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Abstract 

In unexplained death cases it is important to be able to determine the role (if any) of the drugs detected 

may have played in the death. However, drug concentrations can change between the time of death and 

the time of the analysis of the post-mortem sample, thus the concentration of the drug detected needs to 

be interpreted with caution. Post-mortem redistribution (PMR) is a process that involves the passive 

movement of drugs after death that can lead to changes in post-mortem drug concentrations at certain 

sites after death. In addition, other factors that could account for post-mortem changes include the 

environment in which an individual is found, as certain environments could accelerate decomposition, 

also the circumstances surrounding the death and the length of time between the death and recovery of 

the body. Certain organs including lungs, liver, and heart are depots of drugs for PMR as they can have 

higher concentrations than surrounding sites. The bladder has traditionally not been considered a 

possible depot for PMR. However one study, a case report, published in Japan discussing an individual 

that had a PMI of nine days with higher concentrations of diphenhydramine and dihydrocodeine in the 

femoral vein compared to the cardiac blood, has suggested that it may be. There have been no further 

studies to elucidate any possible role of the bladder in the PMR process. 

The aim of this thesis was to determine if the bladder is a potential site for PMR and to develop 

methodology to allow further study. The investigation included the influence of temperature, pH, porcine 

bladder degradation, and solution volume on diffusion from the bladder using in vitro diffusion through 

porcine bladder sections, whole porcine bladders and finally in vivo diffusion from the bladder in rat 

models over nine days. 

This thesis looked at three methods to investigate the possible diffusion of drugs from the bladder. 1) 

porcine bladder sections; 2) whole porcine bladders and 3) whole rats.  

The initial method used Franz Cells to determine the diffusion of rhodamine B, amitriptyline and 

amitriptyline’s metabolite nortriptyline across the porcine bladder wall.  Acceptor chamber solutions were 

20 mM pH 7.4 phosphate buffer (PBS) and 20 mM pH 5 ammonium acetate (AA). Donor solutions, 

dependent on experiment, contained 100 mg/L rhodamine B or amitriptyline and nortriptyline in the 

respective solutions.  Sampling was over five days. Parameters included temperature (37 °C, 20 °C, and 

5 °C), pH (7.4, 5), intra-variability of porcine bladder diffusion and tissue degradation. Quantitation 

methods of rhodamine B (UV, Agilent, Cary 60), amitriptyline, and nortriptyline (HPLC, Dionex Ultimate 

3000) were validated according to SWGTOX guidelines.  

The femoral vein has been stated as the best site for sampling post-mortem blood and interpretation  due 

to the isolation from the main viscera. However, due to the above case report suggesting redistribution 

from the bladder this is a possible factor that could affect this sampling site. The porcine bladder sections 

and whole porcine bladders were analysed to determine how much drug would diffuse through the tissue 

over the first 100 hrs after death, which is the initial steps in determining the likelihood of drugs diffusing 

from the bladder to the femoral vein. Whole porcine bladder studies used the validated UV method for 

rhodamine B. Experimental temperature was 20 °C. Full and half-filled porcine bladders contained 
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rhodamine B (100 or 200 mg/L) dissolved in pH 7.4 PBS and pH 5 AA. Triplicate analysis performed 

using the UV spectrophotometer at 554 nm. The in-vivo study involved catheterizing a rat and inserting 

silver nitrate into the bladder then securing it for Computed Tomography (CT) analysis over nine days.  

There was increased diffusion of all three drugs at physiological temperature (37°C) with a peak 

rhodamine B concentration of 3.46 ± 2.72 mg/L (intra-bladder, pH 5), 6.69 mg/L and 6.69 ± 4.76 mg/L for 

amitriptyline and nortriptyline respectively (pH 7.4). The other parameters including solution pH and tissue 

degradation showed no significant difference for drugs diffusing through the bladder over 5 days.  

Concentration and volume was not a factor for rhodamine B diffusing through the whole porcine bladder 

tissue. There was an increase in drug diffusion over the five days with a peak concentration of 3.5 ± 1.02 

mg/L (pH 7.4). The rat bladder was intact for two days, and then between 2-6 days, an opening was 

observed with leakage of solution. However, after day 7 this solution was not observed on the CT image. 

The CT data show that it is a good technique for the detection of diffusion of ions from the bladder, but 

would need to be further developed to look at the diffusion of larger molecular weight organic molecules.  

Based on this work, methods for investigating the diffusion of drugs across the bladder have been 

developed and validated. The use of µCT shows promise for the further visualization of PMR to 

investigate not only diffusion from the bladder but also diffusion from other drug depots in the body. 

However, based on this work it is unlikely that the bladder is a significant source of PMR to the femoral 

vein, at least in PMI of less than 100 hours after death. 
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PART 1 – The role of Forensic Toxicology in Death Investigations 

 

1.1 Toxicology 

Toxicology is generally defined as “the scientific study of poisons” (Fowler, 1995) and in the medical 

profession as “the study of poisonous materials and their effects upon living organisms” (Martin, 2015). Poison 

suggests certain compounds however, a poison can be substances assumed to be harmless including water 

as “the dose determines that a thing is not a poison” (Borzelleca, 2000). Toxicology applies a wide range of 

different areas of science to identify, quantify, and interpret analytes of interest that could be affecting human 

health.  There are numerous areas within science and in this case, toxicology is no different with a number of  

types of toxicology covering numerous departments including environmental, clinical, industrial and forensic 

(Negrusz, 2013).  

 

1.2 Forensic toxicology 

Forensic toxicology is the application of toxicology to casework where there are issues that have legal 

consequences and can result as evidence in court proceedings (Council, 2010). The findings are mainly used 

in various court systems including criminal, civil and coroners’ court (Flanagan, Taylor, Watson, 2007; 

Negrusz, 2013). This area of toxicology can be further broken down into subdivisions including sport, human 

performance including drink driving, workplace drug testing and death investigations (Council, 2010).  

Death investigation is one of the largest areas in forensic toxicology assisting in all types of cases including 

suicide, accidental and suspicious deaths.  The forensic toxicologist works in conjunction with pathologists, 

analysing the biological samples sent upon resolution of post-mortem examinations.  The analysis and 

subsequent interpretation determines if there are drugs and/or alcohol in the system of the decreased and if 

the resulting concentrations may have played a part in the death of the individual.  Various analytical 

instruments and techniques are used in this process to increase the reliability and sensitivity of the results 

therefore; even sub-therapeutic concentrations could be identified and quantified.  All this information is 

collated and interpreted by the forensic toxicologist resulting in conclusions on how these substances may 

have affected the individual before death.  These conclusions would then be used as evidence as part of the 

case in court or other relevant investigations (Council, 2010). The history of this area can be linked with one  

murder case in 1833 where white arsenic was found to be the cause of death of George Bodle and identified 

by a developing chemical test later named the Marsh test (Hempel, 2013).  

 

1.3 Death Investigation  

The purpose of a death investigation is to determine who died, when the individual died and how an individual 

died (mainly to determine the manner of death and the cause of death).  The manner of death is the 

circumstances under which the individual died and there are a number of categories including neglect, natural 

causes, accidental death, open verdict, misadventure, suicide and unlawful killing (Burnetts, 2015).  The 

cause of death is the physical conditions that occur to the body resulting in the death of the individual 

including disease or trauma (Levine, 2013). This area of the investigation is taken over by pathologists that 
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carry out a post-mortem examination (PM) or autopsy on the deceased.  This involves an external and internal 

examination of the body that could determine the cause and manner of death, time of death and collect 

forensic evidence for the police. Part of the forensic procedure is to collect biological samples from the body 

for further analysis to determine if any drugs were present and if so the concentrations of the drugs at the time 

of death.  In deliberating causes of death, drug concentrations are a parameter considered as part of the 

investigation.  The usual samples taken from autopsy include blood (preferentially from a peripheral site), 

urine, stomach contents, vitreous humour, liver, brain, and bile.  Other samples that are taken in cases of 

advanced decomposition include bone segments, hair and muscle tissue (Cooper, Paterson and Osselton, 

2010). These biological samples would be sent to a forensic toxicology laboratory for testing. The introduction 

of toxicology could assist in answering some questions that arise in a death investigation including: were 

drugs and/or alcohol present in the deceased?  Where the concentrations of drugs in the range that could 

have caused a toxic or fatal effect (Negrusz, 2013). Forensic toxicology is essential when there are no 

obvious signs of death and determining the concentration of a drug at the time of death is used to distinguish 

between therapeutic or toxic concentrations, giving an indication if this drug was involved in the death of the 

individual (Negrusz, 2013). However, the toxicologist has to be guided by the case information as a number of 

tests could be carried out on the biological samples that would identify different types of drugs.  The samples 

sizes can be limited therefore testing has to be selective to prevent using all the samples in case more tests 

are required at a later stage.  

 

The toxicologist is responsible for every aspect of the sample from the minute it arrives in the laboratory.  

These responsibilities include the storage, sample preparation including chemical alterations, analysis using 

analytical instruments and the interpretation of the results.  After initial screening tests, any drugs identified 

are analysed further and the results are quantified and therefore the drug concentrations are numerical. These 

accurate and precise results are easy to identify with validated methods.  However, it is more difficult to 

determine the meaning of these values as there are numerous changes occurring after death that can affect 

drug concentrations and also there are biological differences between each person that need to be taken into 

consideration as these factors can also affect drug absorption and elimination (Levine, 2013; Negrusz, 2013). 

In addition, the toxicologist works with the police to gain information from the case reports that could put the 

drug concentrations into context.  As a result, a number of factors could affect the interpretation of drug 

concentration results in post-mortem cases.  

 

1.4 Interpretation of post-mortem toxicological results  

The forensic toxicologist would use the quantified drug concentration results in the interpretation of the case. 

However, other information would be needed for context, as each case is different.  The basic information that 

the toxicologist requires to enable the interpretation of drug concentrations includes identification and physical 

characteristics of the deceased (name, age, gender, height, weight, medical history), dates and times of the 

body discovery/death/autopsy, circumstances surrounding the death and the autopsy findings (Drummer, 

2013). Each of these play an important role in the interpretation of the drug concentrations found from 

toxicological analysis.  The identification of the individual allows the toxicologist to determine the 
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predisposition of the individual to any drugs that may have been taken due to the age, health, access to drugs 

and case circumstance (Drummer, 2013).  

The medical history should ideally include any prescription or illegal substances that the individual was taking.  

In relation to the prescription drugs, if these were found during the analysis at the prescribed dose then these 

can be discounted as a possible cause of death.  Elevated dose could also be discounted if the individual had 

been taking the drugs for a long period as drug tolerance could result in increasing the dosage.  On the other 

hand, with illicit drugs including heroin and cocaine, the medical history could show that the individual had 

stopped using the drug for a period, possibly due to a prison term (Green, Ray and Bowman, 2014). The drug 

could be detected at a low dose however, that dose could be fatal as the individual had lost the original level 

of tolerance to the drug (Warner-Smith et al., 2001).   

The case history can include a wide range of information from the environment where the body was found, 

which could explain any decomposition present in the body, to items found at the scene that could assist in 

the type of screening tests carried out on the post-mortem samples (Drummer, 2013). Decomposition caused 

by the environment, especially if the individual was found inside in warm conditions, could explain increased 

drug concentrations specifically with ethanol, which can be formed post-mortem (Petković, Simić and Vujić, 

2005).  In addition, the small amounts of parent drug including cocaine in relation to metabolites has been 

stated to be due to the continual breakdown of the drug after death resulting in unreliable dose that cannot 

determine the amount of drug taken ante-mortem (Karch, Stephens and Ho, 1998). 

The autopsy answers important questions about the condition of the body including the identification of any 

diseases and also, narrows down the time of death.  The condition of the body can relate to decomposition 

and this could affect the number of samples that could be taken for toxicological analysis, as if there is a 

significant amount of decomposition blood and stomach contents may not be available.  Knowledge of 

possible diseases could be useful as this could affect drug metabolism causing a build-up of drugs in the 

system until a toxic dose is reached, which could have contributed to or the reason for the death (Drummer, 

2013). Finally, the post-mortem interval (PMI) between the time of death of an individual and the time the 

samples are taken at autopsy is a variable occurrence where the individual could be found immediately or left 

undiscovered for several days (Moriya and Hashimoto, 2001). During this time there are changes occurring 

within the body that can affect drug concentrations including decomposition leading to post-mortem 

redistribution (PMR). Sampling procedures at autopsy have been refined in recent years due to the discovery 

of drug concentration changes soon after death in the main organs (heart, lungs, liver) (Anderson and Jones, 

1990; Prouty and Anderson, 1990). Due to close proximity of central organs to each other, there can be higher 

redistribution of drugs between these organs after death in comparison with peripheral sites.  The heart can 

undergo drug movement from drug depots in the lungs and gastrointestinal tract (Cook, Braithwaite and Hale, 

2000). The other drug reservoirs include the stomach and the liver, with the left side of the liver undergoing 

drug diffusion from the stomach (Pounder, Fuke and Cox, 1996). Therefore peripheral sampling from the 

femoral vein has been favoured as a sampling site that is least affected from post-mortem changes (Prouty 

and Anderson, 1990). However, more recent work has suggested that the popliteal vein may be an even more 

resilient site to post-mortem changes (Lemaire et al., 2016; Lemaire, Schmidt and Denooz, 2016; Lemaire, 

Schmidt and Dubois, 2017).  
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The toxicology analysis identifies and quantifies the drugs present in the body and the metabolites of these 

parent drugs.  The ratio of parent drug to metabolite in blood could give an indication when the drugs were 

taken, as when there is a significantly higher amount of parent drug than metabolite this suggests acute 

ingestion close to the time of death (Apple, 1989).  This could suggest these drugs could have played a part in 

the death of the individual.  In addition, any differences in the parent and metabolites potential for post-

mortem redistribution would have to be taken into account (Cook, Braithwaite and Hale, 2000). There are 

exceptions to this rule, due to fast metabolism, in relation to heroin as this breaks down quickly to morphine 

then 6-monoacetylmorphne (6-MAM) and it is 6-MAM that is used as confirmation of the presence of heroin 

(Jones, Kugelberg and Holmgren, 2011). In addition, poly-drug use could complicate the effect of drugs with 

an average of 3 - 4 drugs per case (Jones, Kugelberg and Holmgren, 2011) including the mix of prescription 

and illicit drugs, which could result in fatal drug-drug interactions.(Luca, Patel, 2017).  Pharmacogenetics have 

been introduced to personalise therapy for a number of drugs due to the varying metabolism that is present 

mainly due to inheritance, which could affect the rate of drug metabolism or elimination, resulting in potentially 

fatal effects of the drugs (Scott et al., 2012).  

However, the toxicologist may not always have all this information, which could affect the interpretation 

especially if the drug present was not detected in the initial screening panel.  Certain compounds would need 

to be specifically tested for including carbon monoxide and naturally occurring insulin.  The toxicologist would 

only know to test for these substances if the information was in the case history, possibly with evidence found 

at the scene (Drummer, 2013).  

Other factors would need to be considered including factors arising from the death itself, as post-mortem 

changes occur within the body including cooling of the body, pH change and blood movement, which could 

result in drug concentration changes.  Post-mortem results cannot be trusted in isolation due to a number of 

reasons including PMR (Ferner, 2008).   

 

PART 2 – Post-mortem redistribution 

2.1 Decomposition 

Following death, a person will start to decompose due to the cessation of normal body processes.  There are 

two main processes that are involved in the initial stages of decomposition of the body, which are autolysis 

and putrefaction (Goff, 2009). Autolysis, the first process triggered by pH decrease after death, is the 

breakdown of cells via the digestion of hydrolytic enzymes (Haglund and Sorg, 1996). This natural process 

would aid the diffusion of any drugs (or other substances in a cell) as the membrane permeability is increased 

(Zapata, Luna, 1989), which results from the cell membrane being damaged as a result of the lack of oxygen 

and other nutrients/substances that the cell requires to function (Kumar, Abbas, 2012). 

 

After death, there is a decrease in intracellular pH, which initiates the initial process in decomposition.  The 

main process responsible is cell necrosis, which is the death of a cell that results from prolonged injury mainly 

via hypoxia (lack of oxygen) and ischemia (Kumar, Abbas, 2012). During life, oxygen, glycolysis and the 

breakdown of creatine phosphate are necessary for the production of adenosine triphosphate (ATP) and 
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adenosine diphosphate (ADP); these are produced 1.5 times more frequently than lactic acid molecules 

(Bate-Smith, 1956). The active processes, that use ATP as energy, transfer substances against the 

concentration gradient (Goff, 2009). Immediately after death there is a gradual cessation of all the active 

transport processes, due to the depletion of oxygen and creatine phosphate that are required for the re-

synthesis of ATP (Bate-Smith, 1956; Butzbach, 2010).  

 

Putrefaction is the second process that occurs due to the increase in production of bacteria and fungi, which 

results from the cessation of equilibrium of the elements that sustained life (Haglund and Sorg, 1996). 

Putrefaction is the breakdown of tissues via anaerobic bacteria that originate from the intestine that then 

spread into the tissues and the bloodstream (Butzbach, 2010). This is a metabolic process that produces 

putrefaction gases that gradually inflate the body (Fallani, 1961; Butzbach, 2010). The putrefaction stage, 

which occurs after the cessation of rigor mortis (Goff, 2009) forces blood around the body starting with the 

heart as the blood becomes fluid here initially allowing the movement when the muscles begin contracting 

(Zapata, Luna, 1989; Moriya and Hashimoto, 1999). The bacteria produce gases that bloat the body and force 

blood through vessels  possibly resulting in circulating drugs around the body (Fallani, 1961; Zapata, Luna, 

1989; Yarema and Becker, 2005). One of the changes arising from decomposition that could affect the drug 

levels in the body is post-mortem redistribution; this phenomenon is the movement of drugs around the body 

after death (Pélissier-Alicot et al., 2003; Drummer, 2008). 

 

2.2 Post-mortem redistribution 

Post-mortem redistribution (PMR) is a process by which the concentrations of drugs can change at specific 

sites after death.  It is mainly thought that the redistribution is due to passive diffusion (Pélissier-Alicot et al., 

2003; Drummer, 2008). To allow for the diffusion process of drugs to occur, the drugs need to be released 

from their binding sites within the tissues, which may involve complicated processes that are involved in the 

autolysis and putrefaction stages of decomposition (Anderson and Jones, 1990). Passive diffusion is a 

process that does not require energy and is the movement of molecules down a concentration gradient (Fick, 

1995). It was initially reported as a mechanism for the distribution of alcohol after death in 1940 (Berggren and 

Goldberg, 1940).  

 

Initially, the realisation that there were different drug concentrations between specific organs and the blood 

concentrations with barbiturates was revealed in the 1960’s (Curry, 1960). The potential for changes in the 

drug concentration with time after death in blood was determined in the 1970’s with digoxin (Vorpahl and Coe, 

1978) and this led onto investigating site-to-site comparisons of drug concentrations after death (Jones, 1987; 

Apple and Bandt, 1988). Post-mortem drug concentrations were generally found to be higher in the central 

area of the body (cardiac blood) than in the peripheral region (femoral blood) of the body.  The ratio of these 

two values is known as the central/peripheral (C/P) blood ratio, which can highlight the differences in the 

concentrations between the two sites (Kennedy, 2010). It has been stated many times that if the 

concentrations are higher in the cardiac blood than the peripheral blood then post-mortem redistribution of 

that particular drug will have possibly taken place (Madea and Mußhoff, 2004; Yarema and Becker, 2005). 

However, other studies have shown that there is still PMR occurring in the peripheral sites for a number of 
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drugs including dothiepin (Cook, Braithwaite and Hale, 2000) and tricyclic antidepressants (Apple and Bandt, 

1988; Anderson and Jones, 1990; Apple, 2011). The factor that is widely used to determine if there is possible 

PMR of a drug is the cardiac to femoral ratio with values above one, suggesting possible redistribution of the 

drug.  Another simple ratio that has also been used to suggest if a drug may undergo post-mortem 

redistribution is the liver to femoral ratio. In this methodology a drug is considered a candidate for significant 

post-mortem redistribution if the liver to peripheral blood ratio is >20.  The drug is considered to have no 

propensity for post-mortem redistribution where the liver to peripheral blood ratio is <5  (Backer et al., 1990; 

McIntyre and Mallett, 2012; McIntyre and Gary, 2014). The same author whom suggested the liver to 

peripheral ratio (Iain M McIntyre) has put forward a concept of defining post-mortem redistribution as the letter 

“F” when calculating the propensity of a drug to undergo PMR.  The F factor is based on the post-mortem to 

ante-mortem ratio value of a drug (McIntyre, 2014a, 2014b). However, there are issues with these 

assumptions as there cannot be a direct link between post-mortem and ante-mortem concentrations even with 

the F factor as there are far too many post-mortem changes that can occur after death to be reduced to one 

constant.  In addition, the site dependence of drugs specifically tricyclic antidepressants result in large ratios 

between liver and blood and after death the release of the drugs would increase the blood concentrations to 

potentially toxic concentrations and the case may be wrongly interpreted as an overdose.  It has been shown 

with numerous separate sampling sites a difference of up to 760% between venous and arterial samples can 

arise (Apple, 1989). Therefore, quantifying the liver and blood samples would be beneficial for case 

interpretation.  Three mechanisms are possibly involved in the PMR process including drug release from drug 

reservoirs; this includes a number of organs that accumulate high concentrations of drugs.  The other the 

processes include passive diffusion down a concentration gradient and the consideration of there being 

incomplete distribution at the time of death (Negrusz, 2013).  

 

2.2.1 Factors that can affect post-mortem drug concentrations 

There are many factors that can affect the concentration of a drug post-mortem, which include the 

characteristics of the drug, how the drug was introduced into the body, metabolism of the drug, stability of the 

drug, the membrane of the cell/organ in a post-mortem environment (Madea and Mußhoff, 2004) and the 

post-mortem synthesis of drugs (Blackmore, 1968), the conditions the body is exposed to post-mortem 

(temperature, pH, submersion in water), time between death and discovery of the body, circumstances 

surrounding the death, how the blood samples are obtained at autopsy and the storage of the samples 

between sampling and analysis (Anderson and Jones, 1990; Madea and Mußhoff, 2004; Kennedy, 2010). A 

rabbit study, in relation to PMI, showed that there can be an increase in drug concentrations immediately after 

death (Maskell, 2016). Also, the external parameters include environmental conditions at the site where the 

body was found and the conditions within the body, for instance temperature increase after death (Goff, 

2009). However, drug properties and internal processes cannot determine the behaviour of a particular drug in 

isolation, as the length of time between death and the analysis of blood and tissue samples could affect PMR 

(Moriya and Hashimoto, 2001; Saar et al., 2012). Other factors that could influence the amount of drug 

concentration changes include putrefaction, environmental conditions and trauma (Gerostamoulos et al., 

2012). 
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2.2.1.1 Properties of drugs that influence their propensity for PMR 

In addition, PMR has been shown to not just affect biological tissues but affect different drugs as basic drugs 

show a high affinity for PMR (Moriya and Hashimoto, 1999). The physiochemical properties of a drug are 

factors that can affect the extent of post-mortem redistribution.  These include the molecular weight, flexibility, 

volume of distribution (Vd), surface area, pKa, polarity, lipophilicity (log P), molecular structure, drug ionisation 

and the diffusion coefficient (Zapata, Luna, 1989; Hilberg et al., 1999; Yarema and Becker, 2005; Giaginis, 

Tsantili-Kakoulidou and Theocharis, 2009).  The higher the molecular weight (MW) of a drug the more 

hindered the drug becomes when moving through a matrix (Brodin, Steffansen and Nielsen, 2010).  Molecules 

with a small MW, typically < 500 g/mol, are able to distribute through the body at a faster rate than larger 

molecules including proteins with molecular weights in excess of 100,000 g/mol (Zapata, Luna, 1989). 

However, molecule weight may not be as significant a factor as most of the drugs commonly used and studied 

have small MW including amitriptyline (277.4 Daltons), digoxin (780.9 Daltons) and trazadone (371.9 Daltons) 

(Negrusz, 2013). The more viscous matrices including tissues reduce the diffusion coefficient, which is the 

velocity of the diffusion of a drug (Brodin, Steffansen and Nielsen, 2010).  

 

The studies above show how individual parameters affect the diffusion of drugs after death.  However, the 

more information known about the physicochemical and structural properties of the drug, the post-mortem 

sampling method and the dose taken before death would assist in the determination of the extent of PMR as 

none of the factors taken individually could predict PMR  (Giaginis, Tsantili-Kakoulidou and Theocharis, 2009). 

Using quantitative structure-activity relationship (QSAR) methodology it has been possible to identify the 

major drug constituents that are involved in PMR.  This study identified those drugs with a high basic pKa 

value, volume of distribution above 3 Kg/L, lipophilic and flexible drugs showing favourable conditions for 

PMR.  However, this modelling is not suitable in all cases, as 23% of the drugs included could not be 

predicted.  (Pélissier-Alicot et al., 2003, 2006; Drummer, 2008; Giaginis, Tsantili-Kakoulidou and Theocharis, 

2009).  

 

The drugs most likely to undergo this redistribution are small, weak and basic lipophilic drugs with a large 

volume of distribution (Vd) (Pélissier-Alicot et al., 2003, 2006; Drummer, 2008). The term volume of distribution 

is used to describe the distribution of drugs to the organs and is defined as the amount of drug in the body 

divided by the plasma concentration  when distribution is at equilibrium (Hilberg et al., 1999). Previous work 

has shown that drugs with a volume of distribution (Vd) above 3-4L/Kg are more likely to undergo redistribution 

(Hilberg et al., 1999; Pélissier-Alicot et al., 2003; Rodda and Drummer, 2006; Drummer, 2008). This has been 

demonstrated for a number of drugs including methadone (Milroy and Forrest, 2000), fluoxetine (Pohland and 

Bernhard, 1997) and a number of tricyclic antidepressants including amitriptyline (Hilberg et al., 1993) and 

nortriptyline (Moriya and Hashimoto, 1999) with Vd values of 4-7 L/kg, 20-42 L/kg, 6-10 L/kg and 20-57 L/kg 

respectively (Baselt, 2008). However, certain drugs that have a small Vd have demonstrated the ability to 

redistribute post-mortem including clozapine (2-7 L/kg), midazolam (1-3 L/kg), phenytoin (0.5-0.8 L/kg), 

triazolam (1.1-2.7 L/kg) and zolpidem (0.5-0.7 L/kg) (Baselt, 2008; Ferner, 2008).  
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Other characteristics could be the reason for redistribution of the less lipophilic drugs, these parameters are 

included when determining whether a drug can redistribute and to what extent.  These characteristics include 

the partition coefficient, pKa and the pH of the surrounding environment.  In addition, the pharmacokinetic 

stages drugs undergo may also need to be taken into account as there could be modifications during the 

absorption, distribution, metabolism and the elimination stages (Pélissier-Alicot et al., 2003; Ferner, 2008). 

Incomplete absorption and distribution could lead to higher drug concentrations after death, specifically when 

death occurs shortly after ingestion of the drug creating a reservoir in the stomach of a high dose of the drug 

that would distribute even after death shown by the instillation of 3,4-Methylenedioxymethamphetamine 

(MDMA) into the stomach and trachea (Letter, Clauwaert and Belpaire, 2002). Metabolism occurs at different 

rates depending on the drug and in the case of heroin, which breaks down quickly to the metabolites including 

6-MAM and morphine, which would give underestimated concentrations of the drug from post-mortem 

samples (Maskell, 2016). In addition, metabolism and elimination have similar issues.  In relation to 

metabolism one of the liver enzymes that breakdown xenobiotic drugs is CYP2D6.  However, some 

individuals have either reduced amount or no function of this enzyme and this would reduce the rate in drug 

metabolism.  Therefore, even after a therapeutic dose the accumulation of drugs in the system could result in 

toxic concentrations (Droll, 1998; Abdel-Rahman, 2002). Elimination can be disrupted when there is organ 

failure, in the case of renal failure a therapeutic dose of gabapentin could accumulate in the body resulting in 

a high blood concentration (72 mg/L) when analysed post-mortem (Winecker, 2015). Also, a human study has 

shown drugs with a large Vd including fluoxetine, citalopram and olanzapine have demonstrated little 

redistribution after death comparing samples taken at the mortuary with autopsy samples (Gerostamoulos et 

al., 2012).  As a result, this shows that this is not the only parameter to determine the redistribution capability 

of a particular drug.  

 

The pKa is the dissociation constant (Pélissier-Alicot et al., 2006) and is the pH of a drug, at which it is 50% 

ionised (or 50% unionised). Using the Henderson-Hasselbalch equation and the pKa of a drug the ionisation 

state of a drug at a specific pH can be determined.  For example if a drug (atenolol) with a pKa of 9.6 

(Manallack, 2011) was present in a solution at physiological pH (7.4) would be ionised and therefore able to 

pass through cell membranes to redistribute.   

 

The lipophilicity determines the ability of the drug to pass through the cell membrane.  The more lipophilic a 

drug is the more it will accumulate into the tissues, which creates the concentration gradient needed for 

passive diffusion to occur after death (Yarema and Becker, 2005; Rodda and Drummer, 2006).  Lipophilicity 

has been shown to play a part in determining the ease of transport of a drug through a membrane via passive 

diffusion however, it is not the main factor that could affect the overall PMR process (Giaginis, Tsantili-

Kakoulidou and Theocharis, 2009). Studies have been carried out showing preferential accumulation of basic 

drugs dependant on the lipophilicity, a basic drug (quinine) accumulated in the lungs can be displaced by a 

more lipophilic basic drug (imipramine) due to competitive binding sites within the lungs (Hisahiro, Katsuhiko, 

1989). The same was found with two antidepressants resulting in clomipramine displacing a carbon-11 

labelled cyanoimipramine, which could lead to toxic concentrations in the bloodstream  (Suhara et al., 1998).  
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2.2.1.2 Diffusion Coefficient 

The creation of a concentration gradient initiates the movement of a drug from a highly concentrated site to a 

site of low concentration.  This can be measured using an equation named Fick’s first Law after Adolf Fick, a 

German physiologist who suggested that diffusion is proportional to the concentration gradient (Fick, 1995). 

Mass transport of molecules in a solution has a measurement of fluxes and a flux is the mass or number of 

molecules moving through a given cross-sectional area over a specific period.  Fick’s law describes a flux 

along a concentration gradient in single plane overtime for a solute with a defined diffusion coefficient.  Fick’s 

law describes the passive diffusion process across a membrane using the equation: 

 

𝑑𝐶

𝑑𝑡
∝  

𝐴. 𝐷(𝐶1 − 𝐶2)

ℎ
 

 

C1-C2 = Concentration gradient of unionised form of the drug (mg/ml) 

A = Surface Area (cm
2
) 

D = Diffusion Coefficient (cm
2
/sec) 

h = Thickness (cm) 

 

Flux studies are mainly used in the analysis of the transport of drugs through tissue models.  A flux could only 

occur if there is a concentration gradient, for example if there were insignificant movement of ions across the 

membrane there would be no concentration gradient and the flux would be constant  (Brodin, Steffansen and 

Nielsen, 2010).  

 

The diffusion coefficient is a constant that is related to the properties of a specific molecule in a specific 

solvent and indicates the velocity of the diffusion of a solute through a given solvent (Brodin, Steffansen and 

Nielsen, 2010). The diffusion coefficient depends on the molecular size of the solute molecule and the 

viscosity of the solvent (Brodin, Steffansen and Nielsen, 2010). Permeability coefficients are only for 

membrane calculation however, diffusion coefficients can apply to a free solution or a membrane and the 

higher the value of the diffusion coefficient the higher the value of the permeability coefficient (Sperelakis, 

2011).  

 

Einstein, assuming the solute radius is larger than the solvent radius, designed an equation for the diffusion of 

a solute through a solution; it was the theory of Brownian motion based on kinetic theory.  The expression was 

derived for self-diffusivity (Manju Sharma, 2007).  The diffusion coefficient depends on the molecular size of 

the solute molecule and the viscosity of the solvent (Brodin, Steffansen and Nielsen, 2010). The equation is 

the Stokes-Einstein equation: 

 

𝐷 =  
𝑅𝑇

𝑁𝐴

1

6𝜋ƞ𝑟𝑢

 

D = Diffusion coefficient (cm
2
/sec) 

R = Gas constant (J/molk) 



30 

 

T = Temperature (K) 

𝑁𝐴 = Avogadro’s number (mol) 

Ƞ = Viscosity (mPa.s) 

𝑟𝑢 = Solute radius 

 

The equation shows that the diffusion coefficient increases as viscosity and solute radius decrease.  This 

could show a change in the diffusion coefficient value as the solute moves from the solution to a more viscous 

membrane: as the size of the drug decreases (smaller molecules), the diffusion coefficient increases, as it is 

easier for small molecules to diffuse through solutions and membranes.  However, due to the smaller MW of 

the drugs, the MW may not be a large enough factor to cause large changes in the diffusion coefficient.  The 

magnitude of the diffusion coefficient is a possible parameter to assist in the determination of the capability of 

a drug to undergo post-mortem redistribution.  However, factors including the lipophilicity and the drug matrix 

could affect the expected outcome of the diffusion coefficient of a drug, showing the drug matrix could hinder 

diffusion (Larhed et al., 1997).  

 

The permeability of drugs can be determined from a flux experiment involving a specified concentration 

gradient and the resulting values can be compared with other values obtained at different concentration 

gradients.  Then these values can be compared with similar experiments and the drug could then be 

categorised by permeability.  Certain experimental conditions should be taken into account to produce a valid 

permeability value.  These include keeping the concentration gradient constant or as constant as possible with 

a change no more than 10% throughout the experiment.  The only concentration gradient present should be 

the gradient across the membrane and the diffusion of the drug is only via passive diffusion (Brodin, 

Steffansen and Nielsen, 2010).  

 

An experimental study was carried out involving three mediums to compare the diffusion coefficients of a 

number of drugs, these included phosphate buffer, native pig intestinal mucus and purified pig gastric mucin.  

There were two main parameters that were compared, the charge of the drug and lipophilicity (log P).  The 

charge had little effect on the diffusion coefficient however; the lipophilicity had a large impact, as the diffusion 

coefficient decreased as the lipophilicity increased in native pig intestinal mucus.  However, there was no 

correlation between the two parameters in the phosphate buffer and the purified pig gastric mucin.  Two 

similar drugs at a larger molecular size had reduced diffusion coefficients in the pig intestinal mucus.  The 

more lipophilic drugs e.g propranolol had lower diffusion coefficients than the hydrophilic drugs e.g metoprolol.  

The factor producing the largest effect on the diffusion coefficients is the lipophilicity, for example a difference 

of log P 1.8 reduces the diffusion coefficient by half (Larhed et al., 1997).  

 

A further study compared two diffusion coefficients for morphine, determined from molecular weight, injected 

into the brainstem of cats, in relation to the distance the drug could travel in a certain period and the peak 

concentrations that could be reached.  The two diffusion coefficients were 3 x 10
-6

 and 5 x 10
-6

 cm
2
s

-1
, and the 

length of the experiments were up to one hour.  There was a comparison of five distances with 2 mm the 

furthest.  The comparison showed the larger diffusion coefficient resulted in quicker detection at the furthest 
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distance as the drug diffused faster through the tissue.  Post-mortem, ante-mortem and theoretical data were 

compared with similar results (Clark, Edeson and Ryall, 1983). This shows that the diffusion coefficient can be 

a useful indication of PMR that can be theoretically modelled.  

 

2.2.1.3 pH 

Glycolysis and the breakdown of creatine phosphate (CP) ante-mortem are necessary for the production of 

ATP and ADP.  Immediately after death ATP concentration is high and stays constant for a short time as it is 

broken down and resynthesized as long as CP is present (Bate-Smith, 1956). This allows for certain 

processes within the body that require ATP, some involving control of the membrane gradients, to continue 

post-mortem.  However, these processes eventually stop, as they require oxygen to produce the ATP.  After 

death the oxygen levels deplete until eliminated over a short period of time and this results in the cessation of 

the ATP production (Butzbach, 2010). This occurs as the dephosphorylation process takes over the 

resynthesis of ATP and the concentration of ATP decreases until it is eliminated, the enzyme involved in the 

dephosphorylation process had not been identified however, the optimal pH range is pH 7.2-6.0.  In addition, 

an acidic molecule (inosine monophosphate, IMP) and a basic molecule (ammonia) are also produced at the 

same rate as the ATP (Bate-Smith, 1956). This results in the anaerobic respiration of cells to occur converting 

ATP to ADP that leads to the production of lactic acid (Goff, 2009) and the reduction of the selectivity of the 

membranes allows the release of intracellular hydrolytic enzymes (Butzbach, 2010). As a result of the 

production of the lactic acid the cells become acidic reducing the intracellular pH, which denatures enzymes 

and eventually the plasma membranes leading to the release of the intracellular substances (Butzbach, 2010). 

This decrease in pH within the cells would alter the ionisation state of any drugs present especially basic 

drugs, which would become ionised in the acidic environment.  This ionisation would allow the drugs to move 

around the body, as ionised drugs are less likely to diffuse through biological membranes.  In addition, the 

increase of carbon dioxide (Vass et al., 2002) and lactic acid (Donaldson and Lamont, 2013) in the blood 

would also decrease the pH of the body after death.   

 

The pH of blood post-mortem has been shown to decrease to pH 5.1 within the first 20 hrs after death for 

humans (Sawyer, 1988). The intracellular pH has been shown to drop, from pH 7.20 to pH 5.70 over 

approximately 12 hrs after death (Bate-Smith, 1956). In addition, after sampling, the blood pH can still 

decrease if there is not inhibitor present including 0.06% fluoride (Straumfjord and Butler, 1957). This change 

in pH would not affect basic drugs if the value of the pH was still above the pKa, however if the pH falls below 

the pKa of the drug it would become ionised and it would become trapped in the current environment i.e. 

tissue cells (Macintyre and Cutler, 1988; Daniel, Bickel and Honegger, 1995; Daniel and Wöjcikowski, 1997) 

as ionised drugs cannot pass through membranes, it may only be able to travel via aqueous solutions 

including the bloodstream. However, the cell membranes break down after a period of time and the drugs 

would be released into the extracellular space in the acidic solution from the cell and due to this is able to be 

more easily redistributed (Cotran, Robbins, 1994). The length of time it takes for the breakdown of the cells 

depends on the site as cell death in the myocardium is observed approximately 40 minutes after death 

whereas the liver is approximately 1 to 2 hrs post-mortem (Cotran, Robbins, 1994). 
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Drugs that are present in the tissue cells at the time of death would need to be liberated from their binding 

sites (Creel, Lovich and Edelman, 2000) to be released into the surrounding environment. Previous study 

involving determining the stability of the GABAA receptors in the brain post-mortem, which binds to a number 

of anticonvulsant drugs.  The results show that binding sites within the rat brain were reduced by 49% at 20 

hrs post-mortem and in humans longer PMI was possibly the reason for increased loss of affinity for the 

receptor after death (Atack, Ohashi and McKernan, 2007). Another study demonstrated the rapid increase of 

morphine in rats within minutes after death and concluded it was a combination of the hydrolysis of morphine 

glucuronides to free morphine and also the release of morphine due to the reduction of pH which occurred 

within 2 minutes after death (Sawyer and Forney, 1988).  After the release of the drug this would result in the 

drug diffusing into the nearest organ or vessel (Creel, Lovich and Edelman, 2000), which would increase the 

drugs’ ability to be able to diffuse. 

 

The reduction in the cellular pH results in rigor mortis by the locking of chemical bridges, which forms between 

2-6 hrs after death and further develops over the subsequent 12 hrs.  Rigor mortis usually begins when the pH 

of the body has been reduced to approximately pH 6.2 (Bate-Smith and Bendall, 1947). The onset of rigor 

mortis could be accelerated if the individual was exposed to intense exercise immediately prior to death as 

there is a loss of ATP (Bate-Smith, 1956) and an increased amount of lactic acid build-up in the body that 

would lower the cellular pH at an increased rate (Goff, 2009). As a result, the tissue cells would breakdown at 

a faster rate releasing the drug into the extracellular space.  Movement of the drug would then begin at an 

earlier time than expected, with a possible result of the drug diffusing further around the body.   

 

The amount of ATP has been found to be an important initial factor in the initiation of the autolysis and 

putrefaction processes and this depends on the amount of glycogen and CP initially present in the cells.  The 

concentrations of these two substances (CP and glycogen) ante-mortem depend on the amount of food 

ingested, level of exercise prior to death and the how death occurs (Bate-Smith, 1956). 

 

In relation to post-mortem values the expected pH at the commencement of rigor mortis, which is within 24 hrs 

after death, would be pH 6.2.  This value is directly between the two analysed pH values of pH 5 and 7 for 

both the basic and the acidic drug (Borzelleca and Lowenthal, 1967), with pH 5 showing the slowest diffusion 

of the basic drug and pH 7 the slowest diffusion of the acid drug. At pH, 6.2 there would not be a significant 

reduction of diffusion for either type of drug.   

 

2.2.1.4 Temperature 

When an individual dies the active processes cease, which means that heat production is stopped leading to 

cooling of the body (Leinbach, 2011). The cooling of the body slows the decomposition process and as a 

result, this could slow down the diffusion of drugs post-mortem.  The body has been shown to cool to ambient 

temperature within the first 18-20 hrs post-mortem (Fisher, 2003). The initial concept by Rainy was based on 

Newton’s law of cooling, which states that cooling rate of a body is not linear but a declining value over time 

and is affected by numerous factors including heat conductivity, size, clothing and air movement/temperature 

(Kaliszan, Hauser and Kernbach-Wighton, 2009).  In addition, there can be heat production post-mortem 
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(Henßge, 2004). Exercise before death can result in an elevated temperature for the first hour post-mortem 

(Henckel et al., 2000), which could give an initial boost to the diffusion process. In addition, lower pH was 

observed immediately after death up to 6 hrs (Henckel et al., 2000). This results in higher temperatures and 

lower pH that could ionise drugs and degrade cell membranes.  Therefore increasing diffusion allowing the 

drugs to move further around the body after death.  Also, the temperature increase could be attributed to the 

increase in anaerobic respiration after death (Hutchins, 1985).  

 

A factor that could affect the rate of pH change would be temperature as the increase in temperature would 

increase the onset of autolysis and as a result increase the rate of putrefaction of the body (Haglund and 

Sorg, 1996) via the increase in bacterial growth (Goff, 2009). Another experiment had similar results showing 

a pH range of 6.9-5.6 over six hrs post-mortem, with the temperature of the pigs being forcibly reduced to 

reduce the pH fall.  Immediately after death, the maximum temperature was 40°C and the subsequent 

temperature rose by 0.3 - 1°C and the pH fell by pH 0.2 - 0.3.  The pH was seen to fall slower in the cooled 

carcasses, as the pH was pH 0.1 - 0.2 units higher throughout the experiment.  The content of the glycogen 

decreased and the lactate increased as the temperature increased.  The rate of the pH decrease was 

independent of the temperature above 37°C and dependant on the temperature when it fell below 37°C.  The 

rate of decrease was < previous assumptions, which were 0.6 units per hour (0.01 pH units per minute), this 

experiment showed 0.29 pH units per hour.  This experiment disagreed with the previous study concluding the 

rate of the pH fall is due to the temperature of the muscles and not the glycogen content (Maribo et al., 1998). 

This could result in falsely elevated concentrations of the drugs in the sampling sites.  In addition, tissues are 

hydrolysed and the acceleration of the process breaks down protein structures resulting in an increased level 

of basic nitrogen products including amines.  These products eventually neutralise the acid build-up in the 

body increasing the environment to alkaline pH, which is favourable for bacterial growth and therefore 

increased level of putrefaction.  The temperature for this process to occur needs to be within 21 – 38 °C, 

which is optimum for bacterial growth and this can be achieved both with deaths indoors and outside.  Post-

mortem temperature could be raised at death indoors by central heating, electric blankets and the physical 

condition of the individual including health and consumed medications.  In relation to outdoor deaths, warmer 

climates or heat waves, submersion in warm water and hot cars (Zhou and Byard, 2011) could contribute to 

higher body temperatures that could increase the decomposition process.  

 

2.2.1.5 Post-mortem blood movement 

In addition to the environmental conditions that could affect the movement of drugs including temperature and 

pH, the physical process of drug movement is also possible after death.  There have been changes in post-

mortem drug concentrations recorded from a few minutes (Maskell, 2016) to a few hrs after death (Vorpahl 

and Coe, 1978; Pounder, Anderson and Watmough, 1994; Logan and Smirnow, 1996; Moriya and Hashimoto, 

1999; Flanagan, Amin and Seinen, 2003). The contraction of heart muscles during the rigor mortis process 

have been shown to produce blood movement within the first 24 hrs post-mortem.  This has been shown with 

contrast media as the compounds are forced through natural anatomical routes (Zapata, Luna, 1989).  

Therefore, the increase in the concentration of the small, basic drugs within this period could be attributed with 

this process of diffusion through vessels.  In addition, another possible route is diffusion through a 
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concentration gradient as after death the pH decreases releasing the drugs from the cells initiating the 

diffusion (Zapata, Luna, 1989; Moriya and Hashimoto, 1999).  

 

2.2.1.5.1 Post-mortem blood movement within 24 hrs after death 

An animal study injected a contrast medium into the left ventricle of the heart that had been initially emptied of 

blood.  Movement to central vessels was observed within one hour post-mortem and the contrast medium was 

visible in more peripheral sites including the renal arterial system within three hrs (Zapata, Luna, 1989).  This 

was mainly due to the contraction of the heart muscles forcing the blood through the vessels, as there is a 

limited amount of putrefactive gases present at this point in the decomposition process.  The temperature and 

pH would initially be at physiological conditions, 37°C and pH 7.4, and then within the first 20 hrs after death 

both would decrease to ambient temperature (Fisher, 2003) and a lower pH of approximately pH 5 (Sawyer, 

1988). The changing conditions would allow the release of drugs from within the cells after death.  The drugs 

would, depending on suitable conditions, be able to diffuse into surrounding organs and blood vessels, the 

blood vessels would carry the drug–laden blood around the body until the ionisation state of the drug changes 

due to change in pH and then diffuse into neighbouring organs.  This would mean the dug concentrations in 

the original organs would decrease and as the drugs move around the body diffusing into other organs these 

concentrations would increase.  These changes would affect the drug concentrations in different sampling 

sites that would be used at autopsy.  In relation to amitriptyline, after death the drug is released from the lungs 

and diffuses into the heart and cardiac blood (Hilberg, Mørland and Bjørneboe, 1994).  This could 

demonstrate that rigor mortis forces drug-containing blood to enter the heart increasing drug concentrations 

within the first 24 hrs after death.  

 

2.2.1.5.2 Post-mortem blood movement later than 24 hrs after death 

In the later stages of autolysis, up to 48 hrs post-mortem (Dent, Forbes and Stuart, 2004), the combination of 

decomposition processes including putrefaction increases the internal temperature, commonly above 50°C, 

inside the body producing an environment independent to the surroundings (Goff, 2009). This is favourable for 

the hydrolysis of the tissues that lead to the production of the basic amines that raise the pH resulting in 

further bacterial growth that advances the putrefaction process (Haglund and Sorg, 1996; Goff, 2009; Zhou 

and Byard, 2011). The gases produced by putrefaction cause further movement of blood after death.  Both 

animal and human studies show that blood is able to move post-mortem (Fallani, 1961; Zapata, Luna, 1989). 

One of the possible mechanisms for the blood movement is a combination of the cessation of rigor mortis, 

fluidisation of the blood and the pressure increase due to the putrefaction gas that forces blood through the 

vessels (Fallani, 1961). At this stage of decomposition, the cells would have broken down and released any 

drugs present into the surrounding environment.  As a result, the drugs would be transported in the blood 

initiating post-mortem redistribution.  Other possible mechanisms for post-mortem blood movement are any 

physical movement of the body post-mortem, which includes transport to the mortuary.  As changing the body 

position, especially before lividity was fixed, could transport drugs around the body to accumulate at different 

sampling sites (Fallani, 1961; Anderson and Jones, 1990). In addition, another possible factor that would need 

to be taken into account would be if there was any attempt to resuscitate the individual including 
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cardiopulmonary resuscitation (CPR) as the compressions would force the blood around the body falsely 

altering the drug concentrations at other sampling sites via redistribution (Yonemitsu, 1991).  

 

Blood movement related to putrefaction gas has been shown that it does not begin until the rigor mortis 

process has ceased, which could occur between 24-84 hrs post-mortem (Goff, 2009), and the blood becomes 

fluid in the heart (Fallani, 1961). Initially, the blood moves around the heart into the pulmonary vessels and the 

aorta, which is possible due to the vessels having no resistance from the cessation of rigor mortis.  As 

previously stated, at this stage the release of drugs have occurred from the tissue cells during autolysis, and 

possibly began to diffuse into the bloodstream (dependant on the physiochemical properties).  As this is the 

first area of main blood movement there could be large changes in drug concentration from blood entering the 

heart via the surrounding vessels and the lungs (Hilberg, Mørland and Bjørneboe, 1994). As the amount of 

gas increases, this raises the pressure in the abdomen and the peripheral vessels become relaxed producing 

a blood flow into the peripheral sites.  This occurred at the later stages of a human study carried out over 72 

hrs (Fallani, 1961). This later stage empties the blood from the heart, which would transport drugs in the 

bloodstream to the more peripheral sites.  This coincides with studies involving case reports showing a 

number of drugs, sampled at the femoral vein, can change concentration after death with an average time 

between admission to the mortuary and autopsy of 64 hrs.  The results showed 20 from 52 drugs increased 

with a range of percentages with the lowest at 20% and the highest at 300% (Gerostamoulos et al., 2012).  In 

addition, fentanyl has also shown to undergo PMR in the femoral vein within the first 48 hrs after death with an 

increase of 5.6 fold between plasma concentration, taken 48 hrs after the fentanyl patch was applied and 

before sacrifice, and samples taken 48 hrs post-mortem (Zwart, 2012). This shows putrefactive gases do 

affect the movement of blood flow around the body however, the exact mechanism is still unclear, and the 

extent to which the production of the gas is affected by environmental conditions.  As a result, it is still unclear 

how much the gases affect the movement of the blood around the body and therefore the significance of this 

factor in the post-mortem redistribution process are still unclear. 

 

Previous work has shown that the length of time a cadaver has been buried affects the amount of mould 

present that could affect the blood flow.  It is possible to add a fourth phase after 72 hrs post-mortem as the 

body loses fluids from the skin and body orifices due to the high abdominal pressure.  This phase could 

include the movement of blood to the peripheral vessels and loss of fluid through the skin and other body 

orifices (Fallani, 1961).This could increase the drug concentrations in the femoral vein due to central blood 

being pushed into peripheral areas within the body. 

 

However, there is an inconsistency between the rabbit and human study involving blood movement, which 

highlights contradictory evidence for the movement of blood within the first 40 hrs after death (Fallani, 1961). 

The contrast medium was introduced into the heart chamber, left ventricle in the rabbit study (Zapata, Luna, 

1989), in both sets of cadavers. However, in the rabbit study the aorta was clamped and the chamber was 

emptied of blood before the medium was introduced, whereas in the human study the medium was introduced 

into the chambers with clotted blood still present (Fallani, 1961; Zapata, Luna, 1989). The clotted blood could 

have hindered the movement of the contrast fluid until the blood became fluid at a later stage.  In addition, the 
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cadavers used in the human study had a range of post-mortem intervals between 7-72 hrs and as a result 

would have been in different stages of decomposition.  In comparison, the rabbits were killed just prior to the 

experiment, and therefore represent a more realistic timeline of the decomposition process after death.  

Further work would need to be carried out on the post-mortem circulation studies due to the contradictory 

result between the two experiments.   

 

Drugs move along blood vessels via diffusive and convective effects, which could be slowed down, 

particularly with hydrophobic drugs by the binding and subsequent release of the drug to fixed hydrophobic 

sites in the arterial wall (Benet et al., 1996). This has been shown to slow the hydrophobic drugs down 

significantly enough for larger hydrophilic drug molecules to distribute though the vessels faster (Creel, Lovich 

and Edelman, 2000). A study carried out using paclitaxel, a hydrophobic compound, and calf carotid arteries 

was carried out to determine the concentration at each layer within the vessel at equilibration (72 hrs) for a 

number of different concentrations of the drug.  In addition, a simulated pressure gradient through the intact 

arteries allowed for the determination of the drug distribution after it was introduced into the lumen of the 

artery and around the outside of the artery.  The results showed that the drug equilibrated within the 72 hrs 

and the concentration had no effect on the partitioning of the drug with the tissue, which was significant as the 

tissue concentration was greater than the solution concentration.  An experiment was carried out at 

equilibrium to see how much of the drug partitions into the artery, the results showed that the drug 

concentrations in all sections of the tissue exceeded the surrounding solution concentration showing the drug 

highly partitions into the tissue (Creel, Lovich and Edelman, 2000). Drug partitioning could affect the resulting 

drug concentrations as if there was a high affinity of the drug for the tissue this would reduce the amount of 

available drug in the vessel for analysis, which could lead to an underestimation of the drug concentration.  In 

relation to PMR, the blood samples would show lower drug concentrations than tissue samples and the longer 

the post mortem interval the higher concentration of drug would partition in the tissue. 

 

2.2.1.6 The inconsistent method of estimating ante-mortem drug concentrations from post-mortem 

samples 

Another factor that could determine the extent of PMR a drug could undergo  is the central to peripheral ratio, 

which is the comparison of drug concentrations from central sites mainly the heart to peripheral sampling sites 

including the femoral vein.  One of the factors that affect the central to peripheral ratio of a drug is the period 

between death and removal of the sample, as the longer the interval the more time allowed for redistribution.  

This would result in drug movement between the sampling sites and therefore the ratio could be affected, 

which shows the ratio alone cannot be used to determine the extent of PMR for a drug.  It was suggested to 

estimate the ante-mortem concentration of drugs using the post-mortem drug concentrations taken and 

analysed from the autopsy.  Between the six cases there were seven drugs tested that included propranolol, 

amitriptyline, dothiepin, dextropropoxyphene, paracetamol, salicylate, and methadone.  The central to 

peripheral ratios were sourced for each of the drugs.  This was compared with the ante-mortem to post-

mortem ratio to see if there is any correlation between the capability of the drug to redistribute and the 

difference in the drug concentration between death and the time of sampling.  The results showed from the six 

cases that there was a correlation between the two parameters; the drugs with a high central to peripheral 
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ratio (C/P) also had a high post-mortem to ante-mortem ratio (PM/AM).  Propranolol was the only exception 

with a lower PM/AM than the C/P, which could have been due to the time interval between the ante-mortem 

sampling and death being unknown.  This could show that the interval between ante-mortem sampling and 

death is an important factor that would affect the PM/AM ratio, which would affect the redistribution 

conclusions about the drug.  The post-mortem concentrations of the drugs were equal or higher than the ante-

mortem concentration, which shows that is not advisable to estimate ante-mortem drug concentrations from 

the post-mortem concentrations.  Also, due to the fact that the difference in the concentrations could not be 

explained by a general rule as the differences varied between each drug (Cook, Braithwaite and Hale, 2000).  

 

In another case, specifically involving fentanyl, this showed this drug undergoes minimal PMR over 12.6 hrs 

(McIntyre and Gary, 2014) however, in the later stages of PMI there was PMR present for the same drug with 

a 5.6-fold increase (Zwart, 2012). In addition, this is further confirmed by the extensive work carried out 

relating the post-mortem mean to the therapeutic range of 129 drugs, showing a variable range in responses 

that were drug dependant.  Approximately half of the drugs had directly compared to the therapeutic values, 

showing minimal post-mortem change.  The other drugs had variable values for the post-mortem to 

therapeutic ratio, showing some drugs underwent PMR and some drugs reduced after death (Launiainen and 

Ojanper, 2014).  

 

2.2.1.7 Effect of PMR on certain organs 

PMR can affect some sites within the body more than others,  the solid organs that show the highest 

concentrations of drugs are the lungs (Pounder and Adams, 1996), which is mainly due to the high density of 

capillaries (Anderson and Jones, 1990) and the liver (Pounder and Adams, 1996). Animal studies have shown 

the release of a significant drug concentration in the lungs could diffuse through the vessels or through a 

concentration gradient to increase the concentration of cardiac blood (Hilberg, Mørland and Bjørneboe, 1994; 

Moriya and Hashimoto, 1999).  Also, the stomach is a source of diffusion of drugs (Pounder, Fuke and Cox, 

1996) and aspiration of stomach contents could correlate with the increase in heart blood concentrations 

(Hilberg et al., 1992).  These processes could cause post-mortem diffusion of drugs via the natural anatomical 

route into the heart and related vessels (Anderson and Jones, 1990) including the pulmonary artery and vein 

and the inferior vena cava. Furthermore, the diffusion could progress into the cardiac chambers resulting in 

falsely elevated concentrations of the drug (Anderson and Jones, 1990). However, there is less redistribution 

in the peripheral vessels as there are limited sites for redistribution to take place, with only muscle and fat for 

drugs to redistribute from to the vessel (Cook, Braithwaite and Hale, 2000).  As a result of these conclusions it 

has been stated in many papers that the most appropriate site for sample collection is the femoral vein as it is 

in a peripheral region where there is less redistribution (Anderson and Jones, 1990; Prouty and Anderson, 

1990; Yarema and Becker, 2005).  

 

2.2.1.8 Post-mortem blood drug concentration changes in the femoral vein  

There are more drug depots in the viscera; as a result, there would be more movement of the drugs between 

the vessels and organs in this region of the body.  However, there is less redistribution in the peripheral 

vessels as there are limited sites for redistribution to take place.  The location of the femoral vein is further 
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away from the organs and is only surrounded by muscle and fat, which limits the location from which the 

drugs could be transferred  into this vessel (Cook, Braithwaite and Hale, 2000). This classes blood in the 

femoral vein as a peripheral sample due to the location of the vein away from the main organs within the body 

(Yarema and Becker, 2005). As a result, the concentrations in the peripheral samples would take longer to 

increase allowing for a more realistic value of the concentration of the drug at the time of death over a longer 

post-mortem period.  As a result of these conclusions it has been stated in many papers that the most 

appropriate site for sample collection is the femoral vein as it is in a peripheral region where there is less drug 

redistribution (Anderson and Jones, 1990; Prouty and Anderson, 1990; Yarema and Becker, 2005; Zilg, 

Thelander and Giebe, 2017). The vein would be chosen over the artery as there are higher drug 

concentrations when comparing the two vessels with a ratio of 1.2 for morphine between the femoral 

artery/vein (Cameron, 2006). The ideal way of sampling blood from the femoral vein has been shown to cross 

clamp or ligate the vessel then use a needle to extract the blood sample (Anderson and Jones, 1990). 

However, there has been a study that investigated four drug classes comparing blind stick sampling of the 

vessel to clamped sampling with a good correlation showing no difference between the sampling methods 

(Hargrove and McCutcheon, 2008). 

 

There are possible drug depots that could redistribute into the femoral vein, which includes the skeletal 

muscle, body fat and the bladder (Moriya and Hashimoto, 2001; Kennedy, 2010).  A study was published 

investigating the homogeneity of leg skeletal muscle, as it could be used as an alternative matrix when 

conventional samples are unobtainable.  The results showed uneven distribution of drugs within skeletal 

muscle, which was determined for nine drugs, this shows that there is accumulation in the muscle which could 

redistribute to the femoral vein after death  (Pounder, 1997). In addition, there have been post-mortem cases 

showing both higher concentrations of drugs in the femoral vein than the cardiac samples (Pounder, 1993) 

and an increase in a drug concentration between ante-mortem sampling and autopsy (Cook, Braithwaite and 

Hale, 2000). Another case involved observing an increase of 100% in the drug concentration between the 

ante-mortem sample and the sample taken at autopsy (McIntyre and Gary, 2014). Also, higher concentrations 

were found in blood taken from the same site of 149 cases with an average of 64 hrs between the two 

samples (Gerostamoulos et al., 2012). As a result of these findings it can be shown that the drug 

concentrations determined from femoral samples taken at autopsy cannot be taken as the concentration of 

the drug present at the time of death (Anderson and Jones, 1990). 

 

Previous papers have stated that drugs, including methamfetamine, redistribute faster in pulmonary veins, 

resulting in earlier post-mortem drug concentration increase (Pélissier-Alicot et al., 2003), than in arteries due 

to the difference in the thickness of the vessels. Specifically relating to the lungs, methamfetamine has been 

suggested to diffuse through the pulmonary veins into the left cardiac chamber thus increasing drug 

concentrations further than in the right chamber (Moriya and Hashimoto, 2000), however no experiments have 

been carried out to prove this. A direct comparison between matching pairs of arteries and veins show there is 

higher drug concentrations in the arteries and these concentrations increase with PMI (Chiou, 1989).  The 

results are dependent on the absorption, distribution, metabolism and excretion (ADME) phase, during the 

absorption and distribution phase the results stand with higher drug concentration in the arteries.  However, if 
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the drugs were in the elimination phase at the time of death there would be higher drug concentrations in the 

veins in comparison with the arteries (Chiou, 1989). In relation to this research, the femoral vein is used for 

autopsy sampling due to less redistribution.  However, if there is drug diffusion from the bladder and the vein 

is more susceptible to drug alteration due to the thinner walls then this site could be affected.  In addition, this 

area of research has limited experiments  on how the bladder behaves after death: how it breaks down if 

drugs diffuse out of it and if so how much over what time period.  The gap in the current research is the lack of 

data on the behaviour of the bladder after death and how this affects the diffusion of drugs out of the bladder 

and in turn the possible alteration of femoral vein samples. 

 

There have been investigations into a number of organs in regards to PMR; however, there is limited research 

on the bladder.  This issue was raised with a case report published in Japan involving an individual that had 

been found after nine days with higher concentration of diphenhydramine and dihydrocodeine in the femoral 

vein compared to the cardiac blood (Moriya and Hashimoto, 2001). This was associated with the breakdown 

of the bladder releasing drugs into the surrounding areas, which then diffused into the femoral vein increasing 

the concentration of the drugs.  The higher femoral to cardiac blood is significant as there is usually greater 

redistribution of drugs around the central vessels due to higher concentrations of drugs in certain organs. 

 

PART 3 – Permeability of the Bladder 

 

3.1 The Bladder 

The bladder is a muscular, hollow organ that is secured in place by the peritoneum, collapsed when it is 

empty and spherical when it contains urine.  The bladder is a storage organ, which then removes urine from 

the bladder via the urethra in response to nerve impulses.  This action is voiding of the bladder or urinating.  

The bladder can contain up to 800ml however, the impulse to void the bladder arises when the bladder 

contains upwards of 200-400ml (Tortora, 1995).  

 

The bladder is located in the pelvis, above and behind the pubic bone (See Figure 1.1).  The bladder wall 

consists of four main layers (See Figure 1.2) that include the mucosa (sectioned into the transitional 

epithelium and the lamina propria), sub-mucosa, detrusor muscle, and the adventia.  The mucosa is the 

innermost layer of the bladder wall and is separated into the transitional epithelium and the lamina propria.  

The transitional epithelium is also known as the urothelium.  This has been shown to be the layer that controls 

the permeability of the bladder, which causes the bladder to be an impenetrable barrier to most substances 

(Khandelwal, Abraham and Apodaca, 2009; GuhaSarkar and Banerjee, 2010). Also, it prevents the contents 

from transferring into the bloodstream (Acharya et al., 2004). The urothelium has several layers including the 

hydrophilic lycosaminoglycans (GAG) mucin layer, plaques, tight junctions, umbrella cells, intermediate cells, 

and the basal cells, in order from the lumen to the sub-mucosa.  The basal cells are the smallest set of cells 

with a 5-10 µm diameter, the intermediate cells are approximately 20 µm, and the larger cells are the 

hexagonal umbrella cells between 50-120 µm.  The regeneration of cells is a constant process that occurs by 

the fusion of the cells in each layer to form the layer above, for example the basal cells fusing to form the 

intermediate layer. 
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Figure 1.1 Anatomical position of the bladder (Copyright free diagram used from: 

https://commons.wikimedia.org/wiki/File:Man_shadow_anatomy.png) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2 Layers of the bladder (Diagram based on (GuhaSarkar and Banerjee, 2010) and generated by the 

author) 
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 The umbrella cells are the main cause of the impenetrable nature of the bladder membrane; this is mainly 

due to tightly packed hexagonal plaques covering most of the apical membrane increasing the thickness of 

the outer leaflet of the membrane (GuhaSarkar and Banerjee, 2010). This structure is comparable with 18 

mammalian species including human bladders.  Specifically including rat, calf, pig and human the similarities 

have been extended to a microscopic level with the individual units that produce the structure of the 

membrane, (Warren, 1973). This demonstrates that certain mammalian bladders can be used to mimic human 

bladders in research.  Also, the presence of hydrophilic glycosaminoglycans (GAGs), which includes 

proteoglycans and glycoproteins (Hurst, Roy and Min, 1996), forming a layer on top of the umbrella cells in 

the lumen of the bladder inhibits the diffusion of substances out of the bladder.  This layer prevents the 

adherence of solutes (Poggi, Johnstone and Conner, 2000) to the bladder membrane and is known as the 

bladder protector factor (Soler et al., 2008). The permeability of the membrane increases when the GAG 

mucin layer and the umbrella cells undergo degradation (GuhaSarkar and Banerjee, 2010). This is a 

possibility as a previous study has uncovered that the bladder membrane quickly breaks down after death 

with the loss of the umbrella cells, which are responsible for maintaining the impermeable barrier (Jost, 

Gosling and Dixon, 1989). The lower layers would then be exposed (Newman, 1981) and would allow 

substances, including drugs, to pass through the bladder into the surrounding environment possibly resulting 

in post-mortem redistribution. 

 

There are limited studies on the bladder as it has shown that it degrades quickly after death resulting in a 

limited number of post-mortem samples (Jost, Gosling and Dixon, 1989). However, this would be useful in 

terms of determining the length of time this semi-impermeable barrier remains viable after death.  There are 

early signs of damage to the bladder urothelium when it undergoes 60 minutes or more of ischemia, resulting 

in the disruption of the tight junctions between the superficial cells in the lumen of the bladder wall.  This 

funnel-shaped urothelial damage descends into the lower regions of the bladder membrane penetrating the 

lamina propria (Koroäec and Jezernik, 2000).  

 

Bladder related research has been focussed around cancer treatment and increasing permeability of a drug to 

the affected region of the bladder (Wientjes et al., 1991). There is a limited amount of studies carried out on 

the degradation of the bladder and the affect this has on the permeability.  The bladder has shown to be 

penetrable to drugs when damage occurs during life and studies have shown to be able to intentionally 

damage bladders to mimic conditions such as interstitial cystitis.  The work included showed increase in the 

permeability of the bladder of six patients with interstitial cystitis that was initially tested with animals.  The 

direct test compared intact bladders with damaged (50% acetone rinse) and distended bladders by analysing 

the blood after instillation of two sugars (4% lactulose and 1% rhamnose) into the bladder.  Neither sugar was 

detected in the intact bladders, however both sugars were detected and quantified in the damaged and 

distended bladders (Erickson et al., 2000). There have also been two other studies involving the intentional 

damage to bladders using ovalbumin (Lavelle et al., 1998) and protamine sulfate (Lavelle et al., 2002) to 

recreate the damage caused by interstitial cystitis. These studies were used to look at the regeneration of the 

bladder overtime after the damage has occurred.  The second study involved reproducibly damaging the 

bladder membrane using a molecule known to specifically damage the umbrella cells of the bladder to 
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observe how the bladder repairs itself after damage.  The results showed that after damaging the bladder with 

different concentrations of protamine sulfate (PS) the umbrella cells were targeted and damaged.  The cells in 

the lower layers then adapted and formed new umbrella cells overtime and within 5 days the bladder returned 

to normal functionality (Lavelle et al., 2002). In relation to the treatment of bladder cancer, the permeability of 

the porcine bladder to polymers used for intravesical insertion of drugs into superficial tumours in the bladder 

was tested.  There was good correlation between a previous diffusion model and the results.  The results 

show that using both polymers to open the tight junctions within the lumen of the bladder the diffusion of the 

hydrophilic drug was increased (Grabnar, Bogataj and Mrhar, 2003). This shows that with disruption to the 

bladder membrane drug diffusion is possible during life, which could also translate to the damage caused after 

death during the decomposition process that could result in similar increase in permeability. 

 

Numerous drugs have been found to passively pass through the bladder wall (Borzelleca, 1965) including 

barbiturates, basic drugs (atropine, neostigmine and physotigmine) (Borzelleca, 1959), nicotine (Borzelleca, 

1963) and phenobarbital, salicylic acid and quinine (Borzelleca and Lowenthal, 1967). This is increasingly 

important when involving drugs that remain unchanged when being excreted through the renal system as 

there would be storage of the parent drug that could leak into the peritoneal cavity (Tucker, 1981) increasing 

the ratio of the parent to metabolite ratio. A few drugs that have been reported to be excreted unchanged 

include anticonvulsant drugs gabapentin (Wong and Eldon, 1995) and pregabalin (Corrigan and Pool, 2001),  

the antineoplastic agent methotrexate (Huffman, 1973) and the antipsychotic and antiemetic levosulpride 

(Forgione, 1995). An in-vitro study was carried out looking at different parameters that could affect the 

movement of four drugs (nicotine, salicylic acid, quinine, and pentobarbital) across the bladder wall of rabbits.  

The parameters included pH, concentration, bladder volume, and temperature.  The results showed that the 

lower the pH the slower the basic drug (nicotine) diffused out of the bladder and the opposite effect for the 

acidic drug (salicylic acid).  The pH range for the basic drug included pH 5.3-9.0 and pH 3, 5, and 9 for the 

acidic drug, which extends the range that had been recorded for the post-mortem urine present in the bladder 

after death with a range between pH 4.6-8.5 (Cook, Strauss and Caplan, 2007). Changing the temperature 

from 37°C to 27°C, 32°C, or 42°C decreases the rate at which the drugs diffuse across the membrane.  The 

higher the concentration, comparing 1, 10, and 100 mM, of the drug the higher the rate of diffusion, however 

the value reached a plateau at the highest concentration (100 mM).  Comparison of different volumes of fluid 

in the bladder, 1, 3, 9 and 18ml solution/kg body weight, resulted in less drug (both concentration and rate 

constant) diffusing from the bladder at higher volumes (Borzelleca and Lowenthal, 1967).  

 

One study looked into the permeability of four drugs with different physicochemical characteristics including 

molecular weight, pKa, solubility at pH 7.4, log Ko/w and log D through porcine bladder.  The result showed 

that alongside the differences in the experimental setup the hydrophilic drugs had a higher penetration into the 

bladder than hydrophobic ones.  In addition, the mathematical model describing the diffusion of drugs through 

the bladder membrane concurred with the experimental results (Moch, Salmon and Armesto, 2014).  

 

It has been shown that the organ blood flow to the bladder is reduced when the bladder is distended (Lapidus, 

1974), which shows that drugs could not diffuse into the bloodstream and be transported to other sampling 
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sites via this method. The more likely is that bladder distention, which temporarily increases permeability, and 

damaged bladders could increase the permeability of the bladder.  Urine retention in the bladder has been 

studied suggesting a link between drug use including medication and the drugs ability to interrupt the process 

involving fully emptying the bladder (Abrams, Cardozo, 2002). The process of emptying the bladder is a 

complicated process named micturition, which involve the nerves in the urethral sphincters that prevent the 

loss of urine until the response to neurotransmitters that are bound to receptors that can initiate or cease the 

process of micturition.  Certain drugs have been linked to interfering with the process, especially in the elderly, 

that include benzodiazepines (diazepam and clonazepam), antipsychotics (chlorpromazine) and 

antiarrhythmic (disopyramide).  There are two types of urinary retention: acute and chronic and the acute has 

had more research carried out. However, a chronic study was carried out showing the use of a number of 

drugs had resulted in chronic urinary retention including common cold medications, eperisone (antispasmodic) 

and amitriptyline (Kurasawa, Kotani and Kurasawa, 2005).   In addition, a computed tomography (CT) based 

study resulted in a correlation with higher urine volume in the bladder, above 330 ml,  with a positive 

toxicology result suggesting if an individual had a large amount of urine present this urinary retention could be 

due to the presence of drugs (Rohner and Franckenberg, 2013). These results show there could be an issue if 

there is a correlation between higher urine volume and the presence of drugs and in addition, the higher the 

urine volume the thinner the bladder walls.  This could increase the diffusion of drugs from the bladder and 

have a higher probability that the bladder could be a source of PMR in relation to changes in the femoral vein 

drug concentrations.  However, some of these studies were based around the living; less work has been 

carried out looking into the post-mortem breakdown of organs including the bladder.  The studies that have 

been carried out are only looking into the change in drug concentration from different sites within the body 

over time (Prouty and Anderson, 1990) 
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3.2 Drugs 

3.2.1 Model compounds to investigate PMR from the bladder 

There have been studies that suggest a number of different dyes to test the permeability of the bladder 

urothelium, which include trypan blue (Monson et al., 1991), indigocarmine (Monson et al., 1991; Koroäec and 

Jezernik, 2000) and rhodamine B. The most suitable dye would be rhodamine B as it has been used 

previously as a contrast reagent for initial tests of the vascular tissue in the in-vitro study of post-mortem 

permeation of morphine and its metabolites through human veins (Skopp et al., 1997).  This substance would 

also give a visual indicator that could be easily identified on a UV-spectrometer.  Rhodamine B (See Figure 

1.3) is a lipophilic compound, that has been shown to passively diffuse into liver cells in previous work  

independent of temperature (Olinga et al., 2001). The molecular weight is 479, which is a small molecule 

resulting in size not restricting the compound from diffusion through the tissue (Qi, Gao and Zhang, 2013). 

The basic pKa of this compound is reported as 4.2 (Zhang et al., 2011) and the log P is 2.43 (Mah et al., 

2013). 

 

In relation to the CT-based section of this research the suitable compound was identified as silver nitrate, 

which is an inorganic compound with a chemical structure of AgNO3 that does not harm human cells (DeSanti, 

2001). The molecular weight is 169.872 g/mol, which is a small molecule resulting in size not restricting the 

compound from diffusion through the tissue.  The pH of aqueous silver nitrate is approximately pH 6 (Merck, 

2001). This radio-opaque compound (Raj et al., 2014) has been used in previous work to observe the amount 

of silver nitrate infusing into dental cavities (Carrera et al., 2015) and also the penetration of this contrast 

agent into embryonic mice jaws to understand the developmental stages of the teeth (Raj et al., 2014). 

 

3.2.2 Drugs to investigate PMR from the bladder 

Antidepressants are a widely known class of drugs that are prescribed for depression, anxiety disorders 

including panic disorder, somatic disorders including fibromyalgia and others including bulimia (Stahl, 2003), 

however they are also abused being the cause of death in suicides (Bynum et al., 2005). There are different 

classes of antidepressant including the original tricyclics, serotonin reuptake inhibitors (SSRIs)  and a mixed 

array of uptake inhibitors including  monoamine oxidase inhibitors (Mehta, 2005). A common antidepressant is 

amitriptyline first prescribed in 1961 and metabolises into nortriptyline, which is the mono-N-desmethyl 

metabolite of the parent compound (Baselt, 2008) (See Figure 1.4 and 1.5). Both drugs are still present in 

numerous cases (Statistics, 2013). As a result, to keep the research current using drugs with known 

pharmacokinetic effects, amitriptyline and nortriptyline were chosen to be used in the bladder diffusion 

studies.  A number of previous studies have been carried out using amitriptyline in relation to PMR from a 

number of biological tissues (Hilberg et al., 1992, 1993; Hilberg, Mørland and Bjørneboe, 1994). As a result, 

due to the previous information on the drug and that is undergoes PMR amitriptyline would be a good drug to 

begin the research into this area of PMR from the bladder.  Concentration changes of amitriptyline have been 

shown to occur within 2 hrs after death (Hilberg et al., 1993). In addition, it was shown that the diffusion from 

the stomach, gastrointestinal tract and the lungs played a major part in post-mortem redistribution of the 

antidepressant drug amitriptyline (Hilberg et al., 1992, 1993; Hilberg, Mørland and Bjørneboe, 1994).  
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Figure 1.3 Image of the structure of rhodamine B 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4 Structure of amitriptyline 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.5 Structure of nortriptyline 
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3.4 Aims and Objectives 

The primary aim of this study is to determine the role (if any) that the bladder may play in post-mortem 

redistribution (particularly from the bladder to the femoral vein).  This study will utilise two model compounds 

rhodamine B, amitriptyline and the amitriptyline metabolite nortriptyline.  In the CT study, silver nitrate will be 

utilised.  The study will aim to look at the time scale of any diffusion from the bladder and the most suitable 

model to use to study diffusion of drugs from the bladder in the future.  

 

3.4.1 Diffusion of drugs using Franz cells 

The aim of this section of research is to determine if there is diffusion of drugs (rhodamine B, amitriptyline, 

and nortriptyline) from porcine bladder sections in-vitro.  Other parameters included in these experiments 

were temperature, solution pH, tissue degradation, bladder volume and drug concentration. 

 

This project is split into two sections involving the validation of drugs on the HPLC and UV and the bladder 

diffusion studies.  The HPLC and UV were used for the validation of the chosen drugs according to the 

Scientific Working Group for Forensic Toxicology (SWGTOX), standard practices for method validation in 

forensic toxicology.  Franz cells were chosen as there have been many previous studies using diffusion 

chambers to determine the diffusion coefficients of drugs.  Rhodamine B would be used as the model 

compound and two antidepressants (amitriptyline and nortriptyline) used as commonly found in post-mortem 

cases.  The length of the bladder diffusion experiments would be 5 days to mimic the method by Skopp 

(Skopp et al., 1997) for the validation of the diffusion chambers, would be carried out over 5 days due to this 

being the length of the proposed experiments. 

 

3.4.2 Diffusion of drugs through whole bladders 

The aim of this section was to use intact porcine bladders to determine if solution pH, initial rhodamine B 

concentration, and bladder volume would affect the amount of drug concentration that would diffuse through 

the bladder tissue over 5 days.  

 

The in-vitro nature of these experiments would prevent the bladder being in the natural state (inside the body) 

that would be found in deceased individuals.  However, using whole bladders would increase the similarity to 

casework; similar parameters to the bladder section experiments described above would be included.  In 

addition, two other parameters were included, variable initial volumes and concentrations.  These parameters 

could determine if the volume of solution in the bladder and varied concentration could affect drug diffusion 

through an intact bladder after death.  The length of the experiments was also carried out over 5 days for 

consistency. 

 

3.4.3 In vivo study involving the diffusion from the bladder in a rat model. 

As the two previous sections (3.4.1 and 3.4.2) used in vitro techniques it was important to investigate the 

diffusion in a whole animal and how this relates to the in vitro data and also the case data from (Moriya and 
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Hashimoto, 2001). The most suitable model was a rat that was scanned using a micro-CT scanner using 

silver nitrate as a contrast agent.  
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Chapter 2: Materials and Methods 

  



49 

 

2.1 Materials 

 

2.1.1 General Chemicals and Reagents  

The drugs used for this research included amitriptyline HCl (Sigma, UK) and nortriptyline HCl (Sigma, UK).  

The compounds used in the in vivo rat study were sodium diatrizoate hydrate (Sigma) and silver nitrate 

(ReAgent).  The two buffers used phosphate buffer tablets (Sigma) and ammonium acetate (Sigma).  The 

chemicals used to alter the pH of the buffer solutions were sodium hydroxide, ammonium hydroxide, acetic 

acid, and orthophosphoric acid, which were all of Analar grade.  The HPLC solvents, methanol, and 

acetonitrile were HPLC Grade (Fisher).  The buffer, triethylammonium phosphate solution (TEAP) (Sigma, 1M 

in H2O) was used to stabilise the pH in the HPLC mobile phase.  Rhodamine B (Sigma) was the chemical 

used as a model for the bladder diffusion studies.  The disinfectant for the biological tissues was trigene 

(Trigene advanced). 

 

2.1.2 Franz-Cell, Whole Bladder, and HPLC-DAD Solutions 

20 mM Phosphate buffer (pH 7.4): 500 ml of 20 mM phosphate buffer solution (PBS) was prepared from five 

phosphate buffer tablets that had been crushed using a pestle and mortar and dissolved in deionised water.  

The solution was stirred on a magnetic stirrer for approximately 10 minutes to ensure a homogenous solution.  

A pH meter was used to record and adjust the pH to 7.4 using either orthophosphoric acid or dilute sodium 

hydroxide solutions.  In order to degas the solution (to reduce the incidence of bubbles in the Franz cells) the 

solution was sonicated. 

 

20 mM Ammonium Acetate Solution (pH 5):  500 ml of 20 mM ammonium acetate solution (AA) was 

prepared using 0.77 g of solid ammonium acetate weighed out using an analytical balance, then dissolved in 

deionised water.  The solution was stirred on a magnetic stirrer for approximately 10 minutes to ensure a 

homogenous solution.  A pH meter was used to record and adjust the pH to 5 using either ammonium 

hydroxide or acetic acid.  In order to degas the solution (to reduce the incidence of bubbles in the Franz cells) 

the solution was sonicated. 

 

2.1.3 Drug Stocks 

Most solid drug standards are provided as a salt or hydrate, such as amitriptyline hydrochloride.  The weight 

of the salt or hydrate must be corrected when preparing liquid drug standards.  In order to have the correct 

concentration of liquid standard the following equation was used.  

𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑠𝑜𝑙𝑣𝑒𝑛𝑡 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 (𝑚𝑙) =

(
𝑊𝑒𝑖𝑔ℎ𝑒𝑑 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑑𝑟𝑢𝑔 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 (𝑚𝑔)

(
𝐹𝑜𝑟𝑚𝑢𝑙𝑎 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑑𝑟𝑢𝑔 𝑠𝑎𝑙𝑡)
𝐹𝑜𝑟𝑚𝑢𝑙𝑎 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑑𝑟𝑢𝑔 𝑏𝑎𝑠𝑒)

 
)

𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 (
𝑚𝑔

𝑚𝑙
)
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The following drug stock solutions were prepared:  rhodamine B (100 and 200 mg/L), amitriptyline (1000 

mg/L), nortriptyline (1000 mg/L)..  All standards were prepared using deionised water, phosphate buffer pH 

7.4, and ammonium acetate pH 5.  The stock solutions were stored in 8 ml clear glass vials at 4°C until use.  

2.1.4 Storage 

The buffer solutions were prepared fresh at the start of each experiment, sealed with Parafilm and stored in 

the fridge at 4°C for the duration of the experiment.  Two weeks was the maximum storage time for the drug 

solutions in buffer. 

2.1.5 Calibration curve and Quality Control Sample Preparation  

The calibration curve for the UV-Visible spectrometer comprised: 0.16, 0.31, 0.62, 1.25, 2.5, 5 and 10 mg/L. 

Quality control samples including high quality control (HQC) (5 mg/L) and low quality control LQC (0.5 mg/L) 

were used alongside the calibration standards to calculate the reproducibility of standard preparation using 

different stock solutions.  The number of calibration standards were chosen in accordance with SWGTOX 

guidelines (SWGTOX, 2013). 

2.1.5.1 Rhodamine B 

A serial dilution was prepared for the calibration standards; 1 ml of the buffer relevant solution was added to 

the 10 ml volumetric flask to promote better mixing.  Then 1 ml of the 100 mg/L rhodamine B calibration stock 

solution was added to the flask.  The solution was made up to volume with the relevant solution (PBS or AA) 

producing a 10 mg/L calibration standard.  Half of the top standard was removed to a fresh volumetric flask 

and made up to volume with the relevant solution.  This was repeated until seven standards were obtained 

0.16 mg/L – 10 mg/L.  The two quality control standards were HQC (5 mg/L) and LQC (0.5 mg/L).  The HQC 

was prepared by transferring 500 µl of the rhodamine B quality control (QC) 1000 mg/L stock solution to a 10 

ml volumetric flask and made up to volume with the relevant solution.  The flask was inverted several times to 

ensure a homogenous solution.  The LQC was prepared by removing 1 ml of the HQC solution, then 

transferred to the LQC (0.5 mg/L) volumetric flask and made up to volume with the relevant solution. 

2.1.5.2 Antidepressant Drugs 

Preparation of the top calibration standard (10 mg/L), 100 µl of each 1000 mg/L analyte (amitriptyline and 

nortriptyline) calibration stock solution was added to a 10 ml volumetric flask.  Initially, 1 ml of the relevant 

solution was added to the flask to promote better mixing.  Then made up to volume with the relevant solution 

(PBS or AA).The calibration was prepared as a serial dilution therefore, 5 ml of the 10 mg/L was transferred to 

a clean 10 ml volumetric flask and made up to volume with the relevant solution.  This was repeated until 

seven standards were obtained 0.16, 0.31, 0.62, 1.25, 2.5, 5, and 10 mg/L.   All solutions were inverted to mix 

the solutions. 

 

The two quality control standards were HQC (5 mg/L) and LQC (0.5 mg/L).  To prepare the HQC, 50 µl of 

each 1000 mg/L analyte (amitriptyline and nortriptyline) QC stock solution was added to a 10 ml volumetric 

flask and made up to volume with the relevant solution.  The volumetric flask was inverted several times to 

ensure a homogenous solution.  To prepare the LQC, 1 ml of the HQC solution was transferred to the LQC 

(0.5 mg/L) volumetric flask, then the solution was made up to volume with the relevant solution.  
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2.1.6 Animals and Animal Tissues 

Ideally, human tissue would be used for the diffusion studies, as this is the most relevant tissue type as these 

studies are to mimic in vivo human research.  However, due to ethical restrictions porcine bladder tissue was 

used as a tissue alternative.  This species has been shown to be a good mimic for humans as previous 

studies has compared the clozapine changes overtime in a variety of samples from pigs (Flanagan, Amin and 

Seinen, 2003). 

Porcine (Sus scrofa) bladders: Obtained from local abattoirs (L Woods and Sons/N Bramall and Son), from 

approximately six month old large white cross pigs.  The pigs were killed within the hour of receiving the 

bladders.  The bladders were placed into a plastic bag and stored in a cool box with ice until arrival at the 

laboratory within the hour.   

Rats (Rattus rattus):  Medium, frozen, female rats were obtained from The Pet Warehouse in Huddersfield.  

The rats were stored in a cardboard box in a fume cupboard for one day to defrost.  The average weight of the 

rats used in the 9-day experiment was 176.39g.  
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2.2 Methods 

 

2.2.1 Preparation of biological tissue and animals  

On arrival at the laboratory, the orientation of the bladder was noted before removal from the urethra.  The 

bladders either remained intact (See Section 2.2.1.3), were sectioned into four (intra-bladder experiments) 

(See Section 2.2.1.2) or had one section removed (inter-bladder experiments) (See Section 2.2.1.1).  After 

appropriate sectioning of the bladder tissue, the bladder pieces were immediately transferred to the Franz cell 

or frozen for one week before analysis.  The tissues were individually removed from the bag used for transfer 

and cleaned before being mounted in order onto the Franz cell.  Deionised water was used to clean the 

bladder section and absorbent tissue (blue roll) was used to remove any excess urine/faeces from the tissue, 

scissors were used to remove any connective tissue still attached to the outside of the bladder wall.  

2.2.1.1 Inter-bladder studies 

2.2.1.1.1 Fresh Bladders 

The orientation of the bladder was recorded then a section was removed from the midpoint of the right side of 

the bladder.  The bladder was opened out flat using a single vertical cut running from the top of the bladder to 

the base.  The method for obtaining the middle of the bladder was to measure the length of the bladder from 

top to bottom using digital callipers (Absolute AOS Digimatic, Mitutoyo Callipers) and halving this value so the 

middle of the donor chamber was located.  The lid of the Franz cell was placed to allow a template to cut the 

bladder to the correct size.  The bladder thickness was then recorded using the digital callipers to determine if 

the thickness of the bladder varied and as a result had an effect on the rate of diffusion of the drugs through 

the tissue.   

2.2.1.1.2 Frozen Bladders 

The bladders were removed from the urethra and transferred to a labelled plastic bag with the date of 

collection.  The bladders were then frozen at -7°C for one week before removing the day before the start of 

the bladder diffusion study to defrost to room temperature in a fume cupboard overnight.  See section 

2.2.1.1.1 for the bladder tissue preparation.  

2.2.1.2 Intra-bladder studies 

The intra-bladder experiments used the bladder orientation to allow the bladder sections to be mapped to 

determine any variation in diffusion from different parts of the same bladder.  The bladder was sectioned into 

four (See Figure 2.2) using scissors and opened out using a single vertical cut from the top of the bladder, 

down one side to the base of the bladder.  The Franz cell lid was used as a template to section the bladder 

into quarters.  The lid was placed onto each section as to remove any overhanging tissue using scissors.  The 

thickness of each section of the bladder was measured using digital callipers (Absolute AOS Digimatic, 

Mitutoyo Callipers). 

2.2.1.3 Whole Bladder Studies 

All experiments were carried out at room temperature (20°C).  Rhodamine B (100 or 200 mg/L) was the 

compound added into the bladders for both full and half-filled porcine bladder volumes.  The six bladders per 
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experiment were sealed with a cable tie at the top of bladder and secured to the 400 ml beakers with string.  

The solutions used to submerge the bladders were 20 mM phosphate buffer (PBS) at pH 7.4 and 20 mM 

ammonium acetate (AA) at pH 5.  The volume added to each beaker was 300 ml.  The setup was left to 

equilibrate for 30 minutes.  Sample volume taken was between 4-5 ml, filtered using cellulose acetate syringe 

filters (Chromacol, 17 mm, 0.45 µm), then centrifuged at 3000 rpm for 5 minutes if not a clear sample.  One 

sample from each bladder was taken per day over 5 days.  The mean concentration of rhodamine B was 

determined in triplicate using a UV spectrophotometer (554 nm) (See Figure 2.1).  Experimental parameters 

are shown in the table below: 

Table 2.1 Whole bladder experimental parameters 

Experiment 1 2 3 4 5 6 7 8 

pH 7.4 7.4 7.4 7.4 5 5 5 5 

Concentration 

(g/L) 

0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 

Volume Full Full Half-Full Half-Full Full Full Half-Full Half-Full 

 

2.2.1.4 In vivo rat study 

A medium sized frozen female rat was thawed and opened using a scalpel (Swann Morton stainless steel 

surgical scalpels) to reveal the bladder and catheterised using a 24G IV catheter (Briar Dawn Veterinary 

Surgery).  Silver nitrate (1M) solution, the contrast medium used for the Micro-CT, was taken up into a 1 ml 

syringe (1 ml Terumo syringe without needle) and dispensed into the bladder using the catheter.  The outside 

of the urethra was tied off with cotton string.  The outside of the urethra and the midline incision was sealed 

with superglue to keep the organs intact.  The rat was then secured to a polystyrene sheet with string and 

placed inside a plastic weapons tube that was sealed (See Figure 2.3).  Between analyses, the rat was stored 

horizontally at room temperature to mimic an individual that had died indoors. 
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Figure 2.1 Schematic of a single-beam spectrophotometer  

  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 Example of a bladder sectioned for an intra-bladder diffusion study at 20°C in PBS pH 7.4 
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Figure 2.3 Set-up of the rat used for the in vivo study analysed on the Micro-CT 
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2.2.2 The use of Franz-Cells to Study diffusion from the Bladder 

 

2.2.2.1 Introduction to Franz-Cells 

In order to measure the diffusion of both drugs and the model compound Franz cells were utilised.  This 

experimental technique used two chambers separated by the insertion of a membrane (See Figure 2.4).  The 

donor chamber contains the compound of interest and the acceptor chamber has a sampling port for removal 

of solutions for analysis.  There are different types of Franz cell, dependant on the type of experiment carried 

out, including in-line or flow-through cells (Mah et al., 2013), side-Bi-side cells (Suhonen and Pasonen-

Seppänen, 2003) and static Franz cells (Zhang, Liu and Du, 2009). These cells can also be temperature 

controlled with water jackets around each individual cell (Wang et al., 2007) and also protects the diffusion 

cells from light (Deneer et al., 2002). The use of the static Franz cells rely on gravitational forces as well as 

the passive diffusion of the drugs, these cells are used to mimic in vivo situations (Friend, 1992). The main 

function is to determine physiochemical properties of compounds via diffusion through a membrane.  They 

have been used to calculate the rate of absorption, total absorption  (Franz, 1975), efficacy (Sahoo, Ma and 

Labhasetwar, 2004)  and osmolality (Wang, Zuo and Chow, 2009). Comparison with in vivo data has shown 

correlations, which result in diffusion modelling experiments using this equipment to mimic real life situations 

(Wagner et al., 2002). Another parameter included the ionisation state where two drugs were analysed in two 

different pH solutions including a permeation enhancer, diffusing through porcine buccal tissue.  The results 

showed the permeation enhancer increased diffusion of the ionised form of one drug, however it did not affect 

the other drug  (Deneer et al., 2002). Skin from different species can be directly compared as shown by a 

study comparing human to rat skin in relation to permeation (Suhonen and Pasonen-Seppänen, 2003). In 

addition, models can be produced for compounds to compare theoretical data to experimental data, which has 

had some success, as there were general result correlations.  However, there were limitations to the model as 

not every parameter was included, mainly involving the simulation being based on a simplified version of the 

skin membrane.  The actual skin can be divided into at least two different layers, which would affect the 

values for the partition coefficients and diffusion.  In addition, the effects from binding was not taken into 

consideration (Naegel and Hahn, 2011).  

Advantages of this in vitro method show linear correlations between in vitro permeation of compounds through 

human skin and in vivo permeation detected using Raman spectroscopy (Mohammed et al., 2014). Another 

advantage is the specificity of the experiments, after the diffusion study the layers of the tissue can be 

separated by a method of tape stripping (Netzlaff, Kostka, Lehr, 2006). This method involves adhering 

adhesive tape to the topmost layer of skin, applying force with a fingertip and repeatedly removing the tape 

(Dreher et al., 1998; Naegel and Hahn, 2011). This allows for the diffusion of the compound to be isolated in 

individual layers of the tissue to determine how the compound diffuses through tissue, including preferential 

diffusion through certain tissue layers (Creel, Lovich and Edelman, 2000). In addition, as aspects of the setup 

can be controlled, agitation of the receptor chamber can reduce the unstirred boundary layer under the 

membrane that would result in limiting diffusion, which could affect the overall drug diffusion (Friend, 1992).  
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A possible disadvantage of investigating previously living tissue is during the experiment the excised tissue 

could undergo decomposition, which could increase the drug diffusion through the degrading tissue.  This has 

been shown with mice skin after approximately 4.5 hrs when comparing in vitro to in vivo methodologies 

(Venter et al., 2001). As a result, this could restrict clinically based experiments on the Franz cells.  However, 

as this research is trying to mimic the decomposition after death this study showing decomposition occurring 

in vitro would not be a disadvantage in this case.  In addition, the shape of the receptor chamber restricts 

complete mixing, mainly in the sampling port and the portion underneath the membrane.  Studies show 

complete mixing can take up to 30 minutes.  Furthermore, with biological tissues it is difficult to maintain a 

constant water content in the receptor chamber, as if there is no equilibrium between solution and tissue, 

water could be taken up into the tissue affecting the concentration in the receptor chamber (Friend, 1992).  

The Franz cell method chosen for this research seems to be a good model for the parameters that were being 

investigated.  This model has been used previously with success with a range of different tissues, showing 

that this equipment is suitable for bladder tissue.  The static Franz cell will allow the drug to only use the 

method of  passive diffusion under gravity to travel through the tissue.  

 

2.2.2.2 Experimental Set-up of Franz Cells  

The Franz cell set up consisted of a water bath (Fisher Circulator Iso 4100 R20, 6 litres) and the Franz-cell 

diffusion chambers (See Figure 2.10).  The dimensions of the Franz cell with the flat ground joint was a joint 

inner diameter of 20 mm and outer diameter of 30 mm, 15 ml receptor volume and 5 ml donor volume, 3.14 

cm
2
 orifice area and a jacket diameter of 30 mm. The bladder thicknesses ranged from 1.5 – 9.0 mm.  The 

Franz cell set up (PermeGear V6A-02) consisted of six clear, glass, Franz cells mounted onto a stand with 

magnetic stirrers and 6 clamps (See Fig 2.5), needles (See Fig 2.7) and donor chambers (See Fig 2.6).  A 

water bath was attached to the Franz cell (See Fig 2.9).  Before the mounting of the bladder sections, the 

water bath was set to the relevant temperature (37, 20, 5°C) and allowed to equilibrate for at least 2 hrs 

before use.  Following appropriate dissection of the bladders, (see section 2.2.1) the sections were briefly 

washed with distilled water.  In order to mount the bladder sections the ends of a u-shaped paperclip pierced 

each side of the bladder tissue to hold the tissue taut for mounting onto the Franz cell (See Fig 2.11).  The 

support ring (See Fig 2.8)  was placed on the top of the acceptor chamber of the Franz cell, the tissue was 

placed on top of this (lumen facing upwards) and then the second support ring (See Fig 2.4).  Two strips of 

Parafilm were placed in-between the clamp.  The glass donor chamber was placed on top of the support ring 

and secured with the clamp.  The paperclip was removed from the bladder tissue.  Each section of Parafilm 

(Sigma, UK) was stretched around the chambers individually overlapping each side for a full seal between the 

two cells.  

Approximately 2 ml of PBS or AA was added to each acceptor chamber using the 12 ml plastic syringe 

(Syringe Luer-Slip disposable, Fisher brand) and needle through the spout.  The first chamber was tilted 

upside down to check there was no leakage out of the donor chamber.  As the chamber was still in this 

position, the relevant solution (PBS or AA) was added to the acceptor chamber (15 ml) using a 12 ml syringe 

and needle.  Once the solution covered the bladder tissue it was not moved until the chamber was full.  If 
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there were air bubbles present in the bottom of the chamber, it was slowly tilted upright until the air bubbles 

reached the neck of the spout.  Once removed, the chamber continued to be filled until the solution travelled 

up the spout.  The chamber was then tilted upright and replaced into the holder.  The acceptor chamber 

solution was filled to the 15 ml line marked on the spout.  The end of the spout was sealed with Parafilm.  This 

step was repeated for each chamber (See Figure 2.12).  The magnetic stirrer was switched on for each Franz 

cell.  The donor chamber was sealed with Parafilm to minimise the evaporation of the solution (AA or PBS) 

solution.  To allow for equilibration the tissues were left for 30-45 minutes.  After equilibration, the donor 

chamber was filled with 100 mg/L rhodamine B or mixed antidepressant drug solution, which holds 5 ml of 

solution.  After the first sample was taken then the chamber was re-sealed with Parafilm.  Once the Franz 

cells were set up they were not moved for the rest of the experiment, as the movement will displace the 

solution from the tissue, which would cause disruption in the diffusion of the drug from the tissue to the 

solution.  The water bath was kept at a constant temperature, the magnetic stirrer was rotating at 500 rpm 

throughout the entire experiment, and after each sampling the Parafilm was replaced onto the spout to 

prevent evaporation of the solution from the acceptor chamber.  
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Figure 2.4 Image of a Franz Cell 

 

 

 

 

 

 

                          Figure 2.5 Franz cell Clamp                                                   

 Figure 2.6 Franz cell donor chamber 

 

 

 

 

 

                  Figure 2.7 Franz cell needle                    

 Figure 2.8 Franz cell support ring (greaseproof liner) 
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Figure 2.9 Water Bath (Fisher) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.10 Photograph of the Franz-Cell setup showing the water bath (background), stirring plate and 

diffusion chambers 
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Figure 2.11 Photograph of a bladder section secured onto a paperclip for mounting 

 

 

 

 

 

 

 

 

 

 

Figure 2.12 Sequence of mounting the bladders onto the Franz cell 
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2.2.2.3 Sampling from the Franz-Cells 

A sample was taken from the acceptor chamber immediately after adding the donor chamber solution for a 

time zero reading.  The 1 ml plastic syringe (1 ml Terumo syringe without needle) and metal needle were used 

to sample the acceptor chamber using the spout removing approximately 0.5 ml.  The sample was 

immediately filtered using a cellulose acetate syringe filter (Chromacol, 17 mm, 0.45 µm) and transferred into 

an 8 ml glass vial.  The time was recorded for when the sample was taken to allow a time interval to be 

established.  Fresh blank solution (PBS or AA) immediately replaced the lost volume, using a separate needle 

and plastic syringe and the spout was resealed using Parafilm.  The rhodamine B samples were analysed on 

the UV and the mixed antidepressants were analysed on the HPLC, the solutions were discarded after 

analysis.  A sample was taken from each chamber twice on the first day (immediately after experiment setup, 

then approximately 2-3 hrs later), then three times a day (morning, afternoon and evening) over 5 days.  

Three samples a day were taken to show any change in the diffusion throughout the day and these values 

were compared with the other 4 days to show intra-day and inter-day variation.   

 

2.2.2.4 Cleaning the Franz Cells 

In order to prepare the Franz cells for reuse after the end of the experiment the chamber setup was 

dismantled with the donor chamber and support rings removed for cleaning with 1 ppm trigene (Trigene 

advanced) and deionised water.  

 

2.2.3 Measurement of rhodamine B Concentration using UV-Visible spectrometer 

 

2.2.3.1 Introduction to UV  

Wavelength (λ) is the unit used in ultraviolet (UV) spectroscopy to measure the energy of photons and is 

measured in nanometres (nm).  The UV region is between 200-400 nm and visible range extends from 400 to 

800nm.  The amount of absorption at a monochromatic wavelength is determined by two laws of 

absorptiometry.  This related the incident light (I0) to the transmitted light (I) (Figure 2.13).  The two laws are 

Lambert’s Law (Lambert, 1760) and Beer’s law (Beer, 1852); these are combined to become the Beer-

Lambert law (Parnis and Oldham, 2013), which relates the path length and absorption to the concentration.  

 

𝑙𝑜𝑔
𝐼𝑜

𝐼
= Ɛ𝑐𝑙 

 

I0 = incident light, I = transmitted light, Ɛ = molar absorption coefficient, C = concentration, l = path length 

(cm).  The Beer-Lambert law has limitations including the solvent effects; different solvents could affect the 

analyte of interest.  These solvents include pH based solutions as ionisable analytes conjugate to differing 

extents dependant if the analyte is in the ionised or non-ionised form.  There could be absorption at higher 

wavelengths if there was more conjugation (Negrusz, 2013). In relation to this work, there are two pH based 
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solutions that are involved and the drugs have pKa values showing there could be variation in the ionisation 

dependant on pH, which may affect the amount of the drugs diffusing through the bladder tissue.  

 

Ultraviolet (UV) and visible spectroscopy is a technique that allows for the quantification of a substance 

through the absorbance of light.  The types of substances are usually limited to those possessing a 

chromophore, which is the conjugated functional group responsible for producing a visible result on the UV 

e.g benzene ring (Negrusz, 2013). Quartz cells are used for most analysis as they are more reliable with 

limited variation between cells and have a higher transmittance of radiation than plastic cells between the 

wavelengths 190-1000 nm (Negrusz, 2013). In single-beam spectrophotometers, the results are achieved by 

focussing UV radiation through the sample of interest, this is a narrow beam achieved by a monochomator 

that separates the radiation to obtain single wavelengths from the UV lamp (Negrusz, 2013) (Figure 2.1). As 

the beam passes through the sample some of the radiation will be absorbed by the compound.  This energy 

may then be emitted in numerous ways, most useful is the emission of radiation of a longer wavelength that 

can be detected using instrumentation (Flanagan, Taylor, Watson, 2007). The amount of radiation that has 

been transmitted through the sample, in comparison with a set of calibration standards under the same 

conditions, determines the absorbance.  Then through calculations, the concentration of the substance in the 

sample and the absorbance is linearly related to concentration (Levine, 2013). This technique has been used 

to detect a model compound used to highlight changes in bladder tissue including indigocarmine (Monson et 

al., 1991) and rhodamine B (Skopp et al., 1997). 

 

2.2.3.2 Sample analysis on the UV 

The samples were run on the UV-Visible spectrometer (Agilent, Cary 60) using a 400 µl volume quartz cuvette 

(Hellma Analytics, high precision cell, synthetic quartz light path 10 mm).  Photometric software was used as 

only one wavelength was being used to detect the rhodamine B.  The wavelength was set to 543 nm.  The 

cuvette was filled with blank solvent (PBS or AA) was placed into the UV-Visible spectrometer and the 

instrument was blanked.  In order to stop any possible error in readings due to fingerprints or other 

contamination the cuvette was rinsed with deionised water and dried with absorbent tissue 

 in-between samples.  The samples were analysed in triplicate using the same cuvette to obtain an average 

result, discarding the sample after analysis.  
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Figure 2.13 Path of a UV radiation beam through a sample (Diagram based on (Medicinescomplete, no date) 

and generated by the author) 
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2.2.4 Measurement of Antidepressant Drug Concentration using High-Pressure Liquid 

Chromatography with a Diode Array Detector (HPLC-DAD) 

 

2.2.4.1 Introduction to HPLC 

Chromatography is a century old, robust technique used for separation of compounds using two phases, 

usually a stationary and mobile phase.  The separation occurs when a mixture of compounds within the same 

sample react differently in the stationary phase, this results in the compounds eluting from the column at 

different times (Robards, 2004). High performance liquid chromatography (HPLC) is a type of 

chromatography, specifically reverse phase HPLC that involves a polar mobile phase, and a non-polar 

stationary phase.  The compounds travel through the stationary phase dissolved initially in a sample solvent, 

which then mixes with the liquid mobile phase.  The compounds are constantly being retained and released 

along the stationary phase.  The amount of retention depends on a number of compound properties including 

molecular size and the composition of the mobile phase including polarity (David, 2013).  A chromatogram is 

the graphical representation of the HPLC results, which shows the response of the detector over time  

(Levine, 2013). 

 

The stationary phase usually contains octodecylsilyl bonded silica particles and retains non-polar compounds, 

which is the usual state for drug compounds, for longer periods; as a result, these compounds would have a 

longer retention time.  The retention time is an important element as the drugs need to interact with the 

stationary phase to some extent to allow for the detector to notice the analytes.  Each drug is visualised on the 

chromatogram by a peak and the shape of the peak needs to be optimised for a successful identification or 

quantification.  Peak width depends on the separation of the compounds from each other, the narrower the 

peaks the better separation and therefore resolution (David, 2013).  Resolution is a parameter with no units 

that needs to be satisfied for acceptable results; it is the difference in the retention times between two 

compounds.  An acceptable value is 1.5, which shows that there is acceptable distance between the two 

compound peaks (Levine, 2013). The peak heights depend on the amount of compound present in the 

samples and the sensitivity of the instrument to the compound.  This technique is able to identify and quantify 

a wide range of compounds from a mixture (David, 2013). 

 

The HPLC can be split into parts including pumps, injector, column, and detector (See Figure 2.14): 

 

Pumps: 

There is usually two mobile phases or eluents that are mixed together to form a specific composition that is 

complementary to the stationary phase and the compounds being detected.  The first eluent contains an 

organic solvent including acetonitrile or methanol and possibly a buffer for pH stability (David, 2013).  There 

are two main elution methods: isocratic and gradient. The isocratic method has a constant composition of the 

eluents, and the gradient has pre-programmed alterations to the composition of the eluents.  Gradient 

methods usually have longer run times as the eluent composition at the end of the run is different from the 

start and the method has to re-equilibrate before the next sample is run.  The isocratic systems are mainly 
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used for a small number of analytes, where gradient systems are used when there is a wide range of types of 

compounds in the samples resulting in longer run times (Flanagan, Taylor, Watson, 2007). The pump system 

introduces the eluents into the HPLC, through all components including the injector, column, and detector, at 

the flow rate set by the method at a reproducible rate.  Due to resistance from the column, as it is packed with 

particles, the pumps have to operate at high pressures to enable the solutions to reach all aspects of the 

HPLC system (David, 2013). 

 

Injector: 

The injector introduces the sample into the HPLC, to mix with the mobile phase before the solution enters the 

column, at reproducible volumes (David, 2013). The sample valve, which operates the introduction of the 

samples, has two variations.  The internal loop allows volumes of < 1 µl to enter the HPLC system and the 

external loop that allows volumes from 2-3 µl to 20 ml.  These injector loops are usually automated and are 

setup to inject a set of samples from a pre-programmed sequence of samples from the HPLC software 

(Flanagan, Taylor, Watson, 2007).  

 

Column: 

The column is the stationary phase and can be various lengths and diameters and also packed with a wide 

range of different particles dependant on the use of the column (David, 2013). The particle size can vary 

between 3-10 µm (Flanagan, Taylor, Watson, 2007), the most common particle type is porous silica based 

with alterations to the surface of the particles that allow for the different uses of the columns (David, 2013). 

This includes creating, C8 and C18 columns, which are mostly used for general analysis in toxicology 

(Flanagan, Taylor, Watson, 2007). There are different types of liquid chromatography including normal and 

reverse phase, the first requires a polar stationary phase and a non-polar mobile phase and the latter is 

opposite.  This requires different mobile phases dependant on the polarity of the stationary phase (Robards, 

2004). To protect the column from the build-up of contaminants still present from the eluent or extracted 

samples a filter is placed in front of the column.  These particles could damage the column and so the filter or 

guard column catches these particles before they pass onto the column (Levine, 2013). The column is placed 

into the column oven that can be set to specific temperatures dependent upon the method to improve peak 

shapes (Flanagan, Taylor, Watson, 2007). 

  

Detector: 

The detector is used to recognise when the composition of the mobile phase changes, which would be due to 

the elution of an analyte and convert this into an electrical signal. This in turn is corrected by the data 

acquisition system into a visual format showing the analyte (Meyer, 2010). The decision on which type of 

detector to use depends on the type of analytes being used as each is used to detect an element of the 

analyte that is not exhibited by the rest of the solution including the mobile phase (Robards, 2004). The 

different types of detectors include electrochemical, fluorescence (Robards, 2004), Fourier-transform infrared 

spectroscopy (Meyer, 2010) and UV/Vis (Robards, 2004). Both direct and indirect detection are available, the 

first is where the background signal of the mobile phase is low and the signal from the analyte can be 
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separated from this.  The latter is the opposite where the signal decreases when the analyte is eluted from the 

column as the mobile phase has a high signal (Robards, 2004).  

 

Fluorescence is based on the detection of the radiation emitted from excited electrons; there is a two stage 

process of absorbing radiation and then emitting a photon that is deemed fluorescence.  Fluorescence 

detection can be sensitive however, it is very selective due to a number of solvents that could interfere with 

the signal and some analytes would have to under derivatisation to increase the sensitivity of this technique to 

the analyte.  Electrochemical detectors use electrodes and detect the current produced when an electrical 

potential is applied to the analyte.  However, there is only a limited range of electrodes that are available, 

limiting the different types of experiments able to be run on these instruments (Robards, 2004). Fourier-

transform infrared spectroscopy results in an IR spectrum of the analyte, using a volatile mobile phase, a 

drawback of this detector is that is can be less sensitive in relation to other forms (Meyer, 2010). The most 

common type of detector is the UV detector; different variations of this detector are fixed and variable 

wavelengths and diode array.  The diode-array detector is used to focus energy that is not yet diffracted 

through the sample, the detector then diffracts the energy onto a series of sensors that create a snapshot of 

the contents of the samples at that moment.  These data is then converted into an electrical signal or a peak 

enabling the results to be compared to a database within the HPLC software to identify the peak  (Levine, 

2013). 

 

HPLC is one of the main techniques used in toxicology for identification and quantification of compounds from 

post-mortem cases (Hale, 1998). It is also still used in the research sector detecting a wide range of 

compounds used in diffusion studies (Deneer et al., 2002; Moch, Salmon and Armesto, 2014). 

 

2.2.4.2 Sample analysis on the HPLC-DAD 

The mobile phases were both degassed via vacuum filtration (Phenomenex, Phenex filter membranes, 0.45 

µm, 47 mm, Nylon).  The HPLC (Dionex Ultimate 3000 UHPLC, Thermo, UK) was equilibrated before running 

samples by changing over to the relevant mobile phase (See Sections 2.2.4.2.1 and 2.2.4.2.2), altering the 

mobile phase composition on the HPLC.  The flow rate was increased to the method flow rate and purged for 

5 minutes.  After purging, the system was left for half an hour running the mobile phase at the relevant flow 

rate to clean out the column and flush the column of any solvent from previous analyses.  The samples from 

the Franz cells (See Section 2.2.2.3) were individually transferred to plastic 250 µl HPLC vials (Agilent, Vial, 

crimp/snap top, polypropylene, 250 µl) using a 3 ml plastic transfer pipette (Fisher, Pipette 3 ml 153 mm 

length Pasteur non-sterile x 0.5 ml).  

 

The sample sequence was: blank water, blank PBS/AA, calibration (0.156 mg/L – 10 mg/L), blank PBS/AA, 

Sample 0 (Bladder 1-6), blank PBS/AA, Sample 1 (Bladder 1-6) and this was repeated until Sample 13 

(Bladder 1-6).  The HQC sample was at the end of the sequence to check the bladder samples did not affect 

the column (system suitability test) and a blank methanol was analysed as the internal standard in the 

calibration  was dissolved in methanol.  
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2.2.4.2.1 PBS pH 7.4 

HPLC parameters included the use of a Waters Spherisorb 5 µm OD/CN, 4.6 x 150 mm Analytical Cartridge.  

The mobile phase consisted of the organic phase (70% acetonitrile, 27.5% deionised water, 2.5% 

triethylammonium phosphate buffer (TEAP)) and the aqueous phase (97.5% deionised water, 2.5% TEAP).  

The method type was isocratic with the mobile phase composition of 57% organic: 43% aqueous.  The flow 

rate was 2.0 ml/min, with a column temperature of 25°C.  The sample run time was 5 minutes and the diode 

array detector was set to 210 nm. 

 

2.2.4.2.2 pH 5  

HPLC parameters included the use of a Phenomenex Gemini 3 µm C18 110Å 150 x 4.6 mm column.  The 

mobile phase consisted of the organic phase (50% acetonitrile: 50% methanol) and the aqueous phase (20 

mM ammonium acetate).  The method type was isocratic with the mobile phase composition of 70% organic: 

30% aqueous.  The flow rate was 1.25 ml/min, with a column temperature of 30°C.  The sample run time was 

5 minutes and the diode array detector was set to 210 nm. 
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Figure 2.14 HPLC Set-up (Diagram based on (Giri, 2015) and generated by the author) 
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2.2.5 Scanning of the silver nitrate infused rat on the Micro-CT  

 

2.2.5.1 Introduction to X-Ray Computed Tomography 

Computed Tomography (CT) is an imaging technique that uses x-rays to display 3D images of biological 

tissues (Hrvoje, Lusic, 2014). It is mainly used in medicinal imaging for cancer in numerous areas within the 

body including the intestines (Antoch et al., 2004) and more recently whole-body scans (Meier, Hamill, Jones, 

2017). However, it has begun to be adopted in the autopsy process aiding in gathering evidence in drug 

related fataliities (Rohner and Franckenberg, 2013; Winklhofer, Surer and Ampanozi, 2014). It reduces the 

risk of exposures to biohazardous materials (Winklhofer, Surer and Ampanozi, 2014) as a non-invasive and 

non-destructive technique (Hrvoje, Lusic, 2014).  

 

One type of electromagnetic radiation is x-rays, numerous x-rays form a 3D CT image.  The image is 

produced by using a cathode and an anode, usually tungsten-alloy, and accelerating electrons between the 

two through a vacuum tube.  Initially, the CT had poor contrast between biological tissues, which resulted in 

the use of contrast media being introduced (Schambach, Bag and Schilling, 2010). CT imaging using contrast 

media improves the resolution of the image as the solutions used have a higher density than the surrounding 

environment, which could include organs or blood vessels.  The high density allows for better absorption of 

the x-rays (Hrvoje, Lusic, 2014). Studies have compared different contrast media in relation to post-mortem 

CT (PMCT).  The results show that hydro-soluble solutions would diffuse out of the vessels after a long PMI 

due to degradation of tissues (Grabherr and Grimm, 2015). As a result, further investigations were carried out 

to include a mixture of a water-soluble compound and polyethylene glycol (PEG), as this has oily properties 

that would limit diffusion from vessels (Ross et al., 2008). The contrast media can be introduced into the 

individual either via ingestion or intravenously.  These media usually include barium or iodine in medically 

related investigations as these elements possess a high atomic number (Foley, Ghahremani, 1982; Hrvoje, 

Lusic, 2014). Silver has been used commercially due to anti-microbial activity and has been previously used in 

living animal studies to determine the clearance of silver from the system.  The results show that silver 

distributes in most organs and does not harm cells (Lee and Kim, 2013).  

 

There are two types of Micro-CT, the first is where the object is stationary, and the x-ray source is moved 

around the object.  The second type of CT, mainly used in in vivo animal research, is where the x-ray source 

is stationary and the object itself moves the 360° on its own axis (See Figure 2.15).  During this time a number 

of projections are recorded, then software would render the images into a 3D reconstruction of the object 

(Hrvoje, Lusic, 2014). 

 

Micro-CT is a more recent technique that can image small animals with contrast media producing high quality 

3D images in a shorter time (Ghanavati and Yu, 2014). The initial research focussed on bones including bone 

density (Engelke, Karolczak, 1999) and bone diseases including osteoporosis (Toga and Thompson, 2001).  

The improvements in CT resolution allowed for more detailed research into using contrast media to highlight 
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the vasculature in different parts of mice including the kidney (Bentley et al., 1998) and the brain (Ghanavati 

and Yu, 2014).  

 

This previous research mainly concentrated on living animals, with limited research into in vivo post-mortem 

breakdown of organs.  However, CT scans have been previously carried out on rats to determine any 

changes that occur between an anesthetised and dead rat.  The rats were laid flat in the CT scanner.  There 

were no observable changes between anesthetised and dead rats, which were not supported by a body 

mould.  However, there were changes to tissues associated with post-mortem changes to organs.  The 

urinary bladder could be identified ante-mortem and post-mortem, with the only change of the bladder being 

voided due to death (Lapin and Allen, 1997). In addition, silver nanoparticles dissolved in deionised water 

were introduced into the ear canal of a rat to determine any post-mortem movement.  The solution could be 

detected down to concentrations of 37.1mM and visible up to 7 days post-mortem (Zou et al., 2015).  

Furthermore, silver nitrate has been previously used successfully with mice (Raj et al., 2014) and humans 

(Watz, Breithecker, Rau, 2005) in CT based research.  

 

 

2.2.5.2 Sample analysis on the Micro-CT 

The diffusion of silver nitrate from the rat bladder was analysed using a Micro-CT Scanner (X-Tek XT H 225) 

(See Figure 2.16).  The analysis parameters were 1583 X-Rays, 500ms exposure, 45 minute run time, 110 

µamps current and 130 Kv voltage.  During the analysis, the rat was vertically secured to a plate inside the CT 

scanner.  The first scan was immediately after preparation, and then the rat was laid flat at room temperature 

(approximately 20°C) and scanned six times over 9 days.  The analysis times included day 1, 2, 6, 7, 8 and 9.  
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Figure 2.15 Schematic Diagram of a Nikon XT H 225 ST CT scanner 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.16 X-Tek XT H 225 CT Scanner used for the in vivo rat study 

Nikon XTH225 ST 

X-Ray Generation 

Copper 

Molybdenum 

Silver  

Tungsten 

Sample Rotation 

CM Ceramic HyperD F  

MEP Hypercd 

X-Ray detection 

system 

 



73 

 

2.3 Data Analysis 

Statistical analysis was carried out on the data sets to determine the concentration of the drugs that diffused 

through the tissue.  Further analysis included determining if the concentrations were significantly different 

dependant on the parameters that were changed in the experiments.  The software packages included in 

these processes included Chromeleon 6 (Thermo Scientific, UK), Excel 2010 (Microsoft), and GraphPad 

Prism 6 (GraphPad).   

2.3.1 Microsoft Excel 

Excel spreadsheets with a single-factor ANOVA validation were setup and used to validate all three 

compounds used in this research (rhodamine B, amitriptyline and nortriptyline).  In addition, all the bladder 

diffusion study results were recorded in Excel 2010 calculating the cumulative concentrations of the 

compounds diffusing through the bladder tissue.  The concentrations were calculated in Excel 2010 using the 

calibration lines produced each day from the set of freshly prepared calibration standards run with the 

solutions from the diffusion studies.  

Excel 2010 was also used to calculate the flux values over the course of the experiment using the calculated 

concentrations from the bladder diffusion studies.  The concentrations were converted to mass and this was 

used to calculate the flux using the time, sample volume values and diffusional area (3.14 cm
2
) from the 

experiments, using the following formula (Brodin, Steffansen and Nielsen, 2010): 

𝐹𝑙𝑢𝑥 =  
𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑚𝑎𝑠𝑠 (𝑚𝑔)

𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 𝑎𝑟𝑒𝑎 (𝑐𝑚2)𝑥 𝑡𝑖𝑚𝑒 (minutes)
 

The flux values were then averaged to calculate the permeability of rhodamine B at each set of parameters 

investigated using the bladder studies.  The permeability was calculated in two different ways dependant on 

the results, steady state conditions were met with < 10% of the donor chamber diffusing through to the 

acceptor chamber.  A non-steady state condition was introduced when the diffused concentration increased 

above 10% of the original donor chamber concentration.  The calculations, shown below, were used from 

Birger diffusion paper (Brodin, Steffansen and Nielsen, 2010). The permeability was calculated then converted 

to cms
-1

. 

𝑃𝑒𝑟𝑚𝑒𝑎𝑏𝑖𝑙𝑖𝑦 (𝑆𝑡𝑒𝑎𝑑𝑦 𝑠𝑡𝑎𝑡𝑒) =  
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐹𝑙𝑢𝑥, 𝐽 (𝑚𝑔𝑐𝑚−2𝑚𝑖𝑛−1)

𝐷𝑜𝑛𝑜𝑟 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 (𝑚𝑔/𝐿)
 

 

𝑃𝑒𝑟𝑚𝑒𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (𝑛𝑜𝑛 − 𝑠𝑡𝑒𝑎𝑑𝑦 𝑠𝑡𝑎𝑡𝑒): 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1:  𝐶∞ =
𝑚𝑎𝑠𝑠 (𝑡 = 0)

𝑉𝑑𝑜𝑛𝑜𝑟 + 𝑉𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟

 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2:  
𝐶∞ − 𝐶𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟,𝑡

𝐶∞

=  𝑒−𝑘𝑡 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3: 𝑘 = 𝐴𝑃
𝑉𝑑𝑜𝑛𝑜𝑟 + 𝑉𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟

𝑉𝑑𝑜𝑛𝑜𝑟𝑉𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟
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𝐶∞ = Final concentration in both of the compartments (mg/L) 

Mass (t=0) = Mass at time zero (initially added to the donor chamber) (g) 

Vdonor = Volume of the donor chamber (ml) 

Vreceiver = Volume of the receiver chamber (ml) 

Creceiver, t = Concentration of the compound at time t (mg/L) 

K = Constant (min
-1

) 

A = The area of the tissue (cm
2
) 

P = Permeability (cm s
-1

) 

 

In addition, Excel 2010 was used to calculate the differences between the original donor chamber 

concentrations and the combined final concentrations in the donor and acceptor chambers for all the bladder 

diffusion studies using all three drugs.  

2.3.2 Chromeleon 6.0 

Chromeleon 6, the HPLC software package, calculated the amount of drug present in the standards using 

peak height.   

2.3.3 GraphPad Prism 6 

This statistical software was used to determine if there was a significant difference between the different 

temperature, pH, concentration, and bladder volume data sets.  

The bar charts in both Chapter 4 and Chapter 5 included stars above the bars to show the magnitude of the 

significant difference from the mean value.  The stars represent the numerical representation of the significant 

difference, which is the p value (See Table 2.2).  The smaller the p value, equal to or below 0.05, the larger 

the significant difference between sets of data, which results in rejecting the null hypothesis.  The null 

hypothesis states there is no significant difference between data sets.  Therefore if the null hypothesis is 

rejected, shown by a small p value, this means there is significant difference between data sets (GraphPad 

Prism 6 Statisitcs Guide, 2015). The statistical tests are described in sections 2.3.3.1 and 2.3.3.2. 

 

Table 2.2 Label meanings for the statistical bar charts (GraphPad Prism 6 Statisitcs Guide, 2015) 

Label Description (P value) Significance 

NS No significant difference - 

* 0.01 - 0.05  Significant 

** 0.001 - 0.01  Very Significant 

*** 0.0001 - 0.001 Extremely Significant 

**** Less than 0.0001 Extremely Significant 

 

2.3.3.1 Chapter 4 Statistical Analysis 

The statistical tests used for the Chapter 4 temperature, pH and degradation results was a Two-Way ANOVA 

with the simple effects within row multiple comparison.  The post-test used was the Bonferroni as only one cell 
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mean comparison was needed, the comparison between the cell means within the same row.  As comparing 

the difference between a parameter (cumulative concentrations) at a specific time point.  

The statistical analysis on the results from the bladder studies involving the two drugs (amitriptyline and 

nortriptyline) had missing data.  Therefore, the data could not be compared at set time points resulting in Two-

Way ANOVA being unsuitable to analyse the data.  As a result, the data were grouped by the respective 

solutions (PBS and AA) and an unpaired t-test was carried out to determine if the two sets of data were 

significantly different.  The p value from the F test within the prism results was used to determine if the results 

were significantly different, which would be with a value equal to or below 0.05.  

The inter-bladder thicknesses were plotted on a histogram to determine the spread of bladder thicknesses 

throughout all the diffusion studies.  Furthermore, a comparison between fresh and degraded bladder tissue 

thicknesses was calculated using an unpaired t-test with Welch’s corrections as did not want to assume both 

sets of data had the same standard deviation.  Also, carried out a two-tailed t-test to determine if there was 

any significant difference above or below the mean value.  

2.3.3.2 Chapter 5 Statistical Analysis 

The statistical tests used for the Chapter 5 concentration, bladder volume, and pH results were a Two-Way 

ANOVA with the simple effects within row multiple comparisons.  The post-test used was the Bonferroni as 

only one cell mean comparison was needed, the comparison between the cell means within the same row.  

As comparing the difference between the cumulative rhodamine B concentrations at a specific time point.  

 

2.3.4 X-Tek 3D Pro  

The software used with the computed tomography (CT) enabled the images to be stitched together to form a 

3D rendered image that could be rotated in any direction to identify the bladder location.  In addition, layers 

from the image could be removed so only the skeleton and the CT drugs could be identified.  
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Chapter 3: Method Development and Method Validation 
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3.1 Introduction 
The validation of methods is the process of determining if the method is ‘fit for purpose’, if the method would 

produce accurate and precise results when used in routine analysis.  There are a number of factors that are 

taken into consideration when validating a method including a calibration range, linearity, accuracy and 

precision, drug stability, limit of detection and quantification and selectivity (Flanagan, Taylor, Watson, 2007). 

The Forensic Toxicology Council produced a document, named the Scientific Working Group for Forensic 

Toxicology (SWGTOX) validation guidelines (SWGTOX, 2013). This document outlines the standard 

guidelines for validating a method used in the field of forensic toxicology.  

 

The main factors that could have an effect on either the method or the analytes have been included to cover 

the main process that samples undergo in a toxicology laboratory.  Initially, a validation plan is suggested to 

determine the parameters expected for the method to be validated, which includes determining values for 

each stage of the validation.  There are different levels of validation dependant on the use of the method and 

the instrument used, as a screening method would not need the use of calibration standards and ionisation 

suppression/enhancement would not be required for HPLC-DAD methods.  The validation samples used 

would be fortified samples prepared specifically for the set of validation experiments (SWGTOX, 2013).  

 

A quantification method would use most of the validation sections.  This would include the calibration range 

that is used to determine the linearity of the working range of standards that would be used in the method.  

The standards would need a linear relationship between the response and expected concentration for reliable 

results as the equation of the line is used to calculate the concentrations of the unknown samples.  The 

calibration standard range would also be used for the calculation of the concentrations of quality control (QC) 

samples, which would be analysed in triplicate over 5 days to determine the bias and precision values 

(SWGTOX, 2013). These values calculate the closeness of the results to the true value and between each set 

of samples (Flanagan, Taylor, Watson, 2007). Precision can be separated into two sub-sections determining 

the within-run and between-run values, which looks at the variability of values within each day and over the 

length of the validation.  

 

Limit of detection (LOD) and limit of quantitation (LOQ) are in line with the calibration range as both of these 

values determine the sensitivity of the instrument to the analytes using a specific method.  These values 

represent the lowest standard that can be reproducibly detected on an instrument with a 3:1 (LOD) and 10:1 

(LOQ) signal to noise ratio.  Inaccuracies could arise in quantifications if drugs were carried over into other 

samples.  Therefore, carryover and interference studies would be included to rule out the detection of drugs in 

subsequent samples.  High concentration standards would be analysed then blank samples directly after to 

determine if drug carryover could be detected (SWGTOX, 2013).  

 

Other factors could be investigated if relevant to the method, which includes drug stability and dilution 

integrity.  Stability involves reproducing the normal storage and preparation conditions of the analytes at 

different concentrations.  The processed sample experiment would require a number of triplicate samples to 

have undergone normal preparation, the first set to be analysed immediately then the remaining sets stored 
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under normal conditions and analysed at set times.  The stability of samples is determined when the variation 

exceeds the acceptable bias values (SWGTOX, 2013).   

 

From previous research, both model compounds and drugs have been used to determine the validity of 

methods.  The diffusion profile of rhodamine B has been previously determined on the UV in relation to the 

movement through a venous wall (Skopp et al., 1997). In addition, to make this research relevant to 

toxicology, drugs found in toxicological casework were also included.  The antidepressants amitriptyline and 

the metabolite nortriptyline are frequently found in numerous cases in therapeutic and toxic doses (Statistics, 

2013). These drugs are most commonly detected using HPLC-DAD in the toxicology laboratory as part of 

standard procedure in drug screening and quantification.   

3.2 Aims 

The aims of this chapter were to validate three drugs (rhodamine B, amitriptyline, and nortriptyline) on two 

instruments to allow for the determination of the drug concentrations in the bladder diffusion studies.  

Rhodamine B was validated on the UV-Visible spectrometer and the HPLC-DAD was used to validate 

amitriptyline and nortriptyline.   

3.3 Method Development 

Previous research has suggested that post-mortem diffusion could occur from the bladder (Moriya and 

Hashimoto, 2001) however, there has been no further investigation into the extent of diffusion over time.  

Previous work by Skopp and colleagues (Skopp et al., 1997) used a xanthene dye (rhodamine B) as a model 

in a method that mimics passive diffusion through the wall of a vein.  The methodology involved using Franz 

cells to allow contact of the dye with the tissue and sample over a period and measure the solution in the 

acceptor chamber with a UV-spectrometer.  This research utilised the same methodology and model 

compound however, it is important to confirm the suitability of the methodology with thicker bladder samples 

and to validate that UV-Visible spectroscopy can measure the rhodamine B concentration accurately and 

precisely.  In addition, a model drug that is considered to undergo PMR is amitriptyline and therefore was 

chosen as it has been previously used in research related to PMR with the investigation of post-mortem 

release of the drug from the lungs of rats (Hilberg, Mørland and Bjørneboe, 1994).  

3.3.1 Measurement of Diffusion from Franz-Cells 

The inter-bladder diffusion studies needed only one section of the bladder from six different bladders, the 

sectioning had to be standardised to allow the sample to be taken from the same area each time for 

consistency.  As a result, the right side of the bladder was chosen, as this is the usual side for femoral vein 

sample collection at autopsy (to mimic real life events).  The middle of the bladder was chosen to reduce the 

amount of variation in thickness within the same bladder tissue section as large differences in thickness could 

influence the diffusion rate.  The method for obtaining the middle of the bladder was to measure the length of 

the bladder from top to bottom using the callipers (for accuracy) and halving this value so the middle of the 

donor chamber is located in approximately this area when the bladder section is cut from the rest of the 

bladder.  
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3.3.1.1 Franz Cell set-up – Initial Method 

Franz cells have been used previously in another study to determine the diffusion of rhodamine B and 

morphine through a venous wall.  The vessel was sectioned then secured onto the cell and the donor and 

acceptor chambers were filled with rhodamine B or spiked blood samples.  This study was carried out over 

120 hrs (Skopp et al., 1997). This method was used as the basis for this set of diffusion experiments as this is 

the most suitable method for recording of direct diffusion through biological tissue.   

 

3.3.1.2 Equilibration 

To allow for equilibration of the bladder tissues to the experimental conditions they were set up on the 

chambers and left for 30-45 minutes, before the donor chamber solution was added, and the first sample was 

taken.  

 

3.3.1.3 Sample replacement 

Initially, all samples removed for analysis were replaced into the chambers, as removing the solution 

decreased the volume (and thus the concentration) of sample that has diffused into the acceptor chamber.  

This would result in the next sample being slightly less concentrated.  However, this would not give sink 

conditions, which would be more suitable for this experiment as it is over numerous days.  Sink conditions 

involve keeping the dissolution solution from saturation as this would reduce the amount of drug able to 

diffuse into the solution affecting the rate of diffusion and the results of the experiment.  If the samples were to 

be continually replaced then at some point equilibrium will be established between the two solutions and the 

tissue.  This would prevent any more diffusion of the drug into the acceptor solution, which would not be 

accurate in mimicking the conditions within the body.  As any drug that has diffused out of the bladder into the 

body would continue to diffuse away from the bladder.  However, this experiment holds the drug underneath 

the bladder, this restriction in drug movement results to resorting to another method for removing a proportion 

of the drug to allow for more diffusion.  As a result, after sampling, the volume in the acceptor solution was 

replaced with blank PBS or AA. 

 

3.3.1.4 Air bubbles 

Pilot experimentation determined that bubbles were disrupting the diffusion.  Initially, the acceptor chamber 

was filled with PBS solution and then the tissue was added.  However, this made securing the tissue on the 

chamber difficult as the acceptor chamber solution made the tissue slippery and hard to handle.  As a result, 

the bladder was mounted onto the chambers first, the donor chamber was secured, and then the acceptor 

chamber was filled with solution.  Re-orientating the chamber (upside down) allowed the solution to be 

gradually introduced to the tissues and once the solution was in contact with the tissues it was not disturbed.  

This would reduce the production of air bubbles between the acceptor chamber solution and the tissue.  Any 

air bubbles that did arise using this method, was eradicated by tilting the chamber until the air bubbles 

travelled up through the spout, and left the chamber.  In addition, as adding the acceptor solution was the last 

step once the chambers were replaced into their holder the chambers were not moved again throughout the 

experiment.  This was to minimise the chance of developing air bubbles in the acceptor chamber.   
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3.3.1.5 Tissue displacement 

In the pilot experimentation, the tissue sank into the acceptor solution when setup in the Franz cell.  

Therefore, the middle of the tissue needed to be supported with a material that would not react with the tissue 

and still be able to allow for diffusion of substances through into the acceptor chamber.  A steel mesh was 

used (8 mesh, 2 mm squares) that was placed beneath the tissue, then the Teflon (non-slip) ring on top of the 

tissue to keep it in place.  The mesh needed to be smaller than the Teflon ring otherwise the Parafilm could 

not seal the opening between the donor and acceptor chamber and therefore the chambers leaked.  The 

mesh was cut to size using the Teflon ring as a guide using wire clippers.  The Franz cell usually secures 

membranes that are micrometres in thickness (Garland et al., 2012) however, the thickness of the bladder 

tissue could range between 1-8 mm.  The mesh was too thick alongside the Teflon ring and the full thickness 

of the bladder tissue.  Over the period of the experiment, this could have damaged the bladder tissue.  The 

mesh left indentations on the bladder tissue reducing the amount of diffusional area for the donor solution to 

pass through.  In addition, as the thickness of the bladder was being investigated as a factor that could affect 

drug diffusion reducing the bladder thickness would give unrealistic results.  

 

Alternative methods were tried to replace the Teflon rings, as these did not grip the bladder tissue, as it was 

wet and slippery.  A non-stick reusable baking sheet was available and so rings were cut using the Teflon 

rings as a guide to see if this material would hold the bladder in place.  Initially, the rings were cut the same as 

the Teflon rings (Fig 3.1), however the bladder needed to have more support so the diffusional area was 

reduced to support the bladder (Fig 3.2 and 3.3). 

 

It was found that with two of the rings (See Figures 3.2 and 3.3) the bladder was distorted as the bladder was 

forced through the sections of the rings that were cut out.  Therefore, bunching the bladder up into the 

acceptor chamber, this would increase the thickness of the bladder, which could not be measured.  It was 

decided to use the original ring design (See Figure 3.1) and find another way to keep the bladders taut during 

the experiment.  In addition, the surface area of the original ring design was larger with a value of 283.5 mm
2
 

in comparison with 188.50 mm
2
 for Fig 3.2 and 129 mm

2
 for Fig 3.3. 

 

3.3.1.6 Paperclips 

Initially, the bladders were placed onto the chambers by hand and if the tissue was not large enough to fit 

across the whole acceptor chamber the tissue was manually stretched and replaced onto the chambers.  

Alternatively, the tissue was mounted onto the chambers and secured with the clamp to stretch out the 

bladder.  However, this was not sufficient to keep the bladder taut as in most cases the bladder would sag into 

the acceptor chamber or “bunch-up” into the donor chamber, which was usually wet and therefore slippery.  In 

addition, the manual handling of the tissue, stretching and cleaning, could affect the integrity of the bladder 

membrane layers.  As a result, a paperclip was employed to keep the bladder taut when setting up the Franz 

cell.  Initially, a number of different orientations were tried to get the optimum method for keeping the bladder 

taut while securing onto the Franz cell.  The successful method was to straighten the paperclip and mould into 

a “U-shape”.  Then the bladder would be pierced at each bottom corner and the ends of the paperclip would 

then be pierced into the top corners of the bladder.  This held the bladder taut and the paperclip would be 
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widened dependant on the bladder tissue size (See Figure 3.4).  In addition, other reasons for improving this 

method included minimal handling of the tissue, as the urothelium is easily damaged and lost post-mortem 

(Jost, Gosling and Dixon, 1989).  This was the main reason for using fresh bladders that were setup as close 

to time of death as possible.   
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Figure 3.1 Original support ring design, cut from a reusable baking sheet to support the bladder in the Franz 

cell 

 

 

 

 

 

 

Figure 3.2 Circular ring support design, cut from a reusable baking sheet to support the bladder in the Franz 

cell 

 

 

 

 

 

 

 

Figure 3.3 Linear ring support design, cut from a reusable baking sheet to support the bladder in the Franz 

cell 

 

 

 

 

 

 

 

 

 

 

Figure 3.4 Image of a bladder tissue section secured onto the paperclip 
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3.3.1.7 System leakage 

Initially, the chambers were secured with just a clamp and no Parafilm around the bladder, this was tried to 

see if the clamp itself was enough to prevent leakage from the bladders.  This was not the case as there was 

a significant amount of leakage from the opening between the donor and acceptor chambers.  As a result, 

Parafilm was placed around the outside of the chambers after  the tissue was secured with the clamp, which 

reduced leaks for 2 days.  However, leaks still occurred, the method of applying the Parafilm had to be 

improved.  When started using the paperclips to keep the bladder taut the Parafilm was put around the 

bladder itself to prevent contact of the bladder with the outside environment as this dries out the bladder and 

could shrink allowing for an opening between the two chambers.  The Parafilm was secured by piercing the 

ends of the expanded Parafilm on either ends of the paperclip.  This did not improve the situation therefore it 

was discontinued.  However, the Parafilm that was applied to the outside of the bladder was first placed within 

the clamp so the Parafilm sat flush with the opening between the two chambers.  Then both ends were 

stretched around the opening between the two chambers, using two pieces of Parafilm for a better seal.  This 

method showed a marked improvement, with no leakage from all of the chambers.  This improvement of the 

method was then adopted within the setup method for the Franz cell. 

 

3.3.1.8 Sample preparation (Sample Filtration) 

Pilot experiments did not involve any sample preparation prior to analysis on the UV spectrophotometer.  

However, initial results showed higher readings than expected.  A comparison of the absorbance values of the 

initial diffusion experiments, to the samples after filtering using cellulose acetate filters (Chromacol, 17 mm, 

0.45 µm) resulted in a lower reading that was produced by filtering the samples (See Figure 3.5).  This 

showed that most of the absorbance was due to degraded bladder tissue in the solution, especially at higher 

temperature the tissue degraded faster, resulting in more tissue in the solution and therefore higher 

absorbance.  

 

The filtration experiment was carried out to determine which use of cellulose acetate filters had the best 

recovery of rhodamine B solution over 5 days (length of bladder studies).  The parameters included analysing 

a sample with no filtration, single use of cellulose acetate filters and re-used cellulose acetate filters.  This was 

to determine if the filters could be re-used to filter samples during the experiment.  The 5 mg/L of rhodamine B 

solution was chosen to test the filters.  Two samples of 40 ml (5 mg/L) rhodamine B solution were prepared 

from stock and put into two beakers, sealed with Parafilm and placed into an incubator (GallenkamÞ, size two) 

at 37°C.  Sampling was carried out twice a day over 5 days, transferred 0.5 ml using a plastic Pasteur pipette 

into small glass vials for transfer to the UV-Visible spectrometer.  A 1 ml syringe (1 ml Terumo syringe without 

needle) was used to remove 1 ml of the sample for directly filtering into the quartz cuvette.  When using the 

reused filters, air was pushed through the filter before used on the next sample to reduce carryover of 

samples.  When running the samples on the UV-Visible spectrometer each sample was run three times to get 

an average result.  Two beakers of solution were used to get an average result.  

 

In addition, the optimum wavelength ( max) was determined for the rhodamine B at 554 nm when run on a 

scan.  However, the value from the Skopp (Skopp et al., 1997) paper was used for the experiments (543 nm) 
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a comparison was carried out to determine if using the 543 nm was detrimental to sensitivity in picking up and 

quantifying the drug in the samples. A calibration and QC set for the experiment described above were 

analysed at 543 nm and 554 nm to determine if there was a significant difference in the detection of the drug.  

The results showed there was no difference in sensitivity of the drug between 543 nm and 554 nm.  The r
2
 

value for 543 nm using the calibration line 0.156 - 5 mg/L was slightly better than at 554 nm, r
2
=0.9998 and 

r
2
=0.9996 respectively.  As a result, the initial wavelength continued to be used for the remainder of the 

rhodamine B based studies.  

 

Samples that underwent no filtration had the highest results at 7.35 mg/L (See Fig 3.5) as the bladder tissue 

would have degraded into the solution causing it to be cloudy absorbing more light.  Therefore falsely 

increasing the concentration of rhodamine B. Re-using the same cellulose acetate filter was successful for up 

to 12 samples; the same filter was used for both beakers, to remove any bladder tissue from the solutions 

containing rhodamine B.  The highest concentration using the same filter was 6.8 mg/L and using a new filter 

each time had a maximum concentration of 5.3 mg/L.  This had no effect to the drug itself (no retention in the 

filter) resulting in good recoveries of rhodamine B with an average recovery of 99.4%.  Using a new filter each 

time worked for all samples, however this is not feasible so using the same filter as far as possible will be 

incorporated into the bladder studies method.  
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Figure 3.5 Comparison of 5 mg/L rhodamine B standards before and after filtering (n=2) 
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3.3.1.9 Sample volume 

The sample volume was initially 4 ml to allow for filling the cuvette for analysis.  However, this resulted in 

taking a larger volume that could be held in the spout.  As a result, this would reduce the concentration as 

27% of the total acceptor chamber volume would be removed per sample point and also create air bubbles in 

the acceptor chamber when returning the sample.  As a result, the sample volume was reduced to 0.5 ml, 

which was the volume of the spout, to reduce the risk of introducing air bubbles during the sampling process 

and reducing the effect on concentration change.   

 

3.3.1.10 UV Cuvette 

In order to take into account the reduced sample volume the cuvette used in the pilot experimentation (plastic, 

(Fisherbrand Polystyrene Macro Cuvettes for Visible Wavelengths, 4ml)   was replaced with a quartz, 400 µl 

volume, cuvette (Hellma Analytics, high precision cell, synthetic quartz light path 10 mm). 

 

3.3.1.11 Franz Cell temperature stability 

In order to determine the temperature within the Franz cell was constant and accurate an experiment was 

carried out to determine the temperature across all six chambers of the Franz cell.  The set temperatures 

were 37°C, 20°C, and 5°C.  The solution used was deionised water as this was the base of both the buffers 

used in the bladder diffusion studies.  The method for this experiment included turning the water bath on to 

the appropriate temperature (37/20/5°C) and equilibrated for 2 hrs.  Deionised water was added to all 6 

chambers,  the spout was sealed and the top of the acceptor chamber with parafilm to prevent evaporation.  

Also, to allow the water to equilibrate to the correct temperature for ½ hour.  After equilibration, the 

thermometer (Fisherbrand Red Spirit Filled Partial Immersion Thermometer) was inserted into each chamber 

and the temperature was recorded.  A number of samples were taken over the course of the five days.  The 

magnetic stirrers were switched on for all chambers throughout the experiment, to mimic the bladder studies 

as closely as possible.  The fume cupboard light was turned off between sampling to mimic bladder studies.  

The results for the three temperatures consisted of 144 readings over the 5 days per temperature resulting in 

consistent results.  The 37°C experiment had a consistent experimental temperature of 36 ± 0°C, the 20°C 

experiment was 21 ± 0°C, and the 5°C experiment had an experimental temperature of 7 ± 0°C.  Although all 

three temperatures were slightly different from expected they are all consistent and stable at these 

temperatures.  This shows there was no temperature fluctuation throughout each day and between days for 

each experimental temperature.  As a result, all three sets of bladder studies are at stable temperatures 

throughout the entire experiment. 
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3.3.2 UV Visible Spectrometer 

 

3.3.2.2 Initial Method 

In order to validate the method for the concentration determination of rhodamine B on the UV-Visible 

spectrometer for use on the Franz cell a fresh calibration line and QC samples were prepared in pH 7.4 and 

analysed on a UV-Visible spectrometer three times per day over 5 days for precision (within-run and between-

run) and bias at 543nm.  The calibration range covered 1.56 mg/L - 50 mg/L, in accordance with the Skopp 

method (Skopp et al., 1997) using a serial dilution. The QC sample was the middle concentration (12.5 mg/L) 

from the calibration line, this was used instead of using the SWGTOX guidelines (SWGTOX, 2013) stating the 

use of more QC samples, as replicating the method by Skopp and colleagues (Skopp et al., 1997).   

 

All values were corrected for the PBS blank solution.  The results show the calibration graph using all six 

calibration standards for day 1-5 was not linear (See Fig 3.6) this was confirmed with a residual plot (See Fig 

3.7), which shows saturation of the detector at the highest calibration standard (50 mg/L).  As a result, the 

highest two calibration standards were removed from the graph to obtain a linear calibration line.  The 

average r
2
 value for the 1.56 mg/L – 12.5 mg/L calibration line was 0.9999 (See Fig 3.8) and the residual plot 

shows linearity (See Fig 3.9).  The average QC samples were 15.5% away from the expected concentration.  

In conclusion, the calibrations were linear up to 12.5 mg/L with an average r
2
 value of 0.9999 and the QC 

samples were all within the 20% bias margin.  As a result, the calibration of 1.56 mg/L – 12.5 mg/L was used 

for the subsequent experimentation.   
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Figure 3.6 Average rhodamine B 1.56 mg/L - 50 mg/L calibration graph measured at 543 nm on UV-Visible 

spectrometer in PBS pH 7.4, (n=15) (Error bars are ± S.D.) 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7 Residual plot for the calibration line of rhodamine B between 1.6 - 50 mg/L in PBS pH 7.4, (n=15) 
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Figure 3.8 Average rhodamine B 1.56 mg/L-12.5 mg/L calibration graph measured at 543 nm on UV-Visible 

spectrometer in PBS pH 7.4, (n=15) (Error bars are ± S.D.) 

 

 

 

 

 

 

 

 

 

 

Figure 3.9 Residual plot for the calibration line of rhodamine B between 1.6 - 12.5 mg/L in PBS pH 7.4, (n=15) 
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3.3.3 HPLC-DAD 

 

3.3.3.1 pH 7.4 

 

3.3.3.1.1 HPLC set-up – Initial Method 

The aim of this method was to identify the two drugs (amitriptyline and nortriptyline) with good peak separation 

(resolution), where the peak reaches the baseline before the second peak begins, within a short analysis time 

per sample (run time), ideally less than 10 minutes per sample.  The starting point for the method 

development was taken from an in-house method from Centre of Forensic and Legal Medicine, University of 

Dundee.  Drug stock solutions (1000mg/L) were prepared in water for amitriptyline and nortriptyline.  Diluted 

standards of 10 mg/L were prepared for each analyte (amitriptyline and nortriptyline) and also a mixed 

standard of all two analytes at 10mg/L was prepared and analysed on the HPLC.  

 

Dundee HPLC method: Column details: Waters Spherisorb 5 µm OD/CN, 4.6 x 150 mm Analytical Cartridge, 

column temperature 25°C.  Isocratic mobile phase 57% organic (70% acetonitrile, 27.5% deionised water, 

2.5% TEAP) and 43% aqueous (97.5% deionised water and 2.5% TEAP).  Flow rate 2 ml/min, injection 

volume was 40 µl with a 7 minute run time at wavelength 210 nm.   

 

All three drugs could easily be seen and identified in water (See Figure 3.10).  The metabolite (nortriptyline) 

had a retention time of 3.0 minutes; amitriptyline was the next peak at 3.6 minutes .  However, there was 

some peak tailing using this method.   
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Figure 3.10 10 mg/L mixed standard of amitriptyline and nortriptyline dissolved in water analysed using the 

initial HPLC method 
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3.3.3.1.2 Method development – Peak tailing 

In order to reduce the peak tailing to an acceptable level, dissolution solutions for nortriptyline were compared, 

with methanol and water to determine the most appropriate solvent.  The solvent comparison was carried out 

for only nortriptyline as the peak in the chromatogram was merging with amitriptyline.  The ideal asymmetry 

value is below 1.5 (Flanagan, Taylor, Watson, 2007). There was less asymmetry (Table 3.1) in water so 

nortriptyline was dissolved in water for all subsequent experiments.  

 

Table 3.1 Asymmetry comparison of nortriptyline in two separate solvents 

Solvent (Nortriptyline) Asymmetry 

Methanol 1.81 

Water 1.77 

 

In an attempt to reduce the peak tailing two, methods were compared with different isocratic mobile phase 

compositions. The first was 57% organic 43% aqueous and the second was 60% organic 40% aqueous.  

There was slightly less peak tailing at 57% A so used this method for subsequent experiments.  However, 

there was still peak tailing due to the asymmetry values (See Table 3.2).  

 

Table 3.2 Method comparison peak asymmetry 

% Organic Asymmetry 

57 (Amitriptyline) 1.89 

57 (Nortriptyline) 1.77 

60 (Amitriptyline) 1.94 

60 (Nortriptyline) 1.79 

 

Furthermore, individual parameters were changed in the method to determine if the peak shape could be 

improved.  Three parameters were changed that included reducing the injection volume to 30 µl, increasing 

the column temperature to 30°C, and increasing the TEAP buffer from 2.5% to 5%.  Only the 10mg/L mixed 

standard sample was run for these method changes.  

 

 

 

 

 

 

 

 

 

 



93 

 

Table 3.3 Comparison of the asymmetry and resolution of both drug peaks in mixed standard samples for the 

HPLC parameter changes 

Experiment / drug Asymmetry Resolution 

amitriptyline:   

Initial Method  1.94 3.99 

Reduced to 30 µl injection 1.91 4.02 

Increased column temp to 30°C 1.68 2.85 

Increased TEAP buffer to 5% in eluent  1.82 3.61 

nortriptyline:   

Initial Method 1.86 3.21 

Reduced to 30 µl injection 1.80 3.23 

Increased column temp to 30°C 1.74 3.62 

Increased TEAP buffer to 5% in eluent  1.74 2.84 

 

Reducing the injection volume to 30 µl to reduce the peak merging between amitriptyline and nortriptyline did 

not affect the asymmetry of the peaks (See Table 3.3).  The increase in the column temperature did reduce 

the peak tailing of the amitriptyline peak but did not affect the nortriptyline peak (See Table 3.3), however this 

is not a viable option as the buffer in the eluent is optimum at 25°C.  If the temperature changed it may affect 

the buffer stability and as a result the pH of the eluent.  Finally, the increase in buffer concentration, which 

was changed to improve pH stability, did not affect the asymmetry of resolution of the peaks (See Table 3.3).  

As a result, these changes were not implemented into the method.  

 

3.3.3.1.3 Initial calibration analysis 

In order to determine if peak resolution and asymmetry were similar across the calibration range a set of all 

samples (0.31 – 10 mg/L) was analysed once.  As can be seen in Table 3.4,  the resolution was above the 

threshold of 1.5, however there was still peak tailing.  As this was an older column a new column was used to 

determine if the peak tailing was inherent in the methodology or due to possible column degradation.    
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Table 3.4 Comparison of asymmetry and resolution parameters between a set of calibration standards and 

QC samples 

Sample / drug Asymmetry Resolution 

amitriptyline:   

0.3125 mg/L  1.72 3.78 

2.5 mg/L 1.76 3.79 

5 mg/L 1.86 3.81 

10 mg/L  1.91 3.76 

LQC (0.5 mg/L) 1.74 3.83 

HQC (5 mg/L)  1.83 3.80 

nortriptyline:   

0.3125 mg/L  1.70 3.10 

2.5 mg/L  1.78 3.10 

5 mg/L  1.83 3.07 

10 mg/L 1.87 3.04 

LQC (0.5 mg/L)  1.82 3.13 

HQC (5 mg/L)  1.79 3.09 

 

3.3.3.1.4 The influence of a fresh column on peak tailing  

In order to determine if the column rather than the method could be the cause of the peak tailing, a new 

column and a set of calibration standards (0.156 mg/L – 10 mg/L) and QC samples (0.5 mg/L and 5 mg/L) 

were analysed.  The resolution (4.17 and 3.23) improved along with the asymmetry (1.32, 1.25 and 1.29) (See 

Figure 3.11) for amitriptyline and nortriptyline respectively.  This showed that the original column was 

degraded resulting in the peak tailing.  As a result, the replacement column (Waters Spherisorb 5 µm OD/CN, 

4.6 x 150 mm Analytical Cartridge) solved the peak tailing issues.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



95 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11 HPLC method development, pH 7.4: 10mg/L mixed standard (amitriptyline and nortriptyline) using 

the new HPLC column 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



96 

 

3.3.3.2 Method development of amitriptyline and nortriptyline on the HPLC-DAD at pH 5 

As the experimental plan required analysing samples at pH 5 it was important to develop a method for these 

samples.   

 

3.3.3.2.1 Method development 

Solubility of compounds can be a problem when using buffers in solvents and if not checked there could be 

precipitation of salts when the mobile phase is mixed in the HPLC, resulting in possible damage to the HPLC 

column and thus potential inaccurate results.  The solubility of ammonium acetate (AA) (Sigma, BioXtra, ≥ 

98%, Molecular weight: 77.08 g/mol) was mixed at various concentrations in acetonitrile as previous work has 

shown that AA may not be soluble in acetonitrile (Dolan, 2009).  All 9 samples (90% - 10% acetonitrile to AA 

pH 5) were prepared therefore even if there was no buffer present in the organic phase the acetonitrile will be 

exposed to AA in the samples.  The damage to the HPLC column from the salt precipitation would need to be 

minimised.  The percentage of acetonitrile where the buffer would not precipitate out needed to be determined 

in case the buffer needed to be added to the organic phase.  

 

Initially, a gradient system was used for the method to isolate the retention times the drugs eluted from the 

column, which would allow for the calculation of the percentage of organic phase that would be needed to 

change to an isocratic method.  An isocratic method would reduce the amount of solution used and therefore 

the run time.  The initial mobile phase consisted of the organic phase (80% CH3CN: 20% 20 mM AA pH 5) 

and the aqueous phase (20 mM AA pH 5 dissolved in deionised water, 0.77 g AA in 500 ml).  Buffer was 

added to both phases to cancel out buffer effects and salt precipitation when the two phases are mixed. 

 

To equilibrate the HPLC before sample analysis, the eluent was changed to the initial mobile phase and 2 

ml/min flow rate, which was used from the previous method as a start point.  The system was purged and left 

to equilibrate for 20 minutes.  

  

Initial pH 5 HPLC method: Column details: Waters Spherisorb 5µm OD/CN, 4.6 x 150 mm Analytical 

Cartridge, column temperature 25°C.  Gradient method, 100% – 0% organic (10mM AA in 80% CH3CN (20% 

AA to 80% CH3CN)) and aqueous (10 mM pH 5 in water).  Flow rate 2 ml/min, injection volume was 40 µl with 

a 20 minute run time at wavelength 210 nm.   

 

This method identified peaks with nortriptyline at 5.1 minutes and amitriptyline at 7.8 minutes (See Fig 3.12).  

The specific percentage for the isocratic method was identified to be 59% aqueous 41% organic, which was 

tested with individual drug standards and a mixed standard of all  drugs with a run time of 10 minutes.  The 

run time was increased as no drugs were present. However even with the increase in time there were poor 

results from this method, which could be from too high a percentage of the aqueous phase.   

 

If the pH is low i.e. pH.5 then basic drugs would be very ionised, both drugs have a pKa of 9, so they would 

not bind to the column if there was a higher level of the aqueous phase.  Initially, no amitriptyline was detected 

from this isocratic method.  Amitriptyline peaks were broad, the nortriptyline peak had inconsistent retention 
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times.  The large difference in results between the two drugs of similar structure results in this method not 

being suitable.  

 

The method development process at this point mainly only detected nortriptyline, with the initial gradient 

method showing amitriptyline.  An isocratic method is still preferred as it would reduce eluent and run time 

usage.  The isocratic method identified nortriptyline  however, the peak shape was very broad.  The run time 

for nortriptyline  was very long.  This isocratic method was too long which shows that there is either not 

enough organic phase to elute the drugs within a sensible run time or the column temperature could be too 

low resulting in reduced sensitivity for the drugs.   

 

3.3.3.2.2 Revised method to quantify drugs at pH 5 

Initial work looked at the suitability of the Waters column (Waters Spherisorb 5µm OD/CN, 4.6 x 150 mm 

Analytical Cartridge) for pH 5 analysis with the solubility of ammonium acetate, gradient method and isocratic 

method that was investigated but the column was found to be unsuitable.  The Phenomenex column 

(Phenomenex Gemini 3µm C18, 110Å, 150 x 4.6 mm column) was found to be stable across pH 1-12 so was 

investigated as an alternative.  A pre-used method was suggested from the Phenomenex applications to 

identify two drugs (amitriptyline and nortriptyline).  Even with the wide range of stability, for both amitriptyline 

and nortriptyline to be neutral the mobile phase would need to be above pH 12 and would strip the column.  

Therefore, the suggested method was to use pH 4 - 5 that would cover the free silanols on the C18 column.  

 

Method: Column: Phenomenex Gemini 3µm C18, 110Å, 150 x 4.6 mm column, column temperature was 30°C.  

Isocratic method with 30% aqueous phase (20 mM ammonium acetate dissolved in deionised water) and 70% 

organic phase (50% acetonitrile: 50% methanol).  Flow rate 1.25 ml/min, injection volume was 40µl with a 20 

minute run time at wavelength 210 nm.   

 

The pKa of ammonium acetate is 4.8 so the working range was pH 3.8 - 5.8. The higher pH 5 was chosen to 

match the pH that was used in the bladder diffusion studies.  Both mobile phases were filtered (Phenomenex, 

Phenex filter membranes, 0.45 µm, 47 mm, nylon).  Initially the run time was 20 minutes to ensure all the 

drugs would be present within the same runtime based on the results of this analysis the runtime was reduced 

to 10 minutes as all the drugs eluted within this time scale.   

 

This method was a success as both drugs were identified and quantified with good resolution and within a 

short run time using an isocratic method, which would save eluent as no equilibration, time was needed 

between samples.  Therefore this method would be used for subsequent analysis.  Both the LQC and HQC 

were within the 20% bias value and therefore future samples should be able to be validated using this 

method.  Very sharp and resolved peaks (See Figure 3.13) with acceptable asymmetry factors of 1.20±0.04, 

1.19±0.07 for amitriptyline and nortriptyline respectively.  In addition, the resolution values are 1.80±0.91, 

2.68±0.04 for amitriptyline and nortriptyline respectively above the ideal resolution value of >1.5 (Flanagan, 

Taylor, Watson, 2007). 
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Figure 3.12 HPLC method development, pH 5, 10 mg/L Mixed standard (amitriptyline and nortriptyline), using 

the gradient method 
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Figure 3.13 HPLC method development: pH 5, 10 mg/L mixed standard (amitriptyline and nortriptyline), using 

the suggested HPLC method 
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3.3.5 In vivo Rat Study 

3.3.5.1 Catheterisation and preparation of the rat 

An in vivo experimental model was used to determine if any bladder degradation occurred during a nine day 

period, if so would there be any diffusion from the bladder in that time and would it reach the femoral veins.  

The initial procedure to investigate was how to catheterise the rat.  Previous studies were used in relation to 

the technique (Reis, Sopena, 2011) however, they were used on live rats and when the procedure was 

repeated on the dead rats there was difficulty in successful catheterisation. Therefore, as a guide, and to allow 

the catheterisation to be reproducible, an incision was made down the middle of the abdomen of the rat to 

visualise the organs, identify the bladder to observe the direction of the catheter until it had entered the 

bladder (See Fig 3.14).  The bladder was initially filled with 100 mg/L rhodamine B as the pink coloured 

solution would be used as a visual indicator for when the bladder was full and to confirm there was no 

damage to the bladder caused by inserting the catheter (See Fig 3.15).  The incision in the rat was closed with 

superglue and due to leakage of fluid from the urethra this was tied with cotton (See Fig 3.16).  
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Figure 3.14 Midline incision into the rat exposing the organs to identify the bladder for catheterisation.  The 

bladder is circled in yellow. 

 

 

 

 

 

 

 

 

Figure 3.15 Exposed rat bladder filled with 100 mg/L rhodamine B solution to determine maximum volume.  

Bladder circled in yellow 

 

 

 

 

 

 

 

 

Figure 3.16 Rat urethra sealed with superglue and cotton string 
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3.3.5.2 Securing the rat for CT scanning 

To allow the rat to be vertical in the Micro-CT the rat would have to be supported to stop movement during the 

duration of the study.  Therefore previous studies involving CT scanning rats was researched and found a 

method using a polystyrene support and elastic bands (Judex et al., 2010).  It was found after approximately 

two days stood vertically in the fume cupboard sealed in the plastic weapons tube that the elastic bands alone 

would not support the rat .  The weapons tube (Sourced from the University of Huddersfield Forensics 

department) is a two part plastic container that screws together.  The elastic bands forced the organs down to 

the bottom of the peritoneal cavity and flattened the area around the band.  This concluded the elastic bands 

were too tight and interfered with the rat.  An alternative method was to use string to secure the rat to the 

polystyrene sheet in a way that would not push on the organs and move them for the correct anatomical place 

(See Fig 3.17).  The support for the polystyrene sheet with the rat to remain vertical was found to be a plastic 

weapons tube as the polystyrene sheet and a medium sized rat would fit better than a large rat (See Fig 3.18).  

The plastic weapons tube was sealed using Parafilm.  The polystyrene was cut to size to fit in the weapons 

tube (8.7cm diameter) using a hot wire cutter at 9 volts. 
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Figure 3.17 Rat secured to a polystyrene sheet using string and elastic bands 

  

 

 

 

 

 

 

 

 

 

 

Figure 3.18 Rat secured to a polystyrene sheet and sealed in a plastic weapons tube for CT scanning 
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3.3.5.3 Determination of the CT visible drug to use in the rat bladder 

The next part of the method was to determine the contrast agent suitable for the CT.  The initial contrast agent 

used was sodium diatrizoate hydrate (Sigma, UK) as this is the compound that is found in the medical CT 

drugs including Urografin (Geenen, Kingma and van der Molen, 2013). The rat was catheterised and the 

bladder contained 0.33 ml of approximately 182.42 mg/ml of the compound, which was determined from the 

optimum iodine concentration of 0.27 M (Crespigny, 2008). The CT scan was started approximately 30 

minutes after preparation of the rat.  The resulting scan showed that the contrast agent could be visualised in 

the bladder, highlighting the organ (See Fig 3.19).  However, this rat was stored at approximately 20°C for one 

week and then scanned again to determine if the contrast agent could still be visualised.  No contrast agent 

was visible at the repeat scanning (No data shown).  This is thought to be due to the short half-life of 

approximately 120 minutes (Geenen, Kingma and van der Molen, 2013). Due to the proposed study duration 

of 9 days an alternative contrast agent would need to be utilised. 

 

Other materials were investigated including silver, which has been used in a number of CT based experiments 

with rats and in particular silver nitrate has been shown to be effective with a long half-life between 1-4 

months (Lee and Kim, 2013). Therefore the rat was catheterised with 0.1M of the solution as a starting 

concentration.  However, this concentration was not visible on the Micro-CT and so the concentration was 

increase to 1M and the process was repeated.  This was successful and the bladder was highlighted (See 

Figure 3.20) resulting in this compound being used for the nine-day study. 
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Figure 3.19 Micro-CT 3D rendered image of the rat skeleton and sodium diatrizoate hydrate in the bladder 

(circled in yellow) 

 

 

 

 

 

  

 

 

 

 

Figure 3.20 Micro-CT 3D rendered image of the rat skeleton and 1M silver nitrate in the bladder (circled in 

yellow) 
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3.3.5.4 Highlighting the femoral vein in the rat for the CT scan 

As part of the aims of this section were to determine if any compound diffusing from the bladder could reach 

the femoral vein it was important to visualise the vessel on CT.  It was not possible to locate or visualise the 

femoral veins using CT alone due to the lack of contrast between tissues (data not shown).  Visualisation was 

attempted with the isolation, identification and then the marking of the femoral veins.  In order to mark the 

femoral veins a substance that would be able to be visualised but not diffuse was needed.  Therefore, a solid 

material would need to be secured to the femoral vein that could be visible on the CT.  The preferred material 

was suggested to be aluminium and this was the base for fuse wire however, only alloy fuse wire was 

available.  The method for isolating a femoral vein was found (Parasuraman and Raveendran, 2012) and 

utilised (See Fig 3.21), then using a microscope and a pair of tweezers the alloy fuse wire was tied onto the 

femoral vein using cotton string (See Fig 3.22). However, the CT scan with the fuse wire was not a success as 

the alloy reduced the resolution of the CT drug and the bone reducing both the to the same colour making 

them indistinguishable (See Fig 3.23).  No measurements between the fuse wire and the bladder were made 

due to the reduction of resolution between the bladder and the bone.  Thus it was decided that marking the 

femoral vein was not possible in this study.   
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Figure 3.21 Identifying the femoral vein in the rat (circled in yellow) 

 

 

 

 

 

 

 

 

 

Figure 3.22 Alloy fuse wire tied to the rat femoral vein 

 

 

 

 

 

 

 

 

Figure 3.23 Micro-CT 3D rendered image of the rat skeleton, 1M silver nitrate in the bladder (circled in yellow) 

and the alloy fuse wire tied to the right femoral vein (circled in red). 
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3.4 Method Validation 

Following the development of potentially suitable methods it is important to validate these for use.  In order to 

ensure that the methods were fit for purpose, the quantitative methods of determining the concentration of 

rhodamine B (UV Visible Spectrometer) and amitriptyline and nortriptyline (HPLC-DAD) were validated 

according to the SWGTOX guidelines (SWGTOX, 2013). 

 

3.4.1 UV Visible Spectrometer 

For validation, it is important to state the required parameters as the experiments were meant to be 

quantitative therefore; a set of calibration standards (0.16 – 10 mg/L) and QC samples were required to 

validate the solutions on the instrument before running the experimental samples.  A limit of detection and 

quantitation analysis determined the lower concentrations that were repeatedly detectable using the 

instrument.  Two QC samples were used as prepared a serial dilution and therefore a linear relationship was 

expected.  The two QC samples were 0.5 mg/L and 5 mg/L.  To validate the solution on the UV a fresh 

calibration and set of QC samples were prepared from the same relevant same stock solution each day and 

compared using single factor ANOVA.  The same stock solutions were used for all the calibration and QC 

samples  to be able to also record the stability of the rhodamine B over the 5 day experiment.  Initially, the 

calibration and QC samples were run three times a day to determine if there was any intra-day variation.  The 

subsequent experiments consisted of calibration and QC samples run once a day to convert the absorbance 

of the experimental samples to concentration.  In addition, dilution integrity samples were analysed to 

determine if the dilution of samples affected the resultant concentration.  As during the diffusion studies some 

samples exceeded the calibration range preventing the calculations of the sample concentrations.  

 

3.4.1.1 Linearity 

The rhodamine B calibration standards were prepared as detailed in the methods (See Chapter 2 Section 

2.1.5.1) to create a calibration curve containing 6 points covering a range of 0.16 – 5.0 mg/L. Five freshly 

prepared, separate calibration standards were analysed over 5 days.  The absorbance was compared to the 

expected concentration to determine the linearity of the calibration range.  As can be seen in Figure 3.24 and 

3.26 both of the calibration curves of rhodamine B in PBS (pH 7.4) and AA (pH 5) had an r
2
 of greater than 

0.99.  In addition, the residual plots for both pH solutions (See Fig 3.25 and 3.27) show the results follow the 

linear model resulting in acceptable linearity.  
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Figure 3.24 Average calibration graph for rhodamine B in pH 7.4 analysed on the UV-Visible Spectrometer.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.25 Residual plot for the calibration line of rhodamine B between 0.16 - 5 mg/L in PBS pH 7.4 
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Figure 3.26 Average calibration graph for rhodamine B in pH 5 analysed on the UV-Visible Spectrometer.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.27 Residual plot for the calibration line of rhodamine B between 0.16 - 5 mg/L in PBS pH 7.4 
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3.4.1.2 Limit of Detection/Limit of Quantitation 

In order to determine the LOD/LOQ three repeats of the lowest calibration standard were analysed over five 

days, the concentrations of the lowest standard were calculated using the equation of the line from the 

calibration graph.  These concentrations were analysed in single factor ANOVA to see if there were 

reproducible results for within-run and between-run factors.  The lowest calibrator passed the ANOVA with 

values < the 20% bias (See Table 3.5).  Then the LOD and LOQ can be determined as the lowest calibrator 

(0.16 mg/L) for pH 7.4 and pH 5 for rhodamine B on the UV.  

 

Table 3.5 ANOVA results for LOD/LOQ of rhodamine B in PBS and AA 

ANOVA - 0.156 mg/L PBS (pH 7.4) AA (pH 5) 

Within-Run (%) 6.81 3.74 

Between-Run (%) 13.58 11.38 

 

 

3.4.1.3 Precision and Accuracy (Bias) 

Precision and bias were carried out to determine within-day and between-day variation over 5 days with three 

repeats of the quality control (QC) samples per analysis.  The calibration standards were the same as 

described previously (Section 3.4.1.1), the two QC samples were determined to be 0.5 mg/L (LQC) and 5 

mg/L (HQC).  A separate rhodamine B 100 mg/L stock solution was prepared for the calibration standards and 

QC samples to mimic real life situations where the samples analysed alongside the calibration standards 

would originate from a different source.  Single factor ANOVA was used to determine the precision and 

accuracy.  As can be seen from Table 3.6 the precision and accuracy were <20 % and thus within acceptable 

ranges for further use.  

Table 3.6 Intra-day and inter-day variation of rhodamine B in PBS and AA 

 PBS pH 7.4 pH 5  

One Way ANOVA LQC (0.5 mg/L) HQC (5 mg/L) LQC (0.5 mg/L) HQC (5 mg/L) 

Grand Mean (mg/L) 0.59 5.20 0.56 5.08 

Bias (%) 19.70 4.17 12.28 1.76 

Within-Run (%) 7.61 1.17 3.16 0.89 

Between-Run (%) 8.43 1.64 6.38 1.54 
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3.4.1.4 Sample Stability 

In cases where the samples may have to be stored or become unstable during the experiment before being 

analysed, it is important to determine if the samples are likely to suffer from instability.  In order to investigate 

the stability fresh LQC (0.5 mg/L) and HQC (5 mg/L) rhodamine B samples were prepared from a separate 

100 mg/L stock solution and analysed in triplicate.  The samples were measured daily against a fresh 

calibration curve.  The following variables were investigated including PBS (pH 7.4) at 4°C and 37°C, AA (pH 

5) at 4°C and 37°C using a fridge (4°C) and a water bath (37°C).  

The stability graphs for the LQC and HQC did not vary outside the recommended 20% bias (See Figure 3.28 

and 3.29).  This shows that rhodamine B was stable over 5 days in both solutions (PBS/AA) and both 

temperatures, fridge (4°C) and physiological (37°C).  All five calibration and QC samples were run using the 

same stock solution and kept at ~4°C for 5 days.  The results show a high r
2
 value and the QC samples 

passing the ANOVA validation show that there is no significant variation between samples and so rhodamine 

B is stable in PBS and AA at approximately 4°C for 5 days.  

 

Blank Solutions 

Both blank PBS and AA solutions were analysed on the UV over 5 days, using the same solution, to 

determine if the blank solutions increase in absorbance over the course of the experiment.  Duplicate samples 

of both solutions were stored in a humidity chamber at 37°C for 5 days and a sample analysed each day.  The 

average absorbance value of blank PBS was -0.0042 ± 0.0022 and the average absorbance of AA was 

0.0014 ± 0.0040.  These low absorbance values result in no significant effect on samples during the 

experiment. 
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Figure 3.28 LQC (0.5 mg/L) 5 day stability of rhodamine B at 37°C in PBS pH 7.4 analysed on the UV 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.29 HQC (5 mg/L) 5 day stability of rhodamine B at 37°C in AA pH 5 analysed on the UV 
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3.4.1.4 Dilution Integrity 

It is possible that concentrations in the diffusion experimentation may exceed the upper limit of quantification 

(ULOQ) of the calibration line and the sample may need to be diluted to be measured.  In order to confirm that 

results of diluted samples are still accurate and precise.  Various sample dilutions of 10 mg/L stock (1:1, 1:2, 

1:10) and 100 mg/l stock (1:20) were measured.  The average of the 3 repeats of each dilution factor 

calculated then converted from absorbance to concentration using the equation of the line of the calibration 

standards.  The grand mean of each dilution factor and the bias was calculated.  The concentrations were 

then analysed using ANOVA single factor to determine if the dilution factors pass the within-run and between-

run factors (See Table 3.7).  The results show that all four dilution factors passed the ANOVA and are able to 

be used in future bladder studies. As using these dilutions do not affect the resulting concentration, shown by 

the bias results and the ANOVA shows the reproducibility of the dilutions, which were all lower than the bias of 

20% for both pH values.  

 

Table 3.7 ANOVA Results for the dilution integrity samples of diluted 10 mg/L rhodamine B in PBS pH 7.4 

using the UV-Visible spectrometer 

 Dilution Factor – PBS pH 7.4 Dilution Factor – pH 5  

ANOVA 1:1 1:2 1:10 1:20 1:1 1:2 1:10 1:20 

Grand Mean (mg/L) 8.87 9.32 9.23 103.74 9.39 9.86 9.39 104.67 

Bias (%) -12.12 -6.75 -7.67 3.74 -6.08 -1.37 -6.07 4.67 

Within-Run (%) 3.03 2.05 6.00 1.08 4.05 2.66 7.40 1.72 

Between-Run (%) 4.79 3.36 6.84 1.88 10.39 11.30 12.64 3.00 
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3.4.2 High-Pressure Liquid Chromatography with Diode Array Detector 

The validation of the analysis of the drugs on the HPLC requires certain parameters to be included in the 

analysis.  These parameters include the LOD and LOQ to determine if the drugs can be detected at 

acceptable levels that cover the expected calibration standard concentrations.  The linearity is what 

determines if the set of calibration standards chosen (0.16 - 10 mg/L) can be detected and the relationship 

between concentration and absorbance is linear.  The calibration range used matched the range chosen for 

the UV-visible spectrometer analysis.  The precision and bias are the triplicate analysis of the concentrations 

of two QC samples that are determined from the equation of the calibration line.  This analysis calculates 

repeatability of separate QC samples over 5 days.  This analysis used single factor ANOVA (SWGTOX, 

2013). The stability of the drugs was included in the validation as the drugs were stored over the course of the 

experiment and used on numerous days.  In addition, the dilution integrity of drug samples was investigated 

as some samples during the course of the bladder studies were diluted to reduce the concentration to within 

the calibration line range.  Finally, interference and carryover of drugs into blank solutions analysed directly 

after high standard drug samples would show if the column and method is suitable for the analysis of the 

analytes of interest. 

 

3.4.2.1 Linearity 

The linearity was validated to determine if the standards were linear between the highest and lowest 

calibration point.  Then a line of best fit can be used to calculate an equation to determine the concentrations 

of samples compared against this line.  The mixed calibration used standards of amitriptyline and nortriptyline 

.  The range of 0.16-10 mg/L was prepared using a serial dilution.  Five freshly prepared, separate calibration 

standards were analysed over 5 days and the UV absorbance from the HPLC-DAD to determine the linearity 

of the calibration range.  The linearity results of both drugs in all solutions including deionised water, PBS and 

AA were > 0.99, showing linear results (See Figure 3.30 and 3.32).  This is corroborated by the residual plots 

for the corresponding calibration lines (See Figure 3.31 and 3.33).  

 

3.4.2.2 Limit of Detection/Limit of Quantitation 

The LOD and LOQ were determined by analysing an extended calibration line 0.00015-10 mg/L to observe 

the lowest standard with a significant difference between the noise and the peak.  The QC samples were kept 

the same at LQC (0.5 mg/L) and HQC (5 mg/L).  The lowest standard where all three drugs in PBS and AA 

were present was 0.078 mg/L (See Figure 3.34 and 3.35); this is the standard below the current lowest 

calibrator (0.156 mg/L).  This standard was included into an extended calibration graph, 0.078 – 10 mg/L to 

see the effect on the r
2
 value.  The r

2
 value for nortriptyline and amitriptyline is 0.996 and 0.9962 respectively 

in PBS.  The value for nortriptyline and amitriptyline calibration graph (r
2
) is 0.9955 and 0.9981 respectively in 

AA.  Adding this standard does not affect the linearity of the calibration line.  However, this was not included in 

the final calibration as the initial calibration 0.16-10 mg/L had a higher r
2
 value. 

 

 

 

 



116 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.30 Average calibration graph for amitriptyline in pH 7.4 analysed on the HPLC 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.31 Residual plot for the calibration line of amitriptyline between 0.16 - 10 mg/L in PBS pH 7.4 
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Figure 3.32 Average calibration graph for nortriptyline in pH 5 analysed on the HPLC 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.33 Residual plot for the calibration line of nortriptyline between 0.16 - 10 mg/L (pH 5) 
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Figure 3.34 Lowest mixed standard (0.078mg/L) of amitriptyline and nortriptyline, from the extended 

calibration line in PBS pH 7.4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.35 Lowest standard (0.078mg/L) of amitriptyline and nortriptyline, from extended calibration line for 

LOD (pH 5) 
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3.4.2.3 Precision and Bias 

Precision and bias were included in the validation as the precision investigated the closeness of the multiple 

readings with each other and the bias investigated the similarity of the experimental values with the expected 

values (SWGTOX, 2013). Precision and bias were measured in these quantitative methods to determine, 

specifically for precision, the within-day and between-day variation over 5 days with three repeats of the 

quality control samples per analysis.  The calibration standards and QC samples were prepared the same as 

described previously (See Chapter 2 Section 2.1.5.2) in two different solutions including PBS and AA.  The pH 

7.4 HPLC method was used for the PBS validation (See Chapter 2 Section 2.2.4.2.1).  The pH 5 HPLC 

method was used for the AA validation (See Chapter 2 Section 2.2.4.2.2).  Single factor ANOVA was used to 

determine the precision and accuracy.  The results presented for all three solutions were <20 % and thus 

within acceptable ranges for further use.  

PBS pH 7.4 

The buffer present in the solution could result in better ionisation stability of the drugs, as the buffer kept the 

solution at the correct pH.  There would be less chance of the drug changing between ionisation states in the 

solution.  This would allow for most of the drug to be eluted at the same time increasing peak size and reduce 

peak tailing.  ANOVA validation of amitriptyline and nortriptyline in PBS passed, as all precision and bias 

values were below 20% threshold (See Table 3.8).  In addition, the asymmetry and resolution was similar for 

lowest and highest calibrator showing no loss in peak separation (See Figure 3.36).  The values for the 

asymmetry were 1.50 ± 0.11 and 1.70 ± 0.24 and the resolution values were 3.60 ± 0.21 and 2.92 ± 0.17 for 

amitriptyline and nortriptyline in water respectively.  Amitriptyline and nortriptyline samples in PBS could be 

run and quantified on HPLC as these samples were validated on the HPLC.  

 

Table 3.8 ANOVA Validation of amitriptyline and nortriptyline in water resulted in results 

 amitriptyline nortriptyline 

LQC (0.5 mg/L):   

Grand Mean (mg/L) 0.48 0.47 

Bias (%) -4.66 -5.35 

Within-Run (%) 1.92 0.79 

Between-Run (%) 3.41 2.76 

HQC (5 mg/L):   

Grand Mean (mg/L) 4.74 4.66 

Bias (%) -5.26 -6.71 

Within-Run (%) 1.41 0.44 

Between-Run (%) 3.79 3.66 
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pH 5  

ANOVA validation of amitriptyline and nortriptyline in AA passed, as all precision and bias values were below 

20% threshold (See Table 3.9).  In addition, the asymmetry and resolution was similar for lowest and highest 

calibrator showing no loss in peak separation (See Figure 3.37).  Amitriptyline and nortriptyline samples in AA 

could be run and quantified on HPLC as these samples were validated on the HPLC.  

 

Table 3.9 ANOVA Validation of amitriptyline and nortriptyline in water resulted in results 

 amitriptyline nortriptyline 

LQC (0.5 mg/L):   

Grand Mean (mg/L) 0.50 0.47 

Bias (%) 0.28 -6.63 

Within-Run (%) 7.30 6.32 

Between-Run (%) 12.97 8.03 

HQC (5 mg/L):   

Grand Mean (mg/L) 5.11 4.86 

Bias (%) 2.21 -2.79 

Within-Run (%) 8.64 8.45 

Between-Run (%) 11.31 7.56 
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Figure 3.36 Precision and bias, LQC (0.5 mg/L) mixed standard (amitriptyline and nortriptyline) in PBS, 

analysed on the HPLC 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.37 Precision and bias, LQC (0.5 mg/L) mixed standard (amitriptyline and nortriptyline) in AA, 

analysed on the HPLC 
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3.4.2.4 Stability 

This experiment was carried out to determine the stability of the two analytes of interest (amitriptyline and 

nortriptyline) in both solutions (PBS and AA) at 4°C (fridge temperature) and 37°C (physiological 

temperature).  The length of stability was over 10 days for the analytes in PBS as this would cover the length 

of the post-mortem period of the individual from the case study (Moriya and Hashimoto, 2001). However, the 

bladder diffusion studies were carried out over 5 days in accordance with the Skopp paper (Skopp et al., 

1997). Therefore, the stability experiment was reduced to a length of 5 days for AA, which was analysed on 

the HPLC.  

 

3.2.4.2.1 Stability of the antidepressants in PBS pH 7.4 

The drug standards for amitriptyline and nortriptyline were prepared in PBS.  The humidity chamber was setup 

at 37°C and 30% humidity; these values were chosen as 37°C was the highest temperature in the research 

that could have the most effect on the drugs and 30% was the average humidity in the laboratory where the 

bladder studies were carried out.  The drug concentrations of the two QC samples, LQC (0.5 mg/L) and HQC 

(5 mg/L) were determined using HPLC-DAD methodology.  This chamber was equilibrated for half a day.  As 

shown by the graphs (See Figures 3.38 and 3.39), the drugs were within the 20% of the maximum acceptable 

bias  (SWGTOX, 2013) throughout the 10 day experiment. As a result, this shows that the drugs are stable for 

10 days. 

 

3.2.4.2.2 Stability of the antidepressants (pH 5) 

The drug standards for amitriptyline and nortriptyline were prepared in AA and analysed using HPLC-DAD.  

This experiment used 3 repeats of each stability sample at both concentrations (LQC – 0.5 mg/L and HQC – 5 

mg/L).  The solutions were stored in a humidity chamber at 37 ± 0.33 °C the average humidity value in the 

fume cupboard was 26 ± 5.7 % so this was the value used to set the chamber.  The fume cupboard was used 

to determine humidity as this was where the Franz cell was situated.  The peaks were resolved and there was 

consistency between the three samples for the LQC and HQC stability samples over the 5 days.  The 

amitriptyline and nortriptyline graphs (See Figures 3.40 and 3.41) show the drugs were within the required 

20% maximum acceptable bias throughout the experiment and so both drugs, amitriptyline and nortriptyline, 

are stable over 5 days in ammonium acetate at pH 5.  
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Figure 3.38 amitriptyline HQC (5 mg/L), 10 day stability in PBS at 37°C analysed on the HPLC 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.39 nortriptyline LQC (0.5 mg/L), 10 day stability in PBS at 37°C analysed on the HPLC 
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Figure 3.40 amitriptyline HQC (5 mg/l), 5 day stability in AA at 37°C analysed on the HPLC 

 

 

 

 

 

 

 

      

 

 

 

 

 

 

 

 

 

 

Figure 3.41 nortriptyline LQC (0.5 mg/L), 5 day stability in AA at 37°C analysed on the HPLC 
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3.4.2.5 Dilution Integrity 

During the bladder degradation studies, the absorption of some samples exceeded the top calibration 

standard, which would prevent from calculating the concentration of the compound with accuracy.  Therefore, 

some samples had to be diluted after initial analysis to reduce the concentration to within the range of the 

calibration.  A number of dilutions were used during the experiments including 1:1, 1:2, 1:10, and 1:20.  This 

experiment was carried out over 5 days with 3 repeats of each concentration to validate the dilutions.  The 

standard calibration and QC samples were prepared using the method from Chapter 2 Section 2.1.5.2.  The 

dilution integrity samples used separate stock solutions of both drugs; the starting stock solutions (10 mg/L 

and 100 mg/L) were a mixed solution of both drugs.  A set of calibration standards (0.16-10 mg/L) and the two 

QC samples LQC (0.5 mg/L) and HQC (5 mg/L) were prepared and analysed alongside the dilution samples.  

 

The tables for both pH values consist of calculating the concentrations of the diluted samples.  The results 

show that all four dilution factors have consistent results for amitriptyline and nortriptyline.  All the values were 

within the assigned 20% maximum acceptable bias (See Tables 3.10 and 3.11).  The average of the three 

repeats of each dilution factor was calculated then converted from absorbance to concentration using the 

equation of the line of the calibration standards.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



126 

 

Table 3.10 ANOVA of dilution integrity samples of amitriptyline and nortriptyline in PBS 

pH 7.4 1:1 (5mg/L) 1:2 (3.33mg/L) 1:10 (1mg/L) 1:20 (5mg/L) 

amitriptyline:     

Grand Mean (mg/L) 8.40 8.56 10.03 100.08 

Bias (%) -16.04 -14.37 0.27 0.08 

With-in Run (%) 5.83 6.67 4.46 11.51 

Between-Run (%) 14.60 9.42 10.71 18.45 

nortriptyline:     

Grand Mean (mg/L) 10.70 10.11 11.31 108.04 

Bias (%) 7.01 1.09 13.12 8.04 

With-in Run (%) 4.28 6.80 3.88 5.29 

Between-Run (%) 12.59 15.90 14.27 17.18 

 

 

 

 

Table 3.11 ANOVA of dilution integrity samples of amitriptyline and nortriptyline in AA 

pH 5 1:1 (5mg/L) 1:2 (3.33mg/L) 1:10 (1mg/L) 1:20 (5mg/L) 

amitriptyline:     

Grand Mean (mg/L) 8.45 8.43 9.50 99.32 

Bias (%) -15.51 -15.72 -4.97 -0.68 

With-in Run (%) 11.52 12.62 1.02 0.27 

Between-Run (%) 16.89 14.39 1.50 0.75 

nortriptyline:     

Grand Mean (mg/L) 9.74 9.20 10.02 112.50 

Bias (%) -2.64 -7.97 0.22 12.50 

With-in Run (%) 7.94 13.96 8.73 5.69 

Between-Run (%) 15.21 14.93 13.63 15.86 
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3.4.2.7 Interference/Carryover  

This study involved obtaining a number of blank solution chromatograms that were analysed directly after the 

highest calibration standard (10 mg/L) on the HPLC from previously completed experiments.    These were 

taken to determine if there was any carryover of drugs from this highest standard to the blank solution.  If 

there was no carryover then this would suggest that the method was suitable for the drugs as there was no 

drug retention past the expected sample run time also there was no evidence of any column degradation.  In 

addition, a stability experiment was carried out on blank PBS and AA to determine if the solutions are stable 

over 10 days.  

 

PBS pH 7.4 

The blank stability solutions prepared involved 20 mM PBS and AA that were analysed in triplicate and stored 

in the humidity chamber at 37°C for 5 days to mimic the bladder studies.  Samples removed once daily to 

sample for analysis on the HPLC.  The samples were shaken before the 1 ml sample was removed by a 1 ml 

syringe and transferred to an 8 ml glass vial.  The HPLC method used for the analysis was pH 7.4 (See 

Chapter 2 Section 2.2.4.2.1).  The chromatograms showed no carryover of any drugs from the highest 

standard (See Figure 3.44) to the blank solution (See Figure 3.45).  The HPLC results of the stability blank 

solutions show there was an interference peak at 2.3 minutes in the blank PBS solution (See Figure 3.46) with 

a grand average absorbance value of 1.24 ± 0.31 mAU.  However, this does not reach 2 mAU units, so this is 

a small interference peak.  
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Figure 3.42 10mg/L standard from pH 7.4 validation 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.43 Blank PBS sample from pH 7.4 validation 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.44 Largest peak height of interference peak images 
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AA pH 5  

In order to determine the stability of blank pH 5 solution on the HPLC over 5 days.  The pH 5 HPLC method 

was used to analyse these samples (See Chapter 2 Section 2.2.4.2.2).  The humidity chamber for the 37°C 

experiments had an  average humidity value in the fume cupboard of 26%, determined using a hygrometer 

(Fisher Scientific, Traceable Humidity/Temperature Pen with Memory).  The temperature was consistent 

throughout the whole experiment.  The humidity chamber was left to equilibrate for half a day.  Three large 

glass vials were filled with 10 ml of blank AA each, sealed with Parafilm and placed in the humidity chamber.  

The chromatograms showed no carryover of any drugs from the highest standard (See Figure 3.47) to the 

blank solution (See Figure 3.48).  The blank AA stability solution results show a small peak over the 5 days 

with an average peak height of 2.851 ± 0.3 mAU at 2.2 minutes (See Figure 3.49).  This is a similar retention 

time to amitriptyline at 2.1 minutes.  This could be a possible interfering peak in the blank solution.  However, 

it does not seem to increase over the 5 days so it is not a cumulative interfering peak.   

 

Both pH solutions 

The ten-day interference study showed small interference peaks for both pH 5, the PBS interference peaks do 

not pass 2 mAU and the AA interference peak height was 2.8 mAU.  The interference peaks had a similar 

retention time to amitriptyline of approximately 2.25 minutes.  This retention time would co-elute with 

amitriptyline, this could affect the quantification of the drug.  However, the peak height was not significant to 

affect the quantification as amitriptyline was validated in both pH solutions.  

 

3.5 Conclusion  

The method development of the Franz cell with the bladder tissue, in vivo rat study, and the instrumental 

methods (UV and HPLC) involving the drugs used in the bladder studies was a success.  The prevention of 

leakage from the Franz cells, catheterising the rat with a CT visible drug and the ability to secure the rat for 

scanning, and also identifying and quantifying the drugs on the instruments.  In addition, the validation of the 

model compound (rhodamine B) and the two antidepressant drugs (amitriptyline and nortriptyline) were 

successful in the respective solutions (pH 7.4 and pH 5) that were used in the bladder studies.  A number of 

parameters were included in the validations to include all eventualities in the method including linearity, 

LOD/LOQ, precision and bias, sample stability, dilution integrity and interference/carryover.  The success of 

these method developments and validations allows the studies to be carried out.  
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Figure 3.45 10 mg/L mixed standard (amitriptyline and nortriptyline), pH 5 validation 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.46 Blank AA sample from pH 5 validation 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.47 Interfering peaks in the interference study 
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Chapter 4 – Diffusion of Drugs from the Bladder using Franz 

cells 
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4.1 Introduction 

Post-mortem redistribution (PMR) has been shown to occur, via the comparison of sampling sites overtime,  in 

a number of organs including heart, lungs, liver and stomach to different degrees due to accumulation of the 

drugs in the organs (Hilberg et al., 1992; Hilberg, Mørland and Bjørneboe, 1994; Pounder, Anderson and 

Watmough, 1994; Brunet, Hauet and Hébrard, 2010). Each organ has a specific biological task within the 

body that requires different organ structures that are optimal for that activity to sustain life.  In relation to the 

bladder, the structure is multiple layers of cells that are ultimately layered with the mainly impenetrable 

urothelium (Grasso and Calderón, 2009). This allows the urine to be collected and stored in the bladder, 

isolated from the rest of the body until it can be eliminated.  However, after death the functions of the organs 

cease, starving the cells of oxygen and nutrients ultimately irreversibly damaging the tissues.  This damage 

can be observed in different ways including the breakdown of the tissues.  The breakdown results in the 

release of urine from the bladder and tissue bound compounds into the body cavity.  The drugs whether free 

or bound to other compounds are then free to diffuse through surrounding fluids and tissues.  However, the 

ionisation state of a drug would affect the ability of the drug to diffuse through tissues, which would result in 

this becoming a factor in the extent of PMR from the bladder.  Therefore the pH of the post-mortem urine, 

which has a range of between 5.5 – 8.0 (Jones and Karlsson, 2005), would have to be taken into 

consideration as this would affect the ionisation state of the drug. Bladder tissue consists of a specific set of 

cells that are different from other organs and so would need to look into PMR at this site to determine how 

quickly the tissues breakdown after death.  It has been suggested there may be diffusion from the bladder 

when there are high drug concentrations contained in the bladder (Moriya and Hashimoto, 2001).  

For the initial investigation, the number of variables would need to be limited to have a controlled environment 

including temperature, solution pH and tissue degradation.  After death, many changes occur including 

cooling of the body and anaerobic respiration.  The latter contributes to the pH reduction creating a more 

acidic environment directly resulting in the degradation of tissues.  Using a range of temperatures and solution 

pH a comparison could be made between physiological and post-mortem conditions for a number of drugs in 

relation to the concentration of the drugs that could diffuse through bladder tissue during a set period.  This 

would involve using sections of tissues to allow for an acceptable number of repeats that would be used to 

create a reproducible method.  However, a parameter that cannot be controlled is the bladder thickness as 

each bladder would be in different states after death including volume of urine present.  This would affect the 

thickness of the bladder membrane and the thickness could be a factor that affects the amount of drug that 

could diffuse through the bladder tissue, as the thicker the tissue membrane the longer it could take the drug 

to diffuse.  A model compound can be used to visualise the diffusion of the drug through the tissue.  A study 

used a xanthene dye (rhodamine B) as a model, then analysed the diffusion of morphine in a method that 

mimics passive diffusion through the wall of a vein.  The methodology involved using Franz cells to allow 

contact of the dye with the tissue.  The solution was sampled over a period and the absorbance of the dye in 

the acceptor chamber was measured with a UV-visible spectrophotometer (Skopp et al., 1997). 

 

 Different temperatures were shown to affect the diffusion with the lower temperature (4°C) having an 

increased lag time at the start of the experiment than at room temperature (20°C) (Skopp et al., 1997). This 

shows the lower temperature reduces the concentration of the drug over the same period, therefore less drug 
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diffusing through the tissue results in less drug to redistribute after death.  Using this study as a guide 

rhodamine B could be used as the model compound in this research. 

 

There is a possibility of the drugs having an affinity to the biological tissue; this could be a factor that reduces 

the diffusion of a drug from the bladder.  The affinity of a drug for biological tissue determines if the drug is 

preferentially absorbed into the tissue rather than stay in solution.  Calf arteries were used to determine 

equilibration of a hydrophobic compound, paclitaxel, within 72 hrs and also the affinity of the drug for the 

tissue.  The results found that the drug had high affinity for the artery, as the concentration was higher in the 

tissue than in the surrounding solution.  Different concentrations were shown to have no effect on the 

partitioning of the drug into the tissue, which was not uniform showing preferential binding at different layers 

within the artery.  Endovascular and perivascular introduction of the drug into the artery was undertaken and 

the higher concentration was found in the corresponding section.  High affinity for the artery was determined 

as there was accumulation in the tissue as the drug was passed through the intact lumen of the artery (Creel, 

Lovich and Edelman, 2000). This is relevant to this study as the drug could preferentially accumulate in the 

bladder tissue rather than diffuse through into the acceptor chamber, which would result in lower drug 

concentrations.  

There are a limited amount of studies carried out on the degradation of the bladder and the affect this has on 

the permeability of the tissue to drugs.  During life, cells are replaced and therefore the membranes are 

replaced without any loss in function.  However, when there is damage this has been shown to increase 

permeability of bladder tissue.  Compounds can permeate further into the bladder tissue due to the removal of 

the umbrella cells making up the urothelium.  This shows that the urothelium is the main barrier between the 

bladder contents and the rest of the body.  Damage resulting from disease can disrupt the bladder membrane 

in the case of interstitial cystitis.  This inflames the bladder membrane and can disrupt the impenetrable 

barrier.  An animal study mimicked the symptoms of cystitis in guinea pig bladders and the results showed an 

increase in the water and urea permeability through the bladder membrane up to 24 hrs post disruption 

(Lavelle et al., 1998). Another study used protamine sulfate, which has been shown to disrupt only the 

urothelium in the bladder membrane and this has shown to increase the permeability of the bladder for urea.  

The bladder contents can access the lower layers of the membrane as the disruption can extend to the lamina 

propria.  After 40-60 minutes of ischemia both dyes used to show the extent of permeation could be detected 

in the bladder membrane and this concentration increased with increasing time of ischemia (Koroäec and 

Jezernik, 2000). This determines what occurs within the initial stage after death, that there is damage to the 

umbrella cells within the lumen of the bladder.  These cells disconnect from the rest of the membrane allowing 

for the urine that could contain large concentrations of drugs diffuse through into the lower layers of the 

bladder membrane.  Combining the in vitro studies with bladder tissue there have been studies investigating 

the passive diffusion of a number of drugs through intact bladder membranes (Borzelleca, 1965) including 

barbiturates, basic drugs (atropine, neostigmine and physotigmine) (Borzelleca, 1959) and nicotine 

(Borzelleca, 1963).  

 

The antidepressant amitriptyline is a first generation tricyclic antidepressant that was first introduced in 1961 

(Baselt, 2008).  This drug is still found in many cases in both the therapeutic and toxic range and as 
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amitriptyline is mainly metabolised to nortriptyline we included this in the study.  As it is a well-studied drug in 

the post-mortem environment (Hilberg et al., 1992, 1993; Hilberg, Mørland and Bjørneboe, 1994), it would be 

suitable to use in the investigation of diffusion from the bladder.   

 

4.2 Aims 

The aims of this chapter was to determine how quickly the bladder broke down after death and also the speed 

of diffusion of three model compounds (rhodamine B, amitriptyline and nortriptyline) using an in vitro model 

over the course of 5 days.  The effect of a number of relevant parameters was studied including bladder 

thickness, solution pH, drug concentration tissue degradation and temperature.  

 

4.3 Results 

Porcine bladder tissue sections were used in conjunction with Franz cells to determine if a number of 

parameters (drug concentration, solution pH, temperature, tissue degradation, and bladder thickness) had a 

significant effect on drug diffusion using three drugs, two in conjunction together, including rhodamine B and 

two antidepressant drugs amitriptyline and nortriptyline.  Franz cells were used to study the diffusion of either 

100 mg/L rhodamine B or a mixed standard of 100 mg/L amitriptyline and nortriptyline.  The rhodamine B was 

used as a model compound and the drug mixture were the analytes of interest in this research.  The two 

solution pH values were pH 7.4 (representing physiological pH) and pH 5  (post-mortem pH (Donaldson and 

Lamont, 2013)),  which are within the wide range of pH values that have been found in PM urine (pH 4.6 – 

8.5) (Cook, Strauss and Caplan, 2007). Three temperatures were included for comparison including 37°C, 

physiological body temperature, 20°C, room temperature to which the body equilibrates after death and 5°C 

the mortuary fridge temperature.  Tissue degradation was compared using fresh bladders and degraded 

bladders, which were thawed after being frozen for one week prior to the analysis.  In order to see if there may 

be different rates of diffusion from the same bladder 4 sections were taken from the same bladder, resulting in 

a set of intra-bladder results.  The control experiments, bladder sections with donor chamber of blank PBS 

and AA solutions, had no significant effect on the results with average results below the method limit of 

detection (data not shown). 

 

4.3.1 Influence of temperature on the amount of drugs diffusing through bladder sections  

After death, the body cools down therefore over time the temperature within the body changes (Leinbach, 

2011). Bladder sections were equilibrated to three different temperatures to determine if temperature has a 

significant effect on the rate of drug diffusion, compared between two different pH values (pH 7.4 and 5) and 

tissue degradation levels (fresh and degraded).  The temperatures studied were: 37°C, 20°C, and 5°C, which 

represent physiological body temperature, room temperature and mortuary fridge temperature respectively.   
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4.3.1.1 Rhodamine B 

Three temperatures were used to equilibrate the bladder tissue to determine the effect of the diffusion of 100 

mg/L rhodamine B solution in pH 7.4 and pH 5.  Three types of bladder tissue were used that included fresh 

bladder sections from different bladders (inter-bladder), four sections from the same bladder (intra-bladder) 

and degraded bladder sections (inter-bladder).  The highest cumulative concentration of rhodamine B was 

3.46 ± 2.72 mg/L at 37°C from the intra-bladders in pH 5 (See Table 4.1).  The lowest cumulative rhodamine 

B concentration was at both pH values at 5°C from the fresh inter-bladder experiments and 20°C (pH 5) using 

fresh intra-bladders with results below the limit of detection of the rhodamine B method (See Figure 4.1),  

 

4.3.1.1.1 Temperature comparison of rhodamine B for the bladder sections  

The differences between the cumulative concentrations of rhodamine B was determined in the later stages of 

the experiments, with main differences between 37°C and 20°C and also 37°C and 5°C (See Figures 4.1 – 

4.6).  The fresh inter-bladders in pH 7.4 buffer solution showed a significant difference between both the sets 

of temperatures at 94 ± 0.1 hrs with more diffusion from 37°C in both cases (p < 0.001); however, no 

difference was observed between 20°C and 5°C (See Figure 4.7).  The peak cumulative concentrations were 

1.70 ± 1.0 mg/L at 37°C, 0.67 ± 0.71 mg/L at 20°C and a concentration below the limit of detection for 5°C.  

The significant difference in the cumulative rhodamine B concentrations was present in the fresh inter-

bladders at pH 5 buffer solution at 100 ± 0.06 hrs between 37°C and 20°C and also 37°C and 5°C.  The peak 

cumulative concentrations were 2.29 ± 1.22 mg/L at 37°C, 0.85 ± 0.89 mg/L at 20°C and a concentration 

below the limit of detection for 5°C.  As expected from the Fick equation there was a greater amount of 

diffusion present at the highest temperature in both instances (p > 0.0001); similar results were found between 

20°C and 5°C (See Figure 4.8).  The peak cumulative rhodamine B concentrations for the fresh inter-bladders 

at the three temperatures are shown in table 4.1.  The degraded inter-bladders also showed significant 

difference in both pH solutions at 100 ± 0.08 hrs and 99 ± 0.06 hrs for pH 7.4 (p values less > 0.001) and pH 5 

(p >0.05) respectively.  There were similar results between the two pH solutions at the highest temperature 

(37°C), which was significantly different from both 20°C and 5°C.  However, there was no difference between 

the two lower temperatures with similar cumulative concentrations at 20°C and 5°C (See Figures 4.9 and 

4.10).  The peak cumulative concentrations at pH 7.4 were 2.63 ± 2.46 mg/L at 37°C, 0.44 ± 0.33 mg/L at 

20°C and 0.54 ± 0.46 mg/L for 5°C.  The peak cumulative concentrations at pH 5 were 1.45 ± 1.26 mg/L at 

37°C, 0.58 ± 0.42 mg/L at 20°C and 0.31 ± 0.49 mg/L for 5°C.  The intra-bladders showed slightly different 

results with a significant difference only between 20°C and 5°C in pH 7.4 at 96 ± 0.03 hrs (p > 0.01) (See 

Figure 4.11).  The peak cumulative concentrations were 1.86 ± 1.75 mg/L for 37°C, 2.73 ± 2.31 mg/L for 20°C 

and a concentration below the limit of detection for 5°C.  The lower pH (pH 5) showed similar significant 

difference as the inter-bladder experiments with differences between 37°C and the two lower temperatures at 

100 ± 0.04 hrs (p < 0.0001) (See Figure 4.12).  The peak cumulative rhodamine B concentrations were 3.46 ± 

2.72 mg/L at 37°C and concentrations below the limit of detection for both 20°C and 5°C.  Overall, this shows 

temperature would have a significant effect on the cumulative concentration of rhodamine B, with the range of 

differences between 37°C and 20°C between 0.87 – 3.46 mg/L, diffusing through bladder tissue over 

approximately 100 hrs (~ 4 days) after death. 
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4.3.1.1.2 pH comparison of rhodamine B for the bladder sections 

There was slightly more diffusion, with an increase of 0.59 mg/L rhodamine B, for the fresh inter-bladder at pH 

5.  However, the standard deviation for all the cumulative rhodamine B concentrations was large and therefore 

the concentrations would overlap.  This is demonstrated with the cumulative concentrations graphs, which 

show similar diffusion patterns at both pH (See Figures 4.1 and 4.2).  Similar rhodamine B cumulative 

concentrations were shown for the degraded bladders, with no increase in cumulative concentration at the two 

lower temperatures.  However, at 37°C there were higher cumulative concentrations occurring at the later 

stages of the experiment at pH 7.4 (See Figures 4.3 and 4.4).  The intra-bladders had different amounts of 

diffusion dependant on both temperature and pH as 20°C showed more diffusion than 37°C in PBS pH 7.4, 

whereas at pH 5 only 37°C showed any rhodamine B diffusion (See Figure 4.5 and 4.6).  Overall, it shows that 

there is an increase in cumulative concentration of rhodamine B at the highest temperature and the higher pH, 

showing there is a possibility of pH affecting the amount of drug diffusing through the tissue.  These results 

oppose the expected percentage of ionisation of rhodamine B, which should limit the diffusion with 99.9% at 

pH 7.4 and 86% ionised at pH 5 of the carboxylic acid group. However, the quaternary group would still be 

ionised.  Less diffusion would be expected at the higher pH, which shows that this is not the main factor that 

would limit rhodamine B diffusion. 

 

4.3.1.1.3 Other comparisons of rhodamine B for the bladder sections 

The tissue degradation does not have a significant effect on the diffusion of rhodamine B with similar results to 

the fresh bladders.  The cumulative concentration graphs are similar to the respective pH solutions using fresh 

bladders (See Figures 4.1 – 4.6).  One aspect that is dissimilar is the peak cumulative rhodamine B 

concentrations at 5°C, both sets of fresh bladders have concentrations < the limit of detection of the 

rhodamine B method.  However, the degraded bladders show an increased amount of diffusion to the point 

where the concentrations are within the lower section of the calibration range (See Table 4.1).   

The significant differences of the cumulative concentrations of rhodamine B between the temperatures only 

showed at the later stages of the experiment with the shortest post-mortem interval of 94 ± 0.1 hrs.  This 

shows the highest temperature (37°C) only show increased concentrations in comparison with the lowest 

temperatures (20°C and 5°C) after at least 4 days post-mortem (See Figure 4.7). 

Table 4.1 Peak cumulative concentrations of rhodamine B in both pH solutions from the bladder studies within 

100 hrs after death 

 Peak cumulative rhodamine B concentration (mg/L) 

Experiment pH 7.4 pH 5 

Fresh Inter-bladder   

37°C 1.70 ± 1.0 2.29 ± 1.22 

20°C 0.67 ± 0.71 0.85 ± 0.89 

5°C < LOD < LOD 

Degraded Inter-bladder   

37°C 2.63 ± 2.46 1.45 ± 1.26 

20°C 0.44 ± 0.33 0.58 ± 0.42 

5°C 0.54 ± 0.46 0.31 ± 0.49 

Fresh Intra-bladder   

37°C 1.86 ± 1.75 3.46 ± 2.72 
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°C 2.73 ± 2.31 < LOD 

5°C < LOD < LOD 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 Average rhodamine B cumulative concentration with six fresh inter-bladder sections, comparing 

bladder temperatures at 37, 20 and 5°C in pH 7.4 (n=6) (Error bars are ± S.D.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 Average rhodamine B cumulative concentration with six fresh inter-bladder sections, comparing 

bladder temperatures at 37, 20 and 5°C (pH 5) (n=6) (Error bars are ± S.D.) 
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Figure 4.3 Average rhodamine B cumulative concentration with six degraded inter-bladder sections, 

comparing bladder temperatures at 37, 20 and 5°C in pH 7.4 (n=6) (Error bars are ± S.D.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4 Average rhodamine B cumulative concentration with six degraded inter-bladder sections, 

comparing bladder temperatures at 37, 20 and 5°C (pH 5) (n=6) (Error bars are ± S.D.) 
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Figure 4.5 Average rhodamine B cumulative concentration with four sections from one bladder (intra-bladder 

sections), comparing bladder temperatures at 37, 20 and 5°C in pH 7.4 (n=4) (Error bars are ± S.D.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6 Average rhodamine B cumulative concentration with four sections from one bladder (intra-bladder 

sections), comparing bladder temperatures at 37, 20 and 5°C (pH 5) (n=4) (Error bars are ± S.D.) 
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Figure 4.7 Two-Way ANOVA results of rhodamine B concentration in relation to the comparison of 

temperature (37, 20 and 5°C) using 100 mg/L rhodamine B with six fresh inter-bladder sections in pH 7.4 over 

approximately 100 hrs (Error bars are ± S.D) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8 Two-Way ANOVA results of rhodamine B concentration in relation to the comparison of 

temperature (37, 20 and 5°C) using 100 mg/L rhodamine B with six fresh inter-bladder sections (pH 5) over 

approximately 100 hrs (Error bars are ± S.D.) 
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Figure 4.9 Two-Way ANOVA results of rhodamine B concentration in relation to the comparison of 

temperature  (37, 20 and 5°C) using 100 mg/L rhodamine B with six degraded inter-bladder sections in pH 7.4 

over approximately 100 hrs (Error bars are ± S.D.) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10 Two-Way ANOVA results of rhodamine B concentration in relation to the comparison of 

temperature  (37, 20 and 5°C) using 100 mg/L rhodamine B with six degraded inter-bladder sections (pH 5) 

over approximately 100 hrs (Error bars are ± S.D.) 
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Figure 4.11 Two-Way ANOVA results of rhodamine B concentration in relation to the comparison of 

temperature  (37, 20 and 5°C) using 100 mg/L rhodamine B with four sections from one fresh bladder (intra-

bladder sections) in pH 7.4 over approximately 100 hrs (Error bars are ± S.D.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12 Two-Way ANOVA results of rhodamine B concentration in relation to the comparison of 

temperature  (37, 20 and 5°C) using 100 mg/L rhodamine B with four sections from one fresh bladder (intra-

bladder sections) (pH 5) over approximately 100 hrs (Error bars are ± S.D.) 
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4.3.1.2 amitriptyline and nortriptyline 

The same parameters were used as for rhodamine B using three temperatures and two pH values to 

determine the effect on the diffusion of in this case two antidepressant drugs (See Section 4.3.1).  A mixed 

solution of 100 mg/L amitriptyline and nortriptyline was the donor solution in two different pH solutions, PBS at 

pH 7.4 and AA at pH 5.  Fresh inter-bladder sections were used in this set of experiments.  Due to an 

interfering peak on the HPLC, the number of repeats was reduced.  As a result, both drugs obtained results 

for all three temperatures at pH 7.4 however, at pH 5 there were only results at 37°C. 

The results for amitriptyline at 37°C resulted in six samples from one of the bladder sections exceeding the 

top calibration (10 mg/L) from 70 hrs.  As a result, these samples were removed from the graph as these 

samples were not diluted due to analysis of a number of experiments at once.  The results for nortriptyline at 

37°C in PBS had ten samples from three different bladder sections exceeding the 10 mg/L calibration limit 

therefore, these values were removed from the graphs as the concentration could not be reliably calculated. 

4.3.1.2.1 Temperature comparison of the antidepressant drugs for the bladder sections 

The pH 7.4 cumulative concentration graphs show the highest amitriptyline concentration was a single result 

of 6.69 mg/L at 37°C (See Figure 4.13).  There were variations of amitriptyline within-day, which were not 

expected and could be due to the interfering peak as it did not interfere with all the samples (See Figure 4.13).  

The lowest cumulative amitriptyline concentration was in the pH 5 buffer solution at 5°C at 0.22 ± 0.03 mg/L 

(See Figure 4.15).  The graph at pH 7.4 show the highest cumulative concentration of nortriptyline was also 

6.69 ± 4.76 mg/L at 37°C (See Figure 4.14).  The lowest cumulative nortriptyline concentration was 0.19 ± 

0.01 in pH 7.4 buffer solution at 5°C (See Figure 4.14).  The significant difference in the cumulative 

concentration of amitriptyline between the three temperatures was present at 100 ± 0.07 hrs at pH 7.4.  The 

differences were observed between 37°C and 20°C (p 0.05) and also 37°C and 5°C (p < 0.0001).  However, 

there was no difference between the two lower temperatures with similar cumulative concentrations at 20°C 

and 5°C (See Figure 4.17).  There were not enough results to carry out an ANOVA for nortriptyline in PBS.  

Overall, this shows temperature would have a significant effect on the cumulative concentration of the two 

antidepressant drugs diffusing through bladder tissue over approximately 100 hrs after death. 

 

4.3.1.2.2 pH comparison of the antidepressant drugs for the bladder sections 

The pH seems to have an effect on the antidepressant drugs with no comparison at pH 5, as there were not 

enough results at 20°C and 5°C for a concentration graph.  The concentration graphs of amitriptyline and 

nortriptyline at 37°C in pH 5 have been created (See Figures 4.15 and 4.16).  The peak concentration of 

amitriptyline at 37°C (pH 5) was a single result of 1.96 mg/L.  The peak concentration of nortriptyline at 37°C 

(pH 5) was 2.8 ± 0.32 mg/L.  This shows lower concentrations of both drugs in comparison with pH 7.4.  This 

is consistent with the ionisation state of both the drugs with ionisation states at 99% and 99.5% at pH 7.4 and 

99.99% and 99.99% in pH 5.  More of the drugs were unionised at the higher pH and this allowed for 

increased cumulative concentrations to diffuse through the bladder tissue.  
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4.3.1.2.3 PMI for significant differences in the cumulative concentrations of amitriptyline 

The significant differences of the cumulative concentrations of amitriptyline between the temperatures only 

showed at the later stages of the experiment with the post-mortem interval of 100 ± 0.07 hrs.  This shows the 

highest temperature (37°C) only show increased concentrations in comparison with the lowest temperatures 

(20°C and 5°C) after at least 4 days post-mortem (See Figure 4.17). 
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Figure 4.13 Average amitriptyline cumulative concentration with six fresh inter-bladder sections, comparing 

bladder temperatures at 37, 20 and 5°C in pH 7.4 (n=6) (Error bars are ± S.D.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.14 Average nortriptyline cumulative concentration with six fresh inter-bladder sections, comparing 

bladder temperatures at 37, 20 and 5°C in pH 7.4 (n=6) (Error bars are ± S.D.) 
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Figure 4.15 Average amitriptyline cumulative concentration with six fresh inter-bladder sections with a bladder 

temperatures at 37°C (pH 5) (n=6) (Error bars are ± S.D.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.16 Average nortriptyline cumulative concentration with six fresh inter-bladder sections with a bladder 

temperatures at 37°C (pH 5) (n=6) (Error bars are ± S.D.) 
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Figure 4.17 Two-Way ANOVA results of amitriptyline concentration in relation to the comparison of 

temperature (37, 20, and 5°C) using 100 mg/L amitriptyline with six fresh inter-bladder sections in pH 7.4 over 

approximately 100 hrs (Error bars are ± S.D.) 
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4.3.2 Influence of pH on the amount of drugs diffusing though bladder sections 

The urine pH before and after death does not undergo much change with ranges of pH 5.0 – 8.5 and 4.6 – 8.5 

respectively (Cook, Strauss and Caplan, 2007). However, the wide range of pH values could affect the drugs 

ionisation state.  This is the reason for comparing two pH values, as both pH values can be found in the 

bladder.  These values are compared alongside three temperatures (37, 20 and 5°C) using fresh and 

degraded bladder tissue.  

 

4.3.2.1 Rhodamine B 

Two solutions were used at two distinct pH values (pH 7.4 and pH 5) to compare the effect on the amount of 

diffusion of rhodamine B through bladder tissue.  The conditions were the same as the temperature 

comparison in relation to rhodamine B comparison, bladder tissue condition and temperatures (See Section 

4.3.1.1), as the same results were used to compare the result at the two pH values.  The graphs show the 

highest cumulative concentration of rhodamine B was 3.46 ± 2.72 mg/L in pH 5 from the intra-bladders at 

37°C (See Figure 4.24).  The lowest cumulative rhodamine B concentration was from the fresh inter-bladder in 

pH 7.4 at 5°C, which was below the limit of detection of the rhodamine B method (See Figure 4.20). 

 

4.3.2.1.1 pH comparison of rhodamine B for the bladder sections 

The only significant difference in cumulative rhodamine B concentrations for the fresh inter-bladders was 

within the first 3 ± 0.12 hrs after death at 5°C with more diffusion from pH 5 (p 0.01) however, the 

concentrations were below the limit of detection from the rhodamine B method (See Figure 4.29).  The rest of 

the fresh inter-bladder samples had no significant difference between the two pH values at all temperatures 

throughout the 100 hrs of experiments (See Figures 4.27 and 4.28).  The peak cumulative rhodamine B 

concentrations for the fresh inter-bladders at the two different pH values are shown in table 4.1.  The 

degraded inter-bladders showed no significant difference in cumulative rhodamine B concentration at any pH 

or temperature over the approximate 100 hrs (See Figures 4.30 - 4.32).  The peak cumulative rhodamine B 

concentrations for the fresh inter-bladders at the two different pH values are shown in table 4.1.  The fresh 

intra-bladder experiments resulted in two points of significant difference at 99 ± 0.04 hrs at 20°C with more 

diffusion from pH 7.4 (p 0.01) (See Figure 4.34) and 47 ± 0.14 hrs at 5°C with increased diffusion from pH 5 (p 

0.05) (See Figure 4.35).  There was no significant difference at any point at 37°C (See Figure 4.33).  The 

peak cumulative rhodamine B concentrations for the fresh intra-bladders at the two different pH values are 

shown in table 4.1.  Overall, this shows pH would not have a significant effect on the cumulative concentration 

of rhodamine B diffusing through bladder tissue over approximately 100 hrs after death.  

 

4.3.2.1.2 Temperature comparison of rhodamine B for the bladder sections 

The temperature has been shown to have an effect on rhodamine B diffusion for the fresh inter-bladders, as 

there is a steady increase in cumulative rhodamine B concentration over the course of approximately 100 hrs 

however the overall increase in concentration is less with the lower temperatures (See Figures 4.18 – 4.20).  

Similar results were observed for the degraded bladders, with an increase in cumulative rhodamine B 

concentration at 71 ± 0.08 hrs with higher concentrations at pH 7.4.  The rhodamine B concentrations were 
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lower at the post-mortem temperatures (20°C and 5°C) than at the physiological temperature (See Figures 

4.21 – 4.23).  The intra-bladders showed a steady increase in cumulative rhodamine B concentrations over 

the course of the experiments at 37°C and 20°C however, only pH 7.4 increased at 20°C pH 5 showed no 

increase which was consistent with both pH at the lowest temperature (See Figures 4.24 – 4.26). 

 

4.3.2.1.3 Other comparisons of rhodamine B for the bladder sections 

Possible tissue degradation did not show to have an effect on the cumulative rhodamine B concentrations 

between the two pH and temperatures as both sets of cumulative concentration graphs resulted in similar 

behaviour of rhodamine B independent of fresh or degraded bladder tissue.  However, one aspect was 

different where the fresh bladders had a lower cumulative concentration than the degraded bladders, which 

that was below the methods limit of detection (See Table 4.1). 

 

The significant differences of the cumulative concentrations of rhodamine B between the temperatures was 

only present for the intra-bladder experiments with increased rhodamine B concentrations at 99 ± 0.04 hrs, 

20°C in pH 7.4 (See Figure 4.34) and 47 ± 0.14 hrs at 5°C (pH 5) (See Figure 4.35).  The rest of the 

experiments showed no significant differences in rhodamine B concentrations over the approximate 100 hrs 

(~4 days) post-mortem.  However, the experiments show there is significant changes overtime.  
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Figure 4.18 Average rhodamine B cumulative concentration with six fresh inter-bladder sections, comparing 

solution pH (pH 7.4 and 5) at 37°C (n=6) (Error bars are ± S.D.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.19 Average rhodamine B cumulative concentration with six fresh inter-bladder sections, comparing 

solution pH (pH 7.4 and 5) at 20°C (n=6) (Error bars are ± S.D.) 
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Figure 4.20 Average rhodamine B cumulative concentration with six fresh inter-bladder sections, comparing 

solution pH (pH 7.4 and 5) at 5°C (n=6) (Error bars are ± S.D.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.21 Average rhodamine B cumulative concentration with six degraded inter-bladder sections, 

comparing solution pH (pH 7.4 and 5) at 37°C (n=6) (Error bars are ± S.D.) 
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Figure 4.22 Average rhodamine B cumulative concentration with six degraded inter-bladder sections, 

comparing solution pH (pH 7.4 and 5) at 20°C (n=6) (Error bars are ± S.D.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.23 Average rhodamine B cumulative concentration with six degraded inter-bladder sections, 

comparing solution pH (pH 7.4 and 5) at 5°C (n=6) (Error bars are ± S.D.) 

0

1

2

3

4

5

6

0 20 40 60 80 100

C
o

n
ce

n
tr

at
io

n
 (

m
g/

L)
 

Time (Hours) 

pH 7.4

pH 5

0

1

2

3

4

5

6

0 20 40 60 80 100

C
o

n
ce

n
tr

at
io

n
 (

m
g/

L)
 

Time (Hours) 

pH 7.4

pH 5



153 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.24 Average rhodamine B cumulative concentration with four sections from one fresh bladder (intra-

bladder sections), comparing solution pH (pH 7.4 and 5) at 37°C (n=4) (Error bars are ± S.D.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 4.25 Average rhodamine B cumulative concentration with four sections from one fresh bladder (intra-

bladder sections), comparing solution pH (pH 7.4 and 5) at 20°C (n=4) (Error bars are ± S.D.) 
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Figure 4.26 Average rhodamine B cumulative concentration with four sections from one fresh bladder (intra-

bladder sections), comparing solution pH (pH 7.4 and 5) at 5°C (n=4) (Error bars are ± S.D.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.27 Two-Way ANOVA results of rhodamine B concentration in relation to the solution pH (pH 7.4 and 

5) at 37°C using 100 mg/L rhodamine B with six fresh inter-bladder sections over approximately 100 hrs (Error 

bars are ± S.D.) 
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Figure 4.28 Two-Way ANOVA results of rhodamine B concentration in relation to the solution pH (pH 7.4 and 

5) at 20°C using 100 mg/L rhodamine B with six fresh inter-bladder sections over approximately 100 hrs (Error 

bars are ± S.D.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.29 Two-Way ANOVA results of rhodamine B concentration in relation to the solution pH (pH 7.4 and 

5) at 5°C using 100 mg/L rhodamine B with six fresh inter-bladder sections over approximately 100 hrs (Error 

bars are ± S.D.) 
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Figure 4.30 Two-Way ANOVA results of rhodamine B concentration in relation to the solution pH (pH 7.4 and 

5) at 37°C using 100 mg/L rhodamine B with six degraded inter-bladder sections over approximately 100 hrs 

(Error bars are ± S.D.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.31 Two-Way ANOVA results of rhodamine B concentration in relation to the solution pH (pH 7.4 and 

5) at 20°C using 100 mg/L rhodamine B with six degraded inter-bladder sections over approximately 100 hrs 

(Error bars are ± S.D.) 
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Figure 4.32 Two-Way ANOVA results of rhodamine B concentration in relation to the solution pH (pH 7.4 and 

5) at 5°C using 100 mg/L rhodamine B with six degraded inter-bladder sections over approximately 100 hrs 

(Error bars are ± S.D.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.33 Two-Way ANOVA results of rhodamine B concentration in relation to the solution pH (pH 7.4 and 

5) at 37°C using 100 mg/L rhodamine B with four sections from one fresh bladder (intra-bladder sections) over 

approximately 100 hrs (Error bars are ± S.D.) 
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Figure 4.34 Two-Way ANOVA results of rhodamine B concentration in relation to the solution pH (pH 7.4 and 

5) at 20°C using 100 mg/L rhodamine B with four sections from one fresh bladder (intra-bladder sections) over 

approximately 100 hrs (Error bars are ± S.D.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.35 Two-Way ANOVA results of rhodamine B concentration in relation to the solution pH (pH 7.4 and 

5) at 5°C using 100 mg/L rhodamine B with four sections from one fresh bladder (intra-bladder sections) over 

approximately 100 hrs (Error bars are ± S.D.) 
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4.3.2.2 amitriptyline and nortriptyline 

The same conditions as previously stated with fresh inter-bladder sections used for a set of experiments at 

three temperatures (37°C, 20°C and 5°C) and two pH values (pH 7.4 and 5).  These were used to determine 

the cumulative concentration of two antidepressant drugs diffusing through the bladder tissue during  

approximately 100 hrs.  There were not enough results for a cumulative concentration graph at 20°C and 5°C 

in pH 5 buffer solution, therefore only results at 37°C were compared between the two buffer solutions.  

 

The cumulative concentration graphs at 37°C show the highest cumulative concentration of amitriptyline was 

6.68 mg/L from a single result (See Figure 4.36) and 6.69 ± 4.76 mg/L for nortriptyline both at pH 7.4 (See 

Figure 4.37).  The lowest cumulative amitriptyline concentration was 0.31 ± 0.04 mg/L in AA buffer solution at 

pH 5 (See Figure 4.36) and 1.23 mg/L in PBS buffer solution at pH 7.4 from a single result for nortriptyline.  

Overall, this shows pH could have more of an effect on the cumulative concentration of amitriptyline than 

nortriptyline diffusing through bladder tissue over approximately 100 hrs after death. 

 

There is a more sporadic increase in the cumulative concentration of both antidepressant drugs at 

physiological conditions (37°C) and pH 7.4 buffer solution, also there was lower concentration increase at pH 

5.  The difference between the cumulative concentrations of both antidepressants showed no significant 

difference between the pH for amitriptyline (p 0.06) and nortriptyline (p 0.15). This could be due to the limited 

number of available results to compare. An increased number of results may give a more accurate result. 

Overall, these results show that pH is not a significant factor in affecting the rate of diffusion of amitriptyline 

and nortriptyline up to 100 hrs after death.   
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Figure 4.36 Average amitriptyline cumulative concentration with six fresh inter-bladder sections, comparing 

solution pH (pH 7.4 and 5) at 37°C (n=6) (Error bars are ± S.D.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.37 Average nortriptyline cumulative concentration with six fresh inter-bladder sections, comparing 

solution pH (pH 7.4 and 5) at 37°C (n=6) (Error bars are ± S.D.) 
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4.3.3 Influence of degradation on the amount of rhodamine B diffusing through bladder 

sections 

The decomposition process begins within minutes after death changing every cell within the body and as a 

result the body beings to break down.  This has been suggested as one of the reasons for the movement of 

drugs within the body after death.  This would be especially true in the bladder where any holes would allow 

urine to leak into the peritoneal cavity.  This suggests that post-mortem toxicology samples taken closer to the 

time of death would result in values that were closer to drug concentrations at the time of death as the drugs 

would not have had chance to diffuse or move around the body.  As a result, the longer the post-mortem 

interval, the more tissue degradation increasing the amount of drugs released changing the drug 

concentrations around the body.  Specifically, tissue degradation could affect the concentration of drugs 

released into the peritoneal cavity from the bladder.  In order to study the possible degradation of the bladder 

the experiments were repeated using bladder tissue that had been thawed after collection and being frozen 

for one week prior to the analysis.  The same conditions as the previous experiments were used (100 mg/L 

rhodamine B in the donor chamber, temperature (37, 20, and 5°C) and pH (pH 7.4 and 5)).  The results show 

the highest cumulative concentration of rhodamine B was 2.63 ± 1.01 mg/L from the frozen inter-bladders in 

pH 7.4 at 37°C (See Figure 4.38).  The lowest cumulative rhodamine B concentration was from the fresh inter-

bladder in pH 7.4 at 5°C, which was below the limit of detection of the rhodamine B method (See Figure 4.40). 

4.3.3.1 Tissue degradation comparison of rhodamine B for the bladder sections 

The only significant difference in cumulative rhodamine B concentrations was increased concentration of 

rhodamine B  from the degraded bladders in pH 7.4 buffer solution at 5°C at all time points, 3 ± 0.12 hrs (p 

0.05), 47 ± 0.09 hrs (p 0.01) and 98 ± 0.06 hrs (p 0.0001) (See Figure 4.46).  There was no significant 

difference between fresh and degraded bladder tissue at 37°C and 20°C at pH 7.4 throughout the first 100 hrs 

after death (See Figures 4.44 and 4.45).  There was no significant difference between fresh and degraded 

bladder tissue in AA buffer solution at pH 5 at any of the three temperatures (See Figures 4.47 – 4.49).  The 

peak cumulative rhodamine B concentrations for the fresh and degraded bladder tissues are shown in table 

4.1.  Overall, this shows degradation would not have a significant effect on the cumulative concentration of 

rhodamine B diffusing through previously frozen bladder tissue over approximately 100 hrs after death.  

 

4.3.3.2 Temperature comparison of rhodamine B for the bladder sections 

The tissue degradation was investigated at three different temperatures and this factor seems to affect the 

concentrations of rhodamine B diffusing through the bladder tissue.  The highest temperature (37°C) shows 

increased concentration of rhodamine B rising steadily throughout the experiment in PBS buffer solution at pH 

7.4 (See Figure 4.38).  The two lower temperatures do not show an increase in rhodamine B concentration 

over the course of the experiment at pH 7.4 (See Figures 4.39 and 4.40).  Similar results were observed in AA 

buffer solution at pH 5 for the three temperatures with 37°C resulting in higher concentrations of rhodamine B 

than the lower concentrations (See Figures 4.41 – 4.43). 
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4.3.3.3 pH comparison of rhodamine B for the bladder sections 

The different buffer solutions used to compare two pH values show there is a difference between the peak 

rhodamine B concentrations at 37°C with more diffusion from pH 7.4, with peak concentrations at 2.63 ± 2.46 

mg/L (pH 7.4) and 1.45 ± 1.26 mg/L (pH 5) (See Table 4.1).  However, due to the large standard deviation the 

overlap in concentrations show the difference is not significant.   

 

4.3.3.4 PMI for significant differences in the cumulative concentrations of rhodamine B 

The significant differences of the cumulative concentrations of rhodamine B between the temperatures was 

only present for the inter-bladder experiment in pH 7.4 at 5°C from 3 ± 0.12 hrs with the degraded bladder 

tissue showing increased rhodamine B concentrations (See Figure 4.46).  The rest of the experiments showed 

no significant differences in rhodamine B concentrations over the 100 hrs post-mortem. 
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Figure 4.38 Average rhodamine B cumulative concentration at 37°C in PBS pH 7.4; comparing tissue 

degradation (Fresh tissue and thawed tissue after being frozen for one week),using six inter-bladder sections 

(n=6) (Error bars are ± S.D.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.39 Average rhodamine B cumulative concentration at 20°C in PBS pH 7.4; comparing tissue 

degradation (Fresh tissue and thawed tissue after being frozen for one week), using six inter-bladder sections 

(n=6) (Error bars are ± S.D.) 
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Figure 4.40 Average rhodamine B cumulative concentration at 5°C in PBS pH 7.4; comparing tissue 

degradation (Fresh tissue and thawed tissue after being frozen for one week), using six inter-bladder sections 

(n=6) (Error bars are ± S.D.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.41 Average rhodamine B cumulative concentration at 37°C (pH 5); comparing tissue degradation 

(Fresh tissue and thawed tissue after being frozen for one week), using six inter-bladder sections (n=6) (Error 

bars are ± S.D.) 
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Figure 4.42 Average rhodamine B cumulative concentration at 20°C (pH 5); comparing tissue degradation 

(Fresh tissue and thawed tissue after being frozen for one week), using six inter-bladder sections (n=6) (Error 

bars are ± S.D.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.43 Average rhodamine B cumulative concentration at 5°C (pH 5); comparing tissue degradation 

(Fresh tissue and thawed tissue after being frozen for one week), using six inter-bladder sections (n=6) (Error 

bars are ± S.D.) 
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Figure 4.44 Two-Way ANOVA results of rhodamine B concentration in relation to tissue degradation (Fresh 

tissue and thawed tissue after being frozen for one week) in pH 7.4 at 37°C, using 100 mg/L rhodamine B 

over approximately 100 hrs, using six inter-bladder sections (Error bars are ± S.D.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.45 Two-Way ANOVA results of rhodamine B concentration in relation to tissue degradation (Fresh 

tissue and thawed tissue after being frozen for one week) in pH 7.4 at 20°C, using 100 mg/L rhodamine B 

over approximately 100 hrs, using six inter-bladder sections (Error bars are ± S.D.)  
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Figure 4.46 Two-Way ANOVA results of rhodamine B concentration in relation to tissue degradation (Fresh 

tissue and thawed tissue after being frozen for one week) in pH 7.4 at 5°C, using 100 mg/L rhodamine B over 

approximately 100 hrs, using six inter-bladder sections (Error bars are ± S.D.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.47 Two-Way ANOVA results of rhodamine B concentration in relation to tissue degradation (Fresh 

tissue and thawed tissue after being frozen for one week) (pH 5) at 37°C, using 100 mg/L rhodamine B over 

approximately 100 hrs, using six inter-bladder sections (Error bars are ± S.D.) 
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Figure 4.48 Two-Way ANOVA results of rhodamine B concentration in relation to tissue degradation (Fresh 

tissue and thawed tissue after being frozen for one week) (pH 5) at 20°C, using 100 mg/L rhodamine B over 

approximately 100 hrs, using six inter-bladder sections (Error bars are ± S.D.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.49 Two-Way ANOVA results of rhodamine B concentration in relation to tissue degradation (Fresh 

tissue and thawed tissue after being frozen for one week) (pH 5) at °C, using 100 mg/L rhodamine B over 

approximately 100 hrs, using six inter-bladder sections (Error bars are ± S.D.) 
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4.3.4 Comparison of initial and final Franz cell drug concentrations 

The bladder diffusion studies all started with the same concentration of rhodamine B and the two 

antidepressant drugs (amitriptyline and nortriptyline) at 100 mg/L in the donor chamber.  At the end of the 

experiments, the donor chamber was diluted and analysed to determine the concentration in the donor 

chamber after the experiment.  This was carried out to determine if there was a decrease in the donor 

chamber and if this loss would equal the concentration found in the acceptor chamber.  If there is a difference 

in concentration that cannot be explained by the concentration in the acceptor chamber this could be due to 

accumulation of the drug into the tissue (Hilberg et al., 1992) and also possibly from drug degradation.  The 

magnitude of absorption could alter by the ionisation of the drug in different pH solutions.  

 

4.3.4.1 Rhodamine B 

There is a general trend of rhodamine B concentration with higher concentrations found in the donor chamber 

at the end of the experiments when the experimental temperature was lower.  This shows less rhodamine B 

diffused from the donor chamber at the lower temperatures, with 55.17 mg/L in the donor chamber for the 

fresh inter-bladders at 5°C against 8.68 mg/L at 37°C (See Table 4.2).  There are two sets of results that do 

not support this, showing no trend in donor chamber concentration, which were fresh intra-bladder at pH 7.4 

and degraded bladders at pH 5.  There were similar concentrations of rhodamine B at 37°C and 5°C (pH 7.4) 

and higher amount of rhodamine B at 20°C.  Showing that at 20°C there was less diffusion from within the 

same fresh bladder at pH 7.4 and degraded bladders at pH 5.  The same trend was shown for the final 

receptor chamber sample.  As a result, there is a large difference between the combined concentrations of 

rhodamine B against the original donor chamber concentration (100mg/L).  This could show that rhodamine B 

has a high affinity for the bladder tissue and most of the drug was retained in the bladder tissue during 

diffusion or degradation of the compound over the 100 hrs (See Table 4.2).  In addition, the similar results for 

the intra-bladders show that temperature and pH have less of an effect within the same bladder than between 

different bladder sections.  As a result, the highest temperature (37°C) shows more diffusion from the donor 

chamber as there is a large decrease in rhodamine B concentration in the final donor chamber.  Therefore, 

more rhodamine B has diffused from the donor chamber into the bladder tissue and then either accumulated 

the higher amount of rhodamine B in the tissue or degraded.  This results in a large difference in rhodamine B 

concentration when compared to the original 100 mg/L donor chamber concentration.  
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Table 4.2 Final donor and receptor concentrations for rhodamine B for all bladder studies 

 Concentration (mg/L) 

Experiment Final Donor Final Receptor Combined Difference from 100mg/L 

Fresh Inter-Bladder, pH 7.4     

37°C 8.68 1.70 10.38 89.62 

20°C 37.11 0.67 37.78 62.22 

5°C 55.17 0.10 55.27 44.73 

Fresh Inter-Bladder, pH 5     

37°C 26.51 2.29 28.80 71.20 

20°C 51.97 0.86 52.82 47.18 

5°C 56.05 0.11 56.15 43.85 

Fresh Intra-Bladder, pH 7.4     

37°C 52.93 1.71 54.64 45.36 

20°C 85.80 2.73 88.53 11.47 

5°C 54.22 0.01 54.23 45.77 

Fresh Intra-Bladder, pH 5     

37°C 29.05 3.38 32.43 67.57 

20°C 67.25 0.13 67.38 32.62 

5°C 70.81 0.08 70.89 29.11 

Degraded Inter-Bladder, pH 7.4     

37°C 20.41 2.56 22.97 77.03 

20°C 46.75 0.44 47.19 52.81 

5°C 52.69 0.31 53.00 47.00 

Degraded Inter-Bladder, pH 5     

37°C 41.06 1.45 42.51 57.49 

20°C 48.50 0.55 49.05 50.95 

5°C 47.24 0.31 47.55 52.45 
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4.3.4.2 amitriptyline and nortriptyline 

There were opposite results for amitriptyline and nortriptyline with increasing concentrations linked to 

decreasing temperature for amitriptyline, which was consistent with rhodamine B (See Table 4.3).  However, 

nortriptyline showed decreasing concentrations with lower temperatures, demonstrating more diffusion as the 

temperature decreased (See Table 4.4).  However, the concentration difference between original donor 

chamber and combined final concentrations were very large, with an average final concentration for pH 7.4 of 

28.09 mg/L and 23.23 mg/L for pH 5, showing that both drugs possibly also had high affinity for the bladder 

tissue.  As an example, the fresh inter-bladder at pH 7.4 the average difference was 79.91 mg/L and 76.77 

mg/L for pH 5, showing a large portion of the drug could have a high affinity for the biological tissue. 

 

Table 4.3 Final donor and receptor concentrations for amitriptyline for all bladder studies 

Amitriptyline Concentration (mg/L) 

Experiment Final Donor Final Receptor Combined Difference from 100mg/L 

Fresh Inter-Bladder, pH 7.4     

37°C 19.04 1.65 20.69 79.31 

20°C 26.10 0.61 26.72 73.28 

5°C 36.37 0.49 36.86 63.14 

Fresh Inter-Bladder, pH 5     

37°C 39.35 0 39.35 60.65 

20°C 19.04 0 19.04 80.97 

5°C 11.30 0 11.30 88.70 

 

 

Table 4.4 Final donor and receptor concentrations for nortriptyline for all bladder studies 

Nortriptyline Concentration (mg/L) 

Experiment Final Donor Final Receptor Combined Difference from 100mg/L 

Fresh Inter-Bladder, pH 7.4     

37°C 46.54 5.13 51.67 48.33 

20°C 26.37 0 26.37 73.64 

5°C 41.29 0.28 41.57 58.43 

Fresh Inter-Bladder, pH 5     

37°C 39.79 1.69 41.48 58.52 

20°C 17.58 0 17.58 82.43 

5°C 8.42 0 8.42 91.58 
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4.3.5 Comparison of bladder tissue thickness recorded from Franz cell diffusion studies 

The bladder is a storage organ and can store a variable volume of solution, for this to occur the bladder 

expands to hold the extra volume.  As a result, the bladder wall stretches and this reduces the thickness of the 

bladder membrane, human bladder wall thicknesses have been measured with 1.9 ± 0.4 mm for women and 

2.1 ± 0.5 mm for men (Kanyilmaz, Calis, Cinar, 2013).  Distention has been said to reduce the diffusion of 

compounds as a result, the bladder thicknesses that would be affected with a distended bladder was 

investigated using this experiment (Borzelleca and Lowenthal, 1967).  Six bladders were used for the inter-

bladder experiments with one section removed from the same area within the bladder to be analysed on the 

Franz cells (See Section 2.2.1.1.1).  To determine the variation in thickness within the same bladder, one 

bladder was sectioned into four and all four sections used in the diffusion experiments (See Section 2.2.1.2).  

In addition, degradation was a factor that was investigated in the experiments as a result six bladders were 

frozen for one week prior to being analysed using rhodamine B (See Section 2.2.1.1.2).  The thickness of all 

the bladder sections in these experiments was measured using digital callipers.  This was to determine if there 

was significant difference between bladder thicknesses, which could result as this becoming a factor that 

could affect the rate of diffusion of compounds over the post-mortem period.  

4.3.5.1 Rhodamine B, amitriptyline, and nortriptyline inter-bladder diffusion studies  

The bladders are in numerous stages of storing urine with 50% of cases voiding the bladder at the time of 

death (Negrusz, 2013).  After excising the bladder and removal of the urine, the bladder does not contract to 

the original size when there is no urine present.  As a result, the bladder membrane can be a range of 

thicknesses; this comparison is used to determine if the range of thicknesses are significant and therefore 

could be classed as a factor that could affect the rate of drug diffusion.  

There was a range of different bladder thicknesses with the mean thickness from 108 measurements at 4.74 

mm ± 1.35 mm.  The histogram (See Figure 4.50) shows the data to be close to symmetric, this is also 

confirmed as the mean, and median values are similar with values at 4.74 mm and 4.8 mm respectively.  The 

standard deviation is approximately 30% of the mean showing there is variation in the bladder thickness.  The 

range of bladder thicknesses is 7.53 mm however, the 75% percentile shows most of the data are below 5.49 

mm.  With 95% confidence the bladder thickness range was between 4.48 and 5.0 mm.   

As can be seen from figure 4.51 there was no significant difference (p 0.42) between the thickness of fresh or 

degraded bladders (mean bladder thicknesses, fresh bladders: 4.8 ± 1.3 mm and frozen bladders: 5.6 ± 1.1 

mm).  As a result it is unlikely that the differences in bladder thickness are the likely to be a significant cause 

of the diffusion difference between the fresh or degraded bladders.  

4.3.5.2 Rhodamine B intra-bladder diffusion studies 

The sections within the same bladder were taken for each experiment and as a result, the thicknesses 

recorded for the top of the bladder were compared to the thickness recorded for the bottom of the bladder to 

determine if there is significant difference between different areas within the same bladder.  The results had a 

p value of 0.23 and therefore showed no significant difference (See Figure 4.52) between the top and bottom 

bladder sections (mean bladder thicknesses, top sections: 4.2 ± 1.0 mm and bottom sections: 4.6 ± 1.4 mm).  
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This shows that the bladder thicknesses within the same bladder could not be classed as a factor that could 

affect drug diffusion.  
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Figure 4.50 Histogram of the range of bladder thicknesses from the inter-bladder diffusion experiments 

(n=108) 

 

 

 

 

 

 

 

 

Figure 4.51 Bladder thickness comparison between the fresh and degraded inter-bladder sections (Fresh 

bladders =36 and frozen bladders = 31) (Error bars are ± S.D.) 

 

 

 

 

 

 

 

 

 

Figure 4.52 Bladder thickness comparison between the two top sections of the bladder and the two bottom 

sections of the bladder (Top and bottom bladders = 18) (Intra-bladder diffusion studies) (Error bars are ± S.D.) 
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4.3.6 Comparison of drug permeability using calculated values from the bladder diffusion 

studies 

In order to obtain a better idea of the diffusion of the drugs (rhodamine B, amitriptyline, and nortriptyline) the 

flux (describes the mass movement of molecules through a membrane) of each drug across the bladder was 

calculated.  The flux value is needed to calculate the permeability, which can be calculated in two different 

ways dependant on the amount of drug diffusing through the membrane (See Section 2.3.1).  The 

permeability coefficient of a compound in a state where there is < 10% movement of the analyte into the 

acceptor chamber from the donor chamber is known as steady-state, which has a constant concentration 

gradient resulting in constant flux.  This directly relates the concentration gradient and the flux (See Section 

2.3.1).  Drugs can be compared using permeability when experiments have been carried out at numerous 

concentration gradients.  However, if more than 10% of the original donor chamber concentration is 

transferred this results in non-steady state conditions.  The flux changes to first order when under non-steady 

state conditions.  Non-steady state conditions can occur with lipophilic drugs or when the experiment is 

undertaken for over a long period.  The equations become more complicated as the flux is not constant and 

cannot be directly equated to the permeability.  Other parameters are needed including donor and receptor 

concentrations as the donor chamber concentration will significantly decrease.  The permeability is being 

determined from experimental values, which can be affected by a number of parameters and can experience 

bias.  Therefore, instead of labelling permeability as P, the label is changed to Peffective as this is highlighting 

the permeability value is being experimentally obtained instead of using models (Brodin, Steffansen and 

Nielsen, 2010).  

 

4.3.6.1 Rhodamine B 

The results were taken from the bladder diffusion studies to determine the permeability of rhodamine B at all 

the parameters investigated in the bladder studies.  The permeability increases by a factor of ten at the 

highest temperature (37°C), with 1.8x10
-4

 cm/s (Fresh inter-bladder pH 7.4) at 37°C in comparison with 

6.8x10
-5

 cm/s at 20°C and 1.4x10
-5

 cm/s at 5°C at pH 7.4 as an example.  In all three sets of experiments, this 

shows that high temperatures do affect the permeability of rhodamine B (See Table 4.5).  The fresh inter-

bladder studies have consistent results at both pH's showing a decrease in permeability as the temperature 

decreases.  The similar values show there is no preferential diffusion dependant on pH.  There is no clear 

trend in the change in permeability for the intra-bladder studies however; the highest permeability was 

calculated for the highest temperature (37°C) consistent with the inter-bladder studies (See Table 4.5).  The 

comparison of permeability values between pH shows there is more diffusion at pH 5 than at pH 7.4.  The 

degraded tissue experiments have similar results in PBS showing the highest permeability at 37°C and no 

difference in permeability between 20 and 5°C.  The pH 5 results show a trend in decreasing permeability as 

the temperature decreases (See Table 4.5). 
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Table 4.5 Permeability values of rhodamine B for all experimental parameters in the bladder studies 

Experiment 
Number of samples used to calculate 

permeability 
Permeability Value (cm/s) 

Fresh, Inter-Bladder:   

pH 7.4, 37°C 12 1.8x10-4 

pH 7.4, 20°C 12 6.8x10-5 

pH 7.4, 5°C 9 1.4x10-5 

pH 5, 37°C 6 1.8x10-4 

pH 5, 20°C 12 5.7x10-5 

pH 5, 5°C 12 2.6x10-5 

Fresh, Intra-Bladder:   

pH 7.4, 37°C 7 3.0x10-4 

pH 7.4, 20°C 9 3.5x10-4 

pH 7.4, 5°C 11 1.1x10-5 

pH 5, 37°C 6 5.8x10-4 

pH 5, 20°C 12 3.0x10-5 

pH 5, 5°C 12 3.1x10-5 

Degraded Inter-Bladder:   

pH 7.4, 37°C 6 3.6x10-4 

pH 7.4, 20°C 12 5.8x10-5 

pH 7.4, 5°C 12 5.9x10-5 

pH 5, 37°C 8 1.4x10-4 

pH 5, 20°C 12 7.7x10-5 

pH 5, 5°C 12 3.6x10-5 
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4.3.6.2 amitriptyline and nortriptyline 

As can been seen in table 4.6 and 4.7 the permeability values for amitriptyline and nortriptyline are of the 

same magnitude independent of the pH and temperature.  The permeability in pH 7.4 is lower at 37°C and 

similar at the two lower temperatures (20°C and 5°C).  These results could be due to the higher temperature 

(37°C) being under non-steady state conditions whereas all the lower temperatures are under steady state 

conditions.  There is only one result for pH 5, which shows slightly more permeability than at pH 7.4, resulting 

in more permeability of amitriptyline at the lower pH.  However, nortriptyline at the lower pH 5 shows similar 

permeability values at the two higher temperatures and a lower value at 5°C, showing the lower temperature 

reduces the permeability of nortriptyline.  In addition, the nortriptyline results are consistent with amitriptyline 

concerning the pH, as there is more permeability of nortriptyline at the same high temperature (37°C) and the 

lower pH.  This is not expected for either drug as the lower pH would ionise the drugs further than at pH 7.4, 

which should reduce the capacity of the drugs to diffuse through the tissue membrane. 

 

Table 4.6 Permeability values of amitriptyline for all experimental parameters in the bladder studies 

Experiment Number of samples used to calculate permeability Permeability Value (cm/s) 

Fresh, Inter-Bladder:   

pH 7.4, 37°C 12 
1.9x10

-5
 (Non-Steady 

State) 

pH 7.4, 20°C 10 9.7x10
-5

 

pH 7.4, 5°C 9 6.9x10
-5

 

pH 5, 37°C 6 3.4x10
-5

 

 

Table 4.7 Permeability values of nortriptyline for all experimental parameters in the bladder studies 

Experiment Number of samples used to calculate permeability Permeability Value (cm/s) 

Fresh, Inter-Bladder:   

pH 7.4, 37°C 9 3.0x10
-5

 (Non-Steady State) 

pH 7.4, 20°C 8 3.0x10
-5

 

pH 7.4, 5°C 6 1.4x10
-5

 

pH 5, 37°C 8 4.6x10
-5
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4.3.7 Acceptor chamber pH change over 100 hrs  

The pH was recorded at the start and end of the bladder diffusion studies to observe any pH changes, and if 

these changes were random or followed a trend.  This is due to after death the pH within the body changes 

overtime due, in part, to anaerobic respiration.  These pH recording was taken to determine if the same pH 

changes can be observed in vitro.  

 

Table 4.8 Final acceptor chamber pH values 

 pH values 

Experiment 7.4 5.0 

Inter-Bladder, Control   

37°C 6.87 ± 0.24 6.95 ± 0.16 

20°C 6.99 ± 0.13 5.31 ± 0.02 

5°C 7.10 ± 0.08 5.16 ± 0.02 

Inter-Bladder, rhodamine B   

37°C - 6.88 ± 0.40 

20°C 6.55 ± 0.07 5.33 ± 0.08 

5°C 7.02 ± 0.08 5.20 ± 0.03 

Intra-Bladder, rhodamine B   

37°C 6.81 ± 0.14 7.60 ± 0.57 

20°C 6.69 ± 0.11 5.28 ± 0.07 

5°C 7.15 ± 0.23 5.08 ± 0.01 

Inter-Bladder, rhodamine B (Degraded)   

37°C 7.26 ± 0.41 - 

20°C 6.69 ± 0.06 5.37 ± 0.05 

5°C 7.03 ± 0.02 5.24 ± 0.04 

Inter-Bladder, Mixed Drugs   

37°C 6.84 ± 0.24 6.84 ± 0.33 

20°C 6.99 ± 0.13 5.19 ± 0.24 

5°C 7.10 ± 0.08 6.53 ± 0.05 

 

The table (See Table 4.8) shows the final pH values from the acceptor chamber solutions at both pH (PBS 

and AA) for the diffusion studies, the values seem to follow a trend that is independent of the solution pH.  The 

PBS solution results show the pH is consistently lower than the original pH 7.4 value at the start of the 

experiment.  This is inconsistent with current knowledge that the pH undergoes limited changes after death; 

these results could be due to the replacement of the acceptor chamber solution with the blank pH solution that 

was altered with differing amounts of acid or base to rectify the pH during the experiment.  The AA solution 

results show the pH value consistently increases over the course of the experiment, which coincides with the 

later stages of decomposition after autolysis, where the putrefaction stage can show increase in pH due to 

bacteria.  The trend that is present is independent of solution pH, different tissue conditions (fresh and 

degraded), and different drugs present.  This trend shows, even with opposite changes in pH, the most 

change is in the highest temperature experiments and the lowest temperature shows the minimal pH change.  

As a result, the temperature can be shown to be linked to pH where the higher the temperature results in the 
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larger alteration of pH in post-mortem porcine bladder tissue, which is probably due to increased 

decomposition from the increased temperature (Cockle and Bell, 2015).  However, there is a limitation to this 

experiment as there were a number of samples taken from the Franz cells each day and replaced with blank 

solution.  Fresh PBS or AA added to the chambers each day that had been altered by an acid or base at 

difference concentrations so the same ionic strength of the solution was not added and this could have had an 

adverse effect on the final pH. 

4.3.8 Interference peaks on the HPLC 

Overtime, interference peaks were detected in the validation that co-eluted with the antidepressant drugs, 

specifically amitriptyline, and increased throughout the diffusion study analysis period.  This is possibly due to 

the limited sample preparation of the solutions taken from underneath the bladder tissue.  The only sample 

preparation included filtration of the samples due to restricted sample volume (See Section 2.2.2.3).  As a 

result, no extraction of any tissue in the samples took place.  Therefore, the interference peaks could be due 

to bladder tissue, proteins or other compounds still present in the samples when analysed on the HPLC.   

The UV spectra of the two drugs (amitriptyline and nortriptyline) are shown in figure 4.53 - 4.54 for reference.  

There were a number of contamination peaks that co-eluted with both drugs, mainly amitriptyline shown in 

figures 4.55 - 4.56.  As a result, the peaks could be identified in the library with a poor match and therefore 

could not be assigned as amitriptyline.  Figure 4.57 shows amitriptyline was more prominent in the UV 

spectrum and therefore detected in the library at an acceptable match (above 950/1000).  The match allowed 

amitriptyline to be assigned however; it could not be quantified due to co-elution as this could overestimate 

the amount of drug present.  There was also split peaks, which occurred with nortriptyline (See Figure 4.58) 

and this affected the UV spectra (See Figure 4.59).  This prevented identification and quantification of the 

drug in numerous samples resulting in underestimating the detection of both drugs using the sample 

preparation and HPLC methods.  Future work would involve developing a drug extraction method prior to 

analysing the samples on the HPLC to achieve cleaner samples.  
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Figure 4.53 UV spectrum of amitriptyline from the Chromeleon library 

 

 

 

 

 

 

 

 

 

 
Figure 4.54 UV spectrum of nortriptyline from the Chromeleon library 

 

 

 
 

 

 

 

 

 

 

 

Figure 4.55 UV spectrum of amitriptyline and co-eluting compounds from the bladder section diffusion studies 

at 37°C (pH 7.4), 47 hrs post-mortem 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.56 UV spectrum of amitriptyline and co-eluting compounds from the bladder section diffusion studies 

at 37°C (pH 7.4), 50 hrs post-mortem 
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Figure 4.57 UV spectrum of amitriptyline and co-eluting compounds from the bladder section diffusion studies 

at 20°C (pH 5), 70 hrs post-mortem 

 

 

 

 

 

 

 

 

Figure 4.58 Chromatogram showing split peak of nortriptyline from the bladder section diffusion studies at 

37°C (pH 5), 49 hrs post-mortem 

 

 

 

 

 

 

 

 

 

 

Figure 4.59 UV spectrum of the split peak of nortriptyline and the contaminating compound from the bladder 

section diffusion studies at 20°C (pH 5), 70 hrs post-mortem 
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4.4 Discussion   

The aim of this chapter was to investigate a number of possible factors that could affect the diffusion of 

rhodamine B, amitriptyline, and nortriptyline through sections of bladder tissue in order to determine if post-

mortem redistribution from the bladder is likely to be a significant problem in forensic toxicology interpretation.  

These factors included temperature, drug concentration, pH, tissue degradation, and bladder thickness.  The 

results showed that temperature was the only parameter that affected the concentration of rhodamine B that 

diffused through the bladder tissue.  The temperature and pH seemed to have an effect on the concentration 

of the two antidepressant drugs.  The other parameter, involving freezing and thawing the tissue, was not 

deemed a factor that could affect the concentration of drugs diffusing through the bladder tissue.  However, 

the effect of temperature was limited to a significant increase in diffusion when the bladders were at 

physiological temperature.  However, the body would not be at this temperature for a long period after death 

due to body cooling, which would occur within the first 18 hrs after death (Fisher, 2003). The significant 

differences occurred at the later stages in the experiment, approximately 94 ± 0.1 hrs for pH 7.4 (p < 0.001) 

and 100 ± 0.06 hrs for pH 5 (p > 0.0001), with higher rhodamine B concentrations from physiological 

temperature (37°C) in comparison with the two lower temperatures (20°C and 5°C).  No significant differences 

were found between the room temperature (20°C) that the body would equilibrate after death and the 

mortuary fridge temperature (5°C) where the body would be stored before autopsy.  Therefore, after the initial 

stages of decomposition and the body had cooled, the temperature does not affect the amount of rhodamine 

B concentration diffusing through the bladder tissue.  The peak concentrations achieved at the respective 

temperatures show that the lower temperatures result in lower rhodamine B concentrations.  The fresh inter-

bladder results at pH 7.4 had resulting peak concentrations of 1.70 ± 1.0 mg/L at 37°C,  0.67 ± 0.71 mg/L at 

20°C and at 5°C the amount of rhodamine B was below the limit of detection of the method.  The 

concentrations at pH 5 was 2.29 ± 1.22 mg/L at 37°C, 0.85 ± 0.89 mg/L at 20°C and the amount of rhodamine 

B was < the limit of detection for the method at 5°C.   

 

Similar trends were shown for the degraded tissues in relation to temperature, the intra-bladder results have 

less of a clear trend with a higher peak concentration at 20°C (2.73 ± 2.31 mg/L) than 37°C (1.86 ± 1.75 

mg/L).  However, in all cases the large standard deviations show there is a wide range of overlap for the 

rhodamine B cumulative concentrations.  On the other hand, there was a general increase of rhodamine B 

cumulative concentration overtime.  The Skopp paper (Skopp et al., 1997) shows there is a longer lag time in 

the diffusion of rhodamine B through vein tissue at lower temperatures, which is consistent with the results 

from this research. Opposing research shows the distribution of rhodamine B in liver slices was not affected 

by temperature, with similar patterns using 37°C or 4°C however, the thickness of the liver slices was much 

thinner at 0.25 mm (Olinga et al., 2001). Overall, in relation to temperature, the cooler temperatures reduce 

the cumulative concentration of the three drugs over five day’s post-mortem.  If an individual was found 

outside, which could result in cooler conditions between 20°C and 5°C, this lower temperature would reduce 

diffusion from the bladder.   

 

The pH of the urine can vary with a range of PM urine pH between pH 4.6 – 8.5 (Cook, Strauss and Caplan, 

2007), as a result this would be expected to alter the ionisation of drugs, affecting the amount of drugs that 
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are able to diffuse through the bladder membrane. However, there was no significant difference between the 

diffusion of rhodamine B, comparing the pH at any temperature for both the fresh and degraded bladder tissue 

sections, which is consistent with the similar ionisation state of rhodamine B at 99.9% in pH 7.4 and 86% in 

pH 5.  This shows that diffusion is independent of pH, therefore as the body decomposes, and reduces in pH 

from physiological (pH 7.4) to the more acidic pH (pH 5), the rate of drug diffusion is not affected.  The post-

mortem pH range stated previously, pH 4.6 – 8.5 (Cook, Strauss and Caplan, 2007), suggests this would be 

possible in the bladder.  Rhodamine B has a negative and positive charge in aqueous solutions however, it is 

less protonated at higher pH (pH 7.4) and therefore this weakens hydrogen bonds and the hydrophobic forces 

involved in binding the compound.  This results in a higher release rate and these bonds strengthen in acidic 

environments (pH 5) resulting in a slower drug release rate (Zhang et al., 2011). This could explain the 

differences in the cumulative concentrations of rhodamine B diffusing through the bladder tissue at pH 7.4 

compared with pH 5 with higher concentrations at the higher pH.   

 

The results for amitriptyline and nortriptyline are inconclusive as there were results for all three temperatures 

at pH 7.4 and limited results at pH 5 with only the results at 37°C at a number where there could be 

comparisons carried out.  This shows there was limited diffusion at 20°C and 5°C, which represent post-

mortem temperatures, for both antidepressants.  The antidepressants have high pKa values with 9.4 for 

amitriptyline and 9.7 for nortriptyline (Baselt, 2008). This shows that at pH 7.4 both drugs would be ionised, as 

this pH is 2 units lower than the pKa values.  The ionisation of amitriptyline and nortriptyline at both pH values 

were 99% and 99.5% at pH 7.4 and 99.99% and 99.99% in pH 5 respectively.  More of the drugs were 

unionised at the higher pH.  This is not preferential for diffusion across the bladder tissue membrane, which 

coincides with the results from the bladder studies as a small amount of the drugs diffused at all three 

temperatures (pH 7.4) in relation to the donor chamber concentration.  The peak concentration was recorded 

at 6.69 mg/L and 6.69 ± 4.76 mg/L for amitriptyline and nortriptyline respectively (pH 7.4).  Fewer results were 

obtained at pH 5, which was expected as the acidic pH would result in the basic drugs (amitriptyline and 

nortriptyline) becoming more ionised , 99.99% ionised for both drugs, therefore limiting the availability of the 

drugs to diffuse through the tissue membrane.  The peak concentrations in pH 5 were 1.96 mg/L and 2.8 ± 

0.32 mg/L for amitriptyline and nortriptyline respectively.  However, these values were recorded from a buffer 

solution, which could result in a slightly different outcome than if the drugs were dissolved in urine.  

Furthermore, the concentrations would not constitute to an overdose purely from these results.  Overall, 

diffusion can be seen for both rhodamine B and antidepressant drugs.  The pH cannot be found as a 

significant factor in the diffusion of rhodamine B; however, it is a factor with amitriptyline and nortriptyline 

through bladder tissue within the first 100 hrs after death.  In relation to other drugs the Henderson-

Hasselbalch equation can be used to determine the ionisation of the drug at a particular pH and these 

experiments can be used as a model to determine the amount of drug that could possibly diffuse through the 

bladder tissue. 

 

Tissue degradation is a component of the decomposition process and as a result was investigated in relation 

to drug movement from the bladder.  Tissue breakdown is a physical process that would allow the release of 

urine from the bladder.  Breakdown could be a significant factor on the concentration of drugs released if the 
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bladder tissue breaks down quickly, the drugs would be released at an earlier stage in the decomposition 

process.  This could lead onto increased movement of drugs out of the bladder.  The degradation was 

introduced by freezing bladder tissue for one week then thawing before using in the Franz cells.  The 

comparison of fresh and degraded bladder tissue showed no significant difference in diffusion over 100 hrs in 

PBS at 37°C and 20°C.  The lowest temperature did show increasing significant difference throughout the 

experiment, however, the peak concentrations were very low mostly below the limit of detection for the 

method.  The lower pH showed no significant difference at all three temperatures.  This shows that overall the 

tissue degradation does not affect the concentration of drugs released from the bladder tissue over 

approximately 100 hrs after death.  

 

The donor chamber represents the inside of the bladder and this method allowed for the analysis of the 

contents of the “bladder” at the end of the experiment.  This shows the movement of drugs from within the 

bladder to the surrounding area in a controlled environment.  The donor chamber concentration decreased for 

all three compounds, with the largest decrease in “bladder concentration” at the highest temperature and pH.  

However, the difference between the original donor concentration and the final combined concentrations of 

the donor and acceptor chambers was very large resulting in a discrepancy in the total concentrations.  The 

reason for this difference is most likely due to the binding of the drugs to the bladder tissue.  All three of the 

compounds are lipophilic (with log P values of  4.92 (Hansch, Leo, 1995), 4.51 (Brodin, 1974) and 2.43 (Mah 

et al., 2013) for amitriptyline, nortriptyline and rhodamine B respectively), which would allow them to cross cell 

membranes and potentially bind to cellular components.  

 

The bladder thickness was expected to be important in diffusion across the bladder due to the Fick equation 

taking into account the membrane thickness.  Biological tissue is variable within certain parameters and with 

regard to the bladder or animal therefore there will be variation in bladder thickness, dependent on the 

individual and also the amount of urine in the bladder.  The bladder thickness range was large in this set of 

experiments, however the symmetrical histogram (See Figure 4.50) suggested most of the bladder 

thicknesses were within a small spread of values between 4.48 and 5.0 mm.  In addition, the difference 

between fresh and degraded bladders was not significant (p 0.42) so degraded tissue does not affect bladder 

tissue thickness.  Furthermore, the thicknesses within the same bladder also resulted in insignificant 

differences (p 0.23) showing there is no large variation in the thicknesses within different sections of the 

bladder.  This could show there may not be preferential diffusion from different sections of the bladder in 

relation to the bladder thickness.  As a result, whether a body has been found close to the time of death or 

within five days with differing volumes of urine present, altering the bladder membrane thickness, any drug 

movement through the bladder membrane, specifically amitriptyline and nortriptyline, would not be affected by 

these conditions.  

 

Rhodamine B has been previously investigated in relation to permeability with a permeability coefficient 

determined for the isolated rabbit cornea and a cell culture using epithelium from the human cornea as a 

model.  The permeability value from that study carried out at 35°C for rhodamine B was higher than 

hydrophilic drugs, 1.63 ± 4.0 x 10
-5

 cm/s, showing that the upper layers of the cornea is the urothelium 
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equivalent in the bladder membrane, which limits the diffusion of the hydrophilic drugs (Toropainen, Ranta 

and Talvitie, 2001). The two lower temperatures (20°C and 5°C) using fresh bladder sections from this 

research had permeability values within the same order of magnitude, with 6.8 x 10
-5

 cm/s for 20°C and 1.4 x 

10
-5

 cm/s for 5°C.  However, at 37°C the permeability increases by a magnitude of ten (1.8 x 10
-4

 cm/s) 

showing the physiological temperature increases diffusion.  The antidepressant drugs (amitriptyline and 

nortriptyline) have been investigated in previous studies in relation to permeability, which involved diffusing 

amitriptyline through caco-2-cells.  The permeability coefficient at 1 mM was 2.1 x 10
-5

 cm/s in pH 7.4 buffer 

solution at 37°C (Faassen et al., 2003). This research shows consistent results with the permeability of the 

same order of magnitude with 1.9 x 10
-5

 cm/s, showing amitriptyline to be a highly permeable compound.  In 

relation to nortriptyline, which is a more polar drug and the difference in pH affects the ability of the drug to 

penetrate a membrane due to a reduction in the amount of the non-ionised form.  The permeability 

coefficients at pH 7.4 and 5.5 were recorded through human skin at 0.36 ± 0.04 x 10
-6

 cm/s and 0.011 ± 0.004 

x 10
-6

 cm/s respectively (Melero, Garrigues and et al, 2008). The results from this research show an increase 

in permeability in relation to the previous study by an order of ten with permeability coefficients of 3.0 x 10
-5

 

cm/s (pH 7.4) and 4.6 x 10
-5

 cm/s in pH 5.  This could be due to the bladder preferentially diffusing more 

lipophilic drug in comparison with human skin  (Scheuplein, 1970).  

 

The permeability of all three drugs was affected only by temperature with the highest permeability at 

physiological temperature (37°C); this shows that peak permeability would be present close to the time of 

death.  However, the increased permeability at the physiological temperature would not be relevant for longer 

post-mortem periods unless the body was found in warm climates, as the body cools to room temperature 

after death reducing the drug permeability independent of pH.  Similar permeability values for rhodamine B 

were found for fresh and degraded tissue.  The permeability values were 1.8 x 10
-4

 cm/s (pH 7.4) and 1.8 x 

10
-4

 cm/s (pH 5) for fresh tissue and 3.6 x 10
-4

  cm/s (pH 7.4) and 1.4 x 10
-4

 cm/s (pH 5) for degraded tissue at 

37°C.  These results show that if the bladder was degraded due to decomposition this would not significantly 

affect the permeability of rhodamine B.  This degradation would occur in the later stages of the decomposition 

process and even with the results showing higher concentrations of rhodamine B at physiological temperature 

with degraded bladders, with peak concentrations at 1.70 ± 1.0 mg/L for fresh tissue and 2.63 ± 2.46 mg/L for 

degraded tissue, this scenario would not be realistic.  This is due to the body being reduced to room 

temperature before significant tissue degradation could occur.  At room temperature, the rhodamine B 

permeability has decreased by a magnitude of ten for both fresh (6.8 x 10
-5

 cm/s (pH 7.4)) and degraded 

bladder tissues (5.8 x 10
-5

 cm/s (pH 7.4)).  Within the same bladder, the results show if the body remained at 

physiological pH the permeability would remain constant until the body cooled to room temperature with 3.0 x 

10
-4

 cm/s at 37°C and 3.5 x 10
-4

 cm/s at 20°C.  However, this would not occur due to the cessation of the 

aerobic respiration and the commencement of anaerobic respiration that produces acidic compounds after 

death.  The more acidic pH results show the permeability is lower at room temperature than pH 7.4 and stays 

constant at this value even when the body would be stored in the morgue fridge before autopsy.  This could 

be the result of the drugs becoming more ionised at the lower pH, which would limit the movement of the 

drugs across the biological tissue.   
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The permeability of the antidepressant drugs has similar results of the same magnitude with slightly higher 

permeability of amitriptyline than nortriptyline.  The trend in permeability is similar to rhodamine B with 

decreasing permeability with decreasing temperature.  This shows that as the body cools there is less 

diffusion of both amitriptyline and nortriptyline from the bladder at physiological pH.  The lower permeability 

values for the physiological temperature could be due to the non-steady state results.  The comparison of 

permeability values show amitriptyline has the highest permeability, then rhodamine B and finally nortriptyline 

with 9.7 x 10
-5 

cm/s, 6.58 x 10
-5 

cm/s and 3.0 x 10
-5

 cm/s respectively (pH 7.4) at 20°C.  This shows no trend 

involving the molecular weight, log p or pKa values as amitriptyline (MW: 277.4 g/mol, log P: 4.92, pKa: 9.4) 

(Hansch, Leo, 1995; Baselt, 2008; Negrusz, 2013) and nortriptyline (MW: 263.4 g/mol, log P: 4.51, pKa: 9.7) 

(Brodin, 1974; Baselt, 2008; Negrusz, 2013) have similar values and rhodamine B (MW: 479 g/mol, log P: 

2.43, pKa: 4.2) (Zhang et al., 2011; Mah et al., 2013; Qi, Gao and Zhang, 2013) has a higher molecular weight 

and lower values for log P and pKa. This result was not expected, as the drugs with similar characteristics 

would have similar permeability results however, all three of the peak permeability values are of the same 

magnitude showing the environmental conditions have a larger effect on the alteration of the magnitude of the 

permeability.   

 

The permeability coefficients of each drug could be used in further work involving calculating the diffusion 

coefficient, which could then be used to determine the time taken for each drug to diffuse to set distances 

(Clark, Edeson and Ryall, 1983). This would be useful in relation to calculating the time taken for a drug to 

reach the femoral vein from the bladder, measurements between the bladder and the femoral vein would be 

needed for these equations. 

 

The pH change in the acceptor chambers was consistent with the knowledge that the physiological pH 

decreases overtime after death with pH 6.87 ± 0.24 at the end of the pH 7.4 fresh inter-bladder experiment 

at 37°C.  The lower pH that is achieved after the first stages of autolysis increases during the later stages of 

decomposition with the final acceptor chamber pH of pH 6.95 ± 0.16 from the pH 5 fresh inter-bladder 

experiment at 37°C.  This shows that pH values in vivo can be replicated in vitro.  

 

Overall, the movement of rhodamine B, amitriptyline, and nortriptyline from the bladder has been shown at 

physiological temperature and pH.  The length of the experiments mimicked the first five days after death and 

the results show that there is selective diffusion over this time dependant on the environmental conditions.  

The optimal conditions for the movement of drugs after death include physiological conditions in relation to 

both temperature (37°C) and pH (pH 7.4).  The diffusion was hindered the most by the mortuary fridge 

temperature (5°C) and post-mortem pH (pH 5).  Even with higher drug concentrations found with amitriptyline 

and nortriptyline, there would be dilution of the drugs that is likely to occur when diffusing through the tissues 

and a larger volume of fluid in the peritoneal cavity after the drugs have left the bladder.  Furthermore, 

constant temperatures would not be maintained after death, especially physiological conditions.  Therefore, 

the diffusion would be based on the two lower post-mortem temperatures resulting in very limited diffusion of 

drugs from the bladder with average peak cumulative concentrations of 2.73 ± 2.31 mg/L and 0.85 ± 0.89 

mg/L at 20°C, also 0.54 ± 0.46 mg/L and 0.31 ± 0.49 mg/L at 5°C in PBS and AA respectively.   
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These results show that there would not be an issue if the deceased was autopsied and toxicological samples 

taken up to five days after death.  This is due to the small cumulative concentrations found in the acceptor 

chamber for both sets of drugs, rhodamine B and the antidepressant drugs, with the peak concentration of 

6.69 ± 4.76 mg/L for nortriptyline in pH 7.4 at 37°C.  

 

This concludes varying diffusion dependant on environmental conditions with the most diffusion using 

physiological conditions, based on the model created by diffusing rhodamine B and two antidepressant drugs 

through bladder sections, in relation to affecting femoral vein blood samples taken at autopsy for drug 

concentration change.  To create a more realistic model whole bladders were used to determine the amount 

of rhodamine B released post-mortem.  
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Chapter 5 – Diffusion of Drugs from the Whole Bladder 
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5.1 Introduction 

Previous work has suggested that there is a possibility of drug diffusion from the bladder to the femoral vein.  

If verified this could lead to a misinterpretation of femoral blood drug concentrations in forensic cases  (Moriya 

and Hashimoto, 2001). The previous chapter focussed on the diffusion of chemicals (rhodamine B, 

amitriptyline, and nortriptyline) across sections of bladder to determine if there is variation in the rate and 

extent of drug diffusion between different bladders and within the same bladder.  However, this is not able to 

mimic real casework as in most cases the bladders are intact and would be storing urine possibly containing 

drugs.   

 

The bladder is a storage organ and during life, the bladder holds a limited amount of urine, 351.3 ± 86.0 ml for 

men and 325.0 ± 76.7 ml for women (Kanyilmaz, Calis, Cinar, 2013), before it is voided. However, in some 

post-mortem cases death occurs before this is possible, which results in a bladder filled with urine possibly 

containing drugs still present in a body that starts to decay almost immediately after death.  There has been 

studies relating urinary retention to certain drug classes including antipsychotics (Bozikas, Petrikis and 

Karavatos, 2001), benzodiazepines (Benazzi, 1998) and tricyclic antidepressants (Remick, 1988) mainly 

thought to be due to the anticholinergic actions of these drugs. In addition, a CT-based study suggested links 

between the volume in the bladder and intoxication with results showing there is a correlation between the 

calculated volume of the bladder and positive results for drugs in the toxicology report.  A number of drugs 

were included in the study including alcohol, cocaine, opiates and also poly-drug variations.  The results 

showed fatally intoxicated individuals had higher bladder volumes than non-fatally intoxicated individuals.  

Therefore, fatal intoxication of these drugs result in urinary retention (Rohner and Franckenberg, 2013). 

Different areas within the body start to decompose at different times and rates; this is partly the reason for 

preferential sampling sites.  In addition, peripheral sites are less affected by PMR including the femoral vein.  

However, with limited data on the degradation of the intact bladder within the body it is not known when this 

organ begins to decay and release the entire contents into abdominal cavity, rather than releasing drugs via 

diffusion.  If this occurs at the early stages of decomposition the drug laden urine could be released allowing 

the drugs free to diffuse into possible sampling sites including the femoral vein.  

 

The bladder has been assumed impenetrable; however, research has shown that numerous compounds can 

diffuse through the bladder including barbiturates, basic drugs (atropine, neostigmine and physotigmine) 

(Borzelleca, 1959) and nicotine (Borzelleca, 1963). In living tissue there are active transport mechanisms that 

transport sodium (Wickham, 1964; Diamond, 1976) into the bladder membrane. Passive permeability of 

substances is very selective however, urea (Maffly et al., 1960) has been shown to passively diffuse through 

the bladder membrane, increasing the permeability with the use of hormones. This shows that passive 

diffusion from the bladder is possible and the bladder is not impenetrable to all substances in life, shown by 

lipophilic drugs used in chemotherapy treatments, thiotepa and mitomycin C, with 20-97% and 0-80% 

bioavailability of the drugs from the bladder respectively (Czech, 1971; Dalton, Wientjes, 1991).  

 

It has been shown that treating mainly superficial bladder cancers with intravesical therapy, directly into the 

bladder using catheterisation, can result in 1000 times higher drug concentration in the bladder than if treated 
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via plasma.  Therefore, this has lead onto research into avenues that increase the permeability of the bladder 

wall to certain drugs to treat disease, including bladder cancer (Wientjes et al., 1991). More specifically, 

increasing permeability of the affected area within the bladder membrane to the drugs.  This is usually 

superficial bladder cancer, and helps to reduce the toxic effects of the chemotherapeutic drugs to healthy cells 

(Grabnar et al., 2006; Allison, Sadiq, Baronou, 2017).  Introducing the hydrophilic drugs to the bladder 

membrane via the intravesical method allows for longer contact with the tumour and more penetration into the 

tissue.  The increased penetration is due to the shedding of the urothelium cells, otherwise known as 

desquamation (Grabnar et al., 2006).  

 

The urothelium has been shown to be damaged and lost in the early post-mortem stages (Jost, Gosling and 

Dixon, 1989); this could result in a natural increase in permeability after death.  It has been demonstrated that 

bladder tissue samples taken later than 12 hrs after death have lost this top layer within the bladder lumen, 

leaving less mature cells that could allow for an increase in the passive movement of substances (Newman, 

1981). The increase in permeability has been shown to be possible through damage (Lavelle et al., 1998, 

2002).  The alteration of absorption due to damaged and distended bladders was demonstrated in a study that 

used both human and animal models.  Two sugars (4% lactulose - 1% rhamnose solution) were inserted into 

a set of intact and damaged bladders and blood samples were taken 30 minutes later.  Neither sugar was 

detected in the blood samples from the subjects with intact bladders.  However, both sugars were detected 

and quantified in the blood samples of subjects with damaged and distended bladders (Erickson et al., 2000).  

 

The concentration of drugs and the volume of urine have also shown to possibly effect drug diffusion through 

bladder tissue.  A short-term study showed the process of drug movement out of the bladder is as expected a 

passive process.  This study used rabbit bladders and investigated the effect of different concentrations and 

volumes of nicotine.  The range of volumes added to the bladder was between 1 – 18 ml, which could be 

sufficient to reduce the thickness of the bladder walls for diffusion.  The results show that the increase in 

volume decreased the diffusion of drug.  Also, changing the concentration did affect the diffusion rate until the 

possible saturation at the highest concentration, which was the reason for the determination of a passive 

diffusion process (Borzelleca and Lowenthal, 1967). This would be expected as the rate of diffusion is usually 

determined by the magnitude of difference in concentration between the two sides of the membrane.  This 

shows concentration is the rate-limiting parameter in that diffusion process.  

 

5.2 Aims 

The aim of this chapter is to determine if the intact bladder breaks down in the same way as the bladder 

sections and also if the rate of diffusion is changed.  As with chapter 4 particular attention will be paid to the 

effect of concentration, pH and bladder volume on the diffusion of rhodamine B.  These experiments were 

carried out at 20°C, which is used as room temperature that a body would equilibrate to after death.  
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5.3 Results 

The experiments were based around looking into the effect on the amount of rhodamine B diffusing through 

whole porcine bladders dependant on some of the incorporated conditions from chapter 4.  The length of the 

experiment was over 5 days to mimic the previous experimental design with one sample taken per day.  The 

comparisons included solution pH, rhodamine B concentration, and bladder volume.  A number of 

experiments were carried out using whole bladders that were filled with the model compound (rhodamine B) 

and control solutions (pH 7.4 and 5).  These experiments were carried out to compare the results to the 

bladder section experiments (See Chapter 4) to determine if there are consistent results in regards to drug 

diffusion.  The main parameters that were investigated included comparing two values for concentration (100 

mg/L and 200 mg/L) of the drugs, volume (full and half-filled bladder), and solution pH (7.4 and 5).  The 

experiments were carried out at 20°C.  The control experiments used bladders filled with blank solution (pH 

7.4 and 5).  The results of the blank solutions had no significant effect on the rhodamine B results with 

average results below all the rhodamine B bladder study results (Data not shown). 

 

5.3.1 Influence of concentration on the amount of rhodamine B diffusing through whole 

bladders    

Two concentrations of rhodamine B, 100 mg/L and 200 mg/L, were used to determine the influence of 

concentration on the amount of rhodamine B diffusing through fresh bladders using both full and half-filled 

bladders at both pH 7.4 and pH 5.  As can be seen in Figure 5.1 to Figure 5.4 the highest cumulative 

concentration of rhodamine B was observed when the bladder was full with buffer solution at pH 7.4 and the 

rhodamine B was at a concentration of 100 mg/L.  The peak cumulative concentration of rhodamine B was 3.5 

± 1.02 mg/L at 97 ± 0.03 hrs post-mortem.  The lowest cumulative concentration of rhodamine B was 

observed in pH 5 buffer solution with a full bladder and rhodamine B at a concentration of 100 mg/L, with the 

concentrations < the 0.156 mg/L limit of detection (See Figure 5.3).  

 

A significant difference in cumulative rhodamine B concentration was determined between the two rhodamine 

B concentrations (100 mg/L and 200 mg/L) at 99 ± 0.02 hrs in full bladders at pH 7.4 buffer solution with more 

diffusion from 100 mg/L rhodamine B (p < 0.0001) (See Figure 5.5).  The peak cumulative rhodamine B 

concentration at 100 mg/L was 3.5 ± 1.02 mg/L and at 200 mg/L was 1.23 ± 0.26 mg/L (See Figure 5.1).  The 

significant difference between the two rhodamine B concentrations (100 mg/L and 200 mg/L) at pH 5 using full 

bladders started at 50 ± 0.02 hrs and increased at 99 ± 0.02 hrs with increased diffusion from 200 mg/L 

rhodamine B (p 0.05 and < 0.0001) (See Figure 5.7).  The cumulative concentrations of rhodamine B (pH 5) 

using full bladders at 99 ± 0.02 hrs were 0.58 ± 0.95 mg/L at 200 mg/L and a concentration below the limit of 

detection at 100 mg/L (See Figure 5.3). 

 

5.3.1.1 pH comparison of rhodamine B for whole bladders 

The pH showed a visual difference with higher cumulative rhodamine B concentrations at pH 7.4 in 

comparison with pH 5.  The peak cumulative rhodamine B concentration at pH 7.4 was 3.5 ± 1.02 mg/L at 100 

mg/L rhodamine B and at pH 5 was 0.67 ± 0.89 mg/L for 100 mg/L rhodamine B 97 ± 0.03 hrs.  In addition, 

the concentration shows more of a difference with 100 mg/L resulting in higher cumulative concentrations of 
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rhodamine B (pH 7.4) (See Figure 5.1).  However, at pH 5 the 200 mg/L rhodamine B results in higher 

cumulative concentrations than 100 mg/L (See Figure 5.3).  The peak concentrations were 0.58 ± 0.95 mg/L 

at 200 mg/L and at 100 mg/L a concentration below the limit of detection at 73 ± 0.01 hrs.  This shows 

lowering the pH results in requiring higher rhodamine B concentrations to diffuse through the tissue and still 

resulting in lower results than at PBS pH 7.4.  

 

5.3.1.2 Bladder volume comparison of rhodamine B for whole bladders 

In addition, the bladder volume was altered using both full and half-filled bladders.  The volume only affected 

the cumulative concentrations of rhodamine B at PBS pH 7.4, with a noteworthy increase in the cumulative 

concentration for 100 mg/L rhodamine B in the full bladder (See Figure 5.1 and 5.2).  The half-filled bladders 

at pH 7.4 had negligible differences in rhodamine B cumulative concentration between the two concentrations 

(100 mg/L and 200 mg/L).  The peak cumulative concentrations for the half-filled bladders at pH 7.4 were 0.96 

± 0.73 mg/L for 100 mg/L at 73 ± 0.01 hrs and 0.92 ± 0.22 mg/L for 200 mg/L rhodamine B at 96 ± 0.01 hrs 

(See Figure 5.2).  The rhodamine B diffusion in the full bladders at pH 5 had major differences from 50 ± 0.02 

hrs (p 0.05) (See Figure 5.7).  However, the half-filled bladders at pH 5 showed minimal differences in the 

cumulative concentrations of rhodamine B (See Figure 5.8).  The peak cumulative concentrations were 0.67 ± 

0.89 mg/L for 100 mg/L at 97 ± 0.03 hrs and 0.3 ± 0.1 mg/L for 200 mg/L rhodamine B at 25 ± 0.01 hrs.  
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Figure 5.1 Average rhodamine B cumulative concentration using six fresh whole bladders, comparison at 100 

mg/L and 200 mg/L with full bladder volume at pH 7.4  (n=6) (Error bars are ± S.D.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2 Average rhodamine B cumulative concentration using six fresh whole bladders, comparison at 100 

mg/L and 200 mg/L with half-full bladder volume at pH 7.4 (n=6) (Error bars are ± S.D.) 
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Figure 5.3 Average rhodamine B cumulative concentration using six fresh whole bladders, comparison at 100 

mg/L and 200 mg/L with full bladder volume at pH 5  (n=6) (Error bars are ± S.D.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4 Average rhodamine B cumulative concentration using six fresh whole bladders, comparison at 100 

mg/L and 200 mg/L with half-full bladder volume at pH 5  (n=6) (Error bars are ± S.D.) 
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Figure 5.5 Two-Way ANOVA results of the comparison of rhodamine B concentration (100 mg/L and 200 

mg/L) in six fresh whole bladders at full volume (pH 7.4) over approximately 100 hrs (Error bars are ± S.D.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6 Two-Way ANOVA results of the comparison of rhodamine B concentration (100 mg/L and 200 

mg/L) in six fresh whole bladder at half-full volume (pH 7.4) over approximately 100 hrs (Error bars are ± S.D.) 
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Figure 5.7 Two-Way ANOVA results of the comparison of rhodamine B concentration (100 mg/L and 200 

mg/L) in six fresh whole bladders at full volume (pH 5) over approximately 100 hrs (Error bars are ± S.D.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8 Two-Way ANOVA results of the comparison of rhodamine B concentration (100 mg/L and 200 

mg/L) in six fresh whole bladders at half-full volume (pH 5) over approximately 100 hrs (Error bars are ± S.D.) 
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5.3.2 Influence of bladder volume on the amount of rhodamine B diffusing through whole 

bladders     

In order to investigate the effect the volume within the bladder had on the amount of rhodamine B diffusing 

through whole bladders, two volumes of rhodamine B were used that included full bladders and half-full 

bladders.  A fresh set of calibration standards was prepared each day for each bladder experiment using the 

method from section 2.1.5.1 using pH 7.4 and pH 5.  The two rhodamine B concentrations (100 mg/L and 200 

mg/L) were also investigated in pH 5 and pH 7.4 over 5 days.  

 

Figure 5.9 – 5.12 shows the highest cumulative concentration of rhodamine B was observed with a full 

bladder at pH 7.4 with the lower concentration of 100 mg/L of rhodamine B at 3.5 ± 1.02 mg/L at 97 ± 0.03 hrs 

(See Figure 5.9).  The other three sets of parameters (200 mg/L at pH 7.4 / 100 mg/L at pH 5 / 200 mg/L at 

pH 5) show minimal drug diffusion throughout the experiment regardless of the volume in the bladder 

throughout the duration of the experiment (See Figures 5.10 – 5.12).  The lowest cumulative concentration of 

rhodamine B was observed in pH 5 buffer solution with a full bladder and rhodamine B at a concentration of 

100 mg/L, with the concentrations < the 0.156 mg/L limit of detection (See Figure 5.11).  

 

There was significant difference between the cumulative rhodamine B concentrations in relation to bladder 

volume (pH 7.4) using both 100 mg/L and 200 mg/L rhodamine B solution at 97 ± 0.03 hrs and 96 ± 0.01 hrs 

respectively with more diffusion from the full bladder (p < 0.0001 and 0.01) (See Figures 5.13 and 5.14).  The 

peak cumulative concentrations of rhodamine B were 3.5 ± 1.02 mg/L for the full bladders and 0.95 ± 0.73 

mg/L for half-filled bladders using 100 mg/L rhodamine B at 97 ± 0.03 hrs (See Figure 5.13).  The significant 

difference decreased for the higher rhodamine B concentration of 200 mg/L (p 0.01) (See Figure 5.14) 

rhodamine B in comparison with 100 mg/L (p < 0.0001) (See Figure 5.13).  The peak cumulative 

concentrations were 1.24 ± 0.26 mg/L for full bladders and 0.91 ± 0.22 mg/L for half-filled bladders using 200 

mg/L rhodamine B at 96 ± 0.01 hrs (See Figure 5.14).  There was no significant difference in volumes at pH 5.  

The peak cumulative concentrations between the two volumes were 0.67 ± 0.89 mg/L at 97 ± 0.03 hrs in half-

filled bladders at 100 mg/L and 0.58 ± 0.36 mg/L using 200 mg/L rhodamine B at 73 ± 0.01 hrs (See Figures 

5.15 and 5.16).  

 

5.3.2.1 pH comparison of rhodamine B for whole bladders 

The pH showed higher cumulative rhodamine B concentrations at pH 7.4 in comparison with pH 5.  The peak 

cumulative rhodamine B concentration at pH 7.4 was 3.5 ± 1.02 mg/L at 100 mg/L rhodamine B (See Figure 

5.9) and at pH 5 was 0.67 ± 0.89 mg/L for 100 mg/L rhodamine B 97 ± 0.03 hrs (See Figure 5.11).  In 

addition, the results from the different initial rhodamine B concentrations were affected with 100 mg/L resulting 

in higher cumulative concentrations of rhodamine B (pH 7.4).  The peak cumulative concentrations were 3.5 ± 

1.02 mg/L in comparison with 1.24 ± 0.26 mg/L at 200 mg/L rhodamine B (See Figures 5.9 and 5.11).  

However, at pH 5 the 200 mg/L rhodamine B results in higher cumulative concentrations than 100 mg/L.  The 

peak cumulative concentration was 0.67 ± 0.89 mg/L at 100 mg/L in comparison with 0.58 ± 0.36 mg/L at 200 

mg/L rhodamine B (See Figures 5.11 and 5.12).  This shows at a lower pH a higher concentration of 
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rhodamine B is required for diffusion to occur, and that still achieves lower cumulative rhodamine B 

concentrations than at PBS pH 7.4.  

 

 

5.3.2.2 Concentration comparison of rhodamine B for whole bladders 

The comparison of the two rhodamine B concentrations resulted in higher cumulative concentrations at 100 

mg/L (pH 7.4) in comparison to 200 mg/L.  The peak cumulative rhodamine B concentrations were 3.5 ± 1.02 

mg/L at 97 ± 0.03 hrs for 100 mg/L (See Figure 5.9) and 1.24 ± 0.26 mg/L at 96 ± 0.01 hrs (See Figure 5.10) 

for 200 mg/L both in full bladders.  Consistently, slightly higher results were found at 100 mg/L (pH 5) against 

200 mg/L however, these cumulative concentrations were still lower than at PBS pH 7.4.  The peak 

cumulative rhodamine B concentrations were 0.67 ± 0.89 mg/L at 97 ± 0.03 hrs (See Figure 5.11) for 100 

mg/L using half-filled bladders and 0.58 ± 0.36 mg/L at 73 ± 0.01 hrs for 200 mg/L (See Figure 5.12) in full 

bladders. 
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Figure 5.9 Average rhodamine B cumulative concentration using six fresh whole bladders, comparison using 

100 mg/L rhodamine B in six full and half-filled bladders at pH 7.4 (n=6) (Error bars are ± S.D.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.10 Average rhodamine B cumulative concentration using six fresh whole bladders, comparison using 

200 mg/L rhodamine B in six full and half-filled bladders at pH 7.4 (n=6) (Error bars are ± S.D.) 
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Figure 5.11 Average rhodamine B cumulative concentration using six fresh whole bladders, comparison using 

100 mg/L rhodamine B in six full and half-filled bladders at pH 5  (n=6) (Error bars are ± S.D.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.12 Average rhodamine B cumulative concentration using six fresh whole bladders, comparison using 

200 mg/L rhodamine B in six full and half-filled bladders at pH 5  (n=6) (Error bars are ± S.D.) 
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Figure 5.13 Two-Way ANOVA results of rhodamine B concentration in relation to the comparison of bladder 

volume (full and half-filled) of 100 mg/L rhodamine B in six fresh whole bladders at pH 7.4 over approximately 

100 hrs (Error bars are ± S.D.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.14 Two-Way ANOVA results of rhodamine B concentration in relation to the comparison of bladder 

volume (full and half-filled) of 200 mg/L rhodamine B in six fresh whole bladders at pH 7.4 over approximately 

100 hrs (Error bars are ± S.D.) 
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Figure 5.15 Two-Way ANOVA results of rhodamine B concentration in relation to the comparison of bladder 

volume (full and half-filled) of 100 mg/L rhodamine B in six fresh whole bladders at pH 5 over approximately 

100 hrs (Error bars are ± S.D.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.16 Two-Way ANOVA results of rhodamine B concentration in relation to the comparison of bladder 

volume (full and half-filled) of 200 mg/L rhodamine B in six fresh whole bladders at pH 5 over approximately 

100 hrs (Error bars are ± S.D.) 
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5.3.3 Influence of pH on the amount of rhodamine B diffusing through whole bladders  

 

The investigation into the effect of the solution pH on the cumulative concentrations of rhodamine B diffusing 

through whole bladders used two separate solution pH (pH 7.4 and pH 5 )  and included full bladders and half-

full bladders.  In addition, the other parameter included were two initial rhodamine B concentrations of 100 

mg/L and 200 mg/L.  A fresh set of calibration standards was prepared each day for each bladder experiment 

using the method from section 2.1.5.1 using PBS pH 7.4 and pH 5.   

 

The comparison graphs show at pH 7.4 with a full bladder containing 100 mg/L rhodamine B has the highest 

cumulative concentration of rhodamine B, with a peak concentration of 3.5 ± 1.02 mg/L at 97 ± 0.03 hrs (See 

Figure 5.17).  The other three sets of results show limited diffusion of the compound independent of the pH 

(See Figures 5.18 – 5.20).  The peak concentration from these results was 1.24 ± 0.26 mg/L at 96 ± 0.01 hrs 

using 200 mg/L rhodamine B in full bladders at pH 7.4 (See Figure 5.19).  The lowest cumulative 

concentration of rhodamine B was observed in pH 5 buffer solution with a full bladder and rhodamine B at a 

concentration of 100 mg/L, with the peak cumulative concentration < the 0.156 mg/L limit of detection (See 

Figure 5.17).  

 

There was no significant difference between the cumulative rhodamine B concentrations in relation to half-

filled bladders using 100 mg/L rhodamine B solution throughout the duration of the experiment (See Figure 

5.22).  The peak cumulative concentrations of rhodamine B were 0.96 ± 0.73 mg/L (pH 7.4) at 73 ± 0.01 hrs 

and 0.67 ± 0.89 mg/L (pH 5) at 97 ± 0.03 hrs (See Figure 5.18).  There was significant difference (p < 0.0001) 

with three of the four sets of results at the later stages of the experiment at approximately 97 hrs post-mortem.  

The half-filled bladders at 200 mg/L had peak concentrations of 0.91 ± 0.22 mg/L at 97 ± 0.01 hrs (pH 7.4) 

and 0.3 ± 0.11 mg/L at 25 ± 0.01 hrs (pH 5) (See Figure 5.20).  The full bladders at 100 mg/L had peak 

concentrations at 3.5 ± 1.02 mg/L at 97 ± 0.03 hrs (pH 7.4) and a concentration below the limit of detection for 

pH 5  (See Figure 5.17).  Finally, the full bladders at 200 mg/L had peak concentrations of 1.24 ± 0.26 mg/L at 

96 ± 0.02 hrs (pH 7.4) and 0.58 ± 0.95 mg/L at 73 ± 0.01 hrs (pH 5) (See Figure 5.19). 

 

5.3.3.1 Bladder volume comparison of rhodamine B for whole bladders 

The two bladder volumes used showed significant diffusion (p < 0.0001) for both the full volumes (100 mg/L 

and 200 mg/L rhodamine B) and one half-filled bladder (200 mg/L rhodamine B) experiment.  The higher 

rhodamine B concentrations were observed at pH 7.4 during the last sampling in the experiment, at 

approximately 97 hrs post-mortem (See Figures 5.21, 5.23 and 5.24).  The peak concentrations for the full 

bladders were 3.5 ± 1.02 mg/L at 97 ± 0.03 hrs (pH 7.4) at 100 mg/L and 1.24 ± 0.26 mg/L at 96 ± 0.02 hrs in 

pH 7.4 at 200 mg/L (See Figures 5.17 and 5.19).  The peak concentrations using the half-filled bladders were 

0.96 ± 0.73 mg/L (pH 7.4) at 73 ± 0.01 hrs at 100 mg/L and 0.91 ± 0.22 mg/L at 97 ± 0.01 hrs (pH 7.4) at 200 

mg/L (See Figures 5.18 and 5.20). 
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5.3.3.2 Concentration comparison of rhodamine B for whole bladders 

Comparing the two rhodamine B concentrations resulted in higher concentrations at 100 mg/L (pH 7.4) than 

200 mg/L.  The peak cumulative rhodamine B concentrations were 3.5 ± 1.02 mg/L at 97 ± 0.03 hrs for 100 

mg/L (See Figure 5.17) and 1.24 ± 0.26 mg/L at 96 ± 0.01 hrs (See Figure 5.19) for 200 mg/L both in full 

bladders.  Higher results were found at 100 mg/L (pH 5) in comparison with 200 mg/L however, the 

concentrations were lower than (pH 7.4).  The peak cumulative rhodamine B concentrations were 0.67 ± 0.89 

mg/L at 97 ± 0.03 hrs (See Figure 5.18) for 100 mg/L using half-filled bladders and 0.58 ± 0.36 mg/L at 73 ± 

0.01 hrs for 200 mg/L (See Figure 5.19) in full bladders. 
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Figure 5.17 Average rhodamine B cumulative concentration six fresh whole bladders, comparison using 100 

mg/L rhodamine B in six full bladders at pH 7.4 and pH 5  (n=6) (Error bars are ± S.D.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.18 Average rhodamine B cumulative concentration six fresh whole bladders, comparison using 100 

mg/L rhodamine B in six half-filled bladders at pH 7.4 and pH 5  (n=6) (Error bars are ± S.D.) 
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Figure 5.19 Average rhodamine B cumulative concentration six fresh whole bladders, comparison using 200 

mg/L rhodamine B in six full bladders at pH 7.4 and pH 5  (n=6) (Error bars are ± S.D.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.20 Average rhodamine B cumulative concentration six fresh whole bladders, comparison using 200 

mg/L rhodamine B in six half-filled bladders at pH 7.4 and pH 5  (n=6) (Error bars are ± S.D.) 
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Figure 5.21 Two-Way ANOVA results of rhodamine B concentration in relation to the comparison of two 

solution pH values (pH 7.4 and pH 5) that submerged six fresh whole bladders at full volume individually, 

containing 100 mg/L rhodamine B over approximately 100 hrs (Error bars are ± S.D.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.22 Two-Way ANOVA results of rhodamine B concentration in relation to the comparison of two 

solution pH values (pH 7.4 and pH 5) that submerged six fresh whole bladders at half-full volume individually, 

containing 100 mg/L rhodamine B over approximately 100 hrs (Error bars are ± S.D.) 
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Figure 5.23 Two-Way ANOVA results of rhodamine B concentration in relation to the comparison of two 

solution pH values (pH 7.4 and pH 5 ) that submerged six fresh whole bladders at full volume individually, 

containing 200 mg/L rhodamine B over approximately 100 hrs (Error bars are ± S.D.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.24 Two-Way ANOVA results of rhodamine B concentration in relation to the comparison of two 

solution pH values (pH 7.4 and pH 5 ) that submerged six fresh whole bladders at half-full volume individually, 

containing 200 mg/L rhodamine B over approximately 100 hrs (Error bars are ± S.D.) 
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5.4 Discussion 

These experiments have shown that concentration does not affect diffusion of rhodamine B as much as 

volume through bladder tissue within the first 100 hrs post-mortem.  This is due to the initial 100 mg/L 

rhodamine B solution resulting in higher cumulative rhodamine B concentration in comparison with 200 mg/L 

rhodamine B.  The peak concentrations were 3.5 ± 1.02 mg/L at 100 mg/L rhodamine B and 1.23 ± 0.26 mg/L 

at 200 mg/L rhodamine B in pH 7.4.  In addition, the bladder volume shows significant difference with higher 

rhodamine B cumulative concentrations with full bladders (3.5 ± 1.02 mg/L) in comparison with 0.95 ± 0.73 

mg/L using half-filled bladders at pH 7.4.  However, the results are affected by pH as the differences only 

occur at pH 7.4.  The solution pH shows a possibility of having an effect on the cumulative concentrations of 

rhodamine B during the later stages of the initial 100 hours post-mortem due to the significant differences (p 

less than 0.0001) for rhodamine B diffusing through the tissue.  The results from the full bladders using 200 

mg/L of rhodamine B resulted in peak cumulative concentrations of rhodamine B at 1.24 ± 0.26 mg/L in pH 7.4 

and 0.58 ± 0.95 mg/L in pH 5.  The bladders used in the experiment were in different states including 

contracted bladders with no urine present and distended bladders with urine present, which could affect 

bladder thickness.  This leads to a limitation of this type of experiment as the thickness of the bladders could 

not be determined.  This was due to the bladders being kept intact; therefore, the digital callipers used to 

measure tissue thickness could not be used.  However, as shown in chapter 4 the thickness of the bladder 

was not shown to have noticeable influence on the diffusion in this model so is unlikely to have much of an 

influence on diffusion in the intact bladder model.  However, this would mimic the conditions found in 

deceased individuals and therefore this is good model. 

 

The lower concentration of rhodamine B diffusing from the bladder at the higher pH shows that a larger 

amount of drug does not need to be present to increase the concentration.  However, at the lower pH this 

shows the opposite where the larger amount of drug was detected at a later stage.  This could be mainly due 

to bladder degradation as this is at a late stage in the experiment, which was approximately 97 hrs after 

death.  The bladder could have degraded during the experiment producing an opening however, the bladders 

were not specifically checked for possible openings.  This would be a factor to include in any future work.  The 

larger concentration of rhodamine B, even with the dilution from the outside solution, would have a larger 

spike in concentration than the lower concentration.  As a result, this factor would not be the main effect on 

the diffusion rate of rhodamine B.  

 

In addition, the PMI is within the time recorded of the individual found with increased drug concentrations in 

the femoral vein (Moriya and Hashimoto, 2001). However, it took 97 hrs (~ 4 days)  for the drug concentration 

to reach 3.5 ± 1.02 mg/L outside the bladder and including diffusion and dilution that would occur between the 

bladder and the femoral vein any changes in the femoral vein would be small.  In humans, there has been 

shown to be some peritoneal cavity fluid present in both males (3.0 ± 2.7 ml) and postmenopausal women 

(2.3 ± 2.0 ml) (Yoshikawa et al., 2013). Dilution of drugs diffusing out from the bladder would occur at this 

stage with an alteration dependant on the peritoneal fluid values.  There would be an increase in rhodamine B 

concentration (assuming the initial concentration of rhodamine B was in the volume of the donor chamber in 

the Franz cell - 5ml) in males with 5.83 ± 37.37 mg/L and females with 7.61 ± 36.07 mg/L.  This rhodamine B 
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concentration would then be diluted during the diffusion from the peritoneal cavity fluid to the surrounding area 

including the femoral vein.  These values are under the assumption of healthy individuals however, in some 

cases certain diseases including peritonitis causes ascites, which is the accumulation of peritoneal fluid and 

therefore this would dilute any drugs with the increase of fluid outside of the bladder (Staff, 2016).   

 

The significant difference between the bladder volumes at only one pH (pH 7.4) and at the late stage of the 

experiment show this is not a main factor that could affect the diffusion rate of the rhodamine B.  The 

significant increase in diffusion at the end of the experiment could relate more to possible tissue degradation 

than to volume.  After approximately four days, the tissue could have degraded to a point where an opening 

was created allowing for movement of rhodamine B into the acceptor chamber.  The full bladders at pH 7.4 

showed higher rhodamine B concentrations than at half-filled bladders using 100 mg/L rhodamine B (p < 

0.0001) at 97 ± 0.03 hrs (See Figure 5.9).  As a result, this could not be a main factor that would affect drug 

diffusion from whole bladders.  

 

Three sets of results showed consistently higher diffusion for rhodamine B at pH 7.4.  The pKa of rhodamine 

B is 4.2 (Zhang et al., 2011) resulting in a 99.9% ionised compound at the higher pH, this is consistent with 

the study showing ionised compounds preferentially diffuse through bladder tissue compared to unionised 

compounds (Moch, Salmon and Armesto, 2014). However, all the results showing significantly higher diffusion 

for pH 7.4 are at the end of the experiment, this could suggest that the bladder degradation is the main driving 

force behind the drug release due to tissue breakdown.  However, as pH 7.4 is significantly different from pH 

5 in all cases this could still include the possibility that even with decomposition the pH still has an effect on 

the amount of diffusion occurring regardless of concentration and volume.  

 

Even with one factor possibly affecting the amount of rhodamine B diffusing through whole bladders, the peak 

cumulative concentration of rhodamine B over all the experiments was 3.5 ± 1.02 mg/L from initial 

concentrations of 100 mg/L and 200 mg/L within the bladder.  This reduces the possibility of large 

concentrations leaking from the bladder and diffusing to the femoral vein from this model.  In addition, the 

largest cumulative concentration resulted from physiological pH and the body would not be stabilised at this 

pH long after death it would reduce, which showed a reduction in rhodamine B concentration at pH 5.  This 

could be due to rhodamine B possibly having a higher affinity for the bladder tissue as it has a log P of 2.43, 

showing it has higher affinity for the organic partition, which was determined in chapter 4 section 4.3.4.1.  This 

experiment only used intact bladders; this study would not cover damaged bladders including openings in the 

bladders from trauma.  In addition, results at pH 7.4 showing more diffusion would not relate to casework as 

after death the pH within the urine has been shown to decrease to pH 4.6 (Cook, Strauss and Caplan, 2007) 

so would be observing the type of diffusion shown by the pH 5 results. The later stage of decomposition is 

classed as putrefaction, which does increase the pH within the body however not to the extent of physiological 

pH.  This shows that there would be very limited diffusion from whole bladders post-mortem.  
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Overall, the experiments showed that significant differences of rhodamine B cumulative concentrations with 

the highest concentration at 3.5 ± 1.02 mg/L only occurred after approximately 97 hrs post-mortem.  

Therefore, no large drug concentrations would be released from the bladder within the first 5 days after death.  

Any drug release would diffuse into the surrounding peritoneal cavity, which could cause an increase in drug 

concentrations in surrounding sampling sites.  However, due to the small amounts of drugs recorded during 

this experiment this would probably not affect the interpretation of the drug concentrations in the other 

sampling sites including the femoral vein.  This is corroborated by the length of time the largest rhodamine B 

drug concentration was recorded, 97 hrs post-mortem, and then the diffusion and dilution that the drug would 

undergo to reach to femoral vein may not be possible within the 9 days suggested (Moriya and Hashimoto, 

2001). In addition, upon reaching the femoral vein the drug would have to diffuse through the wall of the vein, 

which has been recorded as an efflux to take between 2-20 hrs with a linear increase in drug diffusion up to 

80 hrs post-mortem (Skopp et al., 1997).  

 

Rhodamine B has resulted in 3.5 ± 1.02 mg/L being able to diffuse through the bladder 97 hrs after death, this 

drug would then increase in concentration in the peritoneal fluid to approximately 6.72 ± 36.72 (average of 

male and female peritoneal fluid rhodamine B concentrations).  There would be an undetermined time to 

diffuse between the bladder and the femoral vein however, once at the femoral vein there is a range of 2-20 

hours for the drug to diffuse into the femoral vein and up to a further 80 hours to increase the concentration 

within the vein.  The average sample volume of the femoral vein is 10 ml (Cooper, Paterson and Osselton, 

2010), the average rhodamine B concentration within the femoral vein would be 1.75 ± 1.02 mg/L. The overall 

time for this process, between death and the drug altering in concentration in the femoral vein, to take place 

would be at least between 179 – 197 hrs post-mortem.  In vivo work would allow for the determination of the 

direction of a drug that could be released from the bladder post-mortem and observe if the drug could reach 

the femoral vein within 9 days after death.  
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Chapter 6 – Study of the Diffusion of Drugs from the Whole Rat 

Bladder using X-Ray Micro-CT 
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6.1 Introduction 

The previous work in this thesis has focussed solely on the bladder in isolated conditions.  It is however 

important to study as closely as possible how the bladder would mimic real casework.  In relation to in vivo 

work the bladder would be within the body cavity after death and degradation could be altered as surrounded 

by other tissues and fluids in the peritoneal cavity.  As a result, rats were used in this experiment where the 

bladder was kept intact inside the rat and the bladder was catheterised.  A computed tomography (CT) 

contrast agent was inserted, sealing the bladder and scanning the rat on a micro-CT over nine days.  The 

significance of the duration of the experiment matched the length of time in a real case in Japan where it was 

suggested that drug diffusion from the bladder had increased the drug concentrations (dihydrocodeine and 

diphenhydramine) in the femoral vein to those above that at the time of death (Moriya and Hashimoto, 2001).  

 

Previously work has been carried out using X-Ray images determining the effect of molecular weight and 

lipophilicity on the ease of movement of drugs around the body after death, showing that the smaller, 

aminohippuric acid, and the more lipophilic, Lipiodol ultra fluid, compounds  were mechanically moved around 

the body mainly by muscle contraction (Zapata, Luna, 1989). Movement around the heart into adjacent 

vessels occurred within the first hour after death and this movement continued until the conclusion of the 

experiment at 72 hrs post-mortem.  This shows that after death drugs can move around the body due to blood 

movement which could alter drug concentrations at specific sites post-mortem (Zapata, Luna, 1989). Drugs 

could also be distributed mechanically around the body due to the movement of the body after death in 

particular, transport to the mortuary (Fallani, 1961; Anderson and Jones, 1990), it is also likely that any 

mechanical ventilation or cardiopulmonary resuscitation (CPR) would also cause movement of the blood (and 

thus redistribution of drugs after death (Yonemitsu, 1991)).  

 

This research has been continued using CT and contrast media to observe changes in tissues over time.  

Post-mortem computed tomography (PMCT) has been developed as another tool in death investigations and 

used for a number of reasons including changes in heart muscle thickness after death (Okuma et al., 2013). In 

addition, whole-body PMCT has been used to identify markers associated with overdose related deaths, 

specifically opioids including heroin and methadone.  The results have suggested brain and lung oedema and 

a full urinary bladder are indications of an opioid overdose related death (Winklhofer, Surer and Ampanozi, 

2014). Another study involving PMCT inferred that distended bladders suggested intoxication; this study 

covered a wide range of drugs including multiple drugs and alcohol.  The mean bladder volume that was 

marked as the volume where intoxication should be considered was 330 ml as this volume was not present in 

non-intoxicated individuals (Rohner and Franckenberg, 2013).  PMCT has been suggested as a replacement 

for post-mortem examinations due to the non-invasive nature of the procedure, which would be preferred by 

the public due to the invasive nature of the autopsy process.  There are limitations as certain causes of death 

could not be identified using CT alone including pneumonia and ischemic heart disease (Roberts et al., 2012). 

PMCT would be less invasive however, if it were to replace the traditional autopsy it would need to combine 

with a number of other areas for a comprehensive investigation and these areas would include histology, 

toxicology and case history review (Saunders et al., 2011). These studies show that CT is a valuable resource 

that can be used in a range of ways to determine post-mortem changes within the body.  
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In order to visualise post-mortem changes, especially with drug movement, compounds must be used that can 

be visible on an X-Ray-CT image.  CT images are produced by materials of various densities absorbing X-

rays to different extents, the denser the material the brighter the area on the CT image (Hrvoje, Lusic, 2014).  

The ideal contrast agent would be similar in properties to the drugs being investigated, visible on the CT 

image and water-soluble.  Contrast media are usually selected due to their non-toxic properties however; in 

this case, as this research is post-mortem based, toxicity to the subjects was not an issue.  The usual element 

required for contrast media is iodine or barium, however barium is sparingly soluble in water creating a 

suspension, which would not be suitable for this research (Bosniak, 1980). Iodine-based contrast media has 

been favoured for CT imaging and used in research to highlight brain tissue (de Crespigny A, 2008), however 

medical grade contrast media have short half-lives ranging between 1-2 hrs with all the contrast media being 

eliminated within 24 hrs (Geenen, Kingma and van der Molen, 2013) as medical procedures are short-term. 

As post-mortem changes can take place over longer time periods (hrs to days) it is important to have a 

contrast agent that will be visible for that length of time.  As iodine is a good contrast agent with an atomic 

number of 53, elements with a similar atomic number and longer half-life could replace iodine.  Silver, with the 

atomic number of 47, has been used as a contrast agent in rats investigating the clearance rate over a four 

month period showing the sites still contain the nanoparticles after this period giving a half-life range, 

dependant on the biological tissue, between 1-4 months (Lee and Kim, 2013). This half-life is more suitable 

for long-term studies.  More specifically, silver was investigated on a Micro-CT and was identified throughout 

the seven day experiment at a low concentration of 37 mM (Zou et al., 2015). This demonstrates silver can be 

a suitable alternative to iodine with a longer half-life and only low concentrations needed to be identified on 

Micro-CT.  

 

The previous research carried out on Micro-CT show that it is possible to determine the movement of a CT-

visible drug from the bladder post-mortem.  In addition, due to the ethical restrictions with using human 

cadavers, the use of rats for this research could be beneficial due to the small size, the ability to reproduce the 

conditions due to availability of the animals and can be comparable to human bladders (Hicks, 1977). 

Specifically, silver nitrate has been used in numerous CT-based studies including tooth development in mice 

(Raj et al., 2014) and human lungs (Watz, Breithecker, Rau, 2005).  

 

6.2 Aims 

The aim of this chapter of the thesis was to determine if a rat CT model can be used to measure and visualise 

post-mortem diffusion from the bladder.  

 

 

6.3 Results 

A urinary catheter was used to insert 0.25 ml of 1M silver nitrate into the bladder of a rat to determine the 

diffusion of the sliver nitrate from the bladder, the length of the experimental time mimicked the case report of 

the individual who was found after nine days (Moriya and Hashimoto, 2001). This period would allow to 

determine if the drugs would have enough time reach and then to diffuse in the femoral vein, and to 

investigate any possible breakdown of the bladder tissue.  As people can be found deceased at home, 
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previous work on alcohol diffusion from a cadaver model and work in this thesis on bladder tissue has shown 

that diffusion is slowed at lower (5°C) temperatures (Smith, 1995). This model of diffusion from the bladder 

was carried out at 20°C, which a body would equilibrate to in an average room.  The average temperature 

recorded over the course of the experiment in the fume cupboard, the storage place for the rat, was 20.8 ± 

0.96 °C. 

The time of death of the rat could not be identified as the rat was purchased frozen, therefore this is a 

limitation of the experiment as could not observe changes from the nine days immediately following death.  As 

a result, this experiment was observing the change in the bladder over nine days post-mortem after the rat 

had been thawed and catheterised with this point taken as time zero.  The freezing and thawing of the tissues 

was not classed as a limitation as it was demonstrated earlier in this thesis, section 4.3.3, that freezing and 

thawing bladder tissue sections did not have an effect on diffusion.   

Over the course of the experiment, a number of bladder changes were observed.  Initially, the bladder was 

easily identified and showed an even surface resulting in a filled bladder, with no damage that would allow for 

leakage (See Figure 6.1 and 6.2).  The bladder was filled using a syringe and catheter, therefore when the 

bladder was filled there was residual solution that filled the urethra and this can be seen in figure 6.2.  The 

comparison images from the CT show that there are numerous air bubbles in the body cavity, which are 

shown by the darker sections (See Figure 6.3).  CT works based on density, the higher the density the lighter 

the area looks on the CT image; this is the reason for the air bubbles to be shown as the darkest areas.  The 

bladder is shown as a solid mass in these images for day one (Figure 6.3).  The second day shows similar 

results to the first day with no change in the 3D rendered image with the bladder in a similar shape and 

position (See Figure 6.4).  However, in figure 6.5 the individual CT images show a disruption in the centre of 

the bladder where there is an air bubble.  This air bubble is present due to the displacement of the silver 

nitrate, which could have occurred due to a number of reasons including diffusion of the compound into 

bladder tissue or displacement due to movement of the rat between storage and the Micro-CT.   

Day six shows the bladder has reduced in size (See Figure 6.6) and shifted further down in the peritoneal 

cavity (See Figure 6.7), which could be due to a number of factors including putrefactive gases causing 

pressure within the cavity or the change in position of the rat for analysis.  The silver nitrate in the urethra is 

still visible however; there is a possibility of this compound leaking from the bladder on the right underside of 

the bladder shown by a mass (See Figure 6.7).  The pressure caused by putrefactive gas could contribute to 

any solution leakage forcing the contrast agent out of the bladder through the possible hole in the bladder.  

There is a scale on the composition images for day six, however due to the angle of the images an estimation 

of the distance from the femur cannot be identified (See Figure 6.8).  The composition image shows large air 

bubbles in the body cavity and the air bubble from day two is still present within the bladder.  Sections of bone 

were highlighted in this image to show the similarity of the density of the silver nitrate to bone, this allows both 

to be isolated from the rest of the image including tissue and the plastic container (See Figure 6.8).   

 

Day seven has similar results as the previous day however; the possible leakage of silver nitrate shows to be 

moving further down the peritoneal cavity, below the bladder (See Figure 6.9).  There is a front view of the rat 

in the composition image on day seven (See Figure 6.10, Top Right image).  The scale on the image can be 
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used and it shows the leaked silver nitrate is approximately 10 mm from the femur.  The actual distance 

cannot be determined for the femoral vein as it cannot be currently identified (See section 3.3.5.4).  The air 

bubble in the composition image shows to be increasing (See Figure 6.10).  The top of the bladder seems to 

keep the shape on day eight, however the silver nitrate outside of the bladder cannot be seen in the image 

(See Figure 6.11 and 6.12).  The air bubble can be easily identified in both the 3D rendered image (See 

Figure 6.11), and the composition images (See Figure 6.12).  The final day of the experiment shows the 

bladder is still visible and the bladder shape is still intact even with the reduction in size and some misshaping 

(See Figure 6.13) with the air bubble visible (See Figure 6.14).  The composition image shows the increase in 

the air bubble and the displacement of the bladder to a lower position within the peritoneal cavity, which could 

be due to putrefactive gases or the vertical position required for analysis (See Figure 6.15).  
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Figure 6.1 Day one, CT image of the top view of the rat skeleton and silver nitrate in the bladder (circled in 

red) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2 Day one, CT image of the angled side view of the rat skeleton and silver nitrate in the bladder and 

urethra (circled in red) 
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Figure 6.3 Day one, top view (top left image), front view (top right image), left side view (bottom left image) of 

the abdomen of the whole rat including tissue, the scaled back image of the skeleton (bottom right image) and 

the CT drug silver nitrate within the bladder (circled in red) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.4 Day two, CT image of the angled side view of the rat skeleton and silver nitrate in the bladder and 

urethra (circled in red) 
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Figure 6.5 Day two, top view (top left image), left side view (top right image), front view (bottom left image) of 

the abdomen of the whole rat including tissue, the scaled back image of the skeleton (bottom right image) and 

the CT drug, silver nitrate, within the bladder (circled in red) 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.6 Day six, CT image of the top view of the rat skeleton and silver nitrate in the bladder (circled in red) 
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Figure 6.7 Day six, CT image of the angled side view of the rat skeleton and silver nitrate in the bladder and 

urethra (circled in red).  Possible leakage of silver nitrate from the bladder (circled in yellow). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.8 Day six, top view (top left image) with bones circled in yellow for density comparison.  The right 

side view (top right image), front view (bottom left image) of the abdomen of the whole rat including tissue, the 

scaled back image of the skeleton (bottom right image) with the bladder and urethra (circled in red).  Possible 

leaked silver nitrate (circled in blue). 
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Figure 6.9 Day seven, CT image of the angled side view of the rat skeleton and silver nitrate in the bladder 

and urethra (circled in red).  Possible leaked silver nitrate (circled in yellow). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.10 Day seven, top view (top left image), front view (top right image), left side view (bottom left 

image) of the abdomen of the whole rat including tissue, the scaled back image of the skeleton (bottom right 

image) and the silver nitrate within the bladder (circled in red).  The possible leakage of silver nitrate, circled in 

yellow.  
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Figure 6.11 Day eight, CT image of the angled side view of the rat skeleton and silver nitrate in the bladder 

and urethra (circled in red).  Air bubble (circled in yellow) within the bladder is visible. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.12 Day eight, top view (top left image), front view (top right image), right side view (bottom left 

image) of the abdomen of the whole rat including tissue, the scaled back image of the skeleton (bottom right 

image) and the CT drug, silver nitrate, within the bladder (circled in red). 
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Figure 6.13 Day nine, CT image of the top view of the rat skeleton and silver nitrate in the bladder (circled in 

red) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.14 Day nine, CT image of the left side view of the rat skeleton and silver nitrate in the bladder and 

urethra (circled in red).  Air bubble (circled in yellow) within the bladder is visible. 
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Figure 6.15 Day nine, top view (top left image), left side view (top right image), front view (bottom left image) 

of the abdomen of the whole rat including tissue, the scaled back image of the skeleton (bottom right image) 

and the CT drug, silver nitrate, within the bladder and urethra (circled in red). 
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6.4 Discussion 

This section of the thesis focussed on the in vivo degradation of a rat bladder using CT imaging, which shows 

disruption occurred between day two and six including appearance of an air bubble in the bladder, possible 

silver nitrate leakage from the bladder and the shifting in bladder position further down the peritoneal cavity.  

The sixth day shows signs of leakage that became apparent from the right side of the bladder and there were 

larger air bubbles forming in the bladder (See Figure 6.7).  The air bubbles show there is movement of the 

solution within the bladder, which could be due to absorption of the silver nitrate into the bladder tissue.  The 

experiment was successful in relation to the CT drug used as this compound highlighted the bladder 

throughout the nine days (See Figure 6.13).  The bladder shape shows to have changed, misshaping and 

moving lower into the peritoneal cavity, which could be due to the force applied to the bladder from the gases 

produced after death.  In addition, the movement of the rat between the CT scanner and storage and the 

vertical position needed for scanning the rat could have participated in the bladder movement.  The possible 

movement of the silver nitrate out and away from the bladder between day six and seven show that drug 

leakage and diffusion from the bladder is possible (See Figures 6.7 and 6.9).  These results are consistent 

with the suggestions from the Japan case study (Moriya and Hashimoto, 2001) inferring higher drug 

concentrations in the femoral vein in comparison with cardiac blood could be due to drug diffusion from the 

bladder (Moriya and Hashimoto, 2001). This experiment was used as a model as the silver nitrate is 

structurally different from most drugs found within the bladder in post-mortem casework, therefore diffusion 

timelines will vary dependant on drug type and the  physicochemical properties of the drug.  However, the 

silver nitrate could not be seen on day eight, which could be due to dispersion and the concentration was too 

low to detect using the CT scanner.  Therefore, it was not determined if the compound could reach the 

femoral vein within the nine day period, which could be rectified by increasing the concentration of silver 

nitrate inserted into the bladder.  

 

This is an initial study into this area that has used a compound that has previously shown to be visible on the 

CT, which was the main priority for this experiment.  However, these results would not be able to be used as a 

model for the antidepressant drugs due to different properties of silver nitrate.  The molecular weight of silver 

nitrate is 169.87 g/mol, which is smaller than the average drug found in post-mortem cases and previous work 

has shown smaller compounds diffuse faster through the body (Zapata, Luna, 1989) meaning these results 

could be an accelerated version of drug movement over nine days. Ideally, a compound would be used that 

could be visible on the CT image and have similar chemical properties and therefore would behave in a 

similar way to the drugs that would usually be found within the bladder in post-mortem cases.  In relation to 

using the rats as a model, these animals are much smaller than humans are and any diffusion observed 

would have to take into consideration any anatomical and size differences between humans and rats.  

 

The basis of this experiment was to determine if there is bladder breakdown, if there was diffusion from the 

bladder and the distance the compound could diffuse within the nine days post-mortem.  Specifically, would 

the compound reach the femoral vein in this period however, the femoral vein could not be highlighted as 

shown in section 3.3.5.4.  In addition, there are no measurements to determine the distance the silver nitrate 

reached apart from a scale on the composition images.  An improvement to this experiment would be to 



226 

 

identify the femoral vein and take specific measurements from different angles to determine the distance of 

the silver nitrate over time.  

 

In comparison to the previous research carried out using post-mortem computed tomography (PMCT) this 

experiment has shown silver nitrate to be suitable for use to identify the bladder using Micro-CT over nine 

days post-mortem and also the possible movement of the compound out of the bladder could be due to 

leakage.  However, this experiment is very limited with the use of one rat; repeats of this experiment under the 

same conditions would need to be carried out for reproducibility.  

 

The silver nitrate (1M) could not be seen from day eight onwards, this could be due to the dilution of the 

compound once it is released from the bladder.  The amount of fluid within the body is approximately 57-72% 

of the rats’ body weight  (Foy and Schnieden, 1960), which could be classed as a large volume for such a 

small amount of silver nitrate initially inserted into the bladder (0.25 ml). This range of values is the total body 

water, which can be calculated if the weight of the rat is known (192.81 g).  The volume of fluid would be used 

to determine the dilution of the silver nitrate assuming all the solution leaked into the peritoneal cavity.  

However, a limitation with this model is the dilution would be overestimated as the total body water describes 

the compound diluting into the rat as a one-compartment model instead of where the compound could actually 

reach, the smaller volume around the bladder and lower peritoneal cavity.  This model is based on the rat 

however; the calculations could be scaled up to include humans.  The total body water is lower for humans 

with 60% for males and 50% for females (Levine, 2013) and the average weights are 83.6 kg (male) and 70.2 

kg (female) (Office, 2010). In addition, the bladder volume of a human is much higher than a rat with differing 

bladder volumes dependant on gender, with bladder volumes of 351.3 ± 86.0 ml for men and 325.0 ± 76.7 ml 

for women (Kanyilmaz, Calis, Cinar, 2013). 

 

In relation to the rat, the bladder contained 0.25 ml (experimental value) solution of 1M silver nitrate and would 

leak into between 110 ml or 139 ml of fluid in the peritoneal cavity.  This leakage would cause the compound 

to be diluted and the resulting concentration could be calculated using C1V1=C2V2.  There is a difference 

between the rat and human dilutions of silver nitrate with higher concentrations in the humans, which could be 

due to the small volume inserted into the rat, which was < 1 ml as the bladder membrane is not elastic after 

death reducing the amount of volume inserted into the bladder (See Table 6.1). 

 

Table 6.1 The range of the total body water values from the range of percent of water found in rats and 

humans and silver nitrate dilution from these two values in the two species 

 Rat Human 

Total Body Water (g) 109.81 (57%), 138.82 (72%) 50,160 (Male), 35,100 (Female) 

Silver nitrate concentration (diluted) (M) 0.0023 (57%), 0.0018 (72%) 0.0070 (Male), 0.0093 (Female) 

 

The results of this experiment show that after six days there is a possibility of leakage from the bladder.  

Therefore, if an individual is found within the six-day period there is a high possibility there is no release of 

drugs from the bladder based on this model.  In addition, further work would need to be carried out using 
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higher concentrations of silver nitrate to determine if the silver nitrate can diffuse to the femoral vein and if this 

could be achieved within nine days.  This is due to the disappearance of the compound from day eight due to 

the decrease in concentration of silver nitrate due to dispersion into the peritoneal cavity.  Furthermore, 

alternative methods would need to be developed to highlight the femoral vein for measurements to be taken to 

determine how far the drug can diffuse over the nine days.  This could then create a model showing if it is 

possible for drugs to diffuse to the femoral vein and alter drug concentrations to the point that could affect the 

outcome of cause of death.  In addition, human models could be scanned using medical CT scanners subject 

to ethical approval.   
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Chapter 7 – Final Discussion and Future Work 
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7.1 Discussion 

The drug concentration at the time of death can be used to determine whether the drug was in the therapeutic 

or toxic range, which would indicate if this drug could have been involved in the cause of death.  However, the 

post-mortem samples taken at autopsy containing the drugs cannot be assumed to be the concentrations 

present at the time of death.  Between death and the autopsy, the PMI, changes occur within the body that 

can alter the drug concentrations detected.  PMR is one of these processes, which is the process that does 

not use energy, a passive process, involving the movement of drugs after death.  PMR can lead to changes in 

drug concentrations at sampling sites after death.  A number of organs including the lungs, liver, and heart are 

thought to be drug depots to “enable” PMR (Anderson and Jones, 1990; Prouty and Anderson, 1990).  One 

possible depot for PMR is the bladder.  To date there has been limited research on possible PMR from the 

bladder.  Post-mortem redistribution is a wide area that affects numerous organs to differing extents.  This 

phenomenon has been demonstrated in the heart, lungs, stomach, liver and even leg skeletal muscle 

(Pounder, 1997). However, limited research has been carried out in relation to PMR from the bladder.  As a 

result, this research has focussed on this organ to fill the gap in toxicological research and also to develop 

models to study it further.  The investigation focussed on the influence of bladder degradation, pH, urine 

volume, and temperature on diffusion from the bladder.  In vitro diffusion through sections of the bladder and 

whole bladders, also in vivo diffusion from the bladder in rat models over 9 days. 

 

The initial sets of experiments investigated the effect of a number of different parameters on the cumulative 

concentration of three different compounds (rhodamine B, amitriptyline and nortriptyline).  The experiments 

used porcine bladder sections (sections from different bladders, inter-bladders and sections within the same 

bladder, intra-bladder) including temperature, pH, bladder tissue thickness (predicted to influence diffusion 

from the work by Fick) and bladder degradation.  The main parameters that affected the cumulative 

concentration of the drugs was temperature however, this was limited to a significant difference between 

physiological temperature (37°C) and the two lower temperatures (20°C and 5°C).  The post-mortem times 

where the significant differences occurred were at approximately 94 ± 0.1 hrs for pH 7.4 (p < 0.001) and 100 ± 

0.06 hrs for pH 5 (p > 0.0001).  The lower the temperature the less difference between the drug 

concentrations therefore, after the initial cooling stages of the body, or if the body was outside in cold 

temperatures, and after the body has been transferred to the mortuary the diffusion of drugs is reduced.  This 

temperature related reduction in the diffusion has previously been found in the stomach (Yonemitsu, 1991; 

Smith, 1995). The pH had more of an effect on the two antidepressant drugs as there were results for all three 

temperatures at  pH 7.4 and only one set of results at pH 5.  This is possibly due to the higher percentage of 

ionisation of both the antidepressant drugs at the lower pH reducing the unionised concentration available to 

diffuse through the bladder tissue.  The bladder degradation, which involved using fresh bladders for one set 

of experiments and thawing bladders that were frozen for one week prior to analysis, did not have an effect on 

the drug concentrations.  The peak concentration for the fresh bladders at pH 7.4 and 37°C was 1.70 ± 1.0 

mg/L and 2.63 ± 2.46 mg/L for degraded bladders.  However, at pH 5 the higher concentration was reversed 

with the peak concentration of 2.29 ± 1.22 mg/L for the fresh bladders and 1.45 ± 1.26mg/L for the degraded 

bladders at 37°C.  This shows that individuals found after a longer PMI, resulting in more degraded tissues, 

would not affect the amount of drug diffusing through the bladder tissue in cases where there is no damage to 
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the bladder producing openings.  The peak concentrations of rhodamine B using fresh bladder at pH 7.4 

sections were 1.70 ± 1.0 mg/L at 37°C, 0.67 ± 0.71 mg/L at 20°C and a concentration below the limit of 

detection of the method at 5°C.  The fresh bladder sections at pH 5 and resulting rhodamine B concentrations 

of 2.29 ± 1.22 mg/L at 37°C, 0.85 ± 0.89 mg/L at 20°C and the amount of rhodamine B at 5°C was below the 

methods limit of detection.  Similar results were found for the degraded tissues, further confirming tissue 

frozen and thawed, mimicking degraded tissue, may not affect drug concentrations diffusing from the bladder.  

However, the intra-bladder experiments had no clear trend with higher concentrations at lower temperatures 

(2.73 ± 2.31 mg/L at 20°C and 1.86 ± 1.75 mg/L and 37°C).  There was an overall increase in rhodamine B 

over the course of the experiments however, there was also a large standard deviation reducing the difference 

between the lower temperatures.  These results are to be expected as dealing with biological tissue, there will 

be variations due to the tissue itself resulting in outcomes that would not be exactly repeatable each time even 

when using the same conditions.   

 

In relation to the drug ionisation, the pH showed more of an effect on the cumulative concentrations of the two 

antidepressant drugs (amitriptyline and nortriptyline) than the rhodamine B.  The ionisation of rhodamine B at 

the two pH values was 99.9% in pH 7.4 and 86% in pH 5, which does show a difference however, this did not 

affect the amount of drug that diffused through the bladder tissue to any significant amount.  Specifically for 

the antidepressant drugs, there were more results for the higher pH, which could be due to the change in 

ionisation state of the drugs.  However, there was a smaller difference in ionisation for amitriptyline and 

nortriptyline with 99% and 99.5% at pH 7.4, 99.99%, and 99.99% in pH 5 respectively and a larger difference 

in results.  This shows pH is more of a factor with the antidepressant drugs than the model compound, due to 

the small changes in the ionisation state of the antidepressant drugs.  However, the results at pH 7.4 show 

approximately double the concentration of rhodamine B with peak cumulative concentrations of 6.69 mg/L and 

6.69 ± 4.76 mg/L for amitriptyline and nortriptyline respectively.  Lower concentrations at pH 5 were shown to 

be 1.96 mg/L and 2.8 ± 0.32 mg/L for amitriptyline and nortriptyline respectively therefore, the longer the PMI 

and the lower the pH in the bladder the fewer drugs would diffuse from the bladder.  Most of the drugs found 

in post-mortem cases are weak bases and therefore may follow a similar trend as these results as they would 

possibly be mainly ionised in the urine after death and less likely to diffuse from the bladder unless there were 

holes in the bladder.  However, even with the drugs being mostly ionised (86.0 % - 99.9 %) diffusion is still 

possible from the bladder over five days post-mortem.  These results can be used as a model for other drugs 

as the Henderson-Hasselbalch equation could be used to determine the ionisation of the drug and use this as 

a guide to determine how much drug could possibly diffuse from the bladder.  Other basic and acidic drugs 

may also have similar results, even with variable pKa values, as the acidic drugs with lower pKa values would 

be ionised at higher pH (pH 7.4 and 5) and the basic drugs with higher pKa values would also be ionised as 

the pH values for these experiments are generally lower.  The difference in the concentration of these different 

drugs that would diffuse through the bladder tissue would depend on the other chemical and physical 

properties of the drugs.  As stated previously, a number of parameters would need to be considered to make 

an accurate hypothesis of differing drugs and not determine from only one variable.  
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Tissue degradation would occur after death due to autolysis and putrefaction processes making up 

decomposition and the longer the PMI the more tissue degradation.  This set of experiments investigated if 

there was a difference between fresh bladders mimicking close to time of death and frozen then thawed 

bladder tissue mimicking bladder tissue after a longer PMI of one week at cold temperatures.  The tissue 

degradation was not a significant factor in the drug concentrations as there was no difference between the 

fresh and thawed bladder tissue for the two higher temperatures and both pH, there was differences between 

the lowest temperatures however, the concentrations were mostly below the limit of detection (0.16 mg/L).  

 

The other factors that were investigated included the change in the donor chamber over the course of the 

experiment and if the decrease in the donor chamber was matched with the concentrations in the acceptor 

chamber.  However, the results showed a large difference between the initial donor chamber concentration 

and the combined final concentration of the donor and acceptor chamber, which shows that the drugs have a 

high affinity for the bladder tissue.  The largest difference was 89.62 mg/L (fresh bladders, 37°C, pH 7.4) and 

the smallest difference was 11.47 mg/L (intra-bladders, 20°C, pH 7.4).  This is possibly due to the lipophilicity 

of the drugs all with log P values of 4.92 (amitriptyline) (Hansch, Leo, 1995), 4.51 (nortriptyline) (Brodin, 1974) 

and 2.43 (rhodamine B) (Mah et al., 2013).  Another parameter was the bladder thickness, this was measured 

for all the in vitro experiments and the statistical results showed there was a small spread of values between 

4.48 – 5.0 mm with no significant differences between the fresh and degraded bladders (p 0.42) and within the 

same bladder (p 0.23).  Therefore, for this set of experiments due to the similarity of the bladder thickness this 

was discounted as a possible factor that could affect drug diffusion through bladder tissue.  Finally, the 

acceptor chamber pH was recorded at the start and end of each experiment and the pH 7.4 experiments 

decreased (Fresh inter-bladder, 37°C, pH 7.4, final pH 6.87 ± 0.24) during the experiment.  The pH 5 resulted 

in an increased pH (fresh inter-bladder, 37°C, pH 5, final pH 6.95 ± 0.16), which is consistent with the start of 

autolysis and the start of putrefaction.  

 

The permeability values of rhodamine B that were calculated showed the higher temperature had ten times 

the magnitude of permeability, 1.8 x 10
-4

 cm/s at 37°C, in comparison with the two lower temperatures, which 

had similar permeability values, 6.8 x 10
-5

 cm/s for 20°C and 1.4 x 10
-5

 cm/s for 5°C.  This shows as the 

temperature increases the permeability increases and a higher concentration of the drug can diffuse through 

the bladder tissue as expected by the work of Fick (Fick, 1995). The permeability of rhodamine B was also not 

affected by the degraded tissue resulting in similar permeability values at 37°C.  Fresh tissue values were 1.8 

x 10
-4

 cm/s (pH 7.4) and 1.8 x 10
-4

 cm/s (pH 5) and for degraded tissue at 3.6 x 10
-4

  cm/s (pH 7.4) and 1.4 x 

10
-4

 cm/s pH 5 at 37°C.  This was used as an example however; the higher temperature with degraded tissue 

may not be possible, as the body would have cooled before significant tissue degradation would have begun.  

The intra-bladder results showed that if physiological pH were maintained the permeability would not be 

affected until the body cooled to below room temperature, 3.0 x 10
-4

 cm/s at 37°C and 3.5 x 10
-4

 cm/s at 20°C.  

However, the permeability would most likely reduce as the pH reduces after death, which results in less drugs 

diffusing from the bladder after the body temperature reduced from 37°C.  This is consistent with the results 

showing the lower pH produces lower permeability values and therefore, the longer the PMI the less drugs are 

able to permeate though the bladder tissue, which is possibly due to the ionisation of the drugs.  The 
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antidepressant drugs had the same magnitude for all the results including pH 7.4 (37°C, 20°C and 5°C) and 

pH 5 (37°C).  A previous study investigating amitriptyline diffusing through Caco-2-cells in pH 7.4 at 37°C 

resulted in a permeability of 2.1 x 10
-5

 cm/s (Faassen et al., 2003). This research produced a value of 1.9 x 

10
-5

 cm/s under the same temperature and pH conditions, these results show amitriptyline being a highly 

permeable compound.  The more polar metabolite, nortriptyline, had permeability values that were slightly 

lower than amitriptyline with 3.0 x 10
-5

 cm/s (pH 7.4) and 4.6 x 10
-5

 cm/s in pH 5.  This could be due to the 

polar nature and the 99.9% ionised form of the drug.  All three drugs had higher permeability at physiological 

temperature therefore, closer to the time of death there would be highest amount of drug diffusion, which 

would theoretically decrease as the body temperature decreased.  

 

The results show that there is diffusion from the bladder sections at the higher temperature and pH; however, 

this was not mimicking the human element of this research, as the bladder would be intact.  Therefore, this 

was the reason of using the intact bladder to determine if the results from the bladder sections were 

consistent with the intact bladder.  In addition, the extension to the research was used to determine the better 

“model” for further study.  

 

The in vitro experiments involving the intact bladders resulted in the volume being more of a factor than 

concentration that would affect the amount of rhodamine B diffusing through the bladder tissue within the first 

100 hours post-mortem.  The lower initial concentration of rhodamine B resulted in higher acceptor chamber 

cumulative concentration showing concentration is not a factor in diffusion.  The peak concentration of 

rhodamine B was 3.5 ± 1.02 mg/L at 100 mg/L using pH 7.4 at 20°C.  The volume did have differing results 

showing full bladder had increased diffusion over half-filled bladders with cumulative concentrations of 3.5 ± 

1.02 mg/L and 0.95 ± 0.73 mg/L respectively, which shows that if the bladder is not voided after death there 

could be more drug diffusion.  However, this is not always the case and therefore this would reduce the 

amount of drugs diffusing from the bladder.  It has been stated that in approximately 50% of cases the bladder 

is voided at time of death (Negrusz, 2013) and therefore urine is not always available. From the results of this 

research, the reduction of diffusion from the bladder is reduced with lower temperatures, which would occur 

when the body is stored in the mortuary fridge.  However, due to the variable times of PMI before the 

individuals arrive at the mortuary, and to prevent any further diffusion, the bladder should be emptied upon 

arrival at the mortuary.  The pH shows to have an effect on the cumulative concentration of rhodamine B with 

significant differences (p <0.0001) between pH 7.4 and 5.  The consistently higher cumulative concentrations 

of rhodamine B at pH 7.4, with the pKa of 4.2, result in a 99.9% ionised drug that is consistent with results 

from a previous study describing due to the hydrophilic layer on the lumen of the bladder ionised drug 

preferentially diffuse through the bladder (Moch, Salmon and Armesto, 2014). However, this is only evident at 

the later stages of the experiments, approximately 97 hours, and therefore this could more likely be due to 

bladder degradation.  The tissue could have degraded and caused openings in the tissue, which could have 

occurred at a quicker rate due to the increased pH.  The tissue was not specifically checked for openings at 

the end of the experiment and so could not narrow down this line of investigation any further at this time.  

Furthermore, this pH would not be evident at the later stages of decomposition as the pH decreases and 

would be showing similar amounts of drug concentrations found at pH 5.  
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A limitation of this experiment was the inability to measure the bladder thickness, even though from the 

previous chapter this was shown due to the similarity of the bladder thickness it was not a factor in those 

specific experiments.  The bladders used were in different states including empty and contracted bladders and 

bladder filled with urine and therefore there was a wide difference in bladder size and as a result bladder 

membrane thickness.  On the other hand, even without the measurements using a number of bladders with 

differing volumes would produce a robust model that would mimic the conditions for deceased individuals.  

 

The time scale of the work by (Moriya and Hashimoto, 2001) was nine days, this gives a reference point for 

this research using a real work example where post-mortem diffusion from the bladder was suspected. The 

initial point was it took approximately 97 hrs for rhodamine B to diffuse from the bladder to the cumulative 

concentration of 3.5 ± 1.02 mg/L.  This concentration would be increased if this concentration was the initial 

concentration inside the bladder in 5 ml of solution to 6.72 ± 36.72 mg/L (average of male and female 

peritoneal fluid rhodamine B concentrations), which was determined from the volumes of peritoneal fluid, 

differing for males and females, outside the bladder.  An unknown section to this research would be the 

dilution factor and the time taken for the drug to diffuse from the bladder to the femoral vein.  There is a range 

of times for the drug to diffuse through the femoral vein and then increase the drug concentration within the 

vein.  Overall, the length of time from death to the drug potentially increasing the drug concentration in the 

femoral vein would be longer than 179 – 197 hrs post-mortem.  An extension to this section of the research 

was to move onto in vivo work which would give a visual representation of the actions of the drug within the 

bladder and the possibility of the drug diffusing to the femoral vein within the suggested nine days post-

mortem (Moriya and Hashimoto, 2001).  

 

In order to try to visualise the movement of any drugs an in vivo based experiment, investigated diffusion from 

the bladder using x-ray CT, with sliver nitrate as the contrast reagent within a rat.  The results showed 

movement of the bladder location to further down into the peritoneal cavity and also the degradation of the 

bladder to a point where there was leakage of the silver nitrate from the bladder between day two and six.  

The movement of the bladder could be due to gravity as the rat was vertical for scanning and transported 

between storage and the CT scanner.  There was displacement of the silver nitrate solution as air bubbles 

were formed in the bladder, which could be due to the movement of the bladder, diffusion of the solution into 

the bladder membrane and the eventual leakage of some of the silver nitrate solution from the bladder.  This 

bladder breakdown between day two and six shows there is a possibility for there to be drug solution leakage 

from the bladder and this would then be in the peritoneal cavity and able to diffuse freely through the tissues 

and possibility contaminating sampling sites.  The Japanese study had consistent results with this research 

with the suggestion of possible drug movement from the bladder (Moriya and Hashimoto, 2001).  

 

However, silver nitrate is smaller and structurally different from the drugs usually found in post-mortem 

casework and therefore the diffusion of this drug may not mimic these drugs, this was used in a similar way to 

rhodamine B in the in vitro studies as a model compound.  This drug was successful in relation to the visibility 

on the CT until day eight where it disappeared, which was possibly due to the concentration of silver nitrate 
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decreasing below the LOD of the CT upon release from the bladder.  As a result, the ultimate aim of 

determining if the silver nitrate could reach the femoral vein was not executed.  In addition, this could not be 

completed, as the femoral vein could not be successfully identified on the CT without reducing the resolution 

for the bone and silver nitrate, as these were indistinguishable with the introduction of the alloy fuse wire.  This 

section of the research would need more investigation to complete the aim of the in-vivo research as the drug 

was looked at in relation to diffusion from the bladder, it also needs to be determined if the drug can reach the 

femoral vein.  The dilution of the silver nitrate was determined for both the rat and scaled up for humans using 

the total body water to determine the concentration that could not have been seen on the CT scanner.  The 

reduction in concentration were overestimated as this total body water is not limited to the peritoneal cavity 

where the silver nitrate would most likely have been able to reach, it includes the total amount of water in the 

body.  The range of concentrations was 0.0018 – 0.0023 M for the rat and scaled up to humans with a dilution 

to 0.0070 M for males and 0.0093 M for females.  Therefore, if an individual were found within six days after 

death there would not be a concern with a large amount of drug leakage from the bladder and therefore 

limited chance of the drug diffusing into the femoral vein and altering the drug concentration within that 

specific sampling site.  

 

Overall, the bladder was intact for two days after death; further studies would need to be carried out to 

determine if this is repeatable.  It is interesting to note that in all the in vitro studies the bladders remained 

intact for the duration of the experiments.  There is a small amount of diffusion of drugs through the bladder 

tissue within the first five-days and leakage from the bladder on the sixth day.  As a result, based on the 

results of this study the bladder is not likely to be a significant drug depot for post-mortem redistribution for 

amitriptyline and nortriptyline for the first five days after death.  The concentrations resulted from this research 

would not be able to alter the drug concentrations within the femoral vein to a significant enough degree that 

could alter the toxicological interpretation of a case.  
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7.2 Future Work 

This research was based around the investigation of the most appropriate method for determining the amount 

of drug diffusing through bladder tissue after death over a 9-day period.  The initial experiments have 

produced a robust method however; there can be improvements to build on the current method both in 

relation to the experimental method and the types of sample solutions and drugs used in the experiments.  

This line of thinking can also be applied to the in vivo experiment, where there can be a number of 

improvements in the experimental method and alterations to the conditions the rat could be stored under 

during the experiment.  

 

The first study involved the Franz cells and this method was significantly developed and a robust method was 

produced, which allowed for the sealing of bladder tissue onto the Franz cells and the ability to run the 

experiment for 100 hours.  However, the solutions used to dissolve the drugs were buffer, which is useful for 

stabilising the pH for the initial experiments.  To further this aspect of the research the solutions could be 

changed to synthetic urine, which would mimic the conditions found after death in deceased persons, as urine 

would be present in the bladder and this would allow for more realistic conditions and pH values.  A known 

concentration of the drug would be dissolved in the synthetic urine and these solutions would be placed into 

the donor chamber of the Franz cells.  The synthetic urine would be checked for pH values before and after 

the experiment to determine any changes and this could then be used to determine how this affects the 

ionisation state of the drug and link this to the amount of drug diffused through the tissue during the 

experiment.  Furthermore, the drug concentrations themselves could be taken further by using both expected 

therapeutic concentrations found in the urine and toxic concentrations, which would mimic both adherence to 

taking prescribed medication and instances of overdose.  The Franz cell experiments were conducted at set 

temperatures, physiological (37°C), room temperature (20°C) and mortuary fridge temperature (5°C).  

However, after death the body does not stay at a fixed temperature the body cools down and therefore to 

advance the experiments a water bath with a gradient temperature system would be used.  The water bath 

would be set to the cooling rate of the body to determine how this would affect the amount of drug diffusing 

through the bladder tissue over the post-mortem interval of 100 hours.  In addition, the permeability 

coefficients of each drug could be used in further work involving calculating the diffusion coefficient, which 

could then be used to determine the time taken for each drug to diffuse to set distances (Clark, Edeson and 

Ryall, 1983). This would be useful in relation to calculating the time taken for a drug to reach the femoral vein 

from the bladder, measurements between the bladder and the femoral vein would be needed for these 

equations. 

 

Similar changes would be introduced for the next set of experiments using the intact bladder where synthetic 

urine would be used for the drug solution. The temperature would be closely monitored to mimic the cooling of 

the body the intact bladders could be used to test the antidepressant drugs in a similar manner to the bladder 

section experiments.  Another aspect of both these experiments that could be expanded would be the types of 

drugs that were being tested.  The two antidepressant drugs used for the first set of experiments were 

chosen, as they were found in numerous post-mortem cases and so relevant for the toxicology community to 

determine how these drugs would act after death in relation to the diffusion through bladder tissue.  However, 
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there are a number of different types of drugs that are found in post-mortem cases and have differing physical 

and chemical properties and as discussed previously drug properties are a factor in the effect on the 

ionisation, which in turn affects the amount of drug available to diffuse through biological tissue.  Therefore, 

expanding the number of drugs usually found in urine in post-mortem cases in the diffusion experiments 

would give a better understanding of how these drugs would act after death if present in the bladder.  

Furthermore, other possible experiments include using multiple drugs that would be found in conjunction with 

each other in the bladder would be added to the diffusion chamber to see if the presence of multiple drugs 

could affect the diffusion of each drug individually.  

 

A different aspect of the in vitro based research could be investigated based on the tissue binding of the drugs 

to different organs and vessels including the bladder, intestines and the femoral vein.  This would allow 

determining if certain drugs have a higher affinity for the tissue and if this would significantly affect the results 

produced from the blood samples used to determine drug concentration for toxicological interpretation.  

 

The in vivo study was the most recent addition to the research and therefore less work was carried out, a 

number of aspects of the method were developed including the catheterisation of the rat with a drug able to be 

visible on the CT and the rat was secured for scanning and stored during the experiment.  However, only one 

rat was analysed using this method for the full duration of nine days, this experiment would need to be 

repeated to determine if there is any variation between at least three repeats.  As each rat would be slightly 

different and this could affect the diffusion of the drug, as it was found after death the bladder loses elasticity.  

After the variable volume of urine was removed, the bladder does not reduce in size and as a result, the 

bladder can hold differing volume of solution that is replaced in the bladder for the experiments.  The rat was 

not scanned each day which left a gap in the results, ideally the rat would be scanned each day to get a full 

picture of the bladder changes over the nine day period.  Furthermore, this variation in size also affect the 

bladder thickness, the more urine in the bladder after death the thinner the bladder walls, which was a factor 

that was looked into as a possible factor that could affect the amount of drug diffusion through the bladder 

tissue.  

 

Another issue was with the drug itself, even though the drug (silver nitrate) was visible for most of the 

experiment as it began to diffuse from the rat bladder it disappeared after day seven of the experiment, which 

could be due to the drug concentration.  Therefore, a repeat of the experiment with an increased 

concentration of the drug could improve the visibility of the drug outside of the bladder enabling to determine 

where the drug diffuses in the peritoneal cavity.  This would be useful to determine if the drug could diffuse to 

the femoral vein, which was the ultimate aim of the experiment.  A further set of experiments would be to 

change the drugs to those found in casework and radiolabel these drugs to be able to be visible on the CT as 

these are the drugs that are relevant to the toxicological community.  

 

Future work would include repeating this experiment at a temperature that would mimic the case report from 

2001 (Moriya and Hashimoto, 2001) as the individual was found outside in winter, these conditions would 

result in lower temperatures than 20°C. Therefore, the lower temperature of 5°C would be used to compare to 
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room temperature to determine if the lower temperature would slow down bladder break down in vivo.  

Furthermore, methods for measuring the distance of the drug diffusion could be incorporated to allow for rate 

calculations, which could then be used as a model for comparison with other types of drugs to determine the 

possibility of the drug diffusing to the femoral vein within nine days after death.  This would be useful for 

individuals found within this timeframe.  Another type of in vivo experiment could be using larger animals, 

specifically pigs, due to their similarity with humans.  A known amount of drug could be administered and after 

death the femoral vein could be sampled at set times over a period.  In addition, the bladder could be 

catheterised using a known concentration of drug and the femoral vein would be sampled at set times over 

the nine day period, suggested by the Japanese paper (Moriya and Hashimoto, 2001), to determine if the drug 

could be detected during this period. The pigs would be a closer mimic to humans due to ethical restrictions 

however, it would be ideal to use human cadavers to mimic the drug movement after death.    
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