
University of Huddersfield Repository

Dhimish, Mahmoud

Fault Detection and Performance Analysis of Photovoltaic Installations

Original Citation

Dhimish, Mahmoud (2018) Fault Detection and Performance Analysis of Photovoltaic Installations.
Doctoral thesis, University of Huddersfield. 

This version is available at http://eprints.hud.ac.uk/id/eprint/34576/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/



 

 

 

 

 

 

 

 

Fault Detection and Performance Analysis of 

Photovoltaic Installations 

 

Mahmoud Dhimish 

 

A thesis submitted to the University of Huddersfield in partial fulfilment of the requirements for 

the degree of Doctor of Philosophy 

 

The University of Huddersfield 

 

March 2018 

 



i 

 

Copyright Statement 

 

i. The author of this thesis (including any appendices and/or schedules to this thesis) owns any 

copyright in it (the “Copyright”) and s/he has given The University of Huddersfield the right 

to use such copyright for any administrative, promotional, educational and/or teaching 

purposes. 

 

ii. Copies of this thesis, either in full or in extracts, may be made only in accordance with the 

regulations of the University Library. Details of these regulations may be obtained from the 

Librarian. This page must form part of any such copies made. 

 

iii. The ownership of any patents, designs, trademarks and any and all other intellectual property 

rights except for the Copyright (the “Intellectual Property Rights”) and any reproductions of 

copyright works, for example graphs and tables (“Reproductions”), which may be described 

in this thesis, may not be owned by the author and may be owned by third parties. Such 

Intellectual Property Rights and Reproductions cannot and must not be made available for use 

without the prior written permission of the owner(s) of the relevant Intellectual Property 

Rights and/or Reproductions. 

 

 

 

 

 

 

 

 



 

 

  ii 

 

Acknowledgments 

 

I would like to express my heartfelt gratitude to my supervisors, Dr. Violeta Holmes, Dr. Bruce 

Mehrdadi, and Mr. Mark Dales for their guidance, support, and encouragement.  Their sage advice, 

constructive criticism, and useful suggestions have assessed the completion of my PhD research. Above 

all, their energy and enthusiasm in research have greatly inspired me to contribute such a high-quality 

work for this thesis.  

Appreciation goes to Mr. Dennis Town and Mr. Richard Midlam for their help and discussion on the 

implementation of the photovoltaic system. Thanks are also extended to the School of Computing and 

Engineering for providing their financial means and laboratory facilities. 

I am greatly indebted to my father whose career in the engineering area has inspired the work contributed 

to this thesis, and to my mother whose prayer and advices have helped me sailing through this PhD study. 

Most importantly, I would like to thank my wife Ghadeer. Her encouragement, support, quite patience 

and unwavering love were undeniably the bedrock upon which the past 2 years of my life have been built.  

Finally, I would like to dedicate this thesis especially to my son Sam, born in June 2017. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

  iii 

 

Abstract 

The cumulative global photovoltaic (PV) capacity has been growing exponentially around the world, 

especially due to the installation of grid connected photovoltaic (GCPV) plants. Fault detection and 

analysis are important for the efficiency, reliability and safety of solar photovoltaic (PV) systems. Even  

This thesis reports the results of the research work conducted to invent novel fault detection algorithms 

and evaluate their deployment in multiple existing PV installation, and empirically validate their 

performance. 

A major contribution of this thesis is the development of PV fault detection algorithms based on two 

indicators named power ratio (PR) and voltage ratio (VR). Both ratios are used to identify the type of the 

fault that occurs in the PV modules, in PV string, and/or in maximum power point tracking (MPPT) unit. 

Three AI based algorithms were also used to detect faults in PV modules. The first algorithm uses six 

regions of the power and voltage ratio in order to detect faults in PV systems. The average detection 

accuracy for the algorithm is equal to 94.74%.  However, Mamdani Fuzzy Logic system has been used to 

enhance the occurrence of fault detection in the PV installations which resulted in an increase to 99.12%. 

The second proposed PV fault detection algorithm detects defective bypass diodes in PV modules using 

Mamdani Fuzzy Logic. Whereas, a third PV detection algorithm is based on artificial neural networks 

(ANN) networks. Four different ANN models have been modelled, which can be classified as follows:  

- 2 inputs, 5 outputs using 1 hidden layer  

- 2 inputs, 5 outputs using 2 hidden layers  

- 2 inputs, 9 outputs using 1 hidden layer  

- 2 inputs, 9 outputs using 2 hidden layers  

The output results for the last ANN network had the highest overall fault detection accuracy of 92.1%. 

In this thesis, the development of two hot spot mitigation techniques used in PV modules will be 

discussed. These techniques are capable of enhancing the output power of PV modules which are affected 

by hot spots and partial shading conditions. The detection of hot spots was captured using i5 FLIR 

thermal imaging camera.  

Finally the thesis describes the impact of PV micro cracks on the output power of PV modules. A new 

statistical analysis approach using T-test and F-test was used to identify the significance impact of the 

cracks on the output power performance of the PV modules. This is developed using LabVIEW software. 
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Chapter 1 Introduction 

 

The main objective of this thesis is to present research work on the design and development of a novel PV 

fault detection and degradation analysis. PV fault detection algorithms have been widely used to detect 

various faults occurring in PV installations (Chine, Mellit, Pavan, & Kalogirou, 2014; Garoudja et al., 

2017; Spataru, Sera, Kerekes, & Teodorescu, 2015). These algorithms relay on several parameters of PV 

installations such as voltage, current, power, and the series resistance of PV modules and depend on some 

environmental factors such as ambient temperature, and solar irradiance. However, the listed parameters 

are not always available in PV sites, thus, it is required to improve the existing PV detection algorithms in 

order to detect PV faults using fewer PV and environmental parameters. 

Authors in (Moretón et al., 2015) studied the impact of PV hot spots on the performance of PV modules 

whereas few works such as (Daliento et al., 2016; Solórzano & Egido, 2014) suggested a suitable method 

to increase the output power of PV hot spotted solar cells. Up to date, there are few systems which have 

been industrialized and commercialized to improve the performance of hot spotted PV cells. 

The analysis of PV micro cracks was inspected by (Köntges et al., 2011; Zhu et al., 2017) using 

electroluminescence (EL) imaging technique. However, the measured data were analysed using 

laboratory-based experiments, which did not contain a real-time long-term data measurements from an 

installed PV modules in various locations. 

Firstly this thesis will describe the development of various PV fault detection algorithms which are 

divided into three main categories: mathematical and statistical analysis algorithms, Fuzzy Logic PV fault 

detection systems, and ANN based systems. All these algorithms depend only on the power and voltage 

ratios of the PV installations. 

The second contribution of this work is the design of the novel PV hot spot mitigation techniques. The 

proposed techniques can be used to decrease the temperature of the PV hot spotted solar cells, and 

increase the generated power in the hot spotted solar cell in the affected PV modules. 

Finally, the development of a novel statistical analysis approach, using T-test and F-test to analyse the 

impact of PV micro cracks on the output power of the PV modules, is described and compared with 

previous approaches. The proposed approach is able to identify whether a micro crack has a significant or 

insignificant impact on the PV module output power. 



 

 

  2 

 

1.1 Background and project motivation 

Photovoltaic (PV) energy has become one of the most important renewable energy resources, reaching a 

global accumulative installed capacity of approximately 75 GW in 2016, which is sufficient to supply 

1.8% of the world’s total electricity consumptions (International energy agency, 2016). 

As shown in Figure 1.1, the United Kingdom is the fifth leading country for annual installed PV capacity. 

The significant growth of the PV market have led to substantial reductions in the price of PV modules. 

According to the annual reports published by the UK department of business, energy & industrial 

strategy, the majority of PV installations are sub-4 kW retrofitted schemes, which increased by 35,188 

from 2016 to total of 836,014 at the end of 2017. This growth generates approximately 82 MW. 

In the PV installations, fault detection analysis and protection are essential to prevent unexpected events 

in PV solar systems. Despite the fact that these systems have no moving parts and usually require low 

maintenance, they are still subject to various failures or faults along the PV arrays, power conditioning 

units, batteries, wiring, and utility interconnections (Zhao, 2015). 

PV systems are scalable and modular technology can be used to build a PV power plant by connecting a 

large number of PV modules in multiple PV array configurations. Once PV modules are electrically 

connected, any fault among them can affect the entire system performance. 

 

Figure 1.1 Top 10 countries in 2016 for annual installed PV capacity  (International energy 

agency, 2016) 
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In large PV systems, it may become more difficult to detect or identify a fault effectively, which can 

remain hidden in the PV installation until the whole system breaks down.  

Due to faults occurring in the PV arrays, several fire hazards have been reported in PV installations. On 

Sunday afternoon, April 5, 2009, smoke was seen rising from the roof of a store, home to a 383 kW PV 

array, in Bakersfield, California (Brooks, 2011).  

The problem exposed by the Bakersfield Fire was that large inverters manufactured since 2005 employ 

ground-fault equipment that lifts the grounded conductor in the event of a ground fault. In practice, this is 

fine as long as it eliminates the only return path for the ground-fault currents. However, if a return path 

exists in the source-circuit conductors, a 30 kW array is capable of delivering approximately 100 amps of 

current, which is enough to burn the conductor (Brooks, 2011). 

In July 2017, an investigation was launched into the fire risk posed by solar panels fitted to thousands of 

homes, schools, and businesses across the UK. The panels were investigated by the Building Research 

Establishment (BRE), a government fire safety contractor which was also testing building cladding in the 

wake of the Grenfell Tower disaster in west London (Ministry of Housing, Communities & Local 

Government, 2017). The investigation comes just days after 80 firefighters tackled a blaze at a new block 

of flats in Bow, east London, on 2 July, where the roof-mounted solar panels appear to have caught fire. 

The published report indicates that the fire is caused by a mismatch in PV modules. An internal 

investigation into another recent London tower block fire, in Thornton Heath in June 2017, indicated the 

blaze was caused by "an overheated solar panel". 

 

Figure 1.2 Fire hazard in a 383 kW PV array, in Bakersfield, California 2009 (Brooks, 

2011) 
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Nowadays, due to the growing capacity of PV systems, there has been an increase in the power 

conversion units, monitoring systems, communication equipment, and protection devices being added to 

PV installations. As a result massive PV data becomes available (both instantaneous and historical) 

(Zhao, 2015). Figure 1.3 shows an example of a typical gird-connected PV system (GCPV). Various PV 

data are available from weather station, PV arrays, PV inverters, and the utility grid. 

The PV data are mainly used to evaluate the PV system performance and calculate the energy loss over 

long periods of time. Although fault detection has been developed using historical PV data, it requires a 

long processing time (at least few minutes). Hence, it is necessary to develop more responsive PV fault 

detection algorithms that can make better use of these readily available PV data. 

In order to monitor the status of PV plants it is recommended to stream the data in real-time (few micro 

seconds). However, the data streaming depends on the capabilities of the microprocessors used in the PV 

system devices such as the maximum power point tacking units, and the inverters. In this thesis, the 

maximum power point tacking unit was used to measure all PV system parameters such as voltage, 

current, and power. The minimum time constant to stream measured data is 1 second, thus this time was 

selected as the sampling rate for all conducted experiments. 

 

Figure 1.3 Large data are available in PV installations (Zhao, 2015) 
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1.2 Problem statement 

A typical PV installation which includes 4 PV strings each consisting of 3 series-connected PV modules 

is shown in Figure 1.4. A central MPPT is used to maximize the output power of the entire PV systems.  

Several types of fault could happen in this PV system, such as: 

 Partial shading conditions 

  Faulty PV module 

 2 Faulty PV modules 

 Faulty PV string 

 Faulty MPPT unit 

These faults degrade the performance of the entire PV system, and decrease its generated output power. 

This thesis will outline novel detection algorithms which could be used to detect and locate various faults 

in PV plants and enhance the output power of hot spotted PV solar cells. Hot spotting is a reliability 

problem in PV panels, where a mismatched cell heats up significantly and degrades PV panel output 

power. High PV cell temperature due to hot spotting can damage the cell encapsulate and lead to 

secondary breakdown, where both cause permanent damage to the PV panel. An example of a PV hot 

spot is shown in Figure 1.5a. 

 

Figure 1.4 Schematic diagram of a PV system including various types of faults  
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Furthermore, PV micro cracks are one of the reasons that PV panels do not operate at their maximum 

power point. Figure 1.5b shows an example of PV micro cracks affecting a PV panel. The PV micro 

cracks, location, and size will be discussed in this thesis.  

 

(a) 

 

(b) 

Figure 1.5 (a) Hot spotted PV solar cell, (b) PV micro cracks  

 

 

 

 

 



 

 

  7 

 

1.3 Aim and objectives 

The main aim of this research work is to design and implement PV fault detection algorithms which can 

detect multiple faults occurring in PV installations. In addition, a new hot spot mitigation technique will 

be devised which could be used with hot spotted PV modules. The impact of PV micro cracks based on 

statistical analysis approach is also to be considered. 

There are six main objectives of this research, which are: 

1. To create a monitoring systems based on internet of things (IoT) devices to monitor and analyse 

the performance of the PV systems installed at the University of Huddersfield. The IoT devices 

refers to a network of physical devices such as sensors, and PV modules that feature an internet 

protocol address for internet connectivity and the communication that occurs between these 

devices. 

2. To model, analyse and compare the performance of multiple PV array configurations under 

various PS and faulty PV conditions  

3. To develop a PV fault detection algorithm based on statistical analysis and mathematical 

techniques  

4. To create a PV fault detection algorithm based on AI techniques such as Fuzzy Logic and ANN 

networks  

5. To develop novel techniques which could be used to enhance the output power generated by hot 

spotted PV modules  

6. To identify the impact of PV micro cracks on the generated power of PV modules  
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1.4 Thesis contributions 

This thesis demonstrates several major research contributions and scientific advancements over the 

existing solutions. These contributions can be described as follows: 

Contribution 1 (presented in chapter 5)  

Developing a PV fault detection algorithm based on T-test statistical analysis technique as well as using 

the power ratio (PR) and voltage ratio (VR) in order to identify the type of the fault occurred in the PV 

plant. The PV detection algorithm has been validated using two PV plants installed at the University of 

Huddersfield. The first PV plant has a capacity of 2.2 kW, while the second PV plant capacity is 4.16 kW. 

This contribution is published in the following journals:  

i. Dhimish, M., & Holmes, V. (2016). Fault detection algorithm for grid-connected photovoltaic 

plants. Solar Energy, 137, 236-245. 

ii. Dhimish, M., Holmes, V., & Dales, M. (2017). Parallel fault detection algorithm for grid-

connected photovoltaic plants. Renewable Energy, 113, 94-111. 

iii. Dhimish, M., Holmes, V., Mehrdadi, B., & Dales, M. (2017). Simultaneous fault detection 

algorithm for grid-connected photovoltaic plants. IET Renewable Power Generation, 11, 

1565-1575. 

 

Contribution 2 (presented in chapter 6)  

Developing three PV fault detection algorithms based on artificial intelligence (AI) techniques, as 

illustrated below: 

1. The first algorithm uses six regions to detect faults in PV systems. This algorithm is based on PR 

and VR ratios, as well as a 3rd order polynomial functions. The average detection accuracy for the 

algorithm is equal to 94.74%. However, Mamdani Fuzzy Logic system was used to enhance the 

detection accuracy of the PV detection algorithm. The average detection accuracy increased to 

99.12% after considering the Fuzzy Logic system. 

2. The second PV fault detection algorithm is used to detect defective bypass diodes in PV modules. 

The algorithm is based on the analysis of three variables, percentage of voltage drop (PVD), 

percentage of open circuit voltage (POCV), and the percentage of short circuit current (PSCC). 

Mamdani Fuzzy Logic system has been used to detect up to 13 different faults associated with 

defective bypass diodes in PV modules. Several tests were used to confirm the ability of the 

proposed detection algorithm to detect defective bypass diodes in PV modules. 
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3. The third PV detection algorithm is based on ANN networks. Four different ANN models have 

been used and compared, which are classified as:  

 2 inputs, 5outputs using 1 hidden layer  

 2 inputs, 5 outputs using 2 hidden layers  

 2 inputs, 9 outputs using 1 hidden layer  

 2 inputs, 9 outputs using 2 hidden layers  

The ANN networks have been developed using MATLAB/Simulink software. In conclusion, the last 

ANN network had the highest overall detection accuracy of 92.1%. 

This contribution is published in the following journals:  

i. Dhimish, M., Holmes, V., Mehrdadi, B., Dales, M., Chong, B., & Zhang, L. (2017). Seven 

indicators variations for multiple PV array configurations under partial shading and faulty PV 

conditions. Renewable Energy, 113, 438-460. 

ii. Dhimish, M., Holmes, V., Mehrdadi, B., & Dales, M. (2017). Diagnostic method for 

photovoltaic systems based on six layer detection algorithm. Electric Power Systems 

Research, 151, 26-39. 

iii. Dhimish, M., Holmes, V., Mehrdadi, B., Dales, M., & Mather, P. (2017). Detecting Defective 

Bypass Diodes in Photovoltaic Modules using Mamdani Fuzzy Logic System. Global Journal 

of Research In Engineering, 17, 33-44. 

iv. Dhimish, M., Holmes, V., Mehrdadi, B., Dales, M., & Mather, P. (2017). Photovoltaic fault 

detection algorithm based on theoretical curves modelling and fuzzy classification system. 

Energy, 140, 276-290. 

v. Dhimish, M., Holmes, V., Mehrdadi, B., & Dales, M. (2017). Multi-layer photovoltaic fault 

detection algorithm. High Voltage, 2, 244-252. 

vi. Dhimish, M., Holmes, V., Mehrdadi, B., & Dales, M. (2018). Comparing Mamdani Sugeno 

Fuzzy Logic and RBF ANN network for PV fault detection. Renewable Energy, 117, 257-

274. 
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Contribution 3 (presented in chapter 7)  

Two hot spot mitigation techniques have been created for PV modules. The proposed techniques are 

capable of enhancing the output power of PV modules which are effected by hot spots and partial shading 

conditions. The proposed hot spot mitigation techniques use multiple MOSFTEs in the hot spotted PV 

module, while the detection of hot spots was captured using i5 FLIR thermal imaging camera.  

In addition, develop a new statistical analysis approach using T-test and F-test to analyse the impact of 

PV micro cracks on the output power of the PV modules. The approach is developed using LabVIEW 

software. Forty-five PV modules with various types of cracks such as diagonal, parallel and perpendicular 

to busbars, and multiple directions crack have been examined. Before considering the statistical analysis 

approach, 84% of the examined PV modules showed a significant loss of the output power. However, the 

statistical approach has confirmed that this result is incorrect, since only 60% of the examine PV cracks 

suffered from the loss of power. 

This contribution is published in the following journals:  

i. Dhimish, M., Holmes, V., Mehrdadi, B., & Dales, M. (2017). The impact of cracks on 

photovoltaic power performance. Journal of Science: Advanced Materials and Devices, 2, 

199-209. 

ii. Dhimish, M., Holmes, V., Dales, M., & Mehrdadi, B. (2017). Effect of micro cracks on 

photovoltaic output power: case study based on real time long term data measurements. 

Micro & Nano Letters, 12, 803-807. 

iii. Dhimish, M., Holmes, V., Mehrdadi, B., Dales, M., & Mather, P. (2017). Output Power 

Enhancement for Hot Spotted Polycrystalline Photovoltaic Solar Cells. IEEE Transactions on 

Device and Materials Reliability, 18, 37-45. 

iv. Dhimish, M., Holmes, V., Mehrdadi, B., Dales, M., & Mather, P. (2018). PV output power 

enhancement using two mitigation techniques for hot spots and partially shaded solar cells. 

Electric Power Systems Research, 158, 15-25. 

v. Dhimish, M., Holmes, V., Mather, P., & Sibley, M. (2018). Novel hot spot mitigation 

technique to enhance photovoltaic solar panels output power performance. Solar Energy 

Materials and Solar Cells, 179, 72-79. 
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1.5 Thesis outline 

The rest of the thesis is organised into nine chapters as follows: 

 

Chapter 2: 

The existing knowledge of PV characteristics which lead to the issue of partial shading, faulty PV 

modules, hot spots and micro cracks is reviewed in detail in this chapter. The theoretical model of a PV 

panel and its output voltage, current and power characteristics are also presented. In addition, PV 

monitoring systems and fault detection algorithms are be described. 

 

Chapter 3: 

This chapter describes the design and development of the monitoring system installed in the examined PV 

plants. The proposed monitoring unit uses the Virtual Instrumentation (VI) software via the Internet of 

Things (IoT) devices to monitor and analyse the performance of the PV systems under test. Additionally, 

five different factors which affect the output power of the PV systems will also be discussed. 

 

Chapter 4: 

The main goal of this chapter is to model, analyse and compare the performance of multiple PV array 

configurations under various PS and PV fault conditions. Five different PV array configurations have 

been tested including S, P, SP, TCT, and BL. Additionally, seven indicators have been compared during 

each examined scenario, where all tests have been carried out using MATLAB/Simulink software. 

 

Chapter 5: 

This chapter presents the development of the PV fault detection algorithm. The algorithm is based on T-

test statistical analysis method and mathematical techniques. The proposed PV detection algorithm was 

validated using 3 PV strings each containing 3 series-connected PV modules and MPPT unit. 
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Chapter 6: 

This chapter describe the use of artificial intelligence systems including Fuzzy Logic and artificial neural 

networks in PV fault detection. Several techniques are used to detect PV faults such as Mamdani Fuzzy 

Logic system, Sugeno Fuzzy Logic system, and radial basis function networks. The designed algorithms 

are evaluated using various PV systems including aged PV installation and different PV systems capacity. 

 

Chapter 7: 

This chapter presents the development of two techniques to enhance the output power of hot spotted PV 

solar cells. Both techniques were tested under various environmental conditions. Additionally, a statistical 

analysis approach using T-test and F-test are used to identify the impact of PV micro cracks on the output 

power of PV solar modules. 

 

Chapter 8: 

This chapter concludes the research with a summary of the achievement and contributions of this thesis, 

and presents the recommendations for further work. 
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Chapter 2 Review of Photovoltaic Systems  

 

This chapter presents the background of the existing PV installations, theoretical curves modelling and an 

overview of recent monitoring systems deployed in PV systems. In addition, this chapter will cover 

various types of faults occurring in PV systems, as well as existing PV fault detection and classification 

techniques. The benefits and limitations of these existing techniques are also explored and assessed.   

 

2.1 Operation of a solar cell 

PV devices convert sunlight directly into electricity. There are a number of ways in which the PV effect 

can be exploited and some relatively new discoveries such as dye-sensitised (Upadhyaya, Senthilarasu, 

Hsu, & Kumar, 2013), organic polymer (Dou et al., 2013) and Perovskite PV cells (Zhou et al., 2014) 

using new materials show great promise. However, at present the commercially important PV 

technologies use solid semiconductor material to form a p-n (positive-negative) junction on to which light 

(solar energy) falls. Solar energy falling on the semiconductor material excites the flow of electrons that 

are pulled across the junction by the electric field created when the p-n junction is formed (Jenkins & 

Ekanayake, 2017). Finally, when the illuminated semiconductor p-n junction is connected to an external 

circuit, the flow of electrons across the junction creates a direct current (DC) electricity. A simple 

operation of a PV solar cell is shown in Figure 2.1. 

As solar irradiance increases, more photons and electrons are released. The rise in the flow of electrons, 

increases the current flow generated by the PV solar cells. Hence, the short circuit current (Isc) is directly 

proportional to the solar irradiance (G). 

 

Figure 2.1 Operation of a PV cell  (Jenkins & Ekanayake, 2017) 
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The open circuit voltage (Voc) of the PV cell is determined by the electric field created in the depletion 

region of the p-n junction which is largely independent of the solar irradiance (McEvoy, Castaner, & 

Markvart, 2013). Thus, the operation of an ideal solar cell is described by Shockley solar cell Equation 

(2.1). 

                                                                   𝐼 =  𝐼𝑝ℎ −  𝐼𝑜  [𝑒
𝑉

𝑉𝑇 − 1]         (2.1) 

where Iph is the photo-current that is directly proportional to the irradiance, Io is the diode saturation 

current, V is the voltage across the terminals of the solar cell and VT is the thermal voltage described by 

Equation (2.2). 

                                                                              𝑉𝑇 =  
𝐾 𝑇

𝑞
                                  (2.2) 

where K is Boltzmann’s constant (1.38 x 10-23 J/kelvin), T is absolute temperature, q is the electron charge 

(1.602 x 10-19 C). The thermal voltage VT at a room temperature of 300 Kelvin is equal to 0.026 V. 

Equation (1.1) leads to the simple equivalent circuit of a solar cell, which is a current source in parallel 

with a diode, shown in Figure 2.2a. 

The equivalent circuit can be extended to include shunt and series resistors to represent losses within the 

PV cell as shown in Figure 2.2b. The shunt resistor Rsh represents the leakage of current across the p-n 

junction around the edge of the cell and the effect of detects and impurities in the junction region. 

Furthermore, the series resistor Rs represents the resistance of the bulk semiconductor, the metallic 

contacts and connection of the contacts to the semiconductor material (McEvoy et al., 2013). Including 

the effect of these losses results in Equation (2.3), where n is the ideality factor which represents the 

combination of electrons and holes at defects in the junction region, n varies between 1 and 2. 

 

                                                           𝐼 =  𝐼𝑝ℎ −  𝐼𝑜  [𝑒
𝑞 (𝑉+ 𝑅𝑠 𝐼)

𝑛 𝐾 𝑇 − 1] −  
𝑉+ 𝑅𝑠 𝐼

𝑅𝑠ℎ
        (2.3) 
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2.2 Solar cell theoretical curves modelling 

There are two main curves which represent the characteristics of the voltage, current and power of the PV 

solar cell. The current-voltage (I-V) curve represents all possible current and voltage operating points for 

a PV cell. Similarly, the power-voltage (P-V) curve shows all possible operating points of the voltage and 

power generated by the PV cell.  

Figure 2.3a and Figure 2.3b illustrate the theoretical output curves of a PV solar cell. As can be seen, the 

maximum current and voltage of the PV cell are equal to Isc and Voc respectively. The knee points, in both 

I-V and P-V curves, represent the maximum power point (MPP), where this point is the optimum output 

power produced by the PV cell which can be determined by choosing the ideal value of the connected 

load. The maximum power point is defined as the multiplication of the voltage and current at the MPP, 

where Vmpp and Impp are the voltage and current values at MPP that give the maximum operating output 

power. The unit of the MPP is Watt (W). 

 

 

 

 

Figure 2.2 (a) Simple equivalent circuit  of an ideal solar cell, (b) Equivalent circuit of a 

solar cell with series and shunt resistance 
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In fact, the I-V and P-V curves of the PV solar cell depend on the solar irradiance and the PV solar cell 

temperature. Figure 2.4a describes the behaviour a PV solar panel under various G levels and fixed solar 

cell temperature (25 oC). As the sun irradiance decreases, the output power produced by the PV panel 

decreases. MPP1, MPP2 and MPP3 are evaluated under three different irradiance levels: 1000 W/m2, 700 

W/m2, and 500 W/m2. In addition, the first case is called the standard test condition (STC) of any PV 

module at G: 1000 W/m2 and T: 25 oC. 

Furthermore, the behaviour of a PV panel under various temperature (T) levels and fixed solar irradiance 

is illustrated in Figure 2.4b. As the PV solar cell temperature increase, the output voltage and current also 

decrease. Thus, it will decrease the output power of the PV panel. Three various T levels are evaluated 

and compared in Figure 2.4b, where the G value is equal to 1000 W/m2. The optimum MPP occurred in 

the first case, where the solar cell temperature is equal to 25 oC. 

 

 

Figure 2.3 (a) The I-V characteristics of an ideal solar cell, (b) The P -V characteristic for 

an ideal solar cell 
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2.3 Overview of existing photovoltaic monitoring systems 

In order to check the status and performance of a PV system, it is essential to implement a sustainable 

monitoring unit that is capable of monitoring, data logging and analysing number of parameters being 

measured in a PV plant. Therefore, a comprehensive review of various PV monitoring systems is 

presented in this section. This includes a detailed overview of all the major PV monitoring systems such 

as: sensors and their working principles, controllers used in data acquisition systems, data transmission 

methods, and data storage. The knowledge and understanding of all these aspects are crucial for the 

development of low cost, effective, and viable PV motoring systems for small and medium scale PV 

plants.  

 

(a) 

 

Figure 2.4 (a) P-V curve under various G levels, (b) P-V curve under various T levels  
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2.3.1 Monitoring PV and environmental parameters  

The output power of a PV plant may decrease or increase drastically which leads to increased stress on 

the grid or sometimes causes power outage. Since PV achieves high penetration levels on utility grid, it is 

necessary to monitor the parameters for ensuring PV system reliability (von Appen, Braun, Stetz, Diwold, 

& Geibel, 2013). An important consideration in any PV monitoring system is the choice of parameters to 

be measured. These parameters are selected according to British Standard BS IEC 61724 (Commission, 

1998). Based on the type of PV system configuration, a list of parameters is given in Table 1, which are 

distinguished as grid-connected and stand-alone PV system. 

Two other PV parameters not listed in the BS IEC standard have been used; short circuit current, and 

open circuit voltage. Both parameters are used to identify the characteristics of the PV theoretical curves 

under partial shading and PV faulty conditions, both parameters are previously shown in Fig. 2.3.  

Figure 2.5a and Figure 2.5b show the locations of different sensor of a typical grid-connected and stand-

alone PV systems. The monitoring system consists of numerous sensors, which provide the data of 

different assets under various conditions. These data can be used by the operators in making decisions 

related to replacement, utilization and system reliability (Madeti & Singh, 2017a). 

Table 2.1 Variables to be measured according to British Standard BS IEC 61724 

(Commission, 1998) 

PV system type Parameters 

Metrological Electrical 

Grid-connected 1. Total solar irradiance, in 

the plane of PV array GT 

2. Ambient temperature 

3. PV module temperature 

4. Wind speed 

5. Wind direction 

6. Humidity 

7. Barometric pressure 

Photovoltaic: 

1. Output voltage 

2. Output current 

3. Output power 

4. Output energy 

Utility grid: 

1. Grid voltage 

2. Current to utility 

grid 

3. Power to utility 

grid 

4. Power from 

utility grid 

5. Utility grid 

impedance 

Stand-alone   Load: 

1. Output voltage 

2. Output current 

3. Output power 
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It is essential to measure the voltage and current in the PV system using voltage and current sensors. 

Generally, these sensors are embedded in the maximum power point tracking (MPPT) units which are 

connected to the PV modules. 

Additionally, a large proportion of the solar radiation absorbed by the PV module does not reciprocate as 

electrical energy but leads to increase in  the PV module temperature, and thus reduces its overall 

efficiency (Madeti & Singh, 2017a). One of the widely used temperature sensors is the thermocouple, 

since it can operate over wide temperature ranges (Bajzek, 2005). Another commonly used temperature 

sensor in PV systems is the resistance temperature detector (RTD). This type of temperature sensors has 

various advantages such as high stability, linearity and accuracy close to ± 0.1 oC over a large range of 

temperatures (Webster & Eren, 2014). 

 

Figure 2.5 Variable monitoring for a PV system. (a) Grid -connected PV system, (b) Stand-

alone PV system (Madeti & Singh, 2017a) 
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According to Table 2.1 and Figure 2.5, it is required to monitor the global solar radiation which is the 

sum of the diffused and reflected solar radiation. Nowadays, there are various types of sensors which 

convert the solar radiation into electrical current that can be measured by various means (Stoffel et al., 

2000). Table 2.2 shows an overview of some of the current solar radiation sensors available on market.  

 

2.3.2 Data acquisition system   

Data acquisition (DAQ) systems play a vital role in the monitoring systems used in PV plants. Therefore, 

appropriate selection of a suitable DAQ system is an essential part of any PV system.  

From a review of PV monitoring systems, summarized in Table 2.3, it is evident that there are several 

DAQ platforms used in data logging and monitoring the status of a PV systems, such as Virtual 

Instrumentation (VI) LabVIEW software, MATLAB/Simulink software and Web-based user interface 

applications.  

Most recent monitoring units deployed in PV systems use wireless data transfer techniques such as XBee 

Pro, Bluetooth and radio frequency (RF) modules. Some monitoring units use a wired data transmission 

such as USB connection RS 485 proposed by (Hu et al., 2015) and Outback communication device 

manager. 

 

Table 2.2 Different characteristics of various solar radiation sensor types (Madeti & 

Singh, 2017a) 

Solar radiation 

sensor 

Model number Measurement range  

(W/m2) 

Temperature range  

(oC) 

Pyranometer SP230-L 0 to 1750 -40 to +70 

LI200X-L 0 to 3000 -40 to +65 

LP02-L 0 to 2000 -40 to +80 

CMP6-L 0 to 2000 -40 to +80 

CMP11-L 0 to 4000 -40 to +80 

CMP22-L 0 to 4000 -20 to +50 

Pyrheliometer MS-56 0 to 4000 -30 to +80 

SHP1 0 to 4000 -30 to +60 
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Table 2.3 Review of recent monitoring systems implemented in PV plants  
Y

ea
r 

o
f 

th
e 

st
u

d
y
 Research done 

by 

Data transfer 

technology  

(wired) 

Data transfer 

technology  

(wireless) 

Used monitoring  

system 

2
0

1
5
 

(Shariff, Rahim, 

& Hew, 2015) 

Not included XBee Pro LabVIEW 

(T. Hu, Zheng, 

Tan, Zhu, & 

Miao, 2015) 

Not included Wireless sensor 

 network 

Web-based user interface 

and Mobile phone 

application 

2
0
1
6
 

(Guerriero, Di 

Napoli, Vallone, 

d'Alessandro, & 

Daliento, 2016) 

USB connection RS 

485 

Wireless sensor based 

on Microchip MiWi 

Web-based user interface 

(Adhya, Saha, 

Das, Jana, & 

Saha, 2016) 

Not included SIM900 GPRS 

module 

Web-based user interface 

and LCD monitoring 

device 

(Le, Tsai, & 

Lam, 2016) 

STM32F4 discovery 

board 

Bluetooth modules MATLAB/Simulink 

(Touati, Al-

Hitmi, 

Chowdhury, 

Hamad, & 

Gonzales, 2016) 

Not included XBee Pro Web-based user interface 

and LabVIEW software 

2
0

1
7
 

(Kabalci & 

Kabalci, 2017) 

Not included XBee Pro  Visual Studio Net 

software development kit 

(Han, Jeong, 

Lee, & Kim, 

2017) 

Not included Universal 

asynchronous receiver 

and transmitter 

(UART)  

Power line 

communication (PLC) 

modules 
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2.4 Overview of Photovoltaic Faults 

PV systems are subject to a variety of faults, including partial shading conditions impacting on the output 

power of the PV module, the maximum power point tracking units, PV hot spots, and PV micro cracks. 

The energy loss due to PV faults has been analysed and categorized in UK domestic PV systems and it 

was estimated that the annual energy loss is equal to 3.6% (Site A, first year of operation), 6.6% (Site A, 

second year of operation) and 18.9% (Site B, first year of operation) due to PV faults as described by 

(Firth et al., 2010). Both sites are shown in Figure 2.6a. 

Monitoring systems were used in each site to record the performance of the PV modules. The monitored 

parameters in each site are shown in Figure 2.6b. Based on the analysis reported in (Firth et al., 2010), the 

largest energy loss was caused by sustained zero efficiency faults (when the monitored PV systems 

stopped generating power for long period). The second largest cause of energy loss was due to partial 

shading conditions affecting the PV modules. Therefore, in this section, PV faults and the suggested 

solutions from the literature will be discussed and evaluated. 

 

Figure 2.6 (a) Examined site A and Site B, (b) Monitored parameters for the PV systems 

(Firth, Lomas, & Rees, 2010) 
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2.4.1 Impact of partial shading conditions on the PV output power performance 

Partial Shading (PS) conditions often occur in PV systems due to a number reasons, such as movement of 

the clouds, tall trees next to the PV installation, and some environmental conditions such as dust and 

snow. PS conditions cause losses in the PV system output power, hot spots effect, and system safety and 

reliability problems (Liu et al, 2015). 

To study the impact of PS conditions, four different case scenarios have been simulated using a single PV 

module as shown in Figure 2.7a. The first case has been simulated during normal operation of the PV 

module (no PS), where the second, third, and fourth case are simulated under 10%, 50% and 75% PS. In 

all tested scenarios G and T are at STC (1000 W/m2 and 25oC). 

Figure 2.7b illustrates the impact of PS conditions on a PV module using the theoretical P-V curve. It can 

be observed that, as the PS condition increases, the MPP of the PV module decreases. For example, the 

MPP of the PV module which is affected by 10% PS is equal to 196.9 W. However, by increasing the PS 

condition up to 75%, the MPP of the PV module decreases to 50.26 W (Gupta, 2016). The simulation 

results are not available in the article (Gupta, 2016). The results shown in Figure 2.7 are recreated using 

LabVIEW software to demonstrate the effect of PS conditions on the performance of PV modules. 

 

 

Figure 2.7 (a) Percentage of PS applied to a single PV module, ( b) P-V curve of the PV 

module for each PS condition 
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Generally, in the UK private homes, PV systems are connected in an array of series PV modules (Firth et 

al., 2010; Freeman, Hellgardt, & Markides, 2017). The impact of PS conditions affecting this type of PV 

array configuration is simulated using six PV modules as shown in Figure 2.8a, where G and T are 

simulated at STC. 

As illustrated in Figure 2.8b, at STC condition, the MPP is equal to 1322 W. However, a loss in the MPP 

is equal to 349.4 W during 25% PS affecting all PV modules. This large reduction in the output power of 

the PV system has been evaluated and enhanced by many techniques. A review of recent methods for 

enhancing the output power due to PS conditions affecting PV systems can be divided into three main 

categories: 

A. MPP enhancement of PV systems due to PS conditions using bypass diodes 

B. The development of new PV array configuration systems 

C. Advanced MPPT techniques for mitigating PS conditions affecting PV systems 

The simulation results are not available in the articles (Firth et al., 2010; Freeman, Hellgardt, & Markides, 

2017), results shown in Figure 2.8 are recreated using LabVIEW software to demonstrate the effect of PS 

conditions on the performance of series connected PV modules.  

 

Figure 2.8 (a) Six PV modules connected in series, (b) 25% PS affecting all PV modules  
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2.4.1.1 Enhancement of PV output power due to PS conditions using bypass diodes 

The effect of PS conditions in PV systems can be reduced and thus, increase the output power of the PV 

systems achieved using bypass diodes. A bypass diode is connected in parallel with each PV module, but 

with opposite polarity as shown in Figure 2.9a.  

In 1984, a protection technique of PV modules was invented by (Lesk, 1984) using the parallel 

connection of bypass diodes across the PV modules. The patent shows that there is a huge improvement 

in the output power due to the reversely poled diode across each of the series connection PV solar cells in 

PS conditions. However, this protection technique was not developed on a full scale PV module which 

comprises multiple solar cells connected in series. 

Moving to 1988, a protected solar cell including a monolithic bypass diode is formed by addition of an 

additional layer of semiconductive material having a type opposite to the outermost semiconductive layer 

of a solar cell was invented by (Cohen, 1988). The author of the patent claimed that the connectivity of 

bypass diodes across the PV solar cells increases its output power efficacy during PS conditions and some 

other environmental factors such as the change of sun irradiance and solar cell temperature variations. 

The first PV module with integrated solar cell bypass diode was developed by (Kukulka, 1997). Each 

bypass diode is bonded to the solar cell for anti-parallel connection across the solar cell. As shown in 

Figure 2.9b, the bypass diode 10 and solar cell 12 are connected in an anti-parallel configuration such that 

the bypass diode is reverse biased when the solar cells are illuminated. Bypass diodes that have very low 

reverse currents are preferred to avoid reducing current in the solar cell during normal operation, which 

would reduce the efficiency of the PV module (Kukulka, 1997). 

 

Figure 2.9 (a) Bypass diode connected in parallel with a PV module, (b) Series string of 

solar cells connected in an anti -parallel configuration with a bypass diode (Kukulka, 1997) 
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Another invention has been proposed by a German scientist (Müller, 2002). This invention relates to a 

production method for a solar cell which comprises an integrated bypass diode on the side facing away 

from the incident of light and which can be produced in simple manner by diffusion. Figure 2.10a shows 

a sectional view of the proposed method according to the invention. 

The proposed method claimed that the blocking behavior of the bypass diodes can be optimized 

independent of the actual solar cell. The highest-possible breakdown voltage and a low forward voltage 

are sought that drive shaded solar cells in reverse direction. Thus increase the efficiency of the PV solar 

cells during PS conditions. In addition, this invention has a significant impact since the described 

procedure of the connectivity for the bypass diodes are integrated in the substrate material before the 

procedural steps to manufacture the photoelectric solar cell layers. 

Later in 2008, a bypass diode is provided in the semiconductor structure with a region of first polarity of 

the solar cell connected with a region of second polarity of the bypass diode. This invention was 

developed by (Sharps, 2008). Figure 2.10b shows the circuit diagram of the proposed PV bypass diode 

structure. The cells A, B, and C are arranged in the same order and are electrically connected to a bypass 

diode.  

 

Figure 2.10 (a) Sectional view of solar cells according to the invention proposed by 

(Müller, 2002), (b) Circuit diagram of the solar cell and bypass diode accor ding to the 

invention presented in (Sharps, 2008) 
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Most recently, a solar cell structure including a silicon carrier with a bypass diode is invented by (Ho & 

Suh, 2014). The proposed solar cell structure significantly increases the solar cell MPP. Additionally, it 

reduces material and manufacturing cost, and provides much more flexibility of the solar cell structures. 

Furthermore, a similar approach has been invented in 2017, where the main difference is the corner 

integration of the bypass diode interconnecting configuration for multiple solar cells instead of a single 

solar cell structure as described in (Hoang & Beyene, 2017). 

Nowadays, PV modules manufactures include a multiple of bypass diodes within the PV module sub 

strings, as shown in Figure 2.11. Romag SMT 6(60) P PV module is an example of a PV module which 

contains three bypass diodes connected in parallel with the sub strings of the PV module. Figure 2.11a 

shows a real image of a PV module, while Figure 2.11b shows a connection box. The sub strings are 

connected to each bypass diode as illustrated in Figure 2.11c. 

 

Figure 2.11 (a) Real image of SMT 6(60)P PV module, (b) PV module connection box, (c) 

PV module sub string connections to the bypass diodes  
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In order to understand better the impact of PS conditions in PV systems, the PV module shown in Figure 

2.11a has been evaluated using two case scenarios: without and with bypass diodes connected to the PV 

panel. Figure 2.12a shows the simulation results for the PV module under STC and 30% PS condition. 

The MPP of the PV module without connecting any bypass diode is equal to 150.6 W, however, the MPP 

is increased to 169.7 W after connecting 3 bypass diodes to the PV module sub strings.  

As can be seen in Figure 2.12b, while connecting bypass diodes to the PV module, the P-V curve shows 

multiple MPP peaks; that is, the curve comprises a global MPP (GMPP) and local MPP (LMPP). As a 

result, the PV module will remain running at the GMPP, therefore, more output power will be guaranteed 

from the PV module. However, in order to achieve this target, a global maximum power point tracking 

(GMPPT) technique must be used with the PV module. Figure 2.12 is recreated using LabVIEW software 

to demonstrate the effect of bypass diodes on the output power of a PV module. 

 

(a) 

 

(b) 

Figure 2.12 (a) Simulation results under STC for PV module shown previously in Figure  

2.11, (b) LMPP and GMPP for 30% PS with 3 bypass diodes connected to the PV module  

 

(b) 
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In conclusion, this section shows a significant improvement of the resulted MPP of the PV module which 

is affected by PS conditions. However, the application of the bypass diodes has been further investigated 

using multiple PV array configuration systems to enhance the output power of the PV module during PS 

conditions. This will be discussed in the following section. 

2.4.1.2 The development of new PV array configuration systems 

PV modules can be wired in different configurations. The impact of PS conditions affecting PV modules 

with different connection configurations has been investigated widely.  

Five different PV connection configurations have been studied and compared by (Wang & Hsu, 2011), 

where the investigated PV configurations are: SS (simple series), SP (series-parallel), TCT (total-cross-

tied), BL (bridge-linked) and HC (honey comb) configurations. A randomly generated solar irradiance 

has been applied on the five listed PV configurations, where the applied solar irradiance values are shown 

in Figure 2.13a. The average output power during all tested irradiance levels are reported in Figure 2.13b. 

In addition, PS conditions have been applied in each solar irradiance level with different PS percentage. It 

is found that in most PS conditions, the TCT configuration has a better performance over the other four 

configurations. 

A detailed mathematical analysis of the TCT configuration under normal and PS conditions has been 

further investigated by (Mohammadnejad, Khalafi, & Ahmadi, 2016). Five different PS patterns have 

been tested on SP, BL, HC, and the TCT PV array configurations. Additionally, another test has been 

carried out using multiple PV array sizes such as 4x4, 5x4, 6x4 and 4x5 (Row x Column). The results 

show that TCT configuration has the least PV output power loss compared to all other tested PV array 

configurations. 

                                

                                            (a)                                                                          (b) 

Figure 2.13 (a) Randomly tested solar irradiance levels, (b) Comparison of the five PV 

configuration output power (Wang & Hsu, 2011)  
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In 2013, an approach developed by (Rani et al., 2013) used that same physical location of the modules in 

a TCT connected PV array. However, the arrangement of the PV modules is based on “Su Do Ku” puzzle 

pattern so as to distribute the PS shading over the entire PV array. The performance of the system is 

investigated for different shading patterns and the results show that positioning the modules of the array 

according to “Su Do Ku” puzzle pattern yields improved performance under partially shaded conditions.  

Figure 2.14a shows the TCT arrangement of the PS affecting some PV modules in the entire PV array, 

where Figure 2.14b shows the “Su Do Ku” arrangement of the same PS conditions. However, the 

dispersion of the shading in the PV array due to the “Su Do Ku” arrangement is illustrated in Figure 

2.14c. In figure 2.14d, it can be observed that applying the same shading pattern to the “Su Do Ku” PV 

arrangement, increases the generated PV output power from 4711 to 5045 W, which is 6.6% higher 

compared to the TCT arrangement. 

 

Figure 2.14 PS pattern affects a PV array. (a) TCT arrangement, (b) Su Do Ku 

arrangement, (c) Shade dispersion with Su Do Ku arrangement, (d) PV characteristics of 

the examined PV array including the GMPP (Rani, Ilango, & Nagamani, 2013)  
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Another configuration modification is the Electrical Array Reconfiguration (EAR) which consists of 

dynamically changing the electrical connections of PV modules. The main idea in the EAR approach is to 

adapt the PV arrays using a controllable switching matrix to select a configuration that reduces as much 

as possible the PS loss for a given shading pattern. This strategy requires a fully reconfigurable PV array 

and necessitates sensors and switches that increase system complexity and cost (Parlak, 2014; Tian, 

Mancilla–David, Ellis, Muljadi, & Jenkins, 2013). 

Static reconfiguration of PV array is an alternative to EAR that achieves a balance between cost, 

complexity and PV efficiency. This approach relies on finding a PV module arrangement with a fixed 

predefined TCT configuration (Potnuru, Pattabiraman, Ganesan, & Chilakapati, 2015). Such 

arrangements and others discussed in (Deshkar, Dhale, Mukherjee, Babu, & Rajasekar, 2015; Rao, Ilango, 

& Nagamani, 2014) operate with an array having an equal number of rows and columns, and are 

restricted to adjusting the electrical connections of the PV modules which are in the same physical PV 

array row. 

As a consequence, shading dispersion is limited and protection diodes power consumption is high. 

Similar approaches to change the PV module arrangement within a PV array under TCT and other 

configurations are discussed for example in (Celik, Karatepe, Silvestre, Gokmen, & Chouder, 2015; 

Yadav, Pachauri, & Chauhan, 2016). These arrangements still locate PV modules in the same column and 

are in fact almost identical to “Su Do Ku” approach shown previously in Figure 2.14. In addition, these 

new PS mitigation techniques have not taken into account the power dissipation of blocking and bypass 

diodes in the PV systems and, in most cases, have only been applied to small scale PV arrays 

(Vijayalekshmy, Bindu, & Iyer, 2016). 

Most recently, a PS mitigation approach is developed by (Belhaouas et al., 2017) using three new 

physical PV array arrangements (shift-modified-cross tied linked (S-M-TCT), S-M-TCT + blocking 

diodes (BLK), and parallel shift-modified- cross tied linked (//S-M-TCT)). The arrangements are based 

on maximizing the distance between adjacent PV modules within a PV array by appropriately arranging 

modules in different rows and columns without changing the electrical connections. The new PV 

arrangements are shown to effectively obtain the following: 

i. Eliminate multiple output power peaks 

ii. Maximize output power of the PV system 

Various shading scenarios have been conducted, and in conclusion, the proposed new PV arrangements 

generate higher output power compared to SP, TCT and “Su Do Ku” PV configurations as shown in 

Figure 2.15. 
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An approach using MATLAB/Simulink software developed by (Yadav, Pachauri, Chauhan, Choudhury, 

& Singh, 2017) analysed the performance of TCT, series parallel - total cross-tied (SP-TCT), bridge link- 

total cross-tied (BL-TCT), bridge link- honey comb (BL-HC), Magic Square (MS) and MS puzzle pattern 

based reconfiguration like Re-arranged total-cross-tied (RTCT), Re-arranged series parallel- total-cross-

tied (RSP-TCT), Re-arranged bridge link- total cross-tied (RBL-TCT) and Re-arranged bridge link- 

honey comb (RBL-HC).  

The performance of all tested PV array configurations has been investigated using the P-V curve 

characteristics, power loss due to shading, fill factor, and shading dispersion effect on the MPP for 

various shading patterns such as: 

1. Vertical shading 

2. Horizontal shading 

3. Diagonal shading 

The main finding of this work is that the MPP of MS and RTCT configurations is at least 2279 W more 

than the TCT configuration. Also the mismatch power loss is 300 W less, and fill factor (FF) is 9.91 more 

than TCT configuration. 

 

 

 

Figure 2.15 GMPP (%) for the various configurations and arrangements under shading 

scenarios 1–4 with different irradiation levels (Belhaouas et al., 2017) 
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2.4.1.3 Advanced MPPT techniques for mitigating PS conditions affecting PV systems 

The third mitigation technique for PS conditions affecting PV systems is the development of advanced 

MPPT techniques implemented in PV systems. Therefore, in this section a critical analysis on the 

conventional methods and soft computing techniques implemented for MPPT in PV systems will be 

briefly discussed. 

In fact, MPPT is algorithm that includes in charge controllers used for extracting the maximum available 

power form PV modules under certain environmental and load conditions (Ram, Babu, & Rajasekar, 

2017). One of the most popular methods used for MPPT in PV systems is Perturb and Observer (P&O) 

method. In this method, based on sensor inputs the PV power is calculated and the voltage perturbations 

are introduced to deduct the direction of tracking. According to the voltage perturbation the output power 

may either continuously rise or fall. Thus, the algorithm continuously keeps tracking the MPP via voltage 

perturbations. One of the earliest development of P&O technique is done by (Femia et al., 2005). Authors 

implemented the P&O algorithm in a DC-DC boost converter with a reference sampling time of 0.01 ms. 

However, the designed system seemed to be feasible under steady state conditions, but it greatly suffered 

during dynamic change in irradiation conditions. The proposed P&O is shown in Figure 2.16a.  

The drawback of P&O in varying atmospheric conditions is well handled in methods proposed in 

(Abdelsalam, Massoud, Ahmed, & Enjeti, 2011; Ahmed & Salam, 2015), where the problem of steady 

state oscillations around MPP is reduced considerably. Table 2.4 summarizes the different P&O 

approaches developed for MPPT in PV systems. Another interesting method for maximising the output 

power of a PV module is the incremental conductance (IC). Usually, to track MPP using the IC method, 

three common steps are applied: 

i. When 
𝑑𝑃

𝑑𝑉
= 0, the error is zero and 𝑉𝑚𝑝𝑝 can be achieved 

ii. When 
𝑑𝑃

𝑑𝑉
> 0, the MPP is dragged towards the left of the I-V curve (error is positive) 

iii. When 
𝑑𝑃

𝑑𝑉
< 0, the MPP is dragged towards the right of the I-V curve (error is negative) 

The flowchart of a simple IC method is shown in Figure 2.16b. The researchers have followed many 

techniques to reduce the tracking error in IC method. An improved IC method with variable step size is 

introduced in (Li & Wang, 2009). The duty cycle generation is done based on Equation (2.4). 

𝐷(𝑘) = 𝐷(𝑘 − 1) ± 𝑁 ∗  |
𝑃(𝑘)−𝑃(𝑘−1)

𝑉(𝑘)−𝑉(𝑘−1)
|                                               (2.4) 

where k is the iteration value, P is the output power, V is the voltage, D is the duty cycle and N is the 

scaling factor that determines the accuracy of the MPP tracking. 
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                      (a)                                                                                              (b)       

                

                      (c)                                                                                              (d)       

 

Figure 2.16 (a) Flowchart of a simple P&O algorithm (Femia et al., 2005), (b) Flowchart 

for IC algorithm (Lee, Bae, & Cho, 2006), (c ) Flowchart of HC algorithm (F. Liu, Kang, 

Zhang, & Duan, 2008), (d) ANN configuration used to determine reference voltage at MPP 

(Kulaksız & Akkaya, 2012)  
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In (Radjai, Rahmani, Mekhilef, & Gaubert, 2014) the authors used fuzzy rules in combination with IC 

algorithm to continuously change the duty cycle values. The PV systems employed with IC algorithms 

are considered to be the best choice for low power applications since this method showed excellent 

performance for steady change in solar irradiance conditions (Radjai et al., 2014). However, this method 

fails to reach equilibrium state quickly and the converter duty cycle continues to oscillate around the MPP 

(Sivakumar, Kader, Kaliavaradhan, & Arutchelvi, 2015). 

 

Table 2.4 Comparison of P&O approaches 

Reference Control 

variable 

Converter 

type 

Application Description 

(Femia, 

Petrone, 

Spagnuolo, & 

Vitelli, 2005) 

Duty cycle  Boost 

converter  

Grid-

connected 

system 

The author has analysed dynamic behavior 

of the system in boost converter and tested 

the system under various irradiation 

conditions. 

(Ishaque, 

Salam, & 

Lauss, 2014) 

Duty cycle Buck-

Boost 

converter 

Stand-alone 

system 

A PI controller is used to reduce the error 

in duty cycle. This ensures maximum 

power from PV array. The system can also 

be extended to grid connected systems. 

(Kollimalla 

& Mishra, 

2014) 

PV Current Boost 

converter 

Stand-alone 

system 

A new P&O based on short circuit current 

is proposed by using dSpace. The 

algorithm is tested under various irradiated 

conditions and varying output is obtained. 

(Elgendy, 

Zahawi, & 

Atkinson, 

2015) 

Duty cycle Buck 

converter 

Stand-alone 

system 

The P&O is implemented in 1080 W PV 

array. The efficiency of system is 

compared with three level operations and it 

is been proved that high perturbation has 

improved efficiency comparatively. 

(Ahmed & 

Salam, 2015) 

Duty cycle Buck-

Boost 

converter 

Stand-alone 

system 

The author has used this condition (𝑇𝑟1 <

∆𝑃

𝑃
>  𝑇𝑟2 ) to check the change in MPP 

values and the duty cycle is generated 

based on the boundary conditions to ensure 

proper MPP is reached effectively. 
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Hill Climbing (HC) method is one of the recommend MPPT techniques used in PV systems nowadays. It 

is widely used due to its simplicity and effectiveness. In this method, the voltage and current of the PV 

system is sensed and based on the calculated output power, the duty cycle of the converter is adjusted. 

The duty cycle is either incremented or decremented, so after a certain number of cycles, the converter is 

able to reach the MPP duty cycle (F. Liu et al., 2008). The flow chart of the HC method is shown in 

Figure 2.16c. 

FLC-HC method presented in (Alajmi, Ahmed, Finney, & Williams, 2011) uses a Fuzzy Logic control 

(FLC) approach for controlling the duty cycle of the HC method. The new proposed controller improves 

the HC method by fuzzifying the rules of such techniques and eliminates their drawback. The proposed 

FLC-HC method offers fast and accurate converging to the MPP of stand-alone PV system. In each tested 

operating condition, the MPP is attained in a relatively short time and has a small oscillation in steady 

state. Moreover, when the weather conditions are changed, the FLC-HC algorithm forces the power to 

move directly to the new optimum point. 

The major drawback of the HC and FLC-HC methods is that they fail to converge at 100% of the MPP; 

also the time taken to reach the steady state depends on the initial value of duty cycle and step size. 

Most recently, some advanced MPPT techniques have been proposed and tested in PV systems. Artificial 

Neural Network (ANN) based MPPT algorithm is used to track the MPP of PV systems as presented by 

(Kulaksız & Akkaya, 2012). The approach uses a genetic algorithm (GA) optimized ANN based MPPT to 

maximize the MPP of a stand-alone PV system using boost converter. The major impact of this research 

is reducing the response time down to 0.06s due to varying the step size, and oscillations around the MPP. 

Another interesting MPPT algorithm suggested by (Hassan et al., 2017). The algorithm is based on 

Neuro-Fuzzy wavelet based adaptive MPPT control. The proposed MPPT controller combines the 

reasoning capability of Fuzzy Logic, the learning capability of ANN networks and the localization 

properties of wavelets. The algorithm shows a superior performance comparing to P&O, IC and the FLC 

approaches. The efficiency of the technique is equal to 96.81% which is higher than the conventional FLC 

approach which has an efficiency of 83.66%. 

In conclusion, this section shows that there are a variety of MPPT algorithms implemented in PV systems 

to track the MPP. The algorithms are based on different parameters such as duty cycle of the converters, 

PV output power, PV output current and PV output voltage. Some advanced techniques have been 

implemented such as FLC-HC and Neuro-fuzzy wavelet based adaptive MPPT control. However, up to 

date, there are few attempts to maximise the output power in PV systems for various PV array 

configurations (illustrated previously in section B). 
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2.4.2 Detecting faulty PV modules 

Failures in PV arrays occur for several reasons such as line-to-line faults, arc faults and disconnection of 

PV modules in the PV strings. This section will demonstrate the recent fault detection algorithms which 

are implemented to detect faulty PV modules in PV strings. From the literature, it was identified that PV 

fault detection algorithms can be classified into two main categories: Statistical and mathematical 

modelling techniques, and machine learning techniques such as Fuzzy Logic and ANN networks. 

2.4.2.1 Statistical and mathematical modelling techniques 

Early in 2006, a modeling and fault diagnosis of a 3 kW PV system has been proposed by (Chao, Ho, & 

Wang, 2008). The proposed fault detection method will firstly create a set of fault matter-element of PV 

modules, and then a regular extended correction function will identify the fault type of the PV arrays by 

calculating the degrees of extended correction. The mathematical calculations used in this study are 

complex, since it depends on the variations of a vector element used in multi-dimensional matter-element. 

Thus, the correction function is not easy to recreate in larger PV system size (i.e. 10~15 kW). 

In addition, the biggest limitation of the proposed fault detection algorithm is the lack of the capability of 

detecting PS conditions occurring in the PV system. However, this work was one of the earliest research 

that uses a mathematical expressions to identify the region of the fault occurring in a small scale size PV 

installation. 

Later in 2010, authors (Chouder & Silvestre, 2010) proposed an automatic supervision and fault detection 

of a PV system based on power loss analysis. In this work, the fault detection algorithm used two 

indicators to identify the type of the fault occurring in the PV system. The first layer of the proposed fault 

detection algorithm is identifying whether the PV system has a fault. For that purpose Equation (2.5) has 

been introduced. 

𝐿𝑐_𝑠𝑖𝑚 =  𝑌𝑟(𝐺, 𝑇𝑐) −  𝑌𝑎_𝑠𝑖𝑚(𝐺, 𝑇𝑐)                                                    (2.5) 

where Lc_sim is the captured losses, Yr(G, Tc) is the measured reference yield, and Tc is the PV module 

temperature. 

After identifying the captured losses in the PV system, a statistical layer has been used as proposed by 

Equation (2.6). 

𝐿𝑐_𝑠𝑖𝑚 − 2𝜎 <  𝐿𝑐_𝑚𝑒𝑠 <  𝐿𝑐_𝑠𝑖𝑚 + 2𝜎                                                (2.6) 

where Lc_mes is the measured loss of the examined PV system. 
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Finally, if the fault signal of the statistical analysis is equal to 1, another layer is used to identify the type 

of the fault occurring in the PV system which are described in Figure 2.17a. In addition, Rc and Rv present 

the current and the voltage ratio of the PV system. This work proposes a simple fault detection algorithm 

for the PV systems. It cannot identify the number of faulty PV modules within the PV string, the location 

of the faulty PV modules in the PV string and PS conditions cannot be classified correctly. Since if the 

voltage ratio is greater than 1, multiple faults might occur such as aging, MPPT error and PS conditions. 

Furthermore, a method of identifying faulty PV modules in a PV string has been proposed by (Gokmen et 

al., 2012). The PV fault detection algorithm uses the irradiance level, PV modules temperature, the 

number of PV modules in the examined PV string, and the output power of the PV string as an input for 

detecting whether the PV module is shorted or open circuited in the PV string. The proposed detection 

algorithm is tested on a series connected PV string which comprises 5 PV modules. The schematic of the 

tested PV system is shown in Figure 2.17b, where N (series connected PV modules) is equal to 5.  

The main challenge of adapting this method into other PV systems is the calculation of the relative power 

from the PV string. In addition, the proposed fault detection algorithm is not capable of detecting PS 

conditions, and cannot be used with different PV configuration systems such as P, SP, and TCT. 

Another interesting parameter based model PV fault detection algorithm is developed by (Y. Hu et al., 

2013). In this work, all healthy PV modules are assumed to have the same parameters such as G, T and 

heat exchange coefficient UPV. Additionally, the fault detection is categorized using Equation (2.7). 

𝑈𝑃𝑉 =  
𝐺−𝑃𝑚𝑝𝑝

𝐴𝑚 (𝑇𝑚− 𝑇𝑎)
                                                      (2.7) 

where G is solar irradiance in W/m2, Pmpp is the maximum power point, Am is the PV module area, Tm is 

the temperature of the PV module, and Ta is the ambient temperature. 

The PV fault detection algorithm has been validated using a PV module which has a MPP equal to 0.8 W. 

Various experiments under different load conditions including MPP load, heavy load, light load and PS 

conditions have been conducted. The results indicate that Equation (1.7) can detect various faults during 

different load conditions connected to the PV module. However, the proposed Equation cannot be used in 

PV modules connected in S, PS, TCT or any other PV configuration, since it depends on the thermal heat 

of a single PV module and it requires the calculation of the area for a single PV module, which will be 

different in a PV string.  
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Another PV fault detection algorithm based on Equation (2.6) has been used by (Silvestre, Chouder, & 

Karatepe, 2013). The algorithm is capable of detecting possible faults such as PS conditions, one or more 

PV strings disconnected form the PV systems, and blocking diodes failure. However, the proposed 

algorithm cannot classify the type of the fault occurring in the PV system. In addition, the algorithm used 

is very similar to the PV fault detection approach previously described in (Chouder & Silvestre, 2010). 

 

(a) 

 

(b) 

Figure 2.17 (a) Flow chart of the fault detect ion procedure proposed by (Chouder & 

Silvestre, 2010), (b) Examined PV systems used in (Gokmen, Karatepe, Celik, & Silvestre, 

2012) 
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In (Solórzano & Egido, 2013) the authors proposed an automatic fault detection algorithm for PV system 

developed using MATLAB software. The algorithm can diagnose multiple faults in PV systems such as 

PS conditions, localized dirt, generalized dirt, possible hot spots, and module degradation and excessive 

losses in DC cables. Various mathematical calculations have been proposed using the variations of the PV 

output power, voltage, and current.   

Although (Solórzano & Egido, 2013) proposed a suitable mathematical approach which can be widely 

used in PV systems, the algorithm cannot detect faulty PV modules (PV modules are disconnected in a 

PV string). Furthermore, the algorithm cannot distinguish between PS conditions and faulty PV strings in 

a PV system. These problems have been solved by (Chine et al., 2014). The new proposed PV detection 

algorithm can classify the type of the fault that has occurred in the DC and AC side of a PV system such 

as: 

DC side 

i. Faulty PV modules 

ii. PS conditions 

iii. MPPT error 

iv. PV strings failure 

AC side 

i. Defect DC/AC inverter 

ii. Hot DC/AC inverter 

iii. Number of the faulty DC/AC inverter 

In addition, the proposed algorithm uses the ratio of the voltage, current and power which is similar to the 

mathematical expression parameters used in (Solórzano & Egido, 2013). A new procedure for fault 

detection in grid-connected PV system based on the Impp, Vmpp, Isc, and Voc is proposed by (Silvestre, da 

Silva, Chouder, Guasch, & Karatepe, 2014). The algorithm is capable of detecting faulty PV strings and 

bypassed PV modules. The major limitation of the algorithm is that it cannot detect PS conditions, faulty 

PV modules, errors in MPPT units, and defects in DC/AC inverters. 

The DC/DC converters are one of the failure sources in PV systems. In 2015, a fast switch fault detection 

method for boost converter used in a PV system is proposed by (Jamshidpour, Poure, & Saadate, 2015). 

The algorithm uses the signal provided by the current sensor dedicated to the control unit of the PV 

system. The results obtained show that a switch fault can be detected in less than one switching period of 

the boost converter, typically around 100 ms. 
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A further investigation on a remote isolated detection and control strategy for a PV based distributed 

system is developed by (Bayrak, 2015).The proposed method monitors and controls the grid, local load 

and the output of the PV inverter in real time with the communication of a circuit breaker. The proposed 

remote control system detects the changes in the currents of the circuit breakers, frequency, and the 

voltages by checking the defined threshold values at all electrical branches of the PV system. A general 

schematic of the proposed method is shown in Figure 2.18. 

Currently, various PV fault detection algorithms based on mathematical and statistical analysis techniques 

are used. Table 2.5 shows a comparison between five different approaches used in PV fault detection. As 

can be seen, the PV system output voltage and current are dominant in most recent fault detection 

methods. Furthermore, various statistical analysis techniques are used to identify the type of the fault in 

the PV plant, such as, 

i. T-test: which uses the difference between the mean of the measured data and the theoretical 

output performance of the PV system 

ii. Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) 

iii. ± 2 standard deviation method 

Lastly, in this section, the performance of various PV fault detection algorithms based on statistical 

analysis techniques and mathematical calculations have been discussed and compared. However, in the 

next section, the performance of various PV fault detection algorithms based on AI algorithm techniques 

are discussed. 

 

Figure 2.18 General schematic of the PV fault detection algorithm developed by (Bayrak, 

2015) 
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Table 2.5 Comparison of various PV fault detection algorithms 

Case Study 

 

(Madeti & Singh, 

2017b) 

(Garoudja et 

al., 2017) 

(Silvestre, Mora-

López, Kichou, 

Sánchez-Pacheco, 

& Dominguez-

Pumar, 2016) 

(Ventura & 

Tina, 2016) 

 

Year of the Study 

 

2017 

 

2017 

 

2016 

 

2016 

 

Software used in the data 

analysis 

 

Not used 

 

Not used 

 

MATLAB 

 

PVSyst 

 

PV system capacity 

 

2.2 kWp 

 

9.54 kWp 

 

14.08 kWp 

 

1 MWp 

 

 

Fault 

Detection 

algorithm 

approach 

Variables PV output current 

and voltage 

PV output 

current, and 

voltage 

PV output voltage, 

current, and power 

AC and DC 

power 

Statistical 

analysis 

technique 

± 2 standard 

deviation method 

 

exponentially 

weighted 

moving 

average 

 

Not used 

MBE, RMSE 

and nRMSE 

 

 

 

 

Type of the 

detected 

fault 

PS 

conditions 



 

 

√ 

 

 

 

√ 

Faulty PV 

modules 

 

√ 

 

√ 

 

√ 

 

 

Faulty PV 

strings 

 

√ 

 

√ 

 

√ 

 

 

Error in 

MPPT 

 

 

 

 

 

 

 

√ 

Faulty 

DC/AC 

inverter 



 

 



 

 

√ 

 

√ 
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2.4.2.2 Artificial Intelligence (AI) techniques in PV fault detection 

This section describes the use of AI algorithms in PV fault diagnosis. In 2011, (Karatepe & Hiyama, 

2011) proposed a fault diagnosis method using several ANN networks in addition to an automatic control 

based module voltage terminal. The input layer of the proposed technique contains the solar irradiance, 

PV temperature, Vmpp and Impp. The proposed technique is capable of identifying the short circuited 

location of PV modules in one string. However, the technique cannot identify PS conditions, and fault PV 

strings. 

Another PV fault detection approach which is capable of detecting three different solar irradiance levels 

in PV systems is proposed by (Tadj et al., 2014). The algorithm uses a Fuzzy Logic system to predict the 

cloud cover in the sky which can be classified as the following: cloudy, partial cloudy, and clear sky. 

The membership functions are shown in Figure 2.19, where K0 is the index by a partial shading to 0.2. 

This approach helps to detect possible faults occurring in the PV system without the need of any solar 

irradiance sensor. However, the approach does need a visible satellite based image of the cloud in order to 

define the clearness index parameter. Another limitation of the proposed approach that it does not identify 

whether the partial shading occurs because of a cloud, dust, helicopters, or haze affecting the PV modules. 

Another PV fault detection algorithm based on Neuro-Fuzzy fault classification system has been proposed 

by (Bonsignore, Davarifar, Rabhi, Tina, & Elhajjaji, 2014). The algorithm has been implemented using 

MATLAB/Simulink software. Six parameters have been used in order to implement the proposed 

algorithm which are Impp, Vmpp, Voc, Isc, S1, and S2, where S1 and S2 are calculated using Equation (2.8) 

and Equation (2.9) respectively: 

𝑆1 =
𝐼𝑚𝑝𝑝− 𝐼𝑠𝑐

𝑉𝑚𝑝𝑝− 𝑉𝑜𝑐
                                                            (2.8)  

𝑆2 =
0− 𝐼𝑚𝑝𝑝

𝑉𝑜𝑐− 𝑉𝑚𝑝𝑝
                                                            (2.9) 

 

Figure 2.19 Fuzzy Logic membership functions proposed in  (Tadj, Benmouiza, Cheknane, 

& Silvestre, 2014) 
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The proposed Neuro-Fuzzy system is capable of detecting various faults in the PV system, such as, short 

circuited diode in a PV module, and PS conditions. The main limitation of the algorithm is the number of 

used variables in the fault classification, since the MPPT units used in PV plants cannot identify all 

required variables, especially the Voc and Isc.  

Authors in (Chine et al., 2016) proposed a fault diagnosis technique for PV system based on ANN 

network. For a given set of working conditions such as solar irradiance and PV module’s temperature, a 

number of attributes such as current, voltage, and number of peaks in the I-V curve of the PV string are 

calculated. Multilayer Perceptron (MLP) and Radial Basis Function (RBF) ANN networks have been 

used to detect PV fault. The output classification confusion matrix for both networks are shown in Figure 

2.20, F4 is missing because it is associated with open circuit faults in any PV module that can be detected 

using a mathematical ratios presented in the article. 

 

(a) 

 

(b) 

Figure 2.20 (a) MLP ANN network, (b) RBF ANN network proposed in  (Chine et al., 

2016) 
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The maximum accuracy achieved by the PV fault detection algorithm is equal to 90.3% using the MLP 

ANN network. As stated previously, the Voc is not part of many MPPT units used in PV systems, 

therefore, this algorithm can only operate in PV systems which have a MPPT or a monitoring system that 

measures the value of the Voc.  

Another PV fault detection approach based on AI technique is proposed by (Belaout et al., 2016). The 

approach uses the values of Voc and Pmpp as an inputs for the Fuzzy Logic system as shown in Figure 2.21, 

where the fuzzy classifier decides which fault occurred in the PV system according to the following rules: 

i. If the fuzzy classifier output vector is equal to (g1, 0, 0), the faulty component is the bypass diode 

ii. If the fuzzy classifier output vector is equal to (0, g2, 0), the faulty component is the blocking 

diode 

iii. If the fuzzy classifier output vector is equal to (0, 0, g3), the faulty component is the series 

resistance 

iv. If the fuzzy classifier output vector is equal to (0, 0, 0), no fault is detected 

v. Otherwise, the PV system is affected by another fault type 

Here, g is the discriminant function associated with the fuzzy rules. 

 

Figure 2.21 Input variables for the constructed fuzzy classifier proposed in  (Belaout, 

Krim, & Mellit, 2016) 
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ANN based modelling and fault detection of PS conditions for PV modules is proposed by (Mekki et al., 

2016). This approach uses MLP ANN network architecture which has only two input variables, solar 

irradiance and PV module temperature.  

Figure 2.22 shows faulty state detection results under PS condition for the current and voltage, where 25 

of the solar cells in the examined PV module which comprises 72 solar cells have been shaded. This 

approach can be generalized for a bigger PV array size, however, this has not been considered in the 

research. In Figure 2.22 the x-axis corresponds to the time in minutes. 

Figure 2.22 demonstrates that when PS conditions affects a PV module, the measured current and voltage 

reduces comparing to the optimum (estimated) voltage and current conditions. 

Furthermore, a new fault detection technique based on multi-resolution signal decomposition and fuzzy 

interface systems is developed by (Yi & Etemadi, 2017). The proposed fault detection scheme is based on 

a pattern recognition approach that employs a multi resolution signal decomposition technique to extract 

the necessary features, based on which a fuzzy inference system determines if a fault has occurred. The 

control scheme of the proposed algorithm is shown in Figure 2.23. 

 

 

Figure 2.22 Measured PV module output current and voltage versus the estimated values 

obtained using the ANN-model proposed in (Mekki, Mellit, & Salhi, 2016) 

 

 



 

 

  47 

 

Another intelligent PV fault diagnosis algorithm based on kernel extreme learning machine and I-V 

characteristics has been designed by (Chen et al., 2017). The proposed algorithm can be explained by the 

following: 

i. Based on the key points and model parameters extracted from monitored I-V characteristic curves 

and environment conditions, an effective feature vector of seven dimensions is proposed as the 

input of the fault diagnosis model 

ii. The emerging kernel based extreme learning machine (KELM), which features extremely fast 

learning speed and good generalization performance, is utilized to automatically establish the 

fault diagnosis model 

The main limitation of the proposed algorithm is the capability of detecting faulty PV modules in the PV 

systems, and it cannot detect hot spots in the PV modules. Hot spots detection is another faulty condition 

which might occur in the PV modules. The next section describes hot spots detection and protection 

techniques. 

 

Figure 2.23 PV fault detection topology using 10 PV strings presented by (Yi & Etemadi, 

2017) 
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2.4.3 Hot spots 

A lack of maintenance in PV systems can cause hot spots due to localised or irregular dirt and PS 

conditions affecting the PV modules. Thus, it will cause permanent losses and reduce the reliability of the 

system. Hot spots are a well-known phenomenon, described as early as 1969 (Blake & Hanson, 1969), 

and still present in PV arrays. 

Practically, PV hot spots occur when a cell, or group of cells, operates at reverse bias, dissipating power 

instead of delivering it and, therefore, operating at abnormally high temperatures. Even if the cell does not 

get damaged in the PV module, the exposure to high temperatures will result in a faster degradation of the 

material used for the PV modules encapsulation (Oreski & Wallner, 2005, 2009). 

Infrared (IR) thermal cameras are a useful tool for detecting hot spots in PV systems. In (Kaplani, 2012), 

the author studied the degradation of  PV systems caused by hot spots, and also developed an algorithm to 

automatically differentiate faulty and healthy PV cells. A sample of the digital and IR image is shown in 

Figure 2.24. 

In (Buerhop et al., 2012), 260 PV modules were analysed by I-V curve as well as IR thermography to 

investigate the reliability of IR images under real time long term environmental conditions. One of the 

main findings of this research is the impact of faulty soldering in PV modules. According to the results 

shown in Figure 2.25a, the measured output power of the PV module is reduced by 11 W due to the hot 

spot affecting the PV module. Figure 2.25b shows the IR image of the examined PV module. This 

research does not focus on mitigating the hot spots in the PV modules. 

 

Figure 2.24 (a) Digital image of the lower part of a PV panel, (b) IR image of the back of 

the PV panel revealing a hot cell in reverse order as illustrated by the arrow (Kaplani, 

2012) 
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Another analysis carried out by (García, Marroyo, Lorenzo, Marcos, & Pérez, 2014) observed the 

degradation on PV plants affected by hot spots using I-V curves characteristics. The total number of PV 

modules affected by hot spots is equal to 1259, which is 5.7% of the total inspected PV modules (22088). 

In conclusion, this research shows that the maximum total output power loss due to PV hot spots is equal 

to 2.5%. However, the analysis does not propose a mitigation technique to enhance the output power 

performance of the hot spotted PV modules. 

In 2015, an experimental observation on hot spots and a derived acceptance/rejection criteria was 

proposed by (Moretón et al., 2015). The experiments have been carried out using 200 affected PV 

modules by IR inspection camera. The end result based on various experimental observations is shown in 

Figure 2.26. This figure illustrates the application of the proposed acceptance/rejection criteria. The figure 

is divided into 4 regions: 

i. Modules in region “A” are considered non-defective, because their hot spot temperature is not 

high 

ii. Modules in region “B” are less straightforward, because these modules are possible candidates for 

a hot spot problem, but this problem has not evolved enough to imply a significant power loss. 

Therefore, these modules are not rejected, but they should be inspected again after one year. One 

year was recommended by the article authors, however, there is no scientific evidence from the 

article justifying why one year has been chosen as a maintenance period.   

iii. Modules in region “C” and “D” are considered defective due to low power and lifetime 

threatening temperatures 

         

                                   (a)                                                       (b) 

Figure 2.25 (a) I-V curve of the examined PV module, (b) IR image of the PV module 

under G: 690 W/m2 , and T = 18 oC (Buerhop et al., 2012) 
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A mathematical model proposed by (Rajput, Tiwari, & Sastry, 2016) has been developed to calculate 

solar cell temperature, hot spot temperature and PV module efficiency in opaque and semitransparent 

mono crystalline silicon PV module. The results have been validated experimentally, where opaque PV 

modules exhibits 2 to 3 oC higher temperature in comparison to semitransparent PV modules for one as 

well as two hot spots. Figure 2.27 shows the I-V curve for three different cases: no hot spot, one hot spot 

and two hot spots in the PV module, for both opaque and semitransparent PV modules under the same 

outdoor environmental conditions. 

 

Figure 2.26 Proposed PV hot spot acceptance/rejection criteria developed by (Moretón, 

Lorenzo, & Narvarte, 2015) 

 

 

 

 

 

                                          (a)                                                       (b)   

Figure 2.27 I-V curve for no hot spot, one hot spot, and two hot spots affecting. (a) 

Opaque PV modules, (b) Semitransparent PV modules  
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So far, all previously mentioned hot spot detection algorithms/techniques have not considered the hot spot 

output power mitigation. However, a hot spot mitigation in PV arrays with distributed MPPT (DMPPT) 

has been proposed by (Solórzano & Egido, 2014). The proposed mitigation technique is based on the 

number of bypass diodes connected in each PV module. Further considerations have been taken into 

account: 

i. The shaded cell has some margin until it works in reverse bias: from Impp to Isc, related to the 

shunt or parallel resistance 

ii. If the non-shaded cells reduce their current they are also increasing their voltage, so the power 

lost is not exactly equal to the current reduction and it depends on the slope of the I–V curve from 

Vmpp to Voc, which is related to the series resistance of the cells 

Figure 2.28 shows an experimental results of 25% shading applied to a PV solar cell. As can be seen, 

using the DMPPT technique reduces the temperature of the shaded solar cell up to 26.4 oC compared to 

34.4 oC before considering the DMPPT technique. 

A hot spot suppression technique is proposed by (Spanoche, Stewart, Hawley, & Opris, 2012). The 

suggested technique works with a model based MPPT algorithm to seek the best operating point to 

maximize the output power of the PV module, while limiting the rise of the temperature of the shaded 

solar cells. Theoretical and experimental results show that the power density dissipated in the shaded 

cell(s) is reduced by a factor of 4 when the operating conditions are determined by hot spot suppression 

technique. 

 

(a)                                                    (b) 

Figure 2.28 IR image of 25% shading applied to a PV solar cell. (a) Before DMPPT, (b) 

After DMPPT (Solórzano & Egido, 2014) 
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Another technique for enhancing the output power of hot spotted PV modules is proposed by (Y. Hu, 

Cao, Ma, Finney, & Li, 2014). This technique uses the thermal images of the hot spotted PV module as an 

input for a mathematical model which extracts a quantitative information of the mismatch fault, which is 

then employed to regulate the MPPT control. The proposed model uses the main parameters such as I, V, 

T, and G to investigate the behavior of the PV module. Compared to the methods described previously, 

this research made the following improvements: 

i. The temperature distribution under PV fault conditions is analysed by new electrical-thermal 

model 

ii. The thermography-based temperature distribution analysis is effective in establishing parameter-

based models and developing an optimized global MPPT algorithm in case of hot spotted PV 

solar cells 

In 2015, a reexamination of PV hot spotting to show inadequacy of the bypass diodes used in PV panels 

is discussed in (Kim & Krein, 2015). The examined PS case is shown in Figure 2.29, where a leaf has 

fallen on PV cell 1 of a 24 cell sub string. The bypass diode is turned “on” based on the string current and 

bypass diodes passive behavior. Thus, the cell dissipate more than 20 times its rated MPP which can be 

illustrated as the following: 

82  𝑊 (𝑅𝑎𝑡𝑒𝑑 𝑀𝑃𝑃 𝑎𝑠 𝑠ℎ𝑜𝑤𝑛 𝑖𝑛 𝐹𝑖𝑔𝑢𝑟𝑒 2.29𝑏)

24 (𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑏 𝑠𝑡𝑟𝑖𝑛𝑔 𝑐𝑒𝑙𝑙𝑠)
= 3.416 𝑊 

76 𝑊 (𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑝𝑜𝑤𝑒𝑟 𝑠ℎ𝑜𝑤𝑛 𝑖𝑛 𝐹𝑖𝑔𝑢𝑟𝑒 2.29𝑏) ≈ 𝟐𝟐 × 3.416 

                  

                                (a)                                               (b)  

Figure 2.29 (a) Bypassed sub panel string with one solar cell, (b) I -V curve characteristics 

(Kim & Krein, 2015) 
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A suitable solution for the sub string bypass diode connection has been reported in (Daliento et al., 2016), 

where a modified bypass circuit has been proposed to mitigate the hot spot reliability of PV solar cells. 

The approach relies on series-connected power MOSFET that subtracts part of the reverse voltage from 

the shaded solar cell. This is different from other active bypass circuits. The proposed solution does not 

require either a control logic or power supply and can be easily substituted to the standard bypass diode. 

Figure 2.30a shows the schematic diagram of the connection for the MOSFET within the PV sub string. 

In sunny conditions (no shading) shown in Figure 2.30b, the diode is turned “off” and the power 

reduction of the sub panel due to the MOSFET is measured up to tens of milli watt.  Figure 2.30c shows 

the working principles during one shaded solar cell in the PV sub string. The diode turns “on”, and the 

current flowing through the MOSFET decreases and its operating point moves toward higher voltage. 

This implies that the presence of the MOSFET reduces the power dissipation across the solar cell and, 

hence, its temperature; obviously the subtracted power is dissipated by the MOSFET, but the reliability 

concern is conveniently moved from the panel to an external device particularly suited for high 

temperature operation, which may in principle survive during the whole lifetime of the panel. 

Although the proposed approach was not validated during hot spotted PV panels, it was validated during 

PS conditions. On the other hand, the measured enhancement in the PV output power was not reported 

during outdoor conditions.  

  

                     (a)                                   (b)                                             (c)  

Figure 2.30 (a) Schematic diagram of the proposed bypass strategy proposed by (Daliento, 

Di Napoli, Guerriero, & d’Alessandro, 2016 ), (b) Operation under sunny conditions, (c) 

Operation under shading conditions  

                 

 



 

 

  54 

 

In this section, hot spot detection and possible mitigation techniques were discussed. Another important 

factor which might degrade the output power performance of PV modules is micro cracks, which will be 

explained in the next section. 

2.4.4 PV micro cracks 

Micro cracks in solar cells are a genuine problem for PV modules. They are hard to avoid and, up to now, 

the impact of PV micro cracks on the performance of the PV modules in various environmental 

conditions has not been reported. In order to examine micro cracks in PV modules, several methods have 

been proposed. Resonance ultrasonic vibrations (RUV) technique for crack detection in PV silicon wafers 

has been developed by (Belyaev et al., 2006; Dallas, Polupan, & Ostapenko, 2007). The technique uses 

ultrasonic vibrations of a tunable frequency and adjustable amplitude are applied to the silicon wafer by 

an external piezoelectric transducer in a frequency range of 20 to 90 kHz. The transducer contains a 

central hole allowing a reliable vacuum coupling between the wafer and transducer by applying 50-kPa 

negative pressure to the backside of the wafer. 

RUV PV micro crack technique is sensitive to crack length and its location, and can be used to reject or 

accept wafers. However, it does not identify the exact location of the PV crack. A sample of a PV crack 

detected using RUV is shown in Figure 2.31a. 

Optical transmission technique is another method used to detect micro cracks in PV modules. In optical 

transmission, the silicon wafer is placed above a broad-spectrum flashlight or laser diode and a charged 

coupled device (CCD) camera is used to detect the optical transmission through the wafer. The micro 

cracks inside the wafer affect the infrared portion of the light that passes through. The resolution of the 

CCD camera determines the minimum crack width that can be detected by this method (Abdelhamid, 

Singh, & Omar, 2014). 

In (Yang, 2009) the author proposed a real time in-line scanning method, which is based on a short time 

discrete wavelet transform (STDWT), to determine reflective characteristics of PV micro cracks. 

Although the selection of a small window size increases the spatial resolution for the proposed system, it 

causes an irregular pattern of the PV micro crack detection, which makes the automatic detection hard to 

identify the type, and the size of the micro crack as shown in Figure 2.31b.  

Another optical transmission technique which uses a general CCD camera with a laser diode as an 

automatic inspection for PV micro crack detection is proposed by (Bin et al., 2011). Although the 

proposed technique is useful in detecting the facial cracks, it fails to detect hidden cracks in awkward 

shaped plaques and cracks exhibiting snow-like point spread features as shown in Figure 2.31c. 
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(Wen & Yin, 2012) developed another technique called electronic speckle pattern interferometry (ESPI) 

which is used to detect PV solar cells micro cracks. In this method, speckle interference patterns are 

produced by real-time subtraction of sequential speckle images captured before and after an imposed 

deformation. This method depends on the variation of strain distribution due to thermal deformation in 

the solar cell, which is caused by discontinuities in material properties or the crystal lattice. 

The ESPI image was taken from the back of the solar cells because ESPI is more suited to detect rough 

rather than smooth surfaces. This approach is used to detect both facial and sub facial cracks and can 

distinguish between crack and scratch. The overall system configuration of the ESPI method is shown in 

Figure 2.32a. ESPI image of a polycrystalline solar cell is shown in Figure 2.32b. 

 

       

(a) (b) 

    

(c) 

Figure 2.31 PV micro cracks detecting using various detection techniques. (a) RUV, (b) 

STDWT, (c) Proposed PV micro crack detection technique developed by (Bin, Xianghao, & 

Shuai, 2011) 
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The above mentioned PV micro cracks detection techniques are very efficient techniques for locating and 

detecting possible cracks occurring in the PV modules, however, these techniques cannot be applied for a 

finished full scale PV modules. Therefore, photoluminescence (PL) aiming technique was proposed to 

solve this problem, since it can be used to inspect micro cracks in silicon wafers and PV modules. 

Moreover, PL technique can be applied not only at the end of the PV solar cell’s production, but also it 

can be slotted in during the process of production (Israil, Anwar, & Abdullah, 2013). 

A typical PL imagine set-up has been firstly developed in 2006 by an Australian scientists (Trupke et al., 

2006), the PL setup can be seen in Figure 2.33a. The PL image is the result of the electron-hole 

recombination, in which the electron is excited to the conduction band after absorption of photon. The 

electrons are emitted by means of a laser source. The PL image is detected using a CCD camera with a 

filter to remove the reflected and scattered laser light. An example of PL image for a PV solar cell is 

shown in Figure 2.33b.  

Most recently, in 2017, the PL imaging technique was used by (Zhu et al., 2017). In this research, authors 

proposed a new PL setup that enables inhomogeneous illumination with arbitrary illumination patterns to 

determine various parameters of solar cells. Figure 2.33c shows the new PL setup which comprises ten 

different stages, where the first stage is the lamp and concave mirror, and the last stage contain the light 

sink. 

 

                                               (a)                                                                                 (b) 

Figure 2.32 (a) ESPI technique proposed by (Wen & Yin, 2012), (b) ESPI image of 

polycrystalline silicon solar cell in temperature range of 32 ~ 32.4 oC 

 

      

 

 

   



 

 

  57 

 

 

 

 

 

(a) (b) 

 

 

(c) 

Figure 2.33 (a) Typical PL imaging setup developed by (Trupke, Bardos, Schubert, & 

Warta, 2006), (b) Example of PL image of a polycrystalline silicon solar cell, (c) New PL 

setup proposed by (Zhu, Juhl, Trupke, & Hameiri, 2017) 
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Electroluminescence (EL) aiming technique is another idea for the micro crack detection in PV solar 

cells. EL technique is the form of luminescence in which electrons are excited into the conduction band 

through the use of electrical current by connecting the solar cell in forward bias mode. This technique is 

very attractive, because it can be used not only with small solar cell sizes but also, it can be used with full 

scale PV modules (Israil et al., 2013). 

A typical EL imaging setup can be seen in Figure 2.34a which was developed by (Fuyuki & Kitiyanan, 

2009). The EL method requires the solar cells to be in the forward bias condition in order to emit infrared 

radiation. The EL ranges from 950 to 1250 nm with the peak occurring at approximately 1150 nm. 

Emission intensity is dependent on the density of defects in the silicon, with fewer defects resulting in 

more emitted photons. The EL system should be placed in a dark room, as the image of the cells is being 

taken by cooled CCD camera. An example of EL image for a solar cell is show in Figure 2.34b. 

(Köntges et al., 2009) presented the use of EL imaging technique on a full scale PV module. Figure 2.34b 

shows the EL image of the examined PV module. This study was carried out to investigate a new EL 

image correction setup to increase the quality of the EL images. In addition, (Kontgers, Kunze, Kajari-

Schroder, Breitenmoser, & Bjorneklett, 2010) studied the impact of micro cracks on the performance of 

PV modules using EL imaging method. This research proves that micro cracks do not reduce the power 

generation of a PV module by more than 2.5%, if the crack does not harm the electrical contact between 

the cell and fragments.  

Same authors in (Köntges et al., 2011) have studied the impact of micro cracks on the PV module output 

power performance based on the number of cracked solar cells per PV module. The PV output power loss 

is approximately equal to 9.6% for a PV module which contains more than 25 micro cracks. In addition, 

the maximum power loss estimated for PV module with micro cracks between 10 and 15 is equal to 6.4%. 

Figure 2.34d shows the detailed power loss analysis for various number of cracked cells per module. In 

addition, authors stated that a defective cell with inactive cell area Ainactive is in forward bias if the 

following Equation (2.10) is true. 

𝐴𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒

𝐴𝑡𝑜𝑡𝑎𝑙
<  

𝐼𝑠𝑐− 𝐼𝑚𝑝𝑝

𝐼𝑠𝑐
                                                  (2.10) 

where Atotal is the total area of the solar cell, Ainactive is the defective area in the examined solar cell. 
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                                  (a)                                                                                          (b) 

     

                                  (c)                                                                                          (d) 

Figure 2.34 (a) A typical EL imaging setup developed by (Fuyuki & Kitiyanan, 2009), (b) 

Example of EL image of a polycrystalline solar cell , (c) EL image for a PV module taken 

by (Köntges et al., 2009), (d) power loss analysis per PV module based on number of 

crackes presented in (Köntges, Kunze, Kajari-Schröder, Breitenmoser, & Bjørneklett, 

2011) 
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A special and orientational distribution of micro cracks in crystalline PV modules was firstly presented by 

(Kajari-Schröder, Kunze, Eitner, & Köntges, 2011). PV micro cracks were classified into six sub 

categories shown in Figure 2.35a: 

i. Dendritic 

ii. Several 

iii. +450 

iv. -450 

v. Parallel to busbars 

vi. Perpendicular to busbars 

The analysis has been carried out using 27 PV modules using EL imaging technique. The maximum 

cracks found in the PV modules are parallel to busbars with 50% relative occurrence, as shown in Figure 

2.35b. 

 

(a) 

 

(b) 

Figure 2.35 (a) Classification of crack orientations, (b) Relative occurrence of different 

crack orientation based on 27 examined PV modules  
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Furthermore, I-V curve analysis based on gallium arsenide (GaAs) PV solar cell on silicon substrate for 

crack-free and cracked PV solar cells has been investigated by (Oh et al., 2016). Figure 2.36a shows the 

illuminated I-V curves for various samples of PV solar cells with various crack sizes. As can be noticed 

the output voltage of the PV solar cells decreases when increasing the crack size. Figure 2.36b shows the 

variations of Voc as a function of crack density Dc. The crack density defined as the total length of the 

crack liner per unit area, which was found to be in the range from 13.8 to 33.2 cm-1 in the investigated 

solar cell samples. 

 

(a) 

 

(b) 

Figure 2.36 (a) Illuminated I-V curves for the crack-free cell and cells containing cracks, 

(b) Plot of the measured and simulated Voc as a function of Dc (Oh et al., 2016) 
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2.5 Summary 

In this chapter, the principles of operation for PV solar panels have been illustrated using the theoretical I-

V and P-V curves. Furthermore, most recent PV monitoring and DAQ acquisition systems have been 

evaluated and compared. 

As stated in this chapter, PV faults might lead to a significant reduction in the MPP produced from the PV 

plants. In UK domestic PV systems, the largest energy loss was caused by sustained zero efficiency faults 

(when the monitored PV systems stopped generating power for long period) (Firth et al., 2010). In order 

to detect this fault, several approaches have been investigated widely, basically, using the following two 

methods: 

i. Statistical analysis techniques 

ii. Artificial intelligence techniques such as Fuzzy Logic and ANN networks 

However, there is a need to improve the developed techniques, since most of the proposed techniques 

required many measured parameters from the PV system, which leads to higher cost detection system and 

more complex PV system structures. 

The second largest cause of energy loss in PV plants is PS conditions affecting the PV modules. The PV 

output power due to PS conditions can be improved using three main techniques: 

i. The interconnection of bypass diodes in PV sub strings 

ii. Developing new PV array configuration systems 

iii. Enhancement of MPPT methods 

Further research is required to combine these three techniques into one method in order to enhance the PV 

output power production. In addition, most MPPT proposed in the literature show that the detection of the 

MPP of the PV module could reach up to 99%. However, few MPPT technique are used with complex 

PV array configuration, thus, this field needs more investigation. 

On the other hand, PV hot spots and micro cracks could decrease the output power production in PV 

panels. Up to date articles show that is not sufficient techniques, and algorithms which leads to a 

significant improvement in the PV output power. 

In order to validate theoretical and simulation outcomes for enhancing PV fault detection algorithms, hot 

spot detection, micro crack analysis and the investigation of multiple PV array configurations, a number 

of experiments on two PV installations at the University of Huddersfield, which will be covered in the 

next chapter (Chapter 3). 
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Chapter 3 PV Monitoring System and Performance Analysis 

 

One of the main aspects of any PV system is the monitoring unit used to log and analyse the performance 

of the PV installation. This chapter describes the design and development of the monitoring system 

installed in the examined PV plants. The proposed monitoring unit uses the Virtual Instrumentation (VI) 

software via the Internet of Things (IoT) devices to monitor and analyse the performance of the PV 

systems under test. Additionally, five different factors which affect the output power performance of the 

PV systems will also be discussed. 

Part of this chapter has been published and presented in the Environment Friendly Energies & 

Applications (EFEA) conference, Serbia, 2016 (Mahmoud Dhimish et al., 2016; M. Dhimish et al., 2016). 

 

3.1 Design of the Monitoring system  

In this research, various monitoring platforms were used to assess the performance of the PV installations. 

Figure 3.1 illustrates the overall monitoring system design. The examined PV plants  briefly described in 

Appendix A. FLEXmax 80 MPPT unit is used to track the MPP of the PV system, this unit has also been 

used to measure the voltage and the current of the PV system using the internal sensors in the device.  

Liquid crystal display (LCD), mobile phone application, and Virtual Instrumentation (VI) LabVIEW 

software are used to monitor the data acquired from the PV installations. The weather station is connected 

wirelessly to Vantage PRO2 monitoring unit. Finally, LabVIEW software and Vantage PRO2 monitoring 

device are linked to a hyper Text Markup Language (HTML) code which generates a web site. This web 

site can be used to monitor the status of both PV system and weather station. 

Various parameters could be monitored using the proposed monitoring system, such as: 

i. PV system output voltage, current, and power 

ii. PV modules temperature 

iii. Solar irradiance, ambient temperature, humidity, and wind speed 

 

The designed monitoring system could also be used to log the measured environmental and PV system 

data using LabVIEW software.  
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Figure 3.2 presents the detailed architecture of the monitoring system used in the PV installations. As can 

be noticed, the designed monitoring system comprises eight monitoring subsystems, which can be 

classified as follows: 

 

1. Remote monitoring using Vantage PRO2 monitoring device: 

Vantage PRO2 (Davis, 2017b) is a monitoring device that can communicate with Davis weather station 

console using radio frequency (RF) transmission (wireless link). The device has some features such as: 

transmission distance up to 300 meters, saving data on a USB memory stick, and it can easily be plugged 

into a PC and then analyse the measured data received from the weather station. 

Figure 3.3 shows the display screen of this monitoring unit. Each label presents a different feature in the 

monitoring unit. This device displays the graph of logged data over the past 24 days, months or years, all 

without using a PC. However, in this research, Vantage PRO2 to a PC running LabVIEW software in 

order to monitor, and analyse the environmental conditions affecting the examined PV installations. 

 

 

 

 

Figure 3.1 Overall designed PV monitoring system 
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Figure 3.2 Detailed monitoring system architecture 
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2. Local monitoring unit using FLEXmax 80 MPPT unit: 

The first stage for monitoring the performance of the PV system consists of FLEXmax 80 MPPT. This 

device allows the user to monitor the data such as, the input voltage, input current, output voltage, output 

current, and the battery status. FLEXmax 80 device is capable of logging the data of the PV system up to 

128 days using its internal memory chip. 

This device can also be connected using USB or Ethernet cable to a micro controller such as (Arduino) or 

the Outback Hub 4 connection device (this Hub is manufactured by Outback to support the connection 

between FLEXmax 80 MPPT and PC user interface). Figure 3.4 shows an image of the monitoring screen 

for FLEXmax 80 MPPT device. 

 

 

 

Figure 3.3 Vantage PRO2 monitoring device  
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3. Local monitoring unit using Outback MATE3: 

 

Another local monitoring unit used in the system is Outback MATE3 (Power, 2015). This device has the 

capability to display and control the data from the PV system on the PC. 

This device is connected via Ethernet cable to the communication Hub (Outback Hub 4). A full schematic 

of this monitoring unit is presented in Figure 3.5. 

 

Figure 3.4 Image of the monitoring screen for FLEXmax 80 MPPT device  

 

 

 

 

 

          

 

Figure 3.5 Outback MATE 3 monitoring unit  
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4. Remote monitoring using Arduino Ethernet shield: 

The Arduino Ethernet shield connects Arduino microcontroller to the internet using a static IP address. 

This shield is based on the Wiznet W5100 Ethernet chip which provides a network stack capable of both 

Transmission Control Protocol (TCT) and User Datagram Protocol (UDP). 

This shield has been used to send the data from the FLEXmax80 MPPT unit to PC/Server. The entire data 

are received by LabVIEW software. Figure 3.6 presents the LabVIEW block diagram code which enables 

the connection between the Ethernet shield with LabVIEW Graphical User Interface (GUI) (M. Dhimish 

et al., 2016). 

Three analogue input pins have been used to receive the data from the PV module voltage, current and 

temperature. TCP protocol has been used to enable the connection between the shield with LabVIEW. 

Finally, the interval between the measurements is equal to 10 ms. 

 

 

Figure 3.6 LabVIEW code used to enable the connection with Arduino Ethernet shield  
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5. Remote monitoring using radio frequency (RF) transceiver: 

Another remote monitoring unit has been designed to monitor the performance of the PV system using 

RF transceiver. The data will be sent and monitored using a LCD touch screen. The data include PV 

system voltage, current and output power. The touch screen is refreshed at a frequency of 1 Hz. This unit 

also incorporate a password access control feature. 

 

6. Remote monitoring using Bluetooth Module: 

Most mobile phones have integrated Bluetooth technology so it was decided to create a simple mobile 

phone application to allow users to view the live measured PV data. By using the MIT app inventor tool, 

an android mobile phone application was created. A Bluetooth module transmits measured data to the 

mobile device running the android app. Figure 3.7 shows a typical logo and the received data on the 

mobile phone. The output data of the mobile phone application include the PV module temperature, 

voltage, current, power, and solar irradiance. 

 

7. GUI using VI LabVIEW software:  

LabVIEW software offers three main features for the user of the PV system: 

1. Operates as a GUI to monitor the status of examined PV installation 

2. Works as a logging system. Each measured parameter from the PV installation can be 

saved over a period of time (i.e. 1 day, 1 month, and 1 year ….etc.) 

3. Links the GUI to a web page using HTML code 

                      

                                                    (a)                                                    (b) 

Figure 3.7 (a) Application Logo, (b) Applicat ion output results 
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Figure 3.8 shows one example of a GUI developed using LabVIEW. The front panel of the LabVIEW 

code consists of four main parts: “A” presents the status of the weather station. Outback Hub 4 and 

MATE3 data stream status is shown in part “B”. The third part “C”, shows the PV system output power 

performance using three MPPT units and the voltage level of the battery bank. At the bottom of the front 

panel the data stream can be monitored using historical chart, which is presented in “D”. 

 

8. Remote monitoring using web site: 

Using HTML code and Dreamweaver software, it is possible to create a web site that is linked to the 

LabVIEW software. In addition, it is possible to link the GUI of the LabVIEW software to a web site 

using a tool offered by LabVIEW called web publishing tool (Mahmoud Dhimish et al., 2016).  

Two examples of LabVIEW GUI front panel are shown in Figure 3.9. Figure 3.9(a) demonstrates the 

status of PV plant A, where Figure 3.9(b) presents the status of the weather station.  

 

Figure 3.8 Example of GUI developed using LabVIEW software (Mahmoud Dhimish, 

Holmes, & Dales, 2016) 
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(a) 

 

(b) 

Figure 3.9 (a) An example of web site that displays the status of the PV system, (b) An 

example of web site that displays the status of the weather station  
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3.2 LabVIEW software application 

As mentioned previously, LabVIEW software is used to monitor, analyse, and log the PV measured data. 

In addition, LabVIEW software has been used to simulate the I-V and P-V theoretical curves for a PV 

module as well as a PV string. In this section, the theoretical curves of a single and string of PV modules 

will be described. The solar irradiance and PV modules temperature effect will also be presented. 

3.2.1 Photovoltaic I-V and P-V theoretical curves modelling  

In this research, two PV installations have been used. Each contains a different PV module characteristics. 

The first tested PV plant (PV plant A) contains a PV modules with a peak power of 220 Wp, and the 

second PV plant (PV plant B) contains 32 PV modules each with a peak power equals to 130 Wp.  

The theoretical I-V and P-V curves have been simulated using LabVIEW software. Figures 3.10a and 

3.10b show the simulation curves of the first PV plant module under STC conditions. As can be seen, the 

simulation requires a number of PV parameters including: 

1. Voltage at maximum power point (Vmpp)  

2. Current at maximum power point (Impp)  

3. Open circuit voltage (Voc) 

4. Short circuit current (Isc) 

5. Series resistance (Rs)  

6. Shunt resistance (Rsh)  

These parameters need to be at STC conditions for the simulated PV module, which are available in the 

manufacturer PV datasheet. 

Next, by using the mathematical equations described earlier by Equations (2.1 – 2.3), it is possible to 

simulate I-V and P-V curves of the PV module. In order to simulate the PV module under various 

environmental conditions, solar irradiance and PV module temperature are required. 

Figure 3.10 shows a horizontal and vertical red line across the I-V and P-V curve. These lines locate the 

MPP of the PV module. The output of the simulated curves gives the user the values of Vmpp, Impp, Pmpp, Isc 

and Voc. Appendix B shows the simulated results of the second PV plant module under STC conditions. 
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(a) 

 

(b) 

Figure 3.10 PV solar module theoretical simulation using LabVIEW. (a) I -V curve 

simulation, (b) P-V curve simulation 
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3.2.2 Irradiance effect on PV theoretical curves  

In this section, the impact of solar irradiance on the theoretical curves (I-V and P-V) will be described 

using the analysis of the first PV plant module. As shown in Figures 3.11a and 3.11b, three solar 

irradiance levels have been simulated (750, 550, and 350 W/m2), the PV module temperature is at SCT 

(25 0C). 

I-V and P-V curves show that while decreasing the solar irradiance, the value of Voc and Isc is decreased. 

In addition, the output power of the PV module is also decreased. As an example, the Pmpp at 750 W/m2 is 

equal to 161 W. However, Pmpp is equal to 115 W and 70.2 W at 550 W/m2 and 350 W/m2 respectively.  

 

(a) 

 

(b) 

Figure 3.11 Simulating the theoretical curves for the first PV plant module under various 

solar irradiance levels with PV module temperature of 25 0C. (a) I-V curve, (b) P-V curve 
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3.2.3 Temperature effect on PV theoretical curves 

The impact of the PV module temperature will be discussed in this section. Figure 3.11 shows both the I-

V and P-V curve of a PV module under various PV module temperature, while the solar irradiance is at 

STC (1000 W/m2). 

Figure 3.12a shows that while increasing the PV module temperature, the Isc remains constant. However, 

there is a reduction in the Voc. Furthermore, PV output power increases while decreasing the PV module 

temperature. Figure 3.12b illustrates the difference between the PV output power during three different 

PV module temperature conditions (10, 20 and 30 0C). 

 

(a) 

 

(b) 

Figure 3.12 Simulating the theoretical curves for the first PV plant module under various 

PV module temperature and solar irradiance level is 1000 W/m2. (a) I-V curve, (b) P-V 

curve 

 

 

 



 

 

  76 

 

3.3 Factors impacting the performance of PV systems 

There are several factors which impact the performance of the PV systems such as, PS conditions, hot 

spots, micro cracks, dust, wind speed, humidity, faulty PV modules, MPPT unit efficiency, DC/AC 

inverter efficiency etc.  

In this section, factors which have been analysed and evaluated during the period of the research will be 

addressed. This section will illustrate the behaviour of the examined PV modules under each studied 

factor. 

3.3.1 PS conditions  

PS conditions decrease the output power of the PV modules. In this section, two case scenarios will be 

presented to describe the performance of PV modules under various PS conditions. 

1. Standalone PV module: 

This case will analyse the performance of a standalone PV module in the PV plant A, under 3 different PS 

conditions of 10%, 30%, and 50% using the P-V curve analysis. The PS conditions percentage are 

described in Figure 3.13a. An opaque paper has been used to cover the PV module in order to produce a 

PS on the examined PV module. The PV module is connected to FLEXmax 80 MPPT unit to track the 

MPP of the tested PV panel. 

Three PS conditions have been tested (10%, 30% and 50%). The results of the output power are presented 

in the P-V curve shown in Figure 3.13b. The values obtained are described as follows: 

1. 10% PS, PV module Pmpp = 208.2 W 

2. 30% PS, PV module Pmpp = 169.7 W 

3. 50% PS, PV module Pmpp = 141.5 W 

This case shows that the output power decreases as the PS increases. The P-V curve has been simulated 

using LabVIEW, where the MPPs have been measured during the PS conditions. 

Further investigation on PS conditions and a proper detection algorithm will be presented in chapter 5, in 

order to explain how to detect PS conditions in PV modules based on the ratio of the power and voltage 

of the PV modules. 
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(a) 

 

(b) 

Figure 3.13 (a) PS percentage including opaque paper object, (b) Measured MPP using 

three PS conditions 

 

 

 

 



 

 

  78 

 

2. PV string: 

This section describes the performance of a PV string that comprises 3 PV modules connected in series 

during PS conditions. Three different scenarios have been examined: 

1. All PV modules affected by the same PS condition (20% PS) 

2. Two PV modules are affected by 20% PS, while the third is affected by 40% PS 

3. Each of the examined PV modules affected by a different PS condition: 

 1st PV module is affected by 20% PS 

 2nd PV module is affected by 40% PS 

 3rd PV module is affected by 60% PS 

Figure 3.14 shows the P-V curve which is simulated using LabVIEW software. Subsequently, the MPPs 

for each tested scenario is measured during different PS conditions. In scenario 1, where all PV modules 

are subjected to 20% PS, the MPP is equal to 570.8 W. Increasing the PS affecting the third PV module to 

40%, the MPP reduces to 510 W. In last scenario when all PV modules have different shading conditions, 

the MPP is equal to 450.2 W.  

 

 

Figure 3.14 P-V curve during PS conditions affecting three PV modules  
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3.3.2 Faulty PV modules 

The second factor which impacts the performance of PV system output power production, is the faulty PV 

modules. In this thesis, a faulty PV module corresponds to a short-circuited PV module. In other words, 

the PV module is completely disconnected/removed from the PV string. 

In order to describe the performance of a PV string during faulty PV modules, four series connected PV 

modules were examined. The experiment setup is shown in Figure 3.15. This experiment was conducted 

in real environmental conditions, where G: 612-626 W/m2, and T: 16-16.9 0C. Both G and T are shown in 

Figure 3.16b. 

In normal operation mode, where there is not any faulty PV module in the PV string, the output power of 

the PV string is approximately 320 Wp. However, while disconnecting one, two and three PV modules 

from the PV string, the output power is equal to: 

i. Disconnecting 1 PV module, P ≈ 235 Wp 

ii. Disconnecting 2 PV modules, P ≈ 158 Wp 

iii. Disconnecting 3 PV modules, P ≈ 78 Wp 

As can be noticed, the output power decrease while increasing the number of faulty PV modules. Figure 

3.16a shows the output power of the examined tests, where the efficiency of the MPPT unit is reported in 

Figure 3.16c. 

Since there is a significant reduction in the output power due to the faulty PV modules in the PV plants, it 

is indeed important to implement and develop a fault detection system which can monitor and locate the 

faulty PV modules in PV strings. Faulty PV modules in PV strings could be detected using various ways, 

which will be described in the chapter 5. 

 

Figure 3.15 Four series connected PV modules with central MPPT unit  
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(a) 

 

(b) 

 

(c) 

Figure 3.16 (a) Measured vs. Theoretical output power, (b) Solar irradiance and average 

PV modules temperature, (c) FLEXmax 80 MPPT unit efficiency 
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3.3.3 Faulty MPPT unit 

There are two possible faults associated with MPPT units used in PV installations. These faults are 

described below: 

 

1. MPPT efficiency 

The efficiency of MPPT units plays a crucial role in providing the maximum output power from the PV 

modules. The MPPT unit efficiency could be decreased due to several reasons, such as: 

i. Fast fluctuations in the solar irradiance affecting the PV modules 

ii. Increase/decrease in the PV modules temperature  

These factors rapidly increase or decrease the output power from the PV modules. Thus, it requires a fast 

change in the duty cycle of the MPPT unit to track the new MPP of the PV modules. Figure 3.17a shows 

an example for two MPPs obtained using the MPPT unit. MPP1 is at the optimum point, where the 

maximum power is equal to 130 W. The MPPT unit efficiency reduces, and its MPP is equal to 127.7 W. 

This reduction in the efficiency of the MPPT units could be improved by applying new MPPT techniques 

as was discussed earlier in the literature review chapter. 

 

2. MPPT unit disconnection 

The second type of fault occurs in MPPT units when the PV installation input voltage or input current 

exceeds the operating threshold. Thus, the MPPT unit will completely shut down. Figure 3.17b shows an 

example for FLEXmax 80 MPPT unit connected to 2 different voltage ratings: 

1. When the input voltage is below the operating threshold (150 VDC), the MPPT unit still in 

operates and tracks the MPP 

2. When the input voltage exceeds the limits (150 VDC), the MPPT unit shut down 

A suitable fault detection system has been developed to identify this type of fault which will be described 

in chapter 5. 
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3.3.4 Hot spots 

Another factor which impacts on the performance of PV modules is hot spots. Hot spotted solar cells 

reduce the output power produced by the PV modules. Therefore, PV hot spots detection and mitigation 

technique is indeed important to have in PV plants. Figure 3.18 shows an example of a hot spotted PV 

solar cell which was found in one of the examined PV modules in PV plant A. The hot spot was captured 

using i5 FLIR thermal imaging camera, which has the following specification: 

 Thermal image quality 100 x 100 pixels 

 Field of view 210(H) x 210
 (V) 

 Thermal sensitivity 0.5 0C 

This hot spot reduces the PV output power up to 5.19 W. This permanent power loss could be minimized 

by developing a new PV hot spot mitigating technique, which will reduce the impact of the hot spots on 

the performance of PV modules. The proposed hot spot mitigation technique developed in this research 

will be explained in chapter 7. 

 

 

(a) 

 

(b) 

Figure 3.17 (a) MPPT unit efficiency reduction, (b) MPPT unit input shut -down principle 
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3.3.5 PV micro cracks 

The last factor, which will be studied in this research is PV micro cracks. PV micro cracks occur in PV 

modules due to the following reasons: 

i. Environmental Conditions: 

o Solar radiation 

o Temperature variations 

o Humidity 

o Wind speed 

ii. PV module defects: 

o Manufacturing defects in PV module martials 

o Manufacturing defects during packing and shipping the PV modules 

PV micro cracks permanently reduce the PV output power. However, this output power reduction 

depends on the PV crack type and size. From the results obtained in this research, it was found that 

multiple directions crack which affects 5 solar cells reduce the efficiency of the PV module down to 

92.19%. Therefore, a statistical analysis approach was developed in order to examine the impact of five 

different types of PV cracks which can be seen in Figure 3.19.  

The statistical analysis approach was also used to test whether the PV crack significantly reduces the PV 

output power or not. In addition, a comparison between the crack type, size and location was also 

conducted. This investigation of PV micro cracks will be described in chapter 7. 

 

 

Figure 3.18 Hot spotted solar cell in a PV module  
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3.3.6 PV array configuration 

PV modules can be connected in different PV array configuration. During normal operation mode (no PS 

affecting the PV modules), the performance for most PV array configurations are the same including the 

output power, voltage and current of the PV system. However, during PS conditions, the PV array 

configuration could increase or decrease the PV output power depending on the shading pattern on the PV 

modules and the location of the affected PV modules. Therefore, in this research we examined the 

behaviour of five different PV array configurations has been examined, including: 

1. Series (S) 

2. Parallel (P) 

3. Series-Parallel (SP) 

4. Total-Cross-Tied (TCT) 

5. Bridge-Linked (BL) 

The PV array configurations have been examined under various PS patterns, and faulty PV modules. 

Seven different indicators have been measured during each examined case. As a results, it was found that 

the TCT configuration has the highest output power among all tested PV configurations.  This will be 

described in the next chapter (chapter 4). 

 

 
                  (a)            (b)                 (c)           (d)                  (e) 

 

Figure 3.19 Crack type. (a) Diagonal Crack (+450), (b) Diagonal Crack (-450), (c) Parallel 

to Busbars Crack, (d) Perpendicular to Busbars Crack,  (e) Multiple Directions Crack 
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3.4 Summary 

This chapter described a monitoring system designed to monitor the status of the existing PV modules at 

the University of Huddersfield. Eight different monitoring techniques have been demonstrated and can be 

summarized in Figure 3.20. 

 

Figure 3.20 Summary of the proposed PV monitoring system 

 

Furthermore, LabVIEW software structure was explained. It was shown that the main purpose of the 

LabVIEW software is to monitor, analyse and log the PV measured data, as well as perform the 

theoretical curves of the examined PV modules under various environmental conditions. 

The last section has presented six different factors impacting the performance of PV systems, including: 

1. PS conditions 

2. Faulty PV modules 

3. Faulty MPPT unit 

4. Hot spots 

5. PV micro cracks 

6. PV array configuration 

Each of the mentioned factors will be described in the following chapters. The last factor (PV array 

configuration) will be described in the next chapter. 
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Chapter 4 Multiple PV Array Configurations  

 

The main goal of this chapter is to model, analyse and compare the performance of multiple PV array 

configurations under various PS and PV faulty conditions. Five different PV array configurations have 

been tested including S, P, SP, TCT, and BL. Additionally, seven indicators have been compared during 

each examined case scenario, where all tests have been carried out using MATLAB/Simulink software. 

This chapter is based on work carried out with collaboration of the institute of communication and power 

networks, Leeds University and published as a journal article in (Mahmoud Dhimish, Holmes, Mehrdadi, 

Dales, Chong, et al., 2017).  

 

4.1 Modelling and simulation of a PV module 

MATLAB/Simulink software has been used to model, simulate and analyse the performance of the 

examined PV modules including multiple PV array configurations systems. Figure 4.1a shows the 

equivalent circuit of a PV module. The voltage and current characteristics of the PV module is obtained 

using Equation (4.1) (McEvoy et al., 2013). 

                                                                  𝐼 =  𝐼𝑝ℎ −  𝐼𝑜 (𝑒
𝑉+𝐼𝑅𝑠
𝑁𝑠𝑉𝑡  − 1) − (

𝑉+𝐼𝑅𝑠

𝑅𝑠ℎ
)                                    (4.1) 

where 𝐼𝑝ℎ is the photo-generated current at STC , 𝐼𝑜  is the dark saturation current at STC, 𝑅𝑠 is the 

module series resistance, 𝑅𝑠ℎ  is the panel parallel resistance, 𝑁𝑠 is the number of series cells in the PV 

module and 𝑉𝑡  is the thermal voltage and it can be calculated using Equation (4.2) (McEvoy et al., 2013). 

𝑉𝑡 =  
𝐴 𝑘 𝑇

𝑞
                            (4.2) 

where 𝐴 is the diode ideality factor, 𝑘 is Boltzmann’s constant, T is the module temperature in kelvin and 

𝑞 is the charge an electron. 

The simulation of the PV module under STC conditions is shown in Figure 4.1b. Figure 4.1c and Figure 

4.1d show respectively the I-V and P-V curves of the examined PV module under three different 

irradiance conditions: 1000 W/m2, 500 W/m2, and 100 W/m2. The PV module parameters such as Isc, Voc, 

Pmpp, Vmpp, and Impp have been taken from Table 3.1. 
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(a) 

 
 

(b) 

 

                                            (c)                                                                                  (d) 

Figure 4.1 Photovoltaic modelling using MATLAB/Simulink. (a) Equivalent circuit of a 

PV module, (b) Simulating PV module under STC, (c) Photovoltaic I -V Curve, (d) 

Photovoltaic P-V Curve 
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4.2 Calculation of the diagnostic indicators 

In order to compare the examined PV array configurations. Firstly, it is required to identify the main 

indicators which will be studied and compared during the examined tests. As mentioned earlier, seven 

indicators including: Vmpp, Voc, Impp, Isc and Pmpp will be simulated. And three new diagnostic indicators, 

equivalent thermal voltage (Vte), Fill Factor (FF) and PV series resistance (Rs) which will be described in 

this section. 

4.2.1 Equivalent thermal voltage (Vte)  

In a previous work (Silvestre, Boronat, & Chouder, 2009; Spataru et al., 2015) the estimation of the 

thermal voltage of a PV model under partial shading conditions has been expressed by Equation (4.3). 

                                                                  𝑉𝑡𝑒 =  
(2𝑉𝑚𝑝𝑝 − 𝑉𝑜𝑐)(𝐼𝑠𝑐− 𝐼𝑚𝑝𝑝)

𝐼𝑚𝑝𝑝 −(𝐼𝑠𝑐− 𝐼𝑚𝑝𝑝) ln(
𝐼𝑠𝑐− 𝐼𝑚𝑝𝑝

𝐼𝑠𝑐
)
                                                  (4.3) 

where Vmpp is voltage at maximum power point, Impp presents the current at the maximum power point, Voc 

is the open circuit voltage, and Isc is the short circuit current estimated by the I-V or P-V curve of the PV 

module.  

A second commonly used method to estimate the thermal voltage is to evaluate the change of the diode 

ideality factor A of the PV module (Sera, Teodorescu, & Rodriguez, 2008). This method can be calculated 

using (4.4). 

                                                                                       𝑉𝑡𝑒 =  
𝑁𝑠 𝐴 𝑘 𝑇

𝑞
                                  (4.4) 

where Ns is the number of solar cells connected in series, k is the Boltzmann constant, T is the junction 

temperature in kelvin and q is equal to the charge of an electron.   

In this research, the first method based on Equation (4.3) was used to estimate the thermal voltage. It does 

not require the estimation of the ideality factor for the PV modules. The ideality factor cannot be 

estimated using the MPPT units provided in the PV systems. 

In order to investigate the Vte variations, the PV module shown previously in Figure 4.1b has been 

simulated under various irradiance levels (100 – 1000 W/m2), where the PV module temperature is at 

STC. Figure 4.2 shows the simulation results of the Vte. It is evident that there is a reduction in the Vte 

between 100 – 300 W/m2. After 300 W/m2 the Vte starts to increase. This increase could be used as an 

indication of the increase of the PV solar irradiance. 
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4.2.2 Fill Factor (FF)  

The fill factor (FF) is a generic diagnostic indicator which is sensitive to power losses due to shading and 

faulty conditions occurring in PV systems (Spataru et al., 2015). FF is sufficiently robust to the irradiance 

change and the temperature levels. FF can be calculated using Equation (4.5). 

                                                                                   𝐹𝐹 =  
𝐼𝑚𝑝𝑝 𝑉𝑚𝑝𝑝

𝐼𝑠𝑐 𝑉𝑜𝑐
                       (4.5) 

The fill factor is a good indicator since it depends on the voltage and current changes in the PV modules. 

Figure 4.3a shows the I-V curve of the examined PV module, and the parameters used in the calculation 

of the FF indicator are also shown. 

At STC condition, the PV module FF can be evaluated as the following: 

                                                                𝐹𝐹 =  
𝐼𝑚𝑝𝑝 𝑉𝑚𝑝𝑝

𝐼𝑠𝑐 𝑉𝑜𝑐
=  

7.67 ×28.7 

8.18 ×36.74
= 73.25%    

Figure 4.3b shows the variations of the FF under various irradiance levels (100~1000 W/m2), where the 

PV module temperature is at STC. The FF does not follow a specific pattern (decrease or increase). 

However, the FF shows that the PV module under normal operation conditions is between 71% and 74%. 

Therefore, if the simulated FF is below or above the thresholds, this indicates that the PV module is under 

faulty conditions (PV module might be affected by a hot spot, micro crack, or increase/decrease in the PV 

module temperature). 

 

Figure 4.2 Simulation of V te under various solar irradiance levels, where the PV module 

temperature is at STC 
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4.2.3 PV module series resistance (Rs) 

 

Method 1: 

One commonly used method to estimate Rs is to evaluate the derivative of the voltage with respect to the 

current at the Voc. The expression to approximate the Rs for a PV module is described by Equation (4.6). 

                                                            𝑅𝑠,𝑒 =  − 
𝑑𝑉

𝑑𝐼
|

 
𝑉 ≈ 𝑉𝑜𝑐  =  − 

𝑉2− 𝑉1 

𝐼2− 𝐼1
|

 
𝑉 ≈ 𝑉𝑜𝑐                      (4.6) 

where V2, V1, I2 and I1 are the voltage and the current points estimated near to Voc. 

 

(a) 

 

(b) 

Figure 4.3 (a) FF for the examined PV module, (b) FF variations during various solar 

irradiance levels, where the PV module temperature is at STC 
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The value of the series resistance estimated by the derivative may vary with the irradiance and the 

temperature conditions. In (Sera, Mathe, Kerekes, Teodorescu, & Rodriguez, 2011), authors proposed a 

method to translate the value of the estimated Rs to STC in order to mitigate the effect of the irradiance 

(G) and PV module temperature (T). The final expression is illustrated by Equation (4.7). 

                                                                     𝑅𝑠 =  𝑅𝑠,𝑒 +  
𝑉𝑡𝑒

𝐼𝑠𝑐
 (

𝐺

𝐺𝑆𝑇𝐶
 × 

𝑇𝑆𝑇𝐶

𝑇
− 1)                                            (4.7) 

where GSTC is equal to 1000 W/m2 and TSTC is equal to 25 oC.  

The estimation of Rs requires the voltage and the current measurements of at least two points of the I-V 

curve close to the Voc. This method also requires the value of the irradiance and the PV modules 

temperatures to perform the estimation of the series resistance value. 

 

Method 2: 

Another method of estimating the series resistance of a PV module is to evaluate the derivative of the 

voltage with respect to the current at the short circuit and maximum power point. Such point is 

characterised by a current lower, and closer to Impp and it is denominated as Q. This method was proposed 

by (Sera et al., 2011). There are two options to calculate Q using Equations (4.8 & 4.9). 

                                                                       𝑄1 =  𝐼𝑠𝑐,𝑒 − ( 0.75 × 𝐼𝑚𝑝𝑝 )                                 (4.8) 

                                                                       𝑄2 =  𝐼𝑠𝑐,𝑒 − ( 0.60 × 𝐼𝑚𝑝𝑝 )                                 (4.9) 

where the value of Isc,e is the estimated short circuit current and can be evaluated using (20). 

                                                                                       𝐼𝑠𝑐,𝑒 =  
𝐼𝑠𝑐

𝐾1
                                (4.10) 

 where K1 is the ratio between Impp and Isc and it is assumed as constant value of 0.92. 

The last expression for estimating the value of the series resistance is expressed by (4.11). 

                                                                  𝑅𝑠 =  − 
𝑑𝑉

𝑑𝐼
|

 
𝐼 ≈  𝑄 =  − 

𝑉2− 𝑉1 

𝐼2− 𝐼1
|

 
𝐼 ≈ 𝑄                   (4.11) 

The evaluation of the series resistance requires at least two points of the I-V curve for the PV module. 

Furthermore, it is required to measure: 

1. Impp 

2. Isc 
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Figure 4.4 shows the value of the series resistance estimated using method 1 and method 2. The estimated 

values of the Rs is compared with the measured Rs (Outdoor measurements using a PV module in PV 

plant A). Therefore, the difference between the measured values and the estimated values can be 

expressed by Equation (4.12). 

 

                                                       𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑅𝑠 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑅𝑠                  (4.12) 

 

Table 4.1 illustrates the comparison between the estimated Rs and measured Rs using method 1 at Voc, and 

method 2 at Q1 and Q2. The minimum average difference of 1.71% is obtained using method 1. 

Therefore, in this chapter, method 1 is used for the estimation of Rs. 

 

 

 

 

 

Table 4.1 Difference between estimated Rs and measured Rs 

Irradiance 

level 

(W/m2) 

Measured 

Rs (Ω) 

Estimated Rs (Ω) using 

method 1 

Estimated Rs (Ω)  using 

method 2, Q1 

Estimated Rs (Ω)  using 

method 2, Q2 

Rs (Ω) Difference Rs (Ω) Difference Rs (Ω) Difference 

1000 0.48484 0.51 0.0277 0.53 0.0477 0.58 0.0977 

900 0.537836 0.54 0.0077 0.59 0.0577 0.59 0.0577 

800 0.567762 0.58 0.0177 0.62 0.0577 0.70 0.1377 

700 0.623004 0.63 0.0147 0.68 0.0587 0.68 0.0647 

600 0.698996 0.70 0.0077 0.60 -0.092 0.81 0.1177 

500 0.789787 0.80 0.0147 0.83 0.0480 0.93 0.1447 

400 0.934482 0.95 0.0177 0.98 0.0477 1.1 0.1977 

300 1.172762 1.2 0.0277 1.2 0.0617 1.3 0.1377 

200 1.688184 1.7 0.0177 1.7 0.0417 1.8 0.1277 

100 3.240672 3.2 0.0177 3.2 0.0407 3.3 0.0977 

 

 

Average Difference (%) 

1.71 

Average Difference (%) 

3.69 

Average Difference (%) 

11.81 
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4.3 Simulation and data analysis for multiple PV array configurations 

This section describes the modelling and analysis of the examined multiple PV array configurations. In 

order to test the multiple PV array configurations, 24 PV modules were used. The PV module temperature 

was fixed at the standard test condition (STC) 25 oC. 

4.3.1 Examined PV array configurations 

Five PV array configurations were used in order to examine the difference between each PV array 

configuration under normal operation, partial shading, and faulty PV conditions. The examined PV array 

configurations are listed below: 

1. S 

2. P 

3. SP 

4. TCT 

5. BL 

MATLAB/Simulink software is used to create the examined PV array configurations. Appendix C 

contains all MATLAB/Simulink software models which are used to configure the PV modules. 

Furthermore, during the simulation all indicators: Vmpp, Voc, Impp, Isc, Pmpp, Rs, FF and Vte have been logged 

in a spreadsheet to evaluate the performance for each PV array configuration separately. 

 

Figure 4.4 Evaluating PV module Rs using various solar irradiance levels, where the PV 

module temperature is at STC 
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4.3.2 PV array configurations under STC 

This section presents the variations of the simulated indicators at STC conditions applied to the PV array 

configurations. Table 4.2 shows the value of the indicators which have been simulated for the examined 

PV array configurations. The main outcomes from the obtained results can be expressed by the following: 

1. Series configuration: the dominant indicator is the value of the Voc, Vmp, and the value of the 

thermal voltage. 

2. Parallel configuration: Isc, Impp, and the thermal voltage have the least values across all other PV 

configurations. 

3. SP, TCT and BL configurations have similar results across all indicators. 

4. At STC, the FF for all PV configurations is approximately equal to 73.2%. 

 

Furthermore, the evaluation of the series resistance across one PV module in the examined PV array 

configurations can be calculated according to the mathematical expressions listed in Table 4.3. 

 

Table 4.3 Mathematical calculations of Rs for various PV array configurations 

PV array 

configuration 

Mathematical expression for estimating the value of Rs for one PV 

module in the PV array configuration 

 

S 𝑅𝑠 (𝑂𝑏𝑡𝑎𝑖𝑛𝑒𝑑 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝐼−𝑉 𝐶𝑢𝑟𝑣𝑒)

24(𝑡𝑜𝑡𝑎𝑙 𝑃𝑉 𝑚𝑜𝑑𝑢𝑙𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑃𝑉 𝑎𝑟𝑟𝑎𝑦 𝑐𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛)

 
 

(4.13) 

P 𝑅𝑠 (𝑂𝑏𝑡𝑎𝑖𝑛𝑒𝑑 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝐼−𝑉 𝐶𝑢𝑟𝑣𝑒)  ×  24(𝑡𝑜𝑡𝑎𝑙 𝑃𝑉 𝑚𝑜𝑑𝑢𝑙𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑃𝑉 𝑎𝑟𝑟𝑎𝑦 𝑐𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛) (4.14) 

SP, TCT and 

BL 

𝑅𝑠 (𝑂𝑏𝑡𝑎𝑖𝑛𝑒𝑑 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝐼−𝑉 𝐶𝑢𝑟𝑣𝑒)  ×  4 (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑉 𝑐𝑜𝑙𝑢𝑚𝑛𝑠)

6 (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑉 𝑚𝑜𝑑𝑢𝑙𝑒𝑠 𝑖𝑛 𝑜𝑛𝑒 𝑃𝑉 𝑟𝑜𝑤 "𝑃𝑉 𝑆𝑡𝑟𝑖𝑛𝑔")

 
(4.15) 

   

 

Table 4.2 Indicators values estimated for all examined PV array c onfigurations 

PV 

configuration 

Isc 

(A) 

Voc 

(V) 

Impp 

(A) 

Vmpp 

(V) 

Pmpp 

(W) 

Rs 

(Ω) 

Vte 

(V) 

FF 

(%) 

S 
8.177 881.2 7.538 700.3 5279 12.1 36.2 73.2 

P 196.2 36.74 181.4 29.1 5279 0.02 1.4 73.2 

SP 32.71 220.3 30.26 174.4 5279 0.7 8.5 73.2 

TCT 32.71 220.3 30.33 174 5278 0.7 8.3 73.2 

BL 32.71 220.3 30.33 174 5278 0.7 8.3 73.2 
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Using the Equations (4.13 – 4.15), the estimation of Rs for a single PV module in the PV array 

configurations is shown in Table 4.4. There is a slight difference between the measured Rs at STC and the 

estimated Rs. However, the average difference between the measured Rs and the calculated Rs among all 

tested PV array configurations is equal to 2.2%. 

4.3.3 PV array configurations under PS condition – scenario 1 

In this section, the PV array configurations will be evaluated using uniform and non-uniform PS patterns 

which affects a row of PV modules (row-level PS condition). Figure 4.5a shows the simulated shading 

patterns affecting the PV array (Mahmoud Dhimish, Holmes, Mehrdadi, Dales, Chong, et al., 2017). 

The first PS pattern is applied on a row of PV modules at irradiance level equal to 500 W/m2 (uniform 

shading). However, the second PS pattern consists of various non-uniform irradiance levels (200, 400, 

600 and 800 W/m2). 

The MPP obtained from the examined PV array configurations under shading pattern 1 is reported in 

Figure 4.5b. The P configuration shows the maximum output power compared to all other examined PV 

array configurations. The configurations S, SP, TCT and BL generate the same MPP in each case. 

Figure 4.5c shows that P configuration has the largest MPP among all other PV array configurations 

under PS pattern 2. TCT and BL come second best choice whereas the S configuration has the lowest 

performance, despite the fact that P configuration has the highest MPP.  

However, P configuration is practically not useful in real PV systems, since has low voltage ratings and 

high current rating. These ratings are not suitable with DC/AC inverters which are commonly used in PV 

installations. 

Table 4.4 Estimated Rs for one PV module only 

PV 

configuration 

Rs (Ω) Calculated Rs for 

one PV module 

(Ω) 

Measured Rs  for 

one PV module at 

STC (Ω) 

Difference in the 

estimation of Rs 

(%) 

S 12.18 0.5 0.48 2.2 

P 0.020 0.4 0.48 -0.2 

SP 0.75 0.5 0.48 2 

TCT 0.75 0.5 0.48 2 

BL 0.75 0.5 0.48 2 
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(a) 

        

                                       (b)                                                                                (c) 

Figure 4.5 (a) Scenario 1 tested PS patterns, (b) MPP for PS pattern 1, (c) MPP for PS 

pattern 2 
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For PS pattern 1 and 2, the series resistance of the examined PV array was estimated using method 1 

described previously in section 5.2.3. Table 4.5 and Table 4.6 show the estimated Rs for PS pattern 1 and 

PS pattern 2 respectively. The estimated Rs for the S configuration is increased by approximate by 1.13-

1.8 Ω. Additionally, the estimated Rs for SP, TCT and BL configurations is increased by approximately 

0.07 Ω. There is a very small amount of change in the Rs obtained for P configuration, the increase is only 

equal to 0.002 Ω. 

 

The FF indicator was also calculated for each examined PS pattern. Figure 4.6a and Figure 4.6b illustrate 

the FF variations for the examined PV array configurations under PS pattern 1 and PS pattern 2 

respectively. The P configuration shows that the FF has a value close to 73% the highest among all tested 

case scenarios. However, a reduction in the FF was obtained across all other PV array configurations 

(Mahmoud Dhimish, Holmes, Mehrdadi, Dales, Chong, et al., 2017). 

Table 4.5 Estimated Rs for the examined PV array configurations under PS pattern 1  

Case # Estimated Rs (Ω) for Shading Pattern 1 

S P SP TCT BL 

Case 1 
13.3 0.022 0.82 0.82 0.82 

Case 2 14.4 0.023 0.89 0.89 0.89 

Case 3 15.6 0.025 0.96 0.96 0.96 

Case 4 16.7 0.027 1 1 1 

Case 5 17.8 0.029 1.1 1.1 1.1 

 

      

Table 4.6 Estimated Rs for the examined PV array configurations under PS pattern 2  

Case # Estimated Rs (Ω) for Shading Pattern 2 

S P SP TCT BL 

Case 1 
14 0.022 0.84 0.82 0.83 

Case 2 15.9 0.023 0.92 0.89 0.90 

Case 3 17.7 0.025 0.99 0.96 0.97 

Case 4 19.6 0.027 1 1 1 

Case 5 21.4 0.029 1.1 1.1 1.1 
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The last indicator, Vte was also simulated during both PS patterns as shown in Figure 4.7a and 4.7b. The 

threshold values of the Vte is taken from Table 4.2. It is evident that the Vte for P configuration is 

approximately 1.44V, which is exactly the same as the P configuration Vte threshold. 

S, SP, TCT and BL PV array configurations show that the value of Vte is lower than the value of Vte 

threshold in low partial shading conditions for reduction in irradiance < 6000 W/m2. However, in most 

 

(a) 

 

(b) 

Figure 4.6 Simulated FF. (a) PS pattern 1, (b) PS pattern 2 
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partial shading conditions examined in this section, the value of the Vte obtained is greater than the value 

of Vte threshold for reduction in the irradiance ≥ 6000 W/m2. 

This section presents the performance of the examined PV array configurations under a row-level PS 

patterns, the results obtained could be illustrated by the following: 

 

(a) 

 

(b) 

Figure 4.7 Simulated V t e. (a) PS pattern 1, (b) PS pattern 2 
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 Rs is a good indicator to predict PS conditions for S, SP, TCT and BL PV array configurations. 

However, Rs is not a useful indicator for P configuration since it does not change significantly 

during the variations in the PS conditions affecting the PV system. 

 FF has a significant drop in its value while increasing the PS conditions in the S, SP, TCT and BL 

configurations. This is not a proper indicator to be used with P configuration since it does not 

change among all tested PS conditions. 

 When the reduction in the irradiance is greater than 6000 W/m2, the value of the Vte in most PS 

conditions affecting row-level of PV modules is greater than the value of Vte threshold for S, SP, 

TCT and BL PV array configurations. However, P configuration shows that the value of the Vte 

almost equal to the value of Vte threshold. 

 

5.3.4 PV array configurations under PS condition – scenario 2 

In the previous section, the PV array configurations are tested under row-level PS conditions. However, 

this section will describes the performance of the PV array configurations under PS conditions affecting a 

column of PV modules (column-level). 

Figure 4.8a shows the examined PS conditions. The first PS pattern is applied on a column of PV 

modules at irradiance level equal to 500 W/m2. However, the second shading pattern consists of various 

irradiance levels (100, 200, 500, 600, 800 and 900 W/m2) applied to six PV modules. 

Figure 4.8b shows the MPP obtained in each PV array under PS pattern 1. P, SP, TCT and BL 

configurations show approximately the same MPP. Furthermore, S configuration generates the minimum 

output power for PS pattern 1. The MPP obtained from PS pattern 2 is shown in Figure 4.8c. The 

optimum simulated MPP obtained for P configuration is the highest and that for S configuration remains 

the worst PV array configuration. 

Table 4.7 shows the estimated Rs for each PV array for PS pattern 1. As can be seen, Rs estimated for the 

S configuration is increasing by approximately 1.68 Ω. Whereas the estimated series resistance for SP, 

TCT, and BL configurations is increasing by approximately 0.12 Ω. However, the P configuration 

remains at nearly constant resistance between 0.02 – 0.03 Ω. 

For the second shading pattern (non-uniform irradiance) the estimated Rs for SP, TCT and BL 

configurations is increasing by 0.3 Ω. P configuration remains at the same Rs which is between 0.02 – 

0.03 Ω. Similarly, the estimated series resistance for S configuration has increased by 4.4 Ω while 

increasing the PS conditions. The results are shown in Table 4.8. 
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(a) 

   

                                          (b)                                                                                    (c) 

Figure 4.8 (a) Scenario 2 tested PS patterns, (b) MPP for PS pattern 1, (c) MPP for PS 

pattern 2 
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Figure 4.9a and Figure 4.9b illustrates the FF variations among the examined PV array configurations for 

PS pattern 1 and PS pattern 2 respectively. PS pattern 1 shows that P, SP, TCT and BL configurations 

have a value of FF approximate to 74% among all tested cases. However, a reduction in the FF was only 

obtained across the S configuration. PS pattern 2 (non-uniform shading) shows a different results 

comparing to shading pattern 1 (uniform shading), these results could be illustrated as the following: 

 The estimated FF for the P configuration under non-uniform and uniform shading patterns are 

exactly equal 

 

 There is a large reduction in the FF for S, SP, TCT and BL configurations in the non-uniform PS 

pattern conditions 

 

 Figure 4.9b shows that the value of the FF for the S configuration at case 4 is equal to 74% 

because in this particular shading case, the percentage of shading among all PV modules is equal. 

However, according to case 4 in Figure 4.9b, the FF for S configuration is equal to 32% 

 

 

Table 4.8 Estimated Rs for the examined PV array configurations under PS pattern 2  

Case # Estimated Rs (Ω) for Shading Pattern 2 

S P SP TCT BL 

Case 1 
16.8 0.022 0.83 0.81 0.82 

Case 2 21.3 0.025 0.96 0.91 0.92 

Case 3 25.7 0.028 1.1 1.1 1.1 

Case 4 30 0.032 1.8 1.8 1.8 

      

 

 

 

Table 4.7 Estimated Rs for the examined PV array configurations under PS pattern 1  

Case # Estimated Rs (Ω) for Shading Pattern 1 

S P SP TCT BL 

Case 1 
13.8 0.022 0.81 0.81 0.81 

Case 2 15.5 0.025 0.89 0.89 0.89 

Case 3 17.2 0.028 1 1 1 

Case 4 18.9 0.033 1.1 1.1 1.1 
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The simulated Vte for PS pattern1 and PS pattern 2 are shown in Figure 4.10a and 5.10b respectively. The 

threshold values of the Vte is taken from Table 4.2. It is evident that the Vte for P configuration is 

approximately equal to 1.44V, which is exactly the same as the P configuration Vte threshold.  

The simulated values of the Vte for SP, TCT and BL configurations are exactly the same as the Vte 

threshold during PS pattern 1. However, the estimated Vte for S configuration is greater than the value of 

the Vte threshold when the reduction in irradiance ≥ 6000 W/m2 (Mahmoud Dhimish, Holmes, Mehrdadi, 

Dales, Chong, et al., 2017). 

 

(a) 

 

(b) 

Figure 4.9 Simulated FF. (a) PS pattern 1, (b) PS pattern 2  
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Figure 4.10b shows that the simulated Vte is exactly the same as the Vte threshold for PS pattern 2. SP, 

TCT and BL configurations prove that when the reduction in the irradiance is greater than 2900 W/m2 the 

simulated value of Vte is always greater than Vte threshold. Moreover, Vte for S configuration remains 

greater than Vte threshold when the reduction in irradiance ≥ 6000 W/m2. 

 

 

(a) 

 

(b) 

Figure 4.10 Simulated V te. (a) PS pattern 1, (b) PS pattern 2 
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This section described the performance of the examined PV array configurations under uniform and non-

uniform PS affecting a column of PV modules. The main findings could be deducted as: 

1. Under uniform PS patterns, the output power for P, SP, TCT and BL configurations are exactly 

the same. However, the S configuration shows the least output power among all PV array 

configurations 

2. Under non-uniform PS patterns, the optimum output power was estimated to be the highest for 

the parallel configuration 

3. Rs is a good indicator for detecting/predicting PS shading conditions for S, SP, TCT and BL 

configurations. The value of the Rs changes significantly when increasing the PS conditions 

applied to the PV configurations 

4. The FF indicator could be used to predict PS conditions for SP, TCT, and BL configurations only 

under non-uniform irradiance conditions. Furthermore, there is a large drop in the value of FF for 

the S configuration under uniform and non-uniform irradiance levels 

5. The value of the Vte could be used for detecting PS conditions for S, SP, TCT and BL 

configurations under non-uniform PS conditions 

 

4.3.5 PV array configurations under faulty PV modules– scenario 3 

In this section, the PV array configurations will be evaluated under faulty PV modules. Two faulty 

scenarios were used to examine the output performance for each PV array configuration. Figure 4.11a 

illustrates both faulty patterns which can be described by the following: 

1. Row level: six different scenarios were tested to examine the impact of faulty PV modules which 

are disconnected from a row of PV modules on the output power of the PV configurations 

2. Column level: four different scenarios were tested to examine the impact of faulty PV modules 

which are disconnected from a column of PV modules on the output power of the PV 

configurations 

Figure 4.11b and Figure 4.11c show that the configurations S and P provide the highest MPP among all 

PV array configurations. The second maximum output power is achieved by the SP configuration. 

However, lower output power is estimated for the TCT configuration among all examined PV faulty 

conditions. 
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(a) 

    

                                       (b)                                                              (c)  

Figure 4.11 (a) Examined faulty PV conditions, (b) Output power for faulty pattern 1, (c) 

Output power for faulty pattern 2 
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The simulated Rs for the row level PV faulty conditions are illustrated in Table 4.9. The S configuration 

shows that Rs is decreasing by 0.49 Ω while disconnecting one PV module. This result is approximately 

equal to the measured value of Rs of one PV module (0.48484 Ω) under STC. The simulated Rs for the P 

configuration is approximately equal to 0.02 Ω. 

Table 4.10 shows the simulated Rs for the column level PV faulty conditions. It is evident that the value of 

Rs for the S and SP configurations decreases when the number of faulty PV modules increases. The 

simulated Rs for TCT and BL increase for the first three faulty PV conditions. However, Rs is equal to 

0.63 Ω when disconnecting entire PV column from the SP, TCT and BL array configurations. 

 

 

 

 

Table 4.9 Estimated Rs for scenario 3: PV faulty conditions, row level  

Case # Estimated Rs (Ω) for Shading Pattern 1 

S P SP TCT BL 

Case 1 
11.5 0.022 0.80 0.63 0.82 

Case 2 11 0.023 1 0.50 0.59 

Case 3 10.5 0.024 0.88 0.37 0.59 

Case 4 10 0.025 0.59 0.25 0.33 

Case 5 9.5 0.026 0.29 0.12 0.29 

Case 6 9 0.028 1 1 1 

      

 

 

 

 

Table 4.10 Estimated R s for scenario 3: PV faulty conditions, column level  

Case # Estimated Rs (Ω) for Shading Pattern 2 

S P SP TCT BL 

Case 1 
11.5 0.022 0.80 0.63 0.82 

Case 2 11 0.023 0.76 0.88 0.91 

Case 3 10.5 0.024 0.69 1.1 1.1 

Case 4 10 0.025 0.63 0.63 0.63 
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Figures 5.12a and 5.12b illustrate the FF variations among the tested PV array configurations during 

faulty PV conditions: row level and column level respectively. The row faulty PV conditions show that S, 

P, and TCT configurations have FF value approximately 73.2% for all tested scenarios. However, a 

reduction in the FF was only evident in the SP and BL configurations. 

 

(a) 

 

(b) 

Figure 4.12 Simulated FF. (a) Row level PV faulty condition, (b) Column level PV faulty 

condition 
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The column faulty PV conditions show that the FF for the S and P configuration remains at 73.2%. 

Furthermore, there is a huge reduction in the estimated FF for both TCT and BL configurations. The only 

case which shows an increase in the simulated values of the FF is obtained for the SP configuration. 

As shown in Figure 4.12a at case 6 (Faulty PV string) the estimated value of the FF across all PV array 

configurations is equal to 73.2%. Similar results, obtained for case 4 (faulty column) are shown in Figure 

4.12b. 

The simulated Vte for each PV array configuration under faulty PV modules conditions (row level and 

column level) are shown in Figures 5.13a and 5.13b respectively. Figure 4.13a shows that Vte for P 

configuration is equal to 1.36V. This is approximately equal to P configuration Vte threshold: 1.44V.  

The simulated value of the Vte for S, SP, TCT and BL configurations is decreased while increasing the 

number of faulty PV modules due to the decrease in the Vmpp. Despite the decreasing Voc, the value of Vmpp 

is multiplied by a factor of 2, therefore, Vte is also decreasing. This result can be expressed by the 

following: 

         𝑉𝑡𝑒  ↓=  
(2𝑉𝑚𝑝𝑝  ↓↓  − 𝑉𝑜𝑐  ↓)(𝐼𝑠𝑐 −  𝐼𝑚𝑝𝑝)

𝐼𝑚𝑝𝑝 − (𝐼𝑠𝑐 − 𝐼𝑚𝑝𝑝) ln(
𝐼𝑠𝑐 −  𝐼𝑚𝑝𝑝

𝐼𝑠𝑐
)

 

Different results are obtained for case 6 in Figure 4.13a when a faulty PV string occurred in each PV 

configuration. The value of Vte for the SP, TCT and BL is increased because the value of the Isc and Impp is 

decreased: 

         𝑉𝑡𝑒  ↑=  
(2𝑉𝑚𝑝𝑝  ↓↓  − 𝑉𝑜𝑐  ↓)(𝐼𝑠𝑐 ↓ − 𝐼𝑚𝑝𝑝 ↓)

𝐼𝑚𝑝𝑝↓ − (𝐼𝑠𝑐 ↓ − 𝐼𝑚𝑝𝑝 ↓) ln (
𝐼𝑠𝑐 ↓ − 𝐼𝑚𝑝𝑝↓

𝐼𝑠𝑐 ↓
)

  

The denominator is decreasing more than the numerator. Similar results are obtained for the estimated Vte 

in the column-level faulty PV conditions as shown in Figure 4.13b. 

The main findings of this section can be listed as follows: 

 When the number of faulty PV modules in increases, Rs is decreases in S, SP TCT and BL 

configurations 

 The FF for the S and P configurations in faulty PV conditions remains at 73.2% 
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 The simulated value of Vte for S, SP, TCT and BL configurations is decreased when increasing 

the number of faulty PV modules. However, in case of the faulty PV string occurring in the PV 

configurations, the value of the Vte is increased only in SP, TCT and BL 

 P configuration remains relatively insensitive for the FF variations and Vte 

 

(a) 

 

(b) 

Figure 4.13 Simulated V te. (a) Row level PV faulty condition, (b) Column level PV faulty 

condition 
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4.4 Discussion 

Five different PV array configurations were simulated using MATLAB/Simulink software under various 

PS and faulty PV conditions. Seven parameters were obtained under each examined shading and PV 

faulty scenario.  

Table 4.11, Table 4.12, and Table 4.13 show the variations for all examined indicators used in the 

simulation. Three different symbols are used to show whether the value of the indicator has an “↓” 

decrease, “↑” increase,  “–“ no change in its value and ↓↑ decrease or increase in the value of the indicator 

(Mahmoud Dhimish, Holmes, Mehrdadi, Dales, Chong, et al., 2017). 

Table 4.11, Table 4.12, and Table 4.13 provide the main parameters that could be used for 

estimating/predicting PS conditions in all PV array configurations. The results described in these tables 

could be used to create a generic algorithm for detecting PS conditions and faulty PV modules in multiple 

PV array configurations. Also it can be used to create a reconfigurable PV array system which improves 

the power generation of PV installations. 

 

Table 4.11 Change in the tested indicators for S and P configurations 

Scenario PV array configurations 

S P 

Isc Impp Voc Vmpp Rs FF Vte Isc Impp Voc Vmpp Rs FF Vte 

Increasing uniform 

shading on PV row 

- 

 

↓ 

 

↓ 

 

↓↑ 

 

↑ 

 

↓ 

 

↓↑ 

 

↓ 

 

↓ 

 

↓ 

 

↓ 

 

- 

 

- 

 

- 

 

Increasing non-uniform 

shading on PV row 

- 

 

↓ 

 

↓ 

 

↓↑ 

 

↑ 

 

↓ 

 

↓↑ 

 

↓ 

 

↓ 

 

↓ 

 

↓ 

 

- 

 

- 

 

- 

 

Increasing uniform 

shading on PV column 

- 

 

↓ 

 

↓ 

 

↓↑ 

 

↑ 

 

↓↑ 

 

↓↑ 

 

↓ 

 

↓ 

 

↓ 

 

↓ 

 

- 

 

- 

 

- 

 

Increasing non-uniform 

shading on PV column 

- 

 

↓ 

 

↓ 

 

↓↑ 

 

↑ 

 

↓ 

 

↓ 

 

↓ 

 

↓ 

 

↓ 

 

↓ 

 

- 

 

- 

 

- 

 

Increasing faulty PV 

modules in PV row 

- 

 

- 

 

↓ 

 

↓ 

 

↓ 

 

- 

 

↓ 

 

↓ 

 

↓ 

 

- 

 

- 

 

↑ 

 

- 

 

↓ 

 

Increasing faulty PV 

modules in PV column 

- 

 

- 

 

↓ 

 

↓ 

 

↓ 

 

- 

 

↓ 

 

↓ 

 

↓ 

 

- 

 

- 

 

↑ 

 

- 

 

↓ 
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Table 4.13 Change in the tested indicators for SP and TCT configurations  

Scenario PV array configurations 

SP TCT 

Isc Impp Voc Vmpp Rs FF Vte Isc Impp Voc Vmpp Rs FF Vte 

Increasing uniform 

shading on PV row 

- 

 

↓ 

 

↓ 

 

↓↑ 

 

↑ 

 

↓↑ 

 

↑ 

 

- 

 

↓ 

 

↓ 

 

↓↑ 

 

↑ 

 

↓ 

 

↓↑ 

 

Increasing non-uniform 

shading on PV row 

- 

 

↓ 

 

↓ 

 

↓↑ 

 

↑ 

 

↓ 

 

↓↑ 

 

- 

 

↓ 

 

↓ 

 

↓↑ 

 

↑ 

 

↓ 

 

↓↑ 

 

Increasing uniform 

shading on PV column 

- 

 

↓ 

 

↓ 

 

↓ 

 

↑ 

 

- 

 

- 

 

↓ 

 

↓ 

 

↓ 

 

↓↑ 

 

↑ 

 

- 

 

- 

 

Increasing non-uniform 

shading on PV column 

- 

 

↓ 

 

↓ 

 

↓ 

 

↑ 

 

↓ 

 

↓↑ 

 

↓ 

 

↓ 

 

↓ 

 

↓↑ 

 

↑ 

 

↓ 

 

↓↑ 

 

Increasing faulty PV 

modules in PV row 

- 

 

- 

 

↓ 

 

↓ 

 

↓↑ 

 

↓ 

 

↓ 

 

- 

 

- 

 

↓ 

 

↓ 

 

↓ 

 

- 

 

↓ 

 

Increasing faulty PV 

modules in PV column 

- 

 

- 

 

↓ 

 

↓ 

 

↓ 

 

↑ 

 

↓ 

 

- 

 

- 

 

↓ 

 

↓ 

 

↓ 

 

↓ 

 

↓ 

 

 

 

 

 

 

 

Table 4.12 Change in the tested indicators for BL configuration  

Scenario PV array configuration 

BL 

   Isc Impp Voc Vmpp Rs FF Vte     

Increasing uniform 

shading on PV row 

 

  

- 

 

↓ 

 

↓ 

 

↓↑ 

 

↑ 

 

↓ 

 

↓↑ 

 
    

 

Increasing non-uniform 

shading on PV row 

 

  

- 

 

↓ 

 

↓ 

 

↓↑ 

 

↑ 

 

↓ 

 

↓↑ 

 
    

 

Increasing uniform 

shading on PV column  

 

 

 

 

↓ 

 

↓ 

 

↓ 

 

↓ 

 

↑ 

 

- 

 

- 

 
 
 

 
 

 
 

 
 

Increasing non-uniform 

shading on PV column  

 

 

 

 

↓ 

 

↓ 

 

↓ 

 

↓↑ 

 

↑ 

 

↓ 

 

↓↑ 

 
 
 

 
 

 
 

 
 

Increasing faulty PV 

modules in PV row  

 

 

 

 

- 

 

- 

 

↓ 

 

↓ 

 

↓ 

 

↓↑ 

 

↓ 

 
 
 

 
 

 
 

 
 

Increasing faulty PV 

modules in PV column  

 

 

 

 

- 

 

- 

 

↓ 

 

↓ 

 

↓↑ 

 

↓ 

 

↓ 
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4.5 Summary 

In this chapter, the simulation and modelling for five different PV array configurations have been 

described: 

1. Series (S) 

2. Parallel (P) 

3. Series-parallel (SP) 

4. Total-cross-tied (TCT) 

5. Bridge linked  (BL) 

The PV array configurations have been simulated under various PS and faulty PV conditions. The 

performance of seven indicators have been studied. These indicators are: 

1. Short circuit current (Isc) 

2. Current at maximum power point (Impp) 

3. Open circuit voltage (Voc) 

4. Voltage at maximum power point (Vmpp) 

5. Series resistance (Rs) 

6. Fill factor (FF) 

7. Thermal voltage (Vte) 

All simulated results in this chapter have been carried out using MATLAB/Simulink software. 

As a result, the TCT configuration has the highest output power during all examined PS conditions. In 

addition, TCT configuration generates the highest output power among all PV faulty case scenarios. The 

second best choice is the BL configuration, whereas the S configuration has the lowest output power 

comparing to all other examined configurations.  

The next chapter will demonstrate various PV fault detection algorithms which can be used in various PV 

array configurations. Moreover, the proposed PV fault detection algorithms are based on either a 

statistical analysis method or/and mathematical analysis techniques.   
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Chapter 5 Photovoltaic Fault Detection Techniques 

 

In this chapter, a PV fault detection algorithm based on statistical analysis and mathematical models will 

be presented. The algorithm has been validated using PV plant A described earlier in chapter 3. 

The algorithm, data analysis, and the results of this chapter have been published in the following journal 

articles (Mahmoud Dhimish & Holmes, 2016; Mahmoud Dhimish, Holmes, & Dales, 2017; Mahmoud 

Dhimish, Holmes, Mehrdadi, & Dales, 2017d).   

 

5.1 Examined PV array configuration and fault classification 

In this chapter, PV plant 1 has been used to validate the developed PV fault detection algorithm. During 

the experiment, the PV modules were organized in 3 PV strings and each string is made up of 3 series-

connected PV modules.  

Each PV string is connected to a FLEXmax MPPT unit, which has an output efficiency not less than 

98.5%. In order to enable or disable the connection of any PV module during the experiment, a 

connection/switching unit was used. 

Vantage Pro monitoring unit is used to receive the global solar irradiance measured by a Davis Weather 

Station which includes a pyranometer. The pyranometer is placed at the same tilt and azimuth angle as the 

PV installation.  

Hub 4 communication manager is used to facilitate the acquisition of module temperatures using the 

Davis external temperature sensor, and the electrical data for each photovoltaic string. Finally, LabVIEW 

software is used to implement the data logging and monitoring functions of the tested PV system. Figure 

5.1a illustrates the overall system architecture of the examined PV system (Mahmoud Dhimish, Holmes, 

& Dales, 2017). 

Since multiple faults can occur in PV systems, the proposed PV fault detection algorithm uses the 

following classification: 

1. Faults in the data acquisition 

2. Faults in the DC side of the PV system 

Figure 5.1b shows possible faults which can be categorised by the fault detection algorithm. 
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(a) 

 

 

(b) 

Figure 5.1 (a) Overall examined PV system architecture, (b) Different type of faults 

occurring in the examined PV plant  
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5.2 Novel fault detection algorithm  

5.2.1 General PV fault detection algorithm 

The main objective of the fault detection algorithm is to detect and determine when and where a fault has 

occurred in the PV system. The algorithm uses the climate data collected by the Davis weather station and 

the internal sensors of the MPPT units. Furthermore, LabVIEW software simulates the theoretical I-V 

curve of the PV system as shown in Figure 5.2a. 

The T-test statistical analysis method is used to compare the theoretical and measured output power of the 

PV system. The T-test is evaluated using (5.1) (Mahmoud Dhimish, Holmes, & Dales, 2017). 

 

                                                                    T =  
(x− μ)√n

s
                                                   (5.1) 

 

 where 𝑥 is the mean of the samples, 𝜇 is the population mean, n is the sample size and s is the standard 

deviation of the entire data.  

The real-time measurements are taken by averaging 60 samples taken at one minute intervals. The results 

obtained for power, voltage and current are calculated at one minute intervals for each sample set. To 

determine whether the T-test analysis is significant, a threshold value of 2.68 was used as shown in Figure 

5.2b.  

This value has been used since it is the theoretical threshold of the T-test for a confidence interval equal 

to 99%. However, the threshold could be chosen as 1.64 if the values of the simulated power by the PV 

system has low degree of accuracy (in case MPPT unit is not used with the PV plant). 

To determine the value of the T-test, firstly the PV power simulation (theoretical power) is compared with 

the output measured power. Then the value of the T-test is taken from Figure 5.2b based on the 

confidence limit needed in the simulation.  

In the proposed algorithm, the confidence limit and the number of samples that have been used are equal 

to 99% and 60 respectively. Finally, if the T-test value is above the threshold 2.68, therefore, a fault has 

been detected in the PV system, which means that the proposed fault detection algorithm is activated as 

shown in Figure 5.2c. 
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5.2.2 PV fault detection algorithm diagnosis rules 

In order to determine the type of a fault that has occurred in the PV plant, two ratios have been identified, 

power ratio (PR) and voltage ratio (VR). These have been used to categorise the region of the fault 

because both ratios have the following features:  

1. Both ratios are changeable during the faulty conditions in the PV plant 

2. When disconnecting a PV module in a series PV string, the VR will decrease significantly 

3. When the power ratio is equal to zero, the voltage ratio can still have a value regarding the 

voltage open circuit of the PV modules 

The power and voltage ratios are given by the following expressions: 

                                                                              𝑃𝑅 =  
𝑃𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙

𝑃𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑
                                                 (5.2) 

                                                                       𝑉𝑅 =  
𝑉𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙

𝑉𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑
                                                  (5.3) 

 

Figure 5.2 (a) General algorithm using statistical T-test technique, (b) T-test statistical confidence 

interval limits, (c) Activating the proposed PV fault detection algorithm  
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where 𝑃𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 is the theoretical output power generated by the GCPV system, 𝑃𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑  is the 

measured output power from PV string, 𝑉𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙  is the theoretical output voltage generated by the 

GCPV system and 𝑉𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑  is the measured output DC voltage from PV string. 

Based on the analysis of the power ratio for the PV system, numerical calculations for the DC side fault 

rules are shown in Figure 5.3.  Since the internal sensors of the MPPT have a minimum efficiency of 

98.5%, the power ratios are calculated at 1.5% error tolerance of the theoretical power which presents the 

maximum error condition for the examined PV system (Mahmoud Dhimish, Holmes, Mehrdadi, & Dales, 

2017d). The values are calculated according to the set of conditions shown in Figure 5.3. 

The maximum and minimum PR and VR ratios are expressed by (5.4 – 5.7) which contain the tolerance 

rate of the MPPT unit and the total number of PV modules in the PV string. 

 

                                    𝑃𝑅 𝑚𝑖𝑛 =  

𝑃𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑉 𝑠𝑡𝑟𝑖𝑛𝑔𝑠
𝑃𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑉 𝑠𝑡𝑟𝑖𝑛𝑔𝑠  
  −   𝑛 𝑃0

                                       (5.4) 

                               𝑃𝑅 𝑚𝑎𝑥 =  

𝑃𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑉 𝑠𝑡𝑟𝑖𝑛𝑔𝑠

(
𝑃𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑉 𝑠𝑡𝑟𝑖𝑛𝑔𝑠
   −   𝑛 𝑃0 ) × 𝑀𝑃𝑃𝑇 𝑇𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 𝑅𝑎𝑡𝑒

 (5.5) 

                                   𝑉𝑅 𝑚𝑖𝑛 =  
𝑉𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙

𝑉𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑  −   𝑛 𝑉0
                                          (5.6) 

                                  𝑉𝑅 𝑚𝑎𝑥 =  
𝑉𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙

(𝑉𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑  −   𝑛 𝑉0) × 𝑀𝑃𝑃𝑇 𝑇𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 𝑅𝑎𝑡𝑒
                 (5.7) 

 

where n is the number of faulty PV modules and P0 is the peak power of the PV module at STC (220 Wp). 

The number of faulty PV modules are expressed by the number of PV modules in the examined PV 

string. For example, if the PV string comprises 3 photovoltaic modules connected in series, therefore, n = 

3. Additionally, the peak power can be found in the data sheet of the examined PV module. 
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The selection of the PR ratio regions shown in Figure 5.3 is based on Equations (5.4) and (5.5) as follows: 

Normal operation mode: 

PR min =  

Ptheoretical
number of PV strings
Pmeasured

number of PV strings
  −   n P0

=  
1982

3
1982

3
   −  0(220.2)

=  
660.6

660.6  −  0
= 1  

PR max =  

Ptheoretical
number of PV strings

(
Pmeasured

number of PV strings
   –   n P0 ) × MPPT Tolerance Rate

=

 
1982

3

( 
1982

3
   −  0(220.2) )×98.5%

=  
660.6

(660.6  −  0)×98.5%
= 1.015228           

 

1 Faulty PV module: 

PR min =  

Ptheoretical
number of PV strings
Pmeasured

number of PV strings
  −   n P0

=  
1982

3
1982

3
   −  1(220.2)

=  
660.6

660.6   −  220.2
= 1.5  

PR max =  

Ptheoretical
number of PV strings

(
Pmeasured

number of PV strings
   –   n P0 ) × MPPT Tolerance Rate

=

 
1982

3

( 
1982

3
   −  1(220.2) )×98.5%

=  
660.6

(660.6  −  220.2)×98.5%
= 1.5233       

 

2 Faulty PV modules: 

PR min =  

Ptheoretical
number of PV strings
Pmeasured

number of PV strings
  −   n P0

=  
1982

3
1982

3
   −  2(220.2)

=  
660.6

660.6  −  440.4
= 3  

PR max =  

Ptheoretical
number of PV strings

(
Pmeasured

number of PV strings
   –   n P0 ) × MPPT Tolerance Rate

=

 
1982

3

( 
1982

3
   −  2(220.2) )×98.5%

=  
660.6

(660.6  −  440.4)×98.5%
= 3.0466     
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As shown in Figure 5.3, the type of the fault in the regions cannot be classified. For example: when the 

PR is between 1.523 and 3, two possible faults might occur in the PV system: 

1. Faulty PV module and PS condition 

2. PS condition 

To distinguish between which fault occurred in the PV system, VR ratio has been used. Figure 5.4 

illustrates the relationship between the power ratio and voltage ratio. The faults can be detected according 

to the following set of conditions (Mahmoud Dhimish, Holmes, Mehrdadi, & Dales, 2017d): 

1. Sleep mode will start during the night when PR=0 

2. If 1.015 ≥ PR ≥ 1: it means that the PV system operates at the normal operation mode 

3. If 1.52 ≥ PR ≥ 1.5: in this case, two categories of faults are identified. If 1.5233 ≥ VR ≥ 1.5: It 

indicates that there is a faulty PV module in the string, otherwise, a partial shading condition has 

occurred in the PV string 

4. If 3 > PR > 1.52: in this case if the VR is between 1.5 and 1.5233, a faulty PV module and a 

partial shading effect on the PV string. However, if the VR is outside the range of 1.5233 – 1.5, 

partial shading is the only condition affecting the PV string 

 

             Figure 5.3 Threshold values for detecting faults in the PV system based on the PR ratio  
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5. If 1000 > PR ≥ 3: this case can determine various faults such as: Faulty PV module with PS 

affecting the PV string, partial shading on the PV string, two faulty modules in the PV string, two 

faulty modules in the PV string and partial shading 

6. If PR = 1000, where the PV plant has a failure in a PV string or a failure in a MPPT unit 

 

 

Figure 5.4 DC side faulty regions based on the analysis of PR and VR 
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The selection of the VR ratio regions shown in Figure 5.4 is based on Equations (5.6) and (5.7) as 

follows: 

Normal operation mode: 

VR min =  
Vtheoretical

Vmeasured  −  n V0
=  

86.1

86.1  −  0(28.7)
= 1   

VR max =  
Vtheoretical

(Vmeasured  −   n V0) × MPPT Tolerance Rate
=  

86.1

(86.1 −  0(28.7))×98.5%
=

1.015228             

 

1 Faulty PV module: 

VR min =  
Vtheoretical

Vmeasured   −  n V0
=  

86.1

86.1  −  1(28.7)
= 1.5   

VR max =  
Vtheoretical

(Vmeasured  −    n V0) × MPPT Tolerance Rate
=  

86.1

(86.1  −  1(28.7))×98.5%
=

1.5233                                                                                     

 

2 Faulty PV modules: 

VR min =  
Vtheoretical

Vmeasured   −   n V0
=  

86.1

86.1  −  2(28.7)
= 3   

  VR max =  
Vtheoretical

(Vmeasured   −   n V0)× MPPT Tolerance Rate
=  

86.1

(86.1  −  2(28.7))×98.5%
=

           3.0466   

 

The decisions to identify the faulty cases are illustrated in Figure 5.4. For example, when the power ratio 

is equal to 1.5, the algorithm has to decide the fault type based on the calculated VR. Therefore, if the 

voltage ratio is between 1.5 and 1.5233, faulty PV module is detected in the PV system otherwise, PS has 

occurred in the PV system. 
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As shown in Figure 5.4, the PV fault detection algorithm is capable of detecting the fault associated with 

bypass diodes in the examined PV modules. Since the Isc of the tested PV modules is equal to 8.18 A, and 

by applying the tolerance rate of the MPPT internal current sensor, the minimum measured Isc is equal to: 

Minimum measured Isc = (Isc) 8.18 x (MPPT minimum accuracy) 98.5% = 8.057 A 

Therefore, during all PV conditions without faulty bypass diodes associated with the PV module, the 

measured Isc must be in the range of 8.18 – 8.057 A. This is acknowledged by shading identification 

region (SIR) in Figure 5.4. 

5.3 Results and discussion  

In this section, the performance of the proposed PV fault detection algorithm will be validated using 

various faulty conditions affecting the examined PV system. The acquired data for various days have been 

considered. The time zone for all measurements is GMT, taken in Huddersfield, UK. 

5.3.1 Normal operation and sleep mode 

The Normal operation and sleep mode for the tested PV system are shown in Figure 5.5. Starting from 

6:00 and ending at 6:21, the PV system is in sleep mode where the PV modules have not yet received any 

solar irradiance to generate output power. However, between the time 6:22 and 19:41, the PV system is in 

the normal operation mode. The measured power is very close to the theoretical output power simulated 

using LabVIEW software.  

According to the achieved results of this test, the average efficiency for the MPPT unit is equal to 

98.89%.  

5.3.2 PV faults caused by data acquisition system 

There are multiple faults which might occur in the PV system due to the data acquisition units such as: 

 Running LabVIEW software: errors in loading graphs and saving data 

 Delay in Data Logging: delay in the readings obtained by the internal sensors of the 

MPPT unit 

As shown in Figure 5.5, the VI LabVIEW software stopped logging the measured and theoretical data 

between 13:27 and 13:55. This type of fault might occur in the running software due to the multiple 

functions which the software handles at the same time. It is therefore required to create a structural code 

before the data collection stage. 
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5.3.3 Multiple PV faults occurring in the examined PV system 

In order to test the ability of the fault detection algorithm, described previously in section 5.2, a number 

of experiments were conducted over a period of two days. Each day contains multiple faults introduced to 

the PV system. 

A. Day 1: 

In this day, multiple PV faults have been conducted. Table 5.1 shows the start and end time for each 

conducted experiment. Ten different scenarios were tested sequentially, between 6:00 and 20:24. Various 

faults have been tested such as:  

- Faulty PV module in a PV string 

- Two faulty PV modules in a PV string 

- 30% Partial shading and faulty PV module without faults in the bypass diode 

- Faulty MPPT unit 

- Faulty PV string 

 

 

 

Figure 5.5 PV system theoretical and measured output power  
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Figure 5.6 show the theoretical and measured output power of the PV system under all conducted tests 

shown in Table 5.1. The PV system is at sleep mode between the times 6:00 – 6:20 and 19:41 – 20:24. 

The output power during these case scenarios is equal to zero, since there is no solar irradiance absorbed 

by the solar cells. The power ratio and voltage ratio during the tests are shown in Figure 5.7 and Figure 

5.8a respectively. 

 

Table 5.1 Diagnosis multiple faults in multiple strings locations  

Case 

Number 

Start 

Time 

End 

Time 

First PV String Second PV String Third PV String 

1 6:00 6:20 sleep mode sleep mode sleep mode 

2 6:21 10:00 normal 

operation 

normal operation normal operation 

3 10:00 11:00 faulty PV 

module 

normal operation normal operation 

4 11:00 12:00 normal 

operation 

two faulty PV 

modules 

faulty PV module 

5 12:00 13:00 normal 

operation 

normal operation 30% partial shading and 

faulty PV module without 

fault in bypass diode in the 

PV string 

6 13:00 14:00 normal 

operation 

normal operation 30% partial shading and 

faulty PV module and faulty 

bypass diode in the PV 

string 

7 14:00 15:00 faulty MPPT normal operation normal operation 

8 15:00 16:00 faulty MPPT faulty PV string normal operation 

9 16:00 19:41 normal 

operation 

normal operation normal operation 

10 19:41 20:24 sleep mode sleep mode sleep mode 
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As shown in Figure 5.6, starting from 6:21, the PV system starts to generate output power after the sleep 

mode is finished. The PV system operates in a normal operation mode until 10:00 (case scenario 2), 

where the PR and the VR ratio of this scenario are equal to 1.012 and 1.18 respectively as shown in 

Figure 5.7 and Figure 5.8a. 

One faulty PV module is introduced in the first PV string between 10:00 and 11:00. The power ratio and 

voltage ratio for this particular scenario are equal to 1.511 and 1.502 respectively.  

Two faulty PV modules in the second PV string are tested between 11:00 and 12:00. In this case, the 

power ratio for the second PV string is equal to 3.021, while the first and third PV strings operate in 

normal operation mode. 

By disconnecting one PV module and applying a 30% partial shading by placing an opaque paper on the 

third PV string as shown in Figure 5.6, between 12:00 and 14:00, the power ratio is equal to 2.36. 

Additionally, the measured short circuit current is used to detect possible faults in the bypass diode in the 

PV string.  

 

 

Figure 5.6 PV system theoretical output power vs. measured output power under 10 

different scenarios shown in Table 5.1 
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Figure 5.8b shows the variations of the measured short circuit current for the PV system. As described 

earlier in section 5.2, the theoretical upper and lower limits for the short circuit current are equal to 8.18A 

and 8.0571A respectively.  

A faulty bypass diode is detected by the PV fault detection algorithm between 13:00 and 14:00. In this 

case, the measured short circuit current lies between 5.6 A and 5.9 A as shown in Figure 5.8b. 

The only difference between a faulty MPPT unit and faulty PV string is that the voltage ratio ratio 

maintains a value greater than 1 during the disconnection of a PV string. Faulty MPPT and faulty PV 

string conditions are tested between 14:00 and 16:00 in different PV strings.  

The voltage ratio and power ratio for a faulty MPPT are equal to 1000 for the first PV string as shown in 

Figure 5.7 and Figure 5.8a. However, the PR and VR ratios for the faulty PV string tested between 15:00 

and 16:00 on the second PV string is equal to 1000 and 1.003 respectively. 

From 16:00 until 20:24 no faults occurred in the PV system and the sleep mode of the system starts when 

the power ratio and voltage ratio is equal to zero at 19:41.  

The results obtained for various test conditions indicate that PV fault detection algorithm has a high 

detection capability, there is no evidence of any errors in the detecting algorithm while conducting 

different fault case scenarios at different PV locations. The time and the type of fault are recognized by 

the algorithm. 

 

 

Figure 5.7 PR ratio for all PV strings 
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(a) 

 

 

 

 

(b) 

 

Figure 5.8 Detecting various faults using the proposed PV fault detection algorithm. (a) VR 

ratio for all PV strings, (b) Measured short circuit current  
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A. Day 2: 

This test is conducted to confirm the ability of the PV fault detection algorithm to detect multiple faults 

associated with different PV strings locations. 

Table 5.2 shows the starting and ending time of each experiment on the examined strings in the PV plant. 

Eight different time periods were examined, starting and ending at 4:48am – 21:36pm respectively. 

Figure 5.9a shows the theoretical vs. measured output power for the PV system whilst Figures 5.9b, 5.10a 

and 5.10b describe the resultant power and voltage ratios for each tested PV string. 

There is a rapid change in the irradiance level during the test time period, and this is shown in Figure 

5.9a. Starting from 4:48:00, all PV strings were in sleep mode, voltage ratio and power ratio are equal to 

zero. At 5:39:18 the PV strings started working in normal operation mode. One faulty PV module has 

been detected in the third PV string at 9:58:18.  

 

Table 5.2 Diagnosis multiple faults in multiple PV strings  

Case 

Number 

Start 

Time 

End 

Time 

First PV String 

Shown in Figure 5.9a 

Second PV String 

Shown in Figure 5.10a 

Third PV String 

Shown in Figure 5.10b 

1 4:48:00  5:39:18  Sleep Mode Sleep Mode Sleep Mode 

2 5:39:18  9:59:18  Normal Operation Normal Operation Normal Operation 

3 9:59:18  11:29:18  Normal Operation 60% Partial Shading One Faulty PV 

4 11:29:18  13:06:18  40% Partial Shading Normal Operation Two Faulty PV 

5 13:06:18  15:51:18  40% Partial Shading Faulty PV String Normal Operation 

6 15:51:18  17:25:18  One Faulty PV and 

40% Partial Shading 

Normal Operation Faulty MPPT 

7 17:25:18  19:35:19  Normal Operation Normal Operation Normal Operation 

8 19:35:19  21:36:00  Sleep Mode Sleep Mode Sleep Mode 
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(a) 

 

(b) 

Figure 5.9 (a) PV array theoretical and measured output power, (b) first PV string PR and VR  
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After 1.5 hour, two faulty PV modules are detected in the third PV string and 40% partial shading 

detected in the first PV String. The power ratio and voltage ratio for both tests are shown in Figure 5.10b 

and Figure 5.10b respectively. 

Starting at 13:06:17, one faulty PV module is detected in the second PV string as shown in Figure 5.10a, 

power ratio region 1. At the same time period, PS and normal operation mode are determined by the 

detection algorithm in the first PV string and third PV string respectively.  

Furthermore, faulty PV string is detected at 13:06:17 in the second PV string. The VR ratio for the test is 

between 1 and 1.04. However, the power ratio is equal to 1000 as shown in Figure 5.10a, power ratio 

region 2.   

Faulty maximum power point tracking unit is detected in the third PV string at 15:51:18. According to 

Figure 5.10b, power ratio region 2, the voltage ratio and power ratio is equal to 1000. At the same period 

of time, faulty PV module and 40% partial shading is detected in the first PV string. The voltage ratio is 

between 1.5 and 2. However, the power ratio is always greater than 2.5.  

During the time 17:25:18 – 19:35:18, the PV fault detection algorithm indicates that the PV plant is 

working probably without any faults. The entire system is back to sleep mode at 19:35:18, where VR = 

PR = 0. 

In this test, the fault detection algorithm shows a significant success in detecting many possible failure 

that may occur in the PV plant. The time and the region of the fault are detected by the algorithm, as well 

as the type of the fault.  

It was also demonstrated that the detection algorithm can achieve a high accuracy rate in detecting 

failures under a rapid change in the irradiance level as shown in Figure 5.9a. 
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(a) 

 

(b) 

Figure 5.10 (a) Second PV string PR and VR, (b) Third PV string PR and VR 
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5.4 Evaluating the Proposed PV Fault Detection Algorithm Based on Array 

Aging 

Since the examined PV modules used in the previous sections are new (installed 3 years ago), the 

proposed PV detection algorithm was evaluated using an older PV system shown in Figure 5.11, where 

the total PV system capacity is equal to 0.52 kWp (Mahmoud Dhimish, Holmes, & Dales, 2017). The 

MPPT unit and DC/AC inverter have been explained in Appendix A.  

The PV modules were installed at the University of Huddersfield 11 years ago. Table 5.3 shows the 

theoretical PR fault detection limits calculated using Equations (5.4) and (5.5) for various scenarios 

before considering the age of the PV installation.  

Figure 5.12a shows the measured PR while disconnecting 3 PV modules (3 PV modules are inactive). 

Using the detection limits obtained from Equations (5.4) and (5.5), most of the measured PR samples do 

not lie between the detection limits since Equations (5.4) and (5.5) do not contain the degradation rate of 

the PV array due to the PV array age. Therefore, it is required to use Equation (5.8) to estimate the new 

detection limits which includes the degradation rate for the PV installation, where the new detection limits 

are presented in Table 6.3. 

In principle, the degradation rate for PV modules stands for the percentage of output power loss compared 

to the data sheet of the PV modules. There are various mechanisms lead to PV degradation such as 

dirt/dust, humidity fluctuations, wind speed fluctuations, and manufacturing defects.  

  

                 PR =  
Ptheoretical

Pmeasured × MPPT efficiency ×( 100 − PV Degredation Rate  ) 
                 (5.8) 

 

Figure 5.11 Examined PV system 
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Table 5.3 Theoretical threshold calculations using the examined older PV system shown in Figure 5.11 

(Mahmoud Dhimish, Holmes, & Dales, 2017) 

Examined 

Case Scenario 

Theoretical Thresholds Calculations 

Using (5.4 and 5.5) Before Considering 

the PV Array Age of Installation 

Theoretical Thresholds Calculations Using (5.8) After 

Considering the PV Array Age of Installation 

 

Normal 

Operation 

mode 

PRmin =  
130 × 4

130 × 4
= 1 

  

PRmax =  
130 × 4

130 × 4 × 98.5%  
= 1.015 

 

PRmin =  
130 × 4

130 × 4
= 1 

  

PRmax =  
130 × 4

130 × 4 × 98.5% × (100 − 7.37)% 
= 1.096 

 

 

Faulty PV 

module 

PRmin =  
130 × 4

130 × 3
= 1.3 

  

PRmax =  
130 × 4

130 × 3 × 98.5%  
= 1.35 

 

PRmin =  
130 × 4

130 × 3
= 1.3 

  

PRmax =  
130 × 4

130 × 3 × 98.5% × (100 − 7.37)%  
= 1.46 

 

 

2 Faulty PV 

modules 

PRmin =  
130 × 4

130 × 2
= 2 

  

PRmax =  
130 × 4

130 × 2 × 98.5%  
= 2.03 

 

PRmin =  
130 × 4

130 × 2
= 2 

  

PRmax =  
130 × 4

130 × 2 × 98.5% × (100 − 7.37)%  
= 2.19 

 

 

3 Faulty PV 

modules 

PRmin =  
130 × 4

130 × 1
= 4 

  

PRmax =  
130 × 4

130 × 1 × 98.5%  
= 4.06 

 

PRmin =  
130 × 4

130 × 1
= 4 

  

PRmax =  
130 × 4

130 × 1 × 98.5% × (100 − 7.37)%  
= 4.38 
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Figure 5.12b shows the measured PR values for several tests, such as 3 faulty PV modules, two faulty PV 

modules and one faulty PV module. The theoretical thresholds are calculated at a degradation rate equal 

to 7.37%. This rate is selected to ensure all measured data lies within the detection region of the power 

ratio as illustrated in Table 5.3. 

In conclusion, PV degradation rate is a complex problem in PV systems, because it depends on multiple 

factors such as humidity, wind, dust, and partial shading. These factors are unpredictable and subject to 

the location of the PV systems and the weather conditions.   

 
(a) 

 

(b) 

Figure 5.12 (a) PR variations for 3 faulty PV modules, (b) PR variations for all examined 

scenarios vs. detection limits which are explained in Table 6.3 
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6.5 Summary 

In this chapter, the development of a PV fault detection algorithm was presented. The algorithm uses T-

test statistical analysis technique to detect faults in the PV system. However, in order to identify the type 

of the fault occurred in the PV plant, I defined two new indicators named power ratio (PR) and voltage 

ratio (VR).  

Both ratios are used to determine the type of fault, time and the region of the fault occurring in the PV 

system. A summary of the PV fault detection thresholds is shown in Figure 5.13. 

 

 

Figure 5.13 Summary of the proposed PV fault detection algorithm in chapter 6  
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The main advantages of the proposed fault detection algorithm are: 

 The algorithm is easy to implement, since it depends only on the voltage and the power of the 

photovoltaic system which can easily be measured in most PV installations 

 

 The algorithm uses simple statistical analysis technique (T-test) which depends on a simple 

statistical calculations such as the standard deviation and number of samples 

 

 The proposed algorithm uses two main equations to create a set of rules for detecting faults in the 

PV system. Both equations require the voltage and the power measurements, therefore, it is 

simple to recreate and adapt both equations in other PV systems 

 

 Multiple faults can be detected using the proposed algorithm, which suggests the algorithm is 

realistic and reliable to be used in PV systems. All faults that can be detected using the proposed 

algorithm are shown in section 5.1 

 

 The PV fault detection algorithm can be adopted with aged PV modules by using Equation (5.8) 

 

In the next chapter, the proposed PV fault detection algorithm will be enhanced using artificial 

intelligence systems such as Fuzzy Logic and artificial neural networks. In addition, the proposed PV 

fault detection algorithm will be improved by detecting multiple faults associated with the bypass diodes 

in the PV modules. 
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Chapter 6 PV Fault Detection using Artificial Intelligence System 

 

This chapter demonstrates the use of artificial intelligence systems including Fuzzy Logic and artificial 

neural networks in PV fault detection. Several techniques are used to detect PV faults such as Mamdani 

Fuzzy Logic system, Sugeno Fuzzy Logic system, and radial basis function networks. 

The data presented in this chapter have been published in the following journal articles (Mahmoud 

Dhimish, Holmes, Mehrdadi, & Dales, 2017a, 2017c; Mahmoud Dhimish, Holmes, Mehrdadi, Dales, & 

Mather, 2017b). 

 

6.1 PV fault detection using six layer detection approach 

6.1.1 Overall six layer PV fault detection algorithm structure 

In this section, the development of a PV fault detection algorithm which allows the detection of multiple 

faults occurring in the PV plant will be demonstrated. The algorithm is based on the analysis of the PR 

and VR described earlier in chapter 5. 

Figure 6.1 shows the overall structure of the PV fault detection algorithm. The first layer passes the 

measured irradiance and PV module’s temperature to the LabVIEW software in order to simulate the 

theoretical voltage, current, and power of the tested PV plant. 

To determine if a fault has occurred in an examined PV system, the PR and VR have been used. Both PR 

and VR can be summarized as by Equations (6.1) and (6.2). 

                                                                              𝑃𝑅 =  
𝑃𝐺,𝑇

𝑃𝐺,𝑇 − 𝑛𝑃0
                                    (6.1) 

                                                                              𝑉𝑅 =  
𝑉𝐺,𝑇

𝑉𝐺,𝑇 − 𝑛𝑉0
                                                (6.2) 

where 𝑃𝐺,𝑇 is the theoretical output power generated by the PV system at specific G (irradiance) and T 

(module temperature) values, 𝑛 is the number of PV modules, 𝑉𝐺,𝑇  is the theoretical output voltage and 

both 𝑉0, 𝑃𝑜  are the maximum operating voltage and power at STC (G: 1000 w/m2, T: 25 °C) respectively. 

The number of PV modules in the examined PV string is represented by n. For example, if a PV string 

comprises five photovoltaic modules connected in series, then, n = 5. 
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In reality, the internal sensors used to measure the voltage and current for a PV system have efficiencies 

of less than 100%.  This tolerance rate must therefore be considered in the power ratio and voltage ratio 

calculations. In this section, low and high limits are used as an indicator for the minimum and maximum 

operating points of the voltage and power for the examined PV systems. The difference between the high 

and low limit can be explained as follows: 

1. High limit: where the maximum operating accuracy of the sensors is applied (normally its 100%). 

The high limit for both PR and VR ratios are expressed by Equations (6.1) and (6.2) 

 

2. Low limit: where the minimum efficiency (minimum tolerance rate) for the voltage and current 

sensors is applied. PR and VR low limits are represented in Equations (6.3) and (6.4) 

                                                                              𝑃𝑅 𝐿𝑜𝑤 𝑙𝑖𝑚𝑖𝑡 =  
𝑃𝐺,𝑇

(𝑃𝐺,𝑇 − 𝑛𝑃0)η𝑠𝑒𝑛𝑠𝑜𝑟
                     (6.3) 

                                                                              𝑉𝑅 𝐿𝑜𝑤 𝑙𝑖𝑚𝑖𝑡 =  
𝑉𝐺,𝑇

(𝑉𝐺,𝑇 − 𝑛𝑉0)η𝑠𝑒𝑛𝑠𝑜𝑟1
                     (6.4) 

where η𝑠𝑒𝑛𝑠𝑜𝑟 is the accuracy of both the voltage and current sensor, while, η𝑠𝑒𝑛𝑠𝑜𝑟1 is the accuracy of 

the voltage sensor: 

        η𝑠𝑒𝑛𝑠𝑜𝑟 =  η𝑠𝑒𝑛𝑠𝑜𝑟1(𝑉𝑜𝑙𝑡𝑎𝑔𝑒 𝑆𝑒𝑛𝑠𝑜𝑟 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦) + η𝑠𝑒𝑛𝑠𝑜𝑟2(𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑆𝑒𝑛𝑠𝑜𝑟 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦)  (6.5) 

The power ratio and voltage ratio high and low detection limits are evaluated for the examined PV system 

using various irradiance levels, as described in the third layer in Figure 6.1. For this particular layer, the 

analysis of the PR vs. VR curves can be seen in the example shown next to layer 5, Figure 6.1. This 

example shows the high and low detection limits for two case scenarios: one faulty PV module and two 

faulty PV modules, where both curves are created using 3rd order polynomial functions (Mahmoud 

Dhimish, Holmes, Mehrdadi, & Dales, 2017c). 

The purpose of the 3rd order polynomial curves is to generate a regression function which describes the 

performance of the curves which are created by the theoretical points using LabVIEW software. 3rd order 

was selected because it matches 4th, 5th, and 6th polynomial order with a minimum tested coefficient of 

determination (R2) 99%, so for simplicity for the output variables, the 3rd order was used. The coefficient 

of determination is a measure of the global fit of the polynomial model, where its value varies between 0 

– 100%. The better fit model results with higher coefficient of determination (close to 100%).  

Layer 5 shows the measured data vs. the 3rd order polynomial curves simulated by LabVIEW software. 

The measured PR and measured VR can be evaluated using the following formula: 

                                            𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑃𝑅  ×  𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑉𝑅 =   
𝑃𝐺,𝑇

𝑃𝑀𝐸𝐴𝑆𝑈𝑅𝐸𝐷
 ×  

𝑉𝐺,𝑇

𝑉𝑀𝐸𝐴𝑆𝑈𝑅𝐸𝐷
       (6.6)  
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Figure 6.1 Detailed flowchart for the proposed PV fault detection algorithm  
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If the measured PR and VR is out of range: 

                           𝐹 𝐻𝑖𝑔ℎ 𝑙𝑖𝑚𝑖𝑡 > 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑃𝑅 × 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑉𝑅 > 𝐹 𝑙𝑜𝑤 𝑙𝑖𝑚𝑖𝑡                             (6.7) 

The fault detection algorithm cannot identify the type of the fault that has occurred in the PV plant. 

However, it can predict two possible faulty conditions which might have occurred in the PV system. As 

shown in Figure 6.1, layer 5, the measured data 2 indicates two possible faulty conditions: Faulty PV 

module and partial shading effects on the PV system, and two faulty PV modules and partial shading 

effects on the PV system. Therefore, out of region samples are processed by a Fuzzy Logic classifier as 

shown in Figure 6.1, layer 6. The structure of the Fuzzy Logic will be described in the next sub section. 

 

6.1.2 Proposed Fuzzy Logic system 

Fuzzy Logic system was selected as a proposed solution to enhance the PV fault detection algorithm. 

Practically, the Fuzzy Logic system is chosen due to its tolerant of imprecise data, as well as it can be 

built on top of operating control system without using any training data set, therefore it is enough to 

adjust the inputs/outputs of the system and resonate the fuzzy rules to enhance the detection.  

The main purpose for proposing a Fuzzy Logic system in the PV fault detection algorithm is to detect 

measured points which cannot be classified by the high and low detection limits shown in Figure 6.1. 

Thus, it will increase the overall detection accuracy for the PV fault detection. As described in the 

previous section, the measured data which lie out of the detection limits are processed by a Fuzzy Logic 

system. The overall design of the fuzzy system is shown in Figure 6.2. 

The Fuzzy Logic system consists of two inputs: voltage ratio and power ratio which are described by (A) 

and (B) in Figure 6.2 respectively. The membership function for each input is divided into five fuzzy sets 

described as: PS (partial shading condition), 1 (one faulty PV module), 2 (two faulty PV modules), 3 

(three faulty PV modules), and 4 (four faulty PV modules). 

The calculation of each membership function for voltage ratio, and power ratio are reported in Figure 

6.3a. The membership functions are based on the mathematical calculation of the examined PV plant. The 

examined PV system which is used to evaluate the performance of the fault detection algorithm is shown 

in Figure 6.3b, which consists of 5 series connected PV modules (Mahmoud Dhimish, Holmes, Mehrdadi, 

& Dales, 2017a). 

Both Fuzzy Logic system inputs voltage ratio and power ratio are evaluated at the maximum power and 

voltage of the PV system which are equal to 1100 Wp and 143.5 V. Additionally, the mathematical 

calculations includes the PS conditions which might affect the performance of the entire PV system.  
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Figure 6.2 Fuzzy Logic classifier system design. (A) Voltage ratio input, (B) Power ratio input, (C) 

Fault detection output 
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(a) 

 

 

 

(b) 

Figure 6.3 (a) Mathematical calculations for the Fuzzy Logic system including VR and PR, (b) 

Examined PV system which comprises five series -connected PV modules (Mahmoud Dhimish, Holmes, 

Mehrdadi, & Dales, 2017a) 
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The Fuzzy Logic system applies the approach of Mamdani method (min-max) managed by the Fuzzy 

Logic system rule. The Fuzzy Logic system rules are based on: if-then statement. Each case scenario is 

presented after the Fuzzy Logic system rule as shown in Figure 6.2. 

The output membership functions are divided into 5 sets: PS (0 - 0.2), faulty PV module (0.2 – 0.4), two 

faulty PV modules (0.4 – 0.6), three faulty PV modules (0.6 – 0.8) and four faulty PV modules (0.8 – 

1.0). 

Furthermore, the output surface for the Fuzzy Logic system is plotted and presented by a 3D fitting curve 

shown in Figure 6.4, where the x-axis represents the power ratio, y-axis presents voltage ratio and the 

fault detection output classification is on the z-axis. 

In order to generalize the proposed Fuzzy Logic system, it is required to input the values of the voltage 

and the power to the fuzzy interface system, and then, the faulty region could be calculated using the 

Equations (35) and (36) for the variations of the power and voltage respectively.  

The output detection membership function could be extended up to the value of the PV modules 

connected in series in each PV string separately and this extension in the membership function can be 

evaluated within the region of 0 to 1 as the following: 1 / number of series PV modules in the PV string. 

 

Figure 6.4 Fuzzy Logic system output surface comprising VR, PR and the fault detection output 

membership functions 
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6.1.3 Evaluating the proposed six layer PV fault detection algorithm  

The proposed six layer PV fault detection algorithm has been validated using a PV plant which comprises 

five series-connected PV modules shown in Figure 6.3b. The Fault detection algorithm is validated 

experimentally over a period of 5 days.  

In each day, the PV system was perturbed with different fault type. The theoretical and measured output 

power are shown in Figure 6.5, and can be explained as follows: 

1. Day1: Normal operation mode and partial shading effects the PV plant  (no fault occurred in any 

of the tested PV modules 

2. Day2: One faulty PV module and partial shading affect the PV plant 

3. Day3: Two faulty PV modules and partial shading affect the PV plant 

4. Day4: Three faulty PV modules and partial shading affect the PV plant 

5. Day5: Four faulty PV modules and partial shading affect the PV plant 

 

 

Figure 6.5 Theoretical vs. Measured output power during 5 different days  
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A. Evaluating the proposed theoretical curves modelling which uses 3rd order polynomial 

functions: 

In this section, the performance of the fault detection algorithm (theoretical curves modelling) is verified 

using normal operation mode and partial shading effects the PV system. Figure 6.6 describes the 

theoretical simulation vs. the real-time long-term data measurement. 

In order to apply a PS condition to the PV modules an opaque paper object has been used. PS was applied 

to all PV modules with the same shading percentage. PS condition is increased during the test. 

Figure 6.7a shows the entire measured data vs. the theoretical detection limits which are discussed 

previously in section 6.1. Most of the measured data lie within the high and low theoretical detection 

limits which are simulated using 3rd order polynomial function. The high and low detection limit 

functions are also illustrated in the Figure 6.7a. 

PR and VR ratios for this particular test are shown in Figure 6.7b. Since the PS condition applied to the 

PV system is increasing, the VR and PR ratios are increasing slightly during the test. Moreover, Figure 

6.7b shows the efficiency of the PV plant during the experiment. The efficiency is evaluated using (6.8). 

                                                               Efficiency =   
Measured Output Power

Theoretical Power
                                     (6.8) 

 

 

Figure 6.6 Theoretical power vs. measured power for a PS condition affects the examined 

PV system 
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(a) 

 

(b) 

Figure 6.7 Theoretical curves vs. measured data. (a) Theoretical fault curve detection 

limits, (b) VR, PR, and the efficiency of the tested PV system  
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From Figure 6.7b, the efficiency of the tested PV system decreased while increasing the PS applied to the 

PV modules. The detection accuracy (DA) for the proposed PV detection algorithm is calculated using 

(6.9). 

                        Detection accuracy (DA) =   
Total Number of Samples− Out of Region Samples

Total Number of Samples
                       (6.9) 

 

Using (6.9), based on the experimental test shown in Figure 6.7b, the proposed algorithm has a detection 

accuracy equal to: 

             Detection accuracy =   
720 − 37

720
= 0.9486 = 94.86% 

 

In this test, the theoretical curve modelling fault detection algorithm shows a significant success for 

detecting partial shading conditions applied to the PV plant. The detection accuracy rate could be 

increased using a Fuzzy Logic classification system. Therefore, out of region samples (samples which are 

away from the high and low detection limits) are processed by the Fuzzy Logic system. 

In this section, the MPPT unit is used to locate and acquire the output power at the global maximum 

power point (GMPP), therefore, all local maximum power points (LMPP) are not considered in the fault 

detection algorithm (Mahmoud Dhimish, Holmes, Mehrdadi, Dales, & Mather, 2017b).  

Figure 6.8a illustrates one examined case scenario which shows the percentage of the partial shading on 

each tested PV modules. The output P-V curve of the PV system is shown in Figure 6.8b. It is shown that 

the MPPT unit locates all LMPP and GMPP, however, the output of the MPPT unit is at the GMPP.  

In order to detect all LMPPs and the GMPP obtained by the MPPT unit, it is required to further 

investigate MPPT techniques which is not one of the targets of the proposed PV fault detection algorithm. 
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B. Evaluating the proposed Fuzzy Logic system 

This section is created to confirm the ability of the PV fault detection algorithm to detect faulty PV 

modules occurring in the PV system using the theoretical curve modelling algorithm and Fuzzy Logic 

classification system. Four different case scenarios have been tested: 

A. Faulty PV module with partial shading condition 

B. Two faulty PV modules with partial shading condition 

C. Three faulty PV modules with partial shading condition 

D. Four faulty PV module and partial shading condition 

Each case scenario is examined during a time period of a full day as shown previously in Figure 6.5 (Day 

2, 3, 4 and 5). The total number of the samples for each day are equal to 720.  

Figure 6.9 shows the theoretical curve limits vs. real-time long-term measured data. 3rd order polynomial 

functions of the theoretical high and low limits are plotted, while the minimum determination factor (R2) 

is equal to 99.59% (Mahmoud Dhimish, Holmes, Mehrdadi, Dales, & Mather, 2017b). 

The measured data for each test are plotted and compared with the theoretical curve limits. Most of the 

measured data among the 4 day test period lies within the high and low detection limits of the theoretical 

curves. However, in each day, several out of region samples have been detected as shown in Figure 6.9.  

 

    

                         (a)                                                                   (b)  

Figure 6.8 MPPT unit output power. (a) Examined partial shading condition, (b) P-V curve 

including the output LMPP and GMPP obtained by the MPPT unit  
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The detection accuracy (DA) for each case scenario is calculated using (6.9) and described in Table 6.1. 

The minimum and maximum detection accuracy are equal to 94.03% and 95.27%, respectively, before 

considering the Fuzzy Logic classification system. 

For each examined case scenario including the test illustrated in section A, out of region samples have 

been processed by the Fuzzy Logic classification system. Figure 6.10 describes the performance of the 

Fuzzy Logic system during each test:  

 Test 1: PS 

 Test 2: One faulty PV module and PS 

 Test 3: Two faulty PV modules and PS 

 Test 4: Three faulty PV modules and PS 

 Test 5: Four faulty PV modules and PS 

 

   

 

 

Figure 6.9 Theoretical detection limits vs. measured data for one faulty, two faulty, three faulty , and four 

faulty PV modules 
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Table 6.1 Accuracy comparison between four different case scenarios  

Test Number Case Scenario 

Without Fuzzy  

Classifier 

Including Fuzzy 

Classifier 

Out of 

Region 

Samples 

Detection 

Accuracy 

(DA %) 

Out of 

Region 

Samples 

Detection 

Accuracy 

(DA %) 

Test 1 - PS (described in section 6.1.3 

(A)) 

Partial shading affects the 

GCPV system 

37 94.86 5 99.31 

Test 2 - One faulty PV module and PS 

(presented as A in Figure 6.9) 

Faulty PV module and 

partial shading 

34 95.27 7 99.03 

Test 3 - Two faulty PV modules and 

PS (presented as B in Figure 6.9) 

Two faulty PV module and 

partial shading 

38 94.72 8 98.80 

Test 4 - Three faulty PV modules and 

PS (presented as C in Figure 6.9) 

Three faulty PV module and 

partial shading 

37 94.86 5 99.31 

Test 5 - Four faulty PV modules and 

PS (presented as D in Figure 6.9) 

Four faulty PV module and 

partial shading 

43 94.03 6 99.16 

 

 

 

 

 

 

 

 

Figure 6.10 Out of region samples processed by the Fuzzy Logic classification system 
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From Figure 6.10, it is evident that most of the samples are categorized correctly by the fuzzy classifier. 

For example, before considering the Fuzzy Logic system, the detection accuracy for test 2 is equal to 

95.27% while the DA increased up to 99.03% after taking into account the Fuzzy Logic classification 

system.  

This result is due to the detection of the out of region samples. The results for this test is shown in Figure 

6.10, only 7 out of 34 processed samples are detected incorrectly, while 27 samples have been detected 

correctly within an output membership function between 0.2 and 0.4. 

Table 6.1 shows number of out of region samples and the detection accuracy for each test separately. The 

detection accuracy increased up to at least 98.8% after considering the Fuzzy Logic system. 

In this section, the evaluation for the PV fault detection algorithm and the Fuzzy Logic system are 

discussed and evaluated using various experiments. From the obtained results, it is confirmed that the 

fault detection algorithm is suitable for detecting faulty conditions in PV systems accurately. 

 

C. Evaluating the proposed theoretical curves based on PV array ages: 

In this section, the evaluation of the 3rd order polynomial curves modelling are explained using the PV 

system described in section 6.4. The PV plant is presented in Appendix A, and the PV plant has an 

accumulative degradation rate of 7.37% (Mahmoud Dhimish, Holmes, Mehrdadi, & Dales, 2017a). 

For various experiments, including: normal operation mode and PS, one faulty PV modules and PS, two 

fault PV modules and PS, and three faulty PV modules and PS, the results are shown in Figure 6.11. 

The average detection accuracy of the proposed fault detection limits is approximately equal to 94% 

comparing to 51% before considering the PV degradation rate. In fact, this experiment assumes that all 

out of region samples are due to the degradation of the PV plant. However, there are some other factors 

that might affect the accuracy of the measured data, such as the dirt/dust, humidity fluctuations, wind 

speed, snow, and partial shading caused by birds, helicopters, and trees. 
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(a) (b) 

 

 

 

                                       (c)                                                                                        (d) 

 

Figure 6.11 Theoretical detection limits vs. measured data before and after considering the age of the 

PV array. (a) Normal operation mode and partial shading, (b) One faulty PV module and partial 

shading, (c) Two faulty PV modules and partial shading, (d) Three faulty PV modules and partial 

shading 
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6.2 Detecting defective bypass diodes in PV modules using Mamdani Fuzzy 

Logic system 

This section will demonstrate the design of a PV fault detection algorithm which is capable of detecting 

defective bypass diodes in the PV modules. The algorithm is based on the analysis of three variables: 

percentage of voltage drop (PVD), percentage of open circuit voltage (POCV), and the percentage of 

short circuit current (PSCC) (Mahmoud Dhimish, Holmes, Mehrdadi, Dales, & Mather, 2017a). 

Mamdani Fuzzy Logic system is used to detect up to 13 different faults associated with the defective 

bypass diodes in PV modules. 

6.2.1 Examined PV module characteristics 

The PV modules used in this section are those previously explained in chapter 3. The PV modules 

comprise three bypass diodes connected in parallel to each PV solar cell string. Figure 6.12a shows the 

connection of the bypass diodes in the examined PV modules. In addition, Figure 6.12b shows the 

junction box placed at the back of the PV module. 

 

         
(a)                                                                                  (b) 

Figure 6.12 (a) Internal bypass connection for each PV module, (b) Junction box placed at 

the back of the PV module 
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6.2.2 Inspection process 

The investigation of the temperature variations during partial shading and faulty bypass diodes (bypass 

diode disconnected from the PV modules) have been captured using i5 FLIR thermal camera. This camera 

has the following specification:  

 Thermal image quality: 100x100 pixels 

 Field of view: 210 (H) x 210(V) 

 Thermal sensitivity: 0.5 0C 

The PV module I-V curves are captured using PVA-1000s I-V curve tracer. The I-V curve measurement 

provides Isc, Voc, Impp, Vmpp, and Pmpp. This unit has the following specification: 

 Voltage Resolution: 25 mV 

 Current Resolution: 2 mA 

 Irradiance Accuracy: ±2%, 0 to 1500 W/m2 

 PV Cell Temperature Accuracy: ±2%, -10 to +65 0C  

The i5 FLIR camera and the I-V curve tracer are shown in Figure 2.13. 

                        

                   (a)                                                           (b) 

Figure 6.13 (a) i5 FLIR camera, (b) PVA-1000s I-V curve tracer 
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6.2.3 PV I-V curve analysis 

In this section, the analysis of the PV I-V curve will be demonstrated using two case studies: 

A. I-V curve characteristics under partial shading conditions 

The first test will explain the impact of PS conditions on the I-V curve for a standalone PV module. The 

PV module was covered by an opaque paper in order to examine various PS conditions. Figure 6.14a 

show the image of the opaque object covering the examined PV module. 

Multiple experiments have been conducted under various PS conditions, starting from 10% and ending up 

with 90%. Three thermal images of the examined PV module under PS conditions (10%, 30%, and 60%) 

are shown in Figure 6.14. All experiments were performed while there is no defective bypass diodes 

connected in the tested PV module (Mahmoud Dhimish, Holmes, Mehrdadi, Dales, & Mather, 2017a). 

Figure 6.15a and Figure 6.15b show the experiment output for the I-V and P-V curves for all tested PS 

conditions. As can be seen, while increasing the percentage of shading the Voc of the PV module 

decreases. However, the Isc remains at the same theoretical threshold 8.18 A. 

                              
 

                                       (a)                                                                             (b) 
                                                                                

Figure 6.14 (a) Real image of a PV module under 20% PS, (b)  Real image of a PV 

module under 60% PS 
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(a) 

 
 
 

(b) 

Figure 6.15 (a) I-V curve characteristics under various PS conditions affecting the PV module, 

(b) P-V curve characteristics under various PS conditions affecting the PV module  
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B. I-V curve characteristics under 90% partial shading condition and faulty bypass diodes 

This test was experimentally evaluated while disconnecting one, two, and three bypass diodes in the PV 

module under 90% partial shading condition (worst case scenario). As shown in Figure 6.16a, during 90% 

partial shading and no disconnection of PV module bypass diodes, the PV module I-V curve started to 

drop its Isc at 17.5 V; this drop as Vdrop in the I-V curve.  

However, the first drop in the I-V curve while disconnecting one bypass diode is equal to 15 V. Faster 

drop is associated with 90% partial shading and 2 faulty bypass diodes in the PV module, which is 

between 10.5 and 17.5 V. 

The last case is when all PV module bypass diodes were completely removed during 90% partial shading 

condition. In this case, the drop in the Isc is obtained at the start of the I-V curve (at 0~2.87 V). This loss 

in the current will affect the output power of the PV module significantly. The output power obtained in 

each case scenario is presented as follows: 

 No fault in the bypass diodes: 

o Pmpp = 159.8 W 

 Disconnecting 1 bypass diode: 

o  Pmpp = 141.5 W 

 Disconnecting 2 bypass didoes: 

o  Pmpp = 104.8 W 

 Disconnecting all bypass didoes: 

o Pmpp = 18.84 W 

 

While disconnecting the bypass diodes from this PV module during PS conditions, the PV module output 

power will decrease. This phenomenon occurs due to the impact of the reverse-bias feature of the bypass 

diodes.  

Furthermore, Figure 6.16b shows that while disconnecting one bypass diode from the examined PV 

module, the temperature rises in the PV string associated with the faulty bypass diode location. The 

increase of the PV string temperature will decrease the PV output power.  
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According to Figure 6.16b, the increase of the PV string temperature is equal to:  

Increase in the PV string temperature = 18.8 0C (PV string without bypass diode) – 17 0C (adjacent PV 

strings with bypass diodes) = 1.8 0C 

 

 
 

(a) 

 
 

(b) 

Figure 6.16 (a) I-V curves under various conditions affecting the examined PV module, (b) Real 

image and thermography image of the examined PV module while disconnecting one bypass 

diode from the first PV string 

 

 

 

 



 

 

 160 

 

Since the voltage drop (Vdrop) has been measured during worst case scenario at each Isc level of the 

examined I-V curves, it has been found that the Vdrop in each examined case can be classified as the 

following: 

 No fault in the bypass diodes: 

o Vdrop Region: 17.5 ~ 26.5 V 

 Disconnecting 1 bypass diode: 

o  Vdrop Region: 15 ~ 23.5 V 

 Disconnecting 2 bypass didoes: 

o  Vdrop Region: 10.5 ~ 17.5 V 

 Disconnecting all bypass didoes: 

o Vdrop Region: 0 ~ 2.87 V  

In order to generalize the findings of the Vdrop, the percentage of Vmpp has been compared with the Vdrop 

values, which can be formalized as Equation (6.10) by the percentage of voltage drop (PVD). 

                                    𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑜𝑓 𝑉𝑜𝑙𝑡𝑎𝑔𝑒 𝐷𝑟𝑜𝑝 (𝑃𝑉𝐷) =  
𝑉𝑑𝑟𝑜𝑝

𝑉𝑚𝑝𝑝
 × 100                                  (6.10) 

The following calculations show the percentage of voltage drop based on (6.10) which is validated using 

the examined I-V curve shown in Figure 6.16a. 

No fault in the bypass diodes:  

PVD =  
17.5 ~26.5 

28.7
× 100 = 61.0% ~ 92.3% 

Disconnecting 1 bypass diode:  

PVD =  
15 ~23.5 

28.7
× 100 = 52.2% ~ 81.9% 

Disconnecting 2 bypass didoes:  

PVD =  
10.5 ~17.5 

28.7
× 100 = 36.5% ~ 61% 

Disconnecting all bypass didoes:  

PVD =  
0 ~ 2.87

28.7
× 100 = 0% ~ 10% 
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The regions of the PVD are overlapping. However, in the last region, when disconnecting all bypass 

diodes from the PV module, the PVD is between 0 and 10%. This region does not overlap with all other 

regions.  Therefore, In order to increase the detection accuracy of the first three case scenarios, the 

percentage of open voltage circuit (POCV) is used. The POCV is calculated using (6.11). 

                          𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑜𝑓 𝑜𝑝𝑒𝑛 𝑣𝑜𝑙𝑡𝑎𝑔𝑒 𝑐𝑖𝑟𝑐𝑢𝑖𝑡 (𝑃𝑂𝐶𝑉) =   
𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑉𝑜𝑐

𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝑉𝑜𝑐
 × 100              (6.11) 

From the results obtained previously in Figure 6.16a, the POCV for each tested case scenario has been 

calculated as the following: 

No fault in the bypass diode:  

POCV =  
36.74 ~ 35 

36.74
× 100 = 100% ~ 95.3% 

Disconnecting 1 bypass diode:  

POCV =  
36.74 ~ 33.5 

36.74
× 100 = 100% ~ 91.2% 

Disconnecting 2 bypass diode:  

POCV =  
36.74 ~ 32.1 

36.74
× 100 = 100% ~ 87.3% 

Since Isc is another variable which could be used to examine the faulty bypass diodes in PV modules, the 

percentage of short circuit current (PSCC) has been used to estimate the shading percentage which affects 

the PV module. PSCC can be calculated using Equation (6.12).  

                           𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑜𝑓 𝑆ℎ𝑜𝑟𝑡 𝐶𝑖𝑟𝑐𝑢𝑖𝑡 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 (𝑃𝑆𝐶𝐶) =
𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝐼𝑠𝑐

𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝐼𝑠𝑐
 × 100               (6.12) 

The PSCC is equal to 1 in the first 3 cases (no fault in the bypass diodes, disconnecting 1 bypass diode, 

and disconnecting 2 bypass diodes). However, the PSCC was evaluated using partial shading conditions 

between 0% up to 90% while disconnecting all bypass diodes in the examined PV module. The PSCC 

results are shown in Table 6.2, where the I-V curve simulation is presented in Figure 6.17. 

The results show that the percentage of PSCC depends on the percentage of shading affecting the PV 

module. An increase of the PS condition results in a decrease in the PSCC percentage. 
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Figure 6.17 I-V curve simulation under various partial shading conditions while 

disconnecting all bypass diodes from the examined PV module 

 

 

 

 

  

 

Table 6.2 PSCC results for the examined PV module while disconnecting all bypass diodes  

Shading Percentage 

% 

Measured Isc 

(A) 

PSCC % 

Normal Operation 8.18 100 

10% 7.37 90 

20% 6.55 80 

30% 5.73 70 

40% 4.91 60 

50% 4.09 50 

60% 3.28 40 

70% 2.46 30 

80% 1.64 20 

90% 820 mA 10 
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6.2.4 Proposed PV bypass fault detection Fuzzy Logic system 

In this section, the proposed PV bypass diode fault detection system will be presented. The detection 

system is based on the variations of the I-V curve presented in the previous section (Vdrop, I-V curve Voc, 

and I-V curve Isc). 

Next, Mamdani Fuzzy Logic system is used to detect the faults in the examined PV module. 

Subsequently, the fuzzy system is based on three inputs: PVD, POCV, and PSCC. The overall structure of 

the fault detection systems in shown in Figure 6.18. 

 

All inputs are processed by the Fuzzy Logic system based on the membership functions shown in Figure 

6.19a, where all the percentages are discussed previously in section 6.2.3.  

The output of the Fuzzy Logic system is capable of classifying 13 different types of fault associated with 

PV bypass diodes and PS conditions. Figure 6.19b illustrates the output membership function used in the 

Mamdani Fuzzy Logic system. The list of the faults which can be detected by the proposed algorithm is 

shown in Figure 6.19c (Mahmoud Dhimish, Holmes, Mehrdadi, Dales, & Mather, 2017a).  

 

 

 
 

Figure 6.18 Proposed fault detection system using Mamdani Fuzzy Logic system 
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(a) 

 

       

                                       (b)                                                                    (c)  

Figure 6.19 (a) Input variables for the proposed Fuzzy Logic fault detection system, (b) output 

variable for the Fuzzy Logic fault detection system, (c) List of faults which can be detected using 

the PV fault detection system 

 

 

 

 

  



 

 

 165 

 

The Fuzzy Logic system rule are based on: if, and statement. All selected rules in the Fuzzy Logic system 

can be described by the following: 

1. If (PVD is 0-FaultyBypassDiode) and (POCV is 0-FaultyBypassDiode) then (Output is 1) (1) 

2. If (PVD is 1-FaultyBypassDiode) and (POCV is 1-FaultyBypassDiode) then (Output is 2) (1) 

3. If (PVD is 2-FaultyBypassDiodes) and (POCV is 2-FaultyBypassDiodes) then (Output is 3) (1) 

4. If (PVD is 3-FaultyBypassDiodes) and (PSCC is 0-10%PartialShading) then (Output is 4) (1) 

5. If (PVD is 3-FaultyBypassDiodes) and (PSCC is 10-20%PartialShading) then (Output is 5) (1) 

6. If (PVD is 3-FaultyBypassDiodes) and (PSCC is 20-30%PartialShading) then (Output is 6) (1) 

7. If (PVD is 3-FaultyBypassDiodes) and (PSCC is 30-40%PartialShading) then (Output is 7) (1) 

8. If (PVD is 3-FaultyBypassDiodes) and (PSCC is 40-50%PartialShading) then (Output is 8) (1) 

9. If (PVD is 3-FaultyBypassDiodes) and (PSCC is 50-60%PartialShading) then (Output is 9) (1) 

10. If (PVD is 3-FaultyBypassDiodes) and (PSCC is 60-70%PartialShading) then (Output is 10) (1) 

11. If (PVD is 3-FaultyBypassDiodes) and (PSCC is 70-80%PartialShading) then (Output is 11) (1) 

12. If (PVD is 3-FaultyBypassDiodes) and (PSCC is 80-90%PartialShading) then (Output is 12) (1) 

13. If (PVD is 3-FaultyBypassDiodes) and (PSCC is 90-100%PartialShading) then (Output is 13) (1) 

 

The Fuzzy Logic system depends on the variations of the I-V curve, where the simulated results obtained 

in the previous section depend on a PV module which has specific operating characteristics. Therefore, 

the main challenge of the Fuzzy Logic system, is whether the rules and classification could be used in 

other PV modules. In the next section, the fuzzy system will be evaluated using a different PV module, 

with different operating conditions. 

 

6.2.5 Validation of the proposed PV bypass diode fault detection system using 

KC130GHT PV module 

In this section, the proposed PV bypass diode fault detection based on Mamdani Fuzzy Logic system will 

be evaluated using KC130GHT PV module. The PV module and its electrical characteristics are shown 

previously in Figure 5.11. 
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A. PV module under one defective bypass diode and 35% PS condition 

This test was evaluated when the PV module has one defective bypass diode (one bypass diode was 

removed from the PV module). Vdrop, Voc, and Isc of the PV module are shown in Figure 6.20. 

The percentage PVD, POCV, PSCC are equal to 58.52%, 99.08% and 100% respectively. Next, these 

percentages are processed by the Fuzzy Logic system. As shown in Figure 6.20, the output of the fuzzy 

system is equal to 1.91, which is between the regions “1-2”. This region indicates that there is one 

defective bypass diode in the PV module. The classifications of all regions are previously described in 

Figure 6.19c. 

In conclusion, this test was performed by the Fuzzy Logic, and it has successfully detected the defective 

bypass diode in the PV module. 

 

 

Figure 6.20 Output results for 1 faulty bypass diode and 35% PS condition  
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B. PV module under three defective bypass diodes and 65% PS condition 

The second test was performed when the PV module has three defective bypass diodes (all bypass diodes 

have been removed from the PV module). This test was also evaluated while covering 65% of the PV 

module using an opaque paper. 

The output performance of the PV module parameters is shown in Figure 2.21. The theoretical Isc dropped 

down to 2.81A after 0.3V. The percentages of PVD, POCV and PSCC are equal to 1.70%, 91.32%, and 

35.04%. 

The output of the fuzzy system is equal to 9.5, which is between the regions “9-10”. This region indicates 

that there are three faulty bypass diodes and 60-70% partial shading affects the PV module. 

This test also confirms the ability of the proposed Fuzzy Logic system to detect defective bypass diodes 

in the PV module. 

 

 

Figure 6.21 Output results for 3 faulty bypass diodes & 60 -70% partial shading “case scenario 2”  
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6.3 Comparing Mamdani Sugeno Fuzzy Logic and RBF ANN networks for 

PV fault detection 

In the previous sections (sections 6.1 and 6.2), Mamdani Fuzzy Logic system based on the min-max 

membership functions was used to detect possible faults in PV plants. However, in this section, the 

detection of PV faults will be evaluated using various AI techniques such as Mamdani Fuzzy Logic, 

Sugeno Fuzzy Logic, and four different radial basis function (RBF) ANN networks. 

6.3.1 Examined PV system 

The PV system architecture used to evaluate the performance of the AI techniques consists of a PV string 

which comprise five PV modules connected in series. The PV system overall design is shown in Figure 

6.22 (Mahmoud Dhimish, Holmes, Mehrdadi, & Dales, 2018).  

The PV module electrical characteristics are previously shown in Table 3.1. The MPPT unit is already 

discussed in Appendix A. 

 
 

 

 

Figure 6.22 PV system used to evaluate the performance of various AI techniques  
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6.3.2 Overall PV fault detection algorithm 

The implementation of the fault detection algorithm is based on power and voltage ratios, which are 

calculated using Equations (6.1) and (6.2) respectively. 

Since the internal sensors of the MPPT have a conversion error rate of 5% as shown in Figure 6.22, the 

power ratios are calculated at 5% error tolerance of the theoretical power which presents the maximum 

error conditions for the tested PV system. Therefore, the maximum and minimum power and voltage 

ratios are expressed by the following formulas which contains the tolerance rate of the MPPT unit: 

 

                                                                      PR min =  
Ptheoretical

Pmeasured  
                                                         (6.13) 

                                                                     PR max =  
Ptheoretical

 Pmeasured × MPPT Tolerance Rate
                        (6.14) 

         VR min =  
Vtheoretical

Vmeasured   
                                                        (6.15) 

                                                                               VR max =  
Vtheoretical

Vmeasured  × MPPT Tolerance Rate
                       (6.16) 

 

The normal operation mode region of the examined PV plant at STC is shown as case 1 in Figure 6.23, 

the values of the PR are calculated using Equations (6.13) and (6.14) as follows: 

 

Normal Operation Mode, PR min =  
Ptheoretical

Pmeasured 
=  

1100

1100
= 1 

 

Normal Operation Mode, PR max =  
Ptheoretical

 Pmeasured  ×  MPPT Tolerance Rate
=  

1100

1100 × 95%
= 1.053 

 

 

As can be noticed from case 2 in Figure 6.23, the maximum partial shading condition detected by the 

irradiance sensor is equal to 97.3%, therefore, the maximum PR is calculated as the following: 

 

Fault Detection Algorithm Maximum PR =  
Ptheoretical

 Pmeasured  ×  MPPT Tolerance Rate
=  

1100

23.66 × 95%
≈ 50 
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The value of the maximum PR is important because if the PR is greater than 50, then the fault detection 

algorithm can specify whether a fault occurred in the MPPT unit or there is a complete disconnection of a 

PV string from the entire PV system. In order to detect which type of fault occurred when PR > 50, the 

value of the voltage ratio has been considered: 

1. If VR ≥ 0, then a faulty PV string is detected 

2. If VR = 0, then a faulty MPPT unit is detected 

Furthermore, if the value of the PR does not lie within the normal operation mode region and it is not 

higher than the PR max threshold (PR ≥ 50), then the value of the PR and VR is passed to the second part 

of the fault detection algorithm which consists of two different machine learning techniques as shown in 

Figure 6.24.  

The first technique is the artificial neural network (ANN). In order to select the most suitable ANN model 

structure, four different ANN models have been developed: 

 2 Inputs, 5 outputs using 1 hidden layers 

 2 Inputs, 5 outputs using 2 hidden layers 

 2 Inputs, 9 outputs using 1 hidden layers 

 2 Inputs, 9 outputs using 2 hidden layers 

An illustration on the selection of the variables and ANN model structure is covered in the next sub 

section (7.3.3). 

 

 

 

 

Figure 6.23 DC side numerical calculations at maximum and minimum operating p oints 

 
 

 



 

 

 171 

 

The second machine learning technique used to detect faults in the PV system is the Fuzzy Logic. Two 

different Fuzzy Logic systems have been implemented: 

 Mamdani-type Fuzzy Logic system interface 

 Sugeno-type Fuzzy Logic system interface 

Table 6.3 Shows the types of the fault which can be detected using both proposed machine learning 

techniques. 

 

 

Figure 6.24 Detailed PV fault detection approach 
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Table 6.3 Various type of faults detected by the proposed machine learning techniques  

Type of Fault Symbol 

Normal operation and PS affects the PV system F1 

One faulty PV module F2 

Two faulty PV modules F3 

Three faulty PV modules F4 

Four faulty PV modules F5 

One faulty PV module and PS affects the PV system F6 

Two faulty PV modules and PS affects the PV system F7 

Three faulty PV modules and PS affects the PV system F8 

Four faulty PV modules and PS affects the PV system F9 

Faulty PV string F10 

Faulty MPPT unit F11 

 

 

 

 

6.3.3 Implementation of ANN networks 

The main objective of the ANN model is to detect PV faults. The ANN model has been developed as 

follows: 

 Selection of input and output variables 

 Data set normalization 

 Selection of network structure 

 Network training 

 Network test 

The input parameters used to configure all tested ANN models are VR and PR ratios. The data set (input 

variables) are normalized within the range of -1 and +1 using Equation (6.17). 

 

     y =  
(ymax− ymin)(x− xmin)

(xmax− xmin)
+ ymin                                         (6.17) 

 

where 𝑥𝑚𝑖𝑛−𝑚𝑎𝑥  ∈  {𝑥𝑚𝑖𝑛 , 𝑥𝑚𝑎𝑥} ,𝑦𝑚𝑖𝑛−𝑚𝑎𝑥  ∈  {𝑦𝑚𝑖𝑛 , 𝑦𝑚𝑎𝑥} and x is the original data value and y is 

the corresponding normalized value with 𝑦𝑚𝑖𝑛 =  −1 and 𝑦𝑚𝑎𝑥 =  +1. 
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In order to select the most efficient architecture for the ANN model, a comparison between four different 

ANN models has been performed where the structure of all tested ANN networks is the Radial Basis 

Function (RBF) as shown in Figure 6.25. 

ANN models A and B are using 2 inputs (voltage and power ratio) and five outputs, where the hidden 

layers are equal to one and two respectively. The purpose of increasing the hidden layers is to increase the 

computational performance of the ANN network, thus increasing the detection accuracy (DA) of the 

ANN model. The faults are illustrated in Table 6.3. 

From the research conducted using several days’ measurements (will be described in section 6.3.5), the 

comparison between model A and model B shows that both models have a low detection accuracy where 

the maximum achieved detection accuracy is equal to 77.7%. Therefore, this challenge was solved by 

adding new types of faults for the ANN network that allow the ANN model to detect faulty PV modules 

only (No PS on the entire PV plant). 

ANN models C and D are using 2 inputs (voltage, and power ratio) and nine outputs, where the hidden 

layers are equal to one and two respectively. The faults which can be detected using both ANN models 

presented in Table 6.3. 

 



 

 

 174 

 

 

 

 

 

Figure 6.25 Adopted ANN networks. (A) 2 Inputs, 5 outputs using 1 hidden layer, (B) 2 Inputs, 5 outputs 

using 2 hidden layers,    (C) 2 Inputs, 9 outputs using 1 hi dden layer, (D) 2 Inputs, 9 outputs using 2 

hidden layers 
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In this section, the data sets have been recorded from the experimental setup shown in Figure 6.22. The 

data set used to train, validate, and test the ANN networks contains 6480 measurements logged in 9 days 

(each day consists of 720 sample) as shown in Figure 6.26.  

During the experiment, the PV modules’ temperature is between 15.3 – 16.7 oC. The values of the voltage 

ratio and power ratio have been logged.  Each day has a different fault applied to the PV systems which 

can be simplified by the following: 

 Day 1: Partial shading conditions affecting the PV system 

 Day 2: One PV module has been disconnected from the PV system  

 Day 3: Two PV modules have been disconnected from the PV system 

 Day 4: Three PV modules have been disconnected from the PV system 

 Day 5: Four PV modules have been disconnected from the PV system 

 Day 6: One PV module has been disconnected and PS applied to all other PV modules 

 Day 7: Two PV modules have been disconnected and PS applied to all other PV modules 

 Day 8: Three PV modules have been disconnected and PS applied to all other PV modules 

 Day 9: Four PV modules have been disconnected and PS applied to all only existing PV module 

 

The obtained measurements are divided into three subsets: 

1. 70% of the data are used to train the ANN networks 

2. 10% of samples are used to validate the ANN network. This data set is not used in the training 

process 

3. 20% of samples are used to test the actual ANN network detection accuracy 

 

The implementation of the ANN network has been developed using MATLAB/Simulink software. ALL 

results obtained from the ANN networks will be discussed in the next section. The maximum obtained 

detection accuracy among all tested ANN models is equal to 92.1%. This result is achieved using the last 

ANN network which consists of 2 inputs, 9 outputs using 2 hidden layers. 
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Figure 6.26 Dataset used to train and validate the ANN networks  
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6.3.4 Implementation of Fuzzy Logic detection system 

The second machine learning technique used to detect faults in the PV system is the Fuzzy Logic. In order 

to select the most efficient model for the Fuzzy Logic system fault detection interface, a comparison 

between two fuzzy models widely utilized for the classification of faults has been performed: Mamdani 

Fuzzy Logic and Sugeno type fuzzy system (Mahmoud Dhimish et al., 2018).  

Mamdani Fuzzy Logic systems are commonly suited to human input interface. However, the Sugeno 

fuzzy systems are well established using a linear weighted mathematical expressions. The main 

advantages for both Fuzzy Logic systems are illustrated by the following: 

 Sugeno: 

o Computationally efficient 

o Works with linear techniques 

o It works well with optimization methods and adaptive techniques 

 Mamdani: 

o It is intuitive 

o It has widespread acceptance 

o It is suited to human input systems interface 

Both implemented Fuzzy Logic systems are shown in Figure 6.27.  The voltage, and power ratio is used 

as input variables for the Fuzzy Logic classification system. The VR and PR regions are illustrated in 

Table 6.4. As can be seen, ten different regions have been selected, where region 1 is the low partial 

shading (PS) condition. Whereas, region 4 is used for a faulty PV module with high PS condition (50% ~ 

97.3% PS). The minimum and maximum limits for each region of the voltage ratio and power ratio are 

also shown in Table 6.4, the defuzzification process for the input rules is the centroid type.  

All measurements for the theoretical voltage and power ratios have been taken from a 

MATLAB/Simulink model which is designed the same as the examined PV system presented in Figure 

6.22 with the consideration of all PV parameters. 

There is a difference in the implementation of the ANN and Fuzzy Logic systems with respect to analysis 

of acquired data from the sensors (i.e. irradiance sensor). To train the ANN networks for detecting PV 

faults, it is necessary to classify the measured data. For example, the partial shading conditions samples 

shown in Figure 6.26 are not categorized as low or high partial shading regions. Thus, it is not applicable 

to divide the partial shading into two regions. Whereas, in a Fuzzy Logic system, it is applicable to 

differentiate between these regions (high and low partial shading regions) which are used in a set of rules 

incorporated within the fuzzy inference system as shown in Figure 6.27. 
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Table 6.4 Fuzzy Logic input regions  

Scenario Partial 

Shading % 

Min Voltage 

(V) 

Max Voltage 

(V) 

Min Power 

(W) 

Max Power 

(W) 

Fuzzy 

Classification 

System Region 

Partial Shading 

(PS) 

0 - 49% 1 1.2 1 2.4 1 

50 - 97.3% 1.1 1.4 2.1 28 2 

Faulty PV 

Module and PS 

0 - 49% 1.26 1.5 1.3 3 3 

50 - 97.3% 1.34 1.7 2.7 35 4 

2 Faulty PV 

Module and PS 

0 - 49% 1.67 1.95 1.8 4 5 

50 - 97.3% 1.76 2.26 3.5 47 6 

3 Faulty PV 

Module and PS 

0 - 49% 2.52 2.93 2.5 5.9 7 

50 - 97.3% 2.65 3.4 5.3 70 8 

4 Faulty PV 

Module and PS 

0 - 49% 5 5.9 5 12 9 

50 - 97.3% 5.3 6.8 10.6 141 10 

       

 
 

 

 

 

 

 

Figure 6.27 Adopted Sugeno and Mamdani Fuzzy Logic systems 
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After identifying the input variables VR and PR regions, it is required to set the rules for the Fuzzy Logic 

system interface. As shown in Figure 6.27, Mamdani Fuzzy Logic system consists of ten different 

membership functions (MF) which are described by the following: 

 MF1: Low PS affecting the PV system 

 MF2: High PS affecting the PV system 

 MF3: One faulty PV module and low PS affecting the PV system 

 MF4: One faulty PV module and high PS affecting the PV system 

 MF5: Two faulty PV modules and low PS affecting the PV system 

 MF6: Two faulty PV modules and high PS affecting the PV system 

 MF7: Three faulty PV modules and low PS affecting the PV system 

 MF8: Three faulty PV modules and high PS affecting the PV system 

 MF9: Four faulty PV modules and low PS affecting the PV system 

 MF10: Four faulty PV modules and high PS affecting the PV system 

The Mamdani based system architecture is using the Max-Min composition technique with a centroid 

type defuzzification process. 

Similarly, the Fuzzy Logic rules obtained for the Sugeno type Fuzzy Logic interface are equal to 10 as 

shown in Figure 6.27. Each rule presents the same rule as described in the Mamdani Fuzzy Logic system. 

The Sugeno based system architecture is using the Max-Min composition technique with a centroid type 

defuzzification process. 

It is worth pointing out that a high number of Fuzzy Logic rules ensure both completeness and 

appropriate resolution of the fault detection accuracy. However, a high number of fuzzy rules may lead to 

an over parameterized system, thus reducing generalization capability and accuracy of detection of the 

type of the fault occurring in the examined PV system.  

Therefore, the number of fuzzy rules depends on the number of input variables, system performance, the 

execution time and the membership functions. In this section, ten Fuzzy Logic rules were decided upon 

according to a sensitivity analysis made by varying the number and type of the rule. A satisfactory level 

of performance was obtained after a tuning process, i.e. starting from faulty PV module only and 

progressively modifying the fuzzy system to detect all possible faults that may occur in the PV plant 

according to the faults types listed in Table 6.3. 
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Both Fuzzy Logic systems rules are based on: if-then statement. The fuzzy rules are listed as the follows: 

 1. If (Voltage-Ratio is 1) and (Power-Ratio is 1) then (Type-of-Fault-Detected is 1) (1)  

 2. If (Voltage-Ratio is 2) and (Power-Ratio is 2) then (Type-of-Fault-Detected is 2) (1)  

 3. If (Voltage-Ratio is 3) and (Power-Ratio is 3) then (Type-of-Fault-Detected is 3) (1)  

 4. If (Voltage-Ratio is 4) and (Power-Ratio is 4) then (Type-of-Fault-Detected is 4) (1)  

 5. If (Voltage-Ratio is 5) and (Power-Ratio is 5) then (Type-of-Fault-Detected is 5) (1)  

 6. If (Voltage-Ratio is 6) and (Power-Ratio is 6) then (Type-of-Fault-Detected is 6) (1)  

 7. If (Voltage-Ratio is 7) and (Power-Ratio is 7) then (Type-of-Fault-Detected is 7) (1)  

 8. If (Voltage-Ratio is 8) and (Power-Ratio is 8) then (Type-of-Fault-Detected is 8) (1)  

 9. If (Voltage-Ratio is 9) and (Power-Ratio is 9) then (Type-of-Fault-Detected is 9) (1)  

 10. If (Voltage-Ratio is 10) and (Power-Ratio is 10) then (Type-of-Fault-Detected is 10) (1)  

The output surfaces for Mamdani and Sugeno systems are plotted and represented by a 3D curves as 

shown in Figures 6.28a and 6.28b respectively. Where the x-axis presents the PR ratio, y-axis presents the 

VR ratio, and the fault detection output is on the z-axis. 

 
(a) 

 

(b) 

Figure 6.28 Fuzzy Logic systems classifier output surfaces. (a) Mamdani Fuzzy Logic 

system, (b) Sugeno Fuzzy Logic system 
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     Table 6.5 PV system under various faults 

Scenario # Start 

time 

End 

time 

Condition applied to the PV system Number of samples applied 

to the ANN network 

1 5:45 5:57 Sleep mode - 

2 5:58 6:59 Normal operation mode - 

3 7:00 7:59 20% partial shading 60 

4 8:00 8:59 Faulty PV module and 20% partial shading 60 

5 9:00 9:59 Faulty PV module and 40% partial shading 60 

6 10:00 10:59 Normal operation mode - 

7 11:00 11:59 2 Faulty PV modules and 30% partial shading 60 

8 12:00 12:59 30% partial shading 60 

9 13:00 13:59 4 Faulty PV modules only 60 

10 14:00 14:59 3 Faulty PV modules and 20% partial shading 60 

11 15:00 15:59 3 Faulty PV modules only 60 

12 16:00 17:57 Normal operation mode - 

13 17:58 19:00 Sleep mode - 

 Sum: 480 

  

 

 

 

6.3.5 Performance evaluation for the proposed AI PV fault detection algorithms 

In order to test the effectiveness of the proposed fault detection algorithm, a number of experiments were 

conducted. Furthermore, the data used for training the ANN networks previously shown in Figure 6.26 

are not used in the evaluation process. Table 6.4 shows a full day experimental scenarios which are 

applied to the PV plant, where the perturbation process made to the PV system is shown in Figure 6.29a. 

Each scenario lasts for an hour and it contains a different condition applied to the PV system. 

As can be seen, the data samples for both sleep and normal operation modes are not included in the 

evaluation process of the machine learning techniques, since both scenarios can be detected using the 

mathematical regions explained in Figure 6.24. All other samples are used to evaluate the ANN networks, 

where all samples are independent of the ANN networks training data. 
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Scenarios 3-5 and 7-11 are evaluated by the ANN network and the Fuzzy Logic systems, where the total 

number of samples for the faulty conditions is equal to 480. A comparison between the theoretical output 

power vs. measured output power of the PV system during the tested faulty conditions is shown in Figure 

6.29b. 

 

(a)

(b) 

Figure 6.29 (a) Perturbation process made to test the PV system, (b) Theoretical output 

power vs. measured output power for all tested scenarios  
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6.3.5.1 Evaluating the proposed ANN networks 

In order to verify the performance of the proposed ANN networks, the voltage and power ratios of 480 

samples illustrated in Table 6.5 have been used as an input for each ANN network shown previously in 

Figure 6.25. The obtained results using each ANN network are shown in Figures 6.30 and 6.31. 

The cells of each matrix with red and green colors present the percentage of faults correctly and not 

correctly classified by the ANN network respectively. The fault classification number, fault type and 

number of samples for each examined ANN network are shown in Table 6.6. The grey blocks represents 

the total percentage of the detection accuracy in the column and row respectively. 

In order to understand how to read the confusion matrices shown in Figure 6.30, the first confusion matrix 

(Figure 6.30a) will be explained. In this figure, the first five diagonal cells show the number and 

percentage of correct classifications by the trained network. For example, 118 samples for F1 (fault type, 

shown in Table 6.6), are correctly classified. This corresponds to 24.6% of all tested samples (480 

sample). Similarly, 30 samples are correctly classified as F2, this corresponds to 6.3% of all 480 samples. 

In row 1, one sample is incorrectly classified as F1 although it is actually classified as F3, this 

corresponds to 0.2% of all 480 samples. Similarly, 2 samples of F5 are incorrectly classified as F1 and 

this corresponds to 0.4% of all 480 samples. Furthermore, in row 2, 30 samples are correctly classified as 

being F2, this corresponds to 6.3% of all 480 samples. 

 

                  

                                          (a)                                                                                       (b)                                             

Figure 6.30 Classification confusion matrices for the examined ANN networks.  (a) 2 

Inputs, 5 outputs using 1 hidden layer, (b) 2 Inputs, 5 outputs using 2 hidden layers,  
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         Table 6.6 Faults detected by the ANN networks  

ANN network Fault 

number 

Type of the fault Number of 

samples 

ANN network 1 and 

2 as shown in Figures 

6.31a and 6.31b 

respectively 

F1 PS affecting the PV system 120 

F2 1 Faulty PV module & PS affecting the PV module 120 

F3 2 Faulty PV modules & PS affecting the PV module 60 

F4 3 Faulty PV modules & PS affecting the PV module 120 

F5 4 Faulty PV modules & PS affecting the PV module 60 

 

 

ANN network 3 and 

4 as shown in Figures 

6.31c and 6.31d 

respectively 

F1 PS affecting the PV system 120 

F2 1 Faulty PV module 0 

F3 2 Faulty PV modules  0 

F4 3 Faulty PV modules  60 

F5 4 Faulty PV modules  60 

F6 1 Faulty PV module & PS affecting the PV module 120 

F7 2 Faulty PV modules & PS affecting the PV module 60 

F8 3 Faulty PV modules & PS affecting the PV module 60 

F9 4 Faulty PV modules & PS affecting the PV module 0 

    

 
 

 

Out of 121 sample which correspond to row 1, 97.5% are correct and 2.5% are wrong.  Out of 120 

samples corresponds to column 1, 98.3% are correct and 1.7% are classified incorrectly. For row 2, all 

samples have been classified correctly, 100%. However, for column 2, out of 120 samples, 25% are 

correct and 75% are incorrect.  

The overall detection accuracy of the confusion matrix could be calculated using the diagonal cells as the 

following: 

1st cell (24.6%) + 2nd cell (6.3%) + 3rd cell (10.2%) + 4th cell (17.3%) + 5th cell (11.9%) = 70.2% 

70.2% corresponds to the percentage of correctly classified samples (out of all tested samples, 480 

sample). And 29.8% correspond to incorrectly classified samples. 

From the obtained results in Figure 6.30a, the minimum detection accuracy is associated with column 2, 

where 75% of the samples are incorrectly classified. This situation occurred when 3 faulty PV modules 

and PS affecting the PV module (F3) is classified as F2. 

Similar results are obtained with the second ANN network (contains 2 outputs and 2 hidden layers) 

shown in Figure 6.30b. The percentage of the error in identifying F3 is increased to 83.3%, shown in 

column 2. However, the overall detection accuracy of the second ANN network is increased to 77.7% 

comparing to 70.2% obtained by the first ANN network. This increase in the detection accuracy is due to 

the second hidden layer which enables more training and validation for the trained samples of the ANN 

network before the testing phase (Mahmoud Dhimish et al., 2018).  
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As can be noticed, ANN networks one and two have low overall detection accuracy. As mentioned earlier 

in section 6.3.3, this challenge was solved by adding new type of faults for the ANN network that allows 

the ANN model to detect faulty PV modules only (no PS on the entire PV plant).  

Figure 6.31a describes the output classification confusion matrix of the third ANN network (contains 9 

outputs and 1 hidden layer). The overall detection accuracy of the ANN network is equal to 87.5% where 

the highest error is associated with F7 (row 7). This fault is related to the samples of F7 which are 

classified as F8. This situation occurred when two faulty PV modules with high PS condition is detected 

by the ANN network as three faulty PV modules with low PS condition affecting the entire PV system.  

The last ANN network contains 2 inputs, 9 outputs and 2 hidden layers has the highest overall detection 

accuracy which is equal to 92.1%. This ANN network detects accurately 442 samples out of 480 samples, 

this results is shown in Figure 6.31b.  

 

             

          

                                         (a)                                                                                  (b)                                             

Figure 6.31 Classification confusion matrices for the examined ANN networks. (a) 2  

Inputs, 9 outputs using 1 hidden layer, (b) 2 Inputs, 9 outputs using 2 hidden layer  
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   Table 6.7 PV system 2 under various faults 

Scenario # Start 

time 

End 

time 

Condition applied to the PV system Number of samples applied 

to the ANN network 

1 5:45 5:57 Sleep mode - 

2 5:58 6:59 Normal operation mode - 

3 7:00 7:59 30% partial shading 60 

4 8:00 8:59 1 faulty PV module 60 

5 9:00 9:59 2 Faulty PV modules 60 

6 10:00 10:59 Normal operation mode - 

7 11:00 11:59 1 faulty PV module and 90% partial shading 60 

8 12:00 12:59 2 faulty PV modules and 10% partial shading 60 

9 13:00 13:59 3 faulty PV modules and 20% partial shading 60 

10 14:00 14:59 4 faulty PV modules and 20% partial shading 60 

11 16:00 17:57 Normal operation mode - 

12 17:58 19:00 Sleep mode - 

 Sum: 420 

  

 

 

 

6.3.5.2 Evaluating the last ANN network using the second PV plant   

In the previous section, the ANN detection algorithm has been evaluated using various ANN models, 

where the last model containing 2 inputs, 9 outputs using 2 hidden layers has the maximum detection 

accuracy. The ANN network attained the highest detection accuracy using 7 neurons. Appendix D shows 

the results of the ANN network using 2 to 9 neurons. In addition, Appendix E shows the MATLAB code 

of the ANN model (Mahmoud Dhimish et al., 2018). 

Since the last ANN model achieved the highest detection accuracy, this ANN model will be evaluated 

using the second PV plant installed at the University of Huddersfield. Various types of faults have been 

examined. The list of faults is shown in Table 6.7. The theoretical output power vs. the measured output 

power of the PV plant is shown in Figure 6.32. 
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The ANN network output confusion matrix are shown in Figures 6.33 and 6.34. The presented ANN 

confusion matrix are evaluated using various neurons numbers. As can be noticed, the detection accuracy 

achieved by all examined neurons is relatively high. Still the highest detection accuracy is achieved by the 

ANN network that has 7 neurons (Detection accuracy 91.9%). 

This outcome matches the results shown in the previous section. However, the detection accuracy 

dropped by 0.2%: 

92.1% - 91.9% = 0.2% 

In conclusion, this section confirms the high accuracy of the proposed ANN network using the evaluation 

of the last ANN model on a different PV plant. There is still a drop in the detection accuracy of the 

proposed ANN model. The reason for the drop in the detection accuracy is the percentage of the tolerance 

associated with the voltage and current sensors used in the PV site. This will affect the measured data, and 

will decrease the overall detection accuracy of the ANN network.  

The best ANN network with 8 neurons achieved the maximum detection accuracy. However, it is also 

possible to use an ANN network with less or more neurons, because as evident from the conducted results 

shown in Figures (6.33) and (6.64), the minimum achievable fault detection accuracy is equal to 88.8%.   

 

Figure 6.32 Theoretical output power vs. measured output power for all tested scenarios  
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                                   (a)                                                                            (b)

 

                                   (c)                                                                            (d)  

Figure 6.33 Classification confusion matrices for the examined ANN network. (a) 2 neurons,              

(b) 3 neurons, (c) 4 neurons, (d) 5 neurons   
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                                   (a)                                                                            (b)

 

                                   (c)                                                                            (d)  

Figure 6.34 Classification confusion matrices for the examined ANN network. (a) 6 neurons,              

(b) 7 neurons, (c) 8 neurons, (d) 9 neurons 
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6.3.5.3 Evaluating the proposed Fuzzy Logic systems 

In order to test the effectiveness of the proposed Fuzzy Logic systems (Mamdani and Sugeno), the faulty 

samples shown previously in Table 6.5 have been processed in each fuzzy system. 

- Mamdani Fuzzy Logic system: 

Figure 6.35a shows the output membership function vs. the faulty samples (480) processed by Mamdani 

Fuzzy Logic system. Each faulty PV condition is labelled on the figure. As an example, case 3 presents 

20% partial shading condition affecting the PV module. For this particular PV faulty scenario, the output 

of the fuzzy system is equal to 0.5, which is the region of PS condition illustrated in Figure 6.35b. 

Similarly, cases 4 and 5 present a faulty PV module with 20% and 40% PS respectively. Both cases are 

within the same membership function region due to the low PS condition affecting the PV modules, this 

situation is labeled as case 4 and case 5 in both Figures 6.34a and 6.34b. 

Figure 6.34 shows that all tested faulty conditions are accurately detected by Mamdani Fuzzy Logic 

system. However, between case 7 and case 8 there is a small amount of error in detecting the region of the 

fault, the same result occurring between case 8 and case 9.  

This situation occurs due to the high number of faulty regions identified by the fuzzy system. 

Additionally, voltage and power ratios strongly depend on the performance of the voltage and current 

sensors used to detect the change in the PV parameters (voltage, current and power). Therefore, the Fuzzy 

Logic system might need extra seconds to start detecting the exact fault occurring in the PV installation. 

 

- Sugeno Fuzzy Logic system: 

Figure 6.36a shows the output membership function vs. the faulty samples for Sugeno Fuzzy Logic 

system. Each faulty PV condition is labelled on the figure. As an example, case 7 presents two faulty PV 

modules and low partial shading condition affecting the PV plant. For this particular PV faulty scenario, 

the output of the fuzzy system is equal to 5, which is the region of PS condition illustrated in Figure 

6.36b. 

Similarly, cases 10 and 11 represent three faulty PV modules with 20% and 0% PS respectively. Both 

cases are within the same membership function region due to the low PS condition affecting the PV 

modules. This situation is labeled as case 10 and case 11 in both Figures 6.35a and 6.35b. 
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From the obtained results by the Sugeno Fuzzy Logic system, all examined faulty conditions are 

accurately detected. However, between case 7 and case 8 there is a small amount of error in detecting the 

region of the fault. 

This section presents the performance of the Fuzzy Logic systems developed for detecting faulty 

conditions in the tested PV system. Both Fuzzy Logic systems show accurate results in detecting various 

faults comparing to the results obtained by the ANN network, which has a maximum detection accuracy 

equals to 92.1%.  

 
(a) 

 

(b) 

 

Figure 6.35 Output results using Mamdani Fuzzy Logic system. (a) Membership functions vs. number of 

samples, (b) Membership functions explained previously in section 6.3.4 vs.  type of fault  
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(a) 

 

(b) 

Figure 6.36 Output results obtained using Sugeno Fuzzy Logic system. (a) Membership functions vs. 

number of samples, (b) Membership function explained previously i n section 6.3.4 vs. type of fault  
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7.4 Summary 

This chapter describes the development of multiple PV fault detection methods using AI techniques 

including Mamdani Fuzzy Logic, Sugeno Fuzzy Logic, and artificial neural networks. Several methods 

have been studied and analysed using various PV array structure. 

A summary for the proposed methods is shown in Figure 6.37. 

 

The Fuzzy Logic system increases the detection accuracy of PV fault detection algorithm from 94.74% to 

99.12%. On the other hand, four ANN networks have been compared where the highest detection 

accuracy (92.1%) is achieved using the last ANN network (2 inputs, 9 outputs using 2 hidden layers). 

In the next chapter, the output power of PV hot spotted solar cells will be enhanced using two techniques. 

Additionally, the analysis of PV micro cracks including diagonal, parallel to busbars, and perpendicular to 

busbars cracks will be discussed. 

 

 

Figure 6.37 Overall proposed PV fault detection algorithms  
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Chapter 7 PV Hot Spot and Micro Cracks 

 

In chapters 5 and 6, the fault detection algorithms based on various techniques have been introduced. 

However, there are different types of faults occurring in PV systems, which cannot be identified by 

previously discussed algorithms such as hot spots and micro cracks. There is not enough scientific 

evidence for the faults causing hot spots. However, the authors (R. Moreton et al., 2015) demonstrated 

that dust and humidity are two reasons which cause hot spots in PV modules. In addition, (K. Kim & P. 

Krein, 2015) confirmed that the fluctuations of the temperature cause hot spots in PV modules.  Some 

preliminary work has been completed to address hot spots and micro cracks issues.  

This chapter focuses on the development of novel techniques to enhance the output power performance of 

hot spotted PV solar cells. Additionally, a statistical analysis approach for identifying the impact of PV 

micro cracks on the output power of PV modules will be described. 

This data presented in this chapter have been published in the following articles (M Dhimish et al., 2017; 

M Dhimish et al., 2017a; M Dhimish et al., 2017b).    

7.1 PV hot spots 

Hot spotting is a reliability problem in photovoltaic (PV) panels where a mismatched cell heats up 

significantly and degrades PV panel output power performance. High PV cell temperature due to hot 

spotting can damage the cell encapsulate and lead to second breakdown, where both cause permanent 

damage to the PV panel. Therefore, in this section a comparison between two hot spot mitigation 

techniques is performed using a simple, costless and reliable method. 

7.1.1 Examined PV modules 

PV modules installed in PV plant A, described in Appendix A will be used to examine and evaluate the 

performance of the proposed hot spot mitigation techniques. In order to inspect the PV modules, i5 FLIR 

thermal image camera has been used (INSRUMENTS, 2013). In addition, I-V curve analysis for the 

tested PV modules is carried out using I-V curve tracer.  

I-V curve tracer was also used to plot the I-V curve of the examined PV modules under various 

experimental conditions. The main specification, including the voltage resolution, and current resolution 

can be seen in Figure 7.1. As can be noticed, the error in the measured PV voltage, PV current, solar 

irradiance and PV module temperature is very limited due to the high accuracy of the I-V tracer 

(Solmetric, 2016). The overall structure of the proposed PV inspection method is shown in Figure 7.1. 
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Figure 7.1 Structure and instruments used to examine the hot spotted PV modules  
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7.1.2 Evaluating the PV I-V curve tracer and i5 FLIR thermal camera 

In this section, the output results of the I-V curve tracer shown in Figure 7.1 will be evaluated using 

various environmental conditions affecting a PV module. 

Figure 7.2 shows three different I-V curves obtained under high, medium, and low irradiance levels. The 

theoretical MPP and measured MPP at each environmental condition are shown in Figure 7.2. The 

accuracy of the I-V curve tracer is equal to: 

 High irradiance level: (185.60 / 186.382) x 100 = 99.58% 

 Medium irradiance level: (107.79 / 108.299) x 100 = 99.53% 

 Low irradiance level: (30.409 / 30.5991) x 100 = 99.38% 

As can be noticed, the accuracy of the measured MPP and I-V curves is nearly equal to the theoretical 

data, where the average accuracy in the measured data is equal to 99.5%. 

The investigation of the hot spots in the examined PV system was carried out using FLIR i5 thermal 

camera as shown in Figure 7.1. This camera has a thermal sensitivity equal to 0.5 0C, where its 

specification is described earlier in section 7.1.1. 

A test was carried out using a PV module affected by one hot spotted solar cell. The thermal image of the 

examined PV module is shown in Figure 7.3a. The temperature of the hot spotted solar cell is equal to 

21.1 0C. However, the temperature of the adjacent solar cells is 16.4 0C. 

 

 

Figure 7.2 I-V curve tracer output results for various irradiance levels  

 

 



 

 

 197 

 

The I-V curve of the hot spotted PV module is compared with healthy PV module (PV module without 

hot spots). The result is shown in Figure 3.8b. The MPP for a PV module without hot spots is equal to 

121.61 W. However, the MPP for hot spotted PV module is equal to 115.83 W. Therefore, the power loss 

due to the hot spot in the examined PV module is equal to 5.78 W.  

This experiment was conducted under 621 W/m2 solar irradiance and the PV modules temperature is 

approximately equal to 18.2 0C. According to the measured data in Figure 7.2, the average accuracy of the 

I-V curve tracer is equal to 99.5%. Therefore, the measured data illustrated in Figure 7.3b have an error in 

the measurements equal to ±0.5%. 

 
(a) 

 

(b) 

Figure 7.3 (a) Hot Spot detection using i5 FLIR thermal camera, (b) Output I-V curves 

using healthy PV module vs. hot spotted PV module  
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7.1.3 Proposed hot spot mitigation techniques 

The first proposed hot spot mitigation technique is connected to each PV string in the PV module. The 

tested PV module bypass diodes shown in Figure 7.4a will be replaced by six MOSFETs as shown in 

Figure 7.4b. 

Two MOSFETs were connected to each PV string in the PV module. Switch 1 is in series with the PV 

string and is normally “on”; it opens when a hot spot condition is detected to prevent further hot spotting. 

While, switch 2 is in parallel with the PV string and it is normally in “open” mode, it turns “on” to allow 

a bypass current path when the PV string is open circuited. 

Another hot spot mitigation technique was used with the PV module instead of the connection for each 

MOSFET to the PV strings as shown in Figure 7.4c. The same concept has been applied, where switch 1 

is in series with the PV module is normally “on”; it opens when a hot spot condition is detected to prevent 

further hot spotting. Switch 2 is in parallel with the PV module and is normally “open”; it turns “on” to 

allow a bypass current path when the PV string is open circuited.  

As can be noticed, the proposed PV hot spot mitigation techniques are simple to implement, since it only 

required to add additional MOSFETs for the hot spotted PV module.  

Power MOSFETs IRFZ44V (IRFZ44V, 2013) were used to implement and test the suggested hot spot 

mitigation techniques. The MOSFETs drain-to-source breakdown voltage is equal to 60 V, and the 

voltage drop in drain-to-source is as low as 50 mV. Hence, the selection of the MOSFETs plays an 

important role in the mitigation techniques. Therefore, the following MOSFET criteria must be met: 

 Low drain-to-source voltage drop: better results in the I-V curve 

 Fast switching speed: to enable fast drop in the temperature of the hot spotted solar cell  

 Low on-resistance: low resistance means more current passes through the PV string 

 High operating temperature 

 Cost effective 

The cost of the used MOSFETs is equal to £0.85. Therefore, the total cost for the first and second 

proposed techniques using 3 PV modules is equal to £18 and £5.10 respectively. 

It is worthy to note that both proposed mitigation techniques should be placed with the hot spotted PV 

solar module after it has been inspected by the thermal imaging. This is one of the disadvantages of the 

proposed mitigation techniques. In the next section, the validation and comparison between both 

presented hot spot mitigation techniques will be described. 
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                   (a)             (b) 

 

 

 

 

Figure 7.4 (a) The structure of the PV string for the examined PV module, (b) First hot spot 

mitigation technique, (c) Second proposed hot spot mitigation technique  
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7.1.4 Validating the proposed PV hot spot mitigation techniques 

In this section the validation for both proposed hot spot mitigation techniques will be done using two case 

studies. The first will focus on the I-V curve analysis. Whilst the second case study will focus on partial 

shading condition enhancement. 

7.1.4.1 PV hot spot and I-V curve analysis 

There are several stages that have been assessed during the operation of the proposed hot spotting 

mitigation techniques. These stages are described as follows: 

Hot spot mitigation technique 1: 

The results obtained by the first mitigation technique are shown in Figure 7.5a. The results can be 

described by the following: 

 Before the activation, the temperature of the hot spotted PV solar cell is equal to 21.1 0C, while 

the adjacent (reference) solar cell temperature is equal to 16.4 0C.  

 1 minute after the activation, the temperature of the hot spotted PV solar cell reduced to 20.4 0C, 

the difference between the hot spotted PV solar cell and the reference solar cell temperature is 

equal to 4 0C. 

 2 minutes after the activation: the maximum temperature for the hot spotted PV solar cell is 

reduced to 19.5 0C, compared to 21.1 0C before the activation of the mitigation technique. 

Hot spot mitigation technique2: 

The results obtained by the first mitigation technique are shown in Figure 7.4b. The results can be 

described by the following: 

 Before the activation, the temperature of the hot spotted PV solar cell is equal to 21.5 0C, while 

the adjacent (reference) solar cell temperature is equal to 16.5 0C.  

 1 minute after the activation: the temperature of the hot spotted PV solar cell reduced to 19.1 0C, 

the difference between the hot spotted PV solar cell and the reference solar cell temperature is 

equal to 2.6 0C. 

 2 minutes after the activation: the maximum temperature for the hot spotted PV solar cell is 

reduced to 18.3 0C, compared to 21.5 0C before the activation of the mitigation technique. 
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(a) 

 

(b) 

Figure 7.5 (a) Output thermal images for the first hot spot mitigation technique, (b) Output 

thermal images for the second hot spot mitigation technique  
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The main reason for the proposed hot spotting mitigation techniques is to improve the output power 

performance of the examined hot spotted PV module. The value of the power before and after the 

activation for each proposed technique was monitored in three different irradiance levels: high irradiance 

level: 840 W/m2, medium irradiance level: 507 W/m2 and low irradiance level: 177 W/m2, while in all 

tested scenarios, the PV temperature is approximately equal to 16.2 oC. 

Figure 7.6a shows the output I-V curve of the PV module at high irradiance level. The measured output 

power after the activation of the 1st proposed technique has a power loss equals to 3.94 W compared to 

5.19 W with no mitigation technique installed in the PV module. However, power loss is minimized while 

activating the 2nd hot spot mitigation technique (Ploss = 1.23 W). 

The output I-V curves of the examined PV module under medium and low irradiance levels are shown in 

Figures 7.6b and 7.6c respectively. The output results show a significant improvement in the output 

power using the 2nd mitigation technique compared to the 1st technique. Table 7.1 demonstrates a 

comparison between the output results for each examined irradiance level.  

In conclusion, this section shows the validation and the enhancement of the temperature and the output 

power generated by the PV module using both proposed hot spot mitigation techniques. Technique 2 has 

a better output power performance compared to the 1st proposed mitigation technique. 

Table 7.1 Comparison between the first and second proposed hot spot mitigation 

technique using high, medium and low irradiance levels 

Irradiance 

(W/m2) 

Theoretical 

Power (W) 

Case 

Scenario 

Voltage 

(V) 

Current 

(A) 

Power 

(W) 

Ploss 

(W) 

Efficiency 

(%) 

 

High 

840 

 

 

186.4 

No 

mitigation 

27.19 6.66 181.18 5.19 97.2 

1st 

Technique 

27.49 6.63 182.44 3.94 97.88 

2nd 

Technique 

28.33 6.53 185.15 1.23 99.33 

 

Medium 

507 

 

 

108.2 

No 

mitigation 

26.00 4.02 104.54 3.63 96.64 

1st 

Technique 

26.23 4.00 105.15 3.02 97.20 

2nd 

Technique 

27.21 3.94 107.26 0.91 99.15 

 

Low 

177 

 

 

34.4 

No 

mitigation 

23.73 1.39 33.02 1.37 95.99 

1st 

Technique 

24.24 1.38 33.49 0.91 97.33 

2nd 

Technique 

24.94 1.36 34.01 0.39 98.85 
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(a) 

 

 
(b) 

 

 

(c) 

 

Figure 7.6 Photovoltaic I-V curve analysis. (a) Before and after considering the hot spot mitigation 

techniques, G: 840 W/m2, (b) Before and after considering the hot spot mitigation techniques, G: 507 

W/m2 , (c) Before and after considering the hot spot mitigation techniques, G:177 W/m2  
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7.1.4.2 PV partial shading condition using the proposed hot spot mitigation techniques 

The main purpose of this section is to demonstrate the ability of the proposed hot spot mitigation 

techniques to increase the output power of a PV module during partial shading conditions affecting a PV 

module. 

In order to test the ability of the proposed hot spot mitigation techniques, another experimental test has 

been carried out on a PV module with partially shaded solar cell. Figure 7.7 shows an image of the 

examined PV module under shaded solar cell using opaque paper. The PV module was experimented on 

under an irradiance level equal to 784 W/m2.  

The first test was carried out using the activation of the first proposed hot spot mitigation technique. 

Figure 7.8a shows the thermography image of the shaded solar cell before and after the activation of the 

1st hot spot mitigation technique.  

Before the activation, the temperature of the shaded solar cell is equal to 19.2 0C. The solar cell 

temperature decreases to a minimum value of 17.7 0C after the activation of the hot spot mitigation 

technique. This decrease in the value of the temperature will guarantee an increase in the output power 

produced by the PV module. As illustrated in Figure 7.9a, the output power before and after the activation 

is equal to 171.787 W and 172.508 W respectively. Thus, the total increase in the output power is equal to 

0.721 W. 

The second test used the activating of the second proposed hot spot mitigation technique. Figure 7.8b 

shows the thermal images of the shaded solar cell before and after activating the mitigation technique. 

The difference in the temperature of the shaded solar cell is equal to:   

(No mitigation) 21.7 0C – (After activating the 2nd hot spot mitigation technique) 18.5 0C = 3.10C 

 

Figure 7.7 Image of the tested PV module under shaded solar cell using opaque paper 

object 
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This decrease in the temperature of the shaded solar cell guarantee an increase of the measured maximum 

power point of the PV module. Figure 7.9b describes that the total increase in the output measured power 

is equal to 1.689 W after the activation of the proposed second hot spot mitigation technique. 

In conclusion, this section demonstrates that both proposed hot spot mitigation techniques are useful in 

case a partial shading condition has occurred in the PV module. An enhancement of the temperature and 

output power of the PV module is guaranteed. The second proposed hot spot mitigation technique shows 

better performance compared to the 1st technique. 

 
 

              (a)                                                                                (b) 

 

Figure 7.8 (a) Thermographic images of the shaded PV solar cell before and after the 

activation of the first hot spot mitigation technique, (b) Thermographic images of the 

shaded PV solar cell before and after the activation of the second hot spot mitigation 

technique 
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(a) 

 
 

(b) 

 

Figure 7.9 Photovoltaic output I-V curves. (a) Before and after activating the first hot spot mitigation 

technique, (b) before and after activating the second hot spot mitigation technique  
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7.1.5 Evaluating the 2nd proposed hot spot mitigation technique using a string of PV 

modules 

In the previous section, the 2nd PV hot spot mitigation technique shows a better enhancement in the PV 

output power compared to the 1st technique. In this section, the proposed 2nd hot spot protection 

mitigation technique will be activated while connecting the PV module which is affected by a hot spot in 

series with two PV modules as shown in Figure 7.10. 

Figure 7.10 shows that the I-V curve tracer has three output I-V curves, where I-V curve 1 is associated to 

the hot spotted PV module. The duration for activating the hot spot mitigation technique is equal to 2 

minutes. This short period ensures that the I-V curves and measured output power for each examined PV 

module do not change rapidly due to the impact of the thermal effect of the PV module which are not 

directly related to the hot spot itself. 

Figure 7.11a shows the I-V curves for each examined PV module with and without the hot spot mitigation 

technique. As can be seen, the second and third PV module I-V curves which are presented by I-V curve 

2 and I-V curve 3, respectively, do not change during the experiment. However, the I-V curve 1 changes 

after the activation of the hot spot mitigation technique. 

The output power after activating the mitigation technique for the hot spotted PV module is equal to 

164.39 W, while without activating the hot mitigation technique, the output power is equal to 160.85 W. 

Figure 7.11b shows the I-V curves with and without the activation of the hot spot mitigation technique for 

the entire PV string. The total increase of the measured power is equal to 3.57 W. 

 

 

Figure 7.10 Examined PV String Connection  
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(a)

 

(b) 

Figure 7.11 (a) I-V curves for the examined PV modules under solar irradiance 760 W/m2,  

(b) I-V curve for the entire PV array with and without the activation of the 2nd  hot spot 

mitigation technique 
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In fact, MOSFETs add additional series loss due to their operation, this loss is due to “MOSFET Drain to 

Source ON Resistance (Rds(on))”. Therefore, it is extremely important to select for the hot spot mitigation 

technique a suitable MOSFET which has low Rds(on). 

Figure 7.12a show the theoretical circuit diagram of a PV module. The PV module has an extra series 

resistance due to the MOSFET connection which is described in Figure 7.12b. 

In this section, IRFP260NPBF MOSFET Transistor has been used(IRFP260NPBF, 2013) which has an 

Rds(on) of 40 mΩ. The cost of the MOSFET is approximately £2.15. A real image of the MOSFET is 

shown in Figure 7.12c. 

Due to the additional series loss of the MOSFET, the I-V curve under STC has been conducted for the 

examined PV module. Figure 7.13 proves that the maximum power without MOSFET under STC is equal 

to 220 W. However, after the connection of the MOSFET, the maximum power is equal to 219.72W, thus 

the power loss is 0.28 W per PV module. 

This loss is very small compared to the measured power loss of a hot spotted PV module, which is found 

to be 3.6 W. Therefore, this technique provides a simple and reliable solution to mitigate hot spots in PV 

plants. In addition, the mitigation technique including MOSFETs can only be added to the hot spotted PV 

modules. However, it is required to localize the hot spotted PV modules using thermal image technique or 

any other suitable method. 

Iph

Is

Rsh

Rs

 
(a) 

 

Iph

Is

Rsh

Rs
Rds(on)

MOSFET On Resistance

0.04 Ω = 40 mΩ 

IRFP260NPBF -  MOSFET 
Transistor

 

                                                              (b)                                                               (c) 
 

Figure 7.12 (a) PV module theoretical circuit diagram, (b) PV module circuit diagram with 

hot spot mitigation technique, (c) IRFP260NPBF MOSFET Transistor 
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7.1.6 Evaluating the 2nd proposed hot spot mitigation using a full day experiment 

In order to judge the appropriateness of the proposed hot spot mitigation technique, the evaluation of the 

PV module with and without the mitigation technique was assessed. Figure 7.14a shows the measured PV 

power. As can be seen, the mitigation technique is activated every 3 hours, each lasts for 2 minutes, and 

therefore in this period the output measured power generated from the PV module is zero. However, the 

PV module is back at its optimum power level when switching “off” the hot spot protection mode. The 

average power without and with the hot spot mitigation technique is equal to 73.6 Wp and 76.4 Wp 

respectively. Thus, the average increase in the PV power for a period of full day is equal to 2.8 Wp. 

Similarly, Figure 7.14b shows the cumulative energy of the PV module with and without the hot spot 

mitigation technique. The cumulative energy of the PV module without the hot spot mitigation technique 

equals to 1.12 kWh. However, there is an increase of 0.03 kWh after using the hot spot mitigation 

technique. 

In conclusion, hot spots occur in PV modules due to various reasons such as the fluctuations of the PV 

temperature, humidity variations, and wind speed. In addition, manufacturing defects result a hot spot in 

PV solar cells. In this section, it was evident that the proposed hot spot mitigation technique enhanced the 

overall performance of a PV module with a total increase in the output energy 0.03 kWh per day 

(estimated yearly increase 0.03 x 365 = 10.95 kWh). 

 
 

Figure 7.13 PV module I-V curve with and without MOSFET 
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7.2 PV micro cracks 

This section will focus on the impact of PV micro cracks on the performance of PV modules. Both tested 

PV plants (shown in chapter 3) will be used to inspect micro cracks and the degradation impact on the 

output power of PV modules. The first PV plant consists of 10 PV modules with an optimum power 200 

Wp. The second PV plant consists of 35 PV modules with 130 Wp each. Parts of the examined PV plants 

are shown in Figures 7.15a and 7.15b. 

As presented in Figure 7.15c, a controlling unit is designed to allow the user to connect any PV module to 

a FLEXmax 80 MPPT. In order to facilitate a real-time monitoring for each PV module, Vantage Pro 

monitoring unit is used to receive the global solar irradiance measured by Davis weather station which 

includes pyranometer. Hub 4 communication manager is used to facilitate acquisition of modules 

temperature using Davis external temperature sensor, and the electrical data for each photovoltaic 

module. LabVIEW software is used to implement the data logging and monitoring functions of the 

examined PV modules. 

 

(a) 

 
(b) 

 

Figure 7.14 (a) Measured PV output power, (b) PV cumulative energy  
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                                     (a)        (b)                                          

 

 

(c) 

 

Figure 7.15 (a) 10 PV modules (SMT 6 (60) P); (b) 35 PV Modules (KC130 GHT -2); (c) 

Monitoring the examined PV systems using LabVIEW Software  
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7.2.1 Electroluminescence setup and PV modules cracks 

The electroluminescence (EL) setup is shown in Figure 7.16. The system is comprised of a light-tight 

black-box with housed inside is a digital camera and a sample holder. The digital camera is equipped with 

a standard F-mount 18–55 mm lens. To allow for detection in the near infrared, the IR filter was removed 

and replaced with a full spectrum window of equal optical path length.  

To capture PV micro cracks, Nikon D40 camera was used, but in principle any digital camera with similar 

grade CCD or CMOS sensor and where the IR filter can be removed would serve the purpose. The bias 

was applied and the resultant current and the voltage are measured by a voltage and current sensors which 

are connected to the personal computer (PC). 

In order to reduce noise and increase the accuracy, all EL images are processed by removing background 

noise and erroneous pixels. Firstly a background image is taken under the same conditions as the EL 

images but without forward biasing the cell. This background image is subtracted from each EL image in 

order to reduce noise. The images are cropped to the appropriate size and in the case of the high 

resolution imaging system cell images are compiled together to form an image of the entire module. 

Additionally, to increase the accuracy and the vision of the EL image, each PV module cell is captured 

separately because the EL image was captured using low cost camera – this is the only limitation in the 

used EL imaging setup. 

 

 

 

Figure 7.16 Electroluminescence experimental setup 
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To identify the bias voltage and the current which must be used to examine the PV module, the PV 

module main electrical characteristics must be identified. For example, the electrical characteristics for 

PV modules of PV plant B are shown in Table 3.1.  

The PV cells of the examined PV module was biased at various levels. The current bias ranges from a 

forward current of about 10% of the module Isc to just over 110% Isc.  

Figure 7.17 show EL image of a single PV cell at different bias levels. As can be seen, at low current 

levels, the solar cell has much lower intensity compared to a high bias level. However, the solar cell 

features become more prominent at higher bias levels which could potentially be related to the series 

resistance across the PV cells. 

 
 

Figure 7.17 EL image of a single PV cell at different bias levels  

 

 
 



 

 

 215 

 

 

Figure 7.19 Crack type distribution among both examined PV systems (45 PV Modules)  

 

 

Broken cells are sorted according to the type of crack. Figure 7.18 shows all examined crack types which 

are classified as the following: diagonal (+450), diagonal (- 450), parallel to busbars, perpendicular to 

busbars, Multiple directions crack. 

Broken cells are sorted according to the type of the crack. Based on the EL images taken from 45 

different PV modules, it was found that the distribution for a cell to be cracked is shown in Figure 7.19. 

Only 15% of the total PV modules have no cracks. However, 84% of the PV modules contains at least 

one type of the crack: diagonal (26%), parallel to busbars (20%), and perpendicular to busbars (8%) or 

multiple directions crack (28%). 

 
(a)                   (b)                    (c)            (d)     (e) 

Figure 7.18 EL images for various PV cracks. (a) Diagonal c rack (+450); (b) Diagonal 

crack (-450); (c) Parallel to busbars crack; (d) Perpendicular to busbars crack; (e) Multiple 

directions crack 
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7.2.2 Statistical analysis approach 

A statistical analysis approach is used to determine whether the PV crack has a significant impact on the 

total generated output power performance or not. Two statistical methods are used, T-test and F-test. The 

first method (T-test) is used to compare the simulated theoretical power with the measured PV output 

power. T-test can be evaluated using (7.1) where 𝑥  is the mean of the samples, 𝜇 is the population mean, 

n is the sample size and SD is the standard deviation of the entire data (Miller & Miller, 2005). 

The confidence interval for all measured samples is equal to 99%. Statistically speaking, the crack does 

not have a significant impact on the output power performance if the T-test value is significant, which 

means that the T-test value is less than or equal to 2.58 as shown in Table 7.2 (Miller & Miller, 2005). 

If the T-test value is not significant, another statistical method/layer is used to compare the output 

measured power from the cracked PV module with a PV module that has 0% of cracks. This layer is used 

to confirm that the output generated power of the cracked PV module has a significant impact (Real 

Damage) on the total generated output power performance of the examined photovoltaic module.  

The overall statistical approach is shown in Figure 7.20. The F-test is calculated using (7.2). The 

explained variance is calculated using between groups mean square value, the unexplained variance is 

calculated using within groups mean square value. 

Table 7.3 illustrates the expected output results from F-test using 99% (P=0.01) confidence interval. In 

this work, an infinite number of samples (total measured samples > 120) is used to determine whether the 

F-test value is significant (F-test ≤ 6.635) or not significant (F-test > 6.635). 

 

 

                                                             T =  
(x− μ)√n

SD
                                                           (7.1) 

 

F =  
Explained Variance

Unexplained Variance
           (7.2) 
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Figure 7.20 Statistical approach used to identify whether the crack type has a significant 

impact on the output power performance of a photovoltaic module  

 

 

 

Table 7.3 Statistical T-Test confidence interval (Miller & Miller, 2005) 

Value of t for Confidence Interval of Critical Value 

|t| for P Values of Number of Degrees of Freedom 

90 % 

(P=0.1) 

95% 

(P=0.05) 

99% 

(P=0.01) 

1 6.31 12.71 63.66 

20 1.72 2.09 2.85 

50 1.68 2.01 2.68 

∞ 1.64 1.96 2.58 

 

 

 

 

 

Table 7.2 Statistical F-Test critical values for 99% confidence interval (p=0.01) (Miller & 

Miller, 2005) 

Degree of Freedom (Measured Samples) Output F-test For a Significant Results 

1 4052.181 

120 4.787 

∞ 6.635 
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   Table 7.4 Diagonal cracks performance indicators 

Diagonal Crack Number of 

Effected Solar 

Cells 

Approximate Area Broken 

(mm) 

T-test 

Value 

Significant/Not 

Significant Effect on 

the PV Power 

Performance 

Fitted Line Regression Equation 

Short +450 

OR 

Short -450 

 

1 

 

1 mm2 – 83 mm2 

 

0.40 - 0.66 

 

Not Significant 

 

𝑃𝑇𝐻 = 0.1424 + 1.001 𝑃𝑀𝑒𝑎𝑠 

Long +450 

OR 

Long -450 

 

2 85.85 mm2 – 169.7 mm2 1.22 – 1.86 Not Significant 𝑃𝑇𝐻 = 0.2875 + 1.003 𝑃𝑀𝑒𝑎𝑠 

3 172.7 mm2 - 256.6 mm2 2.51 - 2.71 Significant 𝑃𝑇𝐻 = 0.5125 + 1.006 𝑃𝑀𝑒𝑎𝑠 

4 257. 5 mm2 - 344.4 mm2  2.65 – 2.70 Significant 𝑃𝑇𝐻 = 0.7034 + 1.008 𝑃𝑀𝑒𝑎𝑠 

5 345.1 mm2 – 424.3 mm2 3.12 – 3.35 Significant 𝑃𝑇𝐻 = 1.151 + 1.013 𝑃𝑀𝑒𝑎𝑠 

 

7.2.3 Results 

According to the statistical approach explained previously in Figure 7.20, T-test and F-test methods are 

significant based on a threshold values. Therefore, I have divided all crack-types into two main 

categories, Short: crack effects one solar cell in a PV module; Long: crack effects two or more solar cells 

in a PV module. 

Furthermore, fitted line regression is used for the entire measured PV crack-type data. A fitted regression 

represents a mathematical regression equation for the PV measured data. I have selected the fitted 

regression lines to illustrate the relationship between a predictor variable (Measured PV Power) and a 

response variable (Irradiance Level) and to evaluate whether the model fits the data.  

If the measured PV power data is very close to the fitted line regression model, there is a significant 

relationship between the predictor with the response variable 

7.2.3.1 Diagonal cracks 

The measured data which has been extracted from both diagonal crack categories indicate that there is a 

huge similarity in the measured output power performance for all examined PV modules containing +450 

and -450 diagonal crack.  Therefore, both categories are classified as one. 

Using the statistical analysis approach, the result of the T-test values for all examined PV modules (12 PV 

modules) containing diagonal cracks are shown in Table 7.4. Since the T-test value for a diagonal crack 

affecting 1 or 2 solar cells is less than 99% of the confidence interval threshold (2.58), the output power 

performance for the PV module is statistically not significant: No evidence for a real damage in the PV 

module. The F-test for a diagonal crack affecting 1 or 2 solar cells is equal to 4.55 and 5.67 respectively. 

The mathematical expressions for the fitted line regression are illustrated in Table 7.4. 
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Measured data for a full day were used to estimate the output power performance for a diagonal crack 

which affects 1 and 5 solar cells; the results are presented in Figure 7.21a. The theoretical simulated 

output power, which is calculated using LabVIEW software has a standard deviation equals to 61.46 

which is very close to the standard deviation for a diagonal crack that affects 1 solar cell (SD=61.38). 

However, a diagonal crack that affects 5 solar cells has a huge reduction in the output power performance 

of the PV module where the standard deviation is equal to 60.99.  

Figure 7.21b shows the power ratio for the examined diagonal cracks effects 1, 2, 3, 4 and 5 solar cells. 

The power ratio of the PV module affected by diagonal cracks can be classified as the following: 

 Diagonal crack affects 1 solar cell = 99.64% 

 Diagonal crack affects 2 solar cells = 99.23% 

 Diagonal crack affects 3 solar cells = 98.61% 

 Diagonal crack affects 4 solar cells = 98.09% 

 Diagonal crack affects 5 solar cells = 96.83% 

As can be seen, more diagonal cracks in the PV module resulting more degradation in the generated 

output power. 

The power ratio is estimated using (7.3). 

                                                    Power ratio =  
Meaured Output Power

Theoretical Output Power
 × 100%       (7.3) 
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(a) 

 

 

(b) 

 

Figure 7.21 (a) real-time long-term measured data for a diagonal crack affecting 1 and 5 solar cells, 

(b) Power ratio for a diagonal cracks affecting 1, 2, 3, 4 and 5 PV solar cells  
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Table 7.5 Parallel to busbars cracks performance indicators 

Crack Type Number of Affected 

Solar Cells 

Approximate Area Broken 

(mm) 

T-test 

Value 

Significant/Not 

Significant Effect on 

the PV Power 

Performance 

Fitted Line Regression Equation 

 

Parallel  

To Busbars 

Short 1 1 mm2 – 59.2 mm2 0.78 – 1.13 Not Significant 𝑃𝑇𝐻 = 0.3002 + 1.001 𝑃𝑀𝑒𝑎𝑠 

 

 

Long 

2 63 mm2 –  81 mm2 1.42 – 1.87 Not Significant 𝑃𝑇𝐻 = 0.3990 + 1.004 𝑃𝑀𝑒𝑎𝑠 

82 mm2 – 121 mm2 2.62 – 2.74  Significant 𝑃𝑇𝐻 = 0.6923 + 1.008 𝑃𝑀𝑒𝑎𝑠 

3 122 mm2 – 177 mm2 4.04 – 4.81  Significant 𝑃𝑇𝐻 = 0.9218 + 1.010 𝑃𝑀𝑒𝑎𝑠 

4 177.3 mm2 – 239.7 mm2 4.39 – 5.66 Significant 𝑃𝑇𝐻 = 1.3590 + 1.016 𝑃𝑀𝑒𝑎𝑠 

 

7.2.3.2 Parallel to busbars cracks 

As shown previously in Figure 7.19, parallel to the busbars cracks have a percentage of occurrence 20% 

(9 PV modules out of 45 examined PV modules) and they are listed as the following: 

 8% (4 PV modules): Short Crack Effect 

 11% (5 PV modules): Long Crack Effect 

Not all cracks parallel to busbars cracks have a significant impact/reduction on the output power 

performance of the PV modules. As shown in Table 7.5, parallel to busbars cracks effecting one solar cell 

statistically indicates that there is no real damage in the PV module. The result is confirmed by the T-test 

value which is less than the threshold value 2.58.  

Parallel to busbars cracks affecting two solar cells with approximate broken area less than 82mm2 have no 

significant impact on the amount of power generated by the PV module. Additionally, Table 7.5 shows 

the mathematical equations for the measured fitted line regression which describes the relationship 

between the theoretical and measured output power. 

Figure 7.22a presents the measured data for a parallel to busbars crack affecting one and four solar cells. 

The standard deviation for the theoretical simulated power is 62.01 which is very close to the standard 

deviation for a parallel to busbars crack affects one solar cell (61.8).  

However, parallel to busbars crack affecting five solar cells has a huge reduction in the output power 

performance of the PV module while the standard deviation is equal to 61.09.  

Figure 7.22b shows the power ratio for the examined parallel to busbars cracks effecting 1, 2, 3 and 4 

solar cells. The reduction of power estimated for a parallel to busbars crack effects one solar cell is 

between 0.75% - 0.97%. However, the estimated reduction of power for a parallel to busbars crack 

effecting three and four solar cells is between 2.39% - 3.0% and 3.67% - 4.55% respectively. 
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(a) 

 

 

(b) 

 

Figure 7.22 (a) Real-time long-term measured data for a parallel to busbars crack affecting 1 and 4 

solar cells, (b) Power ratio for parallel to busbars crack affecting 1, 2, 3 and 4 PV solar cells  
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7.2.3.3 Perpendicular to busbars cracks 

Perpendicular to busbars cracks usually do not occur in PV modules. In the results obtained from the 

examined PV modules, only 4 PV modules from 45 have been classified as having a perpendicular to 

busbars cracks PV modules. 

The results of the examined PV modules are shown in Table 7.6. Perpendicular to busbars cracks 

affecting 1, 2, and 3 busbars statistically considered as non-significant PV micro cracks. Because the T-

test is below the threshold value. 

The output power measured for a perpendicular to busbars cracks affecting one and four solar cells is 

shown in Figure 7.23a. The difference between the theoretical standard deviation and a perpendicular to 

busbars cracks affects 4 solar cells is equal to 1.014.  

Figure 7.23b shows the measured power ratio for a perpendicular to busbars affects 1, 2, 3, and 4 solar 

cells (1-8 Busbars). The results show that perpendicular to busbars cracks affects 8 busbars has a largest 

reduction in power ratio is equal to 95.591%.  

However, the power ratio for perpendicular to busbars cracks affects 1, 2, 3, and 4 busbars at least equal 

to 98%. 

 

 

 

Table 7.6 Perpendicular to busbars cracks performance indicators 

Crack Type Number 

of 

Effected 

Solar 

Cells 

Number 

of 

Effected 

Busbars 

Approximate Area Broken 

(mm) 

T-test 

Value 

Significant/Not 

Significant Effect on 

the PV Power 

Performance 

Fitted Line Regression Equation 

 

 

 

Perpendicular 

To Busbars 

Short 1 1 1 mm2 –  16.2 mm2 0.65 – 0.82 Not Significant 𝑃𝑇𝐻 = 0.0927 + 1.001 𝑃𝑀𝑒𝑎𝑠 

2 16.3 mm2 –  60 mm2 0.92 – 1.31 Not Significant 𝑃𝑇𝐻 = 0.1524 + 1.002 𝑃𝑀𝑒𝑎𝑠 

 

 

Long 

2 3 61.3 mm2 –   78.5 mm2 1.43 – 1.96 Not Significant 𝑃𝑇𝐻 = 0.3604 + 1.004 𝑃𝑀𝑒𝑎𝑠 

4 79.4 mm2 –  120 mm2 2.52 – 2.77 Significant 𝑃𝑇𝐻 = 0.4678 + 1.005 𝑃𝑀𝑒𝑎𝑠 

3 5 120.5 mm2 –  137.4 mm2 2.83 – 2.94 Significant 𝑃𝑇𝐻 = 0.7397 + 1.008 𝑃𝑀𝑒𝑎𝑠 

6 138 mm2 –  179.8 mm2 2.79 – 3.11 Significant 𝑃𝑇𝐻 = 0.9265 + 1.010 𝑃𝑀𝑒𝑎𝑠 

4 7 181.5 mm2 –  195 mm2 3.02 – 3.27 Significant 𝑃𝑇𝐻 = 1.0790 + 1.012 𝑃𝑀𝑒𝑎𝑠 

8 196.2 mm2 –  240.2 mm2 3.10 – 3.55 Significant 𝑃𝑇𝐻 = 1.4590 + 1.018 𝑃𝑀𝑒𝑎𝑠 
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(a) 

 

 

(b) 

 

Figure 7.23 (a) Real-time long-term measured data for a perpendicular to busbars crack affecting 1 and 4 

solar cells, (b) Power ratio for a perpendicular to busbars crack affecting 1, 2, 3 and 4 (1 -8 busbars) pv 

solar cells 
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        Table 7.7 Multiple directions cracks performance indicators 

 

 

 

Multiple 

Directions 

Crack 

Number of 

Affected 

Solar Cells 

Approximate Area Broken 

(mm) 

T-test 

Value 

Significant/Not 

Significant Effect on the 

PV Power Performance 

Fitted Line Regression Equation 

 

1 

1 mm2 –  45 mm2 2.06 – 2.44 Not Significant 𝑃𝑇𝐻 = 0.3679 + 1.004 𝑃𝑀𝑒𝑎𝑠 

46.2 mm2 –   1000 mm2 2.68 – 2.88 Significant 𝑃𝑇𝐻 = 0.5330 + 1.005 𝑃𝑀𝑒𝑎𝑠 

2 100 mm2 –  3700 mm2 3.25 – 3.33 Significant 𝑃𝑇𝐻 = 1.028 + 1.012 𝑃𝑀𝑒𝑎𝑠 

3 170 mm2 –  5000 mm2 4.70 – 4.88 Significant 𝑃𝑇𝐻 = 1.554 + 1.019 𝑃𝑀𝑒𝑎𝑠 

4 223 mm2 –  8200 mm2 6.17 – 6.31 Significant 𝑃𝑇𝐻 = 2.015 + 1.027 𝑃𝑀𝑒𝑎𝑠 

5 400 mm2 –  9800 mm2 7.30 – 7.52 Significant 𝑃𝑇𝐻 = 2.577 + 1.033 𝑃𝑀𝑒𝑎𝑠 

 

7.2.3.4 Multiple directions cracks 

Multiple directions cracks have the highest degradation rates in the measured output power comparing to 

all other PV micro cracks-types.  

The results of the PV modules affected by multiple directions cracks are shown in Table 7.7. Multiple 

directions cracks affecting 1 solar cell with approximate area broken between 1 to 45 mm2 is statistically 

not significant, since the T-test is between 2.06 and 2.44. 

However, all other multiple directions cracks affects PV solar cells are do have a significant degradation 

on the output power of the PV module. 

Figure 7.24a shows the output power for three different PV modules affected by multiple directions 

cracks. As can be seen, the output power measured for a PV module affected by multiple directions 

cracks on 5 solar cells has the highest loss compared to all other measured data. 

Figure 7.24b summaries the power ratio for the multiple directions cracks affecting 1, 2, 3, 4, and 5 solar 

cells. The power ratio decreases as the number of affected PV solar cells increases. 

The highest degradation is when the power ratio is equal to 92.19% obtained for multiple directions 

cracks affecting 5 solar cells. 
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(a) 

 
 

(b) 

Figure 7.24 (a) Real-time long-term measured data for a multiple directions cracks affecting 1, 3 and 5 

solar cells; (b) Power ratio for multiple directions cracks affecting 1, 2, 3, 4 and 5 PV solar cells  
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7.2.4 Discussion 

The observed modules have 38 PV modules with various crack-types. The probability of occurrence for 

each crack-type is previously shown in Figure 7.19. Before considering the statistical analysis approach, it 

is hypothetically true to say that 84.4% have a significant impact on the output power performance.  

However, the statistical approach has confirmed that this is incorrect, because only 60% have a significant 

impact on the output power performance for all examined PV modules. The results are summarized in 

Figure 7.25. 

This result can be investigated further more by applying the same statistical approach to various PV 

systems. The only difference might be the confidence interval limits (99%, 95% and 90%) due to the 

various accuracy rates for the instrumentation used in the PV systems such as the voltage, current and 

temperature sensors. 

 

Figure 7.25 Percentage of cracks for the examined PV modules, overall significant cracks percentage 

equals 60% out of 84% 
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7.3 Summary 

In this chapter the demonstration of two hot spot mitigation techniques was discussed. The offered 

techniques are capable to enhance the output power of PV modules which are effected by hot spots and 

partial shading conditions. The proposed hot spot mitigation techniques use multiple MOSFETs in the 

affected PV module, while the detection of hot spots was captured using i5 FLIR thermal imaging 

camera. 

Several experiments have been conducted during various environmental conditions, where the PV module 

I-V curve was evaluated in each observed test to analyze the output power performance before and after 

the activation of both proposed hot spot mitigation techniques. 

One PV module affected by a hot spot was tested. After activating the first mitigation technique the 

output power of the PV module increased by 1.25 W in high irradiance levels, 0.61 W in medium 

irradiance level and 0.46 W in low irradiance level. The same experiment has been evaluated using the 2nd  

proposed hot spot mitigation technique, while the output power increased by 3.96 W in high irradiance 

level, 2.72 W in medium irradiance level and 0.98 W in low irradiance level. 

Both proposed hot spot mitigation techniques were applied on a shaded PV module. The temperature was 

reduced and output power of the PV module enhanced using both techniques. However, the second 

mitigation technique shows a better performance comparing to the first. 

The second part of this chapter focuses on the impact of PV micro cracks on the output power of the PV 

modules. A new statistical approach using T-test and F-test was used to identify the significant of the 

cracks on the output power performance of the PV modules. The approach is developed using LabVIEW 

software. 45 PV modules with various crack-type such as diagonal, parallel to busbars, perpendicular to 

busbars and multiple directions crack have been examined. 

Before considering the statistical analysis approach, 84% of the examined PV modules have a significant 

impact on the output power performance. However, the statistical approach has confirmed that this result 

is incorrect, since only 60% of the examine PV cracks have a significant impact on the output power 

performance.  

Next chapter will describe the conclusions of this thesis and the future work. 
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Chapter 8 Summary, Conclusion and Recommendation for Further 

Work 

 

In this chapter, a summary of the main findings will be presented. In addition, some conclusions are 

drawn on the work undertaken in this research and the main contributions are presented. Also some 

potential suggestions are outlined for future work. 

 

8.1 Summary 

There were several goals for this research which can be listed as follows: 

1. Create a monitoring systems based on internet of things (IoT) devices to monitor and analyse the 

performance of the PV systems installed at the University of Huddersfield 

2. Model, analyse and compare the performance of multiple PV array configurations systems under 

various PS and faulty PV conditions 

3. Development of a PV fault detection algorithm based on statistical analysis and mathematical 

techniques 

4. Create a PV fault detection algorithm based on AI techniques such as Fuzzy Logic and ANN 

networks 

5. Development of  novel techniques which could be used to enhance the output power generated by 

hot spotted PV modules 

6. Identification of the impact of PV micro cracks on the generated power of PV modules 

These goals have been achieved successfully by implementing multiple algorithms which have been 

validated using two PV plants installed at the University of Huddersfield. This thesis presented detailed 

description of the major contributions made in this work, which are summarised as follows: 

 The design of a PV monitoring system based on IoT devices was proposed in chapter 4. The PV 

monitoring system comprises various local and remote monitoring platforms. The designed 

system was evaluated on two different PV plants.  

 

 The simulation and modelling for five different PV array configurations have been presented in 

chapter 5. The PV configurations including: series, parallel, series-parallel, total-cross-tied, and 

bridge-linked. The PV configurations were compared using the variations of seven indicators. 
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The analysis of these indicators can be further used in various PV plants, and it can be used to 

enhance the PV plants configuration based on faulty PV and partial shading conditions.  

 

 In chapter 6, the development of a PV fault detection algorithm was presented. This novel 

algorithm is capable of detecting various faults in PV plants such as: 

 

o Normal operation mode 

o Partial shading conditions affecting the PV system with no faulty bypass diodes in the PV 

system 

o Partial shading conditions affecting the PV system with faulty bypass diodes in the PV 

system 

o Faulty PV modules, where the PV modules are disconnected from the PV string 

o Faulty PV modules and partial shading affecting the PV system 

o Faulty PV string 

o Faulty MPPT unit 

 

 As stated in chapter 2, there are few AI techniques deployed in PV fault detection. Therefore, 

chapter 7 presents the use of multiple AI techniques in order to detect faults in PV plants. The AI 

techniques can be summarized as follows:  

 

o The first algorithm used six layers to detect faults in PV systems. The average detection 

accuracy for the algorithm is equal to 94.74%. However, Mamdani Fuzzy Logic system 

was used to improve the detection accuracy of the proposed PV detection algorithm. The 

average detection accuracy increased to 99.12% after considering the Fuzzy Logic system 

 

o The second designed PV fault detection algorithm is used to detect defective bypass 

diodes in PV modules. This algorithm was developed using Mamdani Fuzzy Logic 

system and it can detect up to 13 different faults associated with defective bypass diodes 

in PV modules. This algorithm was validated on two different PV plants 

 

o The last PV detection algorithm proved that the ANN network containing 2 inputs, 9 

outputs using 2 hidden layers and 7 neurones had the highest overall detection accuracy. 

This ANN network was evaluated on two PV plants, where the maximum detection 

accuracy is equal to 92.1% and 91.9% respectively 
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 The development of two hot spot mitigation techniques used in PV modules are presented in 

chapter 8.  The offered techniques are capable to enhance the output power of PV modules which 

are effected by hot spots and partial shading conditions. One PV module affected by a hot spot 

was tested. After activating the first mitigation technique the output power of the PV module 

increased by 1.25 W in high irradiance levels, 0.61 W in medium irradiance level and 0.46 W in 

low irradiance level. Same experiment has been evaluated using the 2nd proposed technique, while 

the output power increased by 3.96 W in high irradiance level, 2.72 W in medium irradiance level 

and 0.98 W in low irradiance level 

 

The second part of chapter 8 focuses on the impact of PV micro cracks on the output power of PV 

modules. A new statistical approach using T-test and F-test was used to identify the significant 

impact of the cracks on the output power performance of the PV modules. Before considering the 

statistical analysis approach, 84% of the examined PV modules have a significant loss in the 

output power. However, the statistical approach confirmed that this result is incorrect, since only 

60% of the examined PV cracks have a significant loss in the output power performance 

 

 

8.2 Conclusion 

Photovoltaic systems can be configured in several ways such as series (S), parallel (P), series-parallel 

(SP), total-cross-tied (TCT), and bridge-linked (BL) connection. In this research, it was found that the 

TCT configuration has the maximum output power among all above listed PV configurations. In addition, 

it was found that the TCT configuration has the least loss in the power when faulty conditions arise in the 

PV system (faulty conditions such as partial shading, faulty PV modules, and faulty PV strings). 

Furthermore, the second best configuration is the BL, whereas the series (S) configuration has the lowest 

output power.  

In the PV systems several faulty conditions could exist such as faulty PV modules, partial shading 

conditions, faulty PV strings, and faulty maximum power point tracking units. In this thesis, the 

development of a fast, reliable, and accurate PV fault detection algorithm is presented. The algorithm 

depends on two variables; power ratio and voltage ratio. It was evident from the conducted experiments 

that these variables can be used to locate possible faults in new and old PV systems. The maximum 

detection accuracy of this technique is 94.74%. 
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To improve the accuracy of the PV fault detection, Fuzzy Logic AI technique was used to increase the 

overall detection accuracy of the power, voltage ratio algorithm up to 99.12%. Mamdani and Sugeno 

fuzzy systems were tested, and it was found that both had identical performance. 

In addition, Artificial Neural Network (ANN) technique was developed to detect faults in PV systems 

based on previously logged data. The main findings show that ANN networks with two hidden layers 

yield better performance compared with one hidden layer. To compare the detection accuracy, various 

ANN neurons were tested. It was found that an ANN networks with 2 hidden layers, containing 8 neurons 

achieve the highest detection accuracy of 92.1%. 

It can be concluded these AI based algorithms can detect faults in photovoltaic systems such as faulty PV 

modules, partial shading conditions, faulty PV strings, and faulty maximum power point tracking units. 

However, there are other types of faults found in PV systems which cannot be identified using the 

presented algorithms, these are hot spots, micro cracks, and PV line-to-line faults, which will be 

addressed in the future work. Some preliminary work has been completed to address hot spots and micro 

cracks issues.  

Two PV hot spot mitigation techniques were developed. The best performing hot spot mitigation 

technique contains 2 MOSFETs connected with the hot spotted PV module. The conducted experiments 

show that the difference between the hot spotted PV module temperature, before and after the activation 

of this technique, is equal to 21.5 0C and 18.3 0C respectively. Moreover, the suggested hot spot 

mitigation technique increases the daily yield output power of the hot spotted PV modules up to 0.03 

kWh (estimated yearly increase 0.03 x 365 = 10.95 kWh). 

Electroluminescence (EL) imaging technique can be used to identify micro cracks in PV modules. It was 

found that multiple directions cracks decrease the output power of PV modules up to 8%, whereas 

diagonal cracks decrease PV output power by 4%.  
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8.3 Future work 

The PV detection techniques proposed in chapters 6 and 7 could be enhanced using a generic PV fault 

detection algorithm which can be used in various PV array configurations, size, and location. The PV 

fault detection algorithms are implemented using LabVIEW software. In the future, it is intended to 

incorporate the algorithms into microcontroller units.  

In addition, the algorithm used to detect defective bypass diodes in PV modules could be enhanced by 

using the analysis of the series resistance (Rs) and shunt resistance (Rsh). The Fuzzy Logic system could 

be also improved by adding the Rs and Rsh as new inputs in the Mamdani Fuzzy Logic system interface, 

thus it will increase the overall detection accuracy for the algorithm.  

This thesis do not contain any details on how to increase the output power of adjacent PV installations. 

This could be established by selecting the most suitable configuration such as series, parallel, total-cross-

tied, in order to enhance the performance of the PV array under partial shading conditions. Figure 8.1 

shows the connection box, which can be placed next to the adjacent PV systems. The connection box 

enables the re-configuration of the PV modules, thus increase the total energy yield. 

In future, it is also intended to develop a new technological solution to predict the energy of PV systems. 

This is possible by predicting the PV temperature and solar irradiance based on historic weather data 

patterns. The outcomes of this research will be used for analytical performance analysis, failure analysis 

as well as performance pattern generation to enable network operators to plan energy injection to the grid. 

 

Figure 8.1 Multiple PV systems connected through a multiple configuration box  
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Appendix A. Experimental PV Plants 

 

Appendix A provides details for two PV systems installed at the University of Huddersfield (UoH). The 

first PV system has been installed and configured as part of this research. Furthermore, the second PV 

system installed at UoH in 2006. The PV systems configuration, PV modules electrical characteristics, 

and the equipment such as irradiance sensors, and temperature sensors are also explained.  

 

1 Overview of the existing PV plant A 

The first mounted PV plant consists of ten SMT 6 (60) P polycrystalline silicon PV modules, each with a 

nominal output power of 220 Wp. Figure 2a shows an image of the installed PV modules, where the tilt 

angle is equal to 420. This PV plant has been fully funded by the department of Computing and 

Engineering UoH in 2014. 

Each PV module contains three bypass diodes, the interconnection of the bypass in a PV module sub 

strings are shown in Figure 1.  The purpose of the bypass didoes is to maximise the output power of the 

PV modules during PS conditions. Figure 2b shows an image of the bypass diodes connected to a PV 

module. 

Figure 2c shows the connection box which is placed next to the PV system. The purpose of the 

connection box is to configure the PV plant. For example, the examined PV modules could be connected 

in series, parallel, or series-parallel PV array configurations. 

 

Figure 1 Interconnection of the bypass diodes in each examined PV module  
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                                   (a)                                                                                          (b)                        

               

(c) 

Figure 2 (a) Image of PV plant A, (b) Bypass diodes conn ected to the PV module, (c) 

Connection box 

                                                                    

          



 

 

 246 

 

2 PV modules electrical characteristics 

The SMT6 (60) P PV modules manufactured by Romag (Romag, 2017) have been used in this PV plant. 

The electrical characteristics of the PV panels are shown in Table 1. All listed values for the PV electrical 

characteristics is under STC (G: 1000 W/m2, and T: 25 0C).  

3 MPPT unit 

In order to operate PV plant A at its maximum output power, FLEXmax 80 MPPT units shown in Figure 

3 have been used. The specification of the MPPT are described as follows (Power, 2017): 

i. Maximum output current: 80 A 

ii. Maximum PV open circuit voltage: 150 V 

iii. Peak efficiency greater than 98%  

iv. Full output power in ambient temperature as high as 40 0C  

Table 1 SMT6 (60) P PV module electrical characteristics  

PV module electrical characteristics Value 

Peak Power 220 W 

Voltage at maximum power point (Vmpp) 28.7 V 

Current at maximum power point (Impp) 7.67 A 

Open Circuit Voltage (VOC) 36.74 V 

Short Circuit Current (Isc) 8.24 A 

Number of cells connected in series 60 

Number of cells connected in parallel 1 

  

 

 

          

 

Figure 0 FLEXmax 80 MPPT unit 
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4 DC/AC inverter 

Phoenix DC/AC inverter manufactured by Victron Energy (Energy, 2017) was used to convert the DC 

power stored in a battery bank to an AC load. Figure 3.4a shows the inverter used and its basic 

installation diagram. The inverter has an input voltage range of 9.5 – 17 V, output voltage: 230 VAC ± 

2%, Frequency of 50 Hz ± 0.1%, continuous output power at 25 0C of 2000 VA, and maximum 

conversion efficiency of 92%. 

PV plant A is connected to a 12V battery bank, then it is connected to the inverter as shown in Figure 4. 

This inverter has a RS-485 port which can be converted to RS-232. A RS-232 to USB conversion cable is 

also required to connect the inverter to a PC user interface. 

 

Figure 4 (a) Phoenix inverter installation information, (b) Connection of PV plant A to an 

AC load 
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5 Temperature sensor 

In order to examine the PV modules surface temperature, Davis temperature sensors probes have been 

connected at the back of each PV module as shown in Figure 5. This probe measures temperature range as 

low as -40 0C and as high as 65 0C (Davis, 2016). 

PV module temperature measurements is crucial, in order to predict the PV panel I-V and P-V curve. 

However, the irradiance level is also needed in the prediction process. Therefore, next section will 

demonstrate the weather station which has been used to measure the irradiance level of the PV modules. 

 

6 Davis weather station 

Davis weather station (Davis, 2017a) has been installed next to the PV system. The weather station 

comprises various sensors which measures the following environmental conditions: 

i. Wind speed, range: 2 to 150 mile per hour (mph) 

ii. Wind direction 

iii. Temperature, range: -40 0C to 65 0C 

iv. Relative humidity, range: 0% to 100% 

v. Rainfall in mm or inches 

vi. Solar irradiance, range: 0 W/m2 to 2000 W/m2 

Figure 6a shows an image of the installed weather station. This weather station is wirelessly connected to 

a monitoring unit called Vantage PRO2 as shown in Figure 6b, which can be connected to a personal 

computer (PC) to monitor and log the above listed environment parameters. 

          

Figure 5 Davis temperature sensor probe connected to a PV module  
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7 PV plant A system architecture 

As shown earlier in Figure 2c, the connection box allows the reconfiguration of the PV modules. In this 

section, three configuration topologies will be presented.  

The first PV configuration topology shown in Figure 7a contains one PV string connected to a MPPT 

unit. The MPPT unit should not exceed the Voc of the PV system. Therefore, this PV configuration is 

often not used, because while increasing the number of PV modules, the PV system Voc will increase, 

which results in a complete shut down for the MPPT unit. 

The second PV configuration is shown in Figure 7b. This configuration comprise multiple PV strings in 

parallel with a central MPPT unit. The input Voc for the MPPT unit is equal to Voc of one PV string, while 

the current is the sum of the PV strings output currents. 

In the last PV configuration illustrated in Figure 7c each PV string is connected to a MPPT unit, and the 

DC load is shared across all MPPT units. This PV topology is more expensive than the second PV 

configuration, because it requires more MPPT units installed at the PV installation. However, during PS 

conditions, it guarantees more output power compared to the second PV configuration. 

For all PV configuration topologies, the current and voltage of the PV system was measured using the 

internal sensors in the MPPT unit. The monitoring system used in the PV plants will be discussed in the 

next chapter. 

                           

                                (a)                                                               (b)  

Figure 1 (a) Davis weather station installed next to PV plant A, (b) Vantage PRO2 wireless 

weather station monitoring unit  

 

 

 

 

          



 

 

 250 

 

 

 

Figure 2 (a) PV string connected to MPPT unit, (b) Three parallel PV strings connected to a 

single MPPT unit, (c) Three PV strings each connected to a MPPT unit  
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8 Overview for PV plant B 

The second mounted PV plant consists of thirty two multicrystal PV modules installed on the roof of the 

school of music at the UoH. Each PV module has a nominal output power of 130 Wp. Figure 8 shows an 

image of the installed PV modules, where the tilt angle is equal to 420. This PV plant is in operation since 

2006. 

The PV modules of this PV system does not contain any bypass diodes compared with the PV plant A 

which contains 3 bypass didoes. 

 

Figure 3 Second examined PV plant  

 

          



 

 

 252 

 

9 PV modules electrical characteristics 

KC130GHT-2 PV modules manufactured by Kyocera (KYOCERA, 2014) have been used in the PV plant 

B. The electrical characteristics of the PV panels are shown in Table 2. All listed values for the PV 

electrical characteristics is under STC (G: 1000 W/m2, and T: 25 0C).  

10 DC/AC inverter unit  

The PV plant B does not contain a MPPT unit. However, during the validation of our fault detection and 

PV performance modelling, Flexmax 80 MPPT have been used. The PV modules are connected directly 

to a DC/AC inverter. This inverter is connected to the main grid of the UoH. A schematic of the 

connection is shown in Figure 9. 

Table 1 KC130GHT-2 PV module electrical characteristics  

PV module electrical characteristics Value 

Peak Power 130 W 

Voltage at maximum power point (Vmpp) 17.6 V 

Current at maximum power point (Impp) 7.39 A 

Open Circuit Voltage (Voc) 21.9 V 

Short Circuit Current (Isc) 8.02 A 

Number of cells connected in series 36 

Number of cells connected in parallel 1 

  

 

 

          

 

Figure 4 PV plant B connection to the DC/AC inverter and UoH main grid  
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11 PV plant B system architecture 

As described in the previous section, the PV modules are connected to a DC/AC inverter. Subsequently, 

the inverter is connected to the UoH grid. In this section the PV module connected will be described. 

Since 2006, the PV modules were configured as shown in Figure 10a. All PV modules were connected in 

series to a DC/AC inverter, without using MPPT unit. This PV configuration was improved to the series-

parallel PV configuration, are shown in Figure 10b. The series-parallel configuration consists of 8 PV 

strings, each containing 4 series connected PV modules. 

The new PV configuration has been used to validate the fault detection and PV performance analysis 

methods during this research. During the validation process, the DC/AC unit was completely 

disconnected from the PV plant.  A MPPT unit was used to track the MPP. 

Temperature sensors were connected at the back of each PV module during the experiments. The 

temperature sensors used are the same as those for PV plant A. This PV plant does not have a weather 

station or irradiance sensor. Therefore, the weather station explained previously in Appendix A - section 6 

was used during the experiments.  

 

Figure 5 (a) PV configuration used in the PV system installed in 2006, (b) PV 

configuration used to validate the designed fault detection algorithms  
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Figure 11 presents a map which contains both PV plant A and PV plant B installed at the campus of the 

University of Huddersfield. 

 

 

Figure 11 Map of the campus contains both examined PV plants  
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Appendix B. LabVIEW simulation code 

 

PV module simulation (I-V  Curve) : 
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PV module simulation (P-V  Curve) : 
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Appendix C. MATLAB/Simulink models for multiple PV array 

configurations 

Series (S) Configuration: 

 

Parallel (P) Configuration: 
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Series-Parallel (SP) Configuration: 

 

Total-Cross-Tied (TCT) Configuration: 

 

 



 

 

 259 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bridge-Linked (BL) Configuration: 
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Appendix D. ANN Output Confusion Matrix 

 

2 Neurons and 2 Hidden Layers: 
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3 Neurons and 2 Hidden Layers: 
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4 Neurons and 2 Hidden Layers: 
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5 Neurons and 2 Hidden Layers: 
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6 Neurons and 2 Hidden Layers: 
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8 Neurons and 2 Hidden Layers: 
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9 Neurons and 2 Hidden Layers: 
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Appendix E. ANN Network MATLAB Code 

function [Y,Xf,Af] = myNeuralNetworkFunction(X,~,~) 

%MYNEURALNETWORKFUNCTION neural network simulation function. 

% 

% Generated by Neural Network Toolbox function genFunction, 19-Oct-2017 05:28:50. 

% 

% [Y] = myNeuralNetworkFunction(X,~,~) takes these arguments: 

% 

%   X = 1xTS cell, 1 inputs over TS timesteps 

%   Each X(AGENCY, 2016) = Qx2 matrix, input #1 at timestep ts. 

% 

% and returns: 

%   Y = 1xTS cell of 1 outputs over TS timesteps. 

%   Each Y(AGENCY, 2016) = Qx9 matrix, output #1 at timestep ts. 

% 

% where Q is number of samples (or series) and TS is the number of timesteps. 

  

%#ok<*RPMT0> 

  

% ===== NEURAL NETWORK CONSTANTS ===== 

  

% Input 1 

x1_step1.xoffset = [0.847968;0.877436]; 

x1_step1.gain = [0.00433905335116025;0.00229788502983558]; 

x1_step1.ymin = -1; 

  

% Layer 1 

b1 = [-2.8211472914295355;-0.9685855978481408;1.2292823821928234;3.327105970841882;-

2.1633363056901245;1.4075111903901627;3.0983891025982282]; 

IW1_1 = [2.0958017016180337 4.7629504843018973;3.670434031196653 -4.6699103690296218;-

4.1494203779402019 1.0863957295192399;-2.9600942971683617 6.6238797229437205;0.8188367105880483 -

6.3809709977149573;1.8765927419380746 -4.3029290927037138;5.0005831181506473 0.91138021990349771]; 

  

% Layer 2 

b2 = [-0.095451342619132851;-0.4075860192878959;0.26762361814974112;-

1.4985266807730249;2.1978614000139518;-0.56861116734966144;0.086212985629450387]; 

LW2_1 = [1.1940642487241013 2.1096236139050935 0.72491519198466337 -7.2787218213244138 

3.660320010701748 -1.0708849913104583 -7.3178343333301576;-0.57651927920475521 -1.7766413045021809 

1.3637221094698413 2.2912832727753094 4.244045465981042 0.44176882797097577 -2.0455514563503785;-

0.33461217562424495 1.7627656129154543 0.71548447919757907 -2.7484402856178556 3.911921620957973 

0.65895000318411712 6.5685194007459735;-0.6061641977282104 0.24303322380852876 1.9041542970914638 

1.7624696935966087 -3.89180297010346 0.42895113573504984 3.7323243091577596;-3.1066326638400374 

0.70336628464465767 -4.1006058092277433 -0.14531849158342872 -3.122781398168061 2.0617593625558426 

-1.6583518307517542;-0.84940928360307577 -0.6208749473941263 1.3086154172367179 3.0574578518478082 

-1.7694940494737772 -2.8459907088505219 -2.8230835012606548;4.5223305554426076 -2.1374452176310177 -

1.6589819470480343 3.3770562151630754 -2.556041113289385 0.25753856353679871 1.1657543514453605]; 

  

% Output 1 

y1_step1.xrows = 9; 

y1_step1.keep = [1 2 3 6 7 8 9]; 

y1_step1.remove = [4 5]; 

y1_step1.constants = [0;0]; 
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% ===== SIMULATION ======== 

  

% Format Input Arguments 

isCellX = iscell(X); 

if ~isCellX 

    X = (Ahmed & Salam); 

end 

  

% Dimensions 

TS = size(X,2); % timesteps 

if ~isempty(X) 

    Q = size(X(Abdelhamid et al.),1); % samples/series 

else 

    Q = 0; 

end 

  

% Allocate Outputs 

Y = cell(1,TS); 

  

% Time loop 

for ts=1:TS 

     

    % Input 1 

    X(AGENCY, 2016) = X(AGENCY, 2016)'; 

    Xp1 = mapminmax_apply(X(AGENCY, 2016),x1_step1); 

     

    % Layer 1 

    a1 = tansig_apply(repmat(b1,1,Q) + IW1_1*Xp1); 

     

    % Layer 2 

    a2 = softmax_apply(repmat(b2,1,Q) + LW2_1*a1); 

     

    % Output 1 

    Y(AGENCY, 2016) = removeconstantrows_reverse(a2,y1_step1); 

    Y(AGENCY, 2016) = Y(AGENCY, 2016)'; 

end 

  

% Final Delay States 

Xf = cell(1,0); 

Af = cell(2,0); 

  

% Format Output Arguments 

if ~isCellX 

    Y = cell2mat(Y); 

end 

end 

  

% ===== MODULE FUNCTIONS ======== 

  

% Map Minimum and Maximum Input Processing Function 

function y = mapminmax_apply(x,settings) 

y = bsxfun(@minus,x,settings.xoffset); 

y = bsxfun(@times,y,settings.gain); 

y = bsxfun(@plus,y,settings.ymin); 

end 
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% Competitive Soft Transfer Function 

function a = softmax_apply(n,~) 

if isa(n,'gpuArray') 

    a = iSoftmaxApplyGPU(n); 

else 

    a = iSoftmaxApplyCPU(n); 

end 

end 

function a = iSoftmaxApplyCPU(n) 

nmax = max(n,[],1); 

n = bsxfun(@minus,n,nmax); 

numerator = exp(n); 

denominator = sum(numerator,1); 

denominator(denominator == 0) = 1; 

a = bsxfun(@rdivide,numerator,denominator); 

end 

function a = iSoftmaxApplyGPU(n) 

nmax = max(n,[],1); 

numerator = arrayfun(@iSoftmaxApplyGPUHelper1,n,nmax); 

denominator = sum(numerator,1); 

a = arrayfun(@iSoftmaxApplyGPUHelper2,numerator,denominator); 

end 

function numerator = iSoftmaxApplyGPUHelper1(n,nmax) 

numerator = exp(n - nmax); 

end 

function a = iSoftmaxApplyGPUHelper2(numerator,denominator) 

if (denominator == 0) 

    a = numerator; 

else 

    a = numerator ./ denominator; 

end 

end 

  

% Sigmoid Symmetric Transfer Function 

function a = tansig_apply(n,~) 

a = 2 ./ (1 + exp(-2*n)) - 1; 

end 

  

% Remove Constants Output Reverse-Processing Function 

function x = removeconstantrows_reverse(y,settings) 

Q = size(y,2); 

x = nan(settings.xrows,Q,'like',y); 

x(settings.keep,:) = y; 

x(settings.remove,:) = repmat(settings.constants,1,Q); 

end 

 

 

 


