
University of Huddersfield Repository

Ali Klaib, Alhadi

Clustering-based Labelling Scheme - A Hybrid Approach for Efficient Querying and Updating
XML Documents

Original Citation

Ali Klaib, Alhadi (2018) Clustering-based Labelling Scheme - A Hybrid Approach for Efficient
Querying and Updating XML Documents. Doctoral thesis, University of Huddersfield.

This version is available at http://eprints.hud.ac.uk/id/eprint/34580/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

Clustering-based Labelling Scheme - A Hybrid
Approach for Efficient Querying and Updating XML

Documents

By
Alhadi Ali Klaib

A thesis submitted to the University of Huddersfield in partial
Fulfilment of the requirements for the degree of Doctor of Philosophy

School of Computing and Engineering
University of Huddersfield

April 2018

i

Copyright statement

i. The author of this thesis (including any appendices and/or schedules to this thesis)
owns any copyright in it (the “Copyright”) and s/he has given The University of
Huddersfield the right to use such copyright for any administrative, promotional,
educational and/or teaching purposes.

ii. Copies of this thesis, either in full or in extracts, may be made only in accordance
with the regulations of the University Library. Details of these regulations may be
obtained from the Librarian. This page must form part of any such copies made.

iii. The ownership of any patents, designs, trademarks and any and all other intellectual
property rights except for the Copyright (the “Intellectual Property Rights”) and any
reproductions of copyright works, for example graphs and tables (“Reproductions”),
which may be described in this thesis, may not be owned by the author and may be
owned by third parties. Such Intellectual Property Rights and Reproductions cannot
and must not be made available for use without the prior written permission of the
owner(s) of the relevant Intellectual Property Rights and/or Reproductions

ii

Abstract:
Extensible Markup Language (XML) has become a dominant technology for transferring
data through the worldwide web. The XML labelling schemes play a key role in handling
XML data efficiently and robustly. Thus, many labelling schemes have been proposed.
However, these labelling schemes have limitations and shortcomings. Thus, the aim of
this research was to investigate the existing XML labelling schemes and their limitations
in order to address the issue of efficiency of XML query performance. This thesis
investigated the existing labelling schemes and classified them into three categories based
on certain criteria, in order to identify the limitations and challenges of these labelling
schemes. Based on the outcomes of this investigation, this thesis proposed a state-of-the-
art labelling scheme, called clustering-based labelling scheme, to resolve or improve the
key limitations such as the efficiency of the XML query processing, labelling XML
nodes, and XML updates cost. This thesis argued that using certain existing labelling
schemes to label nodes, and using the clustering-based techniques can improve query and
labelling nodes efficiency. Theoretically, the proposed scheme is based on dividing the
nodes of an XML document into clusters. Two existing labelling schemes, which are the
Dewey and LLS labelling schemes, were selected for labelling these clusters and their
nodes. Subsequently, the proposed scheme was designed and implemented. In addition,
the Dewey and LLS labelling scheme were implemented for the purpose of evaluating the
proposed scheme. Subsequently, four experiments were designed in order to test the
proposed scheme against the Dewey and LLS labelling schemes. The results of these
experiments suggest that the proposed scheme achieved better results than the Dewey and
LLS schemes. Consequently, the research hypothesis was accepted overall with few
exceptions, and the proposed scheme showed an improvement in the performance and all
the targeted features and aspects.

iii

List of Publications and Research Activities:

 Klaib, Alhadi, & Lu, Joan. (Klaib & Lu). Development of Database Structure and Indexing

Technique for the Wireless Response System. Paper presented at the INFOCOMP 2013,
The Third International Conference on Advanced Communications and Computation.

Klaib, Alhadi & Lu, Joan. Investigation into Indexing XML Data Techniques, Poster, 5-6 June

2014, Libyan Higher Education Forum, AVision for the Future. London.

Klaib, Alhadi and Lu, Joan (2014) Investigation into Indexing XML Data Techniques. In:

ICOMP'14 - The 2014 International Conference on Internet Computing and Big Data,
21st - 24th July 2014, Las Vegas, USA.

Article under Review:
Klaib, Alhadi and Venters, Colin. Clustering-based Labelling Scheme - A Hybrid Approach for

Efficient Querying and Updating XML Documents. [Target Journal – ACM Transactions
on Database Systems].

iv

DEDICATION

To my parents, my wife, and my sons who supported me incredibly.

v

ACKNOWLEDGEMENTS

First of all, all praise and thanks to Allah who endowed me with will, strength, and
means to complete this thesis. Without His bounty, grace and mercy this work would
have never been accomplished.

I take this opportunity to express my sincere thanks to my supervisor Dr Colin Venters. I
am deeply grateful for his genuine guidance without his generous help my thesis would
not have taken the final shape.

Finally, I would like to express my deepest gratitude to my mother, my father, my wife,
my children, brothers, sisters, and all other relatives and friends, for their emotional and
moral support, and also for their love, patience, encouragement and prayers.

vi

List of abbreviations:

Abbreviations Details
ADG Approximate DataGuide
DAG Directed Acyclic Graph
DOM Document Object Model
DTD Document Type Definition
GRP GRoup base Prefix scheme
LLS Level-based Labelling Scheme

LSDX Labelling Scheme for Dynamic XML Data
MBench Michigan Benchmark

NXD native XML databases
PRIX Prufer sequence for indexing XML
SAX Simple API for XML
SQL Structured Query Language
ViST Virtual Suffix Tree
W3C World Wide Web Consortium
XML Extensible Markup Language
XPath XML Path Language

XQuery XML query language

vii

Table of Contents
1. Introduction ... 1

1.1 Introduction .. 1
1.2 Motivation and Challenges ... 1
1.3 Main Findings and Contributions .. 3
1.4 Research Hypothesis: .. 4
1.5 Aims and Objectives: .. 4
1.6 The Hypothesis and The Findings .. 4
1.7 Research Approach:... 5

1.7.1 Overview ... 5
1.7.2 Methodology of the Proposed Scheme: ... 5
1.7.3 Data Model and labelling XML Document .. 6

1.7.3.1 Creating and Labelling Clusters: .. 6
1.7.3.2 Labelling Nodes: .. 6

1.8 Thesis Structure and Organisation ... 6
1.9 Summary .. 7

2. Extensible Markup Language (XML) .. 8
2.1 Introduction ... 8
2.2 XML Overview and Origins ... 8
2.2.1 XML syntax ... 8
2.2.1.1 Elements ... 8
2.2.1.2 Attributes .. 9
2.2.1.3 Comments .. 9
2.2.2 Ordering .. 9
2.2.3 XML Document Format ... 10
2.2.4 XML Advantages and Disadvantages ... 10
2.3 XML Structure ... 11
2.4 XML Technologies: ... 12
2.5 XML Schemas: ... 16

2.5.1.1 Edge-Labelled ... 17
2.5.1.2 Node-labelled .. 18
2.5.1.3 Directed Acyclic Graph (DAG) ... 18
2.5.1.4 Directed Graph with Cycles ... 19

2.6 Summary .. 20
3. Literature Review and Previous Work ... 22

3.1 Introduction .. 22

viii

3.2 Overview of Labelling Schemes ... 22
3.3 Existing Approaches... 23

3.3.1 Common Criteria for the Evaluation of Indexing Labelling Schemes.................... 24
3.3.1.1 Retrieval Power ... 24
3.3.1.2 Processing Complexity .. 24
3.3.1.3 Scalability .. 24
3.3.1.4 Update ... 24

3.3.2 The Structural Relationships-based XML Labelling Schemes 24
3.3.2.1 Node Indexing Schemes: ... 25
3.3.2.1.1 Prefix Labelling Scheme: .. 25
3.3.2.1.2 Interval Labelling Scheme: .. 27
3.3.2.1.3 Conclusion: ... 29
3.3.2.2 Graph Indexing Scheme (Path scheme): ... 30
3.3.2.2.1 Deterministic Graph Scheme: ... 31
3.3.2.2.2 Non-deterministic Graph Schemes with Backward Bisimilarity: 31
3.3.2.2.3 Non-deterministic Graph Schemes with Forward and Backward Bisimilarity: 31
3.3.2.2.4 Summary .. 32
3.3.2.3 Sequence Indexing Scheme: .. 32
3.3.2.3.1 Top-down Sequence Indexing Schemes ... 33
3.3.2.3.2 Bottom-up Sequence Indexing Schemes ... 33

3.3.3 Level-Based Labelling Scheme (LLS): .. 34
3.3.4 Dewey Labelling Scheme: ... 35
3.3.5 Importance of Using the Dewey and LLS Schemes in the Proposed Scheme 37
3.3.6 Significance of XML Labelling Schemes .. 37
3.3.7 Critique of XML Labelling Schemes ... 37

3.4 Review on the Testing of Existing labelling Schemes: .. 39
3.5 Summary .. 40

4. Methodology and Framework ... 42
4.1 Introduction .. 42
4.2 Existing Approaches and our Approach, a Comparison and Justification 42
4.3 The Data Models of the Existing Labelling Schemes: ... 44
4.4 Research Approach.. 45
4.4.1 The Mechanism and Data Model of the Proposed Scheme: 46

4.4.1.1 Labelling XML Document: .. 46
4.4.1.1.1 Creating and labelling clusters: .. 46
4.4.1.1.2 Labelling Nodes: .. 46

ix

4.4.1.1.3 Determining Node’s Level: ... 48
4.4.1.1.4 Determining Label Order:... 48

 Label Order for Nodes from the same Cluster: .. 48
 Label Order for Nodes from Different Clusters: ... 48

4.4.1.2 Inserting new Nodes: ... 49
4.4.1.2.1 Inserting a Node Between two Nodes: ... 49
4.4.1.2.2 Inserting a Node in the Rightmost Side: ... 50
4.4.1.2.3 Inserting a Node in the Leftmost Side: .. 51
4.4.1.2.4 Inserting a Node Below a Leaf Node: ... 52

4.4.1.3 Update Cost of the Proposed Labelling Scheme: ... 53
4.5 Design and Implementation .. 54
4.6 Experimental Setup .. 58
4.6.1 Objectives of the Experiments: ... 58
4.6.2 Types of Experiments: .. 58
4.6.3 XML Datasets and Benchmarks: ... 59
4.7 Testing ... 63
4.8 Summary .. 66

5. Results ... 68
5.1 Introduction ... 68
5.2 Experiments for Static Documents .. 68
5.2.1 Labelling XML Documents: ... 68
5.2.2 Determining Different Relationships: ... 76
5.2.3 Query Efficiency Measurement: .. 82
5.3 Experiments for Dynamic Documents: .. 101
5.3.1 Inserting New Nodes: .. 101

5.3.1.1 Uniform Insertions .. 101
5.3.1.2 Ordered Skewed .. 108
5.3.1.3 Random Skewed .. 115

5.3.2 Determining Relationships:.. 121
 Determining Relationships after Uniform Insertions: ... 121
 Determining Relationships after Ordered Skewed Insertions 124
 Determining Relationships after Random Skewed: ... 128

5.3.3 Query Performance for Dynamic Documents: ... 131
5.4 Summary of the Results .. 144

6. Discussion and Critical Assessment ... 145
6.1 Introduction ... 145

x

6.2 Discussion and Assessment of the Experiments ... 145
6.2.1 Discussion and Assessment of the Labelling XML Documents 145
6.2.2 Discussion and Assessment of the Determination of the Relationships 145
6.2.3 Discussion and Assessment of the Query Efficiency ... 146
6.2.4 Discussion and Assessment of Inserting new Nodes .. 146

6.3 Discussion and assessment of the proposed scheme and the main findings 147
6.4 Strengths and Limitations of the Proposed Labelling Scheme 148
6.5 Clustering technique and improving the query process: .. 149
6.6 Experimental Findings .. 149

7. Conclusion ... 150
7.1 Introduction .. 150
7.2 Potential Future Work ... 158
7.3 Summary .. 158

8. References ... 159

xi

List of Figures
Figure 1-1: relational databases model ... 2
Figure 1-2: XML tree ... 3
Figure 2-1: An example of XML file ... 9
Figure 2-2: XML elements – (a) not equal (b) ... 10
Figure 2-3: XML elements – (a) equal (b) ... 10
Figure 2-4: the tree graph for the XML document in figure 2-1 .. 11
Figure 2-5: An example of XML file ... 17
Figure 2-6: Edge-labelled data tree for the XML document in figure 2-5 ... 17
Figure 2-7: Node-labelled data tree for the XML document in figure 2-5 ... 18
Figure 2-8: the modified XML document with ID/IDREF .. 18
Figure 2-9: Directed acyclic graph ... 19
Figure 2-10: modified XML document with ID/IDREF .. 19
Figure 2-11: directed graph with cycles ... 19
Figure 3-1 Dewey Labelling Scheme ... 25
Figure 3-2: Containment (Beg, End) labelling Scheme ... 28
Figure 3-3: Sequence-based indexing examples .. 33
Figure 3-4: An LLS labelled tree representation of the XML document ... 35
Figure 3-5: The summary S of the XML data-tree G ... 35
Figure 3-6: Dewey labelling scheme .. 36
Figure 4-1: An example of XML data document ... 47
Figure 4-2: The proposed labelling scheme for the XML document in figure 4-1 47
Figure 4-3: Inserting a new node in the second level ... 49
Figure 4-4: Inserting a new node inside a cluster ... 50
Figure 4-5: Inserting a new node in the second level and rightmost side .. 50
Figure 4-6: Inserting a new node in the rightmost side not in the level two .. 51
Figure 4-7: Inserting a new node in the second level and leftmost side ... 51
Figure 4-8: Inserting a new node in the leftmost side within a cluster ... 52
Figure 4-9: The updated labelling scheme structure .. 52
Figure 4-10: A scenario for comparing the proposed labelling schemes with the LLS and Dewey schemes
 .. 53
Figure 4-11: The worst case relabelling scenario for LLS and Dewey, and the proposed labelling schemes
 .. 53
Figure 4-12: Design of the proposed scheme and the platform .. 54
Figure 4-13: Pseudo code for getting all nodes in a node list... 55
Figure 4-14: Pseudo code for labelling nodes and clusters .. 56
Figure 4-15: The results for the original LLS scheme and implemented LLS scheme 57
Figure 4-16 : XMach-1 components (Böhme & Rahm, 2001) ... 60
Figure 4-17: process of generating data ... 65
Figure 5-1: time needed for labelling XML files by the proposed scheme. ... 69
Figure 5-2: time needed for labelling XML files by using the LLS scheme. ... 69
Figure 5-3: time needed for labelling XML files by using the Dewey scheme. ... 70
Figure 5-4: time needed for labelling XML files. .. 70
Figure 5-5: the growth of the size of labelling XML files for all schemes. ... 71
Figure 5-6: Box plots between the CLS & LLS & Dewey schemes using XML files of size 1 MB and 10
MB for labelling XML documents. .. 71

xii

Figure 5-7: the p-value between the CLS, LLS and Dewey schemes using XML files of size 1 MB and 10
MB for labelling XML documents. .. 72
Figure 5-8: Boxplot between CLS, LLS, & Dewey schemes using XML files of size 10 MB and 20 MB
for labelling XML documents. ... 72
Figure 5-9: the p-value between the CLS, LLS and Dewey schemes using XML files of size 20 MB XML
files for labelling XML documents. ... 72
Figure 5-10: Box plot between CLS, LLS, & Dewey schemes using XML files of size 20 MB and 30 MB
for labelling XML documents .. 72
Figure 5-11: the p-value between the CLS, LLS and Dewey schemes using XML files of size 30 MB for
labelling XML documents. ... 73
Figure 5-12: Box plot between CLS, LLS & Dewey schemes using XML files of size 30 MB and 40 MB
for labelling XML documents. ... 73
Figure 5-13: the p-value between the CLS, LLS and Dewey schemes using XML files of size 40 MB for
labelling XML documents. ... 73
Figure 5-14: Boxplot between CLS, LLS & Dewey schemes using XML files of size 40 MB and 50 MB
for labelling XML documents. ... 73
Figure 5-15: the p-value between the CLS, LLS and Dewey schemes using XML files of size 50 MB for
labelling XML documents. ... 74
Figure 5-16: Boxplot between CLS, LLS & Dewey schemes using XML files of size 50 MB and 60 MB
for labelling XML documents. ... 74
Figure 5-17: the p-value between the CLS and & LLS schemes using XML files of size 60 MB for
labelling XML documents. ... 74
Figure 5-18: Boxplot between CLS, LLS & Dewey schemes using XML files of size 60 MB and 70 MB
for labelling XML documents. ... 74
Figure 5-19: the p-value between the CLS, LLS & Dewey schemes using XML files of size 70 MB for
labelling XML documents. ... 75
Figure 5-20: Boxplot between CLS, LLS & Dewey schemes using XML files of size 70 MB and 80 MB
for labelling XML documents. ... 75
Figure 5-21: the p-value between the CLS, LLS & Dewey schemes using XML files of size 80 MB for
labelling XML documents. ... 75
Figure 5-22: Boxplot between CLS, LLS & Dewey schemes using XML files of size 80 MB and 90 MB
for labelling XML documents. ... 75
Figure 5-23: the p -value between the CLS, LLS and Dewey schemes using XML files of size 90 MB for
labelling XML documents. ... 76
Figure 5-24: Boxplot between CLS, LLS & Dewey schemes using XML files of size 90 MB and 100 MB
for labelling XML documents. ... 76
Figure 5-25: the p-value between the CLS, LLS and Dewey schemes using XML files of size 100 MB for
labelling XML documents. ... 76
Figure 5-26: spent time for determining the relationships of the proposed scheme. 77
Figure 5-27: spent time for determining the relationships of the LLS scheme. ... 77
Figure 5-28: spent time for determining the relationships of the Dewey labelling scheme. 78
Figure 5-29: the time spent for determining the relationships.. 78
Figure 5-30: Boxplot between CLS, LLS & Dewey schemes when determining the Order between two
nodes... 79
Figure 5-31: the p-value between the CLS and & LLS schemes when determining the Order between two
nodes... 79
Figure 5-32: Boxplot between CLS, LLS & Dewey schemes when determining the nodes’ Level. 80
Figure 5-33: the p-value between the CLS, LLS & Dewey schemes when determining the nodes’ Level.80

xiii

Figure 5-34: Boxplot between CLS & LLS & Dewey schemes when determining the sibling relationships.
 .. 80
Figure 5-35: the p-value between the CLS, LLS and Dewey schemes when determining the sibling
relationships. .. 80
Figure 5-36: Boxplot between CLS, LLS & Dewey schemes when determining the Parent/Child
relationships. .. 81
Figure 5-37: the p-value between the CLS, LLS and Dewey schemes when determining the Parent/Child
relationships. .. 81
Figure 5-38: Boxplot between CLS, LLS & Dewey schemes when determining the Ancestor/Descendent
relationships. .. 81
Figure 5-39: the p-value between the CLS, LLS and Dewey schemes when determining the
ancestor/descendant relationships. ... 81
Figure 5-40: query performance for the proposed scheme. .. 83
Figure 5-41: query performance for the LLS scheme. ... 83
Figure 5-42: query performance for the Dewey labelling scheme. .. 83
Figure 5-43: query performance of the proposed scheme for group G1. ... 85
Figure 5-44: query performance of the proposed scheme for group G2. ... 85
Figure 5-45: query performance of the proposed scheme for group G3. ... 85
Figure 5-46: query performance of the proposed scheme for group G4. ... 86
Figure 5-47: query performance of the LLS scheme for group G1. ... 86
Figure 5-48: query performance of the LLS scheme for group G2. ... 86
Figure 5-49: query performance of the LLS scheme for group G3. ... 87
Figure 5-50: query performance of the LLS scheme for group G4. ... 87
Figure 5-51: query performance of the Dewey labelling scheme for group G1. .. 88
Figure 5-52: query performance of the Dewey labelling scheme for group G2. .. 88
Figure 5-53: query performance of the Dewey labelling scheme for group G3. .. 88
Figure 5-54: query performance of the Dewey labelling scheme for group G4. .. 89
Figure 5-55: query performance of all schemes. .. 89
Figure 5-56: query performance of all schemes for group G1. .. 90
Figure 5-57: query performance of all schemes for group G2. .. 90
Figure 5-58: query performance of all schemes for group G3. .. 90
Figure 5-59: query performance of all schemes for group G4. .. 91
Figure 5-60: Boxplot between CLS, LLS & Dewey schemes when evaluating query 1. 91
Figure 5-61: the p-value between the CLS, LLS and Dewey schemes when evaluating query 1. 92
Figure 5-62: Boxplot between CLS, LLS & Dewey schemes when evaluating query 2. 92
Figure 5-63: the p-value between the CLS, LLS and Dewey schemes when evaluating query 2. 92
Figure 5-64: Boxplot between CLS, LLS & Dewey schemes when evaluating query 3. 92
Figure 5-65: the p-value between the CLS, LLS and Dewey schemes when evaluating query 3. 93
Figure 5-66: Boxplot between CLS, LLS & Dewey schemes when evaluating query 4. 93
Figure 5-67: the p-value between the CLS, LLS and Dewey schemes when evaluating query 4. 93
Figure 5-68: Boxplot between CLS, LLS & Dewey schemes when evaluating query 5. 93
Figure 5-69: the p-value between the CLS, LLS and Dewey schemes when evaluating query 5. 94
Figure 5-70: Boxplot between CLS, LLS & Dewey schemes when evaluating query 6. 94
Figure 5-71: the p-value between the CLS, LLS and Dewey schemes when evaluating query 6. 94
Figure 5-72: Boxplot between CLS, LLS & Dewey schemes when evaluating query 7. 94
Figure 5-73: the p-value between the CLS, LLS and Dewey when evaluating schemes 7. 95
Figure 5-74: Boxplot between CLS, LLS & Dewey schemes when evaluating query 8. 95
Figure 5-75: the p-value between the CLS LLS and Dewey schemes when evaluating query 8. 95

xiv

Figure 5-76: Boxplot between CLS & LLS & Dewey schemes when evaluating query 9. 95
Figure 5-77: the p-value between the CLS, LLS and Dewey schemes when evaluating query 9. 96
Figure 5-78: Boxplot between CLS, LLS & Dewey schemes when evaluating query 11. 96
Figure 5-79: the p-value between the CLS, LLS and Dewey schemes when evaluating query 11. 96
Figure 5-80: Boxplot between CLS, LLS & Dewey schemes when evaluating query 12. 96
Figure 5-81: the p-value between the CLS, LLS and Dewey schemes when evaluating query 12. 97
Figure 5-82: Boxplot between CLS & LLS & Dewey schemes when evaluating query 13. 97
Figure 5-83: the p-value between the CLS, LLS and Dewey schemes when evaluating query 13. 97
Figure 5-84: shows Boxplot between CLS & LLS & Dewey schemes when evaluating query 14. 97
Figure 5-85: the p-value between the CLS, LLS and Dewey schemes when evaluating query 14. 98
Figure 5-86: Boxplot between CLS, LLS & Dewey schemes when evaluating query 15. 98
Figure 5-87: the p-value between the CLS, LLS and Dewey schemes when evaluating query 15. 98
Figure 5-88: Boxplot between CLS, LLS & Dewey schemes when evaluating query 16. 98
Figure 5-89: the p-value between the CLS, LLS and Dewey when evaluating query 16. 99
Figure 5-90: Boxplot between CLS, LLS & Dewey schemes when evaluating query 17. 99
Figure 5-91: the p-value between the CLS, LLS and Dewey schemes when evaluating query 17. 99
Figure 5-92: Boxplot between CLS, LLS and Dewey schemes when evaluating query 18. 99
Figure 5-93: the p-value between the CLS, LLS and Dewey schemes when evaluating query 18. 99
Figure 5-94: Boxplot between CLS & LLS & Dewey schemes when evaluating query 19. 100
Figure 5-95: the p-value between the CLS and & LLS schemes when evaluating query 19. 100
Figure 5-96: Boxplot between CLS, LLS & Dewey schemes when evaluating query 20. 100
Figure 5-97: the p-value between the CLS, LLS and Dewey schemes when evaluating query 20. 100
Figure 5-98: spent time for uniform insertions... 102
Figure 5-99: size of the labels for uniform insertions .. 102
Figure 5-100: Boxplot between CLS, LLS & Dewey schemes when executing the Uniform insertion
using 1 MB file. .. 103
Figure 5-101: the p-value between the CLS and & LLS schemes when executing the Uniform insertion
using 1 MB file. .. 103
Figure 5-102: Boxplot between CLS, LLS & Dewey schemes when executing the Uniform insertion
using 10 MB file. .. 103
Figure 5-103: the p-value between the CLS, LLS and Dewey schemes when executing the Uniform
insertion using 10 MB file. ... 104
Figure 5-104: Boxplot between CLS, LLS & Dewey schemes when executing the Uniform insertion
using 20 MB file. .. 104
Figure 5-105: the p-value between the CLS, LLS and Dewey schemes when executing the Uniform
insertion using 20 MB file. ... 104
Figure 5-106: Boxplot between CLS & LLS & Dewey schemes when executing the Uniform insertion
using 30 MB file. .. 104
Figure 5-107: the p-value between the CLS and & LLS schemes when executing the Uniform insertion
using 30 MB file. .. 105
Figure 5-108: Boxplot between CLS & LLS & Dewey schemes when executing the Uniform insertion
using 40 MB file. .. 105
Figure 5-109: the p-value between the CLS, LLS and Dewey schemes when executing the Uniform
insertion using 40 MB file. ... 105
Figure 5-110: Boxplot between CLS & LLS & Dewey schemes when executing the Uniform insertion
using 50 MB file. .. 105
Figure 5-111: the p-value between the CLS, LLS and Dewey schemes when executing the Uniform
insertion using 50 MB file. ... 106

xv

Figure 5-112: Boxplot between CLS, LLS & Dewey when executing the Uniform insertion using 60 MB
file... 106
Figure 5-113: show the p-value between the CLS, LLS and Dewey schemes when executing the Uniform
insertion using 60 MB file. ... 106
Figure 5-114: Boxplot between CLS, LLS & Dewey schemes when executing the Uniform insertion
using 70 MB file. .. 106
Figure 5-115: the p-value between the CLS, LLS and Dewey schemes when executing the Uniform
insertion using 70 MB file. ... 107
Figure 5-116: Boxplot between CLS, LLS & Dewey schemes when executing the Uniform insertion
using 80MB file. ... 107
Figure 5-117: the p-value between the CLS, LLS and Dewey schemes when executing the Uniform
insertion using 80 MB file. ... 107
Figure 5-118: Boxplot between CLS, LLS & Dewey schemes when executing the Uniform insertion
using 90 MB file. .. 107
Figure 5-119: the p-value between the CLS, LLS and Dewey schemes when executing the Uniform
insertion using 90 MB file. ... 108
Figure 5-120: Boxplot between CLS, LLS & Dewey schemes when executing the Uniform insertion
using 100 MB file. .. 108
Figure 5-121: the p-value between the CLS, LLS and Dewey schemes when executing the Uniform
insertion using 100 MB file. ... 108
Figure 5-122: Execution time for all schemes .. 109
Figure 5-123: size of the labels for all schemes ... 109
Figure 5-124: Boxplot between CLS, LLS & Dewey schemes when executing the Ordered Skewed
insertion using 1000 MB file. ... 110
Figure 5-125: the p-value between the CLS, LLS and Dewey schemes when executing the Ordered
Skewed insertion using 1000 MB file. ... 110
Figure 5-126: Boxplot between CLS & LLS & Dewey schemes when executing the Ordered Skewed
insertion using 2000 MB file. ... 110
Figure 5-127: the p-value between the CLS, LLS and Dewey schemes when executing the Ordered
Skewed insertion using 2000 MB file. ... 111
Figure 5-128: Boxplot between CLS, LLS & Dewey schemes when executing the Ordered Skewed
insertion using 3000 MB file. ... 111
Figure 5-129: the p-value between the CLS, LLS and Dewey schemes when executing the Ordered
Skewed insertion using 3000 MB file. ... 111
Figure 5-130: Boxplot between CLS, LLS and Dewey schemes when executing the Ordered Skewed
insertion using 4000 MB file. ... 111
Figure 5-131: the p-value between the CLS, LLS and Dewey schemes when executing the Ordered
Skewed insertion using 4000 MB file. ... 112
Figure 5-132: Boxplot between CLS, LLS & Dewey schemes when executing the Ordered Skewed
insertion using 5000 MB file. ... 112
Figure 5-133: the p-value between the CLS, LLS and Dewey schemes when executing the Ordered
Skewed insertion using 5000 MB file. ... 112
Figure 5-134: Boxplot between CLS & LLS & Dewey schemes when executing the Ordered Skewed
insertion using 6000 MB file. ... 112
Figure 5-135: the p-value between the CLS, LLS and Dewey schemes when executing the Ordered
Skewed insertion using 6000 MB file. ... 113
Figure 5-136: Boxplot between CLS, LLS & Dewey schemes when executing the Ordered Skewed
insertion using 7000 MB file. ... 113

xvi

Figure 5-137: the p-value between the CLS, LLS and Dewey schemes when executing the Ordered
Skewed insertion using 7000 MB file. ... 113
Figure 5-138: Boxplot between CLS, LLS & Dewey schemes when executing the Ordered Skewed
insertion using 8000 MB file. ... 113
Figure 5-139: the p-value between the CLS, LLS and Dewey schemes when executing the Ordered
Skewed insertion using 8000 MB file. ... 114
Figure 5-140: Boxplot between CLS, LLS & Dewey schemes when executing the Ordered Skewed
insertion using 9000 MB file. ... 114
Figure 5-141: the p-value between the CLS, LLS and Dewey schemes when executing the Ordered
Skewed insertion using 9000 MB file. ... 114
Figure 5-142: Boxplot between CLS & LLS & Dewey schemes when executing the Ordered Skewed
insertion using 10000 MB file. ... 114
Figure 5-143: the p-value between the CLS, LLS and Dewey schemes when executing the Ordered
Skewed insertion using 10000 MB file. ... 115
Figure 5-144: Execution time for random insertions. .. 115
Figure 5-145: size of the labels for random Skewed insertions. .. 115
Figure 5-146: Boxplot between CLS, LLS & Dewey schemes when executing the Random Skewed
insertion using 1000 MB file. ... 116
Figure 5-147: the p-value between the CLS, LLS and Dewey schemes when executing the Random
Skewed insertion using 1000 MB file. ... 116
Figure 5-148: Boxplot between CLS, LLS & Dewey schemes when executing the Random Skewed
insertion using 2000 MB file. ... 116
Figure 5-149: the p-value between the CLS, LLS and Dewey schemes when executing the Random
Skewed insertion using 2000 MB file. ... 117
Figure 5-150: Boxplot between CLS & LLS & Dewey schemes when executing the Random Skewed
insertion using 3000 MB file. ... 117
Figure 5-151: the p-value between the CLS, LLS and Dewey schemes when executing the Random
Skewed insertion using 3000 MB file. ... 117
Figure 5-152: Boxplot between CLS, LLS and Dewey schemes when executing the Random Skewed
insertion using 4000 MB file. ... 117
Figure 5-153: the p-value between the CLS, LLS and Dewey schemes when executing the Random
Skewed insertion using 4000 MB file. ... 118
Figure 5-154: Boxplot between CLS & LLS & Dewey schemes when executing the Random Skewed
insertion using 5000 MB file. ... 118
Figure 5-155: the p-value between the CLS, LLS and Dewey schemes when executing the Random
Skewed insertion using 5000 MB file. ... 118
Figure 5-156: Boxplot between CLS, LLS & Dewey schemes when executing the Random Skewed
insertion using 6000 MB file. ... 118
Figure 5-157: the p-value between the CLS, LLS and Dewey schemes when executing the Random
Skewed insertion using 6000 MB file. ... 119
Figure 5-158: Boxplot between CLS, LLS & Dewey schemes when executing the Random Skewed
insertion using 7000 MB file. ... 119
Figure 5-159: the p-value between the CLS, LLS and Dewey schemes when executing the Random
Skewed insertion using 7000 MB file. ... 119
Figure 5-160: Boxplot between CLS, LLS & Dewey schemes when executing the Random Skewed
insertion using 8000 MB file. ... 119
Figure 5-161: the p-value between the CLS, LLS and Dewey schemes when executing the Random
Skewed insertion using 8000 MB file. ... 120

xvii

Figure 5-162: Boxplot between CLS, LLS & Dewey schemes when executing the Random Skewed
insertion using 9000 MB file. ... 120
Figure 5-163: the p-value between the CLS, LLS and Dewey schemes when executing the Random
Skewed insertion using 9000 MB file. ... 120
Figure 5-164: Boxplot between CLS, LLS & Dewey schemes when executing the Random Skewed
insertion using 10000 MB file. ... 120
Figure 5-165: the p-value between the CLS, LLS and Dewey schemes when executing the Random
Skewed insertion using 10000 MB file. ... 121
Figure 5-166: relationships after uniform insertions. ... 121
Figure 5-167: Boxplot between CLS, LLS & Dewey schemes when determining the Order after uniform
insertion. ... 122
Figure 5-168: the p-value between the CLS, LLS and Dewey schemes when determining the Order after
uniform insertion. ... 122
Figure 5-169: Boxplot between CLS, LLS & Dewey schemes when determining the Nodes’ level after
uniform insertion. ... 122
Figure 5-170: the p-value between the CLS, LLS and Dewey schemes when determining the Nodes’ level
after uniform insertion. ... 122
Figure 5-171: Boxplot between CLS, LLS & Dewey schemes when determining the sibling relationships
after uniform insertion. ... 123
Figure 5-172: the p-value between the CLS, LLS and Dewey schemes when determining the sibling
relationships after uniform insertion. ... 123
Figure 5-173: Boxplot between CLS, LLS & Dewey schemes when determining the Parent/Child
relationships after uniform insertion. ... 123
Figure 5-174: the p-value between the CLS, LLS and Dewey schemes when determining the Parent/Child
relationships after uniform insertion. ... 123
Figure 5-175: Boxplot between CLS, LLS & Dewey schemes when determining the A/D relationships
after uniform insertion. ... 124
Figure 5-176: the p-value between the CLS, LLS and Dewey schemes when determining the A/D
relationships after uniform insertion. ... 124
Figure 5-177: relationships after ordered skewed insertions. ... 124
Figure 5-178: Boxplot between CLS & LLS & Dewey schemes when determining the order nodes after
Ordered skewed insertion. .. 125
Figure 5-179: shows the p-value between the CLS, LLS and Dewey schemes when determining the order
nodes after Ordered skewed insertion. ... 125
Figure 5-180: Boxplot between CLS, LLS & Dewey schemes when determining the Nodes’ level after
Ordered skewed insertion. .. 126
Figure 5-181: the p-value between the CLS, LLS and Dewey schemes when determining the Nodes’ level
after Ordered skewed insertion. .. 126
Figure 5-182: Boxplot between CLS, LLS & Dewey schemes when determining the Sibling relationships
after Ordered skewed insertion. .. 126
Figure 5-183: the p-value between the CLS, LLS and Dewey schemes when determining the Sibling
relationships after Ordered skewed insertion. .. 126
Figure 5-184: Boxplot between CLS, LLS & Dewey schemes when determining the Parent/Child
relationships after Ordered skewed insertion. .. 127
Figure 5-185: the p-value between the CLS, LLS and Dewey schemes when determining the Parent/Child
relationships after Ordered skewed insertion ... 127
Figure 5-186: Boxplot between CLS, LLS & Dewey schemes when determining the A/D relationships
after Ordered skewed insertion. .. 127

xviii

Figure 5-187: the p-value between the CLS, LLS and Dewey schemes when determining the A/D
relationships after Ordered skewed insertion. .. 127
Figure 5-188: relationships after random skewed insertions. ... 128
Figure 5-189: Boxplot between CLS, LLS & Dewey schemes when determining the Order after Random
skewed insertion. .. 128
Figure 5-190: the p-value between the CLS, LLS and Dewey schemes when determining the Order after
Random skewed insertion. ... 129
Figure 5-191: Boxplot between CLS, LLS & Dewey schemes when determining the Nodes’ level after
Random skewed insertion. ... 129
Figure 5-192: show the p-value between the CLS, LLS and Dewey schemes when determining the Nodes’
level after Random skewed insertion. .. 129
Figure 5-193: Boxplot between CLS, LLS & Dewey schemes when determining the Sibling relationships
after Random skewed insertion. ... 129
Figure 5-194: the p-value between the CLS, LLS and Dewey schemes when determining the Sibling
relationships after Random skewed insertion. .. 129
Figure 5-195: Boxplot between CLS, LLS & Dewey schemes when determining the P/C relationships
after Random skewed insertion. ... 130
Figure 5-196: the p-value between the CLS, LLS and Dewey schemes when determining the P/C
relationships after Random skewed insertion. .. 130
Figure 5-197: Boxplot between CLS, LLS & Dewey schemes when determining the A/D relationships
after Random skewed insertion. ... 130
Figure 5-198: the p-value between the CLS, LLS and Dewey schemes when determining the A/D
relationships after Random skewed insertion. .. 130
Figure 5-199: query performance for the LLS scheme. ... 131
Figure 5-200: query performance for the Dewey labelling scheme. .. 131
Figure 5-201: query performance for the proposed scheme. .. 132
Figure 5-202: query performance for all schemes for dynamic documents. .. 132
Figure 5-203: query performance for all schemes for group 1. .. 132
Figure 5-204: query performance for all schemes for group 2. .. 133
Figure 5-205: query performance for all schemes for group 3. .. 133
Figure 5-206: Boxplot between the CLS, LLS and Dewey schemes when executing query 1 after
insertion. ... 134
Figure 5-207: the p-value between the CLS, LLS and Dewey schemes when executing query 1 after
insertion. ... 134
Figure 5-208: Boxplot between the CLS, LLS and Dewey schemes when executing query 2 after
insertion. ... 135
Figure 5-209: the p-value between the CLS, LLS and Dewey schemes when executing query 2 after
insertion. ... 135
Figure 5-210: Boxplot between the CLS, LLS and Dewey schemes when executing query 3 after
insertion. ... 135
Figure 5-211: the p-value between the CLS, LLS and Dewey schemes when executing query 3 after
insertion. ... 135
Figure 5-212: Boxplot between the CLS, LLS and Dewey schemes when executing query 4 after
insertion. ... 136
Figure 5-213: show the p-value between the CLS, LLS and Dewey schemes when executing query 4 after
insertion. ... 136
Figure 5-214: Boxplot between the CLS, LLS and Dewey schemes when executing query 5 after
insertion. ... 136

xix

Figure 5-215: the p-value between the CLS, LLS and Dewey schemes when executing query 5 after
insertion. ... 136
Figure 5-216: Boxplot between the CLS, LLS and Dewey schemes when executing query 6 after
insertion. ... 137
Figure 5-217: the p-value between the CLS, LLS and Dewey schemes when executing query 6 after
insertion. ... 137
Figure 5-218: Boxplot between the CLS, LLS and Dewey schemes when executing query 7 after
insertion. ... 137
Figure 5-219: the p-value between the CLS, LLS and Dewey schemes when executing query 7 after
insertion. ... 137
Figure 5-220: Boxplot between the CLS, LLS and Dewey schemes when executing query 8 after
insertion. ... 138
Figure 5-221: the p-value between the CLS, LLS and Dewey schemes when executing query 8 after
insertion. ... 138
Figure 5-222: Boxplot between the CLS, LLS and Dewey schemes when executing query 9 after
insertion. ... 138
Figure 5-223: the p-value between the CLS, LLS and Dewey schemes when executing query 9 after
insertion. ... 138
Figure 5-224: Boxplot between the CLS, LLS and Dewey schemes when executing query 11 after
insertions. ... 139
Figure 5-225: the p-value between the CLS, LLS and Dewey schemes when executing query 11 after
insertions. ... 139
Figure 5-226: Boxplot between the CLS, LLS and Dewey schemes when executing query 12 after
insertions. ... 139
Figure 5-227: the p-value between the CLS, LLS and Dewey schemes when executing query 12 after
insertions. ... 139
Figure 5-228: Boxplot between the CLS, LLS and Dewey schemes when executing query 13 after
insertions. ... 140
Figure 5-229: the p-value between the CLS, LLS and Dewey schemes when executing query 13 after
insertions. ... 140
Figure 5-230: Boxplot between the CLS, LLS and Dewey schemes when executing query 14 after
insertions. ... 140
Figure 5-231: the p-value between the CLS, LLS and Dewey schemes when executing query 14 after
insertions. ... 140
Figure 5-232: Boxplot between the CLS, LLS and Dewey schemes when executing query 15 after
insertions. ... 141
Figure 5-233: the p-value between the CLS, LLS and Dewey schemes when executing query 15 after
insertions. ... 141
Figure 5-234: Boxplot between the CLS, LLS and Dewey schemes when executing query 16 after
insertions. ... 141
Figure 5-235: the p-value between the CLS, LLS and Dewey schemes when executing query 16 after
insertions. ... 141
Figure 5-236: Boxplot between the CLS, LLS and Dewey schemes when executing query 17 after
insertions. ... 142
Figure 5-237: the p-value between the CLS, LLS and Dewey schemes when executing query 17 after
insertions. ... 142
Figure 5-238: Boxplot between the CLS, LLS and Dewey schemes when executing query 18 after
insertions. ... 142

xx

Figure 5-239: the p-value between the CLS, LLS and Dewey schemes when executing query 18 after
insertions. ... 142
Figure 5-240: Boxplot between the CLS, LLS and Dewey schemes when executing query 19 after
insertions. ... 143
Figure 5-241: the p-value between the CLS, LLS and Dewey schemes when executing query 19 after
insertions. ... 143
Figure 5-242: Boxplot between the CLS, LLS and Dewey schemes when executing query 20 after
insertions. ... 143
Figure 5-243: the p-value between the CLS, LLS and Dewey schemes when executing query 20 after
insertions. ... 143

xxi

List of tables

TABLE 2-1: XPATH AXIS (W3SCHOOL, 2016) .. 15
TABLE 3-1: A NODE TABLE OF THE XML DATA IN FIGURE 3-2 .. 28
TABLE 3-2:SUMMARY OF THE RESULTS FOR THE EVALUATION OF THE LABELLING
SCHEMES ... 38
TABLE 4-1: XMARK BENCHMARK QUERIES (SCHMIDT ET AL., 2002) 62
TABLE 4-2: XMARK FILES FOR EXPERIMENTS ... 64
TABLE 5-1: THE RESULTS OF THE QUERIES FOR TESTING ALL SCHEMES 82
TABLE 5-2: GROUPS OF THE QUERIES BASED ON THEIR SPENT TIME. 84

1

1. Introduction
1.1 Introduction
Extensible Markup Language (XML) has become very significant technology for
transferring data through the world of the Internet (Abiteboul, Buneman, & Suciu, 2000;
Zhuang & Feng, 2012). Thus, a large amount of research on XML databases and XML
technologies such as data retrieval and data update has being carried out (Zhuang &
Feng, 2012). XML labelling scheme is an important technique used to handle XML data
efficiently and robustly. Labelling XML data is performed by assigning labels to all
nodes in that XML document. Every node is provided with a unique label that can be
used to build the relationship among nodes in that XML tree (Bosak & Bray, 1999;
Elmasri & Navathe, 2016). Initially, the main focus of the XML research was about
handling static documents in terms of data retrieval and navigation. (Connolly & Begg,
2015; Jiang, He, Lin, & Jia, 2011; Kaushik, Bohannon, Naughton, & Korth, 2002;
Kaushik, Bohannon, Naughton, & Shenoy, 2002). At present, most XML documents are
dynamic and it is essential that they are handled efficiently since most database
applications nowadays include XML processing. As a result, labelling XML data has
become an important task to improve query processing (Cohen, Kaplan, & Milo, 2010).
Many dynamic schemes have been proposed (Amagasa, Yoshikawa, & Uemura, 2003;
Cohen et al., 2010; Eda et al., 2004; O'Neil et al., 2004a; X. Wu, M. L. Lee, & W. Hsu,
2004b). However, none of these schemes suit all users’ requirements and they are only
appropriate for certain circumstances. The main challenges are with dynamic XML data
since static XML data has been efficiently processed by proposing a number of
successful schemes such as the Dewey scheme and containment scheme (Tatarinov et al.,
2002; Zhang, Naughton, DeWitt, Luo, & Lohman, 2001). The case with dynamic XML
data is different as the XML databases still struggle to manage large numbers of
relabelling cases. Many labelling schemes have been proposed for dynamic XML data
(C. Li, Ling, Lu, & Yu, 2005; Liu, Ma, & Yan, 2009; O'Neil et al., 2004a; Xu, Ling, &
Wu, 2012; Xu, Ling, Wu, & Bao, 2009). Any efficient labelling scheme should provide
effective query performance, labelling XML data efficiently, reducing the required
relabelling cases, and determining the relationships. Therefore, this research addressed
this issue and came up with a new proposal as a new XML labelling scheme. This thesis
proposed and evaluated an XML labelling scheme that was developed to provide an
improvement to the query processing, reduce the relabelling to the lowest possible level,
and update efficiency.
1.2 Motivation and Challenges
XML data has many features over the relational model. For instance, both the structure
and the data are incorporated in the XML document. However, relational data is different
from XML data in that the structure and data are separate from each other (Ali et al.,

2

2006; Luk et al., 2002). Thus, this advantage makes XML a suitable method for
exchanging data. Moreover, XML data has a flexible model in terms of querying data
which is not available in query languages for relational databases such as SQL
(Abiteboul, 1997).
The fast growth in XML databases is a consequence of the high demand for efficiency of
XML query. Indexing is a major factor in achieving efficient and scalable query
processing by reducing the search space and time. Thus, there is much concern about the
XML indexing and labelling schemes. However, the existing XML indexing techniques
face many challenges (Klaib & Lu, 2014). Storing XML data is an expensive process
since the data is stored randomly in the disk. Also, the data is not regular and some
elements are missing or repeated. Consequently, these issues lead to inefficient query
performance (Chung, Min, & Shim, 2002). Moreover, as the data and the structure are
both integrated in the XML document, this makes navigation through the data tree a
complicated and challenging task (Haifeng, Hongjun, Wei, & Ooi).
The diversity of structural relationships between different elements in XML documents is
one of the key issues that distinguishes XML data and relational data (Che, Aberer, &
Özsu, 2006). Figure 1-1 shows a relational databases model. The most common
relationships in the XML data model are, parent, child, sibling, ancestor, descendent
relationships. These relationships are used to derive other relationships that are identified
by X-Path query language (Anders Berglund, 2015). Figure 1-2 shows an example of
XML tree.

 Subject College People

 Student Teacher

Figure 1-1: relational databases model

Sno S1
IT DB

CNo C1
Cname Tech.

Cname Tech.

Sname Jim
Sname Abdo

Sname Ali

3

Figure 1-2: XML tree

Furthermore, XML data management is a challenge nowadays because not all data are
standard format. Thus, handling this data is a complicated task (Ma, Liu, Hunter, &
Zhang, 2010). The growth of XML data leads to the development of XML databases.
Managing XML data is required by many applications in order to save their data.
Examples of these applications are Microsoft Office and Open Office (Barbosa &
Bonifati, 2007).
In general, the efficiency of the performance of any query in a database is based on the
indexing. In terms of an XML database, the indexing depends on the labelling scheme
(Johnson, Miller, Khan, & Thuraisingham, 2012). Therefore, labelling schemes play the
same role that the index plays for relational databases. The key task of the labelling
schemes is to identify the structural relationships among the nodes in the XML tree (Sans
& Laurent, 2008).
 Therefore, an investigation was carried out and determined that one of the most common
shortcomings of the existing labelling schemes is the high cost of the updates. To be
more specific, the existing labelling schemes lack the ability to adapt deletions and
insertions gracefully, even though, many labelling schemes have been proposed to solve
these shortcomings. The advantages of one labelling scheme are the disadvantages of
another (Klaib & Lu, 2014).
With respect to the classification of labelling schemes, there are three key categories:
namely, node indexes, path indexes, and sequence indexes. These categories are
explained in the chapter of Previous Work.
 Consequently, the main motivation for this research is to improve the performance of
XML query processing by developing an XML labelling scheme.
1.3 Main Findings and Contributions
This research contributes to the field of XML data indexing. The main contributions are
briefly explained in this section:

4

1- Study and investigate the XML indexing techniques and determine their
limitations. This work was published in a conference (Klaib & Lu, 2014).

2- Propose a novel hybrid XML labelling scheme that presents an improvement to
the labelling schemes.

3- The proposed scheme shows improvement on handling both static and dynamic
XML documents.

4- The proposed scheme enhances the performance of XML query.
5- The proposed scheme enhances the updating processes by reducing the re-

labelling cases to the lowest possible level.
6- The research improves the efficiency of labelling in terms of time and size.
7- The proposed scheme provides fast labelling construction.

1.4 Research Hypothesis:
Based on the research motivation and challenges, the hypothesis that this thesis seeks to
evaluate is the following:
H1: Employing a hybrid labelling scheme based on a clustering-based technique
improves the efficiency of labelling nodes and query performance of XML data.
H0: Employing a hybrid labelling scheme based on a clustering-based technique does
not improve the efficiency of labelling nodes and query performance of XML data.
1.5 Aims and Objectives:
The aim of this research is to investigate XML labelling schemes and their limitations
and address the challenges and open issues in order to improve the efficiency of indexing
XML data.
 In order to achieve this aim, the following objectives have been defined:

Objective 1: Carry out a state-of-the-art literature review on the current XML
labelling schemes.
Objective 2: Introduce a framework that addresses some limitations and challenges
of indexing XML data.
Objective 3: Design and develop this framework.
Objective 4: Evaluate the framework by testing it in order to ascertain whether it has
achieved the aim.

1.6 The Hypothesis and The Findings
Four experiments were used to test the hypothesis. The results support the research

hypothesis in general. These experiments tested the hypothesis in different aspects.

5

The labelling nodes experiment illustrated that the hypothesis was supported and the
proposed scheme presented better performance in this regard. The second experiment
showed that the proposed scheme presented efficient calculation for determining the
relationships. The third experiment assessed the query performance using 19 queries
used for different purposes. The last experiment presented the ability of the proposed
scheme to handle three types of insertions. The results suggest that the proposed
scheme shows better performance than the other schemes in this respect. Generally,
these results support the hypothesis.

1.7 Research Approach:
1.7.1 Overview

This research started by a state-of-the-art review in XML indexing techniques and
their classifications, resulting in a comparison between these techniques which was
carried out in order to identify and analyse their pros and cons. Suitable criteria were
identified for this comparison. Briefly, these criteria are the following:
1.7.1.1 Measuring how precise and complete the results are.
1.7.1.2 This criterion is used to assess issues associated with the requirement to

calculate the relationships among elements; the requirement of structural
joins in order to perform a query; and finally, the requirement for further
refinement tasks to gain accurate results.

1.7.1.3 Measuring how much the index is scalable. In other words, measure the
ability of the index to cope with variety of queries in terms of path lengths.

1.7.1.4 Measuring how many nodes that are updated in order to find out the cost of
the update processes.

Having carried out the investigation, there are some limitations and open issues such
as the trade-off between the index size and the query performance as whenever the
index size increases, then the query performance decreases and vice versa. In
addition, the XML data structure is semi-structured and irregular. Therefore, the
labelling scheme plays a key role in handling the decrease of the index size and
improves the query performance.
Consequently, this research concentrates on improving the performance of XML
query processing. As a result, this research proposes a new hybrid approach called
clustering-based labelling scheme for indexing XML data.

1.7.2 Methodology of the Proposed Scheme:
Theoretically, the idea of the proposed labelling scheme is to divide the whole data tree
into small groups (clusters). This mechanism makes each cluster itself a sub-data tree.
The advantage of this mechanism is to reduce the number of required re-labelling cases
to the lowest possible level, and as a result improve the efficiency of the query

6

performance processing. Subsequently, two XML labelling schemes were used to label
the nodes and their clusters of a data tree. These two schemes are the Dewey labelling
scheme which was used to label the clusters, and the LLS labelling scheme which was
used to label the nodes of the data tree.
1.7.3 Data Model and labelling XML Document

The implementation mechanism of this scheme is divided into two stages, see below:

1.7.3.1 Creating and Labelling Clusters:
All nodes are grouped into clusters as follows:
a- Each node and its child nodes are gathered to build a cluster.
b- Only the main root of the document is considered as a cluster itself and without

child nodes. This node is labelled number (1).
c- Each cluster is considered a sub-tree.
d- A cluster can have only one or two levels of nodes.
e- Each cluster has at least one node.
f- Each cluster may have a root and child node(s) that is connected with this root.

Thus, a cluster must contain at least one node.
g- All clusters, including the main root (not each node), are labelled by the

Dewey labelling scheme.

1.7.3.2 Labelling Nodes:
a) Each cluster is treated as a sub-tree and its nodes are labelled separately

from other clusters.
b) The LLS labelling scheme is used to label the nodes.
c) If the root of a cluster is a child node of another cluster, which means that

this root has already been labelled, then the label of this root will be kept
the same.

More description is to be in the following chapter.

1.8 Thesis Structure and Organisation
This section discusses the thesis structure. The thesis includes six chapters. The outlines
of these chapters are as follows:
Chapter 2 Extensible Markup Language (XML): This chapter discusses the
background of XML technology. An introduction is provided. XML overview and
Origins is described including XML syntax, XML document format, XML advantages
and disadvantages, and XML structure are explained. Subsequently, many XML
technologies are discussed in detail such as: DTD, SAX, XML schema, XML DOM.
Furthermore, XML Query languages were described. Data Model is discussed including
types of Data model.

7

Chapter 3 Literature Review and Previous Work: This chapter discusses an overview
of labelling schemes and existing approaches in detail. Significance of XML labelling
schemes and critique of XML labelling schemes are also explained.
Chapter 4 Methodology and Framework: This chapter discusses the existing
approaches and the approach of this research and then determines their advantages and
disadvantages. This research approach is explained in detail in this chapter. The structure
and labelling nodes technique of the proposed scheme are explained. The design and
implementation of the proposed scheme are illustrated in detail. Experimental setup is
also explained, including the experiment objectives and types, XML datasets and
Benchmarks. Subsequently, data analysis and presentation are discussed in detail,
including data generation, and the data analysis approach used for this research is
explained.
Chapter 5 Results: This chapter presents the results of the experiments in detail. The
results are divided into experiments for static documents and experiments for dynamic
documents. The results of the experiments for static documents includes the three
experiments used for this part. The results of the experiments for dynamic documents
also comprise of inserting new nodes, determining relationships, and query performance
for dynamic.
Chapter 6 Discussion: Assessment for the results is provided. The main findings of this
assessment are explained. The main advantages and limitation of the proposed scheme
are illustrated. The discussion and critical assessment of the results are discussed. The
research hypothesis is evaluated in this chapter. The strengths and limitations of the
proposed labelling scheme are explained. Finally, the experimental findings are outlined.
Chapter 7 Conclusion: This chapter starts by explaining the introduction chapter in
brief. It goes on to explain and summarise the literature review. The Methodology is also
illustrated in brief. The Background of XML chapter is reviewed. The Results and
Discussion chapter is outlined and the results discussed briefly.
1.9 Summary

This thesis addresses the challenges and problems of indexing XML data. Thus, the
problems and limitations of the labelling schemes were reviewed and considered. This
chapter provided an introduction to this thesis. Subsequently, the motivation and
challenges for this research were addressed; the research hypothesis was identified;
the aims and objectives of this research were explained; the research approach was
described; and lastly, the thesis organisation was summarised.

8

2. Extensible Markup Language (XML)

2.1 Introduction
The first use for the XML data was by the W3C to share data among applications and
consequently different applications and platforms can communicate much easier
(Abiteboul et al., 2000). Since that time, XML is getting more popular for many
advantages that this technology offers such as simplicity, supporting data
manipulation and data retrieval. As a result, the applications and technologies that
rely on XML have increased rapidly (Bray, Paoli, Sperberg-McQueen, Maler, &
Yergeau, 2006). As far as the database is concerned, the XML data management has
been improved to adopt this spread of XML data. Therefore, this chapter
demonstrates an overview of XML fundamentals and the associated technologies
such as XML databases, SAX, DTD, and XML schema. This chapter also provides a
brief history of XML overview and origins includes XML syntax, XML document
format, XML advantages and disadvantages, and XML structure. Section 3.4
discusses XML technologies such as Document Type Definition (DTD), Simple API
for XML (SAX), XML schema, and XQuery. Subsequently, section 4.4 discusses
XML parsing. Section 4.5 explained XML DOM. XML databases are illustrated in
section 4.6. the most common Query languages are discussed in section 4.7. XML
schems and data models are explained in sections 4.8 and 4.9 respectively.
2.2 XML Overview and Origins
The World Wide Web Consortium (W3C) recommended the XML in 1998 as a
method for saving, retrieving, and exchanging data on the internet. XML has many
advantages such as it’s a flexible language; so, developers can create their own tags.
XML data are portable format. XML is a very simple language. XML is a readable
data by most platforms. XML is originally a part of the document community rather
than the database one (Elmasri & Navathe, 2016).

2.2.1 XML syntax
The rules of the XML are very logical and simple. XML files contains many parts
such as elements, attributes, and comments (Abiteboul et al., 2000).

2.2.1.1 Elements
The element is the essential part and represents the basic component of the XML
document. The element contains two tags, namely the opening one and the closing
one. Between these two tags is the value of the element. This value might be other
elements, or text, or both elements and text. Moreover, elements can include
attributes, such as < people teacher = “Ali”> from the figure 2-1, or can be void

9

(Abiteboul et al., 2000). The elements in a XML document have to be balanced so
each opening tag has a closing tag (Abiteboul et al., 2000).

Figure 2-1: An example of XML file
2.2.1.2 Attributes
The purpose of the attributes is to give extra details regarding the element. Generally,
this kind of elements is fixed. In addition, the attributes are located into the opening
tag and contains the name and the value of the attribute. The value of the attribute is
located into two bracket s as this example shows < people teacher = “Ali”> from the
figure 2-1. Reference attributes are utilized to refer and link to other elements or
the element itself (Abiteboul et al., 2000; Tidwell, 2002).
Attributes are different from elements as the attributes are suitable for static and
certain values, whereas the elements are suitable for dynamic values. Attributes are
hard to include sub-elements. However, elements can include values and sub-
elements. Therefore, it is better to reduce the attributes to the lowest possible
level(Abiteboul et al., 2000).

2.2.1.3 Comments
Even though XML is simple and readable, comments are useful for clarification
purpose. Providing notes and explaining any complicated code can be achieved by
adding comments for the users and developers. Despite the position of the comment
is not specified, it must be between tags like this example <!-- comment -->.
Comments are not processed by applications (Connolly & Begg, 2015).

2.2.2 Ordering
Elements in XML document must be in order, whereas the attributes do not need to
be in order. Figure 2-2 shows two fragments of XML (a) and (b) which are not equal
as the elements are in different orders. Figure 2-3 illustrates two fragments of XML
(a) and (b) which are equal even the attributes are in different orders (Abiteboul et
al., 2000).

<College>
 <subject>
 <tutor>Dave</tutor >
 </ subject >
 <people> </people>
 <people>
 <student>Jim</student >
 </people>
 <people>
 < people teacher = “Ali”>
 <student > Abdo </student>
 </people >
 </College>

10

<contact>
 <telNo>457855665 </telNo>
 <email> sample@gmail.com</ email >
</contact >

<contact>
 <email> sample@gmail.com</ email >
 <telNo>457855665 </telNo>
</contact >

(a) XML elements (b) XML elements
Figure 2-2: XML elements – (a) not equal (b)

<Name> Fname=Jim” Lname= “Smith” </Name >

<Name> Lname= “Smith” Fname=Jim” </Name >

(a) XML attributes (b) XML attributes

Figure 2-3: XML elements – (a) equal (b)
2.2.3 XML Document Format

Despite that XML is simple and easy for developers to make their XML documents,
still need to obey rules such as:

- There is only one root for a XML document.
- Both starting and ending tags have to match and be case sensitive.
- Brackets are used for the values of the attributes.
- Elements need to be in order, so last opened tag is first closed tag.
- The name of an attribute into an element should not be repeated.

The well-formed XML document must be formatted according to these rules in order to
be accepted and processed (Abiteboul et al., 2000; Tidwell, 2002)

2.2.4 XML Advantages and Disadvantages
XML has become a very interest for broadly users and organizations since was
recommended in 1998 because of the strengths that it have such as:

 Simplicity: as a clear and plain text style.
 It’s independent and standard platform: accepted by most platforms and

applications.
 Widely accepted data format: XML is used broadly and can be processed over

many different devices such as mobile phone, computers, and tablets.
 Extensibility: XML files can be expanded by adding new tags.

11

 XML is readable for both human and machine.
Despite these advantages which make XML a suitable method to exchange data over the
internet, there are disadvantages which as follows:

 XML does not base on mathematical and theoretical basis as the relational model
does.

 XML is connected somehow with many technologies that cause complexity to the
use of XML. Examples of these technologies are DTD, XQuery, SAX, XML
Schema, DOM, XPath, etc.

To conclude, XML is a strong and widely used technology in spite of the weaknesses
of it (Samir Mohammad & Martin, 2009).
2.3 XML Structure
The XML document is illustrated by a tree graph. The tree demonstrates the XML
document’s structure. The components of an XML document called nodes. These
components include elements and attributes. This tree must have a root element
which makes the start of the tree. Subsequently, this tree has sub-trees. This tree
ends with leaf nodes. (Harold & Means, 2004; Erik T. Ray, 2001).
The tree also used to distinguish the links between the nodes such as parent and
sibling relationships. The root node is considered a parent, and all other nodes linked
with this node and located in the lower level called child nodes. all nodes that in the
same level are considered siblings (Erik T. Ray, 2001). Despite the fact that this
structure of the tree is a good advantage as it facilitates the access to the data very
easily, it has the problem that it occupies huge space of memory (Tidwell, 2002). The
tree graph for the XML file in figure 2-1 was illustrated in the figure 2-4.

Figure 2-4: the tree graph for the XML document in figure 2-1

12

2.4 XML Technologies:
The XML surrounded by variety of technologies that linked with it such as DTD, XML
schema, SAX, XPath, XQuery, and so on. Some of them are explained later on in this
chapter and some are discussed below:

2.4.1 Document Type Definition (DTD): as its name shows, it is used to define the
format of XML documents, and it supports one kind of data. The DTD includes the
names and order of the elements, attributes, the links between elements, and the
way of the elements arranged. (Connolly & Begg, 2015; Elmasri & Navathe, 2007).
The DTD can be saved in the XML document or either in a separate file. The DTD
is similar to the schema for relational databases in terms of the functionality
(Abiteboul et al., 2000).

2.4.2 Simple API for XML (SAX): it is used for parsing XML documents. SAX uses
different way from the DOM for parsing XML documents. SAX informs the
applications by a stream of parsing processes. The SAX is a good choice for big
documents as the whole file does not need to be loaded in the memory (Tidwell,
2002; Vakali, Catania, & Maddalena, 2005).

2.4.3 XML Schema: it was recommended by the W3C in 2001 as a tool in defining
the structure of XML documents. It was developed to address the disadvantages of
the DTD(Connolly & Begg, 2015). The definition of XML schema provides the
structure in terms of the configuration and the kind of data. The schema itself is
provided as XML document and it is exactly the same as the XML in terms of its
processing, editing, viewing and the tools in performing these operations
(Abiteboul et al., 2000). The XML schema supports different types of data and its
very expressive scheme, therefore, it is better than the DTD (Connolly & Begg,
2010).

2.4.4 XQuery: the XML query language (XQuery) was recommended by the Query
Working Group at the W3C. The XQuery is a development on the Quilt and is
similar to the SQL in terms of representing the query. XQuery has the exact path
expression in the XPath. In addition, it is a case sensitive language (Al-Badawi,
Ramadhan, North, & Eaglestorne, 2012).

2.4.5 XML Parsing
The parser performs a significant task in processing XML documents. Thus, all XML
applications are combined with a parser. The purpose of the parser is to split up the
XML document and make a representation in the form of a tree or stream. Examples
of the parsers are the following: SAX, JDOM, Xerces2, and, DOM. These parsers
build XML files (Connolly & Begg, 2015).

13

2.4.6 XML DOM
Document Object Model (DOM) was recommended by the W3C for handling XML
documents. DOM makes an XML document as a tree and stores it in a memory. This tree
consists of objects and demonstrates the relationships between them. Every element is
represented as a node in the tree (IG, 2005). The DOM has advantages such as; DOM
handles XML data easily. DOM eases the access and update processes of data. In
addition, DOM offers reading and writing synchronously. In terms of data access, DOM
allows random access. Moreover, DOM is a proper environment for XPath and dealing
with queries and updates properly. It is also appropriate for number of platforms such as
C++, NET, and JAVA. Nevertheless, storing the XML tree in memory occupies big
space and takes long time. Therefore, handling big XML documents causes problems
(Al-Badawi et al., 2012; Anders Berglund, 2015; Frank, Apel, & Schaebec, 2003).
DOM provides an Interface for the Node which includes attributes and elements. This I
Interface is incorporated when the XML document is processed. There are number of
methods which are offered by this Interface such as ‘parentNode()’, ‘childNode()’. The
function of the parentNode() is to return the parent of a node (IG, 2005).

2.4.7 XML Databases
XML files are classified into two sorts namely data-centric and document centric. Data-
centric is saved in databases since it is highly structured. However, document centric is
semistructured since it is textual content (Sun & Wang, 2012).
Since XML is similar to other types of databases in terms of storing and retrieving data, it
is understood that XML is a technology can be used to construct databases (Connolly &
Begg, 2010; Sun & Wang, 2012). XML has many features of databases such as saving
data in XML documents, holds XML schema, DTD, and query languages. Also, XML
offers interfaces for instance SAX and DOM. However, XML has shortage of some
properties of database systems as recovery system, multiple accesses, and security system
(Steegmans, 2005). These disadvantages raise an enquiry if XML can be considered
database or not. Thus, heavy researches have been carried out to enhance the XML
database.
XML databases are classified into two categories namely enabled XML databases and
native XML databases (NXD) (Steegmans, 2005). Enabled XML databases based on the
relational database for saving data. The advantage for using this kind is to support the
already present applications as huge XML data exist in relational database(El-Aziz &
Kannan, 2012; Papamarkos, Zamboulis, & Poulovassilis, 2008). The mapping technique
is a standard method that used for converting data from XML form to relational one.
Nevertheless, this mechanism has shortcomings such as it is unable to manipulate big
XML documents due to the number of joins (Papamarkos et al., 2008). Moreover, this
technique does not handle properly the hierarchical structure, nested data, and elements

14

sequence. Another problem is that information might be lost through the conversion
process (Steegmans, 2005; Sun & Wang, 2012).
The second type of XML databases is the native one. This type offers a method to create,
manipulate, save, and retrieve XML files. The NXD can be easily looked up and its
whole data can be handled since the NXD is compacted (Sun & Wang, 2012). In
addition, NXD supports XML query languages; so that improves the efficiency of data
retrieval (Steegmans, 2005). NXD is much flexible than enabled XML database.
However, the key shortcoming of NXD is that it is not able to handle data in other format
than XML (El-Aziz & Kannan, 2012).
NXD are classified into two categories; namely text-based and model-based (Papamarkos
et al., 2008). Text-based method supports the XML file as text and save it in a file system
in relational database. However, the model-based deals with XML data as objects and
represents the file as tree (Steegmans, 2005).

2.4.8 XML Query Languages
XML data can’t be queried by SQL since XML data is similar with semi-structured data.
Thus, certain query languages used for XML such as XPath and XQuery. More details
are below:

2.4.9 XPath
It is an XML Path Language (XPath) and was recommended by the W3C to be used for
querying XML data. As its name indicates, path notation is used for navigating cross the
XML document. The XPath handles the elements and attributes of an XML document by
using a simple syntax. The mechanism of XPath is to recognise the start node and the end
node. This path called location path (Anders Berglund, 2015). There are number of
relationships that the XPath defines; namely parent, child, sibling, ancestor, and
descendant. Regarding the parent and child relationship, it is between two nodes in two
neighbouring levels. Parent can have unlimited number of children whereas a child can
have only one parent on the above level. Nodes at the same level and sharing the same
parent called siblings. Any relationship that moves up from a node to any other node till
the root called ancestor. Descendant relationship moves down from a node to any other
node till the leaves (Elmasri & Navathe, 2016; Garcia-Molina, 2008). XPath expressions
provide the position of elements and attributes in XML document. The XPath syntax
comprises number of special marks that used for defining the nodes (Garcia-Molina,
2008; W3C, 2016). The axis indicates the way of the navigation. The ‘node test’ denotes
the node kind in the file(Erik T. Ray, 2001). Table 2-1 illustrates number of types of axis
linked with XPath.

15

TABLE 2-1: XPATH AXIS (W3SCHOOL, 2016)
Axis name Results

ancestor Selects all ancestors (parent, grandparent, etc.) of the current node
ancestor-or-self Selects all ancestors (parent, grandparent, etc.) of the current node

and the current node itself
attribute Selects all attributes of the current node
child Selects all children of the current node
descendant Selects all descendants (children, grandchildren, etc.) of the current

node
descendant-or-
self

Selects all descendants (children, grandchildren, etc.) of the current
node and the current node itself

following Selects everything in the document after the closing tag of the current
node

following-sibling Selects all siblings after the current node
namespace Selects all namespace nodes of the current node

parent Selects the parent of the current node
preceding Selects all nodes that appear before the current node in the document,

except ancestors, attribute nodes and namespace nodes
preceding-sibling Selects all siblings before the current node
self Selects the current node

The following examples of XPath expressions illustrate the way that these axes can be
used. These examples are from the figure 2-1 for an XML document.

/college/people/student
The student node can be accessed by using this expression. Student node is a child node
of the people node and descendent of college node.

/college/people@teacher
The identifier (teacher) attribute of people node can be chosen by this expression.
To find certain nodes; predicates are used and put in brackets (Elmasri & Navathe, 2016;
Erik T. Ray, 2001). The following example shows how to find all students who their
names “Ali”.

College/people
 Moreover, axes are used to recognise number of nodes that linked with a certain node
(Garcia-Molina, 2008; Harold, Means, & Udemadu, 2004; Erik T Ray, 2003).

16

There are two kinds of XPath expressions namely relative path and absolute path. The
absolute path for a certain node is the full path from the root till the node itself(Harold &
Means, 2004; Erik T Ray, 2003).

2.4.10 XQuery:
The XML query language (XQuery) was recommended by the Query Working Group at
the W3C. The XQuery is a development on the Quilt and it is similar to the SQL in terms
of representing the query. XQuery has the exact path expression in the XPath. In
addition, it is a case sensitive language (Al-Badawi et al., 2012). XQuery has exactly the
same path expressions with the XPath (Al-Badawi et al., 2012). Generally, the
expression result is a group of ordered nodes. Nevertheless, results can be influenced by
redundancy because of the duplication of some nodes that hold the same name and kind.
Moreover, XQuery is a very flexible language and able to handle complex queries. It is
offers FLWOR expression which is abbreviation from FOR, LET, WHERE, ORDER
BY, and RETURN clauses. This expression is used to extract data as the SQL does. This
expression must start by either FOR or LET; whereas the WHERE and ORDER are non-
compulsory clauses. This expression must end by RETURN (Connolly & Begg, 2015;
Elmasri & Navathe, 2016; Garcia-Molina, 2008). More details about the FLWOR
expression clauses as follows:
 FOR and LET Clauses: these clauses link values and variables. FOR clause used to

create a loop for repeating steps; whereas LET clause used to identify a variable
(Connolly & Begg, 2015).

 WHERE Clause: it is used to designate a condition or more in order to reduce and
control the result generated by FOR and LET (Connolly & Begg, 2015) .

 RETURN and ORDER BY Clauses: every expression has to have a RETURN
clause. This clause evaluates every tuple whereas the FLWOR expression result is
provided by the grouping all evaluations. With regard to the ORDER BY clause, it is
used to sort the sequence of the tuples (Connolly & Begg, 2015).

2.5 XML Schemas:
Schemas are a key issue in XML field. Initially, the W3C recommended the XML
schema language in 2001 in order to overcome the disadvantages of the DTD. Schema is
defined as a static description for a database that is addressed during the database design
phase. XML schema’s definition provides the structure of a XML document with respect
to configuration and data kinds (Connolly & Begg, 2015; Elmasri & Navathe, 2007). The
XML schema is provided as an XML document and it is exactly the same as XML in
terms of editing, processing, viewing, and also the tool used to perform these actions.
(Abiteboul et al., 2000; Connolly & Begg, 2010). In terms of XML, a schema is intended
to save the structure of the file and illustrates the relationships among elements. There are

17

different kind of schemas used with XML files such as XML schema, RELAX NG, DTD,
and Schematron. The most common used schemas are the DTD and XML schema.
However, schema is better than the DTD with regard to supporting different kinds of
data, domain of the values, and the number of repetition of an element in an XML file
(Abiteboul et al., 2000; Elmasri & Navathe, 2016; Fallside & Walmsley, 2004; Garcia-
Molina, 2008; Lee & Chu, 2000).
 Data Model : the data models for hierarchical structure are classified into four
categories based on the structure form as follows (Gou & Chirkova, 2007) :
2.5.1.1 Edge-Labelled
The edges of a XML document represent the nodes which are either elements or
attributes. Figure 2-5 shows an example for an XML document. Figure 2-6 illustrates the
edge-labelled for the document in the figure 2-5. For instance, tutor is an element and
teacher is an attribute. There are leaf nodes which considered as elements and attributes’
values. For instance, Ali is a value for the teacher attribute and Abdo is a value for and
student element.

Figure 2-5: An example of XML file

Figure 2-6: Edge-labelled data tree for the XML document in figure 2-5

<College>
 <subject>
 <tutor>Dave</tutor >
 </ subject >
 <people> </people>
 <people>
 <student>Jim</student >
 </people>
 <people>
 < people teacher = “Ali”>
 <student > Abdo </student>
 </people >
 </College>

18

2.5.1.2 Node-labelled
This model has three parts namely element, attribute, and values. Figure 2-7 shows an
example of this model for the XML document in figure 2-5. Nodes in this model
represent elements. Unlike the edge-labelled model where the nodes are edges represent
elements.

Figure 2-7: Node-labelled data tree for the XML document in figure 2-5

2.5.1.3 Directed Acyclic Graph (DAG)
This model uses the technique ID/IDREF token which is available in the XML language
through DTD. This technique used to recognise the sort of an attribute’s element. Figure
2-8 is a revised issue of the XML document in figure 2-5.

Figure 2-8: the modified XML document with ID/IDREF
The idea of the ID/IDREF is to allow more than one element to refer to a certain node.

For instance, node number 2 in figure 2-9. This token plays the role of the keys in
relational databases.

<College>
 <subject ID=1>
 <tutor>Dave</tutor >
 </ subject >
 <people reference=1> </people>
 <people>
 <student>Jim</student >
 </people>
 <people>
 < people teacher = “Ali”>
 <student > Abdo </student>
 </people >
 </College>

19

Figure 2-9: Directed acyclic graph

2.5.1.4 Directed Graph with Cycles
This data model is based on the technique that adding another IDREF from an element to
another element which creates a circle. Figure 2-10 shows an example.

Figure 2-10: modified XML document with ID/IDREF
An IDREF was added from the subject element, in the second line of the figure 2-6 as
“recommend=2”, to the people element, in the fifth line of the figure 2-10 as “ID=2”,
which creates a circle. This model is common in XML. Nevertheless, this technique
makes the XML query processing more complicated. Figure 2-11 shows this model.

Figure 2-11: directed graph with cycles

<College>
 <subject ID=1 recommend 2>
 <tutor>Dave</tutor>
 </subject >
 <people ID=2 reference=1>
</people>
 <people>
 <student>Jim</student >
 </people>
 <people>
 < people teacher = “Ali”>
 <student > Abdo </student>
 </people >
 </College>

20

2.6 Summary

To summarise, the XML technology is very wide area and covering all of it is
beyond this thesis’s scope. Thus, the most essential and relevant issues of XML
technology were discussed in this chapter. Nevertheless, the covered topics are
sufficient and provided a comprehensive review. In more details, the chapter started
by considering the history of the origin and development XML. of XML and its and
structure. A review inside the XML and its components and organisation has been
explained in details such as XML syntax, elements, attributes, and comments. This
review gives the researcher an essential and comprehensive understanding for XML
structure and history which consequently assist in fulfilling the literature review and
the rest of this research. Thus, this review is considered a task to achieve the
objective number one.

The advantages and limitations of XML have also been discussed in order to know
any general issue that might affect the labelling scheme positively or negatively.
Next, the XML structure is an essential topic that any researcher involves in this
area needs to know. Thus, a brief description of the XML structure was discussed.

Furthermore, there are many sophisticated technologies around the XML. These
technologies conduct different functions. For instance, DTD, SAX, XML schems
and so on. Study the most common used technologies and use the relevant ones to
this research is a significant task for this research as there is a need to use some of
them.

XML parsing is an important task that all XML applications need to accomplish.
All XML application have a parser. This research used the DOM to parse XML
documents. As a result, sections 4.4 and 4.5 have discussed the XML parsing and
XML DOM.

Similar to relational databases, XML database is a crucial part as used for data
storage, data retrieval, and data management. Section 4.6 has discussed XML
database and its features and differences from traditional databases, as well as the
XML databases classifications. Next, XML query languages have been explained in
section 4.7. for instance, XQuery and XPath are common used languages in this
regards. This research needs to use an appropriate query languages in order to
evaluate the proposed scheme. Thus, the XPath was selected for testing purpose.
XML schemas is a description of a database. Therefore, it is an important issue that
has been discussed and considered in section 4.8.

21

Finally, data models for hierarchical structure have been discussed in details in
section 4.9. it is a very important and relevant topic for this research. The
classifications of data hierarchical structure give an understanding for the
differences between these structures and their advantages and disadvantages. This
understanding assists the researcher in studying the literature review of the existing
labelling schemes.

Consequently, this chapter provided wide discussions for relevant fundamental
topics. All these topics are linked to the objectives of this research, and therefore,
provide a comprehensive understanding for both the researcher and reader.

22

3. Literature Review and Previous Work

3.1 Introduction
Due to the increase in the importance of XML data management, many researches focus
on this area. In addition, labelling schemes are an interesting topic for XML data
developers and researchers as this area plays a key role in improving query performance.
In order to query XML data, an efficient XML labelling scheme is needed (Edith, Haim,
& Tova, 2010). However, even though heavy research on labelling schemes and
techniques has been carried out, there is as yet no appropriate labelling scheme for all
users’ requirements (B. Catania, Maddalena, & Vakali, 2005). Thus, this research focuses
on this area to develop a framework that resolves some of the challenges that these
existing labelling schemes face.

Therefore, this chapter starts by presenting an overview of the existing labelling schemes,
and discusses the existing approaches of labelling schemes and their classifications. The
criteria for the evaluation of the labelling schemes used in this research are demonstrated.
The classifications of the approaches of labelling schemes based on these criteria are also
explained, and the advantages and disadvantages of these approaches are discussed. The
significance and critique of the labelling schemes are also explained. The chapter also
considers the importance of using the Dewey and LLS labelling schemes. In addition, a
review of the testing of the existing labelling schemes is demonstrated, and finally, a
summary of the chapter is presented.

3.2 Overview of Labelling Schemes
A considerable amount of research has been conducted on querying and storing XML
data since the importance of XML data management has been increasing dramatically.
Thus, there is a demand for and focus on producing an efficient labelling scheme. Thus,
enhancing XML efficiency by developing a robust XML scheme is mostly achieved by
cutting the cost of data searching. The main purpose of the labelling scheme is to encode
the information about the XML tree and structure in a very compacted label. The
compactness of the labels and the performance speed of the scheme are the key metrics
for any labelling scheme. A significant amount of research has been carried out to
produce an efficient XML labelling scheme (Elmasri & Navathe, 2016; Garcia-Molina,
2008; Harold & Means, 2004; Harold et al., 2004; Wyke & Watt, 2002).
XML sets the standard rules which are readable by both machine and users. XML has
been recognised as a standard means of exchanging data on the WWW. Problems were
expected to arise in the use of XML. Eventually these problems appeared and are mostly
concerned the query performance (Amato, Debole, Zezula, & Rabitti, 2003; Bruno,
Koudas, & Srivastava; B. Catania et al., 2005; Liu et al., 2009); (Abiteboul et al., 2000).

23

The query definition in this context is to allow users to access the XML data.
Consequently, many XML query languages have been proposed. Some of these
languages have been developed by the W3C group such as XQuery and XPath
(Rousseeuw, Ruts, & Tukey, 1999). These languages have features that assist in
overcoming the disadvantages of XML. However, XML query performance still needs to
be improved in order to always cope with the growth of the web. Therefore, developing
an efficient indexing system has been carried out for many years (O'Neil et al., 2004a,
2004b). The existence of labelling schemes is an important issue for XML indexing sin
ce it allows queries to avoid going through the whole XML document as Murata et al.
said (Murata, Laurent, & Kohn, 2000). T
hey also stated that it is a significant step to assign a label for each node in the XML
document in order to be able to determine the relationship among these nodes. The
function of the nodes is to play the role of unique IDs for the components on the XML
documents. Thus, labelling is required in order to execute structural queries which can
only be performed by using the index (C. Li et al., 2005). As a result, the query process
does not require access to the whole XML document, so that makes the query process
efficient and quicker (Barbara Catania, Ooi, Wang, & Wang, 2005). The size of the index
is mainly based on the size of the labels; thus, many researches have concentrated on
proposing labelling schemes to achieve this goal. Some other researches have proposed
schemes that were developed to assist in path indexing and numbering schemes to ease
the XML query.
Some other schemes have focused on the ease of the function. For instance, a scheme
was proposed by Bruno (Bruno, Koudas, & Srivastava, 2002) to ease the compact
method of the results of a query path and then the gathering of these paths produces the
final combination for a twig query. This scheme was enhanced by Lu (W. Wang et al.,
2005) to support queries efficiently. The improvement was on handling twig queries.

3.3 Existing Approaches
XML labelling schemes can be classified into different categories based on the criteria
and aspects in which they are evaluated. First of all, this classification is based on the
position or location of the index residence. The position can be either in the main
memory as a temporary index or on the hard disk, called a disk-based index (Samir
Mohammad & Martin, 2009). The former has the advantage of fast response as it avoids
the input and output expenses. However, it has the disadvantage that it lacks scalability
for large index files. Second, another category was classified by Sans and Lauren (Sans
& Laurent, 2008) into two classes, namely interval scheme and prefix-based scheme,
also called Dewey schemes. This classification was improved with the addition of two
other schemes, namely multiplication-based schemes and Vector-based labelling
schemes (Almelibari, 2015). Third, in this category, classification is based on the type of
document that is indexed. There are two classes, namely, the index data-centric

24

document, and the index document-centric XML database (Gang, Chirkova, &
Chirkova, 2007). Four, indexing schemes can be evaluated on the basis of the structural
relationships in the index. The classification of this category is usually divided into three
classes, as follows: 1) node indexes; 2) path indexes; 3) sequence indexes (Bruno et al.;
Edith et al., 2010). Consequently, the former classification which was based on the
structural relationships is the most relevant one for this research as the structure of the
index and the relationships between the nodes are the main concern. Therefore, a deep
review and evaluation were carried out in this research as shown below.

3.3.1 Common Criteria for the Evaluation of Indexing Labelling Schemes
The ideal method for evaluating a XML indexing scheme is to compare it with other
schemes using some of the criteria that are suitable for all such schemes. There are a
number of common criteria that are used to compare indexing schemes such as:
accuracy, adaptability, precision, scalability, response time, and type of supported
queries (Samir Mohammad & Martin, 2009). This research used the most relevant of
them in order to evaluate the structural labelling indexes. These criteria were also chosen
as the most helpful ones for users to select the best labelling scheme for their
requirements. The selection is carried out by determining the features that these labelling
schemes support. The following are these criteria:

3.3.1.1 Retrieval Power: This means the precision of the index scheme is based on
the completeness and accuracy of the result. In other words, how much the
return results of the labelling scheme are precise and complete.

3.3.1.2 Processing Complexity: This step covers a few issues, such as the
requirement of structural joins. In order to improve the performance of a
query operation; there is a need to minimize the number of joins. Other
issues include the processing cost, and the need to compute the relationships
between elements.

3.3.1.3 Scalability: Large indexes involve many input and output operations. Thus,
this increases the query processing time.

3.3.1.4 Update Cost: There are two kinds of updates, namely, inserting a node and
inserting a subtree. The nodes in a tree index need to be kept organized in a
particular way to reflect all kinds of relationships. These relationships have
to be preserved if a new node is inserted into the tree. Thus, the index has to
reflect its location with respect to these relationships, which makes the case
more complex, especially if the scheme has no spaces for the new node.

3.3.2 The Structural Relationships-based XML Labelling Schemes
This section reviews and discusses this category of XML labelling scheme for the
most common ones as follows:

25

3.3.2.1 Node Indexing Schemes:
Node indexes store values that represent the locations of the nodes of the XML tree
structure. These values are used to find a particular node’s parents, child, sibling,
ancestor and descendent. These values are represented by numbers and used to
resolve simple and twig queries. Generally, the most commonly used node schemes
are the interval (also known as region) labelling scheme and the prefix (also known
as path) scheme. Further details about these schemes can be found in the following
sections (Al-Badawi, North, & Eaglestone, 2007; Al-Badawi, North, & Eaglestone,
2010; Al-Badawi et al., 2012; M. El-Sayed, K. Dimitrova, & E. Rundensteiner,
2005; M. El-Sayed, K. Dimitrova, & E. A. Rundensteiner, 2005; D. Fisher, Lam,
Shui, & Wong; Härder, Haustein, Mathis, & Wagner, 2007; Q. Li & Moon, 2001;
Maghaydah & Orgun) (S. Mohammad, Martin, & Powley).

3.3.2.1.1 Prefix Labelling Scheme:
This type of scheme generates code containing two fragments which are the prefix
part and the actual-code. The prefix part encodes the previous node code which is the
parent of the node. The actual-code encodes the order of the node in the tree. There
are many examples of this scheme, and the most popular on e is the Dewey labelling
scheme. This labelling scheme has two parts in each node except in the root node.
This code is called the Dewey code (D. K. Fisher, Lam, Shui, & Wong, 2006; Lu &
Ling, 2004; Scott & SCOTT, 1998). The code at each node has two parts. The first
part is an increasing number that reflects the location of the node. The second part is
the Dewey code which is the parent’s code. These parts are separated by a dot like
this “.”. The root code has only one part since it has no parent. Figure 3-1 shows an
example of a Dewey labelling scheme (Härder et al., 2007; Lu, Ling, Chan, & Chen,
2005; Scott & SCOTT, 1998; Tatarinov et al., 2002; Wei, Haifeng, Hongjun, &
Jeffrey Xu).

1people

1.1Staff

1.1.1author

1.2customer

1.2.1Sname 1.2.2Fname

Figure 3-1 Dewey Labelling Scheme
A number of researchers (D. Fisher et al.) developed a dynamic labelling method
that can be used with Dewey labels with identifiers of size 0(log n) where “n” is
the size of the database. All labelling schemes including Dewey need 0(n) bits per
label (Edith et al., 2010). Many prefix schemes have been developed such as:

26

Dewey encoding (Tatarinov et al., 2002). Other examples of prefix labelling
schemes are the following: Labelling Scheme for Dynamic XML Data (LSDX)
developed by Duong and Zhang (Duong & Zhang, 2005). In this method, the
numbers and letters are combined. This scheme supports the ancestor/descendent
relationship and the sibling between nodes. Lu and Ling (Lu & Ling, 2004)
proposed a labelling scheme called GRoup base Prefix (GRP) which contains two
parts. The first part is the group ID. The second part is the group prefix. Both the
Labelling Scheme for Dynamic XML data (LSDX) and GRP schemes are firm and
immutable as the label sizes of these schemes can reach 0(n) bits per label. The
ORDPATH labelling scheme was developed by a number of researchers (O'Neil et
al.). The Dewey labelling scheme is a prefix labelling scheme that was developed
by Tatarinov and colleagues (Tatarinov et al., 2002). There is a big similarity in
terms of the structure between the Dewey labelling scheme and other prefix
labelling schemes such as ORDPATH and LSDX (Almelibari, 2015).
Some researchers (C. Li & Ling, 2005) proposed a labelling scheme called
ImprovedBinary as an enhancement to the LSDX and other schemes that were
developed by Duong and Zhang (Duong & Zhang, 2005). More details about the
Dewey labelling scheme are presented later on in this chapter.
 Advantages of Prefix Labelling Scheme
The prefix labelling schemes have many advantages such as supporting the query
processing of XML data. This type of schemes was defined by researchers
(Alstrup & Rauhe, 2002) as perfect schemes for the fast update of XML data.
Other researchers stated that the majority of prefix schemes are able to represent
ancestor–descendant relationships along with the sibling relationship between
nodes (Amato et al., 2003; Yun & Chung, 2008). Knowing the depth of the XML
tree is a significant factor for improving the query processing (Meuss &
Strohmaier, 1999). Moreover, the unique code given to each level of the nodes in
the LSDX labelling scheme is used to ascertain the depth of the XML tree (Duong
& Zhang, 2005). This feature provides this scheme an efficiency in terms of
retrieving and updating data (Hou, Zhang, & Kambayashi, 2001). In addition, the
Dewey labelling scheme can define the path between the root and the node as the
label has the parent label (Duong & Zhang, 2008). Therefore, the prefix labelling
scheme provides the structural details with regard to all relationships mentioned in
the previous chapter (Tatarinov et al., 2002).
The ImprovedBinary scheme is a binary string. It has the feature that supports the
updates by requesting no relabelling or recalculations. Regarding the ORDPATH
scheme, this is a strong scheme in terms of handling updates and insertions as this
scheme allocates odd numbers to parent nodes whereas even numbers are allocated
to the inserted nodes (O'Neil et al., 2004a).

27

 Disadvantages of Prefix Labelling Scheme
There are a number of limitations to prefix labelling schemes that cause problems
when using these schemes: first, the non-tree edges, which are nodes or edges that
do not appear in the normal tree relationship. This problem with the building of
non-tree edge relationships was discovered by Yun (de l'Adour; Yun & Chung,
2008). This issue causes a weakness in labelling non-tree edge relationships. In
order to solve this problem, deterministic tree labels should be used with prefix
labelling schemes. However, using non-tree labels means extra time needs to be
spent in executing additional tasks such as providing extra storage (Fennell, 2013).
Some researchers have already claimed that prefix labelling schemes need more
improvement in terms of query processing (Hou et al., 2001).
The prefix labelling scheme also has the disadvantage of not handling complex
XML files properly as these schemes can’t allocate extensive labels. This is due to
the fact that XML files have deep and long paths (Bosak & Bray, 1999; Murata et
al., 2000; Tatarinov et al., 2002). In addition, the prefix labelling scheme can’t
handle the dynamic updates properly so as a result many researchers perceive this
issue to be a challenge (Brenes, Wu, Van Gucht, & Santa Cruz, 2008).

3.3.2.1.2 Interval Labelling Scheme:
A number of researchers have proposed different interval labelling schemes with
different quality and performance. This type of scheme is also known as Region-
based Encoding. The idea of this scheme is to attach two values to each node
which are the startID and the endID. The startID is used to save the node ID for
first element or attribute. The endID is used to store the end of the attribute (X.
Wu, M.-L. Lee, & W. Hsu, 2004a). There are common examples of this kind of
labelling scheme which uses the same technique for labelling nodes such as the
(Beg, End) which is also called the containment labelling scheme, introduced by
Zhang et al. (Zhang et al., 2001). Another example of interval labelling schemes is
the (Pre, Post) labelling scheme proposed by Dietz (P. F. Dietz, 1982). The (Order,
Size) scheme was developed by Li and Moon (Q. Li & Moon, 2001) as an interval
scheme. More details about some of these types of labelling schemes are as
follows:

I The (Beg, End) labelling scheme allocates two numbers to each node based on its
sequential traversal order. The mechanism of this scheme is to assign the “Beg”
number according to the sequential location in the XML document to all elements
including the root, and every element, attribute of an element, value of an
attribute, and value of an element. The process of assigning values of the “End”
number starts when the process of “Beg” reaches the end of an attribute or an
attribute value. This start value must be the same as the next sequential value (P.

28

Dietz; Duong & Zhang, 2005; Kha, Yoshikawa, & Uemura; Silberstein, He, Yi,
& Yang, 2005). Figure 3-2 illustrates an example of this scheme.

 Figure 3-2: Containment (Beg, End) labelling Scheme

The scheme (Beg, End) can be used to answer both twig query and path query by
making use of the relational database management system. This can be achieved
by using “structural joins”. To answer a query, the relationships between any
couple of nodes in a path in this query are investigated individually as the
granularity of this indexing scheme is determined at the level of each node.
Therefore, this provides a precise and complete answer for the query. XML
queries shred XML documents into tables of relational databases with fixed
schema (Label, Beg, End, Level, Flag, and Value) (Gang et al., 2007). Table 3-1
represents the relational table of shredded XML documents of the above node
tree.

TABLE 3-1: A NODE TABLE OF THE XML DATA IN FIGURE 3-2
Label Beg End Level Flag (Type) Value

Subject 2 6 2 Element Null
Tutor 3 5 3 Value Dave

People 7 8 2 Element Null
.....

People 14 21 2 Element Null
Student 18 20 3 Attribute Abdo

Silberstein et al. (Silberstein et al., 2005) developed dynamic labelling schemes
for interval indexes. The dynamic labelling schemes allow relabelling of the
schemes. The interval labelling scheme is the most used scheme for fixed
encoding. Such examples propose leaving spaces between the values in order to

29

add new nodes. In case of adding new nodes, there is a need for re-numbering or
other solution.
Cohen et al. (Edith et al., 2010) argued that persistent labelling needs 0(n) bits
per label where n is the size of the tree. The interval labels size is used to measure
the complexity as this size determines the total size of the index. It is preferable
to keep the used number of bits small as this can allow the index to reside in the
main memory.

II Li and Moon (Q. Li & Moon, 2001) developed the (Order, Size) labelling
scheme. Each Order and Size has a certain job. The Order one is based on a
traversal of pre-order, whereas the Size part is an estimation of the number of
child or descendent nodes for a given node. The advantage of this mechanism is
that this labelling scheme leaves space for any case of adding or inserting nodes
in order to avoid relabelling of the data-tree as relabelling can cause delay.

o Advantages of Interval Labelling Schemes
The space between the start and end in an interval labelling scheme helps very much in
creating the relationships between ancestor and descendant, or between parent and child
(Cunningham, 2006). Moreover, one of the main advantages is that interval labelling
schemes support the XML tree since the tree labels are efficient and unlike the non-tree
labels. This is due to that the interval labelling scheme being able to gain the description
of the relationships between the child and parent (Fallside & Walmsley, 2004; O'Neil et
al., 2004a; Wu et al., 2004b).
o Disadvantages of Interval Labelling Schemes
Interval labelling schemes cannot cope with some cases such as dynamic updates which
are not always supported (Tatarinov et al., 2002), particularly when the space between
any two nodes is not enough for the inserted nodes (Cooper, Sample, Franklin, Hjaltason,
& Shadmon, 2001). This problem is due to this type of labelling scheme being based on
the technique of a limited space (interval) assigned to the nodes (Duong & Zhang, 2005).
Consequently, the interval labelling scheme is efficient whenever the inserted nodes are
within the assigned space between two nodes (Amato et al., 2003). Due to the frequent
updates on XML documents, updates on dynamic XML documents is a significant issue
(Cooper et al., 2001). Furthermore, the worst limitation is that the relabelling process
occurs only under restricted circumstances (Harold et al., 2004).

3.3.2.1.3 Conclusion:
Both prefix labelling scheme and interval labelling scheme perform well in certain
cases and have advantages and disadvantages. With regard to the relabelling process,
the prefix labelling scheme performs well. Therefore, many users prefer to use this

30

type of labelling scheme whenever they want to reduce relabelling to the minimum.
However, the interval labelling scheme is better than the prefix scheme in terms of the
storage space cost. In addition, this scheme is costly in terms of updates (Wu et al.,
2004b; Zhang et al., 2001) (Y. Chen, Mihaila, Bordawekar, & Padmanabhan, 2005;
Wu et al., 2004b; Yang, Fontoura, Shekita, Rajagopalan, & Beyer; Zhang et al., 2001).
Based on the criteria for evaluating the existing labelling scheme, and in terms of the
retrieval power, both the prefix and interval labelling schemes deliver precise results
as they return no false answer. Concerning the processing complexity, two sub criteria
were used in this regard, namely, the relationship computation and the data kind. The
relationship computation of the interval is fixed which means that the relationship
between a couple of nodes can be calculated in fixed time. The relationship
computation of the prefix labelling schemes is directly proportional to the depth
increase. Regarding the data kind, the interval schemes support numerical data kind,
whereas the prefix schemes support string ones. With respect to the scalability, the
interval schemes provide a linear increase and the prefix schemes provide an
exponential increase. Finally, the prefix schemes are better for the update than the
interval schemes.

3.3.2.2 Graph Indexing Scheme (Path scheme):
This type of labelling scheme (also known as a summary index) is a structural path
summary. It is used to enhance query performance, particularly for single path queries,
by producing a path summary for XML data in order to accelerate the process of query
evaluation. However, it also has the ability to solve twig queries with extra effort of
multiple joins processes. There are a number of existing graph schemes such as
DataGuide (Goldman & Widom, 1997, 1999); Index Fabric (Cooper et al., 2001); APEX
(Chung et al., 2002); D(K)-index (Q. Chen, Lim, & Ong, 2003); (F+B)K-index (Kaushik,
Bohannon, Naughton, & Korth); and F&B-index (Abiteboul et al., 2000; Gang et al.,
2007). Graph schemes are classified into different categories and according to different
criteria (Chung et al., 2002; Cooper et al., 2001; Yoshikawa, Amagasa, Shimura, &
Uemura, 2001). Examples of these classifications are the following: Polyzotis and
Garofalakis (Polyzotis & Garofalakis, 2002) classified the graph schemes according to
exactness. This classification divided the schemes into exact schemes and approximate
schemes. Examples of exact schemes are: strong Data Guide, 1-index, disk-based F&B-
index, Index Fabric, and F&B-index. Examples of approximate schemes are A(K)-index,
approximate Data Guide, D(K)-index, and (F+B)K-index (Polyzotis & Garofalakis,
2002).

There is another category that classifies graph schemes into two classes, namely, path
schemes (also known as P-index), and twig schemes (also known as T-index). Path
schemes are suitable for simple path queries; examples for this scheme are DataGuide

31

and 1-Index. Twig schemes are suitable for twig queries such as F&B-index (Gang et al.,
2007).

Samir and Martin (Samir Mohammad & Martin, 2009) classified the graph schemes into
determinism and bisimilarity. This classification is based on the consideration of
properties such as path determinism and bisimilarity. The paths of the tree are considered
to be deterministic paths in the determinism schemes. The bisimilarity has two sub
classes: forward and backward. Thus, deterministic schemes provide uniqueness of paths,
which is appropriate for single path queries. However, non-deterministic schemes provide
uniqueness of elements and are suitable for twig queries as both forward and backward
they provide precise results (S. Mohammad, 2011). As the term ‘path indexes’ is used to
refer to different kinds of schemes, this classification uses determinism to classify
schemes. More details are the following:

3.3.2.2.1 Deterministic Graph Scheme:
The Strong DataGuide was proposed by Goldman and Widon (Goldman & Widom,
1997). Strong DataGuides have the ability to give complete and precise results for both
simple parent/child path queries and ancestor/descent path queries. Regarding twig
queries, Strong DataGuides are complete but not precise (Kaushik et al.) (Q. Chen et al.,
2003; Goldman & Widom, 1999).
The Approximate DataGuide (ADG) has solved the problem of the large size of the
Strong Data Guide since this scheme shows large size in some cases (Goldman &
Widom, 1999).
Cooper et al. proposed the Index Fabric in order to solve the problem of scalability
(Cooper et al., 2001). The Index Fabric is theoretically like the Strong Data Guide as the
size may enlarge dramatically. Moreover, the Index Fabric is complete for both path and
twig queries. However, it is precise for the path but not for the twig (Samir Mohammad &
Martin, 2009).
3.3.2.2.2 Non-deterministic Graph Schemes with Backward Bisimilarity:
There are a number of these indexing schemes such as: 1-index, A(K) index, and D(K)
index. These indexes are based on backward bisimilarity. The 1-index was proposed by
Milo and Suciu (Milo & Suciu, 1999) in order to decrease the size of the structural
summary. The 1-index divides the data nodes of a document into similar classes based on
their backward bisimilarity.

3.3.2.2.3 Non-deterministic Graph Schemes with Forward and Backward

Bisimilarity:
This is the only kind of graph index that has the ability to support twig queries. Examples
of this type of scheme are the following: the F&B-index, (F+B)K-index, and the disk

32

based F&B-index (Su-Cheng & Chien-Sing); (Kaushik et al.). The F&B-index was
proposed by Abiteboul et al. (Abiteboul et al., 2000). It is different from the A(K)-index
and D(K)-index as this scheme is based on the incoming and outgoing paths’ bisimilarity
for all nodes. Thus, it is a twig structural index scheme. (Kaushik, Shenoy, Bohannon, &
Gudes, 2002) developed the (F+B) k-index. This scheme is an improved release of the
F&B-index. The (F+B)k-index scheme controls the size of the F&B-index by identifying
the value of the “K” (Gang et al., 2007).
The Disk-based F&B-index was proposed by (W. Wang et al., 2005). This index scheme
has provided additional properties and criteria. The Disk-based F&B-index is an
integration of 1-index and F&B-index in a new clustered Disk-based F&B-index which is
then saved on the disk (Samir Mohammad & Martin, 2009).

3.3.2.2.4 Summary
Some graph labelling schemes are appropriate for small XML documents such as 1-index
and strong DataGuide; whereas, some others are appropriate for large XML data such as
disk-based F&B-index. Some of these labelling schemes support single path queries such
as 1-index, A(K)-index, and D(K)-index. However, the F&B-index and disk-based F&B-
index support twig queries. Based on the criteria for this research for evaluating the
labelling schemes, the following is a summary of a comparison between the three classes
of graph schemes in the previous classification:
Regarding the retrieval power, the three classes return precise and complete answers for
the path query. The results for twig query are not precise except the non-deterministic
forward & backward bisimilar which is precise and all these classes return complete
results.
As for the processing complexity, all three classes are not complex for path queries as
they require no joins; whereas they are complex for twig queries except for non-
deterministic forward and backward bisimilar. With respect to the scalability, both non-
deterministic schemes grow linearly. The deterministic scheme grows linearly for the tree
data only.

3.3.2.3 Sequence Indexing Scheme:
This kind of index converts both XML documents and queries into structure sequences.
Sequence indexes put the values and the structures of XML data together into an
integrated index structure. This structure is used to evaluate both path and twig queries
efficiently, answering a query, making a string sequence that matches the sequence of the
data with the query. This technique reduces the need for joins to evaluate twig queries
(Wei et al.; Wei, Haifeng, Hongjun, & Jeffrey Xu, 2003). Regarding the classification of
sequence schemes, they are classified into two types, according to the importance of the
tree mapping direction, which are the following: top-down sequence indexing schemes,
and bottom-up sequence indexing schemes.

33

3.3.2.3.1 Top-down Sequence Indexing Schemes
Wang, Park, Fan and Yu (2003) proposed the ViST (Virtual Suffix Tree). This scheme is
based on the B+ tree (H. Wang, Park, Fan, & Yu, 2003). In addition, the ViST has the
disadvantage of weakening the query operations due to the large number of nodes being
checked. This is due to the ViST being used as a top-down sequence. Thus, the size of the
index becomes very large when dealing with large XML documents since the top
elements are added into the sequence. This is the main disadvantage of the ViST scheme.

3.3.2.3.2 Bottom-up Sequence Indexing Schemes
The PRIX (Prufer sequence for indexing XML) is an example of a bottom-up sequence
index. This indexing scheme does a good job in decreasing the query processing time.
Since the ViST has a problem of scalability as mentioned above, Rao and Moon propose
the PRIX as another method that uses a bottom-up sequence to solve the scalability
problem with the ViST (Rao & Moon, 2004).

 Some studies show that these two indexing schemes have a weakness in terms of
precision, retrieving data, and processing complexity (H. Wang & Meng, 2005; H. Wang,
Park, Fan, & Yu). However, the sequence indexing schemes have some advantages, such
as 1) the ability to expect the results of the query; 2) using the complete query tree as one
component in order to avoid the cost of joint operations. Figure 3-3 illustrates an
example of this indexing scheme.

Figure 3-3: Sequence-based indexing examples

From Figure 3-3, the XML tree is changed into a sequence as follows: T= (A), (S,A),
(N,AS), (F1,ASN), (G,AS), (F2,ASG), (S,A), (N,AS), (F3,ASN), (G,AS), (F4,ASG).

Label Map
Students A

PGR S
Name N
Group G
Omar F1
XDIR F2
James F3

SE F4

34

Despite the sequence indexing technique having the advantage of speeding up the query
pre-evaluation and getting rid of the increase in structural joins, this technique also has
two disadvantages, namely, 1) the sequence of XML produced by one of this technique’s
algorithms has to be reconstructed quite often; 2) this technique uses a hashing algorithm
to encode the textual values, which makes the hash list increase very fast, therefore the
indexing becomes very slow (Bremer & Gertz, 2006; Meng, Jiang, Chen, & Wang, 2004;
S. Mohammad, 2011; Prasad & Kumar, 2005; Rao & Moon, 2004, 2006; Stein, 2007).
To summarize, generally, most top-down and bottom-up sequence schemes return non-
precise and non-complete results. As for scalability, the top-down grows exponentially
whereas the bottom-up grows linearly. Regarding the process complexity, the top-down
requires too many expensive joins and the bottom-up has very complicated processes.
3.3.3 Level-Based Labelling Scheme (LLS):
The LLS is based on the levels of the nodes in XML trees and the summary of an XML
tree. This labelling scheme was developed to combine the advantages of both the interval
and prefix labelling schemes, and to avoid their disadvantages. Therefore, this labelling
scheme supports the processing of simple queries and twig queries. The LLS is based on
the levels of the elements in XML trees. The element labels and values are firmly fixed
with a structural summary so the method provides efficient query processing. This
labelling scheme shows high performance in comparison to existing labelling schemes.
The LLS has shown some advantages such as: the LLS maintains the best features and
advantages of interval labelling and prefix labelling schemes. Second, the LLS provides a
constant size of the label s regardless of the data-tree depth. Path information is easily
available since the root path of an element can be produced from the labels. Third, LLS is
based on the levels of the tree. Knowing the level at which a node is located can speed up
query processing by improving the search space at an early evaluation stage (Samir
Mohammad & Martin, 2009, 2010; S. A. Mohammad, 2011).

3.3.3.1 XML Data Model:
The XML document is modelled as trees. An XML tree is a directed ordered graph

G. G=(R,VR,VL,E,tagg,labelg,T).
 R is the root node. VR is the set of internal nodes which include the elements and
attributes excluding the root. VL is the set of leaf nodes. VL = (VE∪VT), that is VL
consists of the empty leaf node VE (for empty element), and the set of value (text) leaf
nodes VT. Nodes in VR and VL are tagged through the tagg function (the extra g stands
for the graph G). VR and VE nodes are tagged according to the tag of the elements or
attributes they represent. Nodes in VT have the same tag as their VR parent nodes.
Internal nodes VR have to have one or more child nodes, which could be VR and/or VL
node(s). E is a set of child–parent edges, E = {e1, e2,..., ei} that connects all nodes of VR
and VL to form a tree. (S. Mohammad, 2011; Samir Mohammad & Martin, 2010).

35

 Figure 3-4: An LLS labelled tree representation of the XML document

3.3.3.2 Path Summary:
All nodes of an XML data-tree G can be summarized by a summary S, in a way that all
node paths of G that have the same tag path t are represented by exactly one tag path t in
S. Each tag path t of S is a tag path of at least one node path n of G (Samir Mohammad
& Martin, 2010). Figure 3-4 shows an example of the LLS Labelling Scheme. And figure
3-5 shows an example of the summary of the LLS Labelling Scheme.

(1.1)Bib

(2.11)book

(3.11)author

(2.21)paper

(3.21)reviewer (3.31)author
 Figure 3-5: The summary S of the XML data-tree G

3.3.4 Dewey Labelling Scheme:
The Dewey labelling scheme is also called Dewey code labelling. It is one of the prefix
labelling schemes. This labelling scheme was introduced for general knowledge
classification (Scott & SCOTT, 1998). Tatarinov and colleagues (Tatarinov et al., 2002)
first used this labelling scheme for XML tree-shaped data. Each node is related with a
vector of numbers that reflect the node-ID path from the root to the designated node.
Moreover, this labelling scheme is classified as a node index and a path index since each

36

node is represented as a complete path from the root to the indexed node (Samir
Mohammad & Martin, 2009).

A prefix matching operation on the index string is carried out in order to determine
whether a relationship of a parent–child or an ancestor–descendent exists. In a certain
data-tree, node x is an ancestor of node y if the label of node x is a substring of the label
of node y. Figure 3-6 shows an example of a Dewey Labelling Scheme. In this figure,
node (0.3) is an ancestor of node (0.3.1.0). It is obvious that the Dewey labelling scheme
does not require any additional information in order to evaluate the parent–child
relationship. Thus, the Dewey labelling scheme is different from the (Beg, End) labelling
scheme. For example, it is easy to see that node (0.3) is the parent of node (0.3.1) (Samir
Mohammad & Martin, 2009, 2010).

Figure 3-6: Dewey labelling scheme

Furthermore, also there is no need for any further information, for example level number
or parent ID, to work out the sibling relationship, and it can be done in the same way as
the parent–child relationship. The Dewey labels make direct support for the sibling
relationship. In a specific tree, node x and node y are siblings if nodes x and y have the
same number of components in their labels (call it n) and x.prefix = y.prefix, where the
prefix length is equal to n minus one. For example, node (0.3.0) and node (0.3.1) are
siblings. One of the Dewey label’s advantages is that it is a good labelling scheme in
terms of updating and it is better than the (Beg, End) labels as, when a new node is
inserted, only the nodes in the sub-tree rooted at the following sibling need to be updated
(Tatarinov et al., 2002). Nevertheless, one of the disadvantages of the Dewey labelling
scheme is that its storage size enlarges with the depth of the tree. Additionally, as the
depth increases, it becomes more costly to find the parent–child or the ancestor–
descendent relationship between any two arbitrary nodes because the string prefix
matching becomes longer (Samir Mohammad & Martin, 2009).

37

3.3.5 Importance of Using the Dewey and LLS Schemes in the Proposed Scheme

Having investigated the existing labelling schemes and defined their shortcomings, the
LLS labelling scheme was chosen as it is a state-of-the-art labelling scheme. It has the
advantages of both the interval and prefix labelling schemes (S. A. Mohammad, 2011).
Briefly, the LLS scheme is based on the levels of the nodes in XML trees and the
summary of an XML tree. In addition, it has some other advantages such as the data type
is numerical, the size of the label is constant, and the relational computation is also
constant (Samir Mohammad & Martin, 2010).
With respect to the Dewey labelling scheme, it was selected because it is simple and
straightforward to implement. In addition, this scheme facilitates the sibling relationships.
It is also a simple one for updates (S. A. Mohammad, 2011).

3.3.6 Significance of XML Labelling Schemes
The XML databases and XML query are not as mature as the relational databases that
have been in existence for decades. However, the research areas of indexing and querying
XML data have recently become very active (Al-Khalifa et al., 2002; Gang et al., 2007).
The fast growth in XML data has led to this high demand for querying this data.
Moreover, indexing is one of the techniques used to achieve high query performance and
to retrieve data very fast (Vakali et al., 2005). One of the main shortcomings of indexing
XML data is that there is always a trade-off between the size and efficiency of the index.
In other words, indexes can be large in order to provide high performance; or small size
with weak performance (Guoren et al., 2003). Another common problem with indexing
XML data is that the update operations are usually expensive (Samir Mohammad &
Martin, 2010). Therefore, this research concentrates on how we can improve the
performance of query processing by enhancing the updates operations.

3.3.7 Critique of XML Labelling Schemes
In terms of precision, some labelling schemes may return non-precise results such as the
sequence schemes and non-deterministic with backward bisimilarity. However, non-
deterministic forward and backward bisimilarity mostly returns precise results. Moreover,
node schemes always return precise results. Regarding completion, the node and graph
schemes mostly return complete results, whereas, the sequence schemes return
incomplete results. As for process complexity, the node schemes require structural joins
and thus are complex. The sequence schemes don’t require any structural joins. Finally,
the graph scheme may require structural joins for twig queries but not for path queries.
Therefore, the node schemes are the weakest schemes in this regard. Concerning growth
of the size, all three kinds of labelling schemes grow both linearly and exponentially.
Table 3-2 shows a summary of the main finding of the literature review.

38

Nowadays XML applications need to support dynamic XML documents and query them
as high demand on the update of XML data. Thus, labelling schemes should consider
this feature. Many examples have been proposed and discussed above. (Lindner, Mesiti,
Türker, Tzitzikas, & Vakali, 2004; O'Neil et al., 2004a). The key focus in all these
schemes was on avoiding or reducing the number of required relabelling nodes. These
schemes came up with different mechanisms to achieve this goal. Another technique used
to improve the query performance is compacting the labelling schemes.

TABLE 3-2:SUMMARY OF THE RESULTS FOR THE EVALUATION OF THE LABELLING SCHEMES

No. Criteria Node index
technique

Graph index technique Sequence index
technique

1

Retrieval power
(precision)

Yes

Yes/no
(yes for path & no for twig)

No

2

Processing
complexity

No Yes/no
(join required)

Yes
3 Scalability Yes Yes Yes
4 Update cost Yes Yes Yes

Based on the above review, the main features and challenges that the labelling scheme
face are as follows: supporting the updates and relabelling are significant features of
state-of-the-art labelling schemes (D. K. Fisher et al., 2006). Updates are frequently
needed over the internet processes in the present era, and therefore, this feature needs to
be considered in a perfect labelling scheme. This issue is one of the main challenges that
the existing labelling schemes face as many of them may not support this matter. It is
considered as a limitation if a labelling scheme does not support dynamic querying
(Fennell, 2013).
The time needed to determine the relationships between the nodes is a crucial issue as
sometimes it can be too long and as a consequence the querying process will be
inefficient (Cunningham, 2006). The first step in query processes is the determination of
the relationships required by many of the labelling schemes. In fact, labels are used to
create the relationships among nodes which are needed for the query processes (Harold &
Means, 2004). The most common relationships are the node level, ancestor/descendent,
and parent/child. Harold (Harold & Means, 2004) noted that determining these last three
relationships can take a long time.
The ideal scheme should support various kinds of insertions of nodes and this is an
important advantage (D. K. Fisher et al., 2006; Gou & Chirkova, 2007). The uniform
insertion has been considered as an important kind of insertion for any state-of-the-art
labelling scheme (Alstrup & Rauhe, 2002). The measurement of spent time of the
insertion performance and the size of the labels after insertion might be used to determine

39

whether the labelling scheme is ideal for uniform insertions (Cooper et al., 2001).
Ordered skewed insertions should also be considered in an ideal labelling scheme (Cohen
et al., 2010). Finally, the random skewed insertion is a crucial one for any model
labelling scheme. This kind of insertion is used with some labelling schemes that can’t
cope with random insertions as they have fixed node structures (Cohen et al., 2010).
More details are discussed in the methodology chapter.
Having considered the above review, this research intends to propose a state-of-the-art
XML labelling scheme. The goal of this proposed scheme is to address the four issues
that were just discussed above, namely, supporting update processes, supporting labelling
XML data, supporting various insertions, and finally supporting the spent time for
determination of the relationships.
3.4 Review on the Testing of Existing labelling Schemes:
Existing labelling schemes have been tested in different techniques based on the aspects
that will be assessed such as performance, scalability, and efficiency. Most of the
labelling schemes are compared using different measures such as initial labelling, label
size, creating labelling time, and the cost of updating. Usually the proposed scheme is
compared with one or more existing labelling schemes to show the improvements that
this proposed scheme can deliver. Different experiments are designed according to the
testing aims for testing. In order to compare a labelling scheme with others, the queries
that these schemes support should be considered. A review on the testing of most relevant
and common labelling schemes will be discussed below.

3.4.1 Testing the LLS scheme: the (Beg, End) was used in the experiments to show the
improvement in the LLS. Two datasets were used to test the LLS which are as
follows: the DBLP computer science Bibliography dataset and the XMark dataset.
Furthermore, four kinds of XML queries were used to evaluate these schemes.
These kinds of queries are the most common ones used. The technique of mapping
to relational database tables was used to evaluate XML queries. Each query was
run twenty times and then the average was taken.

3.4.2 Testing the DDE scheme: three datasets, namely, XMark, Treebank and Nasa were

used to test this scheme against two other labelling schemes. The two labelling
schemes tested against the DDE were ORDPATH and Compact DDE (CDDE). The
executed experiments are as follows: initial labelling, querying static document,
querying dynamic document, and processing updates. The processing updates
included uniform insertions and skewed insertions which were classified into order
skewed insertions and random skewed insertions.

3.4.3 Testing the LSDX scheme: the XMark was used as a dataset for generating XML

data. This scheme was tested against the GRP scheme (by Lu and Ling, 2004) and
the SP scheme (by Cohen, Kaplan and Milo, 2002). The experiments that were

40

performed are the following: length of labels, time used to generate labels, insertion
and deletion time.

3.4.4 Testing the ORDPATH scheme: as for the dataset, the XMark and XMach-1 were

used to test this scheme. Different measures were used such as arbitrary insertions,
insert-friendly IDs, ORDPATH length. This scheme was compared with the Dewey
order and others for evaluation purposes.

The most common technique used for testing XML labelling schemes is to compare the
proposed scheme against other relevant schemes. Therefore, as the proposed scheme is
based on the LLS and Dewey schemes, the assessment of the proposed scheme is
performed by comparing this scheme against these two schemes. So, the proposed
scheme and the others were implemented. This implementation was necessary as the LLS
and Dewey labelling schemes are not available as source code. More details are provided
in the Methodology chapter.
3.5 Summary
The labelling schemes represent the indexes in XML data. Labelling XML data plays a
main role in enhancing the efficiency of querying XML data. In fact, indexing XML data
must represent the structure of the XML data tree, so it can support XML queries.
Moreover, the existing labelling schemes have different limitations.
This chapter reviewed the existing XML labelling schemes and considered their
structures and techniques for supporting query processes based on identified criteria.
These criteria were used to evaluate the targeted labelling schemes.
Consequently, the main findings are as follows: all labelling schemes have advantages
that make each one of them eligible for certain requirements of users. Thus, no one of
these labelling schemes is capable of meeting all user’s requirements. However, one of
the main problems that these labelling schemes face is the trade-off between the size of
the index and the performance efficiency. So, whenever the size of the scheme increases,
then the performance of the query decreases. Moreover, the review also found that
inserting and deleting nodes requires relabelling some nodes accordingly. Li and Moon
stated that even though the early labelling schemes have been amended, they still suffer
from the same limitations (Q. Li & Moon, 2001). Another issue that the existing labelling
schemes have is scalability. The update cost is also a common problem that labelling
schemes encounter. The cost here is measured by the occupied storage space. In other
words, the increase of the required number of relabelling nodes causes deficiency.
The LLS and Dewey labelling schemes were considered for use in the new state-of-the-
art scheme that this research will propose. The LLS scheme was chosen as it is state-of-
the-art and has a number of advantages. For instance, the used data type is numerical, and
the size of the labels is steady. As for the Dewey scheme, it is a pre-fix labelling scheme

41

which shows the ability to manage a cluster-based scheme. It is also a simple scheme so
can easily be implemented.
Consequently, all researches try to achieve a labelling scheme that can be stored in the
minimum possible space while maintaining the retrieval power at the same level.
Similarly, and based on this literature review, this research considers coming up with a
state-of-the-art labelling scheme that might achieve the aim of the research. As a result,
this research proposes a hybrid scheme which is a clustering-based labelling scheme.

42

4. Methodology and Framework

4.1 Introduction
XML database management systems rely on labelling schemes as an essential factor for
the XML query processing. By using a suitable labelling scheme, retrieving and indexing
of XML data can be done efficiently. The scheme reflects the structure of the XML tree
in order to carry out the process. Each node in this kind of processing of the XML tree is
assigned a unique label. The structural relationships can be extracted by comparing these
unique label nodes (Jayanthi & Tamilarasi, 2011).

This chapter starts by explaining the fundamentals of the proposed labelling scheme such
as the idea of this scheme and the mechanism for implementing it, as well as the data
model. It continues by describing how the update cost should be affected in this proposed
scheme; subsequently, the design of the proposed scheme is illustrated including the
implementation of the LLS and the Dewey labelling schemes for evaluation purposes.
The experimental setup is an essential section in this chapter. This section discusses the
objectives and types of the experiments. It also includes a review of the existing datasets
and benchmarks in ord er to adopt an appropriate one for the testing. Section 3.4 concerns
the testing, which discusses the testing platform and environment, and then explains the
testing objectives. Subsequently, this section also demonstrates the measurement and
metrics and testing plan. Finally, this chapter finishes by discussing the summary of this
chapter and what has been achieved.

4.2 Existing Approaches and our Approach, a Comparison and Justification
Based on the literature review of XML labelling schemes, number of approaches have
been proposed and developed as solutions for indexing XML data. As has been stated,
each approach has advantages and limitations and at the same time has a specific
technique. This section discusses and compares the most common techniques used in
these labelling schemes to resolve the targeted issues, in order to ascertain the limitations
of these techniques and justify the improvement that the proposed scheme might provide.
Based on the classifications of these labelling schemes in the literature review, first, let’s
start with the node schemes. The main idea of this technique is to save numbers that
represent the positions of the nodes in the tree. Thus, accessing any node can be achieved
by using these numbers. This technique is suitable for both single and twig queries.
The node schemes were classified into two groups, which are the prefix-based and
interval labelling schemes. The following provides details for these groups and their own
labelling scheme.

43

The main idea of a prefix-based scheme is labelling the father of a node as a prefix of the
node itself (Runapongsa, Patel, Jagadish, Chen, & Al-Khalifa, 2006). Many prefix-based
schemes have been proposed such as the Dewey scheme, LSDX scheme, GRP scheme,
and ORDPATH scheme, each of which has it is own technique and targets certain issues.
The Dewey is the most commonly used one. More details about the techniques of these
schemes are as follows:
 Dewey labelling scheme: this scheme was classified as a node scheme and path index

at the same time. It has advantages such as the ability to manage the clustering nodes
into groups, the simplicity of implementation of the scheme, high performance and
ease of updating. This scheme returns precise and complete results for queries.
However, because the label is non-constant, so the size of the label enlarges as the
depth of the data tree increases (Scott & SCOTT, 1998; Tatarinov et al., 2002).

 ORDPATH labelling scheme: this is the same technique as the Dewey scheme but the
difference is that this scheme uses odd numbers to label child nodes, whereas even
numbers are used for inserting new nodes (O'Neil et al., 2004a).

 GRoup base prefix (GRP): the technique of this scheme is to employ two divisions:
group ID and group prefix.

 Dynamic XML data (LSDX): this technique is to combine numbers and letters in the
label that support relationships such as siblings and ancestor–descendant. It is a good
technique in terms of update and data retrieval.

There are a number of interval schemes such as (Beg, End) scheme and (Order, Post)
scheme. The idea of this technique is to attach two values to each node which are the
startID and the endID. The startID is used to save the node ID for first element or
attribute. The endID is used to store the end of the attribute.
The technique of a Graph indexing scheme is based on producing a path summary for the
XML data. The path summary accelerates the process of query evaluation in order to
improve query performance. There are a number of Graph schemes that have been
proposed. Different techniques were employed in these schemes. These techniques and
their classifications were addressed in the literature review.
Regarding the techniques of Sequence indexing schemes, they convert both XML
documents and queries into structure sequences. Sequence indexes put the values and the
structures of XML data together into an integrated index structure. This structure is used
to evaluate both path and twig queries efficiently, answering a query, making a string
sequence that matches the sequence of the data with the query. The problem with most
sequence techniques is that they return non-precise and non-complete answers.
Concerning the technique of dividing the nodes into groups and introducing sub-trees,
this idea has many advantages which are discussed in section 3.1.

44

This research, as many others in this field, tries to introduce a new technique for labelling
XML data that can occupy the minimum storage space and at the same time keep the
query performance efficiency at the best level.
Therefore, this research proposes a labelling scheme that takes advantage of some of the
existing schemes, using the clustering-based technique in order to introduce a technique
that achieves a better solution than others. Consequently, this technique is based on the
following main points:

 The Dewey labelling scheme was selected for labelling the clusters due to the
advantages of this scheme such as the ability to manage the clusters, the ease of
updating, and because it performs well.

 The LLS labelling scheme was selected for labelling the nodes of the clusters. The
advantages of this scheme are that it uses numerical data and the size of the labels
is steady.

 The clustering-based technique was used due to the great advantages of this
technique. It reduces the required relabelling cases and as a consequence improves
the inserting new nodes processes, with easy determination of the relationships.

All three of these ideas were intended to present the state of the art scheme that would
achieve the aim of this research.

4.3 The Data Models of the Existing Labelling Schemes:
There are various kinds of techniques used for labelling XML documents as discussed in
the Literature Review chapter. Some of them are not suitable for dynamic XML data. A
review of these models is discussed in this section and an explanation of why this
research selected a particular one and rejected others.
The model of the prefix technique does not handle complex XML files properly and
handles the dynamic updates (D. Fisher et al.). As for the models of the interval schemes,
due to the limited space between nodes, this model is not suitable for dynamic updates
and is very costly (Fallside & Walmsley, 2004; O'Neil et al., 2004a; Wu et al., 2004b).
Regarding the data model of the sequence schemes, these schemes do not return precise
results. They are also weak in terms of retrieving data and processing complexity (H.
Wang & Meng, 2005; H. Wang et al.). This model must be reconstructed often and has
become very slow due to using the hashing technique (Bremer & Gertz, 2006; Meng et
al., 2004; S. Mohammad, 2011; Prasad & Kumar, 2005; Rao & Moon, 2004, 2006; Stein,
2007). These issues conflict with the objectives of the proposed scheme.
The model of the LLS scheme is based on the levels of the tree. This feature makes the
query process of this scheme very fast. Additionally, the model of this scheme has a fixed
size of labels regardless of the size of the tree. The Dewey model is a very common one
and has been studied and adopted in many later schemes. It is a very robust scheme that
supports the structure of the index. The decision to choose the LLS and Dewey schemes

45

was considered carefully based on these issues. Moreover, for the reasons mentioned
above, this research also carefully rejected other data models.
Regarding the significance of this proposed scheme for the real world, the experiments of
this research were executed to compare the performance of this scheme against the other
two schemes. However, using the XMArk dataset implies that the data can represent the
real world as it is a well-known dataset used to test XML schemes. Having said that,
performing further experiments in order to test the proposed scheme against a dataset
from the real world such as DBLP would be recommended to test this scheme for the real
world. Furthermore, the tests for the experiments were repeated twenty times as this
number has been used in testing a number of labelling schemes such as the Labelling
Dynamic XML Document and the LLS scheme.

4.4 Research Approach
The objective of this research is to produce a framework that can be a state-of-the-art
technology. Therefore, based on the in-depth review in the previous chapter, different
techniques are used to overcome the limitations. These techniques were studied in the
literature review chapter, each of which has some certain limitations, as well as
advantages.

This research came up with the idea of developing a state-of-the-art approach. The idea
of this approach is to propose a hybrid labelling scheme using two existing labelling
schemes, namely, LLS and Dewey labelling schemes in labelling the targeted XML
documents. Also, this scheme is based on using the grouping technique which has already
been used before. More details in the following section, number 4.4.1.

The idea of the proposed scheme is based on clustering nodes in order to ease the
determination of the child–parent and sibling relationships as the child–parent
relationship is available in each XML document; furthermore, these relationships also
ease the process of inserting new nodes. The parent–child clustering-based technique
helps in dealing with a small tree rather than the entire XML tree (Kaplan, Milo, &
Shabo, 2002). It was also found that the parent–child clustering technique supports the
labelling process, and is more efficient than the simple tree in terms of the accuracy and
spent time for query processing (Gusfield, 1997).
One of the features of a clustering-based technique is that it uses two labels for every
node as this idea eases the procedure of labelling nodes that share the same cluster;
whereas the label of the cluster is used to link that cluster with the entire tree. This
feature assists in determining the relationships among nodes that form different clusters
(Xu et al., 2009). It was stated that a scheme is developed to provide fast identification of
relationships, as this feature helps in the optimising of query processing (Q. Li & Moon,
2001).

46

Therefore, these advantages support the proposed scheme, which consequently helps in
enhancing the query processing and other targeted features of the proposed scheme such
as improving the process of labelling XML documents.

4.4.1 The Mechanism and Data Model of the Proposed Scheme:
The idea of the proposed labelling scheme is to divide the whole data tree into small
groups (clusters). This mechanism makes each cluster itself a sub-data tree. The
advantage of this mechanism is to reduce the number of required relabelling cases to the
lowest possible level, and as a result improve the efficiency of the query performance
processing. Subsequently, two XML labelling schemes were used to label the nodes and
their clusters of a data tree. These two schemes are the Dewey labelling scheme which
was used to label the clusters; and the LLS labelling scheme which was used to label the
nodes of the data tree.

4.4.1.1 Labelling XML Document:
The implementation of this task is divided into two stages as follows:
4.4.1.1.1 Creating and labelling clusters:
All nodes are grouped into clusters. The mechanism for achieving this task is as follows:

A- Each node and its child nodes are gathered to build a cluster.
B- Only the main root of the document is considered as a cluster itself and without

child nodes. This node is labelled number (1).
C- Each cluster is considered a sub-tree.
D- A cluster can have only one or two levels of nodes.
E- Each cluster has at least one node.
F- Each cluster may have a root and child node(s) that is connected with this root.

Thus, a cluster must contain at least one node.
G- All clusters, including the main root (not each node), are labelled by the Dewey

labelling scheme.
4.4.1.1.2 Labelling Nodes:

All nodes are labelled according to the following mechanism:
a) Each cluster is treated as a sub-tree and its nodes are labelled separately from

other clusters.
b) The LLS labelling scheme is used to label all nodes.
c) If the root of a cluster is a child node of another cluster, which means that this root

has already been labelled, then the label of this root will be kept the same.
Figure 4-1 shows an example of an XML data file. Figure 4-2 illustrates the proposed
scheme for the XML data document in Figure 4-1.

47

Figure 4-1: An example of XML data document

Bib

Book

author

Tim

paper paper paper

author
authorreviewer

Wang
AhmedSarah

1

1.1 1.2 1.3 1.4

1.4.21.4.11.3.11.1.1

1.1.1 1.1.1 1.1.1 1.1.1

2.11.1

3.11.1
3.11.1

3.21.1

2.11.1 2.21.1
2.11.1

3.11.1

 Figure 4-2: The proposed labelling scheme for the XML document in figure 4-1

The following definitions and explanations discuss the structures and relationships in the
proposed scheme:

Definition 1: a cluster consists of one node or a set of nodes that includes a root and the
rest are child nodes for this root. So, this sub-tree in a cluster has only one or two levels
of nodes.

Definition 2: two nodes are from the same cluster if, and only if, their cluster’s labels are
the same.

∴ n1 node and n2 node ∈ C1 cluster their cluster’s labels are the same.

<College>
 <subject>
 <tutor>Tim</tutor >
 </ subject >
 <people> </people>
 <people>
 <student>Sarah</student >
 </people>
 <people>
 < people teacher = “Ahmed”>
 <student > Wang </student>
 </people >
 </College>

48

4.4.1.1.3 Determining Node’s Level:

Definition 3: the detail of the level of each node is extracted from the label of the node as
follows:
The level of a node is the first component of the label of this node +1.

∴ Node’s level = 1st component of the label + 1
 ∴ Node’s level = (lev.valueTable+1)
Lev = a field (column) name in a table in the database.
valueTable = is the name of a table in the database.
For example, as shown in Figure 4-3, the level of the node ‘Student’ (for which its label
is: 1.1.1) is:

1+1=2.
4.4.1.1.4 Determining Label Order:

There are two cases in this matter which are as follows:

 Label Order for Nodes from the same Cluster:

The order is determined by using the node labels only. The following definition
shows how this order can be determined:

Definition 4:
Node 1 is before node 2 if, and only if, one of the two following conditions applies:
Condition 1: the level of the first node is before the level of node 2

Level 1< Level 2
n1.Lev.summary < n2.Lev.summary

n1 = node 1, n2 = node 2
Lev = a field (column) name in a table in the database.
Summary = is a table name in the database.
Condition 2: the second component of the node’s label of the first node is smaller than
the second component of the node’s label of the second node. The following definition
clarifies this explanation:

n1.perLev.summary < n2.perLev.summary
perLev = a field (column) name in a table in the database.
n1 = node 1, n2 = node 2.
Summary = is a table name in the database.

 Label Order for Nodes from Different Clusters:
Definition 5: a cluster consists of one node or a set of nodes that includes a root and the
rest are child nodes for this root. So, the sub-tree in a cluster has only one or two levels of
nodes.

49

4.4.1.2 Inserting new Nodes:
Inserting a new node will affect the corresponding index structure of the database which
is the labels. The following examples show various scenarios for inserting new nodes
and show how the proposed scheme copes with different scenarios:

4.4.1.2.1 Inserting a Node Between two Nodes:
There are two cases in this scenario:

a) Firstly, if the inserted node is a child of the main root, then this node is inserted
within the second level of the data tree. In this case, a new cluster is created and
then both the new cluster and the new node are labelled. Moreover, all the right
clusters need to be relabelled. This is one of the worst scenarios as the number of
required relabelling processes is higher than most of the other scenarios. Figure 4-3
illustrates an example of such insertion; when the inserted new node is within the
second level of the data tree, a new cluster must always be created.

Figure 4-3: Inserting a new node in the second level

b) Secondly, if the inserted node is a child node within a cluster, then all the right

siblings’ nodes in that cluster, if there are any, need to be relabelled. Figure 4-4
shows an example.

50

 Figure 4-4: Inserting a new node inside a cluster

4.4.1.2.2 Inserting a Node in the Rightmost Side:
This scenario is one of the most efficient updates as there is no required
relabelling. There are also two cases in this scenario as follows:
a) If the inserted node is a child of the main root and inserted to the rightmost,

then a new cluster is created. Both the new node and new cluster are labelled.
For instance, in Figure 4-5, the ‘lecture’ node has been inserted and labelled
(1.1.1), and then a new cluster has been created and labelled (1.6). There are no
required relabelling processes in this case.

 Figure 4-5: Inserting a new node in the second level and rightmost side

b) If the node is inserted within a cluster (not in the second level of the tree) and
at the rightmost in this cluster, then there is no need for any relabelling
operations. For example, the node ‘James’ is inserted and labelled (3.21.2) as
Figure 4-6 shows.

51

Figure 4-6: Inserting a new node in the rightmost side not in the level two

4.4.1.2.3 Inserting a Node in the Leftmost Side:
There are two cases in this scenario as follows:
a) If the new node is inserted in the leftmost side and this node is a child of the

main root, then a new cluster is first created. Subsequently, this cluster is
labelled according to the Dewey scheme by reducing the second component of
the first cluster’s label by one. Consequently, the node is inserted in this cluster
and labelled by the LLS scheme. In Figure 4-7, the node ‘syllabus’ has been
inserted in the leftmost side in the second level and labelled (1.1.1) and a
cluster is created and labelled (1.0). There is no further required relabelling
process. In case more nodes are inserted in the leftmost sides then the second
component is reduced by one for every inserted node.

 Figure 4-7: Inserting a new node in the second level and leftmost side

b) The second case is to insert a new node in the leftmost side and at any level
except the second one. Thus, this node will be within a cluster. All the right-

52

side nodes of the inserted node in this cluster need to be relabelled. Figure 4-8
shows an example where the node ‘David’ has been inserted and labelled and
the right-side nodes have been relabelled.

 Figure 4-8: Inserting a new node in the leftmost side within a cluster
4.4.1.2.4 Inserting a Node Below a Leaf Node:

In this case, the new inserted node is not a child of the main root. Therefore, a new
cluster needs to be created, and this cluster will contain this node and its parent
node. The new inserted node and the new cluster are labelled. A new node ‘DB’
was inserted as a chi
ld node for the node ‘syllabus’ and a new cluster was created. Subsequently, the
cluster and node were labelled as Figure 4-9 illustrates this example.

 Figure 4-9: The updated labelling scheme structure

53

4.4.1.3 Update Cost of the Proposed Labelling Scheme:
Update processes that take place in the XML documents affect the databases and indexes.
Thus, the proposed scheme aims to reduce the update cost to the lowest possible level.
Reducing the number of required relabelling processes is the main technique to reduce
the update cost. Using the clusters technique helps in reducing these relabelling
processes. The following number of scenarios for the update cost for the proposed
scheme against the LLS scheme and the Dewey labelling scheme show how the update
cost was improved:
 Scenarios for Comparing the Proposed Scheme with other Labelling Schemes:
Figure 4-10 demonstrates an example of inserting a new node. This node is inserted into
a cluster that has only one node and the root is a child of the main root. The figure also
shows the required relabelling nodes for the proposed scheme and the LLS and Dewey
labelling schemes. In this scenario, the proposed scheme can provide better performance
than the others as there is no need for any relabelling in the proposed scheme, whereas
relabelling operations are required in the other two schemes. The result of this scenario is
a common case with the proposed scheme.

Figure 4-10: A scenario for comparing the proposed labelling schemes with the LLS and Dewey schemes
 The worst scenario for the proposed scheme occurs when a new node is inserted between
two nodes in the second level. Thus, a new cluster needs to be created and then some of
the same level clusters need to be relabelled. In this case the relabelling operations in the
proposed scheme will be the same as the LLS scheme, and better than the Dewey
scheme. However, this scenario is an uncommon case. Figure 4-11 shows an example of
this scenario.

Figure 4-11: The worst case relabelling scenario for LLS and Dewey, and the proposed labelling schemes

54

4.5 Design and Implementation
Figure 4.12 shows the design of the proposed scheme and the platform and how the
proposed scheme works. As can be seen, the first step is to parse the XML document.
The DOM was selected for this platform because it is the most suitable option as it is a
commonly used parser and straightforward to apply. The XML DOM is a standard means
for accessing and manipulating XML documents. It has also already been employed by
researchers for designing a labelling scheme (Almelibari, 2015).

Java 1.8 was used for implementing the algorithms for the proposed scheme and the LLS
and Dewey labelling schemes. MySQL Workbench was used for building the databases
and as a database management system to save the data for all schemes.

The second step is to label each node and any linked cluster. More details are given
below.

 Figure 4-12: Design of the proposed scheme and the platform

55

4.5.1 Labelling XML Documents:

The first step is to read the XML document and save all nodes in a nodelist. The
following Figure 4-13 shows the pseudo code for this function.

1- If (mainNode !=null) {
2- Level=0
3- Depth=0
4- nodeList = get all nodes into the nodeList
5- Passing the nodeList to the indexer
6- Invoking the indexer

Figure 4-13: Pseudo code for getting all nodes in a node list

 Labelling Nodes and Clusters:
Inserting a new node has different types of cases such as the node is a first child for its
parent, or if the node is inserted between two existing nodes and so on. The algorithm
below shows the general steps for inserting new nodes:
__
Algorithm: inserting new node
__
Input: a new node to be inserted somewhere in the data tree.
Output: the new node is inserted.
1 Determine the location of the new node.
2 Insert the new node in the assigned position.
3 Check the position of the new node with the cluster.
4 Create cluster if required.
5 Label the new cluster if any was created.
6 Relabel any cluster(s) that require relabelling.
7 Label the new node accordingly.
8 Relabel any old node(s) in the new node’s cluster if any require relabelling.
__
Figure 4-14 demonstrates the pseudo code for labelling new nodes and clusters and
taking into account all possible cases.

4.5.2 Implementing the LLS and the Dewey Labelling Schemes:
The evaluation of the proposed scheme is based on testing the proposed scheme against
the LLS scheme and the Dewey labelling scheme. Thus, the implementation of both the
LLS and Dewey labelling schemes was required as they are not available either as open
source code or on the shelf software.

56

1- If level =1 { //This part only for level 1
2- Start_level = start level + “.1.1”
3- Last_Main_Index = “1.1” }
4- //Compare current and old node names
5- // and save the current node name into the variable
6- Current_node_name = null
7- If (Current_node_name!= null & != empty) {
8- Current_node_name= nodeName} // check if the node is duplicated then label it in the proper way
9- If (old node is not empty) {

//Then compare old node name with current node name and also compare current depth
level with last depth level

10- If (oldNodeName = currentNodeName & both nodes from the same level) {
11- LastValue = LastValue+ 1 // Add the last component + 1
12- Start_level = Last_Main_Index + “.” +

 }
13- Else
14- If (level > 1) { //To make sure this code doesn't work with Level 1
15- //Save entire indexing into Last_Main_Index } } }
16- Else { //if old name is empty
17- If (level > 1) { //To make sure this code doesn't work with Level 1
18- Last_Main_Index } } //Save entire indexing into

// handles labelling all children nodes
// check if any node name is duplicated

19- If (ParentNodeName = currentNodeName) & parentNodeLevel =level) {
20- lastValue= lastValue +1 // add the last component +1
21- nodeLabel= Last_Main_Index + lastValue }

//This part save current depth level into last depth level
22- lastXML_depth_level= level
23- If (level = 1) {//This code only handles depth level 1
24- If (parentNodeName != null)
25- parentNodeLevel = level-1 //here parent node level is 0
26- parentNodeIndex = 0 }//This is main node
27- If (parentNodeName != null)
28- parentNodeLevel = level-1
29- oldNodeName = currentNodeName
30- if (node_has_children){// To make sure if current node have any children
31- nodeList = get_node_children
32- while (the next node exists) {
33- child_node = currentNode }

Figure 4-14: Pseudo code for labelling nodes and clusters

With regard to the LLS, the original code that was supplied by the author of the LLS
scheme is incomplete and was not documented at all. The author also confirmed that he
can’t provide a description of the code documentation. Thus, a new implementation of
the LLS scheme was considered easier to accomplish than rectifying the missing parts in
the original software.

57

The Dewey labelling scheme is not available as open source code since it is a theory that
other researchers have used as a base to implement their interpretations of it in software.
The Dewey labelling scheme was implemented using Java as a coding language. The
implementation was according to the data model. A nodelist was used to save labels of
the nodes on it (Tatarinov et al., 2002). Since the Dewey labelling scheme is just a theory
and not implemented practically by the founder, it is thus not possible to validate it
practically.
As a result, both schemes were implemented by the author of the proposed scheme as
bespoke software. This implementation was as accurate as possible and according to their
data models, in order to prove the validity. With respect to the technologies, Java1.8 was
used to code the algorithms; nodelists were used to save the labels of the nodes. The LLS
scheme founder used XMark and DBLP as datasets to test the LLS labelling scheme (S.
A. Mohammad, 2011).

4.5.3 Validating the LLS Scheme
XMark datasets were used to prove the validity of the implementation of this scheme. The
Xpath was used as query language and the same types of queries were used as well.
However, the specifications of the hardware and the software that was used by the
founder of the LLS scheme to test it are slightly different from the ones used now to
validate the implemented LLS scheme. Thus, minor differences in the results are
expected and acceptable. Having executed these queries and compared their results with
the LLS scheme founder’s results, the results are almost identical and therefore the
implementation was accepted. Figure 4-15 shows a comparison of the results for both the
original LLS scheme and the implemented LLS scheme using the same four queries that
used in testing the original LLS scheme which were referred as Q1,.. Q4 in the figure
below.

Figure 4-15: The results for the original LLS scheme and implemented LLS scheme

0
10
20
30
40
50
60
70
80
90

100

Q1 Q2 Q3 Q4

Tim
e (m

s)

 Original LLS
implemented LLS

58

4.6 Experimental Setup

Testing the performance of the proposed scheme is an important task in order to assess
this scheme. Thus, a number of experiments were designed and executed to test several
aspects and features of the proposed scheme. These experiments were executed on the
proposed scheme as well as the LLS and Dewey labelling schemes in order to compare
the results. This section discusses the details of the experiments and the datasets used in
these experiments.

4.6.1 Objectives of the Experiments:
The experiments were designed and implemented to meet the objectives of the proposed
scheme which are the following:

1- The key aim of the experiments is to assess the performance, scalability, and
efficiency of the proposed scheme.

2- Evaluating the process of labelling XML documents: the labelling process is
measured according to two factors, namely, time required for labelling the
document; and second, the size of the growth of the labels, and how these factors
are affected by the document size.

3- Evaluating the query performance by carrying out different kinds of queries on the
labelled documents before and after insertions.

4- Handling insertions: testing the scheme scalability in handling different types of
insertions.

4.6.2 Types of Experiments:
1- Labelling the XML document: this experiment was carried out to evaluate the

process of labelling the nodes and the clusters of the XML document. Two aspects
were used to evaluate the scheme, which are time for labelling nodes and size of
the growth of the labels.

2- Time for updates: these updates include inserting new nodes and deleting existing
nodes. This experiment is conducted to evaluate the ability to handle different
types of insertion.

3- Determining different relationships: this experiment is for assessing the time to
determine the relationships.

4- Performance of the queries: this experiment is for evaluating the query response
time before and after insertions. A number of different queries were carried out.
These queries are used to test different features and aspects. The XMark queries
were chosen to test the schemes. More details about the XMark and why it was
chosen are given in the next section.

59

4.6.3 XML Datasets and Benchmarks:

There are many XML datasets available. Some of them are from real life datasets and
others are from artificial datasets. These two types of datasets are used to evaluate the
XML labelling schemes (Schmidt et al., 2001). An investigation into the most broadly
used XML datasets is carried out in order to choose the most appropriate dataset(s)
for testing the proposed scheme. More detail about these datasets and benchmarks as
follows:

1] Actual XML Datasets: these datasets are based on real data. They are also called
production/ existing/ experimental XML datasets. Examples of them are: SwissPort,
DBLP Computer Science Bibliography, University Courses, Auction Data, NASA,
Treebank, Protein Sequence Database, SIGMOD Record, Mondial, and TPC-H
Relational Database Benchmark (Schmidt et al., 2001).

2] Benchmark/Standard Datasets: also, called artificial datasets. These benchmarks
were developed for the purpose of evaluating queries. XML benchmarks are
categorised into two groups, namely, micro benchmarks and application benchmarks.
Micro benchmarks are used to evaluate specific parts of a system whereas application
benchmarks are used to evaluate the performance of an XML database in general
(Barbosa, Mendelzon, Keenleyside, & Lyons, 2002; Kanda Runapongsa, 2006;
Mlýnková, 2008; Schmidt et al., 2001). Examples of them are: XMark Benchmark,
TPox benchmark, Michigan Benchmark, XBench benchmark, and XMack-1
Benchmark. These XML benchmarks are intended for both query processing and
storing data (Schmidt et al., 2001). More details about the most used datasets and
benchmarks as follows:

 XMark Benchmark: this was proposed in 2002 by Schmidt et al. (Schmidt et al.,

2002) and is mainly used to evaluate XML applications. It is one of the most used
XML benchmarks nowadays. The XMark has a data generator called xmlgen. This
generator can produce an artificial XML document that is based on the DTD of an
internet database. This generator is available free of charge at the XMark project
website. XMark can recreate an XML database in different sizes. Thus, users can
generate their own datasets that are appropriate for their requirements. In addition,
the XMark datasets are used to evaluate the system performance efficiently.
Twenty queries are included in XMark and they are used to assess different
aspects of searching in databases. These queries do not include the update
processes (Schmidt et al., 2002).

 XOO7 Benchmark: this was introduced by Carey et al. (Carey, DeWitt, Kant, &

Naughton, 1994) and is called Object Oriented RDBMS benchmark (OO7). It was,

60

subsequently, implemented on XML data by Li et al. (Q. Li & Moon, 2001). The
XML dataset that XOO7 creates is a separate XML file. This file is created in
three different sizes – small, medium and large. This XML dataset has only up to
five levels and offers twenty-three queries. These queries only handle search
operations (Carey et al., 1994). The XOO7 benchmark can be downloaded free of
charge from its website (Bressan et al., 2001).

 Michigan Benchmark: also called MBench. Introduced by Runapongsa et al.,

this benchmark was designed as a micro benchmark in order to evaluate specific
system components (Runapongsa et al., 2006). This benchmark’s dataset has
forty-six queries and seven update processes (Mlýnková, 2008). It comes as an
XML file that includes a number of nodes starting from 728,000 nodes and up to
ten times more. In addition, this dataset has limited depth which is sixteen levels,
whereas the width is changeable. With regard to the queries, this benchmark has
thirty-one queries that handle and evaluate many different features of databases
containing update operations (Runapongsa et al., 2006).

 XML Data Management Benchmark (XMach-1): this was introduced by

(Böhme & Rahm, 2003) and supports multiusers. The dataset of the XMach-1
includes a large number of XML files with sizes between 2 KB and 100 KB. The
number of levels is limited up to six levels. The query set has eleven queries, three
of them for update processes and the other eight queries for search processes. This
benchmark is supported by web applications and is comprised of four parts,
namely XML database, server, loader and client. The application servers provide
XML document handling. The loaders handle the processes of detecting and
loading the XML data from the database. The clients query and retrieve XML data
(Böhme & Rahm, 2001). Figure 4-16 shows the components of the XMach-1.

Figure 4-16 : XMach-1 components (Böhme & Rahm, 2001)

61

 XBench Benchmark: this creates a very wide range of XML files such as data
centric and text centric. The database of this benchmark could be a single or multi
XML file. The XBench is provided with a generator to generate XML data. This
generator is built on ToXgene data generator and can generate different sizes of
files from 10 MB to 10 GB. This benchmark has twenty queries that support
search only without update (Benjamin B Yao, Özsu, & Keenleyside, 2003;
Benjamin Bin Yao, Ozsu, & Khandelwal, 2004).

 TPoX Benchmark: TPoX stands for Transaction Processing over XML. This

benchmark was designed to evaluate the whole system. The schema of the
benchmark controls the size of the XML files. Regarding the XML database, it
includes many small XML files with sizes between 2 KB and 20 KB. This
benchmark has seventeen queries that mainly focus on updates (Nicola, Kogan, &
Schiefer, 2007).

Having investigated these datasets, the XMark benchmark has been chosen for the
testing experiments. The XMark benchmark helps both implementers and users to
obtain insights into the XML storage. XMark was chosen to test the proposed scheme
for the following reasons: first and most importantly, the XMark was used to evaluate
the performance of the LLS scheme by the founder. Thus, it would be appropriate to
use the same dataset to evaluate the proposed scheme and compare the results (Samir
Mohammad & Martin, 2010). Secondly, this benchmark is widely used to test XML
queries and XML database performance (Almelibari, 2015). Moreover, XMark is a
good choice since it has many features such as providing a document generator to
create documents in different sizes. Thus, users can generate datasets that are
appropriate for their requirements (Schmidt et al., 2002). Also, this benchmark
provides a binary version of the XMark that can be run as an independent platform on
any operating system. XMark provides a broad range of queries – twenty-one in total.
These queries are designed to evaluate different aspects of the datasets. They are
divided into groups based on their goals and purposes. Table 4-1 shows these groups
(Schmidt et al., 2002). Query number 10 of the XMark queries was eliminated since it
is irrelevant to the proposed scheme as this query is used to translate the results into
another language.
To conclude, the above XMark features offer great choice for evaluating the proposed
scheme.

62

TABLE 4-1: XMARK BENCHMARK QUERIES (SCHMIDT ET AL., 2002)
No Query

number
Group name Description

1 Q1 Exact match Return the name of the person with ID ‘person0’.
2 Q2

Ordered access
Return the initial increases of all open auctions

3
Q3

Return the first and current increases of all open auctions
whose current increase is at least twice as high as the
initial increase

4 Q4 List the reserves of those open auctions where a certain
person issued a bid before another person.

5 Q5 Casting How many sold items cost more than 40?
6 Q6 Regular path

expression
How many items are listed on all continents?

7 Q7 How many pieces of prose are in our database?
8 Q8

Chasing
references

List the names of persons and the number of items they
bought. (joins person, closed auction)

9 Q9 List the names of persons and the names of the items
they bought in Europe. (joins person, closed auction,
item)

10 Q11
Joins on values

For each person, list the number of items currently on
sale whose price does not exceed 0.02% of the person’s
income.

11
Q12

For each person with an income of more than 50,000, list
the number of items currently on sale whose price does
not exceed 0.02% of the person’s income.

12
Q13

Reconstruct
portions of the
original XML
document

List the names of items registered in Australia along
with their descriptions.

13 Q14 Full text Return the names of all items whose description contains
the word ‘gold’.

14 Q15 Path traversals Print the keywords with emphasis in annotations of
closed auctions.

15 Q16 Return the IDs of the sellers of those auctions that have
one or more keywords emphasised.

16
Q17

Finding missing
elements

Which persons don’t have a homepage?
17 Q18 Function Convert the currency of the reserves of all open auctions

63

application to another currency.
18 Q19 Sorting Give an alphabetically ordered list of all items along

with their location.
19 Q20 Aggregation Group customers by their income and output the

cardinality of each group.

4.7 Testing

The overall purpose of testing the proposed scheme is to ensure it achieved objectives.
The experiments were executed twenty times for each query and then the average was
taken in order to gain as accurate results as possible. This number of executions for each
experiment was chosen as a fair number to get an accurate result by calculating the
average of these twenty executions. Other researchers used the same number for testing
similar labelling schemes (Almelibari, 2015).
The items that need to be tested are: the proposed scheme, the LLS labelling scheme, and
the Dewey labelling scheme. Furthermore, there are certain features that need to be
tested, namely the query performance, efficiency of labelling XML documents, efficiency
of scalability, and functionality of the proposed scheme. The testing technique is based
on running nineteen queries of the XMark dataset to test the target schemes in order to
compare the results and ascertain the achievement of the proposed scheme.

4.7.1 Testing Platform and Environment
An appropriate platform and testing environment for certain experiments is an important
task in order to gain accurate results. The following issues and tasks were considered and
carried out:

1- Use appropriate XML datasets and benchmarks: as discussed above, a review of
the most commonly used XML datasets for testing the labelling scheme had
already been carried out, and as a consequence, the XMark was chosen for the
testing. More details are given above in section 3.2.3.

2- Identify the environment of the experiments: all experiments were carried out on a
desktop with the following specifications:
- Processor: Intel Core i5
- CPU 3.20 GHz
- RAM: 8GB
With respect to the software:
- Windows 7 Enterprise.
- MySQL Workbench 6.3 as a database management system.
- Java 8 as a programming language for coding the algorithms.

64

This software and hardware was used for the implementation and testing stages.
They were selected carefully as the most appropriate specifications for the testing
requirements.

4.7.2 Data Analysis and Presentation:
 This process starts from the stage of data collection as raw data moving to significant
findings. The raw data of the experiments is the selected XML datasets which is the
XMark benchmark.

4.7.2.1 Mechanism of Generating Data:
The data raw is processed by the algorithm of the proposed labelling scheme. This
process labels and manipulates the raw data. The raw data here is XML documents.
These raw data include eleven files in different sizes which generated by the XMark
Benchmark. Table 4-2 below shows these data files and their purposes. The XMark-1
file is the smallest file (1 MB) and was used to test all experiments because it facilitates
the observation of the changes when updates to the document take place. The other ten
files started from 10 MB an d reached 100 BM. The sizes of these files differed by 10
MB. These files were generated in these different sizes in order to test the capability of
the proposed scheme to manage the scalability and other targeted features. These files
were used to measure the time and size for labelling XML documents.

TABLE 4-2: XMARK FILES FOR EXPERIMENTS

File name Size Targeted experiments
XMark-1 1 MB All experiments
XMark-2 10 MB

Measuring time and size for
labelling XML documents

XMark-3 20 MB
XMark-4 30 MB
XMark-5 40 MB
XMark-6 50 MB
XMark-7 60 MB
XMark-8 70 MB
XMark-9 80 MB

XMark-10 90 MB
XMark-11 100 MB

Briefly, the processing of data raw produces indexes that are stored in database files.
These indexes are the labels of XML documents. The results of this processing are
represented in the spent time of certain procedures and the size of certain files. The
simple figure 4-17 below shows the stages of generating data.

65

Figure 4-17: process of generating data

4.7.2.2 Statistical Data Analysis Procedures:
The presentation of the results in graphs is a crucial task as it offers a descriptive view for
the differences among the targeted schemes for the testing. Moreover, most of the results
of the experiments are doubtful and hard to be sure about it. Thus, in terms of statistics,
the hypothesis test is widely accepted as a process to achieve trusted answers (Currell,
2015). Furthermore, it was suggested that calculating the statistical significance helps in
clarifying the differences between the results of two schemes as obtaining the statistical
significance. The null hypothesis is used to measure the statistical significance. The null
hypothesis is tested by checking if the targeted schemes are equal, otherwise the
alternative hypothesis is accepted (Benjamini, 1988).

Briefly, hypothesis testing (a. k. a. t testing) is used to evaluate the research question and
the research hypothesis. However, as the targeted schemes for the testing are non-
parametric. Thus, the t-test is not suitable for this case and the p-value would be the
alternative. Mainly, the p-value assists the researchers to test their hypotheses. Moreover,
the p-value is also used as the probability of achieving a result that the same or much
more than the one was observed. Thus, p-value is broadly used (Currell, 2015; Gray,
2013).

4.7.2.3 Calculate the Statistical Significance: Statistical significance means that the
results of the experiments are not by chance or randomly. Thus, the statistical
significance was chosen for this research as a statistical approach to test the hypothesis.
The statistical significance in this research concentrates on measuring the performance in
terms of time and size.

The box plot has been recognised as a suitable method for numerical data presentation as
quartiles, as well as descriptive statistics. The box plot technique as a statistical procedure
is also used to obtain the p-values. The interpretation of the figures that the box plot
provided is very straightforward since the p-values are used to find the significance
between the tests. (Nuzzo, 2016). This interpretation is straightforward due to the utility
of p-values in finding the significance between the tests. The p-value is calculated by
setting a null hypothesis (H0) for the targeted schemes in order to test the statistical
significance. In this regard, scientists usually set the significance level for the
experiments is 0.05, which means that only at most 5 percent of the results are by chance

66

or randomly can be accepted. The justification for choosing the box plot is that it is a
suitable way for non-parametric data.

The time and size of populations of eleven XML documents which showed in table 4-2
above are calculated. These eleven populations are measured for every variable such as
time of labelling XML documents, size of labelling XML documents, determining
different relationships, query performance, and so on.

The SPSS (Statistical Package for the Social Sciences) will be used as a data analysis
tool. Initially, this software was introduced for social sciences as its name implies.
However, nowadays this software is very well known cross many fields. All the box plots
are generated by the SPSS. the Wilcoxon rank sum test will be used to calculate the p-
value. The Wilcoxon rank sum test is a convenient in figuring out the statistical
significance based on the p-value (Rousseeuw et al., 1999).

4.8 Summary
This chapter described the state-of-the-art proposed scheme including the mechanism and
design, as well as implementation and the experimental setup. In more detail, the chapter
was divided into four main sections, namely, research approach, experiment setup,
testing, and summary.
In section 4.1 an introduction was provided. In section 4.2 the existing approaches and
our approach were discussed and compared. The data models of existing labelling
schemes were discussed in section 4.3. Moreover, section 4.4 started by demonstrating
the mechanism of labelling XML documents, and how this scheme can create clusters
and then label them as well as their nodes according to the theory and data model of this
scheme. This section also discussed the data model and how the proposed scheme can
determine the node order and the inserting new nodes process. Furthermore, this section
explained the update cost of the proposed scheme and then illustrated examples for
inserting new nodes and how the proposed scheme handles them. Subsequently, section
4.5 demonstrated the design and implementation of the proposed scheme, including the
algorithms and the pseudo code. Section 4.5.2 considered the implementation of the LLS
and Dewey labelling schemes for evaluation purposes, followed by section 4.5.3 which
explained the validation of the LLS and Dewey labelling schemes. In section 4.6, the
experimental setup including experiment objectives and types were discussed. In
addition, this chapter discussed the testing stage in section 4.7.
The mechanism used in the proposed scheme which is based on dividing the whole data
tree into small sub-trees called clusters is a supportive part of enhancing the efficiency of
the scheme. The basic idea of this mechanism has already been used in developing a
labelling scheme by Almelibari (Almelibari, 2015). However, some differences occurred

67

due to the nature of the aim and objectives of this research; for instance, labelling these
clusters and their nodes by using two existing labelling schemes, which were selected
carefully and based on justifications, as discussed in the previous chapter. Having carried
out these tasks, objective 2 was achieved successfully.
The stage of design and implementation of the proposed scheme is a crucial stage. All
steps were considered and justified carefully, from designing the proposed scheme to
implementation of this design and all other required components such as implementing
the LLS and Dewey labelling schemes. Therefore, objective 3 of this research was
achieved successfully.
Section 4.6 discussed the experimental setup. In more detail, the testing objectives and
types of experiments were explained in sections 4.6.1 and 4.6.2 respectively. A deep
review of the most common XML datasets and benchmarks in order to pick up one or
more of these datasets for experimental purposes were discussed in section 4.6.3.
Section 4.7 includes the testing stage. This section discussed the testing platform and
environment, testing objectives, and finally testing measurements and metrics in sections
4.7.1, 4.7.2, and 4.7.3 respectively. This stage is a part of the setup for the evaluation
stage which has been carried out successfully.

68

5. Results

5.1 Introduction

The results are illustrated and discussed in this chapter. These are the results of the
experiments that were described in the previous chapter. These experiments were
developed in order to assess a number of features and functions of the proposed scheme
such as time required for labelling clusters and nodes, time for defining the relationships
among nodes, size of the labels, and so on. These experiments were designed to test the
proposed labelling scheme as well as the LLS and Dewey labelling schemes in order to
compare the results.
Previous research that tested labelling schemes found that there is a fluctuation between
the results of certain repeated experiments (Fennell, 2013). Therefore, results of
experiments that come from just a few repeated experiments could be inaccurate and
unreliable (Murata et al., 2000). Similar research repeated each experiment twenty times
and their average was calculated (Almelibari, 2015). Therefore, the experiments of this
research were repeated the same number of times in order to gain accurate results.
With respect to the datasets, XMark benchmark was chosen for testing the experiments as
explained in the previous chapter. Different sizes of files were created to test different
experiments as table 4.2 shows. Different file sizes were used to assess whether size can
influence the calculated time and size.
The experiments were carried out to test both static and dynamic documents separately as
follows:
5.2 Experiments for Static Documents

5.2.1 Labelling XML Documents:
The idea of this experiment is to compute the time needed for assigning labels to the
XML data nodes. These labels are assigned according to the proposed labelling
scheme. In addition, the growth of the label’s size is computed by using different file
sizes.

5.2.1.1 Measuring Time:
This is calculated according to the method of the proposed scheme for labelling nodes.
Thus, there is a rapid increase in time when the file size increases by 10 MB. Figure
5.1 illustrates the time needed for labelling XML files by using the proposed scheme.

69

Figure 5-1: time needed for labelling XML files by the proposed scheme.

As the above figure shows, there is a rapid increase of time when the file size increases
by 10 MB. Executing this experiment on the LLS scheme also shows a rapid increase
between the time and file size as shown in figure 5-2.

Figure 5-2: time needed for labelling XML files by using the LLS scheme.

Executing this experiment on the Dewey labelling scheme shows a similar increase to the
previous two experiments, as figure 5.3 shows.

0
50000

100000
150000
200000
250000
300000

Tim
e in

 ms

The proposed labelling scheme

0
50000

100000
150000
200000
250000
300000
350000
400000
450000
500000

1 MB 10MB 20MB 30MB 40MB 50MB 60MB 70MB 80MB 90MB 100MB 110MB

Tim
e in

 ms

LLS scheme

70

Figure 5-3: time needed for labelling XML files by using the Dewey scheme.

All labelling schemes demonstrate a great time increase. Figure 5.4 shows a comparison
for the results for all these schemes. The spent times for labelling XML files by the LLS
and Dewey labelling schemes are longer than the spent time for labelling XML files by
the proposed scheme.

 Figure 5-4: time needed for labelling XML files.
5.2.1.2 Measuring Size: observing the increasing size of the labels while labelling XML

documents shows that all schemes have a significant increase in the size of the labels.
However, these increases are different from each other. The proposed scheme could
not beat the other two schemes in this regard, and had a higher increase. This increase
is due to the method that the proposed scheme used to label the nodes and clusters,
which means that two labels need to be saved for each node, and as a result a bigger
space in the memory is equipped. Figure 5.5 shows these results.

0
50000

100000
150000
200000
250000
300000
350000
400000
450000

1 MB 10MB 20MB 30MB 40MB 50MB 60MB 70MB 80MB 90MB 100MB 110MB

Dewey labelling scheme

0
50000

100000
150000
200000
250000
300000
350000
400000
450000
500000

Tim
e in

 ms

CLS
LLS
Dewey

71

 Figure 5-5: the growth of the size of labelling XML files for all schemes.
5.2.1.3 Statistical Description of the Results:

The proposed labelling scheme shows difference in spent time for labelling XML
documents from the LLS and Dewey schemes. Eleven populations were used to
measure the time for labelling nodes; these populations were illustrated in figure 5-5 in
the Methodology chapter. Consequently, the box plots illustrate the distributions that
were moved to the proposed scheme, which means that the proposed scheme shows
better performance in this regard.
The p-values results gained from testing the eleven different sizes of populations show
the results are below the significance level, which is 0.05. As a result, the null
hypothesis was rejected and the alternative hypothesis was supported. Therefore, the
proposed scheme achieved faster performance than the LLS and Dewey labelling
schemes.
Figures from 5-6 to 5-25 show the box plots and p-values for this testing.

 Figure 5-6: Box plots between the CLS & LLS & Dewey schemes using XML files of size 1 MB and 10
MB for labelling XML documents.

0
200
400
600
800

1000
1200
1400
1600

size
 in M

B
LLS
Dewey
CLS

72

p-value @ 1 MB between CLS & LLS schemes = 0.041
p-value @ 1 MB between CLS & Dewey schemes = 0.043
p-value @ 10 MB between CLS & LLS schemes = 0.043
p-value @ 10 MB between CLS & Dewey schemes = 0.042

Figure 5-7: the p-value between the CLS, LLS and Dewey schemes using XML files of size 1 MB and 10
MB for labelling XML documents.

 Figure 5-8: Boxplot between CLS, LLS, & Dewey schemes using XML files of size 10 MB and 20 MB
for labelling XML documents.

p-value @ 20 MB between CLS & LLS schemes = 0.045
p-value @ 20 MB between CLS & Dewey schemes = 0.047

Figure 5-9: the p-value between the CLS, LLS and Dewey schemes using XML files of size 20 MB XML
files for labelling XML documents.

 Figure 5-10: Box plot between CLS, LLS, & Dewey schemes using XML files of size 20 MB and 30 MB
for labelling XML documents

73

p-value @ 30 MB between CLS & LLS schemes = 0.004
p-value @ 30 MB between CLS & Dewey schemes = 0.004

Figure 5-11: the p-value between the CLS, LLS and Dewey schemes using XML files of size 30 MB for
labelling XML documents.

 Figure 5-12: Box plot between CLS, LLS & Dewey schemes using XML files of size 30 MB and 40 MB
for labelling XML documents.

p-value @ 40 MB between CLS & LLS schemes = 0.018
p-value @ 40 MB between CLS & Dewey schemes = 0.018

Figure 5-13: the p-value between the CLS, LLS and Dewey schemes using XML files of size 40 MB for
labelling XML documents.

 Figure 5-14: Boxplot between CLS, LLS & Dewey schemes using XML files of size 40 MB and 50 MB
for labelling XML documents.

74

p-value @ 50 MB between CLS & LLS schemes = 0.007
p-value @ 50 MB between CLS & Dewey schemes = 0.006

Figure 5-15: the p-value between the CLS, LLS and Dewey schemes using XML files of size 50 MB for
labelling XML documents.

 Figure 5-16: Boxplot between CLS, LLS & Dewey schemes using XML files of size 50 MB and 60 MB
for labelling XML documents.

p-value @ 60 MB between CLS & LLS schemes = 0.007
p-value @ 60 MB between CLS & Dewey schemes = 0.007

Figure 5-17: the p-value between the CLS and & LLS schemes using XML files of size 60 MB for
labelling XML documents.

 Figure 5-18: Boxplot between CLS, LLS & Dewey schemes using XML files of size 60 MB and 70 MB
for labelling XML documents.

75

p-value @ 70 MB between CLS & LLS schemes = 0.006
p-value @ 70 MB between CLS & Dewey schemes = 0.007

Figure 5-19: the p-value between the CLS, LLS & Dewey schemes using XML files of size 70 MB for
labelling XML documents.

 Figure 5-20: Boxplot between CLS, LLS & Dewey schemes using XML files of size 70 MB and 80 MB
for labelling XML documents.

p-value @ 80 MB between CLS & LLS schemes = 0.012
p-value @ 80 MB between CLS & Dewey schemes = 0.007

Figure 5-21: the p-value between the CLS, LLS & Dewey schemes using XML files of size 80 MB for
labelling XML documents.

 Figure 5-22: Boxplot between CLS, LLS & Dewey schemes using XML files of size 80 MB and 90 MB
for labelling XML documents.

76

p-value @ 90 MB between CLS & LLS schemes = 0.007
p-value @ 90 MB between CLS & Dewey schemes = 0.005

Figure 5-23: the p -value between the CLS, LLS and Dewey schemes using XML files of size 90 MB for
labelling XML documents.

 Figure 5-24: Boxplot between CLS, LLS & Dewey schemes using XML files of size 90 MB and 100 MB
for labelling XML documents.

p-value @ 100 MB between CLS & LLS schemes = 0.004
p-value @ 100 MB between CLS & Dewey schemes = 0.007

Figure 5-25: the p-value between the CLS, LLS and Dewey schemes using XML files of size 100 MB for
labelling XML documents.

5.2.2 Determining Different Relationships:

This experiment computed the calculation time of the relationships between two nodes
using the labels between these nodes. Five aspects and relationships were measured in
this experiment, namely: sibling, parent/child, ancestor/descendant, order, and level.
More details are the following:

a) Sibling measurement: this is used to decide whether two nodes or more share the
same parent or not.

b) Parent/child and ancestor: these relationships are calculated to define whether two
nodes are parent and child linked.

c) Ancestor/descendant measurement: these relationships are calculated to define
whether two nodes are ancestor and descendant linked.

d) Order measurement: this is used to define the order between certain nodes.
e) Level measurement: this one defines the level of a node in an XML data-tree.

77

Figure 5-26 shows the spent time for determining the relationships of the proposed
scheme. It is observed that the spent time to compute the level of nodes is the shortest,
whereas the spent time to compute the parent/child is the longest.

Figure 5-26: spent time for determining the relationships of the proposed scheme.

Figure 5.27 shows the spent time for determining the relationships of the LLS
labelling scheme. The spent time to compute the order of the nodes is the shortest,
whereas the spent time to compute the ancestor/descendant is the longest.

Figure 5-27: spent time for determining the relationships of the LLS scheme.

Figure 5.28 illustrates the spent time for determining the relationships of the Dewey
labelling scheme. Again, the spent time to compute the order of the nodes is the
shortest, whereas the spent time to compute the ancestor/descendant is the longest.

00.10.20.30.40.50.60.70.8
Tim

e in
 MS

The proposed scheme

00.050.10.150.20.250.30.350.40.45

Tim
e in

 MS

The LLS Labelling scheme

78

Figure 5-28: spent time for determining the relationships of the Dewey labelling scheme.

A comparison of the results, as in figure 5.29, shows that the proposed labelling
scheme achieved better results than the LLS and the Dewey labelling schemes in four
relationships, namely, order, level, sibling, and parent/child; whereas the Dewey
scheme achieved best result in the ancestor/descendant relationships.

 Figure 5-29: the time spent for determining the relationships.

With respect to the proposed scheme, the sibling measurement illustrates the shortest
time; whereas the ancestor/descendant relationship is the longest time. The second
shortest time is the level calculation which is 0.19 millisecond. The order and the
parent/child relationship results are 0.09 and 0.28 respectively. As far as the LLS
scheme is concerned, the sibling measurement demonstrates the shortest time

00.10.20.30.40.50.60.70.80.9

Tim
e in

 MS

Dewey Labelling scheme

00.10.20.30.40.50.60.70.80.91

CLS
 LLS
Dewey

79

consumption, whereas the parent/child relationship consumed the longest time.
Regarding the Dewey scheme, the calculation of nodes’ level is the longest time. The
parent/child is the shortest time.

Statistical Description of the Results:
The time needed to figure out the relationships between two nodes was calculated.
These relationships were discussed in detail in the Methodology chapter. The
populations that were examined are, namely, order between nodes, level of nodes,
sibling relationships, parent/child relationships, and ancestor/descendent relationships.
Having considered the five box plot figures below, the distribution shows a shift to the
proposed scheme, which means that this scheme is faster than the others. The p values
were calculated by the Wilcoxon rank-sum test, and all the results are far lower than
the significance level. Thus, the null hypothesis was rejected and the alternative
hypothesis was accepted, and as a result, the proposed scheme is faster than the other
schemes.

 Figure 5-30: Boxplot between CLS, LLS & Dewey schemes when determining the Order between two
nodes.

p-value between CLS & LLS schemes = 0.018
p-value between CLS & Dewey schemes = 0.017

Figure 5-31: the p-value between the CLS and & LLS schemes when determining the Order between two
nodes.

80

 Figure 5-32: Boxplot between CLS, LLS & Dewey schemes when determining the nodes’ Level.

p-value between CLS & LLS schemes = 0.017
p-value between CLS & Dewey schemes = 0.008

Figure 5-33: the p-value between the CLS, LLS & Dewey schemes when determining the nodes’ Level.

 Figure 5-34: Boxplot between CLS & LLS & Dewey schemes when determining the sibling relationships.
p-value between CLS & LLS schemes = 0.008
p-value between CLS & Dewey schemes = 0.017

Figure 5-35: the p-value between the CLS, LLS and Dewey schemes when determining the sibling
relationships.

81

 Figure 5-36: Boxplot between CLS, LLS & Dewey schemes when determining the Parent/Child
relationships.

p-value between CLS & LLS schemes = 0.017
p-value between CLS & Dewey schemes = 0.016

Figure 5-37: the p-value between the CLS, LLS and Dewey schemes when determining the Parent/Child
relationships.

 Figure 5-38: Boxplot between CLS, LLS & Dewey schemes when determining the Ancestor/Descendent
relationships.

p-value between CLS & LLS schemes = 0.017
p-value between CLS & Dewey schemes = 0.018

Figure 5-39: the p-value between the CLS, LLS and Dewey schemes when determining the
ancestor/descendant relationships.

82

5.2.3 Query Efficiency Measurement:
This experiment was carried out to measure query efficiency and performance before and
after insertions. As stated in the Methodology chapter, the XMark queries were chosen to
test the proposed scheme against the LLS and Dewy schemes. These queries are
illustrated in table 4-1 in the Methodology chapter.

As table 4-2 in the Methodology chapter shows, different sizes of files were created to
test and measure different aspects. The number of these files is eleven. The sizes of these
files are between 1 MB and 100MB size. The XMark-1 file was chosen to evaluate all
queries. This file is 1 MB size which is the smallest one. The XMark-1 file was selected
because it facilitates monitoring and observing the changes easily when updates of the
document take place. The other files started from 10 MB and reached 100 BM. The sizes
of these files differed by 10 MB. Table 5.1 shows the results for testing the proposed
scheme and the other two labelling schemes using the XMark-1 file.

TABLE 5-1: THE RESULTS OF THE QUERIES FOR TESTING ALL SCHEMES
No Query

number
Purpose Proposed

scheme
LLS

scheme
Dewey
scheme

1 Q1 Exact match 45 57 70
2 Q2

Ordered access
146 252 261

3 Q3 229 272 288
4 Q4 121 163 161
5 Q5 Casting 37 43 50
6 Q6 Regular path

expression
52 59 78

7 Q7 16 14 22
8 Q8 Chasing references 2174 3273 3421
9 Q9 173 213 198
10 Q11 Joins on values 256 317 288
11 Q12 207 348 374

12

Q13
Reconstruct

portions of the
original XML

document
1875 2239 2381

13 Q14 Full text 45 61 58
14 Q15 Path traversals 92 136 157
15 Q16 85 108 149
16 Q17 Finding missing

elements 126 73 151
17 Q18 Function

application 67 83 80
18 Q19 Sorting 437 148 621
19 Q20 Aggregation 152 206 264

83

Figures 5.40, 5.41, and 5.42 show the results of query performance for the three targeted
schemes.

Figure 5-40: query performance for the proposed scheme.

Figure 5-41: query performance for the LLS scheme.

Figure 5-42: query performance for the Dewey labelling scheme.

0
500

1000
1500
2000
2500

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q11 Q12 Q13 Q14 Q 1
5

Q 1
6

Q 1
7

Q 1
8 Q19 Q20

Tim
e in

 ms

The proposed labelling scheme

0
500

1000
1500
2000
2500
3000
3500

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q11 Q12 Q13 Q14 Q 1
5

Q 1
6

Q 1
7

Q 1
8 Q19 Q20

Tim
e in

 ms

LLS labelling scheme

0
500

1000
1500
2000
2500
3000
3500
4000

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q11 Q12 Q13 Q14 Q 1
5

Q 1
6

Q 1
7

Q 1
8 Q19 Q20

Tim
e in

 MS

Dewey Labelling scheme

84

As seen in table 5.1 and the figures above, the results vary among each other. In order to
clarify and discuss these results in more detail, they were divided into four groups based
on the spent time. Table 5.2 shows these groups.

TABLE 5-2: GROUPS OF THE QUERIES BASED ON THEIR SPENT TIME.
no Group name Time range Queries
1 G1 From 0 till 100 ms Q1, Q5, Q6, Q7, and Q14.
2 G2 From 101 till 206 ms Q16, Q15, Q18, Q4, Q17 and Q20
3 G3 From 207 till 500 ms Q9, Q12, Q3, Q2, Q11 and Q19
4 G4 From 501 till 3500

ms
Q8 and Q13

Regarding the proposed scheme results, as seen in table 5.1, query (7) achieved the
shortest spent time which is 16 milliseconds. On the other hand, query (8) achieved the
longest spent time at 2174 milliseconds. This query is used to test the database ability to
reconstruct parts of the original XML document.
The results for all schemes that are based on the query purpose are as follows: The Exact
match (Q1) spent quite a short time which between 45 and 70 milliseconds. The order
access queries (Q2, Q3, and Q4) deal with large amounts of data and therefore quite a
long time was spent on these queries – between 121 and 288 milliseconds. Similarly,
between 173 and 3421 milliseconds were spent on the chasing references queries (Q8 and
Q9). Moreover, a long time was also spent on the joins on values queries (Q11 and Q12)
– between 207 and 374 milliseconds. Time spent on the reconstructed portions of the
original XML document query (Q13) was between 1875 and 2381 milliseconds. Finally,
for the rest of the queries, time spent was: casting – between 37 and 50 milliseconds;
regular path expression – between 14 and 78 milliseconds; full text – between 45 and 61
milliseconds; path traversals – between 85 and 157 milliseconds; finding missing
elements – between 73 and 151 milliseconds; function application – between 67 and 83
milliseconds; and aggregation queries – between 152 and 264 milliseconds. Figures from
5.43 until 5.46 show the spent times using the proposed labelling scheme based on the
groups of queries.

85

Figure 5-43: query performance of the proposed scheme for group G1.

Figure 5-44: query performance of the proposed scheme for group G2.

Figure 5-45: query performance of the proposed scheme for group G3.

0
10
20
30
40
50
60

Q1 Q7 Q5 Q14 Q6

Tim
e in

 ms

The proposed scheme

0
20
40
60
80

100
120
140
160

Q16 Q15 Q18 Q4 Q17 Q20

Tim
e in

 ms

The proposed scheme

0
100
200
300
400
500

Q9 Q12 Q3 Q2 Q11 Q19

Tim
ein

 ms

The proposed scheme

86

Figure 5-46: query performance of the proposed scheme for group G4.

Figures from 5.47 until 5.50 show the spent times using the LLS labelling scheme based
on the groups of queries.

Figure 5-47: query performance of the LLS scheme for group G1.

Figure 5-48: query performance of the LLS scheme for group G2.

1700
1750
1800
1850
1900
1950
2000
2050
2100
2150
2200

Q8 Q13

Tim
e in

 ms

The proposed scheme

0
10
20
30
40
50
60
70

Q1 Q7 Q5 Q14 Q6

Tim
e in

 ms

The LLS scheme

0
50

100
150
200
250

Q16 Q15 Q18 Q4 Q17 Q20

Tim
e in

 ms

The LLS scheme

87

Figure 5-49: query performance of the LLS scheme for group G3.

Figure 5-50: query performance of the LLS scheme for group G4.

Query Q8 is the longest spent time with 3273 milliseconds. The second longest spent
time is Q13 at 2239 milliseconds. The shortest one is query 7 with 14 milliseconds. So,
with regard to the longest and shortest spent time, the proposed scheme and the LLS are
the same.
Figures from 5.51 until 5.54 show the spent times using the LLS labelling scheme based
on the groups of queries.

0
50

100
150
200
250
300
350
400

Q9 Q12 Q3 Q2 Q11 Q19

Tim
e in

 ms

The LLS scheme

0
500

1000
1500
2000
2500
3000
3500

Q8 Q13

Tim
e in

 ms

The LLS scheme

88

Figure 5-51: query performance of the Dewey labelling scheme for group G1.

Figure 5-52: query performance of the Dewey labelling scheme for group G2.

Figure 5-53: query performance of the Dewey labelling scheme for group G3.

0
10
20
30
40
50
60
70
80
90

Q1 Q5 Q6 Q7 Q14

Tim
e in

 MS

Dewey labelling scheme

0
50

100
150
200
250
300

Q4 Q 15 Q 16 Q 17 Q 18 Q20

Tim
e in

 MS

Dewey labelling scheme

0
100
200
300
400
500
600
700

Q2 Q3 Q9 Q11 Q12 Q19

Tim
e in

 MS

Dewey labelling scheme

89

Figure 5-54: query performance of the Dewey labelling scheme for group G4.

 Comparing the Results:
The proposed scheme achieved the best results in sixteen queries. It failed in queries
number 7, 17, and 19: query number (7) which is Regular Path Expression query with
time spent 16 milliseconds; query number (17) which is Finding missing elements with
time spent 126 milliseconds; query number (19) which is Sorting query with time spent
437 milliseconds. The LLS scheme achieved the best results in these queries as follows:
time spent for query 7 is 14 milliseconds; time spent for query 17 is 73 milliseconds; time
spent for query 19 is 148 milliseconds. Figure 5.55 shows all these results for all schemes.
Moreover, figures from 5.56 to 5.59 illustrate these results based on designated groups in
table 5.2.

 Figure 5-55: query performance of all schemes.

0
1000
2000
3000
4000

Q8 Q13

Tim
e in

 MS

Dewey labelling scheme

0
500

1000
1500
2000
2500
3000
3500
4000

Tim
e in

 ms CLS
LLS
Dewey

90

Figure 5-56: query performance of all schemes for group G1.

Figure 5-57: query performance of all schemes for group G2.

Figure 5-58: query performance of all schemes for group G3.

0
20
40
60
80

100

Q1 Q5 Q6 Q7 Q14

Tim
e in

 MS LLS
CLS
Dewey

0
50

100
150
200
250
300

Q4 Q15 Q16 Q17 Q18 Q20

Tim
e in

 MS LLS
CLS
Dewey

0
100
200
300
400
500
600
700

Q2 Q3 Q9 Q11 Q12 Q19

Tim
e in

 MS LLS
CLS
Dewey

91

Figure 5-59: query performance of all schemes for group G4.

 Statistical Description of the Results:
As discussed in the Methodology chapter, nineteen queries were provided by the XMark
Benchmark to test different aspects of XML data. A box plot for each of these queries
was created as shown below. All these box plots, except the box plot for query 7, show
that the proposed labelling scheme delivered the best performance. In query 7 the LLS
scheme shows better performance than the proposed scheme. With regard to the p-
values, all p values between the proposed scheme and others scheme for each query were
calculated. Thus, 36 p values were calculated for 19 queries. All the results are far lower
than the significance level. Thus, the null hypothesis was rejected and the alternative
hypothesis was accepted. Therefore, the proposed scheme has better results in 16 out of
19 queries.

 Figure 5-60: Boxplot between CLS, LLS & Dewey schemes when evaluating query 1.

0
500

1000
1500
2000
2500
3000
3500
4000

Q8 Q13

Tim
e in

 MS LLS
CLS
Dewey

92

p-value between CLS & LLS schemes = 0.006
p-value between CLS & Dewey schemes = 0.005

Figure 5-61: the p-value between the CLS, LLS and Dewey schemes when evaluating query 1.

 Figure 5-62: Boxplot between CLS, LLS & Dewey schemes when evaluating query 2.
p-value between CLS & LLS schemes = 0.042
p-value between CLS & Dewey schemes = 0.042

Figure 5-63: the p-value between the CLS, LLS and Dewey schemes when evaluating query 2.

 Figure 5-64: Boxplot between CLS, LLS & Dewey schemes when evaluating query 3.

93

p-value between CLS & LLS schemes = 0.043
p-value between CLS & Dewey schemes = 0.043

Figure 5-65: the p-value between the CLS, LLS and Dewey schemes when evaluating query 3.

 Figure 5-66: Boxplot between CLS, LLS & Dewey schemes when evaluating query 4.
p-value between CLS & LLS schemes = 0.040
p-value between CLS & Dewey schemes = 0.042

Figure 5-67: the p-value between the CLS, LLS and Dewey schemes when evaluating query 4.

 Figure 5-68: Boxplot between CLS, LLS & Dewey schemes when evaluating query 5.

94

p-value between CLS & LLS schemes = 0.068
p-value between CLS & Dewey schemes = 0.068

Figure 5-69: the p-value between the CLS, LLS and Dewey schemes when evaluating query 5.

 Figure 5-70: Boxplot between CLS, LLS & Dewey schemes when evaluating query 6.
p-value between CLS & LLS schemes = 0.037
p-value between CLS & Dewey schemes = 0.043

Figure 5-71: the p-value between the CLS, LLS and Dewey schemes when evaluating query 6.

 Figure 5-72: Boxplot between CLS, LLS & Dewey schemes when evaluating query 7.

95

p-value between CLS & LLS schemes = 0.042
p-value between CLS & Dewey schemes = 0.041

Figure 5-73: the p-value between the CLS, LLS and Dewey when evaluating schemes 7.

 Figure 5-74: Boxplot between CLS, LLS & Dewey schemes when evaluating query 8.
p-value between CLS & LLS schemes = 0.044
p-value between CLS & Dewey schemes = 0.046

Figure 5-75: the p-value between the CLS LLS and Dewey schemes when evaluating query 8.

 Figure 5-76: Boxplot between CLS & LLS & Dewey schemes when evaluating query 9.

96

p-value between CLS & LLS schemes = 0.038
p-value between CLS & Dewey schemes = 0.043

Figure 5-77: the p-value between the CLS, LLS and Dewey schemes when evaluating query 9.

 Figure 5-78: Boxplot between CLS, LLS & Dewey schemes when evaluating query 11.
p-value between CLS & LLS schemes = 0.045
p-value between CLS & Dewey schemes = 0.032

Figure 5-79: the p-value between the CLS, LLS and Dewey schemes when evaluating query 11.

 Figure 5-80: Boxplot between CLS, LLS & Dewey schemes when evaluating query 12.

97

p-value between CLS & LLS schemes = 0.043
p-value between CLS & Dewey schemes = 0.043

Figure 5-81: the p-value between the CLS, LLS and Dewey schemes when evaluating query 12.

 Figure 5-82: Boxplot between CLS & LLS & Dewey schemes when evaluating query 13.
p-value between CLS & LLS schemes = 0.044
p-value between CLS & Dewey schemes = 0.046

Figure 5-83: the p-value between the CLS, LLS and Dewey schemes when evaluating query 13.

Figure 5-84: shows Boxplot between CLS & LLS & Dewey schemes when evaluating query 14.

98

p-value between CLS & LLS schemes = 0.045
p-value between CLS & Dewey schemes = 0.041

Figure 5-85: the p-value between the CLS, LLS and Dewey schemes when evaluating query 14.

 Figure 5-86: Boxplot between CLS, LLS & Dewey schemes when evaluating query 15.
p-value between CLS & LLS schemes = 0.038
p-value between CLS & Dewey schemes = 0.035

Figure 5-87: the p-value between the CLS, LLS and Dewey schemes when evaluating query 15.

 Figure 5-88: Boxplot between CLS, LLS & Dewey schemes when evaluating query 16.

99

p-value between CLS & LLS schemes = 0.034
p-value between CLS & Dewey schemes = 0.041

Figure 5-89: the p-value between the CLS, LLS and Dewey when evaluating query 16.

Figure 5-90: Boxplot between CLS, LLS & Dewey schemes when evaluating query 17.

p-value between CLS & LLS schemes = 0.043
p-value between CLS & Dewey schemes = 0.042

Figure 5-91: the p-value between the CLS, LLS and Dewey schemes when evaluating query 17.

 Figure 5-92: Boxplot between CLS, LLS and Dewey schemes when evaluating query 18.
p-value between CLS & LLS schemes = 0.047
p-value between CLS & Dewey schemes = 0.044

Figure 5-93: the p-value between the CLS, LLS and Dewey schemes when evaluating query 18.

100

 Figure 5-94: Boxplot between CLS & LLS & Dewey schemes when evaluating query 19.
p-value between CLS & LLS schemes = 0.041
p-value between CLS & Dewey schemes = 0.042

Figure 5-95: the p-value between the CLS and & LLS schemes when evaluating query 19.

 Figure 5-96: Boxplot between CLS, LLS & Dewey schemes when evaluating query 20.
p-value between CLS & LLS schemes = 0.043
p-value between CLS & Dewey schemes = 0.042

Figure 5-97: the p-value between the CLS, LLS and Dewey schemes when evaluating query 20.

101

5.3 Experiments for Dynamic Documents:

Since developing a labelling scheme that handles the dynamic documents is one of the
goals of the proposed scheme, these experiments were intended to measure any updates
on the dynamic XML documents. The experiments were executed to assess the proposed
scheme’s ability to deal with different kinds of insertion. Thus, the experiments were
divided into three types of groups as follows:

 Experiments for inserting new nodes.
 Experiments for determining different relationships.
 Experiments for query performance.

5.3.1 Inserting New Nodes:

Labelling schemes should be able to handle diversity of insertions as a significant
aspect (D. K. Fisher et al., 2006). Thus, different types of insertions need to be
executed and tested. Uniform is an important type of insertion that needs to be
performed. The time spent and size of the labels are measured in this insertion (Alstrup
& Rauhe, 2002). Ordered skewed is another type of insertion. It is used to insert new
nodes before and after a specific node times (Edith et al., 2010). Random skewed is
another kind of insertion. New nodes are inserted between other nodes randomly. This
type of insertion tests the flexibility of the scheme to deal with random insertions as
some schemes have difficulty in doing so (C. Li, Ling, & Hu, 2006).

5.3.1.1 Uniform Insertions

The method of this insertion is as follows; a new node is inserted between two
sequential nodes and then a new cluster is created when required. Subsequently, the
spent time and the sizes of the labels are measured before and after the inserting
process. Consequently, all eleven generated XMark files were used to test this
insertion in order to ascertain how the proposed scheme copes with different sizes
of XML data.
First, the time spent for implementing the insertions increases as the XMark file
increases due to the growth in the number of insertions. The proposed scheme
achieved the shortest spent time in all queries compared with the other two
schemes. Figure 5.98 demonstrates the results for all schemes.

102

 Figure 5-98: spent time for uniform insertions
Second, the size of the labels was also affected by the insertions as XMark files grow. The
proposed scheme produced bigger sizes than the LLS and Dewy labelling schemes. Figure
5.99 illustrates these results.

 Figure 5-99: size of the labels for uniform insertions
 Statistical Description of the Results:
Since the idea of uniform insertions is to insert new nodes between two respective nodes,
it was considered by researchers that the features of certain respective nodes may affect
the efficiency (McGill, Tukey, & Larsen, 1978). Therefore, this test was carried out to
test the influence of the targeted scheme on time when executing uniform insertions.
Thus, the test of uniform insertions was accomplished based on the population of the
eleven XMark files.
Based on the generated box plots for this testing, illustrated below, all these results show
that the proposed labelling scheme is faster than the others. In order to find the statistical
significance, p-values were calculated in all tests and as a result, all cases are lower than
the significance level. Thus, the null hypothesis was rejected and the alternative

0
20000
40000
60000
80000

100000
120000
140000
160000
180000
200000

1MB 10MB 20MB 30MB 40MB 50MB 60MB 70MB 80MB 90MB 100MB

Tim
e in

 MS CLS
LLS
Dewey

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

size
 in M

B

CLS
LLS
Dewey

103

hypothesis was accepted. Consequently, the difference in the performance of the
proposed scheme and the other schemes in terms of labelling nodes has a direct influence
on time.

 Figure 5-100: Boxplot between CLS, LLS & Dewey schemes when executing the Uniform insertion
using 1 MB file.

p-value between CLS & LLS schemes = 0.043
p-value between CLS & Dewey schemes = 0.042

Figure 5-101: the p-value between the CLS and & LLS schemes when executing the Uniform insertion
using 1 MB file.

 Figure 5-102: Boxplot between CLS, LLS & Dewey schemes when executing the Uniform insertion
using 10 MB file.

104

p-value between CLS & LLS schemes = 0.046
p-value between CLS & Dewey schemes = 0.041

Figure 5-103: the p-value between the CLS, LLS and Dewey schemes when executing the Uniform
insertion using 10 MB file.

 Figure 5-104: Boxplot between CLS, LLS & Dewey schemes when executing the Uniform insertion
using 20 MB file.

p-value between CLS & LLS schemes = 0.033
p-value between CLS & Dewey schemes = 0.029

Figure 5-105: the p-value between the CLS, LLS and Dewey schemes when executing the Uniform
insertion using 20 MB file.

 Figure 5-106: Boxplot between CLS & LLS & Dewey schemes when executing the Uniform insertion
using 30 MB file.

105

p-value between CLS & LLS schemes = 0.043
p-value between CLS & Dewey schemes = 0.042

Figure 5-107: the p-value between the CLS and & LLS schemes when executing the Uniform insertion
using 30 MB file.

 Figure 5-108: Boxplot between CLS & LLS & Dewey schemes when executing the Uniform insertion
using 40 MB file.

p-value between CLS & LLS schemes = 0.032
p-value between CLS & Dewey schemes = 0.036

Figure 5-109: the p-value between the CLS, LLS and Dewey schemes when executing the Uniform
insertion using 40 MB file.

 Figure 5-110: Boxplot between CLS & LLS & Dewey schemes when executing the Uniform insertion
using 50 MB file.

106

p-value between CLS & LLS schemes = 0.043
p-value between CLS & Dewey schemes = 0.042

Figure 5-111: the p-value between the CLS, LLS and Dewey schemes when executing the Uniform
insertion using 50 MB file.

 Figure 5-112: Boxplot between CLS, LLS & Dewey when executing the Uniform insertion using 60 MB
file.

p-value between CLS & LLS schemes = 0.024
p-value between CLS & Dewey schemes = 0.031

Figure 5-113: show the p-value between the CLS, LLS and Dewey schemes when executing the Uniform
insertion using 60 MB file.

Figure 5-114: Boxplot between CLS, LLS & Dewey schemes when executing the Uniform insertion

using 70 MB file.

107

p-value between CLS & LLS schemes = 0.025
p-value between CLS & Dewey schemes = 0.033

Figure 5-115: the p-value between the CLS, LLS and Dewey schemes when executing the Uniform
insertion using 70 MB file.

 Figure 5-116: Boxplot between CLS, LLS & Dewey schemes when executing the Uniform insertion
using 80MB file.

p-value between CLS & LLS schemes = 0.026
p-value between CLS & Dewey schemes = 0.019

Figure 5-117: the p-value between the CLS, LLS and Dewey schemes when executing the Uniform
insertion using 80 MB file.

 Figure 5-118: Boxplot between CLS, LLS & Dewey schemes when executing the Uniform insertion
using 90 MB file.

108

p-value between CLS & LLS schemes = 0.040
p-value between CLS & Dewey schemes = 0.036

Figure 5-119: the p-value between the CLS, LLS and Dewey schemes when executing the Uniform
insertion using 90 MB file.

 Figure 5-120: Boxplot between CLS, LLS & Dewey schemes when executing the Uniform insertion
using 100 MB file.

p-value between CLS & LLS schemes = 0.043
p-value between CLS & Dewey schemes = 0.042

Figure 5-121: the p-value between the CLS, LLS and Dewey schemes when executing the Uniform
insertion using 100 MB file.

5.3.1.2 Ordered Skewed
a) First, regarding the time spent, the XMRK1 file was used to test this

experiment. The number of insertions was used to monitor the changes. These
numbers start from one thousand up to ten thousand. Figure 5.122 shows these
results. As can be seen, the results of the three schemes are almost identical.
However, the proposed scheme achieved slightly better results in nine out of ten
cases (2, 3, 4, 5, 6, 7, 8, 9 and 10 thousand). The LLS scheme achieved better
results in number one thousand insertions.

109

 Figure 5-122: Execution time for all schemes
b) Second, with respect to the size of the labels, the proposed scheme and LLS

scheme achieved the same results and better than the Dewey scheme in one
testing (7 thousand). However, the proposed scheme achieved best results in
nine other experiments. Figure 5.123 shows these results.

 Figure 5-123: size of the labels for all schemes

 Statistical Description of the Results:
As explained above, this type of insertion is based on inserting new nodes repeatedly
before or after a particular node. For this reason, this testing concentrated on increasing
the number of inserted nodes as shown in the previous two figures. Thus, the number of
populations that were used for the Wilcoxon rank-sum test is ten. These results were
illustrated as box plots below. These plot boxes show that the proposed scheme is faster
than the other schemes in all cases except the first test where the LLS was faster.

0
100
200
300
400
500
600
700
800
900

1 2 3 4 5 6 7 8 9 10

Tim
e in

 ms

Number of times in thousands of insertions

CLS
LLS
Dewey

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07

1 2 3 4 5 6 7 8 9 10

size
 in M

B

Number of times in thousands of insertions

CLS
LLS
Dewey

110

Having ran the Wilcoxon rank-sum test, the null hypothesis was rejected as the p values
were lower than the significance level. As a result, the alternative hypothesis was
accepted which means that the difference was significant and had influenced time.

Figure 5-124: Boxplot between CLS, LLS & Dewey schemes when executing the Ordered Skewed

insertion using 1000 MB file.
p-value between CLS & LLS schemes = 0.043
p-value between CLS & Dewey schemes = 0.042

Figure 5-125: the p-value between the CLS, LLS and Dewey schemes when executing the Ordered
Skewed insertion using 1000 MB file.

 Figure 5-126: Boxplot between CLS & LLS & Dewey schemes when executing the Ordered Skewed
insertion using 2000 MB file.

111

p-value between CLS & LLS schemes = 0.043
p-value between CLS & Dewey schemes = 0.042

Figure 5-127: the p-value between the CLS, LLS and Dewey schemes when executing the Ordered
Skewed insertion using 2000 MB file.

 Figure 5-128: Boxplot between CLS, LLS & Dewey schemes when executing the Ordered Skewed
insertion using 3000 MB file.

p-value between CLS & LLS schemes = 0.043
p-value between CLS & Dewey schemes = 0.042

Figure 5-129: the p-value between the CLS, LLS and Dewey schemes when executing the Ordered
Skewed insertion using 3000 MB file.

 Figure 5-130: Boxplot between CLS, LLS and Dewey schemes when executing the Ordered Skewed
insertion using 4000 MB file.

112

p-value between CLS & LLS schemes = 0.043
p-value between CLS & Dewey schemes = 0.042

Figure 5-131: the p-value between the CLS, LLS and Dewey schemes when executing the Ordered
Skewed insertion using 4000 MB file.

 Figure 5-132: Boxplot between CLS, LLS & Dewey schemes when executing the Ordered Skewed
insertion using 5000 MB file.

p-value between CLS & LLS schemes = 0.043
p-value between CLS & Dewey schemes = 0.042

Figure 5-133: the p-value between the CLS, LLS and Dewey schemes when executing the Ordered
Skewed insertion using 5000 MB file.

Figure 5-134: Boxplot between CLS & LLS & Dewey schemes when executing the Ordered Skewed

insertion using 6000 MB file.

113

p-value between CLS & LLS schemes = 0.043
p-value between CLS & Dewey schemes = 0.042

Figure 5-135: the p-value between the CLS, LLS and Dewey schemes when executing the Ordered
Skewed insertion using 6000 MB file.

 Figure 5-136: Boxplot between CLS, LLS & Dewey schemes when executing the Ordered Skewed
insertion using 7000 MB file.

p-value between CLS & LLS schemes = 0.043
p-value between CLS & Dewey schemes = 0.042

Figure 5-137: the p-value between the CLS, LLS and Dewey schemes when executing the Ordered
Skewed insertion using 7000 MB file.

 Figure 5-138: Boxplot between CLS, LLS & Dewey schemes when executing the Ordered Skewed
insertion using 8000 MB file.

114

p-value between CLS & LLS schemes = 0.043
p-value between CLS & Dewey schemes = 0.042

Figure 5-139: the p-value between the CLS, LLS and Dewey schemes when executing the Ordered
Skewed insertion using 8000 MB file.

 Figure 5-140: Boxplot between CLS, LLS & Dewey schemes when executing the Ordered Skewed
insertion using 9000 MB file.

p-value between CLS & LLS schemes = 0.043
p-value between CLS & Dewey schemes = 0.042

Figure 5-141: the p-value between the CLS, LLS and Dewey schemes when executing the Ordered
Skewed insertion using 9000 MB file.

 Figure 5-142: Boxplot between CLS & LLS & Dewey schemes when executing the Ordered Skewed
insertion using 10000 MB file.

115

p-value between CLS & LLS schemes = 0.043
p-value between CLS & Dewey schemes = 0.042

Figure 5-143: the p-value between the CLS, LLS and Dewey schemes when executing the Ordered
Skewed insertion using 10000 MB file.

5.3.1.3 Random Skewed
a) With regard to the time spent, again the XMRK1 file was used to test this

experiment and the number of insertions was used to monitor the changes. The
proposed scheme achieved better results in nine out of ten (2, 3, 4, 5, 6, 7, 8, 9
and 10 thousand) experiments. However, the LLS scheme achieved better
results in one experiment (1 thousand). Figure 5.144 shows these results.

 Figure 5-144: Execution time for random insertions.

b) With respect to the size of the labels, again, the XMRK1 file was used for this
experiment. However, the proposed scheme has not achieved better results in
all experiments. The LLS scheme has achieved best results in 1, 2, 5, 6, 7, 8, 9,
and 10; whereas, the Dewey scheme was the best one in queries 3 and 4. Figure
5.145 shows these results.

 Figure 5-145: size of the labels for random Skewed insertions.

0
100
200
300
400
500
600
700

1 2 3 4 5 6 7 8 9 10

Tim
e in

 MS

Number of times in thousands of insertions

CLS
LLS
Dewey

0
0.02
0.04
0.06
0.08

0.1

1 2 3 4 5 6 7 8 9 10

size
 in

MB

Number of times in thousands of insertions

CLS
LLS
Dewey

116

 Statistical Description of the Results:
Similar to the ordered skewed insertions, the populations used for testing were based on
time rather than size. The box plots that were executed show that the distribution was
moved to the proposed scheme all cases except the first and seventh cases. As a result,
the proposed scheme showed better performance in terms of labelling XML documents.
Regarding the Wilcoxon rank-sum test, all tests show that the p values were lower than
the significance level which is 0.05. Thus, the null hypothesis was rejected and, thus, the
alternative hypothesis was accepted, so, the proposed scheme shows the possibility of
enhancing the random skewed insertion.

 Figure 5-146: Boxplot between CLS, LLS & Dewey schemes when executing the Random Skewed
insertion using 1000 MB file.

p-value between CLS & LLS schemes = 0.043
p-value between CLS & Dewey schemes = 0.042

Figure 5-147: the p-value between the CLS, LLS and Dewey schemes when executing the Random
Skewed insertion using 1000 MB file.

 Figure 5-148: Boxplot between CLS, LLS & Dewey schemes when executing the Random Skewed
insertion using 2000 MB file.

117

p-value between CLS & LLS schemes = 0.043
p-value between CLS & Dewey schemes = 0.042

Figure 5-149: the p-value between the CLS, LLS and Dewey schemes when executing the Random
Skewed insertion using 2000 MB file.

 Figure 5-150: Boxplot between CLS & LLS & Dewey schemes when executing the Random Skewed
insertion using 3000 MB file.

p-value between CLS & LLS schemes = 0.043
p-value between CLS & Dewey schemes = 0.042

Figure 5-151: the p-value between the CLS, LLS and Dewey schemes when executing the Random
Skewed insertion using 3000 MB file.

 Figure 5-152: Boxplot between CLS, LLS and Dewey schemes when executing the Random Skewed
insertion using 4000 MB file.

118

p-value between CLS & LLS schemes = 0.043
p-value between CLS & Dewey schemes = 0.043

Figure 5-153: the p-value between the CLS, LLS and Dewey schemes when executing the Random
Skewed insertion using 4000 MB file.

 Figure 5-154: Boxplot between CLS & LLS & Dewey schemes when executing the Random Skewed
insertion using 5000 MB file.

p-value between CLS & LLS schemes = 0.043
p-value between CLS & Dewey schemes = 0.043

Figure 5-155: the p-value between the CLS, LLS and Dewey schemes when executing the Random
Skewed insertion using 5000 MB file.

 Figure 5-156: Boxplot between CLS, LLS & Dewey schemes when executing the Random Skewed
insertion using 6000 MB file.

119

p-value between CLS & LLS schemes = 0.043
p-value between CLS & Dewey schemes = 0.043

Figure 5-157: the p-value between the CLS, LLS and Dewey schemes when executing the Random
Skewed insertion using 6000 MB file.

 Figure 5-158: Boxplot between CLS, LLS & Dewey schemes when executing the Random Skewed
insertion using 7000 MB file.

p-value between CLS & LLS schemes = 0.043
p-value between CLS & Dewey schemes = 0.043

Figure 5-159: the p-value between the CLS, LLS and Dewey schemes when executing the Random
Skewed insertion using 7000 MB file.

 Figure 5-160: Boxplot between CLS, LLS & Dewey schemes when executing the Random Skewed
insertion using 8000 MB file.

120

p-value between CLS & LLS schemes = 0.043
p-value between CLS & Dewey schemes = 0.042

Figure 5-161: the p-value between the CLS, LLS and Dewey schemes when executing the Random
Skewed insertion using 8000 MB file.

 Figure 5-162: Boxplot between CLS, LLS & Dewey schemes when executing the Random Skewed
insertion using 9000 MB file.

p-value between CLS & LLS schemes = 0.043
p-value between CLS & Dewey schemes = 0.042

Figure 5-163: the p-value between the CLS, LLS and Dewey schemes when executing the Random
Skewed insertion using 9000 MB file.

 Figure 5-164: Boxplot between CLS, LLS & Dewey schemes when executing the Random Skewed
insertion using 10000 MB file.

121

p-value between CLS & LLS schemes = 0.043
p-value between CLS & Dewey schemes = 0.042

Figure 5-165: the p-value between the CLS, LLS and Dewey schemes when executing the Random
Skewed insertion using 10000 MB file.

To conclude, in terms of the static XML documents, the proposed scheme shows an
improvement in the labelling of XML documents over the LLS and Dewey labelling
schemes. The response time and the size of the labels are influenced by the XML
document size. Therefore, the proposed scheme achieved better results in most cases for
testing different aspects and for different sizes, except for a small number of cases where
the LLS and Dewey schemes achieved slightly better results than the proposed scheme.
5.3.2 Determining Relationships:
These experiments test the scheme in terms of determining relationships. Therefore, this
experiment observes the time spent for determining relationships after inserting new
nodes as follows:

 Determining Relationships after Uniform Insertions:

The proposed scheme shows the best results in determining relationships after
inserting new nodes between two nodes. Figure 5.166 shows the results.

 Figure 5-166: relationships after uniform insertions.
 Statistical Description of the Results:
The identified relationships for the experiments were tested to measure the needed time
for the performance after the uniform insertions. Five populations were used for this
testing according to the identified relationships. The five box plots below show that the
proposed scheme was better in determining the relationships after the uniform insertion
except the testing of the level of nodes where the LLS was better.

00.10.20.30.40.50.60.70.80.91

Tim
e in

ms

CLS
 LLS
Dewey

122

Concerning the Wilcoxon rank sum test, all the p values in all relationship cases are far
lower than the significance level, and thus show strong evidence that the performance
difference was significant and influenced by time.

Figure 5-167: Boxplot between CLS, LLS & Dewey schemes when determining the Order after uniform

insertion.
p-value between CLS & LLS schemes = 0.016
p-value between CLS & Dewey schemes = 0.016

Figure 5-168: the p-value between the CLS, LLS and Dewey schemes when determining the Order after
uniform insertion.

 Figure 5-169: Boxplot between CLS, LLS & Dewey schemes when determining the Nodes’ level after
uniform insertion.

p-value between CLS & LLS schemes = 0.005
p-value between CLS & Dewey schemes = 0.003

Figure 5-170: the p-value between the CLS, LLS and Dewey schemes when determining the Nodes’ level
after uniform insertion.

123

 Figure 5-171: Boxplot between CLS, LLS & Dewey schemes when determining the sibling relationships
after uniform insertion.

p-value between CLS & LLS schemes = 0.004
p-value between CLS & Dewey schemes = 0.004

Figure 5-172: the p-value between the CLS, LLS and Dewey schemes when determining the sibling
relationships after uniform insertion.

 Figure 5-173: Boxplot between CLS, LLS & Dewey schemes when determining the Parent/Child
relationships after uniform insertion.

p-value between CLS & LLS schemes = 0.003
p-value between CLS & Dewey schemes = 0.006

Figure 5-174: the p-value between the CLS, LLS and Dewey schemes when determining the Parent/Child
relationships after uniform insertion.

124

 Figure 5-175: Boxplot between CLS, LLS & Dewey schemes when determining the A/D relationships
after uniform insertion.

p-value between CLS & LLS schemes = 0.004
p-value between CLS & Dewey schemes = 0.004

Figure 5-176: the p-value between the CLS, LLS and Dewey schemes when determining the A/D
relationships after uniform insertion.

 Determining Relationships after Ordered Skewed Insertions
The proposed scheme achieved better results in all experiments except the
ancestor/descendant in which the Dewey scheme shows better results. Figure 5.177
shows the results.

 Figure 5-177: relationships after ordered skewed insertions.
 Statistical Description of the Results:
All the identified relationships were tested after the order skewed insertion in order to
measure the performance efficiency for the targeted schemes in determining the
relationships. The number of populations were tested in this experiment is five. The five
box plots below show that the distributions were shifted to the proposed scheme in four

00.10.20.30.40.50.60.70.8

Tim
e in

 ms

CLS
 LLS
Dewey

125

of them, whereas, the box plot for the ancestor/descendant was shifted to the LLS
scheme. Therefore, this shift in the fourth box plot indicates the proposed scheme was
better than the other schemes, whereas, the shift in the fifth box plot indicates that the
LLS was faster than the others.
With respect to the Wilcoxon Rank-Sum test, the results are very similar to each other
which far lower than the significance level. Thus, the null hypothesis was rejected and
the alternative hypothesis accepted. This is strong evidence that supports the significance
of the relationship.

 Figure 5-178: Boxplot between CLS & LLS & Dewey schemes when determining the order nodes after
Ordered skewed insertion.

p-value between CLS & LLS schemes = 0.018
p-value between CLS & Dewey schemes = 0.017

Figure 5-179: shows the p-value between the CLS, LLS and Dewey schemes when determining the order
nodes after Ordered skewed insertion.

126

 Figure 5-180: Boxplot between CLS, LLS & Dewey schemes when determining the Nodes’ level after
Ordered skewed insertion.

p-value between CLS & LLS schemes = 0.017
p-value between CLS & Dewey schemes = 0.014

Figure 5-181: the p-value between the CLS, LLS and Dewey schemes when determining the Nodes’ level
after Ordered skewed insertion.

 Figure 5-182: Boxplot between CLS, LLS & Dewey schemes when determining the Sibling relationships
after Ordered skewed insertion.

p-value between CLS & LLS schemes = 0.017
p-value between CLS & Dewey schemes = 0.017

Figure 5-183: the p-value between the CLS, LLS and Dewey schemes when determining the Sibling
relationships after Ordered skewed insertion.

127

 Figure 5-184: Boxplot between CLS, LLS & Dewey schemes when determining the Parent/Child
relationships after Ordered skewed insertion.

p-value between CLS & LLS schemes = 0.017
p-value between CLS & Dewey schemes = 0.016

Figure 5-185: the p-value between the CLS, LLS and Dewey schemes when determining the Parent/Child
relationships after Ordered skewed insertion

 Figure 5-186: Boxplot between CLS, LLS & Dewey schemes when determining the A/D relationships
after Ordered skewed insertion.

p-value between CLS & LLS schemes = 0.015
p-value between CLS & Dewey schemes = 0.016

Figure 5-187: the p-value between the CLS, LLS and Dewey schemes when determining the A/D
relationships after Ordered skewed insertion.

128

 Determining Relationships after Random Skewed:
This experiment is to insert new nodes between two other nodes randomly: the
proposed scheme achieved better results in all experiments as can be seen in figure
5.188.

 Figure 5-188: relationships after random skewed insertions.
 Statistical Description of the Results:
Again, an experiment for random skewed was executed in order to determine the
relationships. This experiment is similar to the previous one as five populations were
tested. Box plots were generated as shown below. As a result, the proposed scheme was
faster in all five cases than the other schemes.
With regard to the significance, all p values for these five tests were far lower than the
significance level, and therefore, the null hypothesis was rejected and the alternative
hypothesis accepted. This is an implication that the performance difference was
significant and influenced by time.

 Figure 5-189: Boxplot between CLS, LLS & Dewey schemes when determining the Order after Random
skewed insertion.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Tim
e in

 ms
CLS
 LLS
Dewey

129

p-value between CLS & LLS schemes = 0.015
p-value between CLS & Dewey schemes = 0.017

Figure 5-190: the p-value between the CLS, LLS and Dewey schemes when determining the Order after
Random skewed insertion.

 Figure 5-191: Boxplot between CLS, LLS & Dewey schemes when determining the Nodes’ level after
Random skewed insertion.

p-value between CLS & LLS schemes = 0.017
p-value between CLS & Dewey schemes = 0.014

Figure 5-192: show the p-value between the CLS, LLS and Dewey schemes when determining the Nodes’
level after Random skewed insertion.

 Figure 5-193: Boxplot between CLS, LLS & Dewey schemes when determining the Sibling relationships
after Random skewed insertion.

p-value between CLS & LLS schemes = 0.011
p-value between CLS & Dewey schemes = 0.015

Figure 5-194: the p-value between the CLS, LLS and Dewey schemes when determining the Sibling
relationships after Random skewed insertion.

130

 Figure 5-195: Boxplot between CLS, LLS & Dewey schemes when determining the P/C relationships
after Random skewed insertion.

p-value between CLS & LLS schemes = 0.015
p-value between CLS & Dewey schemes = 0.014

Figure 5-196: the p-value between the CLS, LLS and Dewey schemes when determining the P/C
relationships after Random skewed insertion.

 Figure 5-197: Boxplot between CLS, LLS & Dewey schemes when determining the A/D relationships
after Random skewed insertion.

p-value between CLS & LLS schemes = 0.017
p-value between CLS & Dewey schemes = 0.017

Figure 5-198: the p-value between the CLS, LLS and Dewey schemes when determining the A/D
relationships after Random skewed insertion.

131

5.3.3 Query Performance for Dynamic Documents:
This experiment was carried out to assess the same query performance that was used for
the static document. However, the assessment this time is after insertions. Figures from
5.199 till 5.205 illustrate the results.

Figure 5-199: query performance for the LLS scheme.

Figure 5-200: query performance for the Dewey labelling scheme.

0
1000
2000
3000
4000

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q11 Q12 Q13 Q14 Q 1
5

Q 1
6

Q 1
7

Q 1
8 Q19 Q20

Tim
e in

 ms

query performance for dynamic documents

LLS scheme

0
500

1000
1500
2000
2500
3000
3500
4000

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q11 Q12 Q13 Q14 Q 1
5

Q 1
6

Q 1
7

Q 1
8 Q19 Q20

Dewey labelling scheme

132

Figure 5-201: query performance for the proposed scheme.

Figure 5-202: query performance for all schemes for dynamic documents.

Figure 5-203: query performance for all schemes for group 1.

0
500

1000
1500
2000
2500
3000
3500

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q11 Q12 Q13 Q14 Q 1
5

Q 1
6

Q 1
7

Q 1
8 Q19 Q20

Tim
e in

 ms

query performance for dynamic documents

the proposed scheme

0
500

1000
1500
2000
2500
3000
3500
4000

Tim
e in

 MS CLS
Dewey
LLS

0
20
40
60
80

100

Q1 Q5 Q7 Q14 Q 18

tim
e in

 ms

query performance for dynamic documents

LLS
CLS
Dewey

133

Figure 5-204: query performance for all schemes for group 2.

Figure 5-205: query performance for all schemes for group 3.

The proposed scheme presented best spent time and response times in eighteen queries
out of twenty. The LLS scheme achieved best result in queries (1, 5).

The query performance on dynamic documents presented a better spent and response
time compared to the results of the static documents. However, the LLS scheme achieved
better results than the proposed scheme in two queries in the static documents, whereas
the LLS scheme has achieved better results just in one query in the dynamic documents.
Therefore, the proposed scheme demonstrated more efficiency with dynamic documents
than the LLS scheme.

050100150200250300350400450500

tim
e in

 ms

query performance for dynamic documents

LLS
CLS
Dewey

0
500

1000
1500
2000
2500
3000
3500
4000

Q8 Q13

Tim
e in

 ms

query performance for dynamic documents

LLS
CLS
Dewey

134

 Statistical Description of the Results:
The same nineteen queries used for static documents were used now for dynamic
documents. There are two cases where the Dewey scheme showed more efficiency than
the proposed scheme which are query one and query five. However, in all the other
seventeen queries, the proposed scheme was more efficient than the others. Nineteen Box
plots below show the results. P values for these nineteen cases show that all of them
rejected the null hypothesis except two cases where the results are far higher than the
level of significance – query five and query eighteen. Therefore, in all cases where the
null hypothesis was rejected there is strong evidence for claiming that the proposed
scheme is faster than the others.

 Figure 5-206: Boxplot between the CLS, LLS and Dewey schemes when executing query 1 after
insertion.

p-value between CLS & LLS schemes = 0.017
p-value between CLS & Dewey schemes = 0.014

Figure 5-207: the p-value between the CLS, LLS and Dewey schemes when executing query 1 after
insertion.

135

 Figure 5-208: Boxplot between the CLS, LLS and Dewey schemes when executing query 2 after
insertion.

p-value between CLS & LLS schemes = 0.017
p-value between CLS & Dewey schemes = 0.017

Figure 5-209: the p-value between the CLS, LLS and Dewey schemes when executing query 2 after
insertion.

 Figure 5-210: Boxplot between the CLS, LLS and Dewey schemes when executing query 3 after
insertion.

p-value between CLS & LLS schemes = 0.017
p-value between CLS & Dewey schemes = 0.017

Figure 5-211: the p-value between the CLS, LLS and Dewey schemes when executing query 3 after
insertion.

136

 Figure 5-212: Boxplot between the CLS, LLS and Dewey schemes when executing query 4 after
insertion.

p-value between CLS & LLS schemes = 0.017
p-value between CLS & Dewey schemes = 0.016

Figure 5-213: show the p-value between the CLS, LLS and Dewey schemes when executing query 4 after
insertion.

 Figure 5-214: Boxplot between the CLS, LLS and Dewey schemes when executing query 5 after
insertion.

p-value between CLS & LLS schemes = 0.017
p-value between CLS & Dewey schemes = 0.317

Figure 5-215: the p-value between the CLS, LLS and Dewey schemes when executing query 5 after
insertion.

137

 Figure 5-216: Boxplot between the CLS, LLS and Dewey schemes when executing query 6 after
insertion.

p-value between CLS & LLS schemes = 0.016
p-value between CLS & Dewey schemes = 0.016

Figure 5-217: the p-value between the CLS, LLS and Dewey schemes when executing query 6 after
insertion.

 Figure 5-218: Boxplot between the CLS, LLS and Dewey schemes when executing query 7 after
insertion.

p-value between CLS & LLS schemes = 0.016
p-value between CLS & Dewey schemes = 0.017

Figure 5-219: the p-value between the CLS, LLS and Dewey schemes when executing query 7 after
insertion.

138

 Figure 5-220: Boxplot between the CLS, LLS and Dewey schemes when executing query 8 after
insertion.

p-value between CLS & LLS schemes = 0.017
p-value between CLS & Dewey schemes = 0.017

Figure 5-221: the p-value between the CLS, LLS and Dewey schemes when executing query 8 after
insertion.

 Figure 5-222: Boxplot between the CLS, LLS and Dewey schemes when executing query 9 after
insertion.

p-value between CLS & LLS schemes = 0.017
p-value between CLS & Dewey schemes = 0.017

Figure 5-223: the p-value between the CLS, LLS and Dewey schemes when executing query 9 after
insertion.

139

 Figure 5-224: Boxplot between the CLS, LLS and Dewey schemes when executing query 11 after
insertions.

p-value between CLS & LLS schemes = 0.017
p-value between CLS & Dewey schemes = 0.014

Figure 5-225: the p-value between the CLS, LLS and Dewey schemes when executing query 11 after
insertions.

 Figure 5-226: Boxplot between the CLS, LLS and Dewey schemes when executing query 12 after
insertions.

p-value between CLS & LLS schemes = 0.016
p-value between CLS & Dewey schemes = 0.011

Figure 5-227: the p-value between the CLS, LLS and Dewey schemes when executing query 12 after
insertions.

140

 Figure 5-228: Boxplot between the CLS, LLS and Dewey schemes when executing query 13 after
insertions.

p-value between CLS & LLS schemes = 0.017
p-value between CLS & Dewey schemes = 0.017

Figure 5-229: the p-value between the CLS, LLS and Dewey schemes when executing query 13 after
insertions.

Figure 5-230: Boxplot between the CLS, LLS and Dewey schemes when executing query 14 after

insertions.

p-value between CLS & LLS schemes = 0.011
p-value between CLS & Dewey schemes = 0.015

Figure 5-231: the p-value between the CLS, LLS and Dewey schemes when executing query 14 after
insertions.

141

 Figure 5-232: Boxplot between the CLS, LLS and Dewey schemes when executing query 15 after
insertions.

p-value between CLS & LLS schemes = 0.017
p-value between CLS & Dewey schemes = 0.017

Figure 5-233: the p-value between the CLS, LLS and Dewey schemes when executing query 15 after
insertions.

 Figure 5-234: Boxplot between the CLS, LLS and Dewey schemes when executing query 16 after
insertions.

p-value between CLS & LLS schemes = 0.017
p-value between CLS & Dewey schemes = 0.016

Figure 5-235: the p-value between the CLS, LLS and Dewey schemes when executing query 16 after
insertions.

142

 Figure 5-236: Boxplot between the CLS, LLS and Dewey schemes when executing query 17 after
insertions.

p-value between CLS & LLS schemes = 0.017
p- between CLS & Dewey schemes = 0.015

Figure 5-237: the p-value between the CLS, LLS and Dewey schemes when executing query 17 after
insertions.

 Figure 5-238: Boxplot between the CLS, LLS and Dewey schemes when executing query 18 after
insertions.

p-value between CLS & LLS schemes = 0.015
p-value between CLS & Dewey schemes = 0.730

Figure 5-239: the p-value between the CLS, LLS and Dewey schemes when executing query 18 after
insertions.

143

 Figure 5-240: Boxplot between the CLS, LLS and Dewey schemes when executing query 19 after
insertions.

p-value between CLS & LLS schemes = 0.015
p-value between CLS & Dewey schemes = 0.015

Figure 5-241: the p-value between the CLS, LLS and Dewey schemes when executing query 19 after
insertions.

 Figure 5-242: Boxplot between the CLS, LLS and Dewey schemes when executing query 20 after
insertions.

p-value between CLS & LLS schemes = 0.017
p-value between CLS & Dewey schemes = 0.014

Figure 5-243: the p-value between the CLS, LLS and Dewey schemes when executing query 20 after
insertions.

144

5.4 Summary of the Results

This chapter illustrates the experiments for both static and dynamic documents. The
experiments of static documents presented the enhancement of the proposed scheme on
the LLS and Dewey schemes in terms of labelling XML documents. Subsequently, the
determination of the relationships was assessed in terms of the time needed using the
XMark queries.
With respect to dynamic documents, first of all, the ability to handle insertions was tested
and as a result the proposed scheme was compared with the LLS scheme. The time for
inserting new nodes and the growth of the size of the labels were assessed. Secondly, the
relationships were assessed again in order to determine any changes after the insertions.
Thirdly, all queries were again executed to evaluate the spent time.
Graphs were used to present and describe the results, and then the statistical significance
test was executed, in which the box plot and Wilcoxon rank-sum test were used, to obtain
the p-values. All these tasks were used to evaluate the proposed scheme properly and to
achieve robust results.
To summarise, the proposed scheme shows efficiency in all aspects, except a few cases
when otherwise shown. Briefly, these aspects are the following: labelling nodes of XML
documents, determining the identified relationships, and query performance for both
static and dynamic XML documents. More details and discussion will be provided in the
following chapter.

145

6. Discussion and Critical Assessment

6.1 Introduction
The aim of this chapter is to discuss the results and the main findings of the testing
experiments. This discussion is to link the literature review to the objectives of this
research in order to assess whether these results are different from what others have
found and whether they have achieved the aim and objectives of this research. The
chapter is also intended to identify the effective characteristics of the proposed scheme as
well as any limitations. This task is significant as it can be used as a basis for considering
the future work for this research.
As chapter 4 states, the determination of whether the proposed scheme is better than the
other schemes or not is one of the goals of the experiments of this research.
Consequently, the results are discussed and illustrated in that chapter. These discussions
will be presented in the following sections:

6.2 Discussion and Assessment of the Experiments
The proposed scheme and other schemes were tested to evaluate certain features such as
labelling XML documents, determining the relationships, and querying performance for
both static and dynamic XML documents. Discussion and assessment of the results of
these experiments are as follows:

6.2.1 Discussion and Assessment of the Labelling XML Documents
There are two main features that were assessed in this experiment; namely the spent
time, and the size of the labels of the nodes and clusters. First, the experiment’s
results of spent time in the previous chapter show that the proposed scheme achieved
better performance over the other schemes. Second, with regard to measuring the size
of the labels, the proposed scheme was not able to achieve better results than the other
schemes. The justification for this failure is due to the method that the proposed
scheme used to label the nodes and clusters which allocates two labels for each node.
In addition, there is always a trade-off between the query performance and the size of
the indexes.

6.2.2 Discussion and Assessment of the Determination of the Relationships
This experiment was intended to check the determination speed of the relationships.
The experiment was executed twice in order to assess both static and dynamic XML
documents. It was successfully designed and executed, and, therefore, the proposed
scheme shows the best results, beating the other schemes in all relationships.
The achieved results from these experiments met the expected goals. In terms of the
static XML documents, the results the proposed scheme were faster than the others in
all results. In addition, the results of the dynamic documents are also faster than the

146

others with a few exceptions in which the proposed scheme did not achieve better
results.
Since the Prefix labelling schemes, of which the Dewey labelling scheme is one,
support the A/D and sibling relationships, the proposed scheme showed better results
than the Dewey scheme in this regard. This implies that the proposed scheme can
produce better performance than the prefix-based labelling schemes in terms of
determination of relationships.

6.2.3 Discussion and Assessment of the Query Efficiency
As explained in the previous chapter, nineteen of the XMark queries were used to test
the targeted schemes for both static and dynamic documents. The discussion for both
experiments are as follows:
With respect to the static XML documents, the results in general show that the
proposed scheme achieved the expected results, with a few exceptions. These
exceptions are three queries, namely number 7, 17, and 19.
Regarding the dynamic documents, all the results met the expectations except query
number 19 where LLS achieved a better result than the proposed scheme.
To summarise, the proposed scheme has shown an improvement over the other
schemes in terms of the efficiency of the query performance. However, since the only
dataset was used for these experiments is the XMark Benchmark, the proposed
scheme can be tested further using other datasets that can offer more complex queries,
since the XMark Benchmark has limitations such as update queries and comparing
results from different datasets (Almelibari, 2015).
As far as the query efficiency of other labelling schemes is concerned, prefix schemes
such as Dewey, LSDX, and ORDPATH support query processing, however, some
researchers have already claimed that prefix labelling schemes need more
improvement in terms of query processing (Hou et al., 2001). Moreover, graph
schemes handle the path query efficiently as they all return precise and complete
answers.

6.2.4 Discussion and Assessment of Inserting new Nodes
The goal of this experiment is to assess the capability of the proposed scheme to
handle a variety of insertions. This experiment was only intended for dynamic
documents. The measure was the insertion time and the size of the labels after the
insertions. There were three different types of insertions used, namely, uniform
insertion, ordered skewed, and random skewed. The discussion of the results of this
experiment is based on the measures as follows:
Regarding the time for inserting new nodes, the proposed scheme has achieved better
results than the other schemes in all times of intended insertions with a few
exceptions. As explained in the Methodology chapter, the proposed scheme has taken

147

advantage of the clustering-based technique in inserting new nodes to simplify many
scenarios of the insertions. Therefore, the proposed scheme has beaten the other
schemes in most insertions.
Concerning the size of the labels, as the previous chapter illustrated, the results of the
proposed scheme in this regard are: the proposed scheme has beaten the other
schemes in uniform and ordered skewed insertions with a few exceptions; however,
the proposed scheme failed to beat the others in random skewed insertions.
Regarding the functions of inserting new nodes and updates in the other labelling
schemes, the prefix schemes were defined as brilliant for fast updates. Intervals offer
a space that making the insertion is an easy task by avoiding relabelling. However,
this space is limited and therefore this scheme can’t cope with intensive insertions.

6.3 Discussion and assessment of the proposed scheme and the main findings
This assessment and discussion is according to the research hypothesis mentioned in
the introduction chapter, see below:

H1: Employing a hybrid labelling scheme based on a clustering-based
technique improves the efficiency of labelling nodes and query performance
of XML data.
H0: Employing a hybrid labelling scheme based on a clustering-based
technique does not improves the efficiency of labelling nodes and query
performance of XML data.

The proposed scheme was developed in order to enhance the XML labelling. This
goal was intended to be achieved by mainly reducing the relabelling cases to the
lowest possible level. This reduction should not compromise the performance.
Moreover, robust and reliable assessment for the proposed scheme would request a
comparison for this proposed scheme against the LLS and Dewey schemes on which
the implementation and testing were accomplished, in order to perform this
comparison.
There are general main qualities that any XML labelling scheme should obtain.
Examples of these qualities are query performance, storage space, and labelling time.
It should be possible to enhance these qualities (Fennell, 2013).

In general, the results of this research support the research hypothesis. With regard to
the performance of the proposed scheme, there are three features that the hypothesis
tested. These features are the following; first, the ability of the scheme to insert new
nodes efficiently; second, the ability of the scheme to reduce the required relabelling

148

cases to the lowest possible level; and finally, the ability of the proposed scheme to
enhance the performance of the query.

Concerning the ability to insert new nodes into the dynamic documents and
determining the relationship efficiently, new node insertions should be achieved very
fast to be efficient. The previous chapter illustrated and explained the results of the
insertions in detail. Consequently, these results support the first feature of the
hypothesis, however, as in some cases such as Random Skewed insertions, the
proposed scheme did not achieve best results. Regarding the determination of the
relationships, the results of static documents support the first part of the hypothesis
strongly, whereas the results of dynamic documents support the same part of the
hypothesis, however, as in some cases such as determining the level and the A/D
relationships in dynamic documents, the proposed scheme did not beat the other
schemes.
Regarding the second feature, this part is assessed by an experiment that calculates
the cost of labelling XML documents in terms of time and size. The results as shown
in chapter 4 demonstrated that the occupied space in the memory by the proposed
scheme is larger than others, which implies that the hypothesis in this regard is
rejected. This failure is due to the structure of the labels where the label of the
proposed scheme has two parts whereas the others have one part. Regarding the spent
time, the proposed scheme shows best results.
The third feature concerns the query performance. This feature is measured by the
response time. The assessment was to compare and analyse the results in order to find
out how efficient is the proposed scheme against the other schemes. There were 19
queries of the XMark used for testing and the proposed scheme outperformed the
other schemes in all queries except query 19. This result confirms that the hypothesis
in this respect is accepted.

To summarise, based on the discussion above, the whole hypothesis is accepted, and
therefore, the proposed scheme confirmed that it was designed and worked as
planned, even though it failed in a few tests. Moreover, the main outcome of these
discussions of the results is that the proposed scheme has shown improvement in
some aspects such as the function of labelling schemes’ determination of the
relationships. Yet Cunningham claimed that the time and size of labelling XML data
are important functions that are related to efficiency (Cunningham, 2006). Thus, this
research has focused on these features in the proposed scheme.

6.4 Strengths and Limitations of the Proposed Labelling Scheme
The proposed scheme has confirmed that it provides better performance than the other
tested schemes in most aspects with little exceptions where observed. However, the

149

technique of the clustering-based scheme is a complicated one as one researcher
stated (Almelibari, 2015). This technique has already been used with different utility
of existing labelling schemes. The calculations and implementation of this technique
is the main limitation of this scheme since the implementation of two labels for each
node is a complex process.
Regarding of the significance of this proposed scheme for the real world, the
experiments of this research were executed to compare the performance of this
scheme against the other two schemes. However, using the XMArk dataset implies
that the data can represent the real world as it is well-khown dataset used to test XML
schemes. Having said that, performing further experiments in order to test the
proposed scheme against a dataset from the real world such as DBLP would be
recommended to test this scheme for the real world. Furthermore, the tests for the
experiments were repeated ten time as this number has been used in testing number of
labelling schemes such as the Labelling Dynamic XML Document and the LLS
scheme.

6.5 Clustering technique and improving the query process:
This thesis argues that using the clustering-based techniques can improve query
processing performance in the real world and labelling nodes efficiency. This technique
has already been used because it has many advantages such as it decreases the re-
labelling cases and therefore improves the insertion process. Improve the determination
of the relationships (Kaplan et al., 2002). In addition, the clustering technique has two
labels for every node, and this feature improves the process of labelling nodes that from
the same cluster; and the label of the cluster is used to connect that cluster with the whole
tree. This feature helps in determining the relationships between the nodes that form
different clusters. It is also simplify many scenarios of inserting new nodes (Xu et al.,
2009). However, despite these features of the clustering technique, it has the
disadvantage that implementing two labels is a complicated process (Almelibari, 2015).
It was also observed that the parent–child clustering technique improves the labelling
process, and better than the simple tree with regard to the accuracy and spent time for
query processing (Gusfield, 1997)

6.6 Experimental Findings

Regarding the outcomes of the experiment of labelling XML documents, in terms of time
consumption, it is noted that the time increases dramatically as the size increases as well;
however, the proposed scheme still consumes less time than others. It is also noted that
the size of a file can influence the time of labelling as they have positive correlation.
Thus, this indicates that the proposed scheme is better than other labelling schemes

150

7. Conclusion

7.1 Introduction
XML has become a dominant technology for transferring data cross the internet. Thus,
the XML database has attracted many researchers for enhancing XML data storage and
retrieval. Labelling XML data as an indexing technique for improving query efficiency is
a crucial part in XML database management. Labelling XML data is achieved by
assigning labels to the nodes of the XML data. Each label is unique and can be used for
the nodes randomly, and to construct the relationships between the nodes (Abiteboul et
al., 2000; Bosak & Bray, 1999; Elmasri & Navathe, 2016). Thus, the aim of this research
was to investigate the existing XML labelling schemes and their limitations in order to
address the issue of efficiency of XML query performance. Regarding the types of XML
data, there are two types, namely static and dynamic. Handling static data is achieved
more easily than dynamic. At present, most XML documents are dynamic ones. Handling
dynamic XML data is a complicated issue. One of the limitations that some labelling
schemes have is that the size of the labels is too small. This feature is not appropriate for
a dynamic labelling scheme as they cannot manage all the relationships between nodes
(Q. Li & Moon, 2001). However, dynamic labelling schemes occupy a large storage
space, usually inefficient in query performance (Cohen et al., 2010; Duong & Zhang,
2005, 2008). Therefore, many labelling schemes have been proposed. However, none of
them is suitable for all users’ requirements. The advantage of one of them is a
disadvantage for another one. So, every labelling scheme is appropriate for certain cases
(Amagasa et al., 2003; Cohen et al., 2010; Eda et al., 2004). This thesis argued that using
certain existing labelling schemes to label nodes, and using clustering-based techniques
can improve the query and labelling of nodes efficiency. This research has considered the
challenges associated with indexing XML data. These challenges are the following:
query efficiency, labelling XML data effectively, occupied index storage. Therefore, this
research proposed a labelling scheme based on the technique and idea mentioned above.
Subsequently, this proposal was achieved through the implementation of this scheme.
The evaluation was also through testing the proposed scheme against the other two
schemes used in building this scheme, namely the Dewey and LLS schemes. A data
analysis was carried out to determine the main findings. Consequently, this chapter
summarises the main outcomes that have been discussed in the previous chapters in this
thesis, the main limitations of this research, and potential future work.
XML labelling schemes are classified into different categories based on the criteria and
aspects in which they are evaluated. First, this category was classified according to the
location of the index residence in the computer storage, which can be either in the main

151

memory as a temporary index or on the hard disk, each of which has its own advantages
and disadvantages (Samir Mohammad & Martin, 2009). The former has the advantage of
fast access as it avoids the input and output expenses. However, it has the disadvantage
that it lacks scalability for large index files. Regarding the hard disk-based one, the
advantage of this category is the scalability, and the disadvantage is the slow access.
Second, this category was classified by Sans and Lauren (Sans & Laurent, 2008) into two
classes, namely interval scheme and prefix-based scheme. This category was enhanced
by adding two other schemes, namely multiplication-based schemes and Vector-based
labelling schemes (Almelibari, 2015). Third, this category was classified based on the
kind of indexed document; these classes are: the index data-centric document, and the
index document-centric XML database (Gang et al., 2007). Four, this category was
classified based on the structural relationships and into three classes, namely node
indexes, path indexes, and sequence indexes (Bruno et al.; Edith et al., 2010). Therefore,
the former category based on the structural relationships is the most relevant one for this
research as the structure of the index and the relationships between the nodes are the key
concerns for this research. Thus, an intensive review and evaluation for the up-to-date
existing labelling schemes were conducted in this research. Certain criteria were used for
evaluating these schemes to compare the schemes among each other; and many criteria
were used for comparing the labelling schemes, such as accuracy, adaptability, precision,
scalability, response time, and type of supported queries (Samir Mohammad & Martin,
2009).
This research employed the most relevant of these criteria to assess the structural
labelling schemes. These criteria were also selected to assist users in choosing the most
appropriate labelling scheme for their requirements. Thus, the appropriate labelling
schemes are selected by determining the features that these labelling schemes support.
These criteria are the following: first, retrieval power; which means how complete and
accurate are the results that a labelling scheme returns. Second, processing complexity,
this complexity is measured based on the required structural joins, the processing cost,
and the required calculation of the relationships between nodes. Third, the scalability of
the labelling scheme increases the query processing time. Fourth, the update cost is one
of the key issues that determine the quality of the labelling scheme and is also a main
challenge for researchers nowadays. Any labelling scheme must take care of the update
cost as the main function for dynamic documents. The quality of the update cost is based
on the number of required relabelling cases when the update is occurred.
The classification that this research used to review the existing schemes is the labelling
scheme that based on structural relationships. This classification is as follows: first, node
indexing scheme. The idea of this kind of scheme is to save values that represent the
locations of the nodes in the XML tree structure. These values are used to determine the
relationships of a node such as parent, child, sibling, ancestor and descendent. Generally,
the most commonly used node schemes are the interval (also known as region) labelling

152

scheme and the prefix (also known as path) scheme (Al-Badawi et al., 2010; Al-Badawi
et al., 2012; Samir Mohammad & Martin, 2009).
The type of prefix-based labelling scheme creates codes that includes two parts which are
the prefix part and the actual-code. The prefix part encodes the previous node code which
is the parent of the node. The actual-code encodes the order of the node in the tree.
Examples of this kind of scheme are the Dewey labelling scheme, Labelling Scheme for
Dynamic XML Data (LSDX), GRoup base Prefix (GRP), and The ORDPATH labelling
scheme(Duong & Zhang, 2005; D. K. Fisher et al., 2006; Lu & Ling, 2004; O'Neil et al.,
2004a). The prefix labelling scheme has advantages such as, supporting the query
processing of XML data, and supporting the retrieval and updates of the data. However,
these schemes are inefficient for handling extensive labels, and also for handling complex
data (Alstrup & Rauhe, 2002; de l'Adour; Yun & Chung, 2008). The second type of node
schemes is the interval labelling scheme, this kind of scheme is also known as Region-
based Encoding. The mechanism of this scheme is to attach two values to each node
which are the startID and the endID. The startID is used to save the node ID for first
element or attribute. The endID is used to store the end of the attribute (Wu et al., 2004a).
The most commonly used examples of the interval labelling scheme are the following:
the containment labelling scheme (a. k. a. Beg, End), proposed by Zhang et al. (Zhang et
al., 2001), and the (Pre, Post) labelling scheme, developed by Dietz (P. F. Dietz, 1982).
The third example is the (Order, Size) scheme which was proposed by Li and Moon (Q.
Li & Moon, 2001) as an interval scheme. The interval schemes have some advantages
such as the space between the start and end in an interval labelling scheme gives good
support to creating the relationships between ancestor and descendent, or between parent
and child (Cunningham, 2006). Moreover, interval labelling schemes support the XML
tree since the tree labels are efficient and not like the non-tree labels. This is because the
interval labelling scheme has the ability to obtain the description of the relationships
between the child and parent (Fallside & Walmsley, 2004; O'Neil et al., 2004a; Wu et al.,
2004b). However, interval labelling schemes cannot support some cases such as dynamic
updates which are not always supported (Tatarinov et al., 2002), particularly when the
space between any two nodes is not enough for the inserted nodes (Cooper et al., 2001).
Consequently, the interval labelling scheme is efficient whenever the inserted nodes are
within the assigned space between two nodes (Amato et al., 2003). The second type of
labelling scheme is the Graph Labelling scheme, (also known as a summary index). It is
used to improve query performance, especially for single path queries, by producing a
path summary for XML data to accelerate the process of query evaluation. Nevertheless,
it also has the ability to solve twig queries with extra effort of multiple joins processes.
There are a number of existing graph schemes such as DataGuide (Goldman & Widom,
1997, 1999); Index Fabric (Cooper et al., 2001); APEX (Chung et al., 2002); D(K)-index
(Q. Chen et al., 2003); (F+B)K-index (Kaushik et al.); and F&B-index (Abiteboul et al.,
2000; Gang et al., 2007). Graph schemes were classified into different categories and

153

based on different criteria (Chung et al., 2002; Cooper et al., 2001; Yoshikawa et al.,
2001). Examples of these classifications are the following: Polyzotis and Garofalakis
(Polyzotis & Garofalakis, 2002) classified the graph schemes according to exactness.
This classification divided the schemes into exact schemes and approximate schemes.
Examples of exact schemes are: strong Data Guide, 1-index, disk-based F&B-index,
Index Fabric, and F&B-index. Examples of approximate schemes are A(K)-index,
approximate Data Guide, D(K)-index, and (F+B)K-index (Polyzotis & Garofalakis,
2002). There are other classifications which have been discussed in the literature review,
and discussing them in detail here is beyond this chapter’s scope. To summarise the
graph labelling schemes, some of them are suitable for small XML documents such as 1-
index and strong DataGuide; whereas, others are suitable for large XML data such as
disk-based F&B-index. Some of these labelling schemes support single path queries such
as 1-index, A(K)-index, and D(K)-index. However, the F&B-index and disk-based F&B-
index support twig queries. The third type of labelling scheme is the sequence one; this
type of labelling scheme changes both XML documents and queries into structure
sequences. Sequence labelling schemes save the values and the structures of XML data
together into an integrated index structure. This structure is used to evaluate both path
and twig queries efficiently, answering a query, making a string sequence that matches
the sequence of the data with the query. This technique reduces the need for joins to
evaluate twig queries (Wei et al.). Concerning the classification of sequence schemes,
they are classified into two categories based on the importance of the tree mapping
direction, which are the following: top-down sequence indexing schemes, and bottom-up
sequence indexing schemes. Discussing these categories is beyond this chapter’s scope,
and they were discussed in the literature review chapter.
According to the literature review of this research, many labelling schemes have been
developed as solutions for indexing XML data. Each labelling scheme has advantages
and disadvantages. The advantage of one scheme is a disadvantage of another scheme.
Therefore, this research, as many others in this field, tried to introduce a new approach
for labelling XML data that can handle the main issues that the labelling schemes
encounter. Consequently, a state-of-the-art labelling scheme was developed. It is a hybrid
labelling scheme that takes some of the advantages of these two existing schemes. The
clustering-based technique is also used in this proposed scheme to improve the
functionalities and reduce the problematic issues to the lowest possible level. Thus, this
labelling scheme is based on this mechanism; the Dewey labelling scheme was selected
for labelling the clusters due to the advantages of this scheme such as the ability to
manage the clusters, and the ease of the updating process. The LLS labelling scheme was
selected for labelling the nodes of the clusters. The advantages of this scheme are that it
uses numerical data and the size of the labels is steady. The clustering-based technique
was used due to the great advantages of this technique. It reduces the required relabelling
cases and as a consequence enhances the inserting new nodes processes, with easy

154

determination of the relationships. Thus, all these issues mentioned above were intended
to present into the proposed scheme of this research.
The mechanism of the proposed scheme is based on clustering nodes in order to facilitate
the determination of the child–parent and sibling relationships. Moreover, these
relationships also support the process of inserting new nodes. The parent–child in this
technique assists in handling a small tree rather than the entire XML tree (Kaplan et al.,
2002). It was also found that the parent–child clustering technique supports the labelling
process, and is more efficient than the simple tree in terms of the accuracy and spent time
for query processing (Gusfield, 1997). This mechanism offers advantages such as using
two labels for each node as this idea facilitates the process of labelling nodes that share
the same cluster; whereas the label of the cluster is used to link that cluster with the entire
tree. This feature assists in determining the relationships among nodes that form different
clusters (Xu et al., 2009). However, using two labels for each node has the disadvantage
that the occupied storage space is larger than for others that use one label. Thus, these
advantages support the proposed scheme and improve it in aspects such as query
processing, and improving the process of labelling XML documents. Furthermore, the
evaluation of the proposed scheme is based on testing it against the LLS scheme and the
Dewey labelling scheme. Therefore, the implementation of both the LLS and Dewey
labelling schemes was required as they are not available either as open source code or on
the shelf software. Thus, both schemes were implemented by the author of the proposed
scheme as bespoke software. This implementation was as accurate as possible according
to their data models, in order to prove the validity.
Testing the performance of the proposed scheme is the following task. It is performed in
order to evaluate this scheme. Therefore, a number of experiments were designed and
carried out to test targeted aspects and features of the proposed scheme. These
experiments were executed on the proposed scheme as well as the LLS and Dewey
labelling schemes in order to compare the results.
These experiments were designed and implemented to test the proposed scheme based on
the objectives of this research. Thus, the objectives of these experiments are the
following: the main objective of the experiments is to evaluate the performance,
scalability, and efficiency of the proposed scheme. Second, evaluating the process of
labelling XML documents. The factors used for measuring the scheme are the time
required for labelling the document, and the size of the growth of the labels. Third
objective is evaluating the query performance by executing different types of queries on
the labelled documents before and after insertions. Fourth objective, testing the scheme’s
ability to handle different kinds of insertions. Based on the objectives of the experiments,
the types of the experiments are the following: labelling the XML document: this
experiment was carried out to assess the process of labelling the nodes and the clusters of
the XML document. Second, time for updates: these updates include inserting new nodes
and deleting existing nodes. This experiment is carried out to assess the ability to handle
different types of insertion. Third, determining different relationships: this experiment is

155

for evaluating the time to determine the relationships. Fourth, evaluating the performance
of the queries: this experiment is for evaluating the query response time before and after
insertions. Different kinds of queries were executed. These queries are used to test
different features and aspects. The queries of the XMark benchmark were selected to test
the schemes. Regarding the XML dataset and benchmark used for testing the targeted
schemes, there are many XML datasets available nowadays. Some of them are from real
life datasets (a. k. a. Actual XML datasets) and others are from artificial datasets (a. k. a.
Benchmark/standard datasets). These two types of datasets are used to evaluate the XML
labelling schemes (Schmidt et al., 2001). A review into the most commonly used XML
datasets is performed in order to select the most suitable dataset(s) for testing the
proposed scheme. Regarding real life datasets, these datasets are based on real data.
Examples of them are: SwissPort, DBLP Computer Science Bibliography, University
Courses, Auction Data, NASA, Treebank, Protein Sequence Database, SIGMOD Record,
Mondial, and TPC-H Relational Database Benchmark (Schmidt et al., 2001). Concerning
the artificial datasets,

these benchmarks were designed for the purpose of evaluating queries. XML benchmarks
are categorised into two groups which are, micro benchmarks and application
benchmarks. Micro benchmarks are used to evaluate specific parts of a system whereas
application benchmarks are used to evaluate the performance of an XML database in
general (Barbosa et al., 2002; Kanda Runapongsa, 2006; Mlýnková, 2008; Schmidt et al.,
2001). Examples of these benchmarks are: XMark Benchmark, TPox benchmark,
Michigan Benchmark, XBench benchmark, and XMack-1 Benchmark. These XML
benchmarks are intended for both query processing and storing data (Schmidt et al.,
2001). Having reviewed these datasets, the XMark benchmark was selected for the
testing experiments. XMark was chosen to test the proposed scheme for the following
reasons: first and most importantly, the XMark was used to evaluate the performance of
the LLS scheme by the founder. Therefore, it would be appropriate to use the same
dataset to evaluate the proposed scheme and compare the results (Samir Mohammad &
Martin, 2010). Secondly, this benchmark is widely used to test XML queries and XML
database performance (Almelibari, 2015). Furthermore, XMark is a good option since it
has many features such as providing a document generator to create documents in
different sizes. Thus, users can generate datasets that are appropriate for their
requirements (Schmidt et al., 2002). Also, this benchmark provides a binary version of
the XMark that can be run as an independent platform on any operating system. XMark
provides a broad range of queries – twenty-one in total. These queries are designed to
evaluate different aspects of the datasets.
The aim of testing the proposed scheme is to ensure it achieved the objectives. The
experiments were performed twenty times for each query and then the average was taken
in order to gain as accurate results as possible. This number of executions for each
experiment was chosen as a fair number to get an accurate result by calculating the

156

average of these twenty executions. Other researchers also used the same number for
testing similar labelling schemes (Almelibari, 2015). The schemes that were tested are:
the proposed scheme, the LLS labelling scheme, and the Dewey labelling scheme.
Furthermore, there are particular features that need to be tested, namely the query
performance, efficiency of labelling XML documents, efficiency of scalability, and
functionality of the proposed scheme. The testing technique is based on running nineteen
queries of the XMark dataset to test the target schemes in order to compare the results
and ascertain the achievement of the proposed scheme.

The following stage in this thesis is the data analysis and presentation. This process
started from the stage of data collection as raw data moving to significant findings. The
raw data of the experiments is the selected XML datasets which is the XMark
benchmark. This raw data was processed by the algorithm of the proposed labelling
scheme. This process labels and manipulates the raw data. The raw data here is XML
documents. These raw data include eleven files in different sizes which are generated by
the XMark Benchmark. These files were generated in different sizes (1MB, 10MB,
20MB, 30MB, … , 100MB) in order to test the capability of the proposed scheme to
manage the scalability and other targeted features. These files were used to measure the
time and size for labelling XML documents. In brief, the processing of raw data created
indexes that were stored in database files. These indexes are the labels of the XML
documents.

The presentation of the results in graphs is an important task to describe the differences
between the targeted schemes for the testing. In terms of statistics, the hypothesis test is
widely accepted as a process to achieve trusted answers (Currell, 2015). Furthermore, it
was suggested that calculating the statistical significance helps in clarifying the
differences between the results of two schemes as obtaining the statistical significance.
The null hypothesis (H0) is used to measure the statistical significance. The null
hypothesis is tested by checking whether the targeted schemes are equal, otherwise the
alternative hypothesis is accepted (Benjamini, 1988). Regarding the results of the
experiments of the static documents, they presented the improvement of the proposed
scheme on the LLS and Dewey schemes in terms of labelling XML documents.
Subsequently, the determination of the relationships was evaluated in terms of the time
needed using the XMark queries. With regard to dynamic documents, first, the ability to
handle insertions was tested and as a result the proposed scheme was compared with the
LLS scheme. The time for inserting new nodes and the growth of the size of the labels
were assessed. Secondly, the relationships were assessed again in order to determine any
changes after the insertions. Thirdly, all queries were again executed to evaluate the spent
time. Graphs were used to present and describe the results, and then the statistical
significance test was executed, in which the box plot and Wilcoxon rank-sum test were
used to obtain the p-values. All these tasks were used to evaluate the proposed scheme

157

properly and to achieve robust results. To summarise, the proposed scheme shows
efficiency in all aspects, except a few cases when otherwise confirmed. Briefly, these
aspects are the following: labelling nodes of XML documents, determining the identified
relationships, and querying performance for both static and dynamic XML documents.

Concerning the testing of the research hypothesis, the results of this research support the
research hypothesis with few exceptions. First, with respect to the performance of the
proposed scheme, there are three features that the hypothesis tested. These features are
the following: first, the ability of the scheme to insert new nodes efficiently; second, the
ability of the scheme to reduce the required relabelling cases to the lowest possible level;
and finally, the ability of the proposed scheme to enhance the performance of the query.
Second, regarding the ability to insert new nodes into the dynamic documents and
determining the relationship efficiently, new node insertions should be achieved very fast
to be efficient. The results support the first feature of the hypothesis with exceptions, as
in some cases such as Random Skewed insertions, the proposed scheme did not achieve
best results. Regarding the determination of the relationships, the results of static
documents support the first part of the hypothesis strongly, whereas the results of
dynamic documents support the same part of the hypothesis with exceptions, as in the
cases of determining the level and the A/D relationships in dynamic documents, the
proposed scheme did not beat the other schemes. Regarding the second feature which is
the ability of the scheme to reduce the required relabelling cases to the lowest possible
level, this part is assessed by an experiment that calculates the cost of labelling XML
documents in terms of time and size. The results as shown in chapter 4 demonstrated that
the occupied space in the memory by the proposed scheme is larger than the others,
which implies that the hypothesis in this regard is rejected. This failure is due to the
structure of the labels where the label of the proposed scheme has two parts, whereas the
others have one part. Regarding the spent time, the proposed scheme shows best results.
The third feature concerns the ability of the proposed scheme to enhance the performance
of the query. This feature is measured by the response time. The assessment was to
compare and analyse the results in order to find out how efficient the proposed scheme is
against the other schemes. There were 19 queries of the XMark used for testing and the
proposed scheme outperformed the other schemes in all queries except query 19. This
result confirms that the hypothesis in this respect is accepted. To conclude, the whole
hypothesis is accepted, and thus, the proposed scheme confirmed that it was designed and
worked as planned, even though it failed in a few tests. Moreover, the main issue is that
the proposed scheme showed improvement in some aspects such as the function of
labelling schemes’ determination of the relationships. Yet Cunningham claimed that the
time and size of labelling XML data are important functions that are related to efficiency
(Cunningham, 2006). Thus, this research has focused on these features in the proposed
scheme.

158

7.2 Potential Future Work
As every labelling scheme, the proposed scheme has some limitations that can be
considered further. Using the clustering-based technique is an idea already used with
different labelling schemes. The main issue that might be considered for future work in
the proposed labelling scheme is the storage space that the labels occupied which as the
experiments showed are larger than expected. The idea of using multiple existing
labelling schemes in proposing a new hybrid scheme is a very flexible technique.
Employing this idea can offer opportunities to utilise different existing labelling schemes
and introduce new labelling schemes that can enhance the proposed scheme in this
regard. It would be suggested that one of the future directions is to enhance the proposed
scheme in terms of avoiding the cases of relabelling by introducing a new labelling
scheme with the chance for relabelling cases when the update that occurs is zero.
Further investigation to ascertain a way to reduce the size of the labels would be
suggested for future work. As far as the experiments and testing are concerned, further
testing can be useful by testing the proposed scheme with more advanced datasets and
benchmarks in order to determine whether the proposed scheme can cope with the
complex scenarios.
7.3 Summary
This research developed an XML labelling scheme called Clustering-based Labelling
scheme. The aim of this scheme is to improve certain functions that many existing
labelling schemes suffer from. Such functions are query processing, update processing,
and labelling MXL data. This proposed scheme has been tested and evaluated
successfully. Thus, the proposed scheme considered the reduction of the relabelling cases
to the lowest possible level. It has also shown an improvement in terms of query
performance and inserting new nodes process. Therefore, the aim of this research was
achieved, despite some limitations as considered in the previous section.

159

8. References

Abiteboul, S. (1997). Querying semi-structured data: Springer.
Abiteboul, S., Buneman, P., & Suciu, D. (2000). Data on the Web: from relations to

semistructured data and XML: Morgan Kaufmann.
Al-Badawi, M., North, S., & Eaglestone, B. (2007). Classifications, Problems Identification and a

New Approach. Sheffield University.
Al-Badawi, M., North, S., & Eaglestone, B. (2010). The 3D XML benchmark (Vol. 1, pp. 13-20).
Al-Badawi, M., Ramadhan, H. A., North, S., & Eaglestorne, B. (2012). A performance evaluation

of a new bitmap-based XML processing approach over RDBMS. International Journal of
Web Engineering and Technology, 7(2), 143-172.

Al-Khalifa, S., Jagadish, H. V., Koudas, N., Patel, J. M., Srivastava, D., & Yuqing, W. (2002,
2002). Structural joins: a primitive for efficient XML query pattern matching.

Ali, M. S., Consens, M., Gu, X., Kanza, Y., Rizzolo, F., & Stasiu, R. (2006). Efficient, effective
and flexible XML retrieval using summaries. Paper presented at the International
Workshop of the Initiative for the Evaluation of XML Retrieval.

Almelibari, A. A. (2015). Labelling Dynamic XML Documents: A GroupBased Approach. (PhD),
Sheffield University, Sheffield Retrieved from http://etheses.whiterose.ac.uk/8729/1/FinalThesis_Almelibari_100203910.pdf

Alstrup, S., & Rauhe, T. (2002). Improved labeling scheme for ancestor queries. Paper
presented at the Proceedings of the thirteenth annual ACM-SIAM symposium on Discrete algorithms.

Amagasa, T., Yoshikawa, M., & Uemura, S. (2003). QRS: A robust numbering scheme for XML
documents. Paper presented at the Data Engineering, 2003. Proceedings. 19th International Conference on.

Amato, G., Debole, F., Zezula, P., & Rabitti, F. (2003). YAPI: Yet another path index for XML
searching. Paper presented at the International Conference on Theory and Practice of
Digital Libraries.

Anders Berglund, S. B., Don Chamberlin , Mary F. Fernández, Michael Kay, Jonathan Robie,
Jérôme Siméon. (2015, 7/9/2015). XML Path Language (XPath) 2.0 (Second Edition).
Retrieved 3/9/2016, 2016, from https://www.w3.org/TR/xpath20/

Barbosa, D., & Bonifati, A. (2007). Database and XML Technologies: 5th International XML
Database Symposium, XSym 2007, Vienna, Austria, September 23-24, 2007, Proceedings (Vol. 4704): Springer Science & Business Media.

Barbosa, D., Mendelzon, A., Keenleyside, J., & Lyons, K. (2002). ToXgene: a template-based
data generator for XML. Paper presented at the Proceedings of the 2002 ACM SIGMOD international conference on Management of data.

Benjamini, Y. (1988). Opening the Box of a Boxplot. The American Statistician, 42(4), 257-262.
Böhme, T., & Rahm, E. (2001). XMach-1: A benchmark for XML data management. Paper

presented at the Datenbanksysteme in Büro, Technik und Wissenschaft.
Böhme, T., & Rahm, E. (2003). Multi-user evaluation of XML data management systems with

XMach-1 Efficiency and Effectiveness of XML Tools and Techniques and Data
Integration over the Web (pp. 148-159): Springer.

Bosak, J., & Bray, T. (1999). XML and the second-generation Web. Scientific American, 280(5),
89-93. Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E., & Yergeau, F. (2006). Extensible
markup language (XML). World Wide Web Consortium Recommendation REC-xml-
19980210. http://www. w3. org/TR/1998/REC-xml-19980210, 16, 16.

Bremer, J.-M., & Gertz, M. (2006). Integrating document and data retrieval based on XML. The
VLDB Journal, 15(1), 53-83.

Brenes, S., Wu, Y., Van Gucht, D., & Santa Cruz, P. (2008). Trie Indexes for Efficient XML
Query Evaluation. Paper presented at the WebDB.

Bressan, S., Dobbie, G., Lacroix, Z., Lee, M. L., Li, Y. G., Nambiar, U., & Wadhwa, B. (2001).
XOO7: Applying OO7 Benchmark to XML Query Processing Tools. Paper presented at

160

the Proceedings of the ACM International Conference on Information and Knowledge
Management (CIKM).

Bruno, N., Koudas, N., & Srivastava, D. (2002). Holistic twig joins: optimal XML pattern matching.
Bruno, N., Koudas, N., & Srivastava, D. (2002). Holistic twig joins: optimal XML pattern

matching. Paper presented at the Proceedings of the 2002 ACM SIGMOD international conference on Management of data.
Carey, M. J., DeWitt, D. J., Kant, C., & Naughton, J. F. (1994). A status report on the OO7

OODBMS benchmarking effort. ACM SIGPLAN Notices, 29(10), 414-426.
Catania, B., Maddalena, A., & Vakali, A. (2005). XML document indexes: a classification. IEEE

Internet Computing, 9(5), 64-71.
Catania, B., Ooi, B. C., Wang, W., & Wang, X. (2005). Lazy XML updates: laziness as a virtue,

of update and structural join efficiency. Paper presented at the Proceedings of the 2005 ACM SIGMOD international conference on Management of data.
Che, D., Aberer, K., & Özsu, M. T. (2006). Query optimization in XML structured-document

databases. The VLDB Journal, 15(3), 263-289. Chen, Q., Lim, A., & Ong, K. W. (2003). D (k)-index: An adaptive structural summary for graph-
structured data. Paper presented at the Proceedings of the 2003 ACM SIGMOD
international conference on Management of data.

Chen, Y., Mihaila, G., Bordawekar, R., & Padmanabhan, S. (2005). L-Tree: a dynamic labeling
structure for ordered XML data. Paper presented at the Current Trends in Database
Technology-EDBT 2004 Workshops.

Chung, C.-W., Min, J.-K., & Shim, K. (2002). APEX: An adaptive path index for XML data. Paper
presented at the Proceedings of the 2002 ACM SIGMOD international conference on
Management of data. Cohen, E., Kaplan, H., & Milo, T. (2010). Labeling dynamic XML trees. SIAM Journal on
Computing, 39(5), 2048-2074.

Connolly, T. M., & Begg, C. (2015). Database Systems: practical approach to design, implementation, and management. Harlow: Pearson Education Limited.
Connolly, T. M., & Begg, C. E. (2010). Database systems: a practical approach to design,

implementation, and management. Boston, Mass: Addison-Wesley. Cooper, B. F., Sample, N., Franklin, M. J., Hjaltason, G. R., & Shadmon, M. (2001). A fast index
for semistructured data. Paper presented at the VLDB.

Cunningham, L. A. (2006). Language, Deals, and Standards: The Future of XML Contracts.
Wash. UL Rev., 84, 313.

Currell, G. (2015). Scientific data analysis. Oxford: Oxford University Press.
de l'Adour, I. d. P. A Persistent Labelling Scheme for XML and tree Databases. Dietz, P. (1982). Maintaining order in a linked list.
Dietz, P. F. (1982). Maintaining order in a linked list. Paper presented at the Proceedings of the

fourteenth annual ACM symposium on Theory of computing. Duong, M., & Zhang, Y. (2005). LSDX: a new labelling scheme for dynamically updating XML
data. Paper presented at the Proceedings of the 16th Australasian database
conference-Volume 39. Duong, M., & Zhang, Y. (2008). Dynamic labelling scheme for XML data processing. Paper
presented at the OTM Confederated International Conferences" On the Move to
Meaningful Internet Systems".

Eda, T., Sakurai, Y., Amagasa, T., Yoshikawa, M., Uemura, S., & Honishi, T. (2004). Dynamic
range labeling for XML trees. Paper presented at the International Conference on
Extending Database Technology.

Edith, C., Haim, K., & Tova, M. (2010). LABELING DYNAMIC XML TREES. SIAM Journal on Computing, 39(5), 2048.
El-Aziz, A. A., & Kannan, A. (2012). Storing XML documents and XML policies in Relational

Databases. Paper presented at the Proceedings of the 2nd International Conference on Computer Communication and Informatics (ICCCI).
El-Sayed, M., Dimitrova, K., & Rundensteiner, E. (2005, 2003). Efficiently supporting order in

XML query processing.

161

El-Sayed, M., Dimitrova, K., & Rundensteiner, E. A. (2005). Efficiently supporting order in XML
query processing. Data & Knowledge Engineering, 54(3), 355-390.

Elmasri, R., & Navathe, S. (2007). Fundamentals of database systems. Boston, Mass: Pearson Addison-Wesley.
Elmasri, R., & Navathe, S. (2016). Fundamentals of database systems (Vol. Global;Seventh;).

Upper Saddle River: Pearson. Fallside, D. C., & Walmsley, P. (2004). XML schema part 0: primer second edition. W3C
recommendation, 16.

Fennell, P. (2013). Extremes of XML. XML LONDON 2013.
Fisher, D., Lam, F., Shui, W., & Wong, R. (2003). Efficient ordering for XML data.
Fisher, D. K., Lam, F., Shui, W. M., & Wong, R. K. (2006). Dynamic labeling schemes for

ordered XML based on type information. Paper presented at the Proceedings of the 17th
Australasian Database Conference-Volume 49. Frank, T., Apel, M., & Schaebec, H. (2003). Web integration of gOcad using a 3d-Xml
application server. Paper presented at the Proceedings of the 23rd Gocad Meeting,
Nancy, France, June. Gang, G., Chirkova, R., & Chirkova, R. (2007). Efficiently Querying Large XML Data
Repositories: A Survey. IEEE Transactions on Knowledge and Data Engineering,
19(10), 1381-1403.

Garcia-Molina, H. (2008). Database systems: the complete book: Pearson Education India.
Goldman, R., & Widom, J. (1997). Dataguides: Enabling query formulation and optimization in

semistructured databases.
Goldman, R., & Widom, J. (1999). Approximate dataguides. Paper presented at the

Proceedings of the Workshop on Query Processing for Semistructured Data and Non-
Standard Data Formats. Gou, G., & Chirkova, R. (2007). Efficiently querying large XML data repositories: A survey. IEEE
Transactions on Knowledge and Data Engineering, 19(10), 1381-1403.

Gray, D. E. (2013). Doing research in the real world: Sage. Guoren, W., Mengchi, L., Yu, J. X., Bing, S., Ge, Y., Jianhua, L., & Hongjun, L. (2003). Effective
schema-based XML query optimization techniques.

Guoren, W., Mengchi, L., Yu, J. X., Bing, S., Ge, Y., Jianhua, L., & Hongjun, L. (2003, 2003). Effective schema-based XML query optimization techniques.
Gusfield, D. (1997). Algorithms on strings, trees and sequences: computer science and

computational biology: Cambridge university press.
Haifeng, J., Hongjun, L., Wei, W., & Ooi, B. C. (2003). XR-tree: indexing XML data for efficient

structural joins.
Härder, T., Haustein, M., Mathis, C., & Wagner, M. (2007). Node labeling schemes for dynamic XML documents reconsidered. Data & Knowledge Engineering, 60(1), 126-149.
Harold, E. R., & Means, W. S. (2004). XML in a nutshell (Vol. 3rd). Beijing;Farnham;: O'Reilly.
Harold, E. R., Means, W. S., & Udemadu, K. (2004). XML in a Nutshell (Vol. 8): O'reilly Sebastopol, CA.
Hou, J., Zhang, Y., & Kambayashi, Y. (2001). Object-oriented representation for XML data.

Paper presented at the Cooperative Database Systems for Advanced Applications, 2001. CODAS 2001. The Proceedings of the Third International Symposium on.
IG, W. C. D. (2005). Document Object Model (DOM). Philippe Le Hégaret. Retrieved 6/92016,

2016, from https://www.w3.org/DOM/
Jayanthi, P., & Tamilarasi, A. (2011). A new way of generating reusable index labels for

dynamic XML. International Journal of Computer Science and Information Technologies,
2(2), 602-606.

Jiang, Y., He, X., Lin, F., & Jia, W. (2011). An encoding and labeling scheme based on continued fraction for dynamic XML. Journal of Software, 6(10), 2043-2049.
Johnson, J. R., Miller, A., Khan, L., & Thuraisingham, B. (2012). Extracting semantic information

structures from free text law enforcement data. Paper presented at the Intelligence and Security Informatics (ISI), 2012 IEEE International Conference on.

162

Kanda Runapongsa, J. M. P., H. V. Jagadish, Yun Chen, Shurug Al-Khalifa (2006). The
Michigan Benchmark. Retrieved 12/6/2014, 2016, from
http://dbgroup.eecs.umich.edu/mbench/description.html Kaplan, H., Milo, T., & Shabo, R. (2002). A comparison of labeling schemes for ancestor
queries. Paper presented at the Proceedings of the thirteenth annual ACM-SIAM
symposium on Discrete algorithms. Kaushik, R., Bohannon, P., Naughton, J., & Korth, H. (2002). Covering indexes for branching
path queries.

Kaushik, R., Bohannon, P., Naughton, J. F., & Korth, H. F. (2002). Covering indexes for
branching path queries. Paper presented at the Proceedings of the 2002 ACM SIGMOD
international conference on Management of data.

Kaushik, R., Bohannon, P., Naughton, J. F., & Shenoy, P. (2002). Updates for structure
indexes. Paper presented at the Proceedings of the 28th international conference on Very Large Data Bases.

Kaushik, R., Shenoy, P., Bohannon, P., & Gudes, E. (2002). Exploiting local similarity for
indexing paths in graph-structured data. Paper presented at the Data Engineering, 2002. Proceedings. 18th International Conference on.

Kha, D. D., Yoshikawa, M., & Uemura, S. (2001). An XML indexing structure with relative region
coordinate.

Klaib, A., & Lu, J. (2013). Development of Database Structure and Indexing Technique for the
Wireless Response System. Paper presented at the INFOCOMP 2013, The Third
International Conference on Advanced Communications and Computation.

Klaib, A., & Lu, J. (2014). Investigation into Indexing XML Data Techniques. Paper presented at
the Proceedings on the International Conference on Internet Computing (ICOMP).

Lee, D., & Chu, W. W. (2000). Comparative analysis of six XML schema languages. Sigmod Record, 29(3), 76-87.
Li, C., & Ling, T. W. (2005). An improved prefix labeling scheme: a binary string approach for

dynamic ordered XML. Paper presented at the International Conference on Database Systems for Advanced Applications.
Li, C., Ling, T. W., & Hu, M. (2006). Reuse or never reuse the deleted labels in XML query

processing based on labeling schemes. Paper presented at the International Conference on Database Systems for Advanced Applications.
Li, C., Ling, T. W., Lu, J., & Yu, T. (2005). On reducing redundancy and improving efficiency of

XML labeling schemes. Paper presented at the Proceedings of the 14th ACM
international conference on Information and knowledge management.

Li, Q., & Moon, B. (2001). Indexing and querying XML data for regular path expressions. Paper
presented at the VLDB. Lindner, W., Mesiti, M., Türker, C., Tzitzikas, Y., & Vakali, A. (2004). Current Trends in
Database Technology-EDBT 2004 Workshops: EDBT 2004 Workshops PhD, DataX,
PIM, P2P&DB, and ClustWeb, Heraklion, Crete, Greece, March 14-18, 2004, Revised Selected Papers (Vol. 3268): Springer.

Liu, J., Ma, Z., & Yan, L. (2009). Efficient processing of twig pattern matching in fuzzy XML.
Paper presented at the Proceedings of the 18th ACM conference on Information and knowledge management.

Lu, J., & Ling, T. W. (2004). Labeling and querying dynamic XML trees Advanced Web
Technologies and Applications (pp. 180-189): Springer.

Lu, J., Ling, T. W., Chan, C.-Y., & Chen, T. (2005). From region encoding to extended dewey:
On efficient processing of XML twig pattern matching. Paper presented at the
Proceedings of the 31st international conference on Very large data bases.

Luk, R. W. P., Leong, H. V., Dillon, T. S., Chan, A. T. S., Croft, W. B., & Allan, J. (2002). A survey in indexing and searching XML documents. Journal of the American Society for
Information Science and Technology, 53(6), 415-437.

Ma, J., Liu, W., Hunter, A., & Zhang, W. (2010). Soft computing in XML data management. Maghaydah, M., & Orgun, M. A. (2006). Labeling XML nodes in RDBMS.
McGill, R., Tukey, J. W., & Larsen, W. A. (1978). Variations of box plots. The American

Statistician, 32(1), 12-16.

163

Meng, X., Jiang, Y., Chen, Y., & Wang, H. (2004). XSeq: an indexing infrastructure for tree
pattern queries. Paper presented at the Proceedings of the 2004 ACM SIGMOD
international conference on Management of data. Meuss, H., & Strohmaier, C. M. (1999). Improving Index Structures for Structured Document
Retrieval. Paper presented at the BCS-IRSG Annual Colloquium on IR Research.

Milo, T., & Suciu, D. (1999). Index structures for path expressions Database Theory—ICDT’99 (pp. 277-295): Springer.
Mlýnková, I. (2008). Xml benchmarking: Limitations and opportunities: Technical Report,

Department of Software Engineering, Charles University, Czech Republic.
Mohammad, S. (2011). INDEX STRUCTURES FOR XML DATABASES. (Dissertation/Thesis).

Retrieved from
http://hud.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwY2AwNtIz0EUrE4wSDQ
3SjBOB8W1gapCcZppqlJRkZphommKYZJaYmJiKcjATUgHvJsTAlJonymDr5hri7KELvQ
AiPgWY25JT40FHIxdCmNAxj3iYiuTEeENgUznezBiYSMUYeBNB68XzSsD7ylIAzigvJg

www.summon.com
Mohammad, S., & Martin, P. (2009). XML structural indexes: Citeseer.
Mohammad, S., & Martin, P. (2010). LLS: level-based labeling scheme for XML databases.

Paper presented at the Proceedings of the 2010 Conference of the Center for Advanced
Studies on Collaborative Research. Mohammad, S., Martin, P., & Powley, W. (2011). Relational universal index structure for
evaluating XML twig queries.

Mohammad, S. A. (2011). Index structures for XML Databases. Queen’s University. Murata, M., Laurent, S. S., & Kohn, D. (2000). XML media types.
Nicola, M., Kogan, I., & Schiefer, B. (2007). An XML transaction processing benchmark. Paper

presented at the Proceedings of the 2007 ACM SIGMOD international conference on Management of data.
Nuzzo, R. L. (2016). The Box Plots Alternative for Visualizing Quantitative Data. PM&R, 8(3),

268-272. doi: 10.1016/j.pmrj.2016.02.001
O'Neil, P., O'Neil, E., Pal, S., Cseri, I., Schaller, G., & Westbury, N. (2004). ORDPATHs: insert-

friendly XML node labels.
O'Neil, P., O'Neil, E., Pal, S., Cseri, I., Schaller, G., & Westbury, N. (2004a). ORDPATHs: insert-

friendly XML node labels. Paper presented at the Proceedings of the 2004 ACM
SIGMOD international conference on Management of data.

O'Neil, P., O'Neil, E., Pal, S., Cseri, I., Schaller, G., & Westbury, N. (2004b, 2004). ORDPATHs: insert-friendly XML node labels.
Papamarkos, G., Zamboulis, L., & Poulovassilis, A. (2008). Xml Databases.
Polyzotis, N., & Garofalakis, M. (2002). Structure and value synopses for XML data graphs. Paper presented at the Proceedings of the 28th international conference on Very Large

Data Bases.
Prasad, K. H., & Kumar, P. S. (2005). Efficient indexing and querying of XML data using modified Prüfer sequences. Paper presented at the Proceedings of the 14th ACM

international conference on Information and knowledge management.
Rao, P., & Moon, B. (2004). PRIX: Indexing and querying XML using prufer sequences. Paper

presented at the Data Engineering, 2004. Proceedings. 20th International Conference
on.

Rao, P., & Moon, B. (2006). Sequencing XML data and query twigs for fast pattern matching. ACM Transactions on Database Systems (TODS), 31(1), 299-345.
Ray, E. T. (2001). Learning XML: Creating self-describing data. IEEE Micro, 21(2), 95. doi:

10.1109/MM.2001.918031
Ray, E. T. (2003). learning XML: " O'Reilly Media, Inc.".
Rousseeuw, P. J., Ruts, I., & Tukey, J. W. (1999). The bagplot: a bivariate boxplot. The

American Statistician, 53(4), 382-387.
Runapongsa, K., Patel, J. M., Jagadish, H., Chen, Y., & Al-Khalifa, S. (2006). The Michigan

benchmark: towards XML query performance diagnostics. Information Systems, 31(2),
73-97.

164

Sans, V., & Laurent, D. (2008). Prefix based numbering schemes for XML: techniques,
applications and performances. Proceedings of the VLDB Endowment, 1(2), 1564-1573.

Schmidt, A., Waas, F., Kersten, M., Carey, M. J., Manolescu, I., & Busse, R. (2002). XMark: A benchmark for XML data management. Paper presented at the Proceedings of the 28th
international conference on Very Large Data Bases.

Schmidt, A., Waas, F., Kersten, M., Florescu, D., Carey, M., Manolescu, I., & Busse, R. (2001). Why and how to benchmark XML databases. ACM SIGMOD Record, 30(3), 27-32. doi:
10.1145/603867.603872

Scott, M. L., & SCOTT, M. L. (1998). Dewey decimal classification: Libraries Unlimited.
Silberstein, A., He, H., Yi, K., & Yang, J. (2005). BOXes: Efficient maintenance of order-based

labeling for dynamic XML data. Paper presented at the Data Engineering, 2005. ICDE
2005. Proceedings. 21st International Conference on.

Steegmans, B. (2005). XML for DB2 Information Integration: Books24x7. com. Stein, B. (2007). Principles of hash-based text retrieval. Paper presented at the Proceedings of
the 30th annual international ACM SIGIR conference on Research and development in
information retrieval. Su-Cheng, H., & Chien-Sing, L. (2008). Evolution of Structural Path Indexing Techniques in
XML Databases: A Survey and Open Discussion.

Sun, L., & Wang, H. (2012). A purpose‐based access control in native XML databases.
Concurrency and Computation: Practice and Experience, 24(10), 1154-1166.

Tatarinov, I., Viglas, S. D., Beyer, K., Shanmugasundaram, J., Shekita, E., & Zhang, C. (2002).
Storing and querying ordered XML using a relational database system. Proceedings of
the ACM SIGMOD International Conference on Management of Data, 204-215.

Tidwell, D. (2002, 07 August 2002). Introduction to XML. Retrieved 11/8/2016, 2016, from
http://www.ibm.com/developerworks/xml/tutorials/xmlintro/xmlintro.html

Vakali, A., Catania, B., & Maddalena, A. (2005). XML data stores: emerging practices. IEEE
Internet Computing, 9(2), 62-69.

W3C. (2016). Introduction to XML. Retrieved 8/9/2016, 2016, from http://www.w3schools.com/xml/xml_whatis.asp
Wang, H., & Meng, X. (2005). On the sequencing of tree structures for XML indexing. Paper

presented at the Data Engineering, 2005. ICDE 2005. Proceedings. 21st International
Conference on.

Wang, H., Park, S., Fan, W., & Yu, P. (2003). ViST: a dynamic index method for querying XML
data by tree structures.

Wang, H., Park, S., Fan, W., & Yu, P. S. (2003). ViST: a dynamic index method for querying
XML data by tree structures. Paper presented at the Proceedings of the 2003 ACM
SIGMOD international conference on Management of data. Wang, W., Jiang, H., Wang, H., Lin, X., Lu, H., & Li, J. (2005). Efficient processing of XML path
queries using the disk-based F&B index. Paper presented at the Proceedings of the 31st
international conference on Very large data bases. Wei, W., Haifeng, J., Hongjun, L., & Jeffrey Xu, Y. (2003). PBiTree coding and efficient
processing of containment joins.

Wei, W., Haifeng, J., Hongjun, L., & Jeffrey Xu, Y. (2003, 2003). PBiTree coding and efficient processing of containment joins.
Wu, X., Lee, M.-L., & Hsu, W. (2004a). A prime number labeling scheme for dynamic ordered

XML trees. Paper presented at the Data Engineering, 2004. Proceedings. 20th
International Conference on.

Wu, X., Lee, M. L., & Hsu, W. (2004b). A prime number labeling scheme for dynamic ordered
XML trees. Paper presented at the Data Engineering, 2004. Proceedings. 20th
International Conference on.

Wyke, R. A., & Watt, A. (2002). XML schema essentials: Wiley.
Xu, L., Ling, T. W., & Wu, H. (2012). Labeling dynamic XML documents: an order-centric approach. IEEE transactions on knowledge and data engineering, 24(1), 100-113.
Xu, L., Ling, T. W., Wu, H., & Bao, Z. (2009). DDE: from dewey to a fully dynamic XML labeling

scheme. Paper presented at the Proceedings of the 2009 ACM SIGMOD International Conference on Management of data.

165

Yang, B., Fontoura, M., Shekita, E., Rajagopalan, S., & Beyer, K. (2004). Virtual cursors for
XML joins.

Yao, B. B., Özsu, M. T., & Keenleyside, J. (2003). Xbench-a family of benchmarks for xml dbmss Efficiency and Effectiveness of XML Tools and Techniques and Data Integration
over the Web (pp. 162-164): Springer.

Yao, B. B., Ozsu, M. T., & Khandelwal, N. (2004). XBench benchmark and performance testing of XML DBMSs. Paper presented at the Data Engineering, 2004. Proceedings. 20th
International Conference on.

Yoshikawa, M., Amagasa, T., Shimura, T., & Uemura, S. (2001). XRel: a path-based approach
to storage and retrieval of XML documents using relational databases. ACM
Transactions on Internet Technology, 1(1), 110-141.

Yun, J.-H., & Chung, C.-W. (2008). Dynamic interval-based labeling scheme for efficient XML
query and update processing. Journal of Systems and Software, 81(1), 56-70. Zhang, C., Naughton, J., DeWitt, D., Luo, Q., & Lohman, G. (2001). On supporting containment
queries in relational database management systems. Proceedings of the ACM SIGMOD
International Conference on Management of Data, 425-436. Zhuang, C., & Feng, S. (2012). Full tree-based encoding technique for dynamic XML labeling
schemes. Paper presented at the International Conference on Database and Expert
Systems Applications.

