were

discussed in second chapter, along with their weak and strong points. This chapter is

concerned with the discrepancies between the discussed models. To this end, a formal UI

model is developed to serve as a foundation for UI designs. Formal descriptions of the

produced designs are put forward. In this way, the advantages of a UI model, such as the

ability to demonstrate the UI attributes, can be secured.

When creating such models, it is essential to ensure that they are as simple as possible and

that developers do not need to concern themselves with challenging terminology or the model

development process. Therefore, in this thesis a formal model is developed, in that it fulfils

every requirement associated with formalism regarding syntax, semantics and logic, thus, can

be employed in a meticulous process, without being so complex that it is difficult to

understand and employ.

As indicated in section ‎3.2, hierarchical structure and set theory language were the two

building components of the FMMUID (model abstraction). This framework clearly reveals

the main components of the UI and shows how they are interrelated. The purpose of the UI

components is to ensure that the UI can respond effectively to users‘ requirements by

establishing a good rapport with their demands. A variety of interface components make up

the mobile interface, which is a system of great complexity. The manner in which the

components of the interface interact with one another can be observed from the way in which

the hierarchical component structure is assembled

The contribution of an approach and methodology that can be applied repeatedly to develop

the user interface design on the basis of interface elements is the purpose of the present

endeavours focusing on FMMUID. Thus, a designer or developer could determine the

variables underpinning user interface design by employing the methodology supplied in our

model. The variables that affect design include user specifications, various computing and

environmental context data, and application limitations.

60

The remainder of the current chapter is organised in the following way. The basic construct

of FMMUID is presented in section 4.2, focusing on FMMUID definition, equations, and

constituents. A brief overview of the material presented in the chapter is provided in

section ‎4.3.

4.2 FMMUID Development

The FMMUID in this thesis has been created manually by the author. An overview of the

construction of the FMMUID is provided in this section and its main elements are defined.

The FMMUID is advantageous because it can act as a foundation for the creation of new

applications, uses uncomplicated terms that enables software engineers and UI designers to

successfully achieve UI development, and facilitates comprehension of the UI conditions and

solutions for an adequate design.

Interface designers can employ the FMMUID to create a hierarchical structure of the

elements of the design as a whole. The FMMUID can achieve the analysis and construction

of the elements connection model in the complex system on the basis of an approach of

system structure modelling. Set theory (mathematical logic) constitutes the theoretical

cornerstone of the FMMUID. This theory is applicable in various contexts. A set is made up

of any assemblage of items (Hood & Wilson, 2002). The FMMUID facilitates analysis or

characterisation of the manner in which elements are connected to each other in a complex

system.

 The complicated relationships among user interface elements impacting users as well as the

application settings and user requirements impacting the selection of a user interface during

design have been taken into consideration by our model. To successfully address these

aspects, the FMMUID makes it possible to choose one suitable user interface from all

potential user interfaces.

The FMMUID is represented as a family of sets of screens that may have other sub-families

of sets of screens and components. Each of the screens is defined as a family of sets that is a

combination of some functions that are considered to be its elements. The main elements of

these families of sets are the interface components, colours and functions represented

by . These elements are also represented as a sub family set of other sets.

The mainly consists of seven family sets:

61

 { }

The FMMUID is built up of the familiar elements of a graphical user interface – different

screens using different colours and layouts, objects on screen and the functions relating to or

triggered by them. The equation at 4.1 sets out the naming conventions, the interactions and

the thinking behind components of the interface, and describes them exactly.

Definition 1

The FMMUID can be mathematically represented by equation (4.1). represents the family

of sets of the start screen, which is the family set of all other sub-family sets of screens.

(main screen) is a sub family set of screen of including the sub family set of

screens, . Notice that each sub family set of screens can contain other sets of sub

family sets of screens based on the requirements of the application. is a sub-family set of

screen of content (calculate the result, search, etc.), and is a sub family set of screens

that represent information (such as results or information). In addition, each screen or sub-

screen has three sub-families (), where represents the interface components of the

family of sets (), represents the functions, and represents the colours.

Definition 2

The union symbol ⋃ represents the combination of the family of sets. The union in this

model is used to combine the sub family sets in to the family of sets of the main screen (Si)

family set. Therefore, the family of sets of the whole model should have all of the options and

possible functions (as sub family set elements) of the model.

Definition 3

Interface components : represent the family of sets of all of the interface components

(buttons, menus, text fields, images, video views, tables, etc.) of the screens. Each of the sub

family sets may have different interface components from the other family sets that link that

particular family set with the following sub family sets.

Definition 4

 Colours : signify the family of sets for the colour scheme, which is a combination of

different colours on different screens. The main elements of this family set are the primary

colours, which are red, green and blue. Any combination of these colours will provide a

62

different colour as required by the designer. The family of set represents all possible

combinations of the colours using these three primary colours.

Definition 5

 Functions : represent the family of sets of all of the possible functions (count, calculate,

navigate etc.) available on the different screens. The navigation, calculation or combinations

of colour are generated based on the predefined function. The function set ―F‖ is a generic set

of combination of all these functions. Because of these functions there are various interface

and components at each screens. Therefore, it should be subset of all the sets.

Definition 6

 Each of the screens should have the components of these families of sets (). However,

depending on the screen, the elements of the family may vary. The elements of these families

of sets will be explained further via equations (4.5) -(4.9). Therefore, the elements for each

family of sets of a screen can be represented as:

 * +

The subscript denotes the name or the number of the screen. As previously mentioned, this

analysis consists of three functions. The family of sets for a screen will have three elements,

and these elements represent the family of sets as well. For example: screen , which

represents a family of sets, will have the sub family sets of , as its element. is

the superset of and the elements of are , . Therefore, the

family of set should include the elements of the sub family set , and hence will

have as an element or sub family as well. Similar trends will occur for other elements

and other screen families of sets as well.

Definition 7

 Equation (4.1) demonstrates the relationships between the family of sets and the elements for

each sub family set. This definition illustrates the elements of the sub family sets for equation

(4.1).

 { }

 { }

63

 * +

 * +

 (((⋃

 ()))) (‎4.1)

Lemma 1

 From equation (4.1), it can be seen that is part of (i.e., is contained within).

It is worth mentioning that the results in are displayed by in some cases. exists

within the family of sets of screens for all values of where , and the family of sets of

screens is contained within the family of sets of . Where represents the maximum

number of value. The parameter is contained within , and , and the

parameter is contained within , and . In addition, the family of sets for

function should be included in parameters and all of the screens, which is represented

in equation (4.1). There are some special cases that partially (not heavily) depend on

achieving all of the six conditions stated below, as will be explained in more detail later.

The proposed model is valid when all of the following six conditions are met:

Condition 1: ()

Condition 2: ⋃ ()

 ()

Condition 3: (⋃ ()

) ()

Condition 4: ((⋃ ()

)) ()

Condition 5: (((⋃ ()

))) ()

Condition 6: ((((⋃ ()

)))) ()

64

It is worth mentioning that other screens can be inserted between and , depending on the

requirements of the application. This provides more dynamic and flexible applicability to the

model. The same can be said for and ().

Proof

 Suppose that the first condition () for the proposed model was met i.e. is a family set

of . Therefore, the components or elements of will be a part of the as mentioned

above in Lemma 1 and depicted in Figure 3.1. Similarly, in condition (), is a sub-family

of , where * +. This represents that there can be more than one screen, and each

screen may have more options that will lead to . Therefore, all elements have to be

elements of . Figures 3.1, D.1 and D.2 in Appendix D depicts the evidence of the relation

between and components. Subsequently, condition () depicts that is the union of

all , representing being a sub family set of . Hence, all of the components of the

 screen and other sub screens will be part of . Moreover, condition () shows that

(family set of interface components) is a sub family set of all of the screens. Each screen

should have interface components, which link a screen with other screens. Therefore, the

family set should have the interface components of the sub family set as well to establish a

linkage between them. From the definition of (Definition 3), it can be seen that each screen

has a minimum of one component that links two screens. Condition () represents that each

screen and the interface components consist of various colours. Henceforth, is the sub

family set of all of the components and screen family sets. Likewise, condition ()

demonstrates that (family set of functions) is the sub family set of all colours and

components, and the screen family sets comprise different functions.

Definition 8

 is a sub screen of including the combination of screens of . represents a

screen for * + * + and is a sub screen generated from

for * +.

 ⋃ ⋃

 ⋃

 (‎4.2)

65

Lemma 2

 Equation (4.2) represents a special case for generating from and ; the formula

expressed above states that for any ordered size is the family set of for any

ordered size , where is the sub-screen contained within for any maximal ordered size

 and (). However, it is not necessary that each contains .

Proof

 The expression above (equation 4.2) is used to determine the possible combination of

screens . Each is obtained from and . Each has an ordered size-

 and has the probability of generating a different number of depending on the

value of and may not produce any sub-screens. This expression gives an idea of how many

possible sub-screens can be obtained from any given screen.

 ⋃ ⋃

 (‎4.3)

Special case of lemma 2

 Other screens can be generated via a certain part of the previous formula in another way (see

equation 4.2). However, parameter in equation (4.3) differs from that in the original

equation (4.2). The differences involve the design parameters, which include the interface

components (), colour representation () and functions ().

Definition 9

 is a sub screen of , where , and generates three different screens

(for), (for), and (for). However, there is only one sub-screen

() that can be generated from for * +.

 (⋃ ⋃

 ⋃

) ⋃ ⋃

 ⋃ ⋃

 (‎4.4)

Lemma 3

 Another way to generate can be expressed by equation (4.4). The formula states that

for any ordered size () is a family set of for any ordered size (i.e., is

contained within), is a sub screen of for ordered size , and is another sub

66

screen generated from the main screen for ordered size . Both and are united

with to obtain .

Proof

 The expression above is used to show a possible combination of family sets for screens .

Each set of generates screens () and sub-screens that can be

generated from . Formula (4.4) states that each is produced by a sub family set of

screens that is in a union case with and for the ordered size ().

The generated has probabilities of generating different numbers of sub-screens ,

depending on the value of . However, it is not compulsory for each screen to have sub-

screens.

 ⋃ (

) (‎4.5)

Theorem 1

 The user interface component can be mathematically expressed in formula (4.5), which

contains three main features: a control process (), contents (), and vision (). These

features have a set of inputs.

 represents a family set of control process components that constitute the application such

as buttons and menus.

 * +

 represents a family set of content properties that include textboxes and tables.

 * +

 represents a family set of vision properties such as text view, image view, and video view.

 * +

Definition 10

 * + represents the number of screens.

 * + signifies the number of components, colours or functions for each screen.

 * + denotes the number of components that are available on each screen.

67

 * + represents the number of colours or functions for each component.

 * + signifies the number of colours including functions.

 * + denotes the number of functions for colours.

 ⋃

 (‎4.6)

where subscript is used to represent the , and screens. In the following, the

screen is used as an example, but the same can be applied for the other screens, i.e., ,

and .

 ⋃ ⋃

 (‎4.7)

Equation (4.7) symbolises the family set for the components available in the whole model. In

a screen, a variety of components
 can be presented to define different functions and link

to other screens. For example,
 represents the first component of screen 1, and

 depicts

the second component of that screen. Therefore, the family set for component is the

combination of all of the components available on each screen.

 {

 }

 { {

 } {

 } {
 }}

Can also be written as

 * +

 ⋃ ⋃

 ⋃ ⋃

 (‎4.8)

For every screen, there might be a combination of colours to define the components (e.g.,

buttons and menus). Each component () of the screen might have a different colour

combination as well. Because the screen should represent all of the components, the family

set for the colour scheme for a certain screen should include all of the colour combinations

for the components.

In the above expression (equation 4.8),
 denotes the family set of colours for the

components.

68

 denotes the sub family set of colours of the screen, which is a combination of all of the

colours available in that screen.

Therefore, for all values of , the family set of colours for the screen and

components can be represented as

 {{

 } {

 }}

 {{

 } {

 }}

The family set of the colour scheme () should include all of these sub family colour sets ()

for each screen and its components, which can be represented as

The above equation can also be written as

 * +

 (⋃ ⋃
 ⋃ ⋃

) ⋃ ⋃

 (‎4.9)

Equation (4.9) can also be represented using a similar system to that used for the colour

scheme. Each function can be represented via different symbols
 that might be represented

with different colours. In the screen, the interface components have different functions to

navigate through the system.
 capture all of those functions for the interface components.

The colours might change when a different function is selected within the same screen.

Changing the colour is a part of the function as well. Hence, the whole colour scheme is part

of the function

, which is represented in the equation above. In addition, there might be an

opportunity to have various other functions (graphical representation) on the screen that

might not be captured by the interface and the colour function that are in the family set

of
 . The above equation denotes that the family set function for a screen

 comprises of

all of the components and colours along with the other functions available in that screen. The

family function set will represent all of the sub family set functions for each screen.

 represents the family set of functions that are available for each screen for .

 {{

 } {

 } {

 }}

69

 {{

 } {

 } {

 }}

Therefore, the final should be represented as follows, which is the family set for all of the

sub family function sets,

which can also be represented as

 * +

Therefore, each screen should have some attributes of the family sets , which are

represented as
 ,

 and
 .

4.3 Summary

An introduction to the formal model FMMUID was provided in the current chapter.

Underpinning the initial step in the integration of the UI design process with the formal

model, the FMMUID facilitates, simplifies and structures characterisation of the formal

design, including its prototypes (see the following chapter). Furthermore, by providing a

description of every potential design, the FMMUID affords a static perspective on UI

designs, while the navigational possibilities for UI can be derived from the manner in which

the components are interrelated. In adopting a design approach to model development,

designers must inspect the UI from multiple angles, thus ensuring that any unidentified issues

or deficiencies with the UI design are detected. In addition, the model facilitates

identification of the optimal features of UIs during the preliminary design process phase. The

model allows evaluation at the prototyping phase of features such as UI reactivity and

consistency that are not usually visible until the later phases of design. This makes it easier to

make adjustments in the event that any issues are discovered.

Following an introduction to the formal interpretation of designs based on the FMMUID, the

next chapter will proceed to the creation of case studies to illustrate the application of the

suggested model.

70

Chapter 5: Using the proposed Approach on Case-Studies

5.1 Introduction

Examination of case studies (examples) is usually the ideal way to determine how applicable

a formal model is (Meedeniya, 2013). In this thesis, it has already been demonstrated that the

proposed model is accurate in terms of semantics. In the following part, the model is assessed

in terms of how applicable and usable it is in practice.

Two distinct mobile applications are employed as case studies to determine the applicability

of the proposed model. At the same time, this approach enables assessment of how useful the

FMMUID is in practice. The examples used address every aspect of the anticipated analysis

of the proposed model.

The case studies addressed in this chapter are related to the FMMUID-based UI design. This

is in keeping with the research goal of creating a UI for a mobile application by implementing

the FMMUID to determine the feasibility of incorporating this kind of formal model into the

process of UI design.

The designers or developers can manually generate the user interfaces. An abstract

representation of a user interface is the main input for the UI generation process. It describes

what the interface should present to the user and outputs a concrete user interface.

The quiz game iPlayCode and the social media SC are two case study examples of how

application prototypes are used to assess the validity of the FMMUID. The case studies are

intended to evaluate the applicability of the proposed model by employing two UI

applications with different levels of design complexity. Furthermore, additional validation of

the FMMUID has been achieved by comparing the hierarchical structure designs and

numbers of elements in the case studies and chosen applications.

Any typical UI screen has a feature of blending different structures. However, this thesis

implements a hierarchical approach to develop a UI, as illustrated in Figures 5.1 and 5.3,

which also depict an overview of the levels within the hierarchical structure. In this type of

approach, a particular screen within the hierarchy can be arrived at solely through a single

higher-ranking screen. The structure depth, the number of hierarchical levels, and breadth, a

count of the options available, are two important elements that must be taken into account

when developing such a hierarchical structure.

71

5.2 Case Study 1: iPlayCode Application

The aim of this application is to teach beginners basic programming skills. The target learner

is someone who has no experience with programming. The application guides users through a

game that teaches them how to write correct syntax in programming languages based on

Objective C, C#, C++, and Java for Android, Java and Python. iPlayCode uses both gaming

elements such as timed challenges and rewards, and a supportive system with syntactic

judgements to build a fun learning environment.

Figure 5.1 illustrates the hierarchical structure for iPlayCode, which is represented as a

combination of families of sets of different screens. Each screen has been characterised as

different sets of family components, colour schemes and functions. The figure below

illustrates the structure of iPlayCode, via the hierarchical structure, where each screen is

shown with links connecting it to others.

Figure ‎5.1: Hierarchical structure screen design for iPlayCode application.

where symbol represents the screen and the meanings of the subscripts are shown below.

72

Subscript:

 Start

 Number of sub-screens of screen

 Levels

 Question

 Result

 Final result

5.2.1 iPlayCode Application Design Screens

 : denotes the start screen and the elements of this screen are the options for registration

(text box), selecting the preferred language (button), a function to count the number of times

that it has been used before (text view), a graphical representation (image view) and a button

to link to the next screen, which is the main screen (). Once the user name and language

have been selected, the user can move to the next screen by selecting the button (play).

 : denotes the main screen, which shows six programming languages (buttons), when a

link to the previous screen (button), when the user selects a programming language by

pressing on a button, it will take the user to the levels screen ().

 : The next screen can be termed a levels screen where the user has the options to choose

the level of the game (easy, medium, or hard). In this analysis, three navigation levels are

used, referring to (level 1- easy), (level 2- medium) and (level 3- hard).

All of the levels (, and) consist of a button to move back and change the game level

and a text instruction to move forward in the game. The maximum number of options

available for level 1, level 2 and level 3 are 3, 6, and 4 respectively. However, the number of

options may vary depending on the option chosen from the level screen. When the user

selects an option from a level, it will take the user to the question screen ().

 : The question screen () consists of various random questions. To make the game more

challenging and keep track of the score, there is a timer and score board showing the number

of questions answered along with the score. There are two buttons to select, either the correct

or the wrong answer and a button to move back to the previous screen. When the user selects

either the ―Right‖ or ―Wrong‖ button from the question screen, the button text changes to

―Help‖ and ―Next‖ and the timer changes to the question score. After completing all of the

73

questions for the selected options and level, the user can check their total score, which will

lead them to the result screen ()

 : The result screen () consists of four buttons: a return button to go to the main screen

and choose another programming language (), one to return to the questions to play again

(), one to choose another level (), and one to go to the final result screen (). There

is also a display to show the total score for the option and level.

 : The final results screen () shows the total score for all levels for the user. The return

button on the screen will take the user to the main screen (). The score is shown in image

and text view.

74

Screen

name
Screenshots of iPlayCode

Figure ‎5.2: Screen shots of model screens for iPlayCode UI.

Definition 1

 Equation (5.1) represents the FMMUID for iPlayCode (), which is also

shown as a combination of sub family sets. Therefore, the components for those sub family

sets are:

 * +

 * +

75

 * +

 * +

 * +

 * +

Equation (5.1) represented using the proposed model in the iPlayCode application can be

expressed as follows based on the developed FMMUID:

 (((⋃

 ()))) (5.1)

where is the start screen, is the main screen, is the level screens, is the question

screen, is the result screen for each level, and represents the final result screen for all

levels.

For example, in the above equation, the represents the FMMUID for

iPlayCode that is shown as a family set of other sub family sets of screens. The sub family set

screens in this equation are , , , , and . Each of the screens has different

function elements.

5.3 Case Study 2: SC Design

With the modern development of society and technology, people are connected with each

other through various social media platforms. Most of one‘s day to day needs can be found

on the internet. Hence, this application is a one stop link to find different types of

information. This application is aimed at all types of users to find friends, services,

76

communities and other data. This application allows the user to add advertisements and

modify them whenever needed.

The hierarchical structure for the SC application is shown in Figure 5.3. This application is

modelled using an approach similar to that used for iPlayCode. This application also consists

of different screens that can be is represented as sets of families of elements.

Figure ‎5.3: Hierarchical structure screen design for SC application.

The letters below were used in describing the screens in SC.

 Screen

Subscripts:

 Start

 Search

 Information

 Number of sub-screen of screen S

 Number of sub-screen of screen

 Number of sub-screen of screen

77

5.3.1 SC Application Design Screens

 : denotes the start screen, which consists of an image view, text view and a button to

lead to the next screen ().

 : denotes the main screen, which shows fifteen navigation screens: Top list , ―New

releases‖ , ―Discover‖ (menus), ―Quick link‖ , ―Browse‖ (button) and

―Advertising management‖ (buttons). In addition, there are two places to upload images

(image view).

 to :

 : Is the first sub screen that consists of a table, image view, text view and button.

 : Is the‖ New release‖ screen, which comprises a table, an image view, a text view and a

button.

 : Is the ―Discover‖ screen that includes three menus, which are ―Service‖ (),

―Communities‖ () and ―Communications‖ (). In addition, there is also an image view,

a text view and two buttons.

The user can select various options from each of the menus, depending on their requirements.

For example, under ―Service‖, the user can find information about ―Airports‖ (), ―Trains‖

() and ―Bus stations‖ (). Similarly, for ―Communities‖, there are options to find

―Friends‖ (), ―Selling‖ (), ―House Renting‖ (), and ―Pets‖ (), and for

―Communications‖, there are options to find ―Parties‖ (), ―Entertainment‖ () and

―Gym‖ (). Each of these screens consists of a number of menus, image views, text views

and buttons.

 : Are the ―Quick link‖ screens showing images of the options that are available in

the previous screens, providing direct access to the search screen (). More options can be

added to this screen to make the application more user-friendly.

 : Is the ―Browse‖ screen, which offers the option to sell products and includes the

available products in table format, image view, text view and a button. The sub-screens for

this screen are ―Cars‖ , ―Clothes‖ , ―Bikes‖ , ―Motorcycles‖ ,

―Mobiles‖ , ―Laptops‖ and ―TVs‖ .

78

When the user selects any option, it will lead to a search screen (), where the user needs to

input the location, and after that, the available results will be shown on the information screen

().

 and do not generate any sub-screens and are not connected to the search screen ,

while are directly connected to the search screen without any sub-screens (see

figure 3).

 : Is the ―Advert management‖ screen including three menus and a button. The first menu

is ―Post Ad‖ (), which links to two other sub screens: ―Add photo‖ to upload an

image for an advertisement and ―Post Ad‖ to post the advertisement. The ―My

advertisement‖ screen consists of all of the user advertisement posts so far and has an

option to delete any previous advertisements. This screen consists of an image view, a text

view and a button. ―Saved search‖ stores all previous search results and consists of a

button and a table.

 : Is the search screen, which is connected to most of the previous screens (,

and). This screen consists of image view, a text box, a table and two buttons.

 : Is the information screen, providing detailed information about the products, events,

and services. This screen consists of an image view, a table and a button.

79

Screen

name
Screenshots of SC

Figure ‎5.4: Screen shots of model screens for SC UI.

Definition 2

 Equation (5.2) depicts a model for social commutation (SC) represented via a family of sets

having other sub family sets. The following section will illustrate the components of these

sub family sets.

 * +

 * +

80

 * +

 * +

Equation (5.2) depicts the model for SC, which is also represented as the combination union

of various sub family sets of screens. There are few discrepancies between equation (5.1) and

equation (5.2). The main difference between the two equations is the representation of the

family set of screens. However, in the SC application, the formula (5.2) representation of the

model is slightly different than that of iPlayCode.

 (((⋃

 ()))) (5.2)

where is the search screen, and is the information screen, which has the elements as

described in equation (4.1). The model can be better explained by a set of examples as

follows:

Example 1: Generating third screen

Referring to Figure 5.5, the example below generates the third screen based on lemma 2.

Assume

 ⋃

 ⋃

- Generating sub-screens from screen ()

1) generating , let us suppose that , then

2) generating , let us suppose that , then

3) generating , let us suppose that , then

- Generating sub screens from screen ()

1) generating , let us suppose that , then

2) generating , let us suppose that , then

3) generating , let us suppose that , then

4) generating , let us suppose that , then

- Generating sub screens from screen ()

81

1) generating , let us suppose that , then

2) generating , let us suppose that , then

3) generating , let us suppose that , then

Figure ‎5.5: Generating the third screen (S3) in a hierarchical structure.

Example 2: Generating fourteenth (14) screen

This example is a typical circumstance of the special case of lemma 2 in that fourteen screens

are generated as described in Figure 5.6.

Let us assume ,

 ⋃

 ⋃ ⋃

82

Figure ‎5.6: Generating the fourteenth screen (S14) in a hierarchical structure.

Example 3: Generating fifteenth (15) screen

This example describes the case when Lemma 3 is applicable.

 Let assume

- Generating , let us suppose that: , then

- Generating , let us suppose that: , then

- Generating can be obtained by setting value of

- Generating can be obtained by setting value of

 (⋃

)

It is worth mentioning that screen is not linked to screen .

83

Figure ‎5.7: Generating the fifteenth screen (S15) in a hierarchical structure.

5.4 Summary

The utility of software tools for designers and developers typically lies in their ability to

facilitate analysis and implementation of original designs even in the absence of formal

model expertise. This chapter has demonstrated that the proposed model can be easily and

effectively implemented. Moreover, two case studies related to different levels of UI

functionality were used to assess the applicability the FMMUID.

Specifically, by designing the two UIs using the model, following have been shown:

1- The model is flexible, as it allowed the design interfaces with different levels of

complexity.

2- It is cost effective, as it allowed the designer to detect problems and solve them before

the implementation of the final design.

3- The design development can be achieved with this model without the need for in-

depth understanding of formal methods.

4- The complexity of the outcome determines the productivity of the proposed approach.

Four factors have been identified as particularly influential to the complexity of a UI

84

design navigation (the number of screens determines the depth and breadth), number

of components, number of functions, and screen colours (see section 7.2). By

enhancing these factors, the interface may be made more complex and less

understandable.

In addition to applicability, the efficiency of the formal model in validating the design by

detecting the hierarchical structure of limited complexity between potential diagrams has also

been assessed with the help of hierarchy diagrams (see Appendix D). These procedures

provided support for the accuracy of the proposed model.

85

Chapter 6: Analysis and Validation of the Proposed

Approach to Measure the Complexity and Usability

6.1 Introduction

The main purpose of this chapter is to assess and prove the proposed model. This chapter

analyses the proposed model based on two developed mobile UI application studies. The first

study corresponds to iPlayCode. The hierarchical structured design of iPlayCode is created

and compared with the UI designs of three other applications namely, DK Quiz, Duolingo

and C/C++ Quiz in 6.2.1. Similarly, in the second study of a developed mobile application,

the structured design was created for SC. The SC structured designed was compared with

those of other social media apps, namely, Google+, Facebook and Gumtree as described in

6.2.3. The comparison of iPlayCode and SC with other apps is presented in section ‎6.3. In

section ‎6.4, an additional questionnaire is used to evaluate the users‘ satisfaction in terms of

usefulness, information quality, interface quality, and overall satisfaction. In section ‎6.5, the

ANOVA test technique is used to analyse the responses of users. Finally, a summary is

presented in section ‎6.6.

6.2 Analysis of the Structure of Application Design

The new model consists of screens designed for both the iPlayCode and SC apps. The main

structured design of each app is based on common screens Ss, Si, Sg and Sinfo. The various

elements that were included in these screens are systematically tabulated and summarised in

the upcoming sections. Eventually, the goal of this design analysis is to convey the

straightforwardness of the proposed model.

6.2.1 Case Study 1: iPlayCode Comparison Design

The hierarchical structure of the iPlayCode design consists of six main screen names, as well

as a screen subscript that represents different elements.

Figure ‎D.1 in Appendix D, describes the comparison of the hierarchical structure design of

iPlayCode with those of the other three apps. It demonstrates that the designs of all the apps

consist of the main screens, namely, Ss, Si, Sg and Sinfo. The DK and Duolingo apps consist of

complicated structures, in contrast to the iPlayCode and C/C++, which have simple structural

designs. iPlayCode has six levels, from Ss to Sfr, of depth, and one category of breadth. The

86

DK app consists of seven levels, from Ss to Sinfo, of depth and five of breadth (flat), from S1 to

S5. The Duolingo app consists of nine levels, from Ss to Sinfo, of depth and four levels (S1 to

S4) of breadth. The C/C++ app consists of five levels of depth, from Ss to Sinfo, and from

Ssetting to Sinformation in breadth.

6.2.2 iPlayCode Screen Comparison

This section compares the main four screens of the new model (Ss, Si, Sg and Sinfo) between

the iPlayCode application and the DK, Duolingo, and C/C++ applications.

Figure ‎6.1: Comparison of UI elements on screen Ss (single screen) between quiz game apps.

Figure 6.1 shows the comparison of the elements on screen Ss between iPlayCode and DK,

Duolingo and C/C++. The number of image views in iPlayCode is higher than that in DK by

two and that in Duolingo by one; C/C++ did not have any image views. All four apps have 1

similar text view in common. In terms of buttons, C/C++ has the most buttons (two),

compared with the others. iPlayCode has only 1 text field, in contrast to the other apps. In

terms of colours, the most colours (7) were used in both iPlayCode and C/C++; 4 colours

were used in DK and the fewest colours (3) were used in Duolingo. Additionally, the most

function features (5) were used in iPlayCode; the fewest (2) were used in DK; 3 were used in

Duolingo and 4 in C/C++.

0

1

2

3

4

5

6

7

8

iPlayCode DK Duolingo C/C++

N
u

m
b

er
 o

f
el

em
en

ts

Applications names

Text view

Image view

Button

Textfield

Colour

Function

87

Figure ‎6.2: Comparison of UI elements on screen Si.

In terms of screen Si, Figure 6.2 illustrates that Duolingo recorded the most text views (62),

whereas the fewest were recorded in iPlayCode (1). Duolingo had 1 more image view than

DK, whereas iPlayCode and C/C++ did not have any image views. The most buttons were

used in Duolingo (62), whereas the fewest buttons (5) were used in C/C++; seven were used

in iPlayCode and 12 in DK. DK and Duolingo have the most tab bars (1), whereas iPlayCode

and C/C++ did not have any tab bars. DK used the most colours (12), whereas the fewest

colours (4) were used in C/C++. The most function features were used in Duolingo (65),

whereas the fewest features were used in C/C++ and iPlayCode (7), followed by 16 in DK.

Figure ‎6.3: Comparison of UI elements on screen Sg.

0

10

20

30

40

50

60

70

iPlayCode DK Duolingo C/C++

N
u

m
b

er
 o

f
el

em
en

ts

Applications names

Text view

Image view

Button

Tab bar

Colour

Function

0

1

2

3

4

5

6

7

8

9

10

iPlayCode DK Duolingo C/C++

N
u

m
b

er
 o

f
el

em
en

ts

Application names

Text view

Image view

Button

Rating bar

Colour

Function

88

Regarding the Sg screen, according to Figure 6.3, the most text views (4) are recorded in

C/C++ and the fewest (1) in Duolingo, followed by 2 in iPlayCode and 3 in DK. The most

image views (2) are used in iPlayCode, and in both DK and Duolingo, 1 view is used; C/C++

does not have any image views. The most buttons (4) are recorded in iPlayCode and the

fewest (2) in each of DK, Duolingo and C/C++. DK used the most colours (9) and Duolingo

used the fewest (6), followed by iPlayCode and C/C++ (7). The most function features (7)

were used in iPlayCode and the fewest (3) were used in Duolingo; 4 were used in C/C++ and

5 in DK.

Figure ‎6.4: Comparison of UI elements on screen Sinfo.

Finally, Figure 6.4 revealed that the most text views (19) are used in screen Sinfo in the C/C++

app, while Duolingo has the fewest text views (2), followed by iPlayCode (4) and DK (5).

The most image views (3) are recorded in iPlayCode; both DK and Duolingo have 1, and

C/C++ has the lowest image view. The most buttons (6) are recorded by DK, while the rest of

the apps each have one. Duolingo and C/C++ have 1 table in common compared to the

remaining apps, and DK has 2 rating bars. However, the number of colour choices is different

from one app to another: C/C++ uses the most colours (9), followed by iPlayCode (7), DK

(7) and Duolingo (5). Lastly, the number of features depends on the functionality design of

each app such that DK has the highest features (10), with 9 in iPlayCode, 3 in C/C++ and 2 in

Duolingo, which has the lowest. Ss, Si, Sg, Sinfo screenshots for each application are shown in

Appendix A.

0

2

4

6

8

10

12

14

16

18

20

iPlayCode DK Duolingo C/C++

N
u

m
b

er
 o

f
el

em
en

ts

Applications names

Text view

Image view

Button

Rating bar

Table

Colour

Function

89

6.2.3 Case Study 2: SC Comparison Design

Social media applications are designed to facilitate interaction and communication not only

between friends and acquaintances but also between customers and businesses. The SC

hierarchical structure design is compared with those of other mobile apps in Figure ‎D.2 in

Appendix D. In the following part, SC is compared with the popular mobile apps Google+,

Facebook, and Gumtree. For each application, the structured design is comprised of four

major model screens (Ss, Si, Sg and Sinfo), together with their subscript labels (S1…, Sn).

The hierarchical structure design is what primarily sets SC apart from the other three

applications, especially Gumtree; it displays a higher degree of compartmentalisation with

regard to design complexity. For example, by contrast to Gumtree, which has a depth

structure that consists of only ten levels (Ss – S1213221) and a breadth structure of only five

levels (S1 – S5), SC possesses depth and breadth structures of ten and fifteen levels,

respectively (Ss – S14-7 and S1 – S15), which afford it a structured design that is easy to

navigate. Meanwhile, Google has a six-level depth structure (Ss – S5121) and five-level breadth

structure (S1 – S5), and Facebook has a thirteen-level depth structure (Ss – SM) and five-level

breadth structure (S1 – S5), which means that Facebook has the most complex structure

among the four applications.

6.2.4 SC Screen Comparison

To ensure that elements were used adequately in the creation of SC, the elements in other

social media mobile apps were closely examined. To identify design differences between the

mobile applications under investigation, a comparison has been conducted between the SC

screens Ss, Si, Sg and Sinfo, and the screens of the other three mobile applications.

In terms of screen Ss for the SC application, Figure 6.5 shows that Gumtree was associated

with the highest number of image views (2) and the highest number of text views (7), while

SC, Google+ and Facebook all had fewer image views (1) and fewer text views (2). By

contrast, Facebook had the highest number of buttons (4), followed by Gumtree (3), and SC

and Google+ with 1 each. Furthermore, Gumtree also differed from the other applications by

possessing 2 collection views, 1 search bar and 1 tab bar. Google+ used the most colours (6),

followed by Gumtree (5), SC (3), and Facebook (2). Gumtree used the highest number of

function features (12), followed by Facebook (6) and SC and Google+ with 1 each.

90

Figure ‎6.5 Comparison of UI elements on screen Ss (single screen) between social media

apps.

Regarding screen Si, Figure 6.6 revealed that the highest number of image views was

achieved by SC and Google+ with 3 each, followed by Gumtree (2), and Facebook (1).

Figure ‎6.6: Comparison of UI elements on screen Si.

The highest number of text views was recorded by Facebook and Gumtree with 4 each,

followed by Google+ (3), while SC did not record a single text view. By contrast, SC and

Facebook had the highest number of buttons with 12 each, followed by Google+ (9), and

Gumtree (2). Google+ and Facebook each presented 1 tab bar, while SC had 1 table, unlike

0

2

4

6

8

10

12

14

SC Google+ Facebook Gumtree

N
u

m
b

er
 o

f
el

em
en

ts

Application names

Text view

Image view

Button

Search bar

Collection view

Tab bar

Colour

Function

0

5

10

15

20

25

SC Google+ Facebook Gumtree

N
u

m
b

er
 o

f
el

em
en

ts

Application names

Text view

Image view

Video view

Button

Search bar

Collection view

Table

Tab bar

Colour

Function

91

the other three. Different from the others as well, Gumtree had 2 collection views and

Facebook had 1 video view. Moreover, 1 search bar was presented by Facebook and

Gumtree, but none by SC and Google+. Facebook and Gumtree also used a higher number of

colours (5) compared to SC and Google+ (3). Facebook had the greatest number of used

function features (22), followed by Google+ with 19, SC with 15, and Gumtree with 6.

Figure ‎6.7: Comparison of UI elements on screen Sg.

Figure 6.7 shows the comparison of the elements of screen Sg between the SC, Google+,

Facebook and Gumtree applications. Facebook had the highest number of text views (4).

Regarding image views, Facebook had one more image view compared to SC, while Google+

and Gumtree had none. One default cell style was exhibited by each of the applications

except SC, which had none. Similarly, 1 search bar was exhibited by SC and Google, but

none by Facebook and Gumtree. Google+ differed from the other applications by possessing

1 collection view, while Facebook and Gumtree differed from the other two by possessing 1

segmented control, and Facebook differed from the rest due to its 1 video view. Moreover,

Gumtree had the highest number of used colours (7), followed by Google+ and Facebook

with 5 each and SC with 3. Facebook had the highest number of function features (19),

followed by Google+ (16), Gumtree (10), and SC (2).

0

2

4

6

8

10

12

14

16

18

20

SC Google+ Facebook Gumtree

N
u

m
b

er
 o

f
el

em
en

ts

Application names

Text view

Image view

Video view

Button

Search bar

Collection view

Default cell style

Segmented
control
Table

Colour

Function

92

Figure ‎6.8: Comparison of UI elements on screen Sinfo.

Last but not least, regarding the Sinfo screen, Figure 6.8 illustrated that Gumtree had the

highest number of text views (6), followed by Google+ (1), Facebook (1), and SC (0). On the

other hand, Gumtree had the fewest image views (1), whereas Facebook had the most image

views, with one additional view compared to SC and Google+. SC and Gumtree differed

from the other two applications by possessing 1 table, whereas Facebook differed from the

others by possessing 1 video view, 1 default cell style, and 1 segmented control. Facebook

had the most buttons (14), followed by Gumtree (10), Google+ (7), and SC (1). Furthermore,

the maximal and minimal numbers of colours were used by Gumtree (6) and SC (3),

respectively. Facebook used the highest number of function features (24), followed by

Google+ and Gumtree with 12 each and SC with 1. Appendix A provides further details

about the screenshots Ss, Si, Sg, and Sinfo associated with each of the applications.

6.3 The Comparison of iPlayCode and SC with Other Application

Elements

The comparative analysis of iPlayCode and SC with other similar mobile apps is presented in

this section. As was previously mentioned (see section ‎3.3.1.3), the elements are divided into

six categories: control, content, vision, navigation, colour and function elements. The aim of

this comparative analysis is to get an idea of the simplicity of the proposed model and the

designed mobile applications, namely, iPlayCode and SC.

0

5

10

15

20

25

30

SC Google+ Facebook Gumtree

N
u

m
b

er
 o

f
el

em
en

ts

Application names

Text view

Image view

Video view

Button

Default cell style

Segmented control

Table

Colour

Function

93

6.3.1 ANOVA Test of Single and Multiple-screens for iPlayCode and SC

The testing technique involves numbering elements on the screen. Various types of data (e.g.,

number of images and buttons) have been gathered from eight application designs. Among

these designs, the single-screen (Ss, Si, Sg, and Sinfo) and multiple-screen designs (all screens)

were subjected to comparative analysis based on the one-way ANOVA test with the purpose

of identifying any potential differences (see Appendix F). The outcomes of the counts-based

assessment for single and multiple-screens are provided in Appendix E.

Table ‎6:1: Significance of variance between single screens for iPlayCode and other

applications.

Model

screens

iPlayCode, DK,

Duolingo, C/C++

df F Sig

Between Groups 3

0.471 0.706 With Groups 20

Total 23

Between Groups 3

3.152 0.048 With Groups 20

Total 23

Between Groups 3

0.242 0.866 With Groups 20

Total 23

Between Groups 3

0.748 0.536 With Groups 20

Total 23

6.3.1.1 Outcomes of Case Study 1

The differences identified between the interface designs were subjected to significance

testing. The four single screens Ss, Si, Sg, and Sinfo were included as the independent variables

of distinct interface designs. The p-values of Ss (0.706), Sg (0.866), and Sinfo (0.536) were all

greater than 0.05 and the differences were insignificant in these screens. On the other hand,

the p-value of Si (0.048) is lower than 0.05, confirming that the differences were significant

in Si among iPlayCode, DK, Duolingo and C/C++ (see Table F.2 in Appendix F).

To determine how significantly Si differed among the abovementioned applications, a paired

t-test was conducted, the findings of which are provided in (see Tables F.5 to F.10 in

Appendix F). Si was observed to be significantly different between iPlayCode and DK

(0.024), but not between iPlayCode and Duolingo (p=0.089); iPlayCode and C/C++

(p=0.728); DK and Duolingo (p= 0.120); DK and C/C++ (p=0.103); or Duolingo and C/C++

94

(p=0.094). It could thus be concluded that the four applications did not differ significantly in

terms of the single screens.

An f-test was also conducted to determine how significantly iPlayCode and DK differed in

terms of screen Si. The two applications were established to be insignificantly different

regarding screen Si (0.10) because the p-value obtained was greater than 0.05 (see Table F.11

in Appendix F).

The differences between the interface designs for iPlayCode, DK, Duolingo and C/C++ with

regard to multiple-screens were assessed through another ANOVA test. Differences were

confirmed to be insignificant, as the obtained p-value of 0.423 was greater than 0.05. (see

Table F.12 in Appendix F).

6.3.1.2 Outcomes of Case Study 2

The ANOVA test was applied to determine if SC differed significantly from Google+,

Facebook, and Gumtree with respect to the four single screens Ss, Si, Sg, and Sinfo. The results

are provided in Table 6.2.

Table ‎6:2: Significance of variance between single screens for SC and other applications.

Model

screens

SC, Google+,

Facebook, Gumtree

df F Sig

Between Groups 3

1.408 0.270 With Groups 20

Total 23

Between Groups 3

0.450 0.720 With Groups 20

Total 23

Between Groups 3

0.626 0.607 With Groups 20

Total 23

Between Groups 3

0.901 0.458 With Groups 20

Total 23

According to Table 6.2, ANOVA test results revealed that no significant differences were

discovered among the UI applications for Ss, Si, Sg, and Sinfo (single screens), as the p-values

were 0.270, 0.720, 0.607 and 0.458>0.05 respectively. (see Tables G.1 to G.4 in Appendix G

for more details).

95

Likewise, the ANOVA test result shows that the UI applications did not differ significantly

for multiple-screens either, as the p-value was 0.699> 0.05. (see Table G.5 in Appendix G).

6.4 Questionnaire Analysis and Results

6.4.1 Sample Distribution

Table 6.3 shows that the participants who provided the user experience data related to the

usability testing were between 18 and 49 years of age; the age group of 18 to 34 are 35.5%; in

the age group of 35 to 49 are 64.5%; 69.40% of them were males, and 30.60% were females.

The educational level of all the participants was undergraduate level or higher; 9.70% were

undergraduates and 90.30% were post-graduates.

Table ‎6:3: Sample distribution of usability-interface data on the iOS mobile apps.

Item Group
Number of

participants
Percentage

Gender
Male 43 69.4%

Female 19 30.6%

Age Group
18-34 22 35.5%

35-49 40 64.5%

Educational Degree
Under Graduate 6 9.7%

Post Graduate 56 90.3%

Experience in using

smart phone

1-5 5 8.1%

6-11 46 74.2%

More than 12 11 17.7%

The majority of the participants had a moderate amount of experience in terms of years of

using smartphones. Approximately 74.2% of the users had between 6 and 11 years of

experience in using smartphones; 17.7% of the participants had more than 12 years of

experience in using smartphones, and they were considered to belong to the expert category;

8.1% of the participants had approximately 1 to 5 years of experience in using smartphones.

6.4.2 Reliability

A questionnaire is considered to possess reliability if it demonstrates consistent development

over time (Bowles & Bordbar, 2007; Hillston & Kloul, 2006). The questionnaire used in this

thesis was assessed to determine its reliability with respect to each of its four dimensions (i.e.,

usefulness, information quality, interface quality, and overall satisfaction) by applying

Cronbach‘s alpha as a reliability measurement tool. Table 6.4 provides an overview of the

96

results obtained from the participants‘ answers following the completion of tasks using the

recommended high-fidelity prototype and the existing applications.

Table ‎6:4: The reliability of iPlayCode and SC compared to other applications.

iPlayCode SC

Attribute No of items Alpha

Usefulness 7 0.98 0.94

Information

Quality
6 0.79 0.98

Interface

Quality
4 0.92 0.71

Overall

Satisfaction
2 0.92 0.93

Overall 19 0.90 0.89

The value of Cronbach‘s alpha was greater than 0.70 for both iPlayCode (0.79-0.98) and SC

(0.71-0.98), which is satisfactory according to (Cimatti et al., 2011a). These results confirm

that the scale is sufficiently reliable to be employed as a measure of usability.

6.4.3 Case Study 1: Results

To better understand the outcomes of the questionnaire, the mean of the user responses

regarding each mobile app were calculated. Together with the mean of each response, the

statistical range of each response was used to determine how the answers should be

categorised (Table 6.5).

97

Table ‎6:5: Questionnaire scores for the iPlayCode, DK, Duolingo and C/C++ applications.

Item iPlayCode DK Duolingo C/C++

Usefulness Mean

1
Overall, I am satisfied with how

easy it is to use this interface:
4.323 4.468 4.468 4.435

2 It was simple to use this interface: 4.452 4.452 4.452 4.452

3
I can effectively complete my

work using this interface:
4.177 4.032 4.065 4.032

4
I am able to complete my work

quickly using this interface:
4.145 4.113 4.000 4.016

5
I am able to efficiently complete

my work using this interface:
4.242 4.000 4.000 4.048

6
I feel comfortable using this

interface:
4.355 4.226 4.032 4.065

7
It was easy to learn to use this

interface:
4.484 4.468 4.452 4.419

Total 4.311 4.251 4.210 4.210

Information quality

1
Whenever I make a mistake using

the interface, I recover easily:
4.435 4.387 4.387 4.145

2
The information provided with this

interface is clear
4.387 4.403 4.452 4.355

3
It is easy to find the information I

needed
4.258 4.113 4.177 4.032

4
The information provided for the

interface is easy to understand
4.323 4.258 4.435 4.403

5

The information is effective in

helping me complete the tasks and

scenarios

4.371 4.081 4.177 4.371

6
The organization of information on

the interface screens is clear:
4.484 4.435 4.435 4.468

Total 4.376 4.280 4.344 4.296

Interface quality

1

The interface gives error messages

that clearly tell me how to fix

problems

4.403 4.371 4.355 4.032

2 The interface is pleasant 4.468 4.435 4.339 4.129

3
I like using the interface of this

mobile application
4.371 4.452 4.435 4.323

4
This interface has all the functions

and capabilities I expect it to have
4.113 4.048 4.097 4.000

Total 4.339 4.327 4.306 4.121

Overall satisfaction

1
I believe I became productive

quickly using this interface:
4.323 4.048 4.032 4.113

2
Overall, I am satisfied with this

interface.
4.452 4.452 4.419 4.242

Total 4.388 4.250 4.226 4.178

98

6.4.3.1 Usefulness

Seven questions focused on the dimension of usefulness. For iPlayCode, DK, Duolingo, and

C/C++. The mean values of questions relating to usefulness dimension were 4.311, 4.251,

4.210, and 4.210, respectively. Based on the categories presented in Table 6.5, there is on

average a strong agreement with this dimension, indicating a high degree of usefulness of

these applications. It can be noted that iPlayCode achieved the highest mean, suggesting that

most participants agreed that this application had a high level of usefulness and had a positive

attitude with regard to using it.

6.4.3.2 Information Quality

Six questions focused on the dimension of information quality. The mean values of questions

relating to information quality dimension were 4.376, 4.280, 4.344, and 4.296 for iPlayCode,

DK, Duolingo, and C/C++ respectively. iPlayCode again received the best feedback. These

results indicate that the participants concurred that both the quality and ease of use of

information were good.

6.4.3.3 Interface Quality

With the exception of C/C++, which obtained an ‗agree‘ answer on the whole, all the other

applications attained an overall ‗strongly agree‘ answer with respect to the dimension of

interface quality. The mean values of questions relating to interface quality dimension were

4.121 for C/C++, 4.306 for Duolingo, 4.327 for DK, and the highest mean of 4.339 for

iPlayCode.

6.4.3.4 Overall Satisfaction

Table 6.5 presents the mean values obtained from the analysis of the data for the questions

relating to overall satisfaction. The highest mean score, 4.388, was received by iPlayCode,

followed by DK with 4.250, Duolingo with 4.226, and C/C++ with 4.178, indicating

participants‘ satisfaction and strong agreement with the first three applications and agreement

with C/C++.

99

6.4.4 Case Study 2: Results

A statistical analysis of the responses to the questionnaire related to the rating of the mobile

apps SC, Google+, Facebook and Gumtree is presented in Table 6.6.

Table ‎6:6: Questionnaire scores for the SC, Google+, Facebook and Gumtree applications.

Item SC Google+ Facebook Gumtree

Usefulness Mean

1
Overall, I am satisfied with how easy it is to

use this interface:
4.452 4.403 4.387 4.468

2 It was simple to use this interface: 4.371 4.419 4.339 4.403

3
I can effectively complete my work using

this interface:
4.339 4.339 4.339 4.355

4
I am able to complete my work quickly

using this interface:
4.339 4.323 4.323 4.339

5
I am able to efficiently complete my work

using this interface:
4.274 4.274 4.258 4.290

6 I feel comfortable using this interface: 4.339 4.323 4.355 4.355

7 It was easy to learn to use this interface: 4.435 4.387 4.419 4.452

Total 4.364 4.353 4.346 4.380

Information quality

1
Whenever I make a mistake using the

interface, I recover easily:
4.403 4.387 4.355 4.387

2
The information provided with this interface

is clear
4.403 4.403 4.419 4.419

3 It is easy to find the information I needed 4.290 4.306 4.306 4.290

4
The information provided for the interface

is easy to understand
4.323 4.306 4.323 4.339

5
The information is effective in helping me

complete the tasks and scenarios
4.242 4.242 4.274 4.274

6
The organization of information on the

interface screens is clear:
4.435 4.468 4.435 4.484

Total 4.349 4.352 4.352 4.366

Interface quality

1
The interface gives error messages that

clearly tell me how to fix problems
4.403 4.387 4.371 4.468

2 The interface is pleasant 4.452 4.435 4.435 4.468

3
I like using the interface of this mobile

application
4.419 4.387 4.258 4.468

4
This interface has all the functions and

capabilities I expect it to have
4.323 4.290 4.339 4.339

Total 4.399 4.375 4.351 4.435

Overall satisfaction

1
I believe I became productive quickly using

this interface:
4.290 4.258 4.323 4.306

2 Overall, I am satisfied with this interface. 4.419 4.403 4.403 4.516

Total 4.355 4.331 4.363 4.411

100

Table 6.6 lists the mean values of the answers to questions related to the dimension of

usefulness for Gumtree, SC, Google+, and Facebook. These values, which are based on the

same Likert-scale range that was used for the previous questions, were 4.380, 4.364, 4.353,

and 4.346, respectively. Thus, participants expressed strong agreement with the first three,

but only agreement regarding the last application.

In terms of information quality, the highest and lowest means were associated with Gumtree

(4.366) and SC (4.349), indicating strong agreement.

Regarding the interface quality, the highest mean was also achieved by Gumtree, with 4.435;

the lowest mean, 4.351, was associated with Facebook.

On the whole, participants were most satisfied with Gumtree, which received a mean score of

4.411, and they were least satisfied with Google+, which received a mean score of 4.331.

In terms of the Likert-scale range, each of the four application dimensions of usefulness,

information quality, interface quality, and overall satisfaction were strongly agreed with by

the participants.

6.5 One-way ANOVA Test Results of Both Studies

The analysis requirement indicates that one-way ANOVA is the most appropriate data

analysis technique for this thesis (Foster, 2001). This test was used to identify significant

differences among the mobile apps in terms of usefulness, information quality, interface

quality and overall satisfaction of the users.

101

Table ‎6:7: Significance of variance between case studies and existing applications.

Attribute

iPlayCode, DK,

Duolingo, C/C++

SC, Google+,

Facebook,

Gumtree

df F Sig df F Sig

Usefulness

Between Groups 3

0.402 0.753

3

0.485 0.696 With Groups 24 24

Total 27 27

Informatio

n Quality

Between Groups 3

0.624 0.608

3

0.055 0.982 With Groups 20 20

Total 23 23

Interface

Quality

Between Groups 3

1.638 0.233

3

1.279 0.326 With Groups 12 12

Total 15 15

Overall

Satisfaction

Between Groups 3

0.374 0.777

3

0.207 0.886 With Groups 4 4

Total 7 7

The significance values (Sig.) based on the ANOVA test for the iPlayCode, DK, Duolingo

and C/C++ apps (Table 6.7) are greater than 0.05 for all attributes, indicating that there is no

statistically significant difference in usefulness, information quality, interface quality or

overall satisfaction between iPlayCode and the other applications (see section A in Appendix

G). Similarly, the significance values obtained using the one-way ANOVA test for the SC,

Google+, Facebook and Gumtree applications are greater than 0.05 for all attributes (see

section B in Appendix G). Hence, no significant difference was found among the SC,

Google+, Facebook and Gumtree apps in terms of usefulness, information quality, interface

quality or overall satisfaction.

6.6 Summary

The main achievement of this chapter was the implementation of the hierarchal structured

design model in the case of two mobile apps. The mobile user interfaces of each of these apps

were described and compared to those of other existing mobile apps: the proposed iPlayCode

application was compared to DK, Duolingo, C/C++, and the proposed SC was compared to

Google+, Facebook and Gumtree. In summary, it can be noted that iPlayCode and SC has an

easily navigated structured design, in contrast to other apps, and the structured design of the

model was validated by those of other existing mobile apps for all four model screens of Ss,

Si, Sg, and Sinfo.

102

Furthermore, each mobile app screen was compared and analysed in terms of the number of

elements used in the design, such as the total number of image views, text views, buttons and

other features. Because the proposed hierarchical structured design supported the model

design used for all the apps, all of the apps had most used elements in common. On the other

hand, some of the elements differed according to the model screens. For instance, in

iPlayCode, the text field was used, whereas there was no text field in the Ss screen of DK,

Duolingo or C/C++. In addition, the table element is used in SC and Gumtree, and other

elements such as collection views, tab bars, and default cell style are present in all the other

apps except SC.

In the first study, the number of available elements in each app differed according to the

apps‘ screens. For example, the highest number of elements in the Ss screen is used in

iPlayCode. Duolingo presents the highest number of elements in the Si screen, and the Sg

screen uses the highest number of elements in the iPlayCode app, followed by DK. Likewise,

the highest number of used elements in the Sinfo screen is found in the C/C++ app, followed

by the DK app.

On the other hand, in the second study, the highest number of elements for Ss was noted in

Gumtree, whereas Facebook uses the highest number of elements in Si, Sg and Sinfo.

The statistical significance of the observed differences in the application interface designs of

the independent screens was assessed via the ANOVA test, the t-test and the f-test. The

findings revealed that neither single screens (Ss, Si, Sg, and Sinfo) nor multiple-screens differed

significantly in either of the two case studies.

Furthermore, to determine how satisfied users were with the applications‘ usability, the data

derived from the questionnaire were also analysed in this chapter.

The two case studies of iPlayCode and SC did not differ significantly from the other

applications under consideration, as shown by the results of the one-way ANOVA test

performed on the independent screens of usefulness, information quality, interface quality,

and overall satisfaction. Moreover, the assessment of the usability of the application

interfaces was conducted based on the qualitative data approach, which took into account the

participants‘ views. On the whole, the research produced two major findings, namely, that

navigation, use and learning of iPlayCode and SC did not present any difficulties and that

some usability issues existed, as indicated by the results of the qualitative assessment.

103

Based on the results obtained in the two case studies, the suggested model was confirmed to

have less complexity than existing applications with respect to its structural design and

number of elements and good usability as a mobile interface design.

104

Chapter 7: Evaluation of Proposed Approach

7.1 Introduction

Evaluating the status of the two aforementioned UI case studies (Chapter 5) from the

viewpoint of the end-users

Assessment of the proposed formal model (FMMUID) that was presented in Chapter 4 is the

focus of this thesis. Since this is a new model, it is important to determine how flexible and

usable it is. To this end, the assessment process is divided into two phases: the first phase is

model validation based on the results derived from the structure design analysis and the

count-based method (single and multiple-screens), and the second phase is usability

measurement for the two case studies based on data from the questionnaire.

For each of the two case studies, UI complexity was examined using specific research

questions and assessment criteria. To enable comparison between the case studies and the

existing applications, analysis of the hierarchical structure designs was conducted. In this

analysis, particular attention was paid to the presence or absence of the key model screens (Ss,

Si, Sg and Sinfo) in the structure designs, to demonstrate the new model in relation to the

existing applications. The screen elements were examined as well to determine how logical

and effectively structured the case studies were by comparison to the existing applications.

Chapter 5 provided a comprehensive description of the two case studies, which were

developed in a way that addressed the research questions in section ‎1.4.

The structure of the remainder of this chapter is as follows. The assessment of UI complexity

is the focus of section 7.2. Single and multiple-screens are assessed in section ‎7.3. Usability

assessment and model validation are addressed in section ‎7.4 and section ‎7.5, respectively.

An overview of the chapter is provided in section ‎7.6.

7.2 Complexity

A study by Kong et al. (2009) describes complexity as being dependent on the interactions

among the elements of an object, suggesting the existence of myriad associations and

interactions among them. When trying to determine complex interactions among multiple

elements of an object, it is possible to think of complexity as a measure of difficulty. Given

that understanding is derived from various factors and assessed subjectively, the nature of

105

complexity is not easy to measure or describe. The UI complexity can therefore be thought of

as a link to the perspective of the user in terms of the information display and their

understanding of the device screen. The productivity of the system is further associated with

the complexity of the outcome support and clarification. Navigation (the number of screens

determines the depth and breadth), functions, and colours afford the UI designs their

complexity.

7.2.1 Navigation

With a greater degree of hierarchy, navigating problems such as selecting the wrong pathway

or getting lost become more apparent. A multi-level hierarchical structure necessitates user

recollection or identification of a pathway from the current position to the desired destination

(Ribeiro et al., 2005). There are several benefits to the adoption of such a multi-level

approach. When the screen space allocations are insufficient to meet the needs of the number

of components, a degree of depth is required to minimise on-screen overcrowding.

Conversely, the use of such complexity increases the error rate and the number of screens

required. The effect of using fewer screens on an interface structure is subsequent

overcrowding on associated screens. Limitations of navigability were addressed in the

proposed model by using the structural depth in the iPlayCode app because the number of

screens was small (six), as shown in Figure ‎D.1 in Appendix D, while the structure of the SC

model was based on both depth and breadth (balance between depth and breadth) because

there were many screens (44), as illustrated in Figure ‎D.2 in Appendix D.

The fewer elements a structure has, the less complex it is. This means that the complexity of

a hierarchy structure is amenable to quantification. The number of screens and the number of

elements are the two main factors that can increase the complexity of a structure design.

To investigate the proposed model, the researcher applies the proposed model to six existing

mobile applications to analyse their design. The results show that all selected mobile

applications validate the new model (FMMUID) because they contain the main screens (Ss,

Si, Sg and Sinfo) in the model. In addition, based on these results, the proposed model

(FMMUID) can be used as a method for mobile UI design, since it achieved simple and

complex UI designs for different mobile applications (see Appendixes A, B and D).

With regard to case study 1, the screens were more logically organised in iPlayCode than in

the other applications except that C/C++ had five depth levels with the same number of

106

screens (6), so it had two options in breadth (see Figure D.1 in Appendix D and Table E.5 in

Appendix E). Furthermore, iPlayCode consisted of six screens with six levels in depth and

one in breadth, indicating that it had lower complexity.

Regardless of common elements, e.g., text view, image view, and buttons being used, the

number of elements on the various screens slightly differ between each case study and

existing applications (Figure 6.1). In screen Ss, iPlayCode had the highest number of image

views (3) which consisted of application name (iPlayCode), research group name (XDIR),

and username icons (see Figure 5.2). However, according to the results obtained in Table E.5

in Appendix E, the Duolingo application has the highest number of elements (22) such as

image views in the multiple-screens. This reveals that the distributions of image view

elements were different between the screens. Overall, the iPlayCode application contains

three in screen Ss and 11 in all screens. It can also be observed from the users‘ responses to

the questionnaire (see Table 6.7) that the questions pertaining to the image views (questions

1, 6, 16, and 19) are ranked as ‗strongly agree‘ by 86.46%, 87.10%, 89.36% and 89.00% of

the users, respectively. iPlayCode also had an additional text field component to enhance the

application instructiveness and engage users more effectively by prompting them to enter

their names for display on the final result screen.

In screen Si, the number of elements varies from one application to another. Although C/C++

had the lowest number of buttons (5), it had more text views (8) than iPlayCode, which had 1

text view and 7 buttons (see Figure 6.2). For this reason, C/C++did not surpass iPlayCode

because it possessed only two programming languages, whereas the latter had six

programming languages and each of them comprised three levels.

Likewise, iPlayCode had the greatest numbers of image views (2) and buttons (4) on screen

Sg (see Figure 6.3). When the application is deployed, the first image view relates to the total

obtained ―Score‖ in that level, to make the screen more aesthetic to attract the user. The

second image view relates to the player‘s obtained medal (gold, silver or bronze) to increase

the competition and challenge, and encourage the user to obtain a higher score (see Figure

5.2). In this situation, the type of medal depends on the score obtained. This screen also

includes four buttons. The first button returns the player to the same level to play again. The

second button returns the player to the level screen (Sl) to select another level. The third

button helps the player return to the main screen (Si) to choose another programming

language. The fourth button takes the player to the final result screen (Sinfo) to display the

107

scores for all levels (see Figure 5.2). In this context, these buttons give more options for the

players to play the game with a flexible UI, which helps them navigate the application

effectively. According to Table E.5 in Appendix E, the highest number of used buttons for

the Duolingo application is 99. The Duolingo application consists of 2 buttons in Sg (single

screen), while it has 62 buttons in Si. In contrast, the iPlayCode application consists of 4 in Sg

and 25 in all screens. In other words, the number of buttons in each application depends on

the requirements and functionality of the application and the designer‘s decisions on how to

distribute the elements across the screens.

In terms of screen Sinfo, the fewest elements were displayed by Duolingo and iPlayCode. The

main role of Sinfo is to display the final scores for all played levels. In contrast to Duolingo,

iPlayCode consists of three image views (see Figure 6.4): one for each medal (bronze, silver

and gold) in each level. There are several reasons for awarding medals. The visual incentive

of a medal will trigger a user‘s motivation, and they are used alongside text to output a result.

It is also imperative to reward continuous effort, as points are accumulated throughout the

game until the score reaches a certain level. Then, users are given medals to mark personal

milestones.

In summary, the iPlayCode application interface is not complex, because it has a less

complex structure and the number of elements is acceptable, in contrast to the DK, Duolingo

and C/C++ applications.

However, the structure design and interface elements in case study two (SC) are analysed

separately from the application functions. Figures 6.5-6.8 and Table E.4 in Appendix E;

Figure D.2 in Appendix D present the results of the obtained UI elements. Furthermore, the

SC application has a more logical structure than other applications, due to balance between

depth and breadth. Miller‘s recommendations have resulted in the use of breadth over depth

in most cases, but it is also important to maintain a balance between the two (Miller, 1981).

Hence, the SC structure provides a wider range of options (15) in terms of breadth and has an

acceptable number of depth levels (12) to maintain the logical coherence, understandability

and readability of the structures. The Google+ and Gumtree applications consist of the lowest

numbers of levels (6 and 10, respectively) because fewer screens are used than for SC and

Facebook (see Table E.6 in Appendix E). In other words, whenever the number of screens

increases, this UI design becomes more complex.

108

In terms of the number of elements in single screens, SC had the lowest number of

components in the Ss screen compared with the other applications, which included 2 text

views, 1 image view and 1 button (see Figures 5.4 and 6.5). However, SC and Google+ had

the greatest number of image views (3). The image views in the SC application include the

name of the application (SC) and the user‘s preferred selected images.

The numbers of view elements in screen Si are shown in Figure ‎6.6, Google+ includes 2

image views and Gumtree includes 4, while Facebook includes 1 in Si and 9 collection views

in other screens. As a result, Google+, Facebook, and Gumtree use two types of elements to

display images or pictures, while SC uses only the image view element; this is why the

number of image views in the SC application is the highest.

With respect to the buttons, the SC application includes the highest number of buttons (12) in

screen Si and 29 in all the screens; the buttons in SC are used to navigate to other screens. As

mentioned above, SC uses 15 options (breadth). In contrast, Google+, Facebook and Gumtree

consist of 74, 96 and 53 buttons, respectively, in the completed applications (see Figure 6.6

and Table E.6 in Appendix E). In this context, the distribution of elements mainly depends on

the designer‘s decisions, application screen functionality and application requirements.

In terms of screen Sg, the SC application consists of the lowest number of buttons (2). On the

other hand, the number of table elements is 1 in Sg (single screen), while 14 tables have been

used in all screens (multiple-screen). The reason for using the table element is to display

more information for the user and help the user navigate the application easily using the

scroll-up or scroll-down feature. However, the increased level of scrolling has resulted in

degraded speed and retrieval performance levels (Larson & Czerwinski, 1998). Google+,

Facebook and Gumtree use menu elements (9), (12) and (39) respectively (see Table E.6 in

Appendix E). In addition, one search bar element is used in SC and Google+ (see Figure

6.7), while Facebook and Gumtree use the same number of elements in screen Si (see Figure

6.6). This highlights that the distribution and use of elements depend on the designer‘s

decisions and the required functionalities.

Regarding screen Sinfo, the highest number of image views in Facebook is 3, whereas the

lowest is 1 in Gumtree, followed by 2 in SC and Google+. SC has the lowest number of

buttons (1) (see Figure 6.8). However, the SC application consists of the lowest number of

elements compared to the other applications for screen Sinfo.

109

In summary, based on these comparisons and results, the SC application has the fewest

elements (e.g., text views, image views and buttons) in screens Ss, Sg, and Sinfo. Additionally,

the Gumtree application includes fewer elements in screen Si; this is because more options

have been included in the main screen for users to select in terms of breadth scale.

7.2.2 Function

Modern systems contain an inherent limitation in an excess of apparent functionality,

resulting in a congested interface that is difficult to navigate. Essentially, this is not a

limitation of too much functionality per second, but rather of an overly complex interface

required by supplementary functionality (Dickinson et al., 2003). By minimising the function

count, an interface becomes more user-friendly in terms of access to specific details and tasks

in a clear and simple manner, where, on the other hand, expanded functionality increases

complexity.

The iPlayCode application includes several extra functions compared with other applications

in screens Ss and Sg. For example, in screen Ss, there are five functions (see Figure 6.1): the

user number, select language, dialog error box for username (if empty), show the keyboard

and navigate to the next screen. The user can change the user interface language before

playing and the total number of users. The username can be input using the text box to

display the player‘s name. However, in the Duolingo application, there is only one function

available, namely, to change the UI language. Table E.5 in Appendix E illustrates that

iPlayCode is less complex than other applications; this is due to the small number of

functions (36) used in all screens, in contrast to DK (78) and Duolingo (109). The C/C++

application includes the lowest number of functions (21) due to the number of programming

languages used in the application.

Screen Si has the lowest number of functions with iPlayCode and C/C++ compared to other

applications. For example, 7, 16, 65 and 7 functions are used in iPlayCode, DK, Duolingo

and C/C++, respectively (see Figure 6.2)

Regarding screen Sg, iPlayCode includes 7 functions (see Figure 6.3): return to the same sub-

function to increase the player‘s score in that sub-function or select another one; go back to

the menu of screen levels to select another level; navigate to the final result screen (Sinfo);

show achieved scores in the sub-function; display the medal (bronze, silver or gold)

depending on the score; navigate to the main screen (Si) to select another programming

110

language; finally, display a loading spinner function (see Figure 5.2) on the result screen,

which makes the interface more attractive to the user and gives the user a natural sense of

delight.

However, based on the results shown in Figure 6.3 and Table E.5 in Appendix E, iPlayCode

has the fewest functions compared to the DK and Duolingo applications for screen Sg. The

reason behind the high number of functions in screen Sg is to make iPlayCode more attractive

and entertain the user. In other words, more features require more functions.

In terms of Sinfo, the number of functions in iPlayCode (9) is lower than in DK (10) and higher

than in Duolingo (2) and C/C++ (3) (see Figure 6.4).

In the SC application, the number of functions is less than in existing applications in screens

Ss, Sg and Sinfo. The SC and Google+ applications each include 1 function, while Facebook

consists of 6 and Gumtree 12 for screen Ss (see Figure 6.5).

The numbers of functions in SC in screens Sg (2) and Sinfo (1) are smaller (see Figures 6.7 and

6.8). In contrast, Gumtree consists of fewer functions (6), followed by SC with 15 in screen Si

(see Figure 6.6). Table E.6 in Appendix E shows that SC includes the smallest number of

available functions in all screens (multiple-screens) (35), while the number of functions in

Gumtree is 60 (nearly double that in SC), and the highest number of functions is 141 in

Google+.

The discussion above indicates that the SC application is less complex than existing

applications.

7.2.3 Colour

The application of a quantity of colours of different types benefits the user experience

through increasing comprehension and addressing complexity. Adverse or confusing

outcomes can arise from the random use of colour, leading to negative user feedback and

reduced productivity by preventing the user from concentrating on the task at hand.

Additionally, some users may suffer from colour blindness. The other challenge of applying

colours is to achieve a bold appearance that is attractive to the eye. The suboptimal use of

colour can instigate a high degree of stress or lethargy, giving rise to confusing perceptions

on the part of the user.

111

In the first study, to cope with the complexity of using colour in the user interface, rich

colours were used to improve user interaction in the iPlayCode application (see Figure ‎5.2).

However, the highest number of colours used in iPlayCode and C/C++ is 7 in screen Ss (see

Figure 6.1). In iPlayCode, the used colours include very pale orange, medium slate blue, deep

sky blue, white, light grey and black (see Figure 5.2). The highest number of used colours in

the DK application is 12 in screen Si (see Figure 6.2). Similarly, the DK application includes

the highest number of colours (9) in screen Sg (see Figure 6.3). The highest number of colours

in the C/C++ application is 9 in screen Sinfo (see Figure 6.4). The iPlayCode application

includes the lowest numbers of colours in screens Si, Sg and Sinfo; however, for screen Ss, it

includes the highest number. Dinulescu (2007) found that the use of more than seven screen

colours resulted in a high level of screen complexity. Figures 6.1 to 6.4 show that the highest

number of colours in all iPlayCode screens (Ss, Si, Sg and Sinfo) is 7, which indicates that the

iPlayCode application is less complex in terms of colours.

In the second study, Ss consisted of only three main colours in the SC application: green,

white and blue; in Si, Sg and Sinfo, black, white and grey were used to mitigate the colour

blindness problem (Figure 5.4). The number of colours was 3 for the SC application. This is

higher than that for Facebook, which only used 2, and lowest than those for Google+ (6) and

Gumtree (5) in screen Ss (Figure 6.5). However, SC and Google consisted of the lowest

number of colours in screen Si (3) (see Figure 6.6). Likewise, screens Sg and Sinfo for the SC

application had the lowest number of colours (3) (see Figures 6.7 and 6.8). Additionally, the

total number of colours used in SC was 5, which is lower than for the Google+ (7), Facebook

(6) and Gumtree (8) applications (see Table E.6 in Appendix E).

Essentially, four primary origins of UI complexity have been described: 1) the number of

screens, 2) the number of elements on each screen, 3) the number of functions on each

screen, and 4) the number of colours on each a screen. The interface complexity and

comprehensibility may thus be heightened by increasing the amount of these elements.

However, there are no minimum or maximum numbers of elements, colours and functions on

each screen because our results revealed that there are few elements, colours and functions on

some screens and many on other screens. For example, the number of text views in DK is 1

on screen Ss and 11 on screen Si (see Figures 6.1 to 6.8). The numbers of elements depend on

the designer‘s decisions and the application requirements.

112

7.3 Assessment of Single and Multiple-screens in the Two Case Studies

Using a count-based method, data were collected by simply counting the elements that were

present on the screen. Figures 6.1 to 6.8 present the obtained results from the count-based

analysis. The author analysed eight mobile user interface designs to detect their elements or

their numbers of components. This included images, buttons, colours, and functions. The

screenshots that were evaluated are presented in Appendixes A and B.

As was expected, the on-screen elements only slightly differed between existing applications

and the case studies (see Figure 6.1 to 6.8). Most of the elements were present in all screens

(such as text views, image views, and buttons), but some differed (rating bar, table, default

cell style, collection view, segmented control and video view) among the screens according

to screen functionality and application requirements.

For the iPlayCode and SC applications, several important findings were obtained. Among the

eight interface designs that the author examined, the single-screen and multiple-screen were

the best. The author performed a one-way ANOVA test to determine whether the user

interfaces had significant differences. A t-test and f-test were also used for pairwise

comparison.

In this thesis, four single screens were examined, which are main factors in the proposed

model (FMMUID). These screens are Ss, Si, Sg and Sinfo (see Equation 4.1).

In study 1, we compared iPlayCode with three existing applications using both single- and

multiple-screen comparisons to determine the differences among them using the ANOVA

test.

In study 1, after the extraction of the numbers of elements, functions and colours for each

app, whether the average numbers of these features differed between UI applications was

assessed. (see Table E.2). Table 6.1 shows the comparative analysis based on the one-way

ANOVA test with the purpose of identifying any potential differences between the iPlayCode

and DK, Duolingo and C/C++ user interface designs. For single screen Ss, using a one-way

ANOVA test, the differences between interface applications were not significant, with 0.706

> 0.05. For screen Si, again using a one-way ANOVA test, the results were significant, with

0.048 < 0.05. A paired t-test was conducted to determine which applications were causing the

difference; the results revealed that the difference was between iPlayCode and DK, with

0.024<0.05. To determine which application was causing the difference, an f-test was

113

conducted. The f-test results showed that there was no a significant difference between

iPlayCode and DK, with 0.10>0.05.

Regarding screens Sg and Sinfo, the ANOVA test results indicate no significant difference

between the UI designs, with 0.866 and 0.536>0.05, respectively.

In study 2, Table 6.2 shows the comparison between SC and three existing applications

(Google+, Facebook and Gumtree). The ANOVA test results reveal that there were no

significant differences among them for single screens. The p-values for Ss, Si, Sg and Sinfo

were 0.270, 0.720, 0.607 and 0.458>0.05, respectively. It could thus be concluded that the

four applications did not differ significantly in terms of the single screens.

Furthermore, a one-way ANOVA test was carried out again for two case studies in terms of

multiple-screens. These results also indicated that there were no significant differences

between the case studies and existing applications, with 0.423 and 0.699>0.05 for the

iPlayCode and SC applications, respectively (see Tables F.12 in Appendix F and G.5 in

Appendix G).

7.4 Assessment of Usability

To be accepted by users, mobile application UIs must demonstrate, above all, usability. In

this work, the questionnaire tool was employed to assess usability by measuring different

dimensions of this quality. All eight UI applications, comprising both case studies and

existing applications, were tested, and a series of questions was answered by the research

participants.

Table ‎6:5 and Table ‎6:6 list the means associated with the participants‘ answers for case

study 1 and case study 2, respectively.

In the context of case study 1, the highest mean score for the dimension of usefulness (4.311)

was attained by iPlayCode, and 86.0% of the participants expressed satisfaction with the

iPlayCode UI. In terms of the dimensions of information quality and interface quality,

iPlayCode also achieved the highest average scores of 4.376 and 4.339, respectively;

approximately 87.5% of the participants considered the information quality of the iPlayCode

UI to be satisfactory, and over 86.0% considered the quality of the iPlayCode UI to be better

than that of the other applications. iPlayCode achieved the highest mean score in overall

114

satisfaction as well (4.388); approximately 87.8% of participants were satisfied with the

iPlayCode UI.

In the context of the second case study, all UI applications had similar mean scores with

respect to the dimension of usefulness. Approximately 87.0% of participants considered

Gumtree and SC to be useful, with mean scores of 4.380 and 4.364, respectively. Google+

(4.353) and Facebook (4.346) were considered useful by the same proportion of participants

but received slightly lower mean scores (4.353 and 4.346, respectively). In regard to

information quality, approximately 87.0% of the participants stated that Gumtree and SC had

good information quality, with average scores of 4.366 and 4.349, respectively. In terms of

the dimension of interface quality, the highest average (4.435) was recorded by Gumtree as

well, and over 88.0% of the participants found the interface quality of Gumtree to be good. In

second place was SC with an average of 4.399; approximately 88.0% of the participants were

satisfied with the quality of the SC UI. In terms of overall satisfaction, Gumtree achieved the

highest average (4.411; ~88.0%), followed by Facebook (4.363; 87.0%), SC (4.355; ~87.0%),

and Google+ (4.331; >86.0%).

In terms of the questionnaire findings, iPlayCode was not found to differ significantly from

the other applications (i.e., DK, Duolingo, and C/C++) with respect to the dimensions of

usefulness (0.753>0.05), information quality (0.608>0.05), interface quality (0.233>0.05), or

overall satisfaction (0.777>0.05). Likewise, these dimensions did not exhibit significant

differences between SC and the other three applications of Google+, Facebook, and Gumtree

(0.696, 0.982, 0.326 and 0.886>0.05) (see Table 6.9).

7.5 Validation

The case studies provided strong support for the idea that mobile UIs with good usability can

be created with the help of the FMMUID. The results of the user testing were consistent with

the analysis results. Furthermore, based on the earlier sections of this work, the hypotheses

regarding the lack of difference between the new and the conventional UI designs in terms of

usability were validated based on the fact that the p-value obtained in the test statistics was

higher than 0.05, indicating no statistical significance.

115

7.6 Summary and Assessment of Research Questions

The research questions that were outlined in section ‎1.4 were addressed, as confirmed by the

assessment of the research process undertaken in this thesis.

A two-phase process was conducted to assess the effectiveness of the model approach. The

first phase focused on the design rationale and on determination of differences in the numbers

of elements for different UIs, and the second phase was concerned with user testing of the

interfaces and completion of the questionnaire.

Assessment of the new FMMUID approach involved addressing two research questions. The

first question sought to determine the UI with the most structurally logical design, the least

complexity, and the fewest screen. This question was addressed based on two case studies of

application interfaces of different complexity, namely, the simple iPlayCode application and

the complex SC application, which use six and forty-four screens, respectively. A

comparative analysis of these two case studies and other existing applications was conducted;

the results revealed that the well-defined structure, lower complexity and acceptable number

of elements on screens made the iPlayCode and SC UI designs effective with regard to the

key dimensions assessed. Furthermore, the two case studies did not differ significantly from

the other applications as indicated by the outcomes of the ANOVA test, the t-test and the f-

test for single and multiple-screens. Therefore, in response to the first question, it could be

affirmed that the iPlayCode and the SC are the UIs with the most structurally logical design,

limited complexity, and fewest elements on screens. Accordingly, hypotheses H1 and H2 are

validated.

The second question was concerned with determining how usable the iPlayCode and SC

applications were compared to the other conventional applications with regard to the

dimensions of usefulness, information quality, interface quality, and overall satisfaction. On

the whole, the results showed that the two UIs were considered to possess good usability. The

participants expressed either strong agreement or agreement with the usability properties of

the two UIs. Furthermore, the majority of the participants were of the opinion that the

iPlayCode and SC applications were easy to use. Therefore, on the basis of the results

obtained in response to the second question, it could be affirmed that the proposed UIs did

indeed possess good usability; accordingly, hypothesis H3 is validated.

116

To summarise, the results of the two case studies showed that the new model approach

performed well with respect to every aspect considered, demonstrating that it possesses

sufficient flexibility and efficiency to be employed in the design and development of mobile

UIs.

117

Chapter 8: Conclusions

In this chapter, the major findings of the research are summarised, and the conclusions that

can be drawn from them are presented. Furthermore, the chapter outlines the manner in which

the established research aims and objectives have been accomplished and indicates the key

contributions made by the research. Additionally, the chapter addresses the research

shortcomings and puts forth recommendations for future lines of inquiry.

The development of the FMMUID has enabled successful achievement of the research aim

and objectives (section ‎1.5), as illustrated by the examples and evidence put forward.

Sufficient detail has been provided to permit the replication of the approaches employed in

this thesis by other researchers for the purposes of mobile UI design and additional

investigation. Test results compared with research objectives as set out in section 1.5.

1- Develop a novel approach to UI design.

Chapter 2 describes a number of approaches to interface design, most of which suffer from

problems with over-complexity in design, software development and difficulty of providing

support and maintenance. They are generally inflexible and therefore difficult to adapt for

different applications. In this study, the principle objective is to set out a more creative

approach to mobile user interface design using set theory to group elements and components

and ranking then according to specific criteria.

Our design methodology, as set out in Chapter 4, meets this principle aim. Another driver

behind this project has been the perceived need to build a robust framework for software

specification in the development of UI programs.

Set theory in mathematics provides a well established and robust set of tools and a language

that can be used in descriptions of the elements of which software is built. The software

elements are ranked in a hierarchy that supports effective transition from theory to the

practical development and application of the software and permits a holistic description of the

system and its functionality. This is the FFMUID framework set out in this paper, which can

be used to effectively express, and allow understanding of, all elements in UI software

including the most abstract.

The FMMUID framework is capable of describing software of varying levels of intricacy,

and provide detailed descriptions of the design elements and their ranking in interface

118

software. Examples, or prototypes, were chosen to display the essential elements and features

of mobile UI software, and two of these presented as practical evaluations.

2- Validate the application of the new approach on case studies (iPlayCode and SC).

The FFMUID model (Chapter 4) has been applied in two practical examples, using

iPlayCode and SC for this purpose. In Chapter 5 further examples are presented, using

interfaces of varying levels of intricacy, which support the flexibility and usability of the

proposed model.

3- Analysing the design structure and UI elements (for case studies and existing

applications) in order to measure the complexity and validate the proposed approach.

This objective has been achieved by analysing the FMMUID using case studies and existing

applications. The purpose of this analysis to validate and measure the complexity. Comparative

analysis was conducted for iPlayCode and SC parameters (Ss, Si, Sg and Sinfo) and those of

other applications as a way of validating the model. To measure the complexity of the UI, a

number of metrics were employed; these were associated with hierarchical structure (section

6.2) and number of components, functions and colours (section 6.3).

4- Evaluating the status of the two aforementioned UI case studies from the viewpoint of

the end-users.

In Chapter 7 the FFMUID model is assessed in a variety of different applications It is clear

from the results of our tests and the range of environments in which FFMUID can be used

successfully that this new approach has real pragmatic applicability. The test were carried

out from the point of view of hands on users of the interfaces and the results are presented in

section 7.4.

In data obtained by CSUQ, the tested applications (i.e. iPlayCode and SC) produced very

similar results to other software in the evaluation criteria of overall user satisfaction with the

software, users‘ assessment of the interface, the information contained in the system and its

functionality.

 The thesis has focused on the relevant results obtained and the methods that were created

based on those results and the experiments that were performed.

8.1 Result Overview

The research described in this thesis sought to determine whether it was possible to

incorporate UI design into a formal model. To this end, a new approach was proposed, and its

119

advantages were comprehensively discussed. The integration of the UI design process into

the suggested method was addressed in detail in Chapter 5.

The FMMUID model has been the focus of the thesis; it was proposed as a novel approach to

achieving a formal characterisation of the UI design. To demonstrate how this approach can

facilitate the integration of UI design and a formal model and how it can benefit the process

of UI design, case study examples have been used. To enable UI characterisation, hierarchical

structure and set theory language constituted the main components of the formal model. The

first phase of the design process involved using the FMMUID to achieve the development of

prototypes. The FMMUID has many advantages that link the prototypes to the formal

specifications, thus sparing designers the necessity of dealing with complicated formal

terminology when ensuring design consistency (Chapter 4). In addition to eliminating the

need for expert knowledge about the underlying system, the model reveals the design

decisions that have already been made and outlines the designers‘ comprehension regarding

the significance of the prototypes and designs. The accurate model obtained in this way

makes it easier for UI designers to communicate with other system development team

members (e.g., formal experts, other designers, etc.). Thus, the research affords both a

theoretical foundation and a practical method for the design process. The feasibility of the

proposed idea was assessed through the development and assessment of two prototypes

(Chapter 5).

Both scientific and human assessment methods were employed in the sixth chapter to

measure the research contributions. The scientific assessment involved application of the

FMMUID to develop two case studies, namely, iPlayCode and SC, followed by comparative

analysis of their parameters (Ss, Si, Sg and Sinfo) and those of other applications as a way of

validating the model. Specifically, iPlayCode was compared with DK, Duolingo and C/C++,

and SC was compared with Google+, Facebook, and Gumtree. To measure the complexity of

the UI, a number of metrics were employed; these were associated with hierarchical structure

(section ‎6.2) and number of features, such as components, functions and colours (section ‎6.3).

In this thesis, the results of the assessment confirmed that the proposed model was generally

more efficient and flexible compared to existing mobile applications that were functionally

similar to the two case studies. Furthermore, with regard to most relevant criteria, the UI

design of iPlayCode and SC generally performed better than existing mobile applications,

owing to their straightforward hierarchical structure, limited complexity and the acceptable

number of elements they displayed on screen (see Figures 6.1 to 6.8; Tables E.1, E.3, E.5 and

120

E.6 in Appendix E; Figures D.1 and D.2 in Appendix D). The discrepancies between the

suggested UIs and existing UI applications were explored through the one-way ANOVA test,

the paired t-test and the f-test (section ‎6.3.1). The p-values indicated by the one-way ANOVA

test, the t-test and the f-test were greater than 0.05, indicating that the four parameters of Ss,

Si, Sg, and Sinfo (single screens) and multiple-screens did not differ significantly (see

sections ‎6.3.1.1 and ‎6.3.1.2). Furthermore, the assessment confirmed that the proposed

solution was compatible with real-time applications. In contrast, the purpose of the human

assessment was to determine how usable the two case studies were compared to the other UI

applications. To this end, a questionnaire was conducted at the University of Huddersfield to

evaluate the usability of the UIs of the case studies and those of existing applications.

Analysis of the gathered data was conducted, and the one-way ANOVA test was again

applied to determine the extent to which the proposed UIs differed from the existing UI

applications. The p-value obtained was greater than 0.05, indicating that the dimensions of

usability, usefulness, information quality, interface quality and satisfaction did not differ

significantly (see Table 6.9).

The outcomes of the research analysis support the use of the proposed model as a design

process tool for software engineers and designers. The case study UIs that were created with

the proposed model were demonstrated to be more straightforward than several existing UI

applications in terms of hierarchical structure design and number of used elements. The

model was further validated by the fact that the two case studies possessed acceptable

usability regarding the assessed dimensions of usefulness, information quality, interface

quality, and overall satisfaction. Hence, UI designers and developers can employ the

proposed model to facilitate the process of mobile application development.

8.2 Research Contributions

- A new model rooted in hierarchical structure and set theory and intended to facilitate the

creation of usable UIs is the major contribution of the thesis.

A novel formal model constitutes the main contribution of this thesis. From a review of

current literature that has focused on formal models of user interface design, it can be

pointed out that the relationships among various user interface elements has not been

discussed. For this model, formal rules were outlined, composition and integration were

addressed, and accuracy in terms of syntax and semantics was demonstrated (Chapter 4).

Formal characterisation of the UI design can be achieved by the FMMUID, as proven by

121

several examples (Chapter 5). The UI composition was defined on the basis of set theory

language. Furthermore, to determine how easy UIs were to understand and how efficient

they were with respect to structure and usability, a hierarchy diagram was employed. The

results are demonstrated the proposed model was flexible enough and compatible with

UIs of both lesser and greater complexity. In addition, this research has been able to show

the use and application of the advanced model technique by discussing in great length the

two case studies of how the model can be used and applied practically. The findings of

the research pertaining to the advanced model for user interface design is crucial to those

who design mobile user interfaces on key components as they can be applied in the

design of the user interfaces as well as in enhancing usability.

- Improvement of software system quality and greater cost-effectiveness can be achieved

with the proposed model.

Design models can be formally analysed by integrating UI design into formal models, thus

ensuring the accuracy of the developed systems and making them more trustworthy. The

findings of the study in view of the advanced approach are significant to the industry sector

since examinations to the proposed model in the initial phases of the advancement process

can result to identification of possible issues making it easy to address them at an initial

stage. In the study, basic set theory presumptions can be directly comprehended by the

designers as well as developers and applied. Thus improving the time- and cost-effectiveness

of software development and enhancing the quality of the product.

- The proposed model demonstrated flexibility in terms of practical implementation

regardless of the designers‘ or developers‘ level of knowledge of formal methods.

From a literature review of past studies, it has been found that only one or two case

studies have been highlighted as examples. In this specific research, the two case studies

have been used for both basic and advanced user interface designs. The proposed model

is as flexible as it is appealing to the software developer. It has been demonstrated that the

proposed model is compatible with UI designs of both greater and lesser complexity and

that its use does not require anything other than straightforward set theory notation. This

means that design development can be achieved with this model with no need for in-depth

understanding of formal methods. As indicated by the example case studies in Chapter 5,

UI design development can be successfully accomplished using the proposed model. The

results obtained provide justification for the research (Chapter 6).

122

- Alternative designs can be supported by the proposed FMMUID model that has been

legitimated by the empirical findings.

Alternative designs associated with particular designer requirements are made possible by

the model proposed in this thesis for the UI design process. The results obtained from the

two case studies involving UIs of greater and lesser complexity confirmed that the model

was efficient. Present literature has not referred to any research when it comes to applying

existing applications on their models. In this thesis, the detailed analysis was performed

where the proposed model was applied on existing UI applications. The results obtained

confirmed that the proposed model was effective in the achieve of different designs of

greater or lesser complexity. Moreover, the proposed model may also be applicable to the

design rationale (Chapter 6).

- Hierarchy diagrams were employed to graphically demonstrate the proposed model and to

address various dimensions of design.

On the other hand, current literature on formal models of user interface design has not

been featured hierarchical diagrams as mathematical depiction. In this research, hierarchy

diagrams were employed with the formal model to afford designers a good understanding

of the various dimensions of the design. A hierarchy diagram is useful because it shows

how understandable a system or element is and how easy it is to validate with respect to

structure or usability. Any new or screen sets may simply be located in our hierarchy by

establishing the nature of the behaviour (behaviours) demonstrated. Those associated with

the formal specification can be aided by the FMMUID, who can give them a structured

means of including a system's UI in their set theory specification. (Chapter 4). The

FMMUID is not limited to any particular type of system or style of interface. As part of

the background to using the FMMUID, supporting diagrams have also been provided,

which allow designers to identify the appropriate category within the hierarchy at any

stage in the refinement of their specification. Moreover, the FMMUID introduces a simple

structure view that hides all the details and shows only the structure (Chapter 4).

Complexity can be considered a measure of difficulty when the intricate interactions

between several elements of an object are explored. Since comprehension has various

determinants and its evaluation is subjective in nature, the perceived complexity of a UI is

informative about what users think of the information display and the device screen.

Moreover, the complexity of the outcome support and elucidation determines how

productive the proposed approach is. Four factors have been identified as particularly

123

influential of how complex a UI design can be; these are navigation (number of screens

determines depth and breadth), number of components, number of functions, and screen

colours (section ‎7.2). By enhancing these factors, the interface may be made more

complex and difficult to understand.

- Two approaches were employed to measure the complexity and usability of the model.

Prevailing literature about the evaluation of UI design does not measure usability and

complexity simultaneously. In this thesis, the first assessment approach involved a

comparative analysis of the two case studies and other existing applications in terms of

structure and number of elements, functions and colours (see sections ‎7.2 and ‎7.3).

According to the results obtained, the structure of the proposed model was less

complicated than that of the other applications, while the number of elements, functions

and colours it contained was similar to those of other applications. The second assessment

approach entailed a comparison between the two case studies and other existing

application regarding their usability as reflected in four dimensions. This was achieved by

means of a questionnaire, the results of which revealed that the case studies and the

existing application did not differ significantly in terms of usability (section ‎7.4).

8.3 Research Limitations

Manual analysis is one of the limitations of the UI analysis approach adopted in the thesis;

because it is susceptible to human error, the use of manual analysis can distort the results.

Another limitation is the difficulty involved in the processes of design analysis and

quantification of complex UI components, both of which consumed considerable time and

effort. The mobile applications chosen for purposes of comparison with the case studies in

terms of design structure and usability constitute an additional limitation. Three mobile

applications based on the iOS platform were selected for each of the two case studies. Despite

the fact that the results shed some light on the usability of the case studies, a larger number of

mobile applications should be used to gain a clearer picture. In addition, as far as limitations

of the study are concerned, one of the key limitation of the study entails the sample since the

sample was only made up of those aged from 18-34 years and 35-49 years. As a result, those

aged from 49-60 never got a chance to take part in the study. As a result, the extent to which

the findings of the study can be said to be generalized to the entire research population is

questionable.

124

8.4 Further Research

The following are believed to be viable lines of inquiry for future research.

1- Future research should assess the applicability or viability of the proposed model in

the industrial sector. On a pragmatic level, it is hoped that the proposed model will be

useful in industrial settings and that it will help enhance the quality of interactive

software.

2- The development of a more time-effective and less effort-intensive method of design

analysis and quantification of UI components is also worth pursuing.

3- Currently, only the iOS platform supports the developed prototypes and chosen

applications. Therefore, future research should aim to make the proposed model

compatible with additional platforms, especially Android and Windows, to attain a

more detailed and thorough assessment.

4- Future research could attempt the development of a new model of hierarchy levels

that could be connected to the FMMUID. To make it possible to determine how

complex the UI structure is, the number of levels (depth) and the number of screens at

every level (breadth) must be known.

5- Future research could also examine the interactive relationships between the UI

components (the binary relation is the basis of model development) to facilitate

fulfilment of different design requirements and make the design more efficient.

8.5 Published Papers

R. Ihnissi and J. Lu, (2014) "An investigation into the problems of user oriented interfaces in

mobile applications," presented at The 2014 World Congress in Computer Science, Computer

Engineering, and Applied Computing (WORLDCOMP'14), Las Vegas, USA, 2014, pp. 100-

106.

R. Ihnissi and J. Lu, (2015) "An Investigation into Game Based Learning Using High Level

Programming Languages". In: Proceedings of the Fifth International Conference on

Advanced Communications and Computation. INFOCOMP (2015). IARIA, Brussels,

Belgium, pp. 99-104.

R. Ihnissi and J. Lu, (2017). "A Novel Formal Model Approach for Mobile User Interface

Design", IEEE transactions on software engineering journal (manuscript under review

process).

125

References

Abowd, G. D., Coutaz, J., & Nigay, L. (1992). Structuring the Space of Interactive

System Properties. Engineering for Human-Computer Interaction, 18, 113-129.

Abrams, M., Phanouriou, C., Batongbacal, A. L., Williams, S. M., & Shuster, J. E.

(1999). UIML: an appliance-independent XML user interface language.

Computer networks, 31(11), 1695-1708.

Abran, A., Khelifi, A., Suryn, W., & Seffah, A. (2003). Usability meanings and

interpretations in ISO standards. Software Quality Journal, 11(4), 325-338.

Abrial, J.-R., & Abrial, J.-R. (2005). The B-book: assigning programs to meanings:

Cambridge University Press.

Abrial, J.-R., Butler, M., Hallerstede, S., Hoang, T. S., Mehta, F., & Voisin, L. (2010).

Rodin: an open toolset for modelling and reasoning in Event-B. International

Journal on Software Tools for Technology Transfer (STTT), 12(6), 447-466.

Acock, A. C. (2008). A gentle introduction to Stata (2nd ed.). College Station, Texas:

Stata press.

Alemerien, K., & Magel, K. (2014). GUIEvaluator: A Metric-tool for Evaluating the

Complexity of Graphical User Interfaces. Paper presented at the SEKE, 13-18.

Alford, M. (1994). Attacking requirements complexity using a separation of concerns.

Paper presented at the Requirements Engineering, 1994., Proceedings of the

First International Conference on, 2-5.

Ali, A. A. (2013). A framework for measuring the usability issues and criteria of mobile

learning applications. Electronic Thesis and Dissertation Repository. 1184. The

University of Western Ontario. http://ir.lib.uwo.ca/etd/1184.

Alroobaea, R., & Mayhew, P. J. (2014). How many participants are really enough for

usability studies? Paper presented at the Science and Information Conference

(SAI), 2014, 48-56.

Altaboli, A., & Lin, Y. (2011). Objective and subjective measures of visual aesthetics of

website interface design: the two sides of the coin. Paper presented at the

International Conference on Human-Computer Interaction, 35-44.

Alty, J. L. (1992). Can we measure usability. Proceedings of Advanced Information

Systems, 95-106.

126

Andrews, D., Bruun, H., Hansen, B., Larsen, P., & Plat, N. (1996). Information

technology–Programming languages, their environments and system software

interfaces–Vienna Development Method–Specification Language–Part 1: Base

language. International Organization for Standardization, 13817-13811.

Andriole, S. J., & Adelman, L. (1995). Cognitive systems engineering for user-

computer interface design, prototyping, and evaluation: L. Erlbaum Associates

Inc.

Anneberg, L., & Singh, H. (1993). Circuit theoretic approaches to determining software

complexity. Paper presented at the Circuits and Systems, 1993., Proceedings of

the 36th Midwest Symposium on, 895-898.

Arthur, R., & Olsen Jr, D. R. (2011). XICE windowing toolkit: Seamless display

annexation. ACM Transactions on Computer-Human Interaction (TOCHI),

18(3), 14:1–14:46.

Ašeriškis, D., Blažauskas, T., & Damaševičius, R. (2017). UAREI: A model for formal

description and visual representation/software gamification. Dyna, 84(200), 326-

334.

Baecker, R. M. (2014). Readings in Human-Computer Interaction: toward the year

2000: Morgan Kaufmann.

Baier, C., Katoen, J.-P., & Larsen, K. G. (2008). Principles of model checking: MIT

press.

Balzert, H., Hofmann, F., Kruschinski, V., & Niemann, C. (1996). The JANUS

Application Development Environment-Generating More than the User

Interface. Paper presented at the CADUI, 183-207.

Banati, H., Bedi, P., & Grover, P. (2006). Evaluating web usability from the user‘s

perspective. Journal of Computer Science, 2(4), 314-317.

Basili, V. R. (1980). Qualitative software complexity models: A summary. Tutorial on

models and methods for software management and engineering.

Bastien, J. C. (2010). Usability testing: a review of some methodological and technical

aspects of the method. International journal of medical informatics, 79(4), e18-

e23.

Bastien, J. C., & Scapin, D. L. (1993). Ergonomic criteria for the evaluation of human-

computer interfaces. Inria.

127

Beckert, B., & Grebing, S. (2012). Evaluating the Usability of Interactive Verification

Systems. Paper presented at the COMPARE.

Berti, S., Correani, F., Mori, G., Paternò, F., & Santoro, C. (2004). TERESA: a

transformation-based environment for designing and developing multi-device

interfaces. Paper presented at the CHI'04 extended abstracts on Human factors in

computing systems.

Berti, S., Correani, F., Paterno, F., & Santoro, C. (2004). The TERESA XML language

for the description of interactive systems at multiple abstraction levels. Paper

presented at the Proceedings Workshop on Developing User Interfaces with

XML: Advances on User Interface Description Languages.

Bertino, E. (1985). Design issues in interactive user interfaces. Interfaces in Computing,

3(1), 37-53.

Bevan, N. (2001). International standards for HCI and usability. International Journal of

Human-Computer Studies, 55(4), 533-552.

Bevan, N. K., & Kirakowski, J. (1991a). J. And Maissel, J.(1991). What is usability.

Paper presented at the Proceedings of the 4th International Conference on HCI,

Stuttgart.

Bevan, N. K., & Kirakowski, J. M. (1991b). What is usability. Paper presented at the

Proceedings of the 4th International Conference on HCI, Stuttgart.

Bézivin, J., & Gerbé, O. (2001). Towards a precise definition of the OMG/MDA

framework. Paper presented at the Automated Software Engineering, 2001.(ASE

2001). Proceedings. 16th Annual International Conference on.

Biel, B., Grill, T., & Gruhn, V. (2010). Exploring the benefits of the combination of a

software architecture analysis and a usability evaluation of a mobile application.

Journal of Systems and Software, 83(11), 2031-2044.

Blandford, A. E., Hyde, J. K., Green, T. R., & Connell, I. (2008). Scoping analytical

usability evaluation methods: a case study. Human–Computer Interaction, 23(3),

278-327.

Bodart, F., Hennebert, A.-M., Leheureux, J.-M., Provot, I., Sacré, B., & Vanderdonckt,

J. (1995). Towards a systematic building of software architecture: The

TRIDENT methodological guide Design, Specification and Verification of

Interactive Systems‘ 95, 262-278: Springer.

128

Booch, G., Rumbaugh, J., & Jacobson, I. (2005). Unified modeling language User

Guide: Addison Wesley Professional.

Booth, P. (2014). An Introduction to Human-Computer Interaction (Psychology

Revivals): Psychology Press.

Bowen, J. (2008). Formal models and refinement for graphical user interface design.

The University of Waikato.

Bowen, J., & Reeves, S. (2008a). Formal models for user interface design artefacts.

Innovations in Systems and Software Engineering, 4(2), 125-141.

Bowen, J., & Reeves, S. (2008b). Refinement for user interface designs. Electronic

Notes in Theoretical Computer Science, 208, 5-22.

Bowles, J., & Kloul, L. (2010). Synthesising PEPA nets from IODs for performance

analysis. Paper presented at the Proceedings of the first joint WOSP/SIPEW

international conference on Performance engineering.

Bowles, J. K. F., & Bordbar, B. (2007). A formal model for integrating multiple views.

Paper presented at the Application of Concurrency to System Design, 2007.

ACSD 2007. Seventh International Conference on.

Brambilla, M., & Fraternali, P. (2014). Interaction flow modeling language: Model-

driven UI engineering of web and mobile apps with IFML: Morgan Kaufmann.

Bramwell, C., Fields, B., & Harrison, M. (1995). Exploring design options rationally

Design, Specification and Verification of Interactive Systems‘ 95 (pp. 134-148):

Springer.

Brinck, T., Gergle, D., & Wood, S. D. (2002). Designing Web sites that work: Usability

for the Web: Morgan Kaufmann Publishers.

Brooks, I. (1993). Object-oriented metrics collection and evaluation with a software

process. Paper presented at the Proc. OOPSLA.

Brown, A. W. (2004). Model driven architecture: Principles and practice. Software and

Systems Modeling, 3(4), 314-327.

Buchenau, M., & Suri, J. F. (2000). Experience prototyping. Paper presented at the

Proceedings of the 3rd conference on Designing interactive systems: processes,

practices, methods, and techniques.

Buie, E., & Murray, D. (2012). Usability in government systems: User experience

design for citizens and public servants: Elsevier.

129

Bumbulis, P., Alencar, P. S., Cowan, D. D., & Lucena, C. (1995). Combining formal

techniques and prototyping in user interface construction and verification

Design, Specification and Verification of Interactive Systems‘ 95 (pp. 174-192):

Springer.

Bygstad, B., Ghinea, G., & Brevik, E. (2008). Software development methods and

usability: Perspectives from a survey in the software industry in Norway.

Interacting with Computers, 20(3), 375-385.

Cabot, J., Claris, R., & Riera, D. (2008). Verification of UML/OCL class diagrams

using constraint programming. Paper presented at the Software Testing

Verification and Validation Workshop, 2008. ICSTW'08. IEEE International

Conference on.

Calvary, G., Coutaz, J., Dâassi, O., Balme, L., & Demeure, A. (2004). Towards a New

Generation of Widgets for Supporting Software Plasticity: The" Comet".

Ehci/Ds-Vis, 3425, 306-324.

Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L., & Vanderdonckt, J.

(2003). A unifying reference framework for multi-target user interfaces.

Interacting with Computers, 15(3), 289-308.

Calvary, G., & Pinna, A.-M. (2008). Lessons of Experience in Model-Driven

Engineering of Interactive Systems: Grand challenges for MDE? Paper

presented at the First International Workshop on Challenges in Model-Driven

Software Engineering (ChaMDE), MODELS.

Camburn, B. A., Arlitt, R., Perez, K. B., Anderson, D., Choo, P. K., Lim, T., . . . Wood,

K. (2017). Design prototyping of systems. ICED 2017.

Card, S. K., Newell, A., & Moran, T. P. (1983). The psychology of human-computer

interaction.

Carr, M., & Verner, J. (1997). Prototyping and software development approaches.

Department of Information Systems, City University of Hong Kong, Hong

Kong.

Carroll, J. M. (2013). Human computer interaction-brief intro. The Encyclopedia of

Human-Computer Interaction, 2nd Ed.

130

Carvalho, A. A. A. (2001). Usability Testing of Educational Software: methods,

techniques and evaluators. Actas do 3º Simpósio Internacional de Informática

Educativa, 139-148.

Casaló, L. V., Flavián, C., & Guinaliu, M. (2010). Generating trust and satisfaction in e-

services: the impact of usability on consumer behavior. Journal of Relationship

Marketing, 9(4), 247-263.

Cassandras, C. G., & Lafortune, S. (1999). Introduction to Discrete Event Systems (The

International Series on Discrete Event Dynamic Systems).

Cataldo, M., De Souza, C. R., Bentolila, D. L., Miranda, T. C., & Nambiar, S. (2010).

The impact of interface complexity on failures: an empirical analysis and

implications for tool design. School of Computer Science, Carnegie Mellon

University, Tech. Rep.

Catarci, T., Dongilli, P., Mascio, T. D., Franconi, E., Santucci, G., & Tessaris, S.

(2004). An ontology based visual tool for query formulation support. Paper

presented at the Proceedings of the 16th European Conference on Artificial

Intelligence.

Cerny, T., Chalupa, V., & Donahoo, M. J. (2012). Impact of user interface generation

on maintenance. Paper presented at the Computer Science and Automation

Engineering (CSAE), 2012 IEEE International Conference on.

Chen, C.-Y., & White, B.-K. W. (2013). Hierarchical organization chart for mobile

applications: Google Patents.

Chhillar, U., & Bhasin, S. (2011). A Journey of Software Metrics: Traditional to

Aspect-Oriented Paradigm. Paper presented at the 5th National Conference on

Computing For Nation Development, 10th-11th March.

Chignell, M. H. (1990). A taxonomy of user interface terminology. ACM SIGCHI

Bulletin, 21(4), 27.

Cimatti, A., Roveri, M., Susi, A., & Tonetta, S. (2011a). Formalizing requirements with

object models and temporal constraints. Software & Systems Modeling, 10(2),

147-160.

Cimatti, A., Roveri, M., Susi, A., & Tonetta, S. (2011b). Formalizing requirements with

object models and temporal constraints. Software and Systems Modeling, 10(2),

147-160.

131

Clerckx, T., Winters, F., & Coninx, K. (2005). Tool support for designing context-

sensitive user interfaces using a model-based approach. Paper presented at the

Proceedings of the 4th international workshop on Task models and diagrams.

Corporation, M. (2000, 09/05/2017). UI Guidelines vs. Usability Testing. Retrieved

09/05/2017, from https://msdn.microsoft.com/en-us/library/ms997578.aspx

Coskun, E., & Grabowski, M. (2005). Impacts of user interface complexity on user

acceptance and performance in safety-critical systems. Emergency, 2(1), 3.

Costabile, M. F. (2001). Usability in the software life cycle. Handbook of software

engineering and knowledge engineering, 1, 179-192.

Coutaz, J., & Calvary, G. (2012). HCI and software engineering for user interface

plasticity: CRC Press.

Creswell, J. W., & Clark, V. L. P. (2011). Designing and conducting mixed methods

research.

Da Silva, P. P. (2000). User interface declarative models and development

environments: A survey. Paper presented at the International Workshop on

Design, Specification, and Verification of Interactive Systems.

De Oliveira, R. A. j. (2015). Formal specification and verification of interactive systems

with plasticity: applications to nuclear-plant supervision. Université Grenoble

Alpes.

Dickinson, A., Eisma, R., & Gregor, P. (2003). Challenging interfaces/redesigning

users. Paper presented at the ACM SIGCAPH Computers and the Physically

Handicapped.

Dillon, A. (2001). The evaluation of software usability Encyclopedia of human factors

and ergonomics: London: Taylor and Francis.

Dinulescu, D. C. (2007). User interaction with computerized provider order entry

systems: a method for quantitative measurement of cognitive complexity.

Dix, A. (2016). Human-Computer Interaction. Encyclopedia of Database Systems, 1-6.

Dix, A., Finlay, J. A., & Abowd, D. (1998). G. and Beale, R. Human-Computer

Interaction. 2nd ed. Prentice Hall.

Dix, A., Finlay, J., Abowd, G., & Beale, R. (2004). Evaluation techniques. Human-

Computer Interaction.

132

Dix, A. J., & Runciman, C. (1985). Abstract models of interactive systems. People and

Computers: Designing the interface, 13-22.

Doherty, G., & Harrison, M. D. (1997). A representational approach to the specification

of presentations Design, Specification and Verification of Interactive Systems‘

97 (pp. 273-290): Springer.

Dubey, S. K., & Gulati, A. (2012). Usability evaluation of software systems using fuzzy

multi-criteria approach.

Duce, D. (1995). Users: Summary of working group discussion. Paper presented at the

Interactive Systems: Design Specification and Verification.

Duke, D. J., & Harrison, M. D. (1993). Abstract interaction objects. Paper presented at

the Computer Graphics Forum.

Dumas, J. S., & Redish, J. (1999). A practical guide to usability testing: Intellect books.

Duolingo. (2012). Duolingo - Learn Spanish, French and more. Retrieved 17/03/2016,

2015, from https://itunes.apple.com/gb/app/duolingo-learn-spanish-french-and-

more/id570060128?mt=8

Edmonds, B. (1995). What is Complexity?-The philosophy of complexity per se with

application to some examples in evolution The evolution of complexity: Kluwer,

Dordrecht.

Elwert, T., & Schlungbaum, E. (1995). Modelling and generation of graphical user

interfaces in the TADEUS approach Design, Specification and Verification of

Interactive Systems‘ 95 (pp. 193-208): Springer.

Evans, R. T. (2002). Usability testing and research. IEEE Transactions on Professional

Communication, 45(2), 151-152.

Facebook, I. (2008). Facebook. Retrieved from

https://itunes.apple.com/gb/app/facebook/id284882215?mt=8

Faconti, G. P., & Paternò, F. (1990). An approach to the formal specification of the

components of an interaction.

Ferré, X., Juristo, N., Windl, H., & Constantine, L. (2001). Usability basics for software

developers. IEEE software, 18(1), 22-29.

Ferre, X., Villalba, E., Julio, H., & Zhu, H. (2017). Extending Mobile App Analytics for

Usability Test Logging. Paper presented at the IFIP Conference on Human-

Computer Interaction.

133

Fidel, A. (2000). Discovering statistics using SPSS for windows: Sage Publications,

London, UK.

Fitzgerald, J., & Larsen, P. G. (2009). Modelling systems: practical tools and techniques

in software development: Cambridge University Press.

Foley, J., Kim, W. C., Kovacevic, S., & Murray, K. (1991). UIDE—an intelligent user

interface design environment. Paper presented at the Intelligent user interfaces.

Folmer, E., & Bosch, J. (2004). Architecting for usability: a survey. Journal of Systems

and Software, 70(1), 61-78.

Fonseca, J. (2010). W3C Model-Based UI XG Final Report, May 2010.

Foster, J. J. (2001). Data Analysis Using SPSS for Windows Versions 8-10: A

Beginner's Guide: Sage.

Freiberg, M., & Baumeister, J. (2008). A survey on usability evaluation techniques and

an analysis of their actual application. Institute of Computer Science, University

of Wurzburg, Germany.

Gajos, K., & Weld, D. S. (2004). SUPPLE: automatically generating user interfaces.

Paper presented at the Proceedings of the 9th international conference on

Intelligent user interfaces.

Galitz, W. O. (2007). The essential guide to user interface design: an introduction to

GUI design principles and techniques: John Wiley & Sons.

Garlan, D., & Shaw, M. (1993). An introduction to software architecture. Advances in

software engineering and knowledge engineering, 1(3.4).

Gena, C., & Torre, I. (2004). The importance of adaptivity to provide onboard services:

A preliminary evaluation of an adaptive tourist information service onboard

vehicles. Applied Artificial Intelligence.

George, D., & Mallery, M. (2003). Using SPSS for Windows step by step: a simple

guide and reference.

Gerhardt-Powals, J., Javecchia, H., Andriole, S., & Miller III, R. (1995). Cognitive

redesign of submarine displays. Cognitive Systems Engineering for User-

computer Interface Design, Prototyping, and Evaluation. Lawrence Erlbaum

Associates, Inc., New York, 194-231.

134

Gill, N. S., & Grover, P. (2004). Few important considerations for deriving interface

complexity metric for component-based systems. ACM SIGSOFT Software

Engineering Notes, 29(2), 4-4.

Gilmore, S., Hillston, J., Kloul, L., & Ribaudo, M. (2003). PEPA nets: a structured

performance modelling formalism. Performance Evaluation, 54(2), 79-104.

Giorgi, G., Guerraggio, A., & Thierfelder, J. (2004). Mathematics of optimization:

smooth and nonsmooth case: Elsevier.

Gliem, J. A., & Gliem, R. R. (2003). Calculating, interpreting, and reporting Cronbach‘s

alpha reliability coefficient for Likert-type scales.

Goh, Y., & Case, K. (2016). Advances in Manufacturing Technology XXX:

Proceedings of the 14th International Conference on Manufacturing Research,

Incorporating the 31st National Conference on Manufacturing Research,

September 6–8, 2016, Loughborough University, UK (Vol. 3): IOS Press.

Golovine, J. C. R. R. (2013). Experimental user interface design toolkit for interaction

research (IDTR).

González, M. P., Lorés, J., & Granollers, A. (2008). Enhancing usability testing through

datamining techniques: A novel approach to detecting usability problem patterns

for a context of use. Information and Software Technology, 50(6), 547-568.

Google, I. (2011). Google+ – interests, communities, discovery. Retrieved from

https://itunes.apple.com/gb/app/google-interests-communities-

discovery/id447119634?mt=8

Göransson, B., Gulliksen, J., & Boivie, I. (2004). The Usability Design Process–

Integrating User-centered Systems Design in the Software Development Process

Research Section.

Grayetter, F., & Wallnau, L. (2014). Essentials of statistics for the behavioral sciences:

Belmont, CA: Wadsworth.

Griffiths, T., Barclay, P. J., Paton, N. W., McKirdy, J., Kennedy, J., Gray, P. D., . . . da

Silva, P. P. (2001). Teallach: a model-based user interface development

environment for object databases. Interacting with Computers, 14(1), 31-68.

Grumberg, O., & Long, D. E. (1994). Model checking and modular verification. ACM

Transactions on Programming Languages and Systems (TOPLAS), 16(3), 843-

871.

135

Gulliksen, J., Harning, M. B., Palanque, P., Van der Veer, G., & Wesson, J. (2009).

Engineering Interactive Systems.

Gulliksen, J., Harning, M.B., Palanque, P., van der Veer, G.C., Wesson, J. (2007, March

2007). Engineering Interactive Systems-EIS 2007 Joint Working Conferences

EHCI 2007, DSV-IS 2007, HCSE 2007, Selected Papers. Paper presented at the

Engineering Interactive Systems-EIS 2007 Joint Working Conferences EHCI

2007, DSV-IS 2007, HCSE 2007, Salamanca, Spain.

Gumtree.com. (2009). Gumtree Classifieds: Buy & Sell - Local for Sale. Retrieved

from https://itunes.apple.com/gb/app/gumtree-classifieds-buy-sell-local-for-

sale/id487946174?mt=8

Hair, J., Anderson, R., Tatham, R., & Black, W. (2003). Multivariate data analysis.

Peasrson Education: India.

Hamborg, K.-C., Vehse, B., & Bludau, H.-B. (2004). Questionnaire based usability

evaluation of hospital information systems. Electronic journal of information

systems evaluation, 7(1), 21-30.

Han, S. H., Yun, M. H., Kwahk, J., & Hong, S. W. (2001). Usability of consumer

electronic products. International journal of industrial ergonomics, 28(3), 143-

151.

Harms, I., & Schweibenz, W. (2000). Testing web usability. Information Management

& Consulting, 15(3), 61-66.

Hartson, H. R., Andre, T. S., & Williges, R. C. (2001). Criteria for evaluating usability

evaluation methods. International journal of human-computer interaction, 13(4),

373-410.

Hayes, P. J., Szekely, P. A., & Lerner, R. A. (1985). Design alternatives for user

interface management sytems based on experience with COUSIN. Paper

presented at the ACM SIGCHI Bulletin.

Henderson-Sellers, B. (1995). Object-oriented metrics: measures of complexity:

Prentice-Hall, Inc.

Henson, M. C., & Reeves, S. (2000). Investigating Z. Journal of Logic and

Computation, 10(1), 43-73.

136

Heymann, M., & Degani, A. (2007). Formal analysis and automatic generation of user

interfaces: Approach, methodology, and an algorithm. Human Factors, 49(2),

311-330.

Hillston, J., & Kloul, L. (2006). A function-equivalent components based simplification

technique for PEPA models. Paper presented at the European Performance

Engineering Workshop.

Hinton, A., Kwiatkowska, M., Norman, G., & Parker, D. (2006). PRISM: A tool for

automatic verification of probabilistic systems. Paper presented at the

International Conference on Tools and Algorithms for the Construction and

Analysis of Systems.

Hix, D., Gabbard, J. L., Swan, J. E., Livingston, M. A., Hollerer, T., Julier, S. J., . . .

Brown, D. (2004). A cost-effective usability evaluation progression for novel

interactive systems. Paper presented at the System Sciences, 2004. Proceedings

of the 37th Annual Hawaii International Conference on.

Hoegh, R. T., Nielsen, C. M., Overgaard, M., Pedersen, M. B., & Stage, J. (2006). The

impact of usability reports and user test observations on developers'

understanding of usability data: An exploratory study. International journal of

human-computer interaction, 21(2), 173-196.

Holzinger, A. (2005). Usability engineering methods for software developers.

Communications of the ACM, 48(1), 71-74.

Hood, W. W., & Wilson, C. S. (2002). Solving problems in library and information

science using fuzzy set theory. Library trends, 50(3), 393.

Hsieh, S., & Huang, S. (2008). Usability Evaluation: A Case Study. Paper presented at

the APIEMS 2008 Proceedings of the 9th Asia Pacific Industrial Engineering &

Management Systems Conference.

Ihnissi, R., & Lu, J. (2014). An investigation into the problems of user oriented

interfaces in mobile applications. Paper presented at the Proceedings on the

International Conference on Internet Computing (ICOMP), Las Vegas, USA,

2014, pp. 100-106.

Ihnissi, R., & Lu, J. (2015). An Investigation into Game Based Learning Using High

Level Programming Languages In: Proceedings of the Fifth International

137

Conference on Advanced Communications and Computation. INFOCOMP

(2015). IARIA, Brussels, pp. 99-104.

Imaz, M., & Benyon, D. (2007). Designing with blends: Conceptual foundations of

human-computer interaction and software engineering methods: Cambridge,

MA: The MIT Press.

Institution, B. S. (1998). Ergonomic Requirements for Office Work with Visual Display

Terminals (VDTs).: Guidance on Usability: International Organization for

Standardization.

Iqbal, M., & Warraich, N. F. (2016). Usability evaluation of an academic library

website: A case of the University of the Punjab. Pakistan Journal of Information

Management & Libraries (PJIM&L), 13.

ISO, I. (1999). IEC 14598-4: Software Engineering-Product Evaluation-Part 4-Process

for Acquirers. International Organization for Standardization, Geneva,

Switzerland.

Iso, I. (2002). IEC 13568: 2002: Information technology–Z formal specification

notation–Syntax, type system and semantics. ISO (International Organization for

Standardization), Geneva, Switzerland.

Iso, I., & Std, I. (2001). 9126 Software product evaluation–quality characteristics and

guidelines for their use. ISO/IEC Standard, 9126.

Jacob, R. J. (1983). Using formal specifications in the design of a human-computer

interface. Communications of the ACM, 26(4), 259-264.

Jacob, R. J. (2003). User interface.

Jadhav, D., Bhutkar, G., & Mehta, V. (2013). Usability evaluation of messenger

applications for Android phones using cognitive walkthrough. Paper presented

at the Proceedings of the 11th Asia Pacific Conference on Computer Human

Interaction.

Jakob, N. (1993). Usability engineering. Fremont, California: Morgan.

Jakob, N., & Mack Robert, L. (1994). Usability inspection methods. CHI Tutorials,

413-414.

Janssen, C., Weisbecker, A., & Ziegler, J. (1993). Generating user interfaces from data

models and dialogue net specifications. Paper presented at the Proceedings of

138

the INTERACT'93 and CHI'93 conference on human factors in computing

systems.

Jech, T. (2013). Set theory: Springer Science & Business Media.

Jeffrey, R., & Chisnell, D. (1994). Handbook of usability testing: how to plan, design,

and conduct effective tests: New York John Wiley Sons.

Jeng, J. (2005). Usability assessment of academic digital libraries: effectiveness,

efficiency, satisfaction, and learnability. Libri, 55(2-3), 96-121.

Jennifer, P., Yvonne, R., & Helen, S. (2002). Interaction design: beyond

humancomputer interaction). New York. John Wiley & Sons, Inc.

Jensen, K., & Kristensen, L. M. (2009). Coloured Petri nets: modelling and validation

of concurrent systems: Springer Science & Business Media.

Jensen, K., Kristensen, L. M., & Wells, L. (2007). Coloured Petri Nets and CPN Tools

for modelling and validation of concurrent systems. International Journal on

Software Tools for Technology Transfer, 9(3-4), 213-254.

Ji, Y. G., Park, J. H., Lee, C., & Yun, M. H. (2006). A usability checklist for the

usability evaluation of mobile phone user interface. International journal of

human-computer interaction, 20(3), 207-231.

Jordan, P. W. (2002). Designing pleasurable products: An introduction to the new

human factors: CRC press.

Juristo, N. (2009). Impact of usability on software requirements and design Software

Engineering (pp. 55-77): Springer.

Juristo, N., Moreno, A. M., & Sanchez-Segura, M.-I. (2007a). Analysing the impact of

usability on software design. Journal of Systems and Software, 80(9), 1506-

1516.

Juristo, N., Moreno, A. M., & Sanchez-Segura, M.-I. (2007b). Guidelines for eliciting

usability functionalities. IEEE Transactions on Software Engineering, 33(11).

Kalnins, R. D., Markosian, L., Meier, B. J., Kowalski, M. A., Lee, J. C., Davidson, P.

L., . . . Finkelstein, A. (2002). WYSIWYG NPR: Drawing strokes directly on

3D models. ACM Transactions on Graphics (TOG), 21(3), 755-762.

Kang, H. G., & Seong, P. H. (1998). An information theory-based approach for

quantitative evaluation of user interface complexity. IEEE Transactions on

Nuclear Science, 45(6), 3165-3174.

139

Karat, C.-M. (1993). Usability engineering in dollars and cents. IEEE software, 10(3),

88-89.

Karray, F., Alemzadeh, M., Saleh, J. A., & Arab, M. N. (2008). Human-computer

interaction: Overview on state of the art.

Katoen, J.-P. (2008). Perspectives in probabilistic verification. Paper presented at the

Theoretical Aspects of Software Engineering, 2008. TASE'08. 2nd IFIP/IEEE

International Symposium on.

Kennard, R., & Steele, R. (2008). Application of software mining to automatic user

interface generation. Paper presented at the International Conference on

Software Methods and Tools.

Kennard, R. D. (2011). Derivation of a general purpose architecture for automatic user

interface generation.

Kieras, D. (2009). Model-based evaluation. The Human-Computer Interaction:

Development Process, 294-310.

Kindersley, D. (2012). DK Quiz Game. Retrieved from

https://itunes.apple.com/gb/app/dk-quiz/id556884950?mt=8

Kirakowski, J. (2000). Questionnaires in usability engineering. Human Factors

Research Group, Cork, Ireland.

Kohlas, J., Meyer, B., & Schiper, A. (2006). Dependable systems: software, computing,

networks: research results of the DICS program (Vol. 4028): Springer.

Kong, J., Zhang, K., Dong, J., & Xu, D. (2009). Specifying behavioral semantics of

UML diagrams through graph transformations. Journal of Systems and

Software, 82(2), 292-306.

Kühne, T. (2006). Matters of (meta-) modeling. Software and Systems Modeling, 5(4),

369-385.

Kumari, U., & Upadhyaya, S. (2011). An interface complexity measure for component-

based software systems. International Journal of Computer Applications, 36(1),

46-52.

Kwiatkowska, M., Norman, G., & Parker, D. (2007). Stochastic model checking. Paper

presented at the International School on Formal Methods for the Design of

Computer, Communication and Software Systems.

140

Larson, K., & Czerwinski, M. (1998). Web page design: Implications of memory,

structure and scent for information retrieval. Paper presented at the Proceedings

of the SIGCHI conference on Human factors in computing systems.

Lazar, J., Feng, J. H., & Hochheiser, H. (2010). Research methods in human-computer

interaction: John Wiley & Sons.

Lazar, J., Feng, J. H., & Hochheiser, H. (2017). Research methods in human-computer

interaction: Morgan Kaufmann.

Lecerof, A., & Paternò, F. (1998). Automatic support for usability evaluation. IEEE

Transactions on Software Engineering, 24(10), 863-888.

Lepreux, S., Vanderdonckt, J., & Michotte, B. (2006). Visual design of user interfaces

by (de) composition. Paper presented at the International Workshop on Design,

Specification, and Verification of Interactive Systems.

Lewis, C., & Wharton, C. (1997). Cognitive walkthroughs. Handbook of human-

computer interaction, 2, 717-732.

Lewis, J. R. (1992). Psychometric evaluation of the post-study system usability

questionnaire: The PSSUQ. Paper presented at the Proceedings of the Human

Factors and Ergonomics Society Annual Meeting.

Lewis, J. (1993). IBM computer usability satisfaction questionnaires: Psychometric

evaluation and instructions for use (Tech. Report 54.786). Boca Raton, FL: IBM

Corp.

Lewis, J. R. (1995). IBM computer usability satisfaction questionnaires: psychometric

evaluation and instructions for use. International Journal of Human‐Computer

Interaction, 7(1), 57-78.

Lewis, J. R. (2002). Psychometric evaluation of the PSSUQ using data from five years

of usability studies. International Journal of Human-Computer Interaction, 14(3-

4), 463-488.

Lewis, J. R. (2006a). Sample sizes for usability tests: mostly math, not magic.

interactions, 13(6), 29-33.

Lewis, J. R. (2006b). Usability testing. Handbook of human factors and ergonomics, 12,

e30.

Likert, R. (1932). A technique for the measurement of attitudes. Archives of

psychology.

141

Limbourg, Q., & Vanderdonckt, J. (2005). Transformational development of user

interfaces with graph transformations Computer-Aided Design of User

Interfaces IV (pp. 107-120): Springer.

Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, L., & Florins, M. (2004).

USIXML: A User Interface Description Language Supporting Multiple Levels

of Independence. Paper presented at the ICWE Workshops.

Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, L., & López-Jaquero, V.

(2004). USIXML: a language supporting multi-path development of user

interfaces. Paper presented at the International Workshop on Design,

Specification, and Verification of Interactive Systems.

Loer, K., & Harrison, M. (2000). Formal interactive systems analysis and usability

inspection methods: two incompatible worlds? Paper presented at the

International Workshop on Design, Specification, and Verification of Interactive

Systems.

Loer, K., & Harrison, M. (2002). Towards usable and relevant model checking

techniques for the analysis of dependable interactive systems. Paper presented at

the Automated Software Engineering, 2002. Proceedings. ASE 2002. 17th IEEE

International Conference on.

Loer, K., & Harrison, M. D. (2006). An integrated framework for the analysis of

dependable interactive systems (IFADIS): Its tool support and evaluation.

Automated Software Engineering, 13(4), 469-496.

Lonczewski, F., & Schreiber, S. (1996). The FUSE-System: an Integrated User

Interface Design Environment. Paper presented at the CADUI.

Long, J. (1989). Cognitive ergonomics and human-computer interaction (Vol. 1):

Cambridge University Press.

López-Espin, J., Gallud, J., Lazcorreta, E., Peñalver, A., & Botella, F. (2011). A formal

view of distributed user interfaces. Paper presented at the Distributed User

Interfaces CHI 2011 Workshop, University of Castilla-La Mancha, Spain.

Love, S. (2005). Understanding mobile human-computer interaction: Butterworth-

Heinemann.

LTD, L. (2011). C/C++ Quiz. Retrieved from https://itunes.apple.com/us/app/c-c++-

quiz/id464252579?mt=8

142

Maalem, S., & Zarour, N. (2016). Challenge of validation in requirements engineering.

Journal of Innovation in Digital Ecosystems, 3(1), 15-21.

Macaulay, M. (1996). ASKING TO ASK: THE STRATEGTC FUNCTION OF

INDIRECT REQUESTS FOR INFORMATTON TN INTERVIEWS.

Macik, M., Cerny, T., & Slavik, P. (2014). Context-sensitive, cross-platform user

interface generation. Journal on Multimodal User Interfaces, 8(2), 217-229.

Macleod, M. (1994). Usability in context: Improving quality of use. Paper presented at

the Human Factors in Organizational Design and Management–IV (Proceedings

of the International Ergonomics Association 4th International Symposium on

Human Factors in Organizational Design and Management, Stockholm.

Madan, A., & Dubey, S. K. (2012). Usability evaluation methods: a literature review.

International Journal of Engineering Science and Technology, 4(2), 590-599.

Maguire, M. (2001). Context of use within usability activities. International Journal of

Human-Computer Studies, 55(4), 453-483.

Markopoulos, P., Pycock, J., Wilson, S., & Johnson, P. (1992). Adept-A task based

design environment. Paper presented at the System Sciences, 1992. Proceedings

of the Twenty-Fifth Hawaii International Conference on.

Marshall, E., & Boggis, E. (2016). The Statistics Tutor's Quick Guide to Commonly

Used Statistical Tests. University of Sheffield. Available online: http://www.

statstutor. ac.uk/resources/uploaded/tutorsquickguidetostatistics. pdf.

Martelli, S., Nofrini, L., Vendruscolo, P., & Visani, A. (2003). Criteria of interface

evaluation for computer assisted surgery systems. International journal of

medical informatics, 72(1), 35-45.

Märtin, C. (1996). Software Life Cycle Automation for Interactive Applications: The

AME Design Environment. Paper presented at the CADUI.

Martínez-Pérez, B., De La Torre-Díez, I., López-Coronado, M., & Herreros-González,

J. (2013). Mobile apps in cardiology. JMIR mHealth and uHealth, 1(2).

Marucci, L., Paterno, F., & Santoro, C. (2003). Supporting Interactions with Multiple

Platforms Through User and Task Models. Multiple User Interfaces, Cross-

Platform Applications and Context-Aware Interfaces, 217-238.

McCabe, T. J. (1976). A complexity measure. IEEE Transactions on Software

Engineering(4), 308-320.

http://www/

143

Meedeniya, D. A. (2013). Correct model-to-model transformation for formal

verification. University of St Andrews.

Meixner, G., Paterno, F., & Vanderdonckt, J. (2011). Past, present, and future of model-

based user interface development. i-com 10 (3): 2-11, 2011.

Meskens, J., Loskyll, M., Seiβler, M., Luyten, K., Coninx, K., & Meixner, G. (2011).

GUIDE2ux: a GUI design environment for enhancing the user experience. Paper

presented at the Proceedings of the 3rd ACM SIGCHI symposium on

Engineering interactive computing systems.

Metzker, E., & Offergeld, M. (2001). An interdisciplinary approach for successfully

integrating human-centered design methods into development processes

practiced by industrial software development organizations Engineering for

Human-Computer Interaction (pp. 19-33): Springer.

Miller, D. P. (1981). The depth/breadth tradeoff in hierarchical computer menus. Paper

presented at the Proceedings of the Human Factors Society Annual Meeting.

Mital, A., & Pennathur, A. (2004). Advanced technologies and humans in

manufacturing workplaces: an interdependent relationship. International journal

of industrial ergonomics, 33(4), 295-313.

Mohamed, I., & Patel, D. (2015). Android vs iOS security: A comparative study. Paper

presented at the Information Technology-New Generations (ITNG), 2015 12th

International Conference on.

Moliterni, R. (2008). Proceedings of the 11th Toulon-Verona International Conference

on Quality in Services (Vol. 44): Firenze University Press.

Mori, G., Paterno, F., & Santoro, C. (2004). Design and development of multidevice

user interfaces through multiple logical descriptions. IEEE Transactions on

Software Engineering, 30(8), 507-520.

Mori, G., Paternò, F., & Santoro, C. (2003). Tool support for designing nomadic

applications. Paper presented at the Proceedings of the 8th international

conference on Intelligent user interfaces.

Morowitz, H. (1995). The emergence of complexity. Complexity, 1(1), 4-5.

Mosbahi, O., Ayed, L. J. B., & Khalgui, M. (2011). A formal approach for the

development of reactive systems. Information and Software Technology, 53(1),

14-33.

144

Moschoyiannis, S., Shields, M. W., & Krause, P. J. (2005). Modelling component

behaviour with concurrent automata. Electronic Notes in Theoretical Computer

Science, 141(3), 199-220.

Moussa, I., Pacalet, R., Blasquez, J., van Hulst, M., Fedeli, A., Lambert, J.-L., . . .

Bricaud, P. (2002). Formal verification techniques: industrial status and

perspectives. Paper presented at the Design, Automation and Test in Europe

Conference and Exhibition, 2002. Proceedings.

Muji, M. (2015). Logical Operators for the Data-oriented Design of the User Interfaces.

Procedia Technology, 19, 810-815.

Munzner, T. (2000). Interactive visualization of large graphs and networks. Citeseer.

Myers, B. (1994). Challenges of HCI design and implementation. interactions, 1(1), 73-

83.

Myers, B., Hudson, S. E., & Pausch, R. (2000). Past, present, and future of user

interface software tools. ACM Transactions on Computer-Human Interaction

(TOCHI), 7(1), 3-28.

Myers, B. A. (1992). State of the art in user interface software tools: Carnegie-Mellon

University. Department of Computer Science.

Myers, B. A. (1993). Why are human-computer interfaces difficult to design and

implement: DTIC Document.

Myers, B. A. (1995). User interface software tools. ACM Transactions on Computer-

Human Interaction (TOCHI), 2(1), 64-103.

Myers, B. A., & Rosson, M. B. (1992). Survey on user interface programming. Paper

presented at the Proceedings of the SIGCHI conference on Human factors in

computing systems.

Navarre, D., Palanque, P., Bastide, R., Schyn, A., Winckler, M., Nedel, L., & Freitas, C.

(2005). A formal description of multimodal interaction techniques for immersive

virtual reality applications. Human-Computer Interaction-INTERACT 2005,

170-183.

Navarre, D., Palanque, P., Ladry, J.-F., & Barboni, E. (2009). ICOs: A model-based

user interface description technique dedicated to interactive systems addressing

usability, reliability and scalability. ACM Transactions on Computer-Human

Interaction (TOCHI), 16(4), 18.

145

Nielsen, J. (1993a). Is usability engineering really worth it. IEEE software, 10(6), 90-

92.

Nielsen, J. (1993b). Usability Engineering, Academic Pres-s pp. 191-194.

Nielsen, J. (1994a). Usability engineering: Elsevier.

Nielsen, J. (1994b). Usability inspection methods. Paper presented at the Conference

companion on Human factors in computing systems.

Nielsen, J. (1995). Usability inspection methods. Paper presented at the Conference

companion on Human factors in computing systems.

Nielsen, J., & Molich, R. (1990). Heuristic evaluation of user interfaces. Paper

presented at the Proceedings of the SIGCHI conference on Human factors in

computing systems.

Oates, B. J. (2005). Researching information systems and computing: Sage.

och Dag, J. N., Regnell, B., Madsen, O. S., & Aurum, A. (2001). An industrial case

study of usability evaluation in market-driven packaged software development.

Paper presented at the 9th International Conference on Human-Computer

Interaction.

Odeh, S., & Adwan, I. O. (2009). A Usability Testing Approach to Evaluate User-

Interfaces in Business Administration. World Academy of Science, Engineering

and Technology, International Journal of Social, Behavioral, Educational,

Economic, Business and Industrial Engineering, 3(7), 1582-1591.

Oracle. (2009). GUIBUILDER Downloads. Retrieved 13/12/2016, from

https://netbeans.org/projects/guibuilder/downloads

Pallant, J., & Manual, S. S. (2010). A step by step guide to data analysis using SPSS.

Berkshire UK: McGraw-Hill Education.

Pallant, J. (2013). SPSS survival manual: McGraw-Hill Education (UK).

Paterno, F. (2012). Model-based design and evaluation of interactive applications:

Springer Science & Business Media.

Park, J., Han, S. H., Kim, H. K., Cho, Y., & Park, W. (2013). Developing elements of

user experience for mobile phones and services: survey, interview, and

observation approaches. Human Factors and Ergonomics in Manufacturing &

Service Industries, 23(4), 279-293.

146

Paternò, F., Mancini, C., & Meniconi, S. (1997). ConcurTaskTrees: A diagrammatic

notation for specifying task models. Paper presented at the Human-Computer

Interaction INTERACT‘97.

Paterno, F., Santoro, C., & Spano, L. D. (2009). MARIA: A universal, declarative,

multiple abstraction-level language for service-oriented applications in

ubiquitous environments. ACM Transactions on Computer-Human Interaction

(TOCHI), 16(4), 19.

Pedhazur, E. J., & Schmelkin, L. P. (2013). Measurement, design, and analysis: An

integrated approach: Psychology Press.

Peñalver, A., Lazcorreta, E., López, J., Botella, F., & Gallud, J. (2012). Schema driven

distributed user interface generation. Paper presented at the Proceedings of the

13th International Conference on Interacción Persona-Ordenador.

Piroi, F. (2004). User interface features in Theorema: A summary. Paper presented at

the Mathematical User-Interfaces Workshop.

Polson, P. G., Lewis, C., Rieman, J., & Wharton, C. (1992). Cognitive walkthroughs: a

method for theory-based evaluation of user interfaces. International Journal of

man-machine studies, 36(5), 741-773.

Preece, J. (1993). Hypermedia, multimedia and human factors. Interactive multimedia:

Practice and promise, 135-150.

Preece, J., Rogers, Y., Sharp, H., Benyon, D., Holland, S., & Carey, T. (1994). Human-

computer interaction Reading. MA: Addison-Wesley.

Pressman, R. S. (2005). Software engineering: a practitioner's approach: Palgrave

Macmillan.

Puerta, A., & Eisenstein, J. (1998). Interactively mapping task models to interfaces in

MOBI-D. Paper presented at the Design, Specification and Verification of

Interactive Systems.

Puerta, A., & Eisenstein, J. (2002). XIML: a common representation for interaction

data. Paper presented at the Proceedings of the 7th international conference on

Intelligent user interfaces.

Puerta, A. R. (1996). The MECANO Project: Comprehensive and Integrated Support

for Model-Based Interface Development. Paper presented at the CADUI.

147

Puerta, A. R., & Szkeley, P. (1994). Model-based interface development. Paper

presented at the Conference companion on Human factors in computing

systems.

Quesenbery, W. (2004). Balancing the 5Es of Usability. Cutter IT Journal, 17(2), 4-11.

Radatz, J., Geraci, A., & Katki, F. (1990). IEEE standard glossary of software

engineering terminology. IEEE Std, 610121990(121990), 3.

Rafe, V., Rahmani, A. T., Baresi, L., & Spoletini, P. (2009). Towards automated

verification of layered graph transformation specifications. IET software, 3(4),

276-291.

Rauf, A., Rehman, S. U., Batool, S., & Ali, S. A. (2010). Survey based usability

evaluation of MS Word. Paper presented at the User Science and Engineering (i-

USEr), 2010 International Conference on.

Ribeiro, L., Dotti, F. L., & Bardohl, R. (2005). A formal framework for the

development of concurrent object-based systems Formal Methods in Software

and Systems Modeling (pp. 385-401): Springer.

Rieman, J., Clayton, L., & Peter, P. (1993). The cognitive walkthrough method: A

practitioner‘s guide: Technical report, Institute of Cognitive Science, University

of Colorado.

Riihiaho, S. (2000). Experiences with usability evaluation methods. Licentiate thesis.

Helsinki University of Technology. Laboratory of Information Processing

Science.

Riza, L. S., Janusz, A., Slezak, D., Cornelis, C., Herrera, F., Benitez, J. M., . . .

Stawicki, S. (2015). Package ‗RoughSets‘.

Rockinson-Szapkiw, A. (2013). Statistics guide.

Rogers, Y., Sharp, H., & Preece, J. (2011a). Data Gathering. Interaction Design:

Beyond Human-computer Interaction, 3rd Edition, 222-268.

Rogers, Y., Sharp, H., & Preece, J. (2011b). Interaction design: Beyond human-

computer interaction . Chichester: West Sussex, UK: Wiley.

Root, R. W., & Draper, S. (1983). Questionnaires as a software evaluation tool. Paper

presented at the Proceedings of the SIGCHI conference on Human Factors in

Computing Systems.

Rosenthal, D. (1988). A Simple X11 Client Program-or-How hard can it really be to

write" Hello, World"? Paper presented at the USENIX Winter.

148

Rosnow, R. L., & Rosenthal, R. (1996). Beginning behavioral research: A conceptual

primer: Prentice-Hall, Inc.

Ross, T., & Burnett, G. (2001). Evaluating the human–machine interface to vehicle

navigation systems as an example of ubiquitous computing. International

Journal of Human-Computer Studies, 55(4), 661-674.

Rosson, M. B., & Carroll, J. M. (2002). Usability engineering: scenario-based

development of human-computer interaction.

Rubin, J. (1994). Handbook of Usability Testing. How to Plan. Design. and Conduct

Effective Tests. Jolm Wiley & Sons: Inc.

Rubin, J., & Chisnell, D. (2008). Handbook of usability testing: how to plan, design and

conduct effective tests: John Wiley & Sons.

Rukshan, A., & Baravalle, A. (2012). Automated usability testing: Analysing asia web

sites. arXiv preprint arXiv:1212.1849.

Rumbaugh, J., Jacobson, I., & Booch, G. (2004). Unified modeling language reference

manual, the: Pearson Higher Education.

Russell, S. (2000). ISO 9000: 2000 and the EFQM excellence model: competition or co-

operation? Total quality management, 11(4-6), 657-665.

Ryu, Y. S. (2005). Development of usability questionnaires for electronic mobile

products and decision making methods.

Sahami Shirazi, A., Henze, N., Schmidt, A., Goldberg, R., Schmidt, B., & Schmauder,

H. (2013). Insights into layout patterns of mobile user interfaces by an automatic

analysis of android apps. Paper presented at the Proceedings of the 5th ACM

SIGCHI symposium on Engineering interactive computing systems.

Salman, N. (2006). Complexity metrics as predictors of maintainability and integrability

of software components. Cankaya University Journal of Arts and Sciences, 1(5).

Santoro, C. (2005). A Task Model-based Approach for Design and Evaluation of

Innovative User Interfaces: Presses univ. de Louvain.

Satyavathy, G., & RachelBlessie, M. (2017). Human–Computer Interaction. Digital

Signal Processing, 9(1), 4-6.

Sauro, J., & Lewis, J. R. (2011). When designing usability questionnaires, does it hurt

to be positive? Paper presented at the Proceedings of the SIGCHI Conference on

Human Factors in Computing Systems.

149

Schlungbaum, E. (1996). Model-based user interface software tools-current state of

declarative models: Georgia Institute of Technology.

Schnall, R., Cimino, J. J., & Bakken, S. (2012). Development of a prototype continuity

of care record with context-specific links to meet the information needs of case

managers for persons living with HIV. International journal of medical

informatics, 81(8), 549-555.

Schoeller, B., Widmer, T., & Meyer, B. (2006). Making specifications complete

through models Architecting Systems with Trustworthy Components (pp. 48-

70): Springer.

Scholtz, J. (2004). Usability evaluation. National Institute of Standards and Technology.

Seidewitz, E. (2003). What models mean. IEEE software, 20(5), 26-32.

Selic, B. (2003). The pragmatics of model-driven development. IEEE software, 20(5),

19-25.

Shackel, B. (2009). Usability–Context, framework, definition, design and evaluation.

Interacting with Computers, 21(5-6), 339-346.

Shackel, B., & Richardson, S. J. (1991). Human factors for informatics usability:

Cambridge university press.

Sharma, A., & Singh, M. (2013). Comparison of the Formal Specification Languages

Based Upon Various Parameters. IOSR Journal of Computer Engineering

(IOSR-JCE), 11(5), 37-39.

Sharp, H., Rogers, Y., & Preece, J. (2007). Interaction design: beyond human-computer

interaction.

Shneiderman, B. (2010). Designing the user interface: strategies for effective human-

computer interaction: Pearson Education India.

Shneiderman, B., & Plaisant, C. (2005). Designing the user interface: strategies for

effective. Human-Computer Interaction.

Silva, J. R., & Santos, E. A. d. (2004). Applying Petri nets to requirements validation.

Paper presented at the IFAC Symposium on Information Control Problems in

Manufacturing. Salvador.

Simon, H. (1969). The Architecture of Complexity: Hierarchic Systems, The Science of

the Artificial. MIT Press, Cambridge, MA.

150

Sinnig, D. (2004). The complicity of patterns and model-based UI development.

Concordia University.

Šnajberk, J. (2013). Pokročilá interaktivní zobrazování komponentového softwaru.

Soley, R. (2000). Model driven architecture. OMG white paper, 308(308), 5.

Spencer, D. (2004). What is usability? University of Melbourne, Melbourne, 108-115.

Stone, D., Jarrett, C., Woodroffe, M., & Minocha, S. (2005). User interface design and

evaluation: Morgan Kaufmann.

Studio, M. V. (2017, 26/04/2017). Any Developer, Any App, Any Platform. Retrieved

26/04/2017, from https://www.visualstudio.com/

Symantec, N. (2014). Internet security threat report 2014 (Vol. 19).

Szekely, P. (1995). User interface prototyping: Tools and techniques. Paper presented at

the Software Engineering and Human-Computer Interaction.

Szekely, P., Luo, P., & Neches, R. (1992). Facilitating the exploration of interface

design alternatives: the HUMANOID model of interface design. Paper presented

at the Proceedings of the SIGCHI conference on Human factors in computing

systems.

Szekely, P., Sukaviriya, P., Castells, P., Muthukumarasamy, J., & Salcher, E. (1996).

Declarative interface models for user interface construction tools: the

MASTERMIND approach Engineering for Human-Computer Interaction (pp.

120-150): Springer.

Takahara, Y., & Liu, Y. (2006). Transaction Processing System on Browser-Based

Standardized User Interface. Foundations and Applications of Mis: A Model

Theory Approach, 225-257.

Tang, W., Ning, B., Xu, T., & Zhao, L. (2010). Scenario-based modeling and

verification for ctcs-3 system requirement specification. Paper presented at the

Computer Engineering and Technology (ICCET), 2010 2nd International

Conference on.

Taylor, B., & Heath, A. (1996). The use of double-sided items in scale construction.

Center for Research into Elections and Social Trends. Working Paper(37).

Teoh, K., Ong, T., Lim, P., Liong, R. P., & Yap, C. (2009). Explorations on web

usability. American Journal of Applied Sciences, 6(3), 424.

http://www.visualstudio.com/

151

Thimbleby, H. (2004). User interface design with matrix algebra. ACM Transactions on

Computer-Human Interaction (TOCHI), 11(2), 181-236.

Thimbleby, H., Cairns, P., & Jones, M. (2001). Usability analysis with Markov models.

ACM Transactions on Computer-Human Interaction (TOCHI), 8(2), 99-132.

Thompson, K. M., McClure, C. R., & Jaeger, P. T. (2003). Evaluating federal websites:

Improving e-government for the people. Computers in society: Privacy, ethics,

and the Internet, 400-412.

Trætteberg, H. (2002). Using user interface models in design Computer-Aided Design

of User Interfaces III (pp. 131-142): Springer.

Trivedi, M. C., & Khanum, M. A. (2012). Role of context in usability evaluations: A

review. arXiv preprint arXiv:1204.2138.

Trochim, W. (2006). The research methods knowledge base, Retrieved January 11,

2011.

Tullis, T. S., & Stetson, J. N. (2004). A comparison of questionnaires for assessing

website usability. Paper presented at the Usability professional association

conference.

Turner, C. W., Lewis, J. R., & Nielsen, J. (2006). Determining usability test sample

size. International encyclopedia of ergonomics and human factors, 3(2), 3084-

3088.

Utting, M., & Legeard, B. (2010). Practical model-based testing: a tools approach:

Morgan Kaufmann.

Van den Bergh, J., Luyten, K., & Coninx, K. (2011). CAP3: context-sensitive abstract

user interface specification. Paper presented at the Proceedings of the 3rd ACM

SIGCHI symposium on Engineering interactive computing systems.

Vanderdonckt, J. (1994). Guide ergonomique des interfaces homme-machine. Presses

Universitaires de Namur.

Vanderdonckt, J., & Bodart, F. (1996). The ―Corpus Ergonomicus‖: A Comprehensive

and Unique Source for Human-Machine Interface. Paper presented at the

Proceedings of the 1st International Conference on Applied Ergonomics.

Vanderdonckt, J. M., & Bodart, F. (1993). Encapsulating knowledge for intelligent

automatic interaction objects selection. Paper presented at the Proceedings of the

INTERACT'93 and CHI'93 conference on Human factors in computing systems.

152

Walker, M., Takayama, L., & Landay, J. A. (2002). High-fidelity or low-fidelity, paper

or computer? Choosing attributes when testing web prototypes. Paper presented

at the Proceedings of the Human Factors and Ergonomics Society Annual

Meeting.

Warmer, J. B., & Kleppe, A. G. (1998). The object constraint language: Precise

modeling with uml (addison-wesley object technology series).

Weyers, B. (2017). Visual and Formal Modeling of Modularized and Executable User

Interface Models The Handbook of Formal Methods in Human-Computer

Interaction (pp. 125-160): Springer.

Wichansky, A. M. (2000). Usability testing in 2000 and beyond. Ergonomics, 43(7),

998-1006.

Wiecha, C., Bennett, W., Boies, S., Gould, J., & Greene, S. (1990). ITS: a tool for

rapidly developing interactive applications. ACM Transactions on Information

Systems (TOIS), 8(3), 204-236.

Wing, J. M. (1990). A specifier's introduction to formal methods. Computer, 23(9), 8-

22.

Winskel, G. (2010). Set theory for computer science. Unpublished lecture notes.

Wirth, N. (2002). Program development by Stepwise Refinement Software pioneers

(pp. 149-169): Springer.

Wood, P., Breakwell, G., Hammond, S., & Fife-Schaw, C. (2000). Meta-analysis.

Research methods in psychology, 2, 414-425.

Woodcock, J., & Davies, J. (1996). Using Z: specification, refinement, and proof (Vol.

39): Prentice Hall Englewood Cliffs.

Xchange, T. D. (2005, 25/11/2016). Tcl/Tk. Retrieved 26/04/2017, 2005, from

http://www.tcl.tk/

Xing, J. (2004). Measures of information complexity and the implications for

automation design: DTIC Document.

Yang, Y., Tan, Q., & Xiao, Y. (2005). Verifying web services composition based on

hierarchical colored petri nets. Paper presented at the Proceedings of the first

international workshop on Interoperability of heterogeneous information

systems.

http://www.tcl.tk/

153

Youxin, M., Xianghai, M., & Weimin, Y. (2009). Component Based Software Reuse

Key Technology Research and Design. Paper presented at the Information

Technology and Applications, 2009. IFITA'09. International Forum on.

Yu, S., & Zhou, S. (2010). A survey on metric of software complexity. Paper presented

at the Information Management and Engineering (ICIME), 2010 The 2nd IEEE

International Conference on.

Zaharias, P., & Poylymenakou, A. (2009). Developing a usability evaluation method for

e-learning applications: Beyond functional usability. Intl. Journal of Human–

Computer Interaction, 25(1), 75-98.

Zins, A. H., Bauernfeind, U., Del Missier, F., Venturini, A., & Rumetshofer, H. (2004).

An experimental usability test for different destination recommender systems:

na.

Zuse, H. (1993). Criteria for program comprehension derived from software complexity

metrics. Paper presented at the Program Comprehension, 1993. Proceedings.,

IEEE Second Workshop on.

154

Appendices

Appendix A: Quiz game applications description and screen

shoots

1- DK Quiz

DK Quiz is an application that offers an incredible opportunity to practice and develop

one‘s General knowledge skills. The themes included in this quiz application are music,

film, history, food, travel, insects, inventions, plants, sports and animals. The addictive

DK Quiz game might be played either in a solo mode or turn based challenge mode.

Internet connection is not required for playing the solo mode, however, challenge mode

requires internet connection as this mode allows the user to go head-to-head with their

friend by connecting them through the Facebook.

155

Screen

name

Screenshots
Details

DK Quiz

1 image view, 1 text view, 2 button, 4 colours and

2 functions

11 text view, 1 image view, 12 buttons,1 tab bar,

12 colours and 16 functions

3 text view, 1 image view, 2 buttons, 6, 1 rating

bar, 9 colours and 5 functions

5 text view, 1 image view, 2 rating bar, 6 buttons,

7 clours and 10 functions

Figure ‎A.1: Screen shots of model screens for DK UI.

156

2- Duolingo

Duolingo is a free app designed to for people who are avid language learners. Users can

learn Spanish, French, German, Portuguese, Italian, Irish, Dutch, Danish, Swedish and

English with this app. This app has earned high reputation and become widely popular,

The Wall Street Journal stated ―Duolingo may hold the secret to the future of

education‖. The design of language lessons in this app are short, straightforward and

lively that allows the users to complete the lessons and reach next level soon. This

feature of Duolingo app makes it addictive as the users can level up compete with

friends.

157

Screen

name

Screenshots
Details

Duolingo

1 text view, 2 buttons, 2 image view, 3 colours

and 3 functions

62 text views, 2 image view, 62 buttons, 1, tab

bar, 5colours and 65 functions

1 text view,1 image view, 2 buttons, 6 colours

and 3 functions

2 text view, 1 image view, 1 button, 1 table, 5

colour, 2 functions

Figure ‎A.2: Screen shots of model screens for Duolingo UI.

158

3- C/C++ Quiz

C/C++ Quiz app is intended to help programmers to practice and test their C/C++

programming skills. With more than 500 question, this user-friendly app includes C and

C++ MCQs to polish one‘s skills and enhance their programming knowledge. C/C++

Quiz app covers basic concepts, common errors in codes and code snippets and is very

useful tool for candidates preparing for programming Interviews. The user first needs to

select the category for starting the quiz, after which 15 random questions are listed to

solve. Also, C/C++ quiz app allows users to set or adjust the timings for answering the

questions before starting the quiz. On completing the quiz the users can cross check the

answers, the app also provides a graphical analysis of the results.

159

Screen

name

Screenshots
Details

C/C++ Quiz

1 a text view, 4 buttons, 7 colours, 4 functions

8 text views, 5 buttons, 4 colours, 7 function

4 text views, 2 buttons, 1 chart, 8 colours, 4

functions

19 text views, 1 buttons, 1 table, 9 colour and 3

functions

Figure ‎A.3: Screen shots of model screens for C/C++ UI.

160

Appendix B: Social media applications description and screen

shots

1- Google+: interests, discovery, and communities

Google+ offers a great platform that users can use to learn incredible things and enable

passionate people to create, and explore their interests. Google+ allows the users to join

communities of people around various topics, group things they love into various

collections, connect with individuals who share the same interests with them and build

an online stream or home that is filled with remarkable contents based on their interests

or discoveries.

161

Screen

name

Screenshots

Details Google+ - interests,

communities, discovery

2 text view, 1 image view, 1 button, 6 colours

and 1 function

1 collection view, 9 button, 3 text view, 3

image view,1 tab bar, 3 colours and 19

functions

1 collection view, 1 default cell style, 11, 1

search bar, buttons, 5 colours and 16

functions

4 text view, 2 image view, 7 buttons, 1 video

view, 1 default cell style, 4 colours and 12

functions

Figure ‎B.1: Screen shots of model screens for Google+ UI.

162

2- Facebook

Facebook keep friends together as faster than ever, allowing the users to share their

thoughts, updates, videos, and photos with their friends, see what their friends share or

what they‘re up to and connect with their friends. Facebook also has salient features

such as GPS, location features, as well as other optional features.

Screen

name

Screenshots
Details

Facebook

1 Image view, 2 text field, 4 buttons, colours, 6

functions

4 text view, 1 search bar, 12 buttons, 1 tab bar, 1

image view, 1 video view, 5 colours and 22

functions

1 default cell style, 4 text view, 2 image view, 1

video view, 1 segmented controls, 9 buttons, 5

colours, 19 functions

1 text view, 3 image view, 1 video view, 14 buttons,

5 colours, 1 segmented controls, 24 functions

Figure ‎B.2: Screen shots of model screens for Facebook UI.

163

3- Gumtree

Gumtree is an online platform where users can find job opportunities, buy and sell new

or used cars, home products or phones and find numerous classified ads of various items

of products from across United Kingdom. Gumtree also have local, housing and pets‘

services among others. Gumtree app allows the users to perform search and customize

the searched results, instantly call or text the sellers or send a message and share the

classified ads on social media such as Twitter, WhatsApp, Google+ and Facebook for

promotion.

164

Screen

name

Screenshots for
Details

Gumtree

7 text view,1 search bar, 2 image view, 3 buttons, 2

collection view, 1 tab bar, 5 colours and 12

functions

4 text view,1 search bar, 2 image view, 2 buttons, 2

collection view, 5 colours and 6 functions

1 default cell style, 4 buttons, 1 segmented controls

, 7 colours, 10 functions

6 text view, 1 image view, 10 buttons, 6 , 1 table,

colours, 12 functions

Figure ‎B.3: Screen shots of model screens for Gumtree UI.

165

Appendix C: Questionnaire of usability

Dear participant,

The aim for conducting the research is to investigate the situation of the iPlayCode and

SC UIs which are designed by new model in order to measure their usability. The

purpose of this questionnaire is to validate the model which has been built.

The information you give will be entirely confidential and will not be shared with any

people not directly connected with this research. Please answer honestly and as

accurately as you can. Your contribution is much appreciated.

Thank you very much for your assistance and cooperation

166

167

168

Appendix D: Comparative analysis of UI design

D.1 Hierarchical structure designs for iPlayCode and existing apps

Figure ‎D.1: Comparison of hierarchical structure design of iPlayCode with other mobile applications.

169

D.2 Hierarchical structure designs for SC and existing apps

Figure ‎D.2: Comparison of hierarchical structure design of SC with other mobile applications.

170

Appendix E: Comparative Analysis of UI elements

E.1 Comparative analysis of single screens for quiz game applications

Table ‎E:1: The comparison of UI elements on single screens for quiz game apps.

Variable

Screens
iPlayCode DK Quiz Duolingo C/C++ quiz

1 text view

3 image

view

2 buttons

1 text Field

7 Colors

5 functions

1 text view

1 image

view

2 button

4 colors

2 function

1 text view

2 image view

2 buttons

3 colors

3 functions

1 text view

4 button

7 colors

4 functions

1 text view

7 buttons

6 colors

7 function

11 text

view

1 image

view

12 buttons

1 tab bar

12 colors

16

functions

62 text view

2 image view

62 buttons

1 tab bar

5 colors

65 functions

8 text view

5 buttons

4 colors

7 functions

2 text view

2 image

view

4 buttons

7 colors

7 functions

3 text view

1 image

view

2 button

1 rating bar

9 colors

5 functions

1 text view

1 image view

2 buttons

6 colors

3 functions

4 text view

2 buttons

8 colors

4 functions

4 text view

3 image

view

1 button

7 colors

9 functions

5 text view

1 image

view

6 buttons

2 rating bar

7 colors

10

functions

2 text view

1 image view

1 button

1 table

5 color

2 functions

19 text view

1 button

1 table

9 colors

3 functions

171

Table ‎E:2: Comparing different average categories of single screens for quiz game apps.

Model screens Category iPlayCode DK Duolingo C/C++

Ss

Control 1.5 2 2 4

Vision 2 1 1.5 1

Content 0 0 0 0

Navigation bar 0 0 0 0

Colour 7 4 3 7

Function 5 2 3 4

Si

Control 7 12 62 5

Vision 1 6 32 8

Content 0 0 0 0

Navigation bar 0 1 1 0

Colour 6 12 5 4

Function 7 16 65 7

Sg

Control 4 2 2 2

Vision 2 2 1 4

Content 0 1 0 0

Navigation bar 0 0 0 0

Colour 7 9 6 8

Function 7 5 3 4

Sinfo

Control 1 6 1 1

Vision 3.5 3 1.5 19

Content 0 2 1 1

Navigation bar 0 0 0 0

Colour 7 7 5 9

Function 9 10 2 3

172

E.2 Comparative analysis of single screens for social media applications

Table ‎E:3: The comparison of UI elements on single screens for social media apps.

Scree

ns
SC Google+ Facebook Gumtree

2 text view

1 image

view

1 button

3 color

1 function

2 text view

1 image view

1 button

6 colors

1 function

2 text view

1 image view

4 buttons

2 colors

6 functions

7 text view

2 image view

3 buttons

1 search bar

2 collection

view

1 tab bar

5 colors

12 functions

3 image

view

12 buttons

1 table

3 colors

15

functions

3 text view

3 image view

9 buttons

1 collection

view

1 tab bar

3 colors

19 functions

4 text view

1 image view

12 buttons

1 video view

1 search bar

1 tab bar

5 colors

22 functions

4 text view

2 image view

2 buttons

2 collection

view

1 search bar

5 colors

6 functions

1 image

view

2 buttons

1 search

bar

1 table

3 colors

2 functions

9 Buttons

1 search bar

1 default cell

style

1 collection

view

5 colors

16 functions

4 text view

2 image view

9 buttons

1 default cell

style

1 segmented

control

1 video view

5 colors

19 functions

4 buttons

1 default cell

style

1 segmented

control

7 colors

10 functions

2 image

view

1 button

1 table

3 colors

1 function

4 text view

2 image view

7 buttons

1 video view

1 default cell

style

4 colors

12 functions

1 text view

3 image view

14 buttons

1 segmented

control

5 colors

24 functions

6 text view

1 image view

10 buttons

1 table

6 colors

12 functions

173

Table ‎E:4: Comparing different average categories of single screens for social media

apps.

Model

screens
Category SC Google+ Facebook Gumtree

Ss

Control 1 1 4 3

Vision 1.5 1.5 1.5 3

Content 0 0 0 0

Navigation

bar
0 0 0 0

Colour 3 6 2 5

Function 1 1 6 12

Si

Control 12 9 12 2

Vision 3 2.33 1.75 2.25

Content 1 0 0 0

Navigation

bar
0 1 1 0

Colour 3 3 5 5

Function 15 19 22 6

Sg

Control 2 9 5 2.5

Vision 1 0 2 1

Content 1 0 0 0

Navigation

bar
0 0 0 0

Colour 3 5 5 7

Function 2 16 19 10

Sinfo

Control 1 7 7.5 10

Vision 2 2 2 3.5

Content 1 0 0 1

Navigation

bar
0 0 0 0

Colour 3 4 5 6

Function 1 12 24 12

174

E.3 Comparative analysis of multiple screens for quiz game applications

Table ‎E:5: Comparing different categories of multiple screens for quiz game apps.

Category iPlayCode DK Duolingo C/C++

Control

1 Button 25 71 99 15

2 Check box 0 0 1 0

3 Radio Button 0 0 3 0

4 Text field 1 3 7 0

5 Progress indicators 1 1 1 0

6 Segmented 0 1 0 0

7 Switch 0 1 6 1

Total 3.86 11 16.7 2.3

Vision

1 Text View 34 39 127 27

2 Image View 9 17 22 0

3 Video view 0 0 1 0

4 Default cell style 0 1 1 0

Total 10.75 14.25 37.75 6.75

Content

1 Screen 6 30 16 6

2 Table 0 1 1 0

3 Charts 0 0 0 1

4 Alert 1 1 2 1

5 Rating bar 0 4 0 0

Total 1.4 7.2 3.8 1.6

Navigation

1 Navigation bar 1 1 1 1

2 Tab bar 0 1 1 0

Total 0.5 1 1 0.5

Colour 16 10 19 14

Total 14.75

Function 36 78 109 21

Total 61

175

E.4 Comparative analysis of multiple screens for social media applications

Table ‎E:6: Comparing different categories of multiple screens for social media apps.

Item SC Google+ Facebook Gumtre

e
Control

1 Button 29 74 96 53

2 Check box 0 5 2 1

3 Radio Button 0 0 7 1

4 Text field 0 28 17 13

5 Segmented 0 2 3 1

6 Switch 0 34 7 5

7 Data Picker 0 0 2 0

8 Picker 0 0 3 0

Total 3.6 17.9 17.1 9.3

Vision

1 Text View 11 40 52 24

2 Image View 15 15 15 10

3 Video View 0 1 1 0

4 Activity View 0 1 0 1

5 Collection View 0 2 9 4

6
Default Cell

Styles

0 3 12 1

Total 4.3 10.2 14.8 6.3

Content

1 Screen 44 39 65 27

2 Table 14 1 0 2

3 Action Sheet 0 1 16 0

4 Alert 2 5 1 0

Total 15 11.5 20.5 7.3

Navigation

1 Navigation bar 1 1 1 1

2 Tool bar 0 1 0 0

3 Tab Bar 0 1 1 1

4 Menu 0 9 12 39

5 Search Bar 1 2 5 3

Total 0.4 2.8 3.8 8.8

Colour 5 7 6 8

Total 6.5

Function 35 141 128 60

Total 91

176

Appendix F: One-way ANOVA test results for iPlayCode,

DK, Duolingo and C/C++

A- single screen

1- Ss screen

Table ‎F:1: ANOVA test of Ss screen for iPlayCode and other apps.

SUMMARY
 Groups Count Sum Average Variance

 iPlayCode 6 15.5 2.583333 8.041667
 DK 6 9 1.5 2.3
 Duolingo 6 9.5 1.583333 1.841667
 C/C++ 6 16 2.666667 7.866667
 ANOVA

 Source of
Variation SS df MS F P-value F crit

Between Groups 7.083333 3 2.361111 0.471 0.706 3.098391

Within Groups 100.25 20 5.0125

 Total 107.3333 23

2- Si screen

Table ‎F:2: ANOVA test of Si screen for iPlayCode and other apps.

SUMMARY
 Groups Count Sum Average Variance

 iPlayCode 6 21 3.5 12.3
 DK 6 47 7.833333 42.56667
 Duolingo 6 165 27.5 916.3
 C/C++ 6 24 4 11.6
 ANOVA

 Source of
Variation SS df MS F P-value F crit

Between Groups 2323.125 3 774.375 3.152 0.048 3.098391

Within Groups 4913.833 20 245.6917

 Total 7236.958 23

177

3- Sg screen

Table ‎F:3: ANOVA test of Sg screen for iPlayCode and other apps.

SUMMARY

Groups Count Sum Average Variance

iPlayCode 6 20 3.333333 10.26667

DK 6 19 3.166667 10.96667

Duolingo 6 12 2 5.2

C/C++ 6 18 3 9.2

ANOVA

Source of Variation SS df MS F P-value F crit

Between Groups 6.458333 3 2.152778 0.242 0.866 3.098391

Within Groups 178.1667 20 8.908333

Total 184.625 23

4- Sinfo screen

Table ‎F:4: ANOVA test of Sinfo screen for iPlayCode and other apps.

SUMMARY

Groups Count Sum Average Variance

iPlayCode 6 20.5 3.416667 14.64167

DK 6 28 4.666667 13.46667

Duolingo 6 10.5 1.75 2.975

C/C++ 6 33 5.5 54.3

ANOVA

Source of
Variation SS df MS F P-value F crit

Between Groups 47.91667 3 15.97222 0.748 0.536 3.098391

Within Groups 426.9167 20 21.34583

Total 474.8333 23

 t-test and f-test Results for Si Screen

178

1- t-test results for Si

Table ‎F:5: t-test results for Si screen between iPlayCode and DK apps.

t-test: Paired Two Sample for Means

 iPlayCode DK
 Mean 3.5 7.833333
 Variance 12.3 42.56667
 Observations 6 6
 Pearson Correlation 0.957099

 Hypothesized Mean Difference 0
 df 5
 t Stat -3.19072
 P(T<=t) one-tail 0.012123
 t Critical one-tail 2.015048
 P(T<=t) two-tail 0.024
 t Critical two-tail 2.570582

Table ‎F:6: t-test results for Si screen between iPlayCode and Duolingo apps.

t-test: Paired Two Sample for Means

 iPlayCode Duolingo

 Mean 3.5 27.5

 Variance 12.3 916.3

 Observations 6 6

 Pearson Correlation 0.703638

 Hypothesized Mean Difference 0

 df 5

 t Stat -2.10602

 P(T<=t) one-tail 0.044535

 t Critical one-tail 2.015048

 P(T<=t) two-tail 0.089

 t Critical two-tail 2.570582

179

Table ‎F:7: t-test results for Si screen between iPlayCode and C/C++ apps.

t-test: Paired Two Sample for Means

 iPlayCode C/C++
 Mean 3.5 4
 Variance 12.3 11.6
 Observations 6 6
 Pearson Correlation 0.535795

 Hypothesized Mean
Difference 0

 df 5
 t Stat -0.36761
 P(T<=t) one-tail 0.364107
 t Critical one-tail 2.015048
 P(T<=t) two-tail 0.728
 t Critical two-tail 2.570582

Table ‎F:8: t-test results for Si screen between DK and Duolingo apps.

t-test: Paired Two Sample for Means

 DK Duolingo
 Mean 7.833333 27.5
 Variance 42.56667 916.3
 Observations 6 6
 Pearson Correlation 0.753947

 Hypothesized Mean Difference 0
 df 5
 t Stat -1.87363
 P(T<=t) one-tail 0.059927
 t Critical one-tail 2.015048
 P(T<=t) two-tail 0.120
 t Critical two-tail 2.570582

180

Table ‎F:9: t-test results for Si screen between DK and C/C++ apps.

t-test: Paired Two Sample for Means

 DK C/C++
 Mean 7.833333 4
 Variance 42.56667 11.6
 Observations 6 6
 Pearson Correlation 0.720039

 Hypothesized Mean
Difference 0

 df 5
 t Stat 1.994353
 P(T<=t) one-tail 0.051339
 t Critical one-tail 2.015048
 P(T<=t) two-tail 0.103
 t Critical two-tail 2.570582

Table ‎F:10: t-test results for Si screen between Duolingo and C/C++ apps.

t-test: Paired Two Sample for Means

 Duolingo C/C++
 Mean 27.5 4
 Variance 916.3 11.6
 Observations 6 6
 Pearson Correlation 0.739107

 Hypothesized Mean
Difference 0

 df 5
 t Stat 2.067058
 P(T<=t) one-tail 0.046795
 t Critical one-tail 2.015048
 P(T<=t) two-tail 0.094
 t Critical two-tail 2.570582

181

 f-test results between iPlayCode and Dk apps for Si screen

Table ‎F:11: f-test results between iPlayCode and Dk apps for Si screen.

F-test Two-Sample for Variances

 DK iPlayCode
 Mean 7.833333 3.5
 Variance 42.56667 12.3
 Observations 6 6
 df 5 5
 F 3.460705

 P(F<=f) one-tail 0.10
 F Critical one-tail 5.050329

182

B- Multiple-screens

Table ‎F:12: ANOVA test of multiple-screens for iPlayCode and other apps.

SUMMARY
 Groups Count Sum Average Variance

 iPlayCode 6 68.50714 11.41786 180.4891
 DK 6 121.45 20.24167 820.5104
 Duolingo 6 187.2643 31.21071 1623.444
 C/C++ 6 46.13571 7.689286 67.16926
 ANOVA

 Source of
Variation SS df MS F P-value F crit

Between Groups 1971.988 3 657.3295 0.977 0.423 3.098391

Within Groups 13458.06 20 672.9031

 Total 15430.05 23

183

Appendix G: One-way ANOVA test results for SC, Google+,

Facebook and Gumtree

A- single screen

1- Ss screen

Table ‎G:1: ANOVA test of Ss screen for SC and other apps.

SUMMARY

 Groups Count Sum Average Variance
 SC 6 6.5 1.083333 1.241667

 Google+ 6 9.5 1.583333 5.041667
 Facebook 6 13.5 2.25 5.575
 Gumtree 6 24.7 4.116667 18.20167

ANOVA
 Source of

Variation SS df MS F P-value F crit

Between Groups 31.73833 3 10.57944 1.408 0.270 3.098391

Within Groups 150.3 20 7.515

 Total 182.0383 23

2- Si screen

Table ‎G:2: ANOVA test of Si screen for SC and other apps.

SUMMARY

 Groups Count Sum Average Variance
 SC 6 34 5.666667 39.06667

 Google+ 6 34.33 5.721667 52.20082
 Facebook 6 42 7 72.8
 Gumtree 6 16.7 2.783333 5.361667

ANOVA
 Source of

Variation SS df MS F P-value F crit

Between Groups 57.21395 3 19.07132 0.450 0.720 3.098391

Within Groups 847.1458 20 42.35729

 Total 904.3597 23

184

3- Sg screen

Table ‎G:3: ANOVA test of Sg screen for SC and other apps.

SUMMARY

 Groups Count Sum Average Variance
 SC 6 9 1.5 1.1

 Google+ 6 30 5 42.4
 Facebook 6 31 5.166667 50.96667
 Gumtree 6 20.5 3.416667 17.24167

ANOVA
 Source of

Variation SS df MS F P-value F crit

Between Groups 52.44792 3 17.48264 0.626 0.607 3.098391

Within Groups 558.5417 20 27.92708

 Total 610.9896 23

4- Sinfo screen

Table ‎G:4: ANOVA test of Sinfo screen for SC and other apps.

SUMMARY

 Groups Count Sum Average Variance
 SC 6 8 1.333333 1.066667

 Google+ 6 25 4.166667 21.76667
 Facebook 6 38.5 6.416667 82.84167
 Gumtree 6 32.5 5.416667 23.44167

ANOVA
 Source of

Variation SS df MS F P-value F crit

Between Groups 87.25 3 29.08333 0.901 0.458 3.098391

Within Groups 645.5833 20 32.27917

 Total 732.8333 23

185

B- Multiple- screen

Table ‎G:5: ANOVA test of multiple-screens for SC and other apps.

SUMMARY

 Groups Count Sum Average Variance
 SC 6 63.36333 10.56056 167.5925

 Google+ 6 190.3467 31.72444 2890.901
 Facebook 6 190.2633 31.71056 2266.96
 Gumtree 6 99.63333 16.60556 453.0419

ANOVA
 Source of

Variation SS df MS F P-value F crit

Between Groups 2082.775 3 694.2584 0.480581 0.699 3.098391

Within Groups 28892.47 20 1444.624

 Total 30975.25 23

186

Appendix H: One-way ANOVA test analysis for questionnaire

This appendix presents the statistical technique and its output. The output results are used for

testing all hypotheses described in Chapter 1.

A- One-way ANOVA test results for iPlayCode and other apps

1- Usefulness attribute

Table ‎H:1: Usefulness attribute results.

SUMMARY

 Groups Count Sum Average Variance
 iPlayCode 7 30.17742 4.31106 0.016971

 DK 7 29.75806 4.251152 0.044126
 Duolingo 7 29.46774 4.209677 0.054024
 C-C++ 7 29.46774 4.209677 0.044918

ANOVA

 Source of
Variation SS

df MS F P-value F crit

Between Groups 0.048276 3 0.016092 0.402198 0.752704 3.008787

Within Groups 0.960235 24 0.04001

 Total 1.00851 27

2- Information quality attribute

Table ‎H:2: Information quality attribute results.

Anova: Single Factor
 SUMMARY

 Groups Count Sum Average Variance
 iPlayCode 6 26.25806 4.376344 0.006417

 DK 6 25.67742 4.27957 0.023795
 Duolingo 6 26.06452 4.344086 0.017135
 C-C++ 6 25.77419 4.295699 0.028477
 ANOVA

 Source of
Variation SS df MS F P-value F crit

Between Groups 0.03551 3 0.011837 0.624428 0.607521 3.098391

Within Groups 0.379119 20 0.018956

 Total 0.414629 23

187

3- Interface quality attribute

Table ‎H:3: Interface quality attribute results.

Anova: Single Factor
 SUMMARY

Groups Count Sum Average Variance

 iPlayCode 4 17.35484 4.33871 0.02428
 DK 4 17.30645 4.326613 0.035618
 Duolingo 4 17.22581 4.306452 0.021332
 C-C++ 4 16.48387 4.120968 0.021072

ANOVA
 Source of

Variation SS df MS F P-value F crit

Between Groups 0.125699 3 0.0419 1.638271 0.232731 3.490295

Within Groups 0.306907 12 0.025576

 Total 0.432606 15

4- Overall satisfaction attribute

Table ‎H:4: Overall satisfaction attribute results.

Anova: Single Factor
 SUMMARY

Groups Count Sum Average Variance

 iPlayCode 2 8.774194 4.387097 0.008325
 DK 2 8.5 4.25 0.081296
 Duolingo 2 8.451613 4.225806 0.074922
 C-C++ 2 8.354839 4.177419 0.008325

ANOVA
 Source of

Variation SS df MS F P-value F crit

Between Groups 0.048485 3 0.016162 0.373965 0.777397 6.591382

Within Groups 0.172867 4 0.043217

 Total 0.221351 7

188

B- One-way ANOVA test results for SC and other apps

1- Usefulness attribute

Table ‎H:5: Usefulness attribute results.

SUMMARY
 Groups Count Sum Average Variance

 SC 7 30.54839 4.364055 0.003803
 Google+ 7 30.46774 4.352535 0.002725
 Facebook 7 30.41935 4.345622 0.002589
 Gumtree 7 30.66129 4.380184 0.004063
 ANOVA

 Source of
Variation SS df MS F P-value F crit

Between Groups 0.004794 3 0.001598 0.484962 0.695888 3.008787

Within Groups 0.079084 24 0.003295

 Total 0.083878 27

2- Information quality attribute

Table ‎H:6: Information quality attribute results.

SUMMARY
 Groups Count Sum Average Variance

 SC 6 26.09677 4.349462 0.005793
 Google+ 6 26.1129 4.352151 0.006703
 Facebook 6 26.1129 4.352151 0.004102
 Gumtree 6 26.19355 4.365591 0.006417

ANOVA
 Source of

Variation SS df MS F P-value F crit

Between Groups 0.000954 3 0.000318 0.055262 0.98241 3.098391

Within Groups 0.115071 20 0.005754

 Total 0.116025 23

189

3- Interface quality attribute

Table ‎H:7: Interface quality attribute results.

SUMMARY
 Groups Count Sum Average Variance

 SC 4 17.59677 4.399194 0.003013
 Google+ 4 17.5 4.375 0.003707
 Facebook 4 17.40323 4.350806 0.005441
 Gumtree 4 17.74194 4.435484 0.004162

ANOVA
 Source of

Variation SS df MS F P-value F crit

Between Groups 0.015658 3 0.005219 1.278884 0.325995 3.490295

Within Groups 0.048972 12 0.004081

 Total 0.06463 15

4- Overall satisfaction attribute

Table ‎H:8: Overall satisfaction attribute results.

SUMMARY
 Groups Count Sum Average Variance

 SC 2 8.709677 4.354839 0.008325
 Google+ 2 8.66129 4.330645 0.010536
 Facebook 2 8.725806 4.362903 0.003252
 Gumtree 2 8.822581 4.41129 0.021982

ANOVA
 Source of Variation SS df MS F P-value F crit

Between Groups 0.006861 3 0.002287 0.207473 0.886453353 6.591382

Within Groups 0.044095 4 0.011024

 Total 0.050956 7

190

C- Normal data distribution

Table ‎H:9: Normal data distribution for iPlayCode app.

 Mean 4.346774

Standard Error 0.027546

Median 4.370968

Mode 4.451613
Standard
Deviation 0.116866

Sample Variance 0.013658
Kurtosis -0.51736

Skewness -0.72648

Range 0.370968

Minimum 4.112903

Maximum 4.483871

Sum 78.24194

Count 18

Table ‎H:10: Normal data distribution for DK app.

 Mean 4.265233

Standard Error 0.042358

Median 4.314516

Mode 4.451613
Standard
Deviation 0.179709

Sample Variance 0.032295

Kurtosis -1.8245

Skewness -0.24972

Range 0.467742

Minimum 4

Maximum 4.467742

Sum 76.77419

Count 18

191

Table ‎H:11: Normal data distribution for Duolingo app.

 Mean 4.263441

Standard Error 0.043404

Median 4.346774

Mode 4.451613
Standard
Deviation 0.184149

Sample Variance 0.033911
Kurtosis -1.7822

Skewness -0.34882

Range 0.451613

Minimum 4

Maximum 4.451613

Sum 76.74194

Count 18

Table ‎H:12: Normal data distribution for C-C++ app.

 Mean 4.202509

Standard Error 0.040804

Median 4.137097

Mode 4.032258
Standard
Deviation 0.173117

Sample Variance 0.029969
Kurtosis -1.68736

Skewness 0.323087

Range 0.467742

Minimum 4

Maximum 4.467742

Sum 75.64516

Count 18

192

Table ‎H:13: Normal data distribution for SC app.

 Mean 4.365874

Standard Error 0.014855

Median 4.370968

Mode 4.33871
Standard
Deviation 0.064752
Sample Variance 0.004193

Kurtosis -1.11137

Skewness -0.31147

Range 0.209677

Minimum 4.241935

Maximum 4.451613

Sum 82.95161

Count 19

Table ‎H:14: Normal data distribution for Google+ app.

 Mean 4.354839

Standard Error 0.01475

Median 4.387097

Mode 4.387097
Standard
Deviation 0.064292

Sample Variance 0.004133

Kurtosis -1.00275

Skewness -0.17059

Range 0.225806

Minimum 4.241935

Maximum 4.467742

Sum 82.74194

Count 19

193

Table ‎H:15: Normal data distribution for Facebook app.

 Mean 4.350594

Standard Error 0.012809

Median 4.33871

Mode 4.33871
Standard
Deviation 0.055832

Sample Variance 0.003117
Kurtosis -0.82121

Skewness -0.03949

Range 0.177419

Minimum 4.258065

Maximum 4.435484

Sum 82.66129

Count 19

Table ‎H:16: Normal data distribution for Gumtree app.

 Mean 4.390492

Standard Error 0.017468

Median 4.387097

Mode 4.467742
Standard
Deviation 0.076143

Sample Variance 0.005798

Kurtosis -1.4001

Skewness 0.029779

Range 0.241935

Minimum 4.274194

Maximum 4.516129

Sum 83.41935

Count 19

