
University of Huddersfield Repository

Sharples, Timothy

A Simplified API for the Creation of Bots for Real Time Strategy Games

Original Citation

Sharples, Timothy (2018) A Simplified API for the Creation of Bots for Real Time Strategy Games.
Masters thesis, University of Huddersfield.

This version is available at http://eprints.hud.ac.uk/id/eprint/34558/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

A Simplified API for the Creation of Bots for Real Time
Strategy Games

Timothy Sharples
U1251424

Supervising Tutor: Prof W. Faber
University of Huddersfield

Abstract
Artificial Intelligence research in the past few years has been increasingly
focusing on games, with Real Time Strategy games being of particular
interest. However, one of the main tools used in the creation of agents in
these environments has quite a steep learning curve for entry into develop-
ment, leading to some potential entry barriers that new AI developers have
to overcome to get into the field.

This project aims to investigate ways in which these entry barriers can be
lowered. Particular interest is taken in the potential future application
of techniques found in Visual Programming Languages. With this view,
a library of tools to help new AI developers is created and tested before
being given to members of the Bot Development community to provide
their technical assessment feedback, and has been given to new developers
with no previous experience with the subject area for their evaluation on
how effective these tools were in easing the process of starting out with
development.

This report describes the research, the planning and testing of this library,
and the conclusions drawn from the subsequent evaluation of the tools.

CREATION OF BOTS FOR RTS GAMES 2

Contents

1 Introduction 4
1.1 StarCraft . 4
1.2 BWAPI . 6
1.3 Visual Programming . 6
1.4 Aim and Objectives . 6
1.5 Contributions to Knowledge . 7
1.6 Report Breakdown . 7

2 Bots in Real Time Strategy Games 9
2.1 RTS Games . 9
2.2 BWAPI . 10
2.3 Atlantis API . 11

3 Visual Programming Languages 13
3.1 Scratch . 13
3.2 Unreal Engine Blueprints: Visual Scripting System 19
3.3 Analysis of Scratch compared with Unreal Blueprint Scripting System . . . 20

4 Specifications 22
4.1 Aesthetics . 22
4.2 Mechanics . 23

5 Design 31
5.1 Production Queue . 31
5.2 Enemy Base Tracking . 33
5.3 Builder Manager . 34
5.4 Squad Management . 36

6 Testing Plan 38
6.1 Production Queue . 38
6.2 Enemy Base Tracking . 42
6.3 Builder Manager . 43
6.4 Squad Management . 44
6.5 Example Bot using New Library . 45

7 Evaluation 47
7.1 Evaluation by members of the Bot Development community 47
7.2 Evaluation by developers with no prior experience 48

8 Conclusion 51
8.1 Future Work . 52
8.2 Closing . 53

9 References 54

CREATION OF BOTS FOR RTS GAMES 3

Glossary 56

Appendices 57
A: Testing Documentation . 57

CREATION OF BOTS FOR RTS GAMES 4

1 Introduction

Real time strategy games have become, in the last few years, one of the main focuses
in the development of artificially intelligent agents. Since Laird and van Lent noted that
differing types of computer games contain many of the challenges of creating human level
AI systems, the call has been out to use them as the testing ground for new research
(Laird & VanLent, 2001). After recent successes with other games using AI techniques,
development has been tooled towards finding ways to use these techniques in Real Time
Strategy (RTS) games like StarCraft (Cheng, 2016).

In this project we are going to be investigating the tools that are used to conduct
the development of artificially intelligent agents, and then observe difficulties presented
to new AI developers that use such software. This is in an attempt to ease the pre-
sented difficulties through the creation of supplementary systems. The targeted aim
of a Visual Programming Language is to make the introduction to programming, and
the subsequent learning of development concepts as easy as possible. With this in
mind, this project will also investigate ways that other areas of programming have been
eased for new-comers through the use of visual programming languages like Scratch
and Unreal Engine’s Blueprint system in the expectation that this analysis will allow
us to gain insight in to ways the new AI developer experience could be improved still further.

1.1 StarCraft

StarCraft is a real time strategy game created by Blizzard Entertainment in 1998.
The expansion pack ’Brood War’ was released later the same year and added a new
campaign along with new units to the game. The game with the expansion is the platform
that the API BWAPI is designed for.

Set in the distant future, the game features three distinct and well balanced races:

• The Terran - A human like species with mechanical vehicles and armoured infantry.

• The Protoss - An advanced psionic (mind control abilities such as telepathic,
telekinetic, etc.) race focused on higher levels of technologies than the other two
races.

• The Zerg Swarm - An insectoid hive-mind species, well suited for swarm-like strategies.

Each of these races have their own strengths and weaknesses based upon their unique
units, buildings and play styles. This means that each race has many strategies and tactics
that can lead to victory (Blizzard Entertainment, 2017b).

All three races follow the same basic gameplay of using workers to collect the two
in-game resources, then using these resources to create buildings, units, and upgrades.
These resources require two different methods of collecting, minerals only require a worker
to go and mine at one of the mineral patches, which is something they can do with no
other prior preparation. To collect Vespene Gas however, a collecting station (exact details

CREATION OF BOTS FOR RTS GAMES 5

of which vary between races, but basic functionality stays the same) must be built over the
gas geyser before a worker can harvest it.

Units are produced using various buildings such as the Terran Barracks, or the
Protoss Warp Gate. However some units have prerequisites of other buildings or researches
that must be completed before they can be trained. For example, the Terran Marine (a
basic infantry unit) can be produced straight from a barracks, but the Terran Medic,
requires the Academy to be constructed before they can be trained at the barracks.

Figure 1 . StarCraft - Gameplay

Figure 1 shows an example screenshot of a typical moment during a game of
StarCraft. The image as a whole depicts an overview of the current players base, in this
case the example player is playing as the Terran. The red square highlights the main
building of the Terran, the Command Centre and the units that are collecting the resources
from the blue mineral patches at the far left of the image. The Yellow square is showing
a Vespene Gas refinery where the other resource of the game is harvested from. The
green square on the right of the image is showing the Terran Factory with its associated
add-on building the machine shop. This is a unit production building and is used to make
mechanised units such as tanks. The final highlight, the light blue square in the bottom
left is showing the mini-map. The mini-map shows the player an overview of the game
world map, where the fog of war has been revealed and any buildings and units that are
visible to the player.

The gameplay revolves around being able to send units to engage your enemy around
the map and destroy their bases. Particular emphasis can be placed on ’scouting’ which is
the act of sending units to explore the game map and discover what the enemy is doing.

CREATION OF BOTS FOR RTS GAMES 6

As everything outside of a radius around your units and buildings is hidden by a ’fog of
war’ (which literally conceals the gameplay), it is important to discover what is happening
around the map so that you know what to react to, and what strategy to engage to
properly counter the enemies.

Winning a game of StarCraft, strictly speaking, is defined as destroying all of your
opponent’s buildings. However, in practice, it is common for a human player to concede a
game once they recognise they are in a losing situation that is impossible for them to come
back from enough to attempt to win the game.

1.2 BWAPI

Of all the tools used for researching and developing real time strategy games, among
the most popular is the Brood War Application Programming Interface (BWAPI) (Buro
& Churchill, 2012). This API gives developers the opportunity to develop agents that
operate in the game environment of the popular real time strategy game StarCraft. The
problem presented however is the relatively steep learning curve when starting out with
development in BWAPI. The current API is so low-level, that the AI developer is presented
with all the known difficulties of operating in an RTS game environment with little or no
support. Difficulties such as working with uncertainty, working against an opposing agent,
and working with non-deterministic outcomes of agent actions. Due to this, many new
developers will spend a large portion of their time when starting out trying to deal with the
same problems as all other AI developers overcoming difficulties innate in the environment.
If that is the case then this time spent dealing with the same previously solved issues is
time that isn’t being spent on developing novel solutions to the problem area that the AI
developer wanted to work on, or being spent in implementing the new learning algorithm
that they wanted to test. This leads to more wasted time and a potential stifling of
research in this field.

1.3 Visual Programming

For teaching and introducing new developers to programming, visual programming
languages are becoming more widespread, due to their focus on programming logic over
language specific syntax (Resnick et al., 2009). The techniques developed for these languages
and environments that allow users of these languages to quickly and easily understand
the meaning of code blocks is something that is unprecedented in other ’normal’ written
programming languages. The ease of use and readability is something that should be
investigated for use in more applications. With the success of the use of Scratch in schools
as a high level and visualised introduction to programming, it shows that programming as
a whole can be simplified a great deal from the syntax barriers of traditional languages to
help get more people interested in the field of software programming.

1.4 Aim and Objectives

With one of the next stages of AI research being to work in RTS games, but one of
the leading RTS game API’s having such a steep learning curve, this project seeks to lower

CREATION OF BOTS FOR RTS GAMES 7

this barrier and the combination of the simplifying techniques from visual programming
could aid in this respect. Due to the scope of this project, after the initial research into
visual programming, only the first steps to achieving this goal have been undertaken.
However this will provide a starting point for the continuation of this work in the future.
The first step of the simplification process has been to create a library of useful packages
and features, as determined by researching what existing AI developers would have found
useful when they started out with BWAPI and this step has been realised and assessed.

1.5 Contributions to Knowledge

The project shows the specific ways that the one of the most commonly used
development tools in real time strategy game bot development, can be improved to help
new AI developers. The improvements coming from research gathered from members of
the development community, and then evaluated through being given to developers, new
and old, for their feedback.

This project also addresses the ways of how to improve the introductory experience
of new comers to the development of AI, or indeed new comers to programming in general.
Building upon the work of the developers of existing visual programming languages, and
other simplified development tools, this project shows how software can be evaluated and
broken down to find what areas should be improved upon to simplify the learning curve of
that software for a new user.

1.6 Report Breakdown

Progressing through this report will elaborate on the tasks undertaken throughout
this research project.

Section 1 is an introduction to the subject matter and the project overview.

Section 2 details the research into current development of bots in real time strat-
egy games, including an overview of the genre and why BWAPI is used as extensively as it is.

Section 3 is about Visual Programming Languages, the different ones that are
popular, and what they are like. This then goes on to analyse the differences between
the languages and what parts could be used in making a new language for use with BWAPI.

Section 4 contains the details of the specifications of what the new visual program-
ming language would be like in a broad sense, before narrowing in on the library that will
be created as the first step in that production.

Section 5 describes the designs for the packages and classes that will be in that
library, including class diagrams and sequence diagrams for each system.

CREATION OF BOTS FOR RTS GAMES 8

Section 6 details the testing that was done on all the packages of the new library to
prove that it followed the specifications and designs laid out in the previous sections. It
also contains the details of an example bot and its capabilities after it was created using
every function of the new library.

Section 7 has the evaluation of the new library when it was given to both experienced
developers and to new developers who hadn’t worked with BWAPI before to get their
feedback on how much of an improvement it is, if any, over the base API.

Section 8 has the conclusions of the project with what was discovered and how the
project may be continued in the future.

CREATION OF BOTS FOR RTS GAMES 9

2 Bots in Real Time Strategy Games

A "bot" is quite a widely used term in the field of Artificial Intelligence, especially
in the field of gaming. In this project, the definition will be taken to be that a bot
is an artificially intelligent agent that was created to take the place of a human player
within a gamespace by interacting with the game in the ways that a human player would do.

However, almost as varied as that definition is the one for Artificial Intelligence. Ac-
cording to Schwab, this discrepancy in definitions can be attributed to the relative youth of
the field, particularly the specialisation for implementation within computer games (Schwab,
2009). The definition that is best suited for use and reference within this project has been
laid out by Neil Kirby in the book Introduction to Game AI (Kirby, 2011). Within this
book, three stipulations are made for an agent to be considered to have artificial intelligence.

• The agent should have the ability to act.

• The agent’s decisions should be intelligent ones.

• The agent must react to ongoing changes within the game state.

For a bot to be able to fulfil the first requirement, it may have inputs to assist in
its decision making, but it must have the ability to output in a way that affects the game
world it is working within. For the other two criteria, the bot must take the inputs it is
receiving and use them to reach its decisions about how to act. It must also be able to take
in new information about the game state and analyse it to see if the situation has changed
to the extent that it must adapt its decisions and strategy. These latter two processes are
the main focus of the development of in-game bots.

2.1 RTS Games

Real Time Strategy games are close to military simulation in concept. Most games
will consist of two or more players fighting over control of a two dimensional map with
resources and strategic positions scattered throughout. Then with these resources they will
produce armies and will command their units in battle in real time engagements (Buro,
2003).

RTS games are set apart from other games that are used in AI research and
development by several key game play difficulties. Most of these difficulties stem from the
innate real time nature of the game, but some are more specific to strategy games as a
genre (Buro & Churchill, 2012).

The four main difficulties or "complexity points" are listed below.

• Partial Observability - Players, and by extension bots, can only see part of the map.
The rest is hidden from view by what is referred to as the "fog of war". This means
that any decisions must be made with incomplete data, either by making guesses or
by attempting to extrapolate answers from the available world data.

CREATION OF BOTS FOR RTS GAMES 10

• Actions are made in Real Time - Any time that a player spends thinking and
not making actions is time that the game is advancing. This is the largest difference
over a game like chess where a player can sit and spend time evaluating game state
and calculating optimal moves. In real time, the computational processes must be
optimised for quick resolution.

• Durative Actions - Nearly all actions within the game take time to complete; be
it the movement of a unit or the construction of a building. As such a solid base of
temporal reasoning, or at least allowances for tasks to be completed must be built
into any bot logic (Ontanon et al., 2013)

• Non-Deterministic Outcomes - When starting an action in a Real Time Strategy
game, the outcome is not guaranteed. A unit that was sent to explore the game map
might be killed or otherwise intercepted before reaching its objective, or a builder
might be interrupted before it finishes constructing a building. This uncertainty means
that more provisions must be in place to catch unforeseen circumstances presented by
interruptions in a bot’s actions.

These four main complexity points contribute to the difficulty of creating bots that
can succeed in a real time strategy environment. This project aims to look into each of
these issues further and investigate the possibilities of making them easier to overcome for
bot developers.

2.2 BWAPI

While other RTS engines exist for bot development, such as ORTS or microRTS, one
of the most popular ones in the field is the Brood War Application Programming Interface
(BWAPI) (Buro & Churchill, 2012). Originally developed in 2009, it was created by reverse
engineering the official release of StarCraft: Brood War by Blizzard Entertainment. It
works by reading and writing directly into the games memory space to provide interaction
and allow commands to be issued by a computer as though they were human player inputs
(BWAPI Homepage, n.d.).

Due to the nature of this program, it could be seen as a ’hack’ of the original
game, however the game creators, Blizzard Entertainment, have responded to the use of
BWAPI by endorsing development using it, but with a clear stance that no such actions
should be taken with their newer releases (Battle.net End User Liscence Agreement, 2015;
BWAPI FAQs, 2014). Blizzard Entertainment have even been known to donate prizes to
competitions that are run for the bots developed with BWAPI.

The specific benefits for using BWAPI over other development engines come from
multiple angles. Firstly, from a development side, the API is still being actively developed
and supported. This is in contrast to one of its competitors, ORTS that hasn’t received an
update since 2010 (ORTS Homepage, n.d.). Having an active team working on the API
means that any bugs discovered during development for this project can be raised with the
team potentially for fixes, it also means that there are more likely to be other developers

CREATION OF BOTS FOR RTS GAMES 11

offering advice with the more involved areas of using the API.

The second benefit of using a commercially successful game for AI testing is the
game balance. By having a professional game, tested and balanced over years of gameplay,
the development environment is going to be more stable for no one strategy is dominant
and thus allowing for more innovation by a bot calculating the best possible responses to a
given situation.

Another benefit is the innate popularity of the game. If the game is well known, then
it is easier to find people to test bots by playing against them as they will already have
knowledge of the game mechanics (Magnusson & Balsasubramaniyan, 2012). This same
logic can also be applied to developers of bots for instead of having to learn new games
they will have pre-existing knowledge to aid them in their bot development.

Finally, and potentially the most crucial reason for choosing BWAPI for this project
is that it is the API being used in other research and is popular with other bot developers.
This means that while designing the API for development during this project, input can
be taken from other programmers’ experiences with the base BWAPI to see what aspects
of the API, in their opinions, could be most improved upon. These recommendations can
then be compiled and examined to evaluate their relative feasibility and to come up with
an action plan of development.

2.3 Atlantis API

Of all the existing attempts to simplify the Brood War Application Programming
Interface, one of the more comprehensive is Atlantis. Its main goal from the outset was
to "Make it much, much easier to create [a] new bot starting from zero" (Poniatowski, 2017).

The author of the Atlantis API lists the improvements that are made compared to
the standard version of BWAPI. As the improvements are described as being able to save
a potential bot writer the tedium of writing repetitive code that any bot would need, it is
important for us to note what these improvements are. If these improvements are accepted
simplifications to the process of creating a new bot for current developers, then a more
simplified environment should, at least, consider them for its level of abstraction.

It is also important to note that this framework was built with the specific goal of
removing the minutia of managing a bot’s micro actions throughout the game and instead
allowing developers to create bots without their focus becoming distracted from trying to
calculate the optimal overarching strategy to beat the opponent. This takes everything
except for creating a build order out of the developer’s hands and while this is useful for
research and development into enemy action interpretation, this level of abstraction is
too high for the goal of simplifying bot development. This is due to in essence the bot
already having a created framework that is now just waiting for commands. The goal of
this project is to find ways of simplifying creation and thus the lowering of entry barriers,
without taking too much of the development work out of the AI developers’ hands.

CREATION OF BOTS FOR RTS GAMES 12

The improvements that have been made by the Atlantis API however are relevant
springboards for examining what areas should be simplified. Some of its key features that
are listed in its documentation are:

• takes care of workers during mining and construction

• assigns workers to optimal mineral fields

• scouts to find enemy bases and detects the build order used

• micro manages unit combat

• automatic base expansion when reaching enough minerals

• automatically begin creating buildings and units needed to counter opponent’s strat-
egy choices

Some of these key features exceed the level of autonomy that is intended for the new
API this project is looking to create. For example, if we look at how the feature "scouts"
to find enemy bases and detects the build order used’ works, we see that this framework
will automatically choose one of the bot’s units, start scouting the map systematically for
enemy bases, then will analyse what it finds to interpret the enemy’s build order. While all
of these actions are things the average bot playing StarCraft will want to do to do well, this
project aims to leave the management of it as much as possible in the AI developer’s hands
while still simplifying the process. So in this example, instead of automatically choosing a
unit for the scouting, the developer will be given the option of designating a unit as a scout
and then setting up how they want the scouting to be conducted and starting it when
they want. Also, the feedback from the scouting will be presented to the AI developer so
that they can program the bot to interpret the information in whatever way they so desire
instead of the interpretation and output actions being pre-determined by the Atlantis API.

With these differences in design choices our aim is to create a development tool that
lets the AI developer feel that they are more in control of how the bot will think and react.
This leads to a more conducive environment for bot creation with the ability to see why
the bot has reacted in a given way without all the behaviour being pre-programmed and
hidden "under the hood".

CREATION OF BOTS FOR RTS GAMES 13

3 Visual Programming Languages

A visual programming language (VPL) is a way of programming that, rather than
being based in written code like a common language such as C++ or Java, is based in
visually represented blocks or other similar on-screen structures. Similar in view and use
to a flowchart, VPLs allow for easier representation of code structure and program flow to
those who aren’t necessarily as versed in traditional programming techniques and syntax.
As an aside, it is worth mentioning that the Microsoft Visual language suite such as
Visual Basic and so on, just to be confusing, are traditional languages and not true visual
programming languages.

VPLs started to become used when it was noted that professors, when teaching intro-
duction to programming courses, spent more time instructing on the minutia of language
syntax rather than the core principles of logic and algorithmic thinking (Shackelford &
LeBlanc, 1997). A study conducted at the United States Air Force Academy during an
introduction to programming course showed that in general, students preferred to work
using visual representation when given the choice in a final exam rather than other tra-
ditional options like MATLAB (Carlisle et al., 2005). As such, VPLs are being used to
make programming easier in many areas. The ones that will be examined further in this
paper, will be ones pertaining to development for games and similar media. They have been
demonstrated to be popular with new-comers to programming, with the users of Scratch,
a VPL and environment designed for younger developers, uploading more than 1,500 new
projects in 2009 with the majority of its users between the ages of 8 and 16 (Resnick et al.,
2009). With this level of usage, it seems prudent to examine the success of these languages
to see why they are used, and which successes of them can be attempted to be replicated.

3.1 Scratch

The main focus of reference for drawing inspiration in creating a Visual Programming
Environment comes from Scratch. Scratch is a visual programming language and envi-
ronment designed from the ground up to make entry into programming and other media
development easier. With both an online-based and a stand-alone desktop application,
Scratch is easily accessible to many users. It is used to create multi-media projects, using
imported media and scripts put together in the engine.

3.1.1 Core Concepts. The Scratch development environment was created with
three core design principles to stay true to its intended purpose (Resnick et al., 2009).
The creators aimed to make the language, compared to others, "more tinkerable", "more
meaningful", and "more sociable". So it is worth looking more closely at how each of these
has been realised.

The developers of Scratch define tinkerable to be the ability to be able to switch
things around easily, just to see what would happen, without being hampered by syntax
errors. To make the development process more tinkerable, the Scratch environment is
designed in a way that makes it easy to make quick changes to a program or process, even
during runtime. This allows a developer to tweak and change what they want to reach

CREATION OF BOTS FOR RTS GAMES 14

their eventual desired outcome. However, Scratch programming blocks are also created in
such a way that they only fit together in ways that make syntactic sense. This is by design
to allow developers that use Scratch to be able to try out different combinations easily to
see what happens, without the worry of the end result not running at all. As a result of
this tinkering new plans could form and the project will naturally evolve as new ideas come
to light. To enable the timely feedback of tinkering changes, Scratch runs live, meaning
that there is no compilation time and that code can be changed on the fly as the program
is running.

The next design point was to make the work feel more meaningful to the user. People
learn best when working on a project that they are invested in, or is meaningful to them
(Resnick et al., 2009). One way to make people immersed in their projects that Scratch
focuses on is personal customization. It is, by design, very easy to import photos and music
clips or even voice recordings. While restricted to a 2D environment, it facilitates a great
deal of personalised assets in the projects. It has been noted that other introductions to
programming are achieved by creating programs that the new developer has no connection
to such as creating a prime number generator or testing basic maths skills. Instead, the
basis of Scratch is to help users create projects that interest them while still presenting
opportunities for the learning of key programming principles (Maloney, Resnick, Rusk,
Silverman, & Eastmond, 2010).

While the final design aspect of being more sociable is, on the surface, not as relevant
as the others to the development in this project, it is pertinent to investigate this aspect
as it was something identified as being important enough to be an aim expressed in the
creation of the Scratch development experience.

Since its launch, the online community surrounding Scratch has gone through many
revolutions. In just over two years after its beginning in 2007, over half a million projects
were uploaded and shared on the site (Resnick et al., 2009). The large library of projects
can serve as inspiration for users or can serve as a knowledge base full of examples on how
to accomplish different goals. One change in the online community came with the inclusion
of a way for the creator of a project to be cited if somebody used part of their project in
their own. This was a move by the creators of Scratch to try and help people to feel proud
rather than annoyed if someone used their project.

This online community has also led to the rise of collaborative projects between
a diverse set of users. Some of these groups have even gone on to call themselves
’micro-companies’ and have ongoing projects recognised in the community. The
collaboration-based development allows for more investment from a developer for a given
project while providing more experience and learning angles to draw upon.

It is a reasonable conclusion to draw from the popularity of the online community
that having a shared environment for projects with terms of reference that all users
understand, can lead to more collaborative work. In turn this can lead to each developer
making more progress in their work due to the support network the community provides.

CREATION OF BOTS FOR RTS GAMES 15

From this it could be reasoned that perhaps development in other areas should look into
having a more solid base for each user to draw upon the same points of reference in their
work. This would then potentially enable stronger collaboration which in turn enables
development to be pushed further along.

3.1.2 Design. One of the design focuses of Scratch, making programming more
accessible, was aimed to be accomplished by making the scripting seem more open (Maloney
et al., 2010). For this, three major design decisions were made.

• Code execution would be visible

• There would be no error messages

• Variables would be visible

These design points are aimed towards making the programming side of creating a project
as easy as possible. As the aim of this project is to investigate simplifying bot creation,
these design decisions offer interesting insight.

While a project in the Scratch engine is running, the programming block or blocks
that are currently being executed are highlighted in the scripting area. This offers similar
visibility of code execution to stepping through code after a breakpoint in more traditional
development environments, but without the pausing of execution. This shows the developer
the order a sequence of code blocks are being run in, and also whether perhaps some of
them are not being run at all. These simple on-screen clues can prove invaluable when
troubleshooting code that is not running as intended.

"When people play with LEGO R© bricks, they do not encounter error messages"
(Maloney et al., 2010). This statement about how working with Scratch should feel is
reflected in the development of its engine. The drive to eradicate syntax errors lead to the
creation of the programming blocks that will only snap together in ways that would make
programmatical sense. But in order to work towards having code that avoids run-time
errors, each block must attempt to do something that makes sense when presented with
an invalid input. For example, the ’set size’ function for an on-screen sprite will restrict
itself from drawing something larger than the screen, or drawing something that would be
invisible for being too small. With this philosophy, syntax and runtime errors are reduced
but of course it still remains possible that there could be logical errors in the script that
the developer created. However if a script at least does something, even if not what the
creator intended, then it can provide some insight as to what went wrong in execution and
what needs to be done to fix the problem.

In most common programming languages, without setting up separate watch windows
for the purpose (if the tool supports such things) then a simple piece of information such
as the value of a variable is hidden to the user of the development tool. This can lead
to frustration during development and testing as developers are often left in the dark
as to what value their operation is using, and so why certain procedures are reacting in
unexpected ways. When using Scratch, whenever a variable is used it is displayed in the

CREATION OF BOTS FOR RTS GAMES 16

engine so that the developer can easier trace the interactions the program has with that
variable. This aim of this representation is to bring the concept of variables into the light
and make their uses more obvious. An extension of this concept is employed whenever
a list or array of variables is used, such that all the elements of the list are displayed
on-screen thus allowing the developer to see how they are changing.

These three design criteria that drove the development of Scratch specifically to make
programming easier offer strong direction on how to simplify the process of creating bots.
Each of these design decisions point towards giving the user of the development engine
an ’under the hood’ look at the software execution, but without overwhelming them with
too much information at once. This process of showing what is being executed while not
showing unnecessary technical details could be useful in the design of a visual development
environment for creating bots, as using this philosophy could show the creator of the bot
what processes and ’thoughts’ the bot is having in the current situation, in a more visually
readable way.

3.1.3 Programming Environment. Scratch is built with the objective of being
an object-based language. To be called a true object-orientated language, it must support
inheritance (Wegner, 1987), and so with Scratch not fulfilling this criteria it can only be
classified as object based and not object orientated. what this means in practice is that in
Scratch, game assets, such as sprites, are the programming objects as well. That is, they
contain their own variables and their own scripts and are completely independent from
each other.

Scripts are made up of 4 different categories of programming blocks that represent
different programming statements, thus providing a wide range of functionality and levels
of complexity. These 4 programming blocks, detailed below, are trigger blocks, control
structures, function blocks and command blocks.

Trigger Block - This is shown curved at the top to visually show that it will not
snap to the bottom of any other blocks. It is used to start a sequence once the specified
event is triggered.

Control Structure - These represent commands that contain other nested com-
mands in text-based languages, such as an ’IF’ statement or a loop. In Scratch these are
visually represented by a "catching block" that is shaped like a capital ’C’ and the nested
commands are placed inside the control structure.

Function Block - Function blocks represent conditions and parameters. They are
placed in other blocks that have open parameter slots. They can represent a Boolean asser-
tion for an ’IF’ statement or a variable for checking if a condition is met for breaking a loop.

Command Block - These represent the base statements of a text based language.
Tasks like moving objects, playing sounds or outputting a message to the screen are all
done with basic command blocks.

CREATION OF BOTS FOR RTS GAMES 17

Figure 2 . Scratch Programming Blocks

Screen-shot taken in Scratch Editor January 2018
https: / / scratch .mit .edu/ projects/ editor/ ?tip _bar= getStarted

As already mentioned (section 3.1.2), Scratch programming blocks are designed
to only fit together in ways that mean something. The shape of the blocks prevents
them snapping together in ways that make no syntactical sense. Command blocks will
fit together in sequence and so do control structures, but it would be impossible to place
a function block or a trigger block in the same places. Figure 2 shows a Trigger Block
followed by a Control Structure which checks a Function Block and contains a Command
Block. This way of visually constricting where blocks can be placed in script construction
is all designed to make it more intuitive for developers who are not familiar with underlying
programming syntax when introduced to Scratch.

Another large simplification of the Scratch programming language is the amount of
available variable types. In Scratch, data is either a Boolean, a number or a string and
so these are the only data types that are available for use in expressions, or for use as
variables. As Scratch automatically converts between numbers and strings as required, the
only two visual shapes of variable blocks represent a Boolean or a number/string. This
way of utilising variables means that developers don’t have to worry about declarations of
variable types at initialization or explicit conversions during runtime.

The final point to make about Scratch’s programming environment is the ease
at which it allows concurrency. In traditional programming languages, concurrency or
multi-threading is regarded to be a complex technique and is rarely used by beginners.
However in Scratch it is surprisingly simple to implement. If a given trigger fulfils the start
prerequisites of multiple trigger blocks, then all of the code stacks will start to be executed
simultaneously. While it doesn’t contain the explicit concurrency protection locks that
most languages have access to, the Scratch engine protects its execution by constraining
where thread switches can occur. Once a control structure has been started, such as an
’IF’ statement, the thread will not switch until the end of that control structure is reached.

https://scratch.mit.edu/projects/editor/?tip_bar=getStarted

CREATION OF BOTS FOR RTS GAMES 18

If this happens to be too limiting, then an exception can be made by placing a ’Wait’
command block in the stack. This implementation of multithreading allows developers
that potentially might not understand the complexities of thread synchronisation issues to
work on a code stack independent of other code stacks without worrying about unexpected
outcomes from execution sequencing issues.

3.1.4 Development Points. Several of the main points of development of
Scratch, and the evaluated successes of the engine, are relevant to the planning of this
project. The ease of use of the visual language demonstrates key ways in which the
entry barrier to programming can be lowered and so while this project is not focusing on
programming as a whole, rather the focus is a specific area of development, some of these
concepts should be taken on board in the planning stages.

An undertaking focusing on simplifying working with BWAPI may not be able to be
slimmed down to as few code blocks as Scratch uses, but the concept of having debugging
information visible by default is a promising one. Having the code visibly showing the
program’s execution could aid in development by allowing the AI developer to track
the flow of the bot’s logic and see if all of the written program is being utilised in the
correct circumstances (Resnick et al., 2009). This simple trait of a visual programming
environment could lead to logic errors, which are innate to programming new software,
being addressed in a much more timely manner.

As has already been mentioned, simplifying the entirety of the Brood War API into a
small number of command blocks may not be feasible without extensive further study into
the optimal level of abstraction without cutting down programming options. However a
certain level of abstraction over low level game mechanics that are not specifically pertinent
to bot strategy but are still needed for gameplay should still be addressed. As seen in
Scratch, when a user wants to have a sprite object move across the screen, they do not
have to concern themselves with exact graphical interface instructions, instead they tell the
sprite to move a certain number of pixels and the engine interpolates the rest. This same
concept could be applied to working in BWAPI. Instead of having the bot developer worry
about building creation, or resource pool management when these specifics are not key to
strategy development, perhaps a better approach is to have the simplified API deal with
the specifics so that the bot creator can deal with coding how the bot will decide what to
build and what strategy to use.

The final point of analysis on Scratch is the success of its online community. It was
heralded as one of the development engine’s key successes as a beginner’s programming
environment (Resnick et al., 2009). While the development community for BWAPI also has
online collaboration for asking for help from other AI developers, it is not such a central
piece of the working experience as it is with Scratch’s ’mix and match’ tinkering style of
development. A newly created engine for bot development could have online sharing and
collaboration as a core, integrated part of the engine. This would allow AI developers to
take a look at how others had achieved complex tasks or how they had overcome certain
obstacles, which would mean more time can be spent on advancing new ideas rather than

CREATION OF BOTS FOR RTS GAMES 19

reinventing the wheel.

3.2 Unreal Engine Blueprints: Visual Scripting System

Although not as much focus has been put on the Unreal Engine for inspiration for
this project compared to Scratch, the relevance of the software to the area means it should
still be examined. Unreal Engine is a professional game development engine initially
showcased in 1998 as a first person shooter game engine. Since then it has grown and has
been expanded until the most recent version, Unreal Engine 4, is now used for creating all
types of games and other media.

Made "free to all" in 2015, Unreal Engine is now accessible by anybody no matter
their skill level and fees are only taken if a product created using this engine starts earning
enough money (Sirani, 2015). This policy has lowered the entry barriers for new aspiring
game developers who are just starting out as it allows them to create their own projects
without professional sponsorship to purchase the required software.

The Blueprints Visual Scripting System built into the Unreal Engine is a gameplay
development scripting system designed to bring abilities previously restricted to professional
programmers to all users. In addition to this, the Blueprints system is integrated with the
C++ framework used in Unreal so that gameplay programmers can create baseline systems
that can then be extended by other users of the Blueprint system.

The different types of Blueprints include:

Blueprint Classes - An in-game asset that allows functionality to be added to
existing gameplay classes.

Data only blueprint - An instance of a blueprint class with no changed functionality
from its parent, but allowed to have different variable values.

Level Blueprint - The global event graph for a game level. These are used to
trigger events when certain actors interact in the level and are unique to each game scene.

Unreal Engine also supports Blueprint macro libraries which allow for custom nodes
to be created that can be added to blueprints. Similar to writing a function in other
standard languages these are used for time saving or for simplifying processes for other
developers.

Blueprints are constructed using nodes representing actions and triggers similar to
Scratch. As a contrast to Scratch however, Blueprints are not designed specifically for
developers in a lower age group and as such can be vastly more complex in nature. As
shown in figure 3 instead of having blocks that ’snap’ together, blueprint components are
connected via drawn lines that represent program flow. The white lines shown in the
figure represent the flow of the program and functions as a direction to the compiler thus
signifying that this block is executed once the previous one has been completed. The other
colours of lines show either the flow of data, where information is pulled from to complete

CREATION OF BOTS FOR RTS GAMES 20

the main line of the program or what conditions must be met before it proceeds. These
different construction lines allow for the separation of data sourcing and program flow in
the creation of a Blueprint.

Figure 3 . Blueprints Example

Event Actor Begin Overlap (n.d.). Retrieved September, 2017, from
https: / / docs .unrealengine .com/ latest/ INT/ Engine/ Blueprints/ UserGuide/

Events/ index .html

A user of Unreal Engine will be presented with an open empty workspace of with
which they can add a node to start this part of the Blueprint, similar to the way a trigger
block works in Scratch. From there they can draw a line from the output of this block
and at the end of the line they will be presented with a context menu of what node they
would like to add now. This flow of work allows developers to block out their software and
determine what functions need to be in line, before sourcing all the checks and data that
need to accompany the flow of execution.

3.3 Analysis of Scratch compared with Unreal Blueprint Scripting System

When analysing the successes of the two main inspiration points for this project, it
is important to analyse the differences between the systems and to understand why certain
design decisions were made.

The first contrasting point to analyse between them is the starting position in
their designs for the user experience. The Blueprint Visual Scripting System is designed
to be workable as a professional media creation tool. This is a distinct difference from
the philosophy for Scratch which was made to be a creative learning environment for
newcomers to programming. This difference is reflected in the complexity of the visual
nodes that each software uses. Blueprints have an ever expanding library of different nodes
that offer complex functionality options at quick access if you know what you are searching
for. Whereas Scratch, as discussed earlier, was designed specifically to have a low number
of easily understandable blocks so as not to overwhelm its users with too much choice.
These differences show that the intended user of the visual development environment can
make a crucial difference in development design. It is important therefore to establish the
intended user base early on in design so that the planning stage can take into account the
number and complexity of the nodes to be used in the language.

https://docs.unrealengine.com/latest/INT/Engine/Blueprints/UserGuide/Events/index.html
https://docs.unrealengine.com/latest/INT/Engine/Blueprints/UserGuide/Events/index.html

CREATION OF BOTS FOR RTS GAMES 21

The next major difference between the two development engines is their relative scope
and versatility. Scratch is rather limited in the scope of the projects you can create with it
because it is mainly meant for smaller media projects. It is however very versatile in what
type of media can be made within that scope and has been used to make everything from
small games to instructional video tutorials. The main restriction it has is that it is limited
to a 2D environment. But this restriction was purposefully made to ensure that the software
is easier to use as developers do not have to worry about translations of objects in 3D space.
Unreal Engine however is much larger in scale and allows for nearly any project to be created.
It can support both 2D and 3D projects but as mentioned earlier, this versatility comes at
the cost of complexity. The obvious differences between the two engines again show that the
intended scope of what developers that use the environment should be able to create should
be a key design point for the new system. If the system only needs to support one thing,
then this could well be accomplished with the use of a simple system that does not need to
have excessive functionality that can cloud the use of its one intended function. In the case
of this project, a simple system would only incorporate a visual programming environment
specifically designed for BWAPI. Adding any other functionality with the aim to make it
more open-ended so that it works with more AI engines, would merely subtract from its
capabilities and usability with BWAPI. Using the simplified coding block style shown in
Scratch will allow for easier development with easy to understand visual elements, while
the environment design aspects from Unreal Engine will cope better with the complexities
of working with the environment that BWAPI creates.

CREATION OF BOTS FOR RTS GAMES 22

4 Specifications

Having investigated the ways that other tools have been developed to ease the learning
experience of new comers to programming, the next step is to look into how these lessons
can be implemented for BWAPI.

4.1 Aesthetics

While traditionally not an important part of developing an API, the aesthetics of
a new Visual Programming Language is important to be planned out. This is due to, as
implied by the name, the majority of the user’s interaction with the system being visually
based. The first point to look at would be the development window itself. Scratch and
Unreal Engine have different ways of approaching this. As Figure 4 shows, Scratch has a
large portion of the screen dedicated to the live game view, with the rest of the window
taken up by a large scripting area, the tool selection menus and the asset selection bar.
The design is focused on the importance of attempting to provide immediate feedback
to the developer on the effect of their most recent changes and how these changes affect
the game world they are making. As a counter alternative to that model, Unreal Engine
has almost all of the window dedicated to its scripting area while the developer is editing
the Blueprints. The developer has to switch out of this view to see the game world, but
while editing Blueprints the focus is very much on the scripting environment. To access
the scripting blocks, a user must click in the scripting area and use the context menus to
search for the required command structure or block.

Figure 4 . Scratch Programming Environment

Screen-shot of Example Project taken in Scratch Editor January 2018. Example project
supplied by Scratch Team

https: / / scratch .mit .edu/ projects/ editor/ ?tip _bar= getStarted

https://scratch.mit.edu/projects/editor/?tip_bar=getStarted

CREATION OF BOTS FOR RTS GAMES 23

If a visual programming environment based on BWAPI is made, then it is exceedingly
unlikely without serious extra development and work with the underlying system, that a
live game view window would be practical. This is due to the nature of the API being
instructions that are injected into a running game of StarCraft, and not it not being
executable in any sense without setting the whole system running. Due to this, the visual
aspect of the environment is going to be a balance between the two extremes presented by
Scratch and Unreal Engine. There would need to be a large portion of screen dedicated
to the scripting area for development with no game view like Unreal Engine, but, as with
Scratch, the code blocks would be easily visible in menus for adding into the scripts. The
reasoning behind this decision is to help reduce the amount of learning that a new user has
to do on remembering programming blocks and structures. If all the programming blocks
are visible and are separated in meaningful menus by category, then the developer only
has to remember what type of block they need and what it looks like to have a chance of
finding it, rather than having to remember each block by name to search for it.

With Scratch, great care has been taken to ensure that the different categories of
programming blocks have unique shapes in the menus and scripting areas. As previously
described, Control Structures are open middled block that represent the fact that they
enclose other blocks, and the Command Block is a basic shape that can attach to the
bottom of other Command Blocks or can go in, before, or after a Control Structure.
The shapes of the blocks also help with the process of how to construct a script as they
fit together only in ways that make syntactical sense. With Unreal Engine, the blocks
themselves do not fit together. Instead they are attached together with lines that direct the
flow of the program. The blocks are also all the same basic shape, just with more input or
output points dependent on the type of block. For the proposed new Visual Programming
Environment, the approach taken by Scratch would be the better option in theory. The
simplicity offered by having the blocks snap together in ways visually representing the
programming concepts they replace is invaluable along with the possibility of having
the language structured in such a way that means instructions cannot be put together
incorrectly.

A potential drawback to this inter-fitting block approach is that issues may arise
over the visual interpretation of the intended flow of data. With Unreal Engine, the data
required as an input for a block is shown as being connected by a line from another source
where as the only way of passing data in Scratch is with variables, which are inserted as
Function Blocks into other commands. With a Scratch based system, it is possible that
the system would be too complex with a variable required for every piece of data that is to
be passed from block to block, and that another solution would be needed. One possible
solution would be to use something similar to the solution Unreal Engine has, with lines
from block outputs to other block inputs.

4.2 Mechanics

The visual description of the blocks, while important of course, is not as crucial as
establishing both what the blocks are going to do, and how the user is going to interact

CREATION OF BOTS FOR RTS GAMES 24

with them. The intention of this new development engine is to have the AI developer
be able to create a bot that will work in the game "StarCraft: BroodWar", without the
developer spending large amounts of time studying existing API’s and techniques. The
command blocks in the new engine should therefore be self explanatory, and self contained.
What this means in practice is that the function of any given block should be clear from
its name without needing to go extremely in depth in its description. Being self contained
means that there shouldn’t be any block that is impossible to use without the presence
of another block. This would mean that a AI developer could browse through the menus
of command blocks and find one that sounds like what they need without concerning
themselves with thinking about having prerequisite blocks already in the script or project.

Having defined the basic requirements for a programming block the next step is
to determine the level of abstraction the different programming blocks will take over the
existing API which will then determine the kinds of operations that these programming
blocks will execute.

Currently when using BWAPI, there is only one level of built-in assistance for an AI
writer over and above what a player of the game would have access to themselves. This
assistance is a small utility that does not come as standard in the API but is available
on the website for basic instructions in using it. This function contains a way to find the
closest area where a building can be placed that a builder can get to. This function will be
used as part of this project as it isn’t an aim to recreate this function and it isn’t possible
to create buildings without using some version of the function. Other than that there are
no development functions that a player of the game doesn’t have access to. This means
that everything must be done explicitly in programming by every new AI developer that
uses the API. Consequently, there is no way of tracking any unit being created, without
building such a system and there is no way of keeping track of what enemy buildings you
have observed, or any other such capabilities. Each of these systems would be a challenge
in itself for the prospective bot creator but some of these tasks could be simplified into
multiple blocks so that a new AI developer could put a working bot together with some
level of customization with relative ease. With this project the aim is to give these
developers a library of tools to create their bots how they want, using their own ideas, but
without them getting immediately bogged down in some of the more intricate parts of the
API. Another important part of the mechanics of this project would be the option for a AI
developer to create their own blocks that could add to or replace existing blocks or be just
added to the library. This functionality would cater for whenever the developer wanted
something that currently isn’t created or if they wanted one of the current blocks to work
slightly differently. The aim is to ensure that the new tools always enable more free bot
creation and not restrict it.

The starting point when drawing up a list of the possible main features this library
of tools should contain, was to approach part of the current development community which
already uses the current API with a survey. This survey listed a selection of different things
they would have liked to be easier or done for them when they first started out using the
API. Below is the list of options presented to them, with an explanation of what each meant.

CREATION OF BOTS FOR RTS GAMES 25

Production Queue
Buildings and units can be added to the queue with a priority level. The queue will then
sort by priority and manage saving up resources for the item at the top of the list. Once
resources are available it will either assign a builder to construct a building or when all the
required buildings are complete, it will start training the unit.

Base Manager
Stores a list of buildings that should be in each base. If the given base doesn’t have that
building then notify the bot that it needs certain buildings, so the bot can decide how to
fulfil the base needs.

Builder Manager
When a construction job is ordered, a builder is assigned to it. If this builder is killed than
another free builder will be assigned and sent to work on it. When the builder is finished
constructing it will be sent back to mining minerals.

Basic Map Exploration
Units assigned the task of map exploration will visit all possible base spawning positions
as a basic search path.

Squad Management
A basic implementation that holds groups of units. This allows for collective objectives
and the squad will request replacement units if any are killed.

Basic Combat Micro
A simple implementation of micro for units. Possibly including activating abilities and
falling back when the average health of the squad drops too low.

Enemy Base Tracking
Keeps track of enemy base locations and their respective make up of buildings for later
use. This can be useful for analysis or for targeting of attacks.

Enemy Unit Tracking
Storing of enemy unit makeup to allow for analysis and creation of counter strategies.

After these options in the survey were open questions allowing for more general
responses about what people would want improving. The responses to this survey are
outlined in table 1.

Something of note from the responses shown in this table, is that every suggestion
was marked as detrimental at least once. Upon examination of individual responses to the
survey, it was found that one participant had marked each suggestion as negative while
remarking that augmenting the API defeats the purpose of writing an AI. While not dis-
counting this person’s views, it is of note that these negative responses all came from one

CREATION OF BOTS FOR RTS GAMES 26

Table 1
Questionnaire Responses

Suggested Feature Responses
Detrimental (1) Not Useful (2) Useful (3) Don’t Know (0)

Production Queue 1 - 7 1

Base Manager 2 2 3 2

Builder Manager 1 - 6 2

Basic Map Exploration 1 - 6 2

Squad Management 1 - 6 2

Basic Combat Micro 1 - 6 2

Enemy Base Tracking 1 - 7 1

Enemy Unit Tracking 1 - 5 3

person while as a whole the survey and its ideas were well received. Also of note is the
relatively small number of responses received, so while this data is from current AI devel-
opers that use the API, there is potential for misrepresentation due to a small sample size.
Table 2 shows each of these features listed by order of their average response score, with
the higher number representing a better response. If they had the same average score, then
they have been ranked by my personal preference of the features I would have liked to exist
when I first started using BWAPI.

Table 2
Sorted Average Response

Suggested Feature Average Response

Production Queue 2.75
Enemy Base Tracking 2.75

Builder Manager 2.71
Squad Management 2.71

Basic Map Exploration 2.71
Basic Combat Micro 2.71
Enemy Unit Tracking 2.67

Base Manager 2.14

It is clear that a lot of the responses had similar results as to what people would
want in a new API. Due to time related restrictions, only four of the results will be

CREATION OF BOTS FOR RTS GAMES 27

augmentations that are focused on, and as such it will be the top four shown in the above
table. Each of these features will now be further examined and their specifications expanded.

Production Queue
Survey brief outline:

1. Buildings and units can be added to the queue with a priority level.

2. The queue will be sorted by priority level.

3. The function will make allowances for saving up the required resources for the item
at the top of the list.

4. When resources are available, a builder will be assigned to construct a building, or
when all the required buildings are constructed then the unit will be started.

Since writing the survey, it has become apparent that this specification needs amending to
include the point

5. If a building is destroyed mid construction or a unit or research is cancelled by the
producing building being destroyed, then the respective building will be changed back
to a status of "Unstarted" in the construction queue.

The first specification will require a list of objects that stores different construction
and production requests. These requests will come in one of three different styles. A
building or unit, a research, or an upgrade. Each of these styles will require separate
objects on the list because they are all worked on and completed in different ways. The
completion of each would be tracked by different triggers in game. A building or unit being
finished, a research being completed or an upgrade being finished all trigger different in
game events and as such need to be monitored for differently. These ’production orders’
as they will be called, must also store the priority level of the order, the time that they
were requested, and the current status of the order along with the details of what it is to
produce. Priority level will be recorded with a higher number meaning a higher priority.
This is to allow for ease of adding a new item with a higher priority than all current items
in the queue without changing all existing priority levels to accommodate. The queue
must then be sorted automatically by priority level, and then by time requested every time
that the list changes. This will enable important buildings to be ’fast tracked’ through
production if required by the bot.

Now we have a sorted list of the three different types of production, we can address
saving up resources to produce the top item on the list. For each production order, there
will be an associated cost embedded in the details about what the order is for. This cost
could be in the form of minerals and/or vespene gas, but by the nature of it being at the
top of the priority list, it is the most important thing to create at that moment. As such
if the bot is not able to produce what is required yet, then it should save up its resources
until it can. This is achieved simply by not allowing the bot to spend its resources on
anything but the top, "Unstarted" item on its construction queue.

CREATION OF BOTS FOR RTS GAMES 28

Along with the cost of each production order, there will be a list of prerequisites to
its production. This list is provided by default through the base API. If it is attempting
to construct something before all the prerequisites are in place then nothing in game will
happen. To address this, there will be an option when adding a production order to the
queue, enabled by default, that will add any missing prerequisites also to the queue before
the item that was initially to be added. When interrogating the list to see what item is
the current one to save up for, all items without the prerequisites met, will be ignored.
This is to prevent the bot being stuck, unable to produce anything as it is not allowed to
spend resources on something that is not the top item of the list, but unable to produce
the top item of the list as it is waiting for one of its prerequisites to be made, which has
been placed further down the priority list.

Once the correct item has been put to the top of the queue, and then enough
resources have been saved, the production order can now be started. For a building, this
requires acquiring an available builder and telling it to begin construction. For units
and upgrades, it requires telling the appropriate building to begin working on it. Once
this is done, the task is started and should be marked as such in the production orders
status. Items will only be removed from the queue once completed, but they should
be marked as "Begun" because the item is still at the top of the queue and as such
nothing else will start while it is still there. If this is done and "Begun" items are ig-
nored when scanning the list, then the bot can move onto the next thing to start working on.

Finally, if a building is destroyed mid construction, it is possible to detect that through
a trigger on building destruction. If this happens then a check can be run to see if that
building was one of our ones that was being constructed. If it was, then the production
order in the construction queue needs to be amended to say not started so that the queue
manager will re sort it into what should be built. It can also be checked to see if a building
destroyed was producing a unit or researching something for the queue. If so, that can also
be changed back to an "Unstarted" state.

Once a building/unit/research is complete, the production queue will be scanned to
find the appropriate production order and it will marked as complete and removed from
the queue.

Enemy Base Tracking
Survey brief outline:

• Keeps track of enemy base locations and the buildings in their make up.

• Allow access for possible interpretation or attacking targets.

This is, in principle, a simple augmentation to implement. The base API has a trigger for
when a building or unit is discovered. On this trigger, a function can be called to check
the discovered buildings unique ID against a list of known enemy buildings, and if it’s not
on there then append it to the list. The list must be checked to ensure than no multiple
entries because a trigger happens whenever the building appears from the fog of war and
as such could be discovered multiple times as the fog comes and goes. This list will then be

CREATION OF BOTS FOR RTS GAMES 29

made available for interrogation for finding out if the enemy has a certain type of building,
or other needed details of the enemy buildings. The list will also be updated by removing
items from it whenever a building is destroyed, or is discovered to be gone.

Builder Manager
Survey brief outline:

1. When a construction job is ordered a builder is assigned to it.

2. If this builder is killed then another will be assigned to it.

3. When the construction is complete, the worker will be returned to mineral mining.

It is important to note that this part of the library would have to include radical
differences to allow for the other two races of StarCraft that will not be included in this
project build. This build will focus on the Terran race, where a builder unit will work on
a building until completion. The other two races are different in that the Zerg’s builders
actually morph into their buildings and as such are expended whereas a Protoss builder
only needs to be there to start a building, then the building will construct itself while the
builder is free to do other things.

To have a builder be assigned to a construction job, there must be a construction
job object that will contain reference to that worker along with the other details of where
and what will be constructed. This object will be created when a building is deemed ready
for construction by the Construction Queue, or can be created manually, then will be put
into a list of ongoing jobs. A builder that is currently free, or mining minerals will then be
chosen for the job and a reference added, while the builder is given the command to begin
construction according to the details passed in.

Assigning a new builder if ever the current one is killed is another task simple in
concept once the surrounding framework is there. When a unit is killed, a trigger is raised
in the base API, allowing for the catching of this event and checking to see what the
unit was. If the unit was one of our builders, then a check can be run against all current
construction jobs to see if it was the builder assigned to one of them. If it was, then a new
worker can be secured in the same way that the original one was by pulling it from mining
or from idle.

Buildings being completed is another trigger that can be monitored in the base API.
When receiving this trigger, a check can be run to ascertain if the building was one of ours
and if so, which construction job it was. When a construction job is found to have been
completed, the assigned builder can be returned to mining, and the job object can deleted
from the list.

Squad Management
Survey brief outline:

1. A simple implementation that holds a collection of units

CREATION OF BOTS FOR RTS GAMES 30

2. Allows for collective objectives

3. Management to request replacement units if any one is killed.

With the current API, controlling units involves giving each unit individual orders.
Consequently if you wanted a group of five marines to move across the map, you would
have to select each one in turn and individually set its movements target. Having squad
logic allows for a squad of units to be requested and created as a batch, then once each
unit is created it can be added to a squad object containing a list of all the units in it
along with other details. A target or destination can then be given to the squad ob-
ject and the squad manager would then relay the movement target to each unit in the squad.

The squad object will hold a list defined by the AI developer of units that is the
desired make up of the squad, a list of current units it has, and the current objective
of the squad. On request, the function will return the difference between the two lists
so as to see what is missing from this squad. The manager could automatically place
requests to the construction manager if enabled, but otherwise will only report what it needs.

The squad objective or target will be able to be provided with additional parameters
pertaining as to whether the squad will move straight there or will engage enemy units on
the way. The squad management function will then either use the inbuilt function of attack
move or the normal move for each of the units in the squad depending on which was selected
in the parameters.

CREATION OF BOTS FOR RTS GAMES 31

5 Design

For each of the four main augmentations listed in section 4, below are more technical
designs and diagrams of how they will be implemented and how the different parts of the
library will work together.

5.1 Production Queue

Figure 5 shows the class diagram of the production queue. With the relations between
how the different types of production order will inherit, and how they will interact with the
main class.

Figure 5 . Production Queue - Class Diagram

Figure 6 shows the sequence diagram explaining how the Production Queue Manager
will interface and be interacted with by the AI developer’s bot, how triggers that come from
the base API are handled, and how the Manager will interface with the actual Production
Queue.

CREATION OF BOTS FOR RTS GAMES 32

Figure 6 . Production Queue - Sequence Diagram

CREATION OF BOTS FOR RTS GAMES 33

5.2 Enemy Base Tracking

Figure 7 shows the sequence diagram of the Enemy Base Tracking block. There wasn’t
a need for a class diagram for this section as it would be contained in one class, but the
sequence diagram shows how it interacts with the AI developer’s Bot, and the base API.

Figure 7 . Enemy Base Tracking - Sequence Diagram

CREATION OF BOTS FOR RTS GAMES 34

5.3 Builder Manager

Figure 8 shows the class diagram outlining the Manager, the Construction Job and
the shell for the builder class.

Figure 8 . Builder Management - Class Diagram

CREATION OF BOTS FOR RTS GAMES 35

Figure 9 shows the way that each task is dealt with including the triggers from the
base API.

Figure 9 . Builder Management - Sequence Diagram

CREATION OF BOTS FOR RTS GAMES 36

5.4 Squad Management

Figure 10 shows the two different classes of the squad manager and what each would
contain.

Figure 10 . Squad Manager - Class Diagram

CREATION OF BOTS FOR RTS GAMES 37

Figure 11 shows the way that each task is dealt with including the triggers from the
base API.

Figure 11 . Squad Manager - Sequence Diagram

CREATION OF BOTS FOR RTS GAMES 38

6 Testing Plan

In normal software development, testing is conducted in two major stages. These
stages are known widely as white and black box testing (Khan & Khan, 2012).

White Box - With a working knowledge of the code base, an in-depth check of logic and
code sections is run, checking inputs and outputs to the different code methods and classes.

Black Box - No code base knowledge is required for just the output of the entire program
is analysed and compared to known correct results.

Often, testing is done as a suite of individual tests with results for each of them
checked against the expected results from that test. With Java systems, a common way of
achieving the white box testing is to use a suit of JUnit tests (Do, Rothermel, & Kinneer,
2004). These tests are made to be run after each large change to the code base to ensure
that new changes don’t cause faults in previously tested code.

When developing with BWAPI, the use of normal testing procedures is not as easy
as when developing in other environments or circumstances. This is due to the innate
requirements that BWAPI needs to run. Any time that BWAPI is to be run, it needs to
be run simultaneously with the base game of StarCraft. Because of this, no small scale
localised system tests can be run en masse unless a way of running the game engine for
interrogation was developed. Also of note is that for a lot of bot development to be tested,
the bot needs to have been run from its beginnings and set up to have the correct frame
of reference and responses triggered for any given test to be valid. For example, there
is no point in running a test on a bot’s ability to build end game units, when the bot
has not got through to the end game and does not have the in-game capabilities of doing so.

For testing the developed new library of functions made for this project that
are for use alongside BWAPI, a variation of standard white box testing is used. This
variation involves writing a series of function tests for the different planned packages of
the library. Most of these tests are in the form of different configurations of a test bot
built using the new library packages. If certain parts of the library can only be tested
under specific circumstances, then a custom game is created containing the testing bot and
the human tester as a player, to be able to force the game to go into the given circumstances.

Below, each specification point is listed, together with an explanation of what test
was run and how that proves the capabilities of the specified functionality.

6.1 Production Queue

6.1.1 Buildings and Units can be added to the queue with a priority level.
To test the first and most crucial point of the production queue, the testing bot, created
to interact with the new library, is instructed to call the methods to add different types of
items to the queue. These multiple calls are made to request the different types of order

CREATION OF BOTS FOR RTS GAMES 39

that can be made, and also represent a variety of priority levels on the orders. The bot
requests the production of the following items, in this order.

• Stim Packs Research : Priority 1 : Research Order

• One Terran Marine : Priority 2 : Unit/Building Order

• One Terran Barracks : Priority 3 : Unit/Building Order

• Terran Infantry Armour Level 1 Upgrade : Priority 1 : Upgrade Order

For the test, one frame of game time elapses between each order so that the secondary
sorting metric of order-time is shown to be relevant.

This test shows the three different types of order that is created by what production
the AI developer requests. As shown in figure 5, the three different order types are
Unit/Building Order, Research Order, and Upgrade Order. Each of these are covered
by the requests made by the testing bot, with the Unit/Building order shown twice to
demonstrate both types of production.

On running this test, the production queue receives each request and interprets it by
creating a new order of the appropriate type, then adding the new order to the production
queue. This is demonstrated by the on-screen display option for the construction queue.
With this option enabled, each item in the queue is displayed along with its details of what
is ordered, its priority, time ordered, and its status. This allows a tester to see the items in
the queue, what order they are in, and what status each order is in. When the test is run,
the queue correctly shows on screen, four separate items in the queue, each with the details
and associated priority levels.

6.1.2 The Queue will be sorted by priority level. Using the same test
set-up as the previous point with the four different production orders, the sorting of the
queue can also be tested. The production queue is sorted by priority and order-time every
time that an item is added, edited, or removed. This means that by adding four orders to
the queue, the list automatically sorts each time.

The test bot is run with the order requests in the sequence shown by the test above,
and this produced the following output of list of items on screen once all were added.

• Barracks : Priority 3 : Time 3

• Marine : Priority 2 : Time 2

• Stim Pack Research : Priority 1 : Time 1

• Terran Infantry Armour Upgrade : Priority 1 : Time 4

This list shows that the Barracks order, which was issued after the Marine order is sorted
above it due to the higher priority attached to the Barracks. It also shows that the Stim
Pack Research is sorted above the Armour Upgrade, because even though they have the

CREATION OF BOTS FOR RTS GAMES 40

same priority level, the Stim Pack was ordered before the Armour Upgrade and as such
should be higher in the list.

6.1.3 Automatic prerequisite items requests. This function is designed to
check to see if all prerequisites for the requested item are met, and if not, add them to
the queue. This function is enabled by default on each add to queue call, but can be
manually disabled if so desired. The test for this function incorporates several iterations.
Each iteration tests different possible scenarios of when the function could be called.

• Requirement not met and not ordered: Order a marine when there is no barracks
complete, and no barracks in the production queue.

• Requirement not met, but under construction: Order a marine when there is no
complete barracks, but one is in the production queue.

• Requirement Met: Order a marine when there is a complete barracks.

Then as a final test, the bot orders a unit that has at least one prerequisite that also has
its own prerequisites. This tests the self-recursive nature of the function that is designed
to make sure that all requirements are met, not just the direct ones.

For each of the initial tests, the bot adds a marine to the production queue under
the differing circumstances. The first test is to ensure that the function adds a Barracks
to the production queue because a Barracks is the prerequisite for a Marine. The Barracks
is added once the function has ascertained that there is not one already complete or one
already in the queue. The other two initial tests have no additional items being added to
the queue as the barracks was in the queue already, or was complete. The final test has
the bot order a BattleCruiser. This is considered a late game unit due to its long list of
requirements, and some of those requirements themselves having prerequisites that need to
be met before they can be constructed. The test results show that when a BattleCruiser is
ordered, the function adds the following extra buildings to the queue:

• Barracks

• Factory

• Starport

• Science Facility

• Physics Lab

• Control Tower

Of these added orders, only the Starport, the Physics Lab, and the Control Tower are
directly listed in the API as requirements for a BattleCruiser. As these three orders for
buildings are added, then their own prerequisites of the Barracks, Factory, and Science
Facility are also automatically added by the function.

CREATION OF BOTS FOR RTS GAMES 41

These four tests show that the function recursively adds prerequisite orders to the
queue when a new order is made, as long as they are not already in the queue or have been
already created by the bot.

6.1.4 When resources are available for an order, a builder will be
assigned to its construction, or the order will be started at the appropriate
building. During development, this part of the library was changed slightly, so that
instead of the order being handled automatically when the resources and other requirements
are met, the production queue instead passes the order details back to the AI developer
for them to execute themselves. This change was made to keep the library package for
the production queue more self contained and to give more control of how things are
executed back to the AI developer. After all, this project is about providing aides to the
AI developer, and not doing everything for them.

To test this part of the library, the test bot is set up to start the mining of both
minerals and gas, and then to request a selection of different items. Then the tester
needs to observe the current amount of resources the bot has, and the unit and building
availability of the bot to manually check when the first item on the production queue
would be possible for production. Then check to see if the production queue has returned
that production order marked ready for execution.

A test of setting the bot mining and making the same orders set out earlier was run,
with the following being the queue once all items are added and the queue is sorted.

• A Barracks

• A Marine

• Stim Pack Research

• Armour Upgrade

The expected outcome would be that nothing would be returned by the queue until 150
minerals have been gathered by the bot. This is the cost of the barracks, which is the first
item to be executed as it is the top item in the queue, but also due to the prerequisites
for the other items not being met. When 150 minerals are gathered, the production queue
returns the production order detailing the barracks to the AI developer, marking this as
being ready to execute. Then, to continue the test, the barracks is constructed manually
by the tester, which is automatically tracked by the production queue and then removed
from the queue once completed. After the barracks is completed, and another 100 minerals
had been gathered, the order for the marine was returned by the queue, as now all of its
prerequisites have been met and enough resources have been gathered.

This test shows that when an order has all of its requirements met, the production
queue sends that order back to the AI developer to be executed as and when they deem fit.
It also shows that the production queue tracks orders that have been started, and removes
them from the queue upon completion.

CREATION OF BOTS FOR RTS GAMES 42

6.1.5 If a building is destroyed mid construction, or a unit in produc-
tion, a research, or an upgrade is cancelled by the producing building being
destroyed, then the corresponding order will be changed back to "Unstarted"
status in the queue. To test the functionality of this specification, a custom game is
set up between the bot and the tester. This allows the tester to destroy buildings as they
are being constructed, or as they are producing other orders. The test is carried out by
having the tester send a group of units to destroy the bot’s barracks while it is producing a
marine. The order for the marine, before the destruction of the barracks, has the status of
"Started" to signify being in production. After the destruction of the Barracks, the order
is changed back to "Commissioned" which indicates that is has been ordered and is in the
queue, but has not yet been acted on.

This test demonstrates that the destruction of a building is recorded by the production
queue and then interpreted to see if it was relevant to current productions. If it was, then
the appropriate records are updated so that, when ready, the orders can be given back to
the AI developer again for them to be re-executed when possible.

6.2 Enemy Base Tracking

6.2.1 Keeps track of enemy base locations and their respective make
up of buildings. During development it was discovered that while creating a manager
that will track enemy base buildings, it was the same principal to have the manager track
enemy units at the same time. The tracker will store each building and unit discovered,
along with the last known location of each of them when they disappear into the "fog of war".

To test this system, another custom game is set up between the test bot and the
tester. This one has the test bot send a unit to where the testers’ base is, to be able to
discover their buildings and units. The exploring unit is then to retreat far enough to
where the tester’s units are again hidden by the fog of war. Doing this allows the enemy
base tracker to see the enemy buildings and units, and add them to the records. This is
shown on screen by a drawn green circle around the location of visible enemy units and
buildings. This circle then changes to red when the unit or building is now hidden by the
fog of war, to signify that it is only displaying the last known location and not live data.

This test shows that the base tracker can recognise an enemy building or unit and
add it to the list. It also shows that if a building or unit is found, it can check to see if it
is a new unit or if it was one that was previously found but hidden. This is useful to make
sure that the same unit does not end up on the list multiple times by being discovered in
multiple places.

6.2.2 Allow access for possible interpretation or for attacking targets.
Using the same test setup as the previous test, with the bot facing against the tester and
sending out an exploratory unit, this test consists of having the bot query the Enemy
Base Tracker to find out what the Tracker has learned about the enemy during the scouting.

CREATION OF BOTS FOR RTS GAMES 43

After exploring the enemy base, the bot is interrogated to see if it has a record of
the enemy’s main command building, the enemy’s builders, and also how it responds when
queried about a building that the enemy did not have at the time of the exploration. These
interrogations show that the records hold both units and buildings, and return a false when
asked about buildings that the bot did not observe an enemy having during its scouting.

6.3 Builder Manager

6.3.1 When a construction job is ordered, a builder is assigned to it.
For this test the bot is set up to wait until it has the resources and builder available
to produce a building, and then to order a construction job for that building by us-
ing the Builder Manager. This method does not wait for any conditions nor does it
test that any conditions are met but immediately allocated a builder to the task. For
this reason, the method also requires the intended location of the building to be constructed.

The results of the test show the job being created and added to the job list, by
the closest builder being acquired from among the free ones or the ones mining minerals,
and the worker being sent to construct the requested building in the requested location.
This test demonstrates that the manager is capable of getting the closest ’free’ builder and
instructing it to build the requested building.

6.3.2 If this builder is killed then another will be assigned to it. Similar
to testing the implementation of when a building was destroyed mid production for
the production queue, this specification is tested by having the bot in a game against
the tester. The bot is set up to start building a sequence of buildings while the tester
sends units to kill a builder while the buildings are being constructed. The tester with-
draws their units to observe if the bot sends a new builder to continue the construction work.

Running this test shows that the bot, when using the Builder Manager, is able to
recover from a builder being killed mid construction, by sending in a new builder as a
replacement.

6.3.3 When the construction is complete, the worker will be returned
to mineral mining. To accomplish task, the library forces all idle workers to go mine
minerals, and so to test this functionality a few different scenarios of why a builder has
become idle need to be created.

• The builder has just been trained and is idle outside the command centre it was made
at.

• The builder has just finished constructing something and is now idle and is adjacent
to the completed building.

• The builder was moved to somewhere and is now idle upon reaching the destination.

For each of these tests, the bot’s workers are manually put into these situations either by
moving them, or by performing the appropriate production actions. Each test shows the

CREATION OF BOTS FOR RTS GAMES 44

worker being moved to mining at the closest mineral site after it was discovered to be idle
by the builder manager.

6.4 Squad Management

6.4.1 A simple implementation that holds a collection of units. The
testing of this function specification is less straight forward than some of the others, as the
method doesn’t do anything but only holds information. So to prove the ability of creating
a squad and that the Squad comprises of the units it has been assigned, a test is run that
creates a squad, then requests the units required to complete it, and once these units have
been built it assigns them to the squad. Finally the bot then interrogates the squad object
to ascertain its status of completion. When a squad is created, the list of desired units
is passed in to the function. The function records the passed in list of desired units and
responds upon request with a list showing the disparity between the desired units and the
currently assigned units.

For this test, a simple squad composed of four Marines and two Medics is commis-
sioned. The bot queries the function to ascertain what items are missing from the squad
and instructs the required units to be created. Upon completion of each unit, the squad
manager is notified and the unit is then assigned to any squad that needs a unit of that type.
When all units are trained, the squad is queried to see what its status is, and it responds
that it is complete. This will only happen if the comparison of the desired composition list
and the list of currently assigned units shows no discrepancies.

This test shows that the squad manager can create a squad object that will hold the
details of what its desired composition is, the details of its presently assigned units, and
can respond to status queries.

6.4.2 Allows for collective objectives. To test this requirement, a squad is
created in the same way as the previous test. Then, upon completion, the squad is given
a location on the map to move to. After the squad completes its movement objective, the
squad is given a target to collectively attack.

These simple tests show the ability to use the two different squad command modes,
movement and attack, to make the whole group of units move to an objective with one
command, instead of the AI developer having to set up a way to give commands to each
unit individually.

6.4.3 Management to request replacement units if any one is killed. For
this test, again a testing environment is set up with the testing bot playing against the
tester. Note that, the squad manager does not automatically place orders for replacement
units, it instead updates its response to the query about whether it needs any more units
to be complete. This maintains the independence of the package in the library and allows
it to remain self-contained. Consequently, the testing bot is set up to create new units if
the Squad Manager replied to a query that it needed a replacement unit after one had just

CREATION OF BOTS FOR RTS GAMES 45

been destroyed.

To test this, a squad is made in the same way as the previous two tests, then the
tester sends units to destroy one of the units in the created squad. After this happens, a
request comes through for a replacement unit of the same type as the one that was de-
stroyed. When the replacement unit is completed, it is automatically assigned to the squad.

This test shows that the lists of assigned units in the squad is updated when a unit is
destroyed, and that when0 this happens the Squad requests a replacement unit next time
it is queried.

6.5 Example Bot using New Library

As the final internal test before moving to external evaluation, a full test bot
that incorporates all the new library packages is made. This bot is not designed with a
strategy that will win a full game, but rather it is developed to demonstrate a basic game
progression plan that showcases each capability of the library.

This test bot is made to show the simplicity that the new library can bring to a AI
developer’s bot coding, with each package simplifying different areas. By completing the
relatively simple game plan that the example bot has, each of the four packages created
for the library are showcased. Below is an outline of the bot’s game plan, along with an
explanation of which library packages it incorporates.

On game start, the initial idle workers are set to mining by the Builder Manager
while also being added to the Builder Manager’s list of workers. Then, whenever there is
not a worker in the production queue, and the current number of workers is less than the
target number of workers, the example bot commissions another worker in the production
queue.

The test bot is set up to read what is returned from the Production Queue, to see
what is ready for being worked on. The test bot will then either tell the appropriate
building to begin production, or it will instruct the Builder Manager to start construction
of a new building using a function that returns a possible build location. 1

As more workers are produced, the supply used amount will increase and as such,
the bot is set up to automatically add a supply depot to the production queue whenever
the supply available count gets too low. Once a usable count, in this case 10, of workers
are completed, a squad of four Marines are commissioned at the Squad Manager. Then,
by using the result of querying the Squad object about what it requires to be complete,
the four marines are passed to the Production Queue. By adding a Marine, the Barracks
is automatically added by the queue as it is a requirement for producing a Marine. A
Refinery and a Bunker are also added to the queue. By adding all this to the queue in
one go, and leaving it to the Production Queue to manage when the bot actually produces

1Example BuildTile Function provided by http://sscaitournament.com/index.php?action=tutorial

CREATION OF BOTS FOR RTS GAMES 46

things, it is demonstrating the capabilities of the Production Queue function and shows the
bot does not get stuck trying to produce units or buildings that are currently impossible
to create because their prerequisites are not yet in place.

Once the Squad Manager registers that the squad is complete, and the Bunker is
completed, the first squad is given the collective command to load into the Bunker. This
then demonstrates the Squad Manager’s collective commanding ability. A new squad is
then commissioned from the Squad Manager and added to the Production Queue. This
squad consists of five Marines and two Medics. Due to the request coming through to the
Production Queue for a Medic, an Academy will automatically be added to the queue as an
Academy is an additional prerequisite of the Medic. Another Barracks is also commissioned
by the bot to supplement the production of units for the squad.

When this second squad is reported as complete, it is sent exploring to find out
what the enemy is doing and what buildings they have. When any of these are found, it
is reported to the Enemy Base Tracker and added to its internal list. While this squad
is exploring, another squad is created for base defence along with both the Stim Pack
research being commissioned and the Infantry Weapons Level 1 upgrade. As the research
is conducted at the Academy, which is a building that is already complete, then no new
building is required, but the upgrade requires the Engineering Bay to be built.

Through all of this basic game set up, each of the base library interactions are demon-
strated by the example bot. The final bot is now more robust against the common pitfalls
of designing automated agents in a non-deterministic game world, than a typical beginner’s
bot would otherwise be.

CREATION OF BOTS FOR RTS GAMES 47

7 Evaluation

For the evaluation of of whether this project met the goals set out in development,
two different main strategies were employed.

• An online mass request of feedback on a dedicated social media platform

• An individual in-person evaluation

In theory these two methods should allow for a widespread group of overview accounts
detailing responses of different types of people, along with an in depth analysis of different
points of the library with comparison to the base version of BWAPI. These would also give
the best overview of the reception this library received by both experienced AI develop-
ers and new developers, while still being feasible within a reasonable time scale to complete.

This method was chosen in the hope that insight would be given into how the
library impacted new users to the API, while at the same time receiving feedback from
developers who had knowledge of what it was like starting out without it. Through this it
is hoped that it can be seen that when a AI developer starts out development using the
new library, they can create a functioning bot faster and easier, than would have been
possible previously without the library.

For both testing scenarios, the online and the in-person, a brief instruction booklet
containing documentation of what the classes and methods in the library did, was compiled
from the code base. This, along with the library and example bot was then given to the
testers. The full documentation can be found in Appendix A.

7.1 Evaluation by members of the Bot Development community

For the online evaluation, the project was uploaded to a source control repository2,
along with the documentation and brief instructions about how to use the library and
what evaluation was required. A link to this repository and a request for evaluators was
then posted to a social media page dedicated to people who work with BWAPI.

After one week, there had been only one returned evaluation from the social media
post. In that response, the main message was clarifying that the project is a library and
not an augmentation to BWAPI as the documentation suggested. This was due to the fact
that the responder was not clear that the classes are not being intended to be something
that would be installed with BWAPI by default, but are to be something that would be
added later if the AI developer wanted them. Other than that, the reply just went on
to detail other projects that had similar goals, including the Atlantis API mentioned in
section 2.3.

2Repository can be found at: https://github.com/TJSharples/MastersBWAPILibrary

CREATION OF BOTS FOR RTS GAMES 48

7.2 Evaluation by developers with no prior experience

With the lack of meaningful feedback in the evaluation from the online method,
the results from the in-person evaluation become crucial. The aim was to evaluate the
differences in experience between developing a bot using the newly developed library
and using only the original BWAPI. To do this, a developer, or developers, who had the
required knowledge of Java development, and StarCraft were required.

The first potential tester that was approached did not have the game knowledge of
StarCraft to know what a bot would need to do, although they did have the knowledge of
Java to be able to do the programming. Because of this, a second tester was approached
who did have sufficient game knowledge, but who was not versed in Java development.
Fortunately, the testers agreed to work together throughout the experiment.

The setup of the experiment was to provide the testers the documentation provided
for the online test and a copy of the new library project downloaded from the repository.
The testers would then be given as much time as they wanted to make a functioning
bot. Throughout this time, assistance and guidance was provided as requested if it was
information that could have been found through a thorough reading of the example bot,
the new library documentation, or the original API documentation.

After the testers had created a bot to their satisfaction, they would then be given
a clean install of BWAPI exactly as a newcomer to the subject area would have. They
then had the objective of recreating the functionality of what they made in the previous
stage within the same time limit. After the second stage of the experiment they would
then be asked for their comments. Throughout both stages, observations were made about
what they struggled with, what came easily to them, and what could be improved upon to
make starting easier. Below are the details of these observations, followed by the testers’
comments and what these imply for the furtherance of development in this project.

At the start, both testers spent some time looking through the example bot and the
code documentation. After some clarification of where they were supposed to work within
the project, the programmer began to tinker around with the library functions, briefly
looking through what they were all called and what they took in and passed back. During
this time, the second tester with the game knowledge began describing what they needed to
do to begin competing in a game of StarCraft. It became evident quite quickly that more
guidance was required as to how to start out, with both testers struggling to immediately
grasp which sections of the library were created to be used for what they were trying to
accomplish. Due to this knowledge being available by reading through the documentation
thoroughly, a few pointers were given as to where to look for the information, to expedite
the process rather than having the experiment be stuck at the start for longer than needed.
With this knowledge, they returned to their first task of assigning workers to mine minerals.
After they had a bot that could do this, they set about making it create supply depots
when the bot ran low on supply, then following that with aiming to create some units to
go and explore the map. Most of the explanation on how to do this using the new library

CREATION OF BOTS FOR RTS GAMES 49

came from the example bot provided, with the main differences being in programming
style and exact workings. After creating a bot that mined enough resources to produce a
barracks, and enough marines to then send a squad out scouting, the testers called the first
stage of the experiment complete as they were happy with what they had created. From
starting out to final testing, this first stage of the experiment had taken around two hours.

From these observations it became clear that perhaps a quick start guide or some
equivalent would be prudent to go along with the documentation as a better explanation on
how to use the library, and how to get started with using BWAPI in general. However, once
the testers understood the function of each package within the library, the development
progressed a lot more rapidly than personal previous experiences of starting out in using
BWAPI. From the results of this experiment, it appeared that the first impressions of the
new library were that it did indeed make starting out in developing bots for BWAPI easier.

For the second stage of the experiments, the testers were provided with the basic
example bot from BWAPI and a link to the online documentation for the API. Straight
away the difference in the difficulty of the task was clear as the testers kept attempting
to use functionality that was not included in the base version and instead was part of
the new libraries. The task of assigning the workers to mine minerals straight away
was more challenging than they expected, then trying to acquire a worker to build a
supply depot took up most of the remaining time in the experiment. By the end when
the two hours were up, the bot created with the base API could collect minerals, create
workers and create a supply depot. But each of these actions were mostly fixed scripts
with fixed timings and catches, and not dynamic to changing situations in the world
space. Comparing the bots of the two parts of the experiment distinctly showed that
more had been accomplished in the time allocated while using the new library. This still
held up when considering the beginning of the first half of that experiment was spent
familiarising themselves with the workspace and the base API, whereas that knowledge was
used in the second half, potentially saving time there but yet still not accomplishing as much.

At the end of the two stage evaluation experiment, the testers were asked to make
comments on their experiences using the API with and without the new library. Below
are their comments, mostly made from the point of view of the programmer in the testing
pair, with some elaborations for clarification.

Using the newly developed library

• The environment was a bit overwhelming at first

• The library classes are documented, but there was no "how to start" directions.

• Once we figured out the base ideas, we found it easy to get the bot to do something
useful.

• The library seemed to shield me from a lot of the complexities around managing orders
in the system.

CREATION OF BOTS FOR RTS GAMES 50

• The queue of orders [Production Queue] was intuitive and worked straight away.

• Making more complex AI will be easier with the library as I don’t have to juggle orders,
priorities and unit dependencies myself. This makes the AI logic more expressive as
it isn’t hidden amongst Java/BWAPI boilerplate.

Using BWAPI as downloaded from their website with the base example project

• Just using BWAPI made it very hard to issue multiple commands. For example, how
to build workers and build a supply depot at the same time was not intuitive.

• Having to manually manage and check on resources adds a lot of mental overhead
that is not helping to make a "smart" AI, but is necessary to make a bot work at all
in the system.

• After a while I realised that I would need to remake a lot of the constructs that were
made in the new libraries I used previously, just to get something working that was
extendible and maintainable.

Several points are raised here, but most are in line with what was noted during the
observations of the experiment. As observed, the testers say they struggled figuring out
how to get started, but once they got past that initial hurdle they got on with development
quite well. They seemed to like the way the library classes worked and the point that
was raised about the library seeming to shield them from the intricacies of working with
BWAPI showed that once they had experienced working without the aid of the library
then they realised the weight of what the classes were doing for them.

The most important points however come in the explanation on their experiences
with the base API without the libraries. The penultimate point was that a lot of what they
were struggling with managing, and as such spending a lot of development time on, didn’t
seem like it was actually helping to actually make good AI. In fact they remarked that it
was just necessary overhead to working in the environment. And the final point goes on to
say that the testers thought that they would have to recreate a lot of the functionality of
the library themselves to get back to being able to develop at the level they were doing so
previously.

With the main aim of this project being to lower entry barriers into the field of
developing AI bots for the real time strategy game environment, the feedback that after
using the newly developed libraries and then trying without, the testing programmer felt
that they would have to recreate the functionality the libraries provided, definitely marks
a success. Improvements to these libraries of course can be made, and with these libraries
only being the first step in creating the visual programming environment that would be
more ideal for making entry into the area easier, perhaps even for non-programmers, these
developments are far from the final step. However the evaluations at this stage proved
positive that the library does make starting out on the road of AI bot development a lot
easier than having just the base BWAPI.

CREATION OF BOTS FOR RTS GAMES 51

8 Conclusion

Throughout this project, we have investigated how to lower the entry barriers that
are preventing people from easily getting into the development of artificially intelligent
agents for real time strategy games. The real time strategy game chosen for detailed
analysis was StarCraft as it represents a professionally developed game with good game
balance and with no defined best strategy for game mission success which provides a better
environment for game AI research.

Initially we looked into existing tools in the area of developing agents in these
design spaces. We saw the problems traditionally presented by developing in these non-
deterministic world environments and what action can be taken to help account for this.
The StarCraft BWAPI was examined to discern the reasons for its place in the development
world as one of the most used tools for creating these agents. We saw that there were
many reasons that BWAPI is used over other possible development environments not least
due to the popularity of the StarCraft game that it is an API for but also that it provides
an easier learning curve for understanding the game mechanics.

We took a look at existing projects designed at making the process of starting out
with BWAPI easier, such as the Atlantis API, and we established how the differences
in design philosophy in projects can be crucial. With Atlantis, the project seems to be
designed to do as much as possible for the AI developers, leaving them to only define either
the building order for the game strategy, or a way for the bot to create a build order.
For this project however, we wanted a more central approach that would not do almost
everything for the developer, but would instead just provide them with the tools that
would make it easier for them to develop an AI for themselves.

We then proceeded to examine Visual Programming Languages and what they
brought to the field of games programming. With Scratch’s design criteria of making
coding more accessible by opening up the inner workings to the view of the developer
in a visually understandable way, the steps required to make learning the concepts of
programming easier began to appear. We also looked at Unreal Engine’s Blueprint
system and saw that visual Programming can be used for much more complex systems
and not just the 2D small projects that are creatable in Scratch. Thus the benefits and
potential methods of creating a Visual Programming Language for BWAPI were established.

After investigating Visual Programming Languages in depth, we began to outline
what would be an ideal visual programming environment as a front end to BWAPI.
However, due to the practical constraints of this single project, we scaled back the scope
to just the first steps on the way to the creation of that environment. We took input on
what AI developers that had used BWAPI would have liked to have been included in the
API when they started out, and began designing how those suggestions would work and
how they would go together in a library. This was then followed through by implementing
these designs in a new library that could be used alongside BWAPI.

CREATION OF BOTS FOR RTS GAMES 52

Once this library was tested, and was proved to follow the designs laid out, it
was made available for evaluation both online and by local in-person testers. Although
the online comments from existing users of BWAPI did not provide useful feedback,
the in-person evaluation yielded much more expressive results. The testers showed that
development using the new library was much more successful than without it, with the
testers even going so far as to say that they would probably need to develop significant
parts of the library for themselves if they were to try to use BWAPI without it.

In conclusion, this project has demonstrated that there are ways of developing
supporting systems that will reduce the learning curve associated with working with
BWAPI. Even though this project only covers the first steps, there is positive evidence that
continuing development in this line will yield the result intended of easing the learning curve
and lowering the entry barriers for working in bot development for real-time strategy games.

8.1 Future Work

Starting with the library developed as part of this project, (for which the
code base, the example bot and a copy of the documentation can be found at
https://github.com/TJSharples/MastersBWAPILibrary), there are two main direc-
tions that could be taken as this research project is moved forward in the future. The first
and most direct extension of this project would be to continue with the next steps towards
developing this library of functions into a full visual programming environment. From the
start made here with four packages in a library that address different problem areas that
AI developers raised, this could first be extended to include the other areas that were listed
in the research in section 4.2.

Once these have been added to the existing new library packages, this will still
only be a library of useful support classes for a new developer. To truly move forward in
developing a visual programming language, research should be done into developing fully
self-contained library methods that can be run in any sequence that would be used as
visual nodes in the language. The ways that other languages take the on-screen visual code
structures created by the developer and change them into something executable should also
be investigated. If a visual programming environment is to be created then it should be
established at the start what code limitations will have to be imposed during development
to ensure that the interface remains easy to learn and use.

The alternative direction that the project could be taken in would be to look into the
new API that was released by Blizzard Entertainment during the course of this project. The
new API is for working with StarCraft 2, the sequel game to the StarCraft: BroodWar, the
game that BWAPI was developed for (Blizzard Entertainment, 2017a). Investigating AI bot
development using the new API would offer similar advantages as the reasons for working
with BWAPI. Having a popular game as the environment offers a broader understanding of
the objectives for the AI to be developed while at the same time offering a similarly balanced
game to develop for. Using the new API instead of BWAPI increases the complexity of the
bot development but with the benefit of making the projects more relevant to new AI

CREATION OF BOTS FOR RTS GAMES 53

developers with a newer and more sophisticated game. To continue this project using the
new API would involve going back to researching what AI developers would have liked in
the new API to make it easier, and then looking into how to implement the suggestions. All
this would need to be done before then continuing with the research into how the library
could be developed into a Visual Programming Language.

8.2 Closing

The aim of this project was to investigate ways that a new API could be created to
ease starting out with AI bot creation for real-time strategy games. During the project, we
developed a library using suggestions from the community surrounding this development
area. From there we tested it by getting some developers who had never used BWAPI before
to try the new library and then to try using BWAPI without it to ascertain which they
found easier and why. Their descriptions and remarks after this experiment showed that
the new library is an improvement over the base BWAPI but still has room for improvement
if it is to be used by complete novices in this area. This project however has demonstrated
that continuing in this research will positively impact the development experience of any
new developer coming into the field of AI for gaming and as such will both encourage and
enhance the future development of AI in general.

CREATION OF BOTS FOR RTS GAMES 54

9 References

Battle.net End User Liscence Agreement. (2015). Retrieved from http://us.blizzard.com/en-us/
company/legal/eula.html

Blizzard Entertainment, B. (2017a). The StarCraft II API Has Arrived. Retrieved from http://
us.battle.net/sc2/en/blog/20944009/the-starcraft-ii-api-has-arrived-8-9-2017

Blizzard Entertainment, B. (2017b). StarCraft: Remastered. Retrieved from https://starcraft
.com/en-us/

Buro, M. (2003). Real-time strategy games: A new AI research challenge. In In proceedings of the
18th international joint conference on artificial intelligence (pp. 1534–1535). International
Joint Conferences on Artificial Intelligence. Retrieved from http://citeseerx.ist.psu.edu/
viewdoc/summary?doi=10.1.1.96.6742 doi: 10.1.1.96.6742

Buro, M., & Churchill, D. (2012). Real-Time Strategy Game Competitions. AI Magazine 33.3 ,
106–108. Retrieved from http://search.proquest.com/docview/1368560768?accountid=
11526

BWAPI FAQs. (2014). Retrieved from https://github.com/bwapi/bwapi/wiki/FAQ
BWAPI Homepage. (n.d.). Retrieved from http://bwapi.github.io/
Carlisle, M. C., Wilson, T. A., Humphries, J. W., Hadfield, S. M., Carlisle, M. C., Wilson,

T. A., . . . Hadfield, S. M. (2005, 2). RAPTOR. ACM SIGCSE Bulletin, 37 (1), 176. Re-
trieved from http://portal.acm.org/citation.cfm?doid=1047124.1047411 doi: 10.1145/
1047124.1047411

Cheng, J. (2016, 4). Computers That Crush Humans at Games Might Have Met Their Match: ‘Star-
Craft’. Retrieved from http://www.wsj.com/articles/computers-that-crush-humans
-at-games-might-have-met-their-match-starcraft-1461344309?mod=WSJ_TechWSJD
_topRight

Do, H., Rothermel, G., & Kinneer, A. (2004). Empirical Studies of Test Case Prioritization in a JUnit
Testing Environment. In 15th international symposium on software reliability engineering (pp.
113–124). IEEE. Retrieved from http://ieeexplore.ieee.org/document/1383111/ doi:
10.1109/ISSRE.2004.18

Khan, M. E., & Khan, F. (2012). A Comparative Study of White Box, Black Box and Grey
Box Testing Techniques. IJACSA) International Journal of Advanced Computer Science and
Applications, 3 (6). Retrieved from www.ijacsa.thesai.org

Kirby, N. (2011). Introduction to Game AI. Cengage Learning. Retrieved from http://common
.books24x7.com.libaccess.hud.ac.uk/toc.aspx?bookid=34468.

Laird, J., & VanLent, M. (2001, 6). Human-Level AI’s Killer Application: Interactive Com-
puter Games (Vol. 22) (No. 2). Retrieved from http://www.aaai.org/ojs/index.php/
aimagazine/article/view/1558 doi: 10.1609/aimag.v22i2.1558

Magnusson, M., & Balsasubramaniyan, S. (2012). A Communicating and Controllable Teammate
Bot for RTS Games. Retrieved from http://urn.kb.se/resolve?urn=urn%3Anbn%3Ase%
3Abth-4360

Maloney, J., Resnick, M., Rusk, N., Silverman, B., & Eastmond, E. (2010, 11). The Scratch Pro-
gramming Language and Environment. ACM Transactions on Computing Education, 10 (4),
1–15. Retrieved from http://portal.acm.org/citation.cfm?doid=1868358.1868363 doi:
10.1145/1868358.1868363

Ontanon, S., Synnaeve, G., Uriarte, A., Richoux, F., Churchill, D., & Preuss, M. (2013, 12).
A Survey of Real-Time Strategy Game AI Research and Competition in StarCraft. IEEE
Transactions on Computational Intelligence and AI in Games, 5 (4), 293–311. Retrieved
from http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6637024 doi:
10.1109/TCIAIG.2013.2286295

ORTS Homepage. (n.d.). Retrieved from https://skatgame.net/mburo/orts/
Poniatowski, R. (2017). Atlantis GitHub Documentation. Retrieved from https://github.com/

http://us.blizzard.com/en-us/company/legal/eula.html
http://us.blizzard.com/en-us/company/legal/eula.html
http://us.battle.net/sc2/en/blog/20944009/the-starcraft-ii-api-has-arrived-8-9-2017
http://us.battle.net/sc2/en/blog/20944009/the-starcraft-ii-api-has-arrived-8-9-2017
https://starcraft.com/en-us/
https://starcraft.com/en-us/
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.96.6742
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.96.6742
http://search.proquest.com/docview/1368560768?accountid=11526
http://search.proquest.com/docview/1368560768?accountid=11526
https://github.com/bwapi/bwapi/wiki/FAQ
http://bwapi.github.io/
http://portal.acm.org/citation.cfm?doid=1047124.1047411
http://www.wsj.com/articles/computers-that-crush-humans-at-games-might-have-met-their-match-starcraft-1461344309?mod=WSJ_TechWSJD_topRight
http://www.wsj.com/articles/computers-that-crush-humans-at-games-might-have-met-their-match-starcraft-1461344309?mod=WSJ_TechWSJD_topRight
http://www.wsj.com/articles/computers-that-crush-humans-at-games-might-have-met-their-match-starcraft-1461344309?mod=WSJ_TechWSJD_topRight
http://ieeexplore.ieee.org/document/1383111/
www.ijacsa.thesai.org
http://common.books24x7.com.libaccess.hud.ac.uk/toc.aspx?bookid=34468.
http://common.books24x7.com.libaccess.hud.ac.uk/toc.aspx?bookid=34468.
http://www.aaai.org/ojs/index.php/aimagazine/article/view/1558
http://www.aaai.org/ojs/index.php/aimagazine/article/view/1558
http://urn.kb.se/resolve?urn=urn%3Anbn%3Ase%3Abth-4360
http://urn.kb.se/resolve?urn=urn%3Anbn%3Ase%3Abth-4360
http://portal.acm.org/citation.cfm?doid=1868358.1868363
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6637024
https://skatgame.net/mburo/orts/
https://github.com/Ravaelles/Atlantis
https://github.com/Ravaelles/Atlantis
https://github.com/Ravaelles/Atlantis

CREATION OF BOTS FOR RTS GAMES 55

Ravaelles/Atlantis
Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan, K., . . . Kafai,

Y. (2009, 11). Scratch: programming for all. Communications of the ACM , 60–67. Retrieved
from http://dl.acm.org/citation.cfm?id=1592779 doi: 10.1145/1592761.1592779

Schwab, B. (2009). AI Game Engine Programming. Cengage Learning. Retrieved from http://
library.books24x7.com.libaccess.hud.ac.uk/toc.aspx?bookid=33925

Shackelford, R., & LeBlanc, R. (1997). Introducing computer science fundamentals before pro-
gramming. In Proceedings frontiers in education 1997 27th annual conference. teaching and
learning in an era of change (Vol. 1, pp. 285–289). Stipes Publishing. Retrieved from
http://ieeexplore.ieee.org/document/644858/ doi: 10.1109/FIE.1997.644858

Sirani, J. (2015). UE4 Free for All. Retrieved from http://uk.ign.com/articles/2015/03/02/
unreal-engine-4-is-free-for-everyone

Wegner, P. (1987). Dimensions of Object-based Language Design. In Conference proceedings on
object-oriented programming systems, languages and applications (pp. 168–182). New York,
NY, USA: ACM. Retrieved from http://doi.acm.org/10.1145/38765.38823 doi: 10.1145/
38765.38823

https://github.com/Ravaelles/Atlantis
https://github.com/Ravaelles/Atlantis
https://github.com/Ravaelles/Atlantis
http://dl.acm.org/citation.cfm?id=1592779
http://library.books24x7.com.libaccess.hud.ac.uk/toc.aspx?bookid=33925
http://library.books24x7.com.libaccess.hud.ac.uk/toc.aspx?bookid=33925
http://ieeexplore.ieee.org/document/644858/
http://uk.ign.com/articles/2015/03/02/unreal-engine-4-is-free-for-everyone
http://uk.ign.com/articles/2015/03/02/unreal-engine-4-is-free-for-everyone
http://doi.acm.org/10.1145/38765.38823

CREATION OF BOTS FOR RTS GAMES 56

Glossary

academy In game building required to train certain infantry units.

barracks In game building that produces infantry units.

BWAPI Brood War Application Programming Interface. The main software used for
development of bots for StarCraft.

fog of war Common game mechanic in real time strategy games. A shroud that obscures
the map unless it has been explored and then partially revealed unless currently in
vision of the players unit..

marine In game basic infantry unit. Can move and attack both air and ground units.
Created from the barracks plural.

medic In game basic infantry unit. Can move and heal other infantry. Created from the
barracks, requires the Academy plural.

minerals An in game resource that is mined by builders from deposits. Used for building
construction, unit production and upgrade purchasing.

Protoss One of the three game races. Ancient aliens with very advanced technology.

refinery In game building placed on Vespene Gas outlets that allows workers to collect the
gas.

RTS Real Time Strategy. Genre of games focusing around managing game events in real
time.

SCV In game unit that functions as the Terran’s builder. Constructs all buildings and
mines resources plural.

supply In game peak of how many units a player can control at once.

supply depot An in game building that increases the maximum number of units that a
player can control at once.

Terran One of the three game races. Human based with advanced technology.

vespene gas An in game resource that is collected from refineries by builders. Used for
building construction, unit production and upgrade purchasing.

Zerg One of the three game races. Biology based swarm.

CREATION OF BOTS FOR RTS GAMES 57

Appendix
Testing Documentation

CREATION OF BOTS FOR RTS GAMES 58

Contents

1 Production Queue 61
1.1 Constructor . 61
1.2 onGameStart . 61
1.3 Update . 61
1.4 AddToQueue . 62
1.5 RemoveFromQueue . 62
1.6 unitStructureStarted . 62
1.7 unitStructureDestroyed . 63
1.8 checkIfHaveInProduction . 63
1.9 checkHowManyInProduction . 63

2 Production Order 64
2.1 getPriority . 64
2.2 getOrderTime . 64
2.3 getStatus . 64
2.4 setStatus . 64
2.5 toString . 65
2.6 canAfford . 65
2.7 isToProduceFree . 65
2.8 checkHasStarted . 65
2.9 checkHasFinished . 65
2.10 getToProduce . 66
2.11 UnitBuildingOrder Specific - setStartedUnit 66
2.12 UnitBuildingOrder Specific - getStartedUnit 66
2.13 UnitBuildingOrder Specific - enoughSupply 66
2.14 UnitBuildingOrder Specific - checkIfStillTraining 66

3 Enemy Base Tracker Manager 67
3.1 Constructor . 67
3.2 onFrame . 67
3.3 createTrackersForAllEnemies . 67
3.4 getEnemyUnitBuildingList . 67
3.5 checkIfEnemyHas . 68
3.6 unitFound . 68
3.7 unitDestroyed . 68

4 MemoryUnitBuilding 69
4.1 getUnit . 69
4.2 getLastKnownUnitType . 69
4.3 getLastKnownPosition . 69
4.4 isVisible . 69

CREATION OF BOTS FOR RTS GAMES 59

5 Builder Manager 70
5.1 Constructor . 70
5.2 getBuilders . 70
5.3 addJob . 70
5.4 cancelJob . 71
5.5 onFrame . 71
5.6 unitBuildingStarted . 71
5.7 unitBuildingComplete . 71
5.8 unitBuildingKilled . 71
5.9 getSpareBuilderCloseTo . 72

6 Squad Manager 73
6.1 Constructor . 73
6.2 onFrame . 73
6.3 createSquad . 73
6.4 disbandSquad . 73
6.5 getAllSquads . 74
6.6 getSquad . 74
6.7 onUnitDestroy . 74
6.8 setRemoveDeadSquads . 74
6.9 isUnitAssignedToSquad . 74
6.10 getAllSquadNeeds . 74

7 Squad 75
7.1 getID . 75
7.2 getTargetSquadMakeup . 75
7.3 getAssignedUnits . 75
7.4 getTargetPosition . 75
7.5 getTargetUnit . 75
7.6 getRightClickTarget . 75
7.7 getWasComplete . 76
7.8 getIsDead . 76
7.9 getSquadNeeds . 76
7.10 setSquadMoveTarget . 76
7.11 setAttackTarget . 76
7.12 setSquadRightClick . 76
7.13 addUnitToSquad . 77
7.14 removeUnitFromSquad . 77

8 Example Bot 78
8.1 onStart . 78
8.2 onFrame . 78
8.3 gameProgressionUpdate . 78
8.4 onUnitCreate . 79
8.5 onUnitMorph . 79

CREATION OF BOTS FOR RTS GAMES 60

8.6 onUnitComplete . 79
8.7 onUnitDestroy . 79
8.8 onUnitDiscover . 79
8.9 getBuildTile . 79

CREATION OF BOTS FOR RTS GAMES 61

1 Production Queue

This holds all production orders that are requested of it. Orders will be sorted by
priority first, then by time ordered. On each frame it will go through list of orders to find
which are ready to be executed and will pass back a ready order.

Orders are added with the use of the AddToQueue methods, then when they are ready
for execution will be returned in the form of one of the three types of ProductionOrder:
UnitBuildingOrder, UpgradeOrder, or ResearchOrder.

REQUIRED USER BOT CALLS:

• onGameStart: Call onGameStart

• onFrame: Call update

• onUnitCreate: Call unitStructureStarted

• onUnitMorph: Call unitStructureStarted

• onUnitDestroy: Call unitDestroyed

1.1 Constructor

public ProductionQueue (boolean debugMessagesOn , boolean debugOnScreen)

• @param debugMessagesOn True if you want the console output debug messages de-
tailing the workings of the production queue. False if you don’t.

• @param debugOnScreen True if you want the in game on screen listing of the items
in the production queue. False if you don’t.

1.2 onGameStart

public void onGameStart ()

Basic setup of the ProductionQueue that needs to be run at game start. This would be in
the constructor but due to the way that BWAPI initialises, some things should be done on
game start, after the StarCraft engine has setup.

1.3 Update

public ProductionOrder Update ()

Method must be called in the bot’s onFrame method. Checks are run to see if an
order is ready. Any that are ready for execution will be returned to the user to execute how
they want.

• @return ProductionOrder that is ready for execution. NULL if none are ready.

CREATION OF BOTS FOR RTS GAMES 62

1.4 AddToQueue

public void AddToQueue(UnitType toBuild , int p r i o r i t y ,
boolean autoBui ldPrereq)

public void AddToQueue(TechType toBuild , int p r i o r i t y ,
boolean autoBui ldPrereq)

public void AddToQueue(UpgradeType toBuild , int p r i o r i t y ,
boolean autoBui ldPrereq)

Three overloaded methods that add an item to the production queue. Depending on
the type of the toBuild object passed in will depend on what type of production order is
created for the list. The parameter autoBuildPrereq determines whether or not any non-
completed prerequisites will automatically be added to the queue. In the versions of the
method call that do not have this option, it is automatically taken to be true.

• @param toBuild The Unit, Building, Research or Upgrade wanted

• @param priority The Priority level of this order. The Higher the number, the higher
the priority.

• @param autoBuildPrereq True will automatically build all prerequisite structures not
currently owned. False will only add this order to the queue.

1.5 RemoveFromQueue

public void RemoveFromQueue(UnitType toRemove , boolean removeAll)

public void RemoveFromQueue(TechType toRemove)

public void RemoveFromQueue(UpgradeType toRemove)

Three overloaded methods that remove an item or items from the production queue.
Due to it not being possible to have multiple instances of the same tech or upgrade in the
queue, only the unit or building removal method has the option to remove all.

• @param toRemove The Unit or Building to be cancelled

• @param removeAll True will remove all of that type from the queue. False will remove
only the first one found starting with the lowest priority.

1.6 unitStructureStarted

public void un i tS t ruc tu r eS ta r t ed (Unit s ta r t edUn i t)

This method must be called by the users bot on both the onUnitCreate trigger from
the base API and the onUnitMorph trigger. This informs the queue that a unit or building
has been started and the order will store the reference to that unit or building to be able
to check if it has completed.

• @param startedUnit The started unit

CREATION OF BOTS FOR RTS GAMES 63

1.7 unitStructureDestroyed

public void un i tSt ructureDest royed (Unit des t royedBui ld ing)

This method must be called by the bot on the onUnitDestroy trigger from the base
API. This informs the queue that a building was destroyed. It will then go through and
find out if that was one of the ones that was either under construction for an order, or if it
was producing something for an order. If it was then it will set the associated order to be
commissioned again.

• @param destroyedBuilding The destroyed unit

1.8 checkIfHaveInProduction

public boolean checkI fHaveInProduct ion (UnitType toCheck)

public boolean checkI fHaveInProduct ion (TechType toCheck)

public boolean checkI fHaveInProduct ion (UpgradeType toCheck , int l e v e l)

Three overloaded methods that runs a check to see if the player currently has one of
this item in the production queue.

• @param toCheck The item to check

• @return True if one is in the queue. False if it isn’t.

1.9 checkHowManyInProduction

public int checkHowManyInProduction (UnitType toCheck)

Runs a check of the production queue to see how many of a certain unit or building
are currently in the queue

• @param toCheck The unit type to check how many are there

• @return The integer value of how many of the desired type are in the queue

CREATION OF BOTS FOR RTS GAMES 64

2 Production Order

The abstract base class for the three types of production order. Used with the pro-
duction queue, the user will need to be able to take one of these orders and interpret it to
find out what the bot should create after it has been given to them by the update method
of the production manager.

2.1 getPriority

public int g e tP r i o r i t y ()

Gets the priority of the production order
• @return Int Priority : Higher the number the higher the priority.

2.2 getOrderTime

public int getOrderTime ()

Gets the time that the order was made
• @return Int orderTime : The number of frames that had passed when the order was
made.

2.3 getStatus

public OrderStatus ge tStatus ()

Gets the status of the order
• @return OrderStatus enum CurrentStatus : The current status of the order

• Order Status

– commissioned - on the queue but not yet acted upon. Not enough resources or
not a priority

– ordered - Enough Resources have been gathered, there is a unit that is free
to produce the order and the order has been passed back to the bot to begin
production.

– started - work on the order has begun.
– aborted - when a job has been cancelled but has not been cleared off the queue

yet.

2.4 setStatus

public void s e tS ta tu s (OrderStatus s t a tu s In)

Sets the status of the order
• @param statusIn The status to set the order to

CREATION OF BOTS FOR RTS GAMES 65

2.5 toString

public abstract St r ing toS t r i ng () ;

Gets the string representation of the order, different for unit/building, research or
upgrade but the general form is:

Create: Unit/Building - , Priority - , Time - , Status -
• @return The string representation of the order

2.6 canAfford

public abstract boolean canAfford () ;

Run a check to see if the current player can afford to purchase what the order is going
to create

• @return Boolean : true means the player can afford it, false means they can’t

2.7 isToProduceFree

public abstract boolean isToProduceFree () ;

Run a check to see whether there is a building that can produce this item and if it is
idle

• @return True if there is an idle building of the type needed. False if there isn’t.

2.8 checkHasStarted

public abstract boolean checkHasStarted () ;

Run a check to see if order has been started. Only to be run if the order is ’ordered’.
Does nothing for UnitBuildingOrders. If it is started then the status in the order is set to
started.

• @return Boolean. True if the order has started. False if it hasn’t

2.9 checkHasFinished

public abstract boolean checkHasFinished () ;

Run a check to see if the order has finished. Only to be run if the order is ’started’.
If it is finished then the status if the order is set to ’finished’.

• @return Boolean. True if the order is finished. False if it isn’t.

CREATION OF BOTS FOR RTS GAMES 66

2.10 getToProduce

public UnitType getToProduce ()

public UpgradeType getToProduce ()

public TechType getToProduce ()

Different for each specific type of Production order, and only accessible by parsing
the Production Order to the correct subtype, this will return the item to be produced by
the order.

• @return UnitType. The type of unit or building to be produced.

• @return UpgradeType. The upgrade to be produced.

• @return TechType. The research to be produced.

2.11 UnitBuildingOrder Specific - setStartedUnit

public void s e tS ta r t edUn i t (Unit un i t In)

Automatically called by Production Queue unitStructureStarted method. Set the
unit that is being produced in the order. This is later used to check if it is finished.

• @param unitIn The unit that has just started for this order.

2.12 UnitBuildingOrder Specific - getStartedUnit

public Unit getStar tedUni t ()

Get the unit that is being produced or built.
• @return The unit that is being produced or built.

2.13 UnitBuildingOrder Specific - enoughSupply

public boolean enoughSupply ()

Checks to see if the bot currently has enough supply for the unit or building to be produced.
• @return True if there is enough supply. False if not.

2.14 UnitBuildingOrder Specific - checkIfStillTraining

public boolean enoughSupply ()

Check to see if the unit that was being built still exists. This will be false if the building
creating it was destroyed or the unit was cancelled manually.

• @return True if the unit is still being built. False if it isn’t

CREATION OF BOTS FOR RTS GAMES 67

3 Enemy Base Tracker Manager

Manager that holds all of the different Enemy Base Trackers. Then allows for accessing
each tracker’s records while keeping them up to date. Users should not need to interact
with individual EnemyBaseTracker objects.

REQUIRED USER BOT CALLS:

• onGameStart - Call Constructor. Then call createTrackersForAllEnemies

• onFrame - Call onFrame

• onUnitFound - Call foundUnit

• onUnitDestroy - Call unitDestroyed

3.1 Constructor

public EnemyBaseTrackerManager (boolean visualsOn)

Setup of the EnemyBaseTracker Manager. Needs to be run before any other method.
• @param visualsOn True if the on screen visual representations of unit locations are
wanted

3.2 onFrame

public void onFrame ()

Must be run in the bot’s onFrame method. Runs the Update method for each En-
emyTracker. Allowing each record to stay up to date with the most recent movement
information and unit status.

3.3 createTrackersForAllEnemies

public void createTrackersForAl lEnemies ()

Creates new Trackers for each enemy in the game. Must be run in the game start
method.

3.4 getEnemyUnitBuildingList

public ArrayList<MemoryUnitBuilding> getEnemyUnitBui ldingList (Player forEnemy)

Gets all MemoryUnitBuilding records from the tracker for the requested memory.
• @param forEnemy The enemy you want the records for.

• @return ArrayList of MemoryUnitBuildings: All current records for that enemy.

CREATION OF BOTS FOR RTS GAMES 68

3.5 checkIfEnemyHas

public boolean checkIfEnemyHas (UnitType type , Player forEnemy)

Checks to see if a given enemy has a particular unit or building
• @param type The unit or building to check for

• @param forEnemy The enemy to check for

• @return True if that enemy has been discovered to have that unit or building. False
if they don’t, or it hasn’t yet been discovered that they do.

3.6 unitFound

public void unitFound (Unit foundUnit)

Must be run in the bot’s onUnitFound method. Tells the manager that a unit has
been found. Manager will discern which player it is from and if pertinent will add it to the
records.

• @param foundUnit The unit found.

3.7 unitDestroyed

public void unitDestroyed (Unit destroyedUnit)

Must be run in the bot’s onUnitDestroy method. Tells the manager than a unit has
been destroyed. Manager will discern which player it is from and if pertinent will amend
the records.

• @param destroyedUnit The unit destroyed.

CREATION OF BOTS FOR RTS GAMES 69

4 MemoryUnitBuilding

Storage Class for details about an enemy unit, used with the EnemyBasedTracker
Manager. When a unit is no longer visible, its details can’t be accessed so a few pertinent
details are stored along with the unit class. Not creatable by the user but the user will be
given a list of these objects when requesting all details on an enemy from the EnemyBase-
Tracker Manager.

4.1 getUnit

public Unit getUnit ()

Gets the unit that this Memory contains. Interrogation of the Unit class will return
null if tried on a non-visible unit.

• @return the contained memory unit

4.2 getLastKnownUnitType

public UnitType getLastKnownUnitType ()

Gets the last known unit type of this unit. Changes will happen most often with
Zerg morphing units, but also interrogation of the Unit class will return null if tried on a
non-visible unit.

• @return The last known Unit type of the unit.

4.3 getLastKnownPosition

public Ti l ePo s i t i o n getLastKnownPosition ()

Gets the last seen location of the unit when it disappeared into the fog of war.
• @return Tile position of last known location.

4.4 isVisible

public boolean i s V i s i b l e ()

Returns whether the unit is currently visible
• @return True if the unit is visible and the details are now accessible. False if not.

CREATION OF BOTS FOR RTS GAMES 70

5 Builder Manager

Manages the constructing of buildings and ensures that idle workers keep mining
minerals. You can pass in jobs of what to build and where to build it and the manager
will get a builder for it and set it to creating that building, and the manager will look after
replacing builders if they are destroyed. Idle builders will be sent mining, this includes
when the builder is first produced, if the building it was creating was completed or if it was
moved and has now finished its movement.

REQUIRED USER BOT CALLS:

• onGameStart: call Constructor

• onFrame: call onFrame

• onUnitCreate: call unitBuildingStarted

• onUnitMorph: call unitBuildingStarted

• onUnitComplete: call unitBuildingComplete

• onUnitDestroy: call unitBuildingKilled

5.1 Constructor

public BuilderManager (boolean debugMessagesOn)

Constructor. Initializes the two Arrays of Jobs and Builders.
• @param debugMessagesOn True if you want the console output debug messages de-
tailing the workings of the builder manager. False if you don’t.

5.2 getBuilders

public ArrayList<Unit> ge tBu i l d e r s ()

Gets the list of all builders
• @return ArrayList of all builder units

5.3 addJob

public void addJob (UnitType toBuild , T i l ePo s i t i o n po s i t i o n)

Tells the manager to get a builder and start constructing the required building at the
location. Assumption is made that the player has the resources to do so when this method
is called.

• @param toBuild The building to construct

• @param position The location to build it at

CREATION OF BOTS FOR RTS GAMES 71

5.4 cancelJob

public void cance lJob (UnitType toCancel , T i l ePo s i t i o n po s i t i o n)

Cancels a previously requested job.
• @param toCancel The type of building to cancel

• @param position The location where it was to be built

5.5 onFrame

public void onFrame ()

Must be called in the bot’s onFrame method. Catches any idle workers and sends
them mining to their closest mineral source.

5.6 unitBuildingStarted

public void un i tBu i ld ingSta r t ed (Unit s t a r t ed)

Must be called in the bot’s onUnitCreate and onUnitMorph methods. Call to let the
manager know that a unit has been started. The manager will then ascertain if it is relevant
to the builder manager or not. If it is relevant then the construction job will be marked as
started.

• @param started the unit that has been started

5.7 unitBuildingComplete

public void unitBui ld ingComplete (Unit completed)

Must be called during the bot’s onUnitComplete method. Call to let the Manager
know that a unit has been completed. The manager will ascertain if it is relevant. Depending
on whether it is a building or a relevant unit that has been completed, the manager will
either add the builder to the builder list, or will mark the job as complete and remove it
from the list.

• @param completed The completed unit

5.8 unitBuildingKilled

public void un i tBu i l d i ngK i l l e d (Unit k i l l e dUn i tBu i l d i n g)

Must be called during the bot’s onUnitDestroy method. Call to inform the manager
that a unit or building has been destroyed. The manager will then ascertain if it is relevant
to it. If it was a unit relevant to the manager then the manager will retrieve a new builder
but if it was a relevant building then the job will be cancelled.

• @param killedUnitBuilding The unit destroyed.

CREATION OF BOTS FOR RTS GAMES 72

5.9 getSpareBuilderCloseTo

public Unit getSpareBui lderCloseTo (Pos i t i on c loseTo)

Retrieves the closest builder that is only mining minerals
• param closeTo The position you are getting the closest builder to

• @return the builder

CREATION OF BOTS FOR RTS GAMES 73

6 Squad Manager

Allows for the creation of squads with unit type lists for what they should consist of.
The squad will then keep a list of what units are assigned to it and can compare what it
has to what it is supposed to have. The squad allows for groups of units to be referred to
as a group to give them targets or movement directions.

REQUIRED USER BOT CALLS:

• onGameStart : constructor

• onFrame : onFrame

• onUnitDestroy : onUnitDestroy

6.1 Constructor

public SquadManager (boolean debugMessagesOn)

• @param debugMessagesOn True if you want the console output debug messages de-
tailing the workings of the Squad Manager. False if you don’t.

6.2 onFrame

public void onFrame ()

Must be called in the bot’s onFrame method. Each frame checks to see if any squads
are now dead and will remove them from the list if the flag RemoveDeadSquads is true.

6.3 createSquad

public int createSquad (HashMap<UnitType , Integer> squadMakeup)

Create a new squad with the desired unit make up
• @param squadMakeup The Map of units that are to be created. HashMap of Unit
Types and the required integer count of each of them

• @return the unique squad ID

6.4 disbandSquad

public void disbandSquad (int squadID)

Disbands the squad by removing it from the list of squads. Units that were in the
squad will no longer return true to when querying if the unit is in a squad

• @param squadID The unique squad ID to be disbanded

CREATION OF BOTS FOR RTS GAMES 74

6.5 getAllSquads

public ArrayList<Squad> getAl lSquads ()

Gets all the squads

6.6 getSquad

public Squad getSquad (int squadID)

Gets the squad with the requested ID
• @param squadID the ID of the squad requested

• @return The requested Squad if it exists. Null if it doesn’t

6.7 onUnitDestroy

public void onUnitDestroy (Unit destroyedUnit)

Must be called in the bot’s onUnitDestroy method. Lets the manager know a unit
has been destroyed. This will let each squad check to see if it was one of their units that
was destroyed.

• @param destroyedUnit The destroyed Unit

6.8 setRemoveDeadSquads

public void setRemoveDeadSquads (boolean setToo)

Set to true by default. This will remove squads from the squad list if all units in it
are dead and at some point it was a complete Squad. If false then the squad will remain in
the list, just with no units assigned.

• @param setToo Set the parameter to. True if you want to remove the dead squads,
false if you want to leave them.

6.9 isUnitAssignedToSquad

public boolean isUnitAssignedToSquad (Unit unitToCheck)

Runs a check in each squad to see if the requested unit is attached to that squad
• @param unitToCheck The unit to check if it belongs to a squad

• @return True if the unit is in a squad. False if it isn’t

6.10 getAllSquadNeeds

public HashMap<UnitType , Integer> getAllSquadNeeds ()

Gets the needs of all squads compiled into one hashmap
• @return Hashmap of UnitType : Integer of all the squad needs

CREATION OF BOTS FOR RTS GAMES 75

7 Squad

Holds a list of desired squad make up and a list of assigned units. Allows for mass
giving of orders to all units in the squad. Used with the Squad Manager, should not be
instantiated by the user.

7.1 getID

public int getID ()

Get the Unique ID of the squad
• @return Unique ID number of the squad

7.2 getTargetSquadMakeup

public HashMap<UnitType , Integer> getTargetSquadMakeup ()

Gets the target squad make up
• @return HashMap of Target Squad Make up

7.3 getAssignedUnits

public ArrayList<Unit> getAss ignedUnits ()

Gets all the units assigned to the squad
• @return ArrayList of assigned units

7.4 getTargetPosition

public Pos i t i on ge tTarge tPos i t i on ()

Gets the position that the squad was last sent to. Null if the last target was a unit
or a right click target

• @return The position the squad was last sent to

7.5 getTargetUnit

public Unit getTargetUnit ()

Gets the unit that the squad was last sent to attack. Null if the last target was a
position or a right click target

• @return The unit the squad was last sent to attack

7.6 getRightClickTarget

public Unit getRightCl i ckTarget ()

Gets the target unit that the squad was to act as if a player had right-clicked on.
Null if the last target was a position or a unit

• @return The target unit that the squad was to act as if a player had right-clicked

CREATION OF BOTS FOR RTS GAMES 76

7.7 getWasComplete

public boolean getWasComplete ()

If the squad was ever complete at some point then this returns true.
• @return True if all the squad goals have been met. False if not.

7.8 getIsDead

public boolean getIsDead ()

Returns if the squad is dead or not. A squad is considered dead if it currently has no
members and was once complete.

• @return True if squad is dead. False if not

7.9 getSquadNeeds

public HashMap<UnitType , Integer> getSquadNeeds ()

Gets the HashMap of the disparity between assigned units and the squad target make
up.

• @return HashMap UnitType: Integer of the types of units missing and the amount
that are still needed.

7.10 setSquadMoveTarget

public void setSquadMoveTarget (Pos i t i on movePosition , boolean attackMove)

Sets the squad move target to a given map position. All units in the squad will move
there or as close as they can get. If the attack move option is given then the units will
attack move instead. To set the squad target to a unit without making it attack, use this
function and pass in the unit’s position.

• @param movePosition the position to move the squad to.

• @param attackMove Whether the units should attack enemies they encounter along
the way.

7.11 setAttackTarget

public void setAttackTarget (Unit toAttack)

Set the target of the squad to a unit. They will then go and attack that unit.
• @param toAttack The unit the squad will attack

7.12 setSquadRightClick

public void setSquadRightCl ick (Unit r i gh tC l i ckTarge t)

For each squad member give it the command of right-clicking on the target unit
• @param rightClickTarget The target unit to right click on

CREATION OF BOTS FOR RTS GAMES 77

7.13 addUnitToSquad

public void addUnitToSquad (Unit unitToAdd)

Assign a unit to the squad
• @param unitToAdd The unit to be assigned

7.14 removeUnitFromSquad

public void removeUnitFromSquad (Unit unitToRemove)

Will unassign a unit from the squad. The unit will no longer receive squad commands
• @param unitToRemove The unit to remove from the squad.

CREATION OF BOTS FOR RTS GAMES 78

8 Example Bot

This example bot has been created to display a simple way of using each of the
different packages of the library. The strategy employed by the bot will not win a game,
but the current game plan will show how to do most of the actions that a user will want
their bot to do. In this section is a simple breakdown of what is being used in each method.

8.1 onStart

To begin with, the base API onStart method is called using the super.onStart()
method call. This sets up the base API terrain analyser along with setting the game flag
for manual input so that testing is easier. This must be called in the onStart method of a
users bot, otherwise no map analysis data will be available.

After that, along with a few testing variables being set-up, each of the managers for
the library packages are initialised in accordance with their individual instructions. Then
any other methods that the packages need for set-up are called.

8.2 onFrame

First in the onFrame method is all the onFrame methods of the three non production
queue packages. Then the return of the production queue update method is captured for
analysis. If the return is not null, then analysis is performed on the type of production
order that has been returned and the necessary actions are determined which will be either
calling the builder manager to add a building order, or finding the relevant production
building and telling it to produce the unit, research or upgrade.

Next there is the housekeeping actions of making sure that a new supply depot is
added to the production queue if the supply is getting low, and a new builder is added to
the queue if there are not enough of them.

Finally the gameProgressionUpdate method is called that keeps track of where the
bot is through its game plan and what actions it should be taking that don’t need to be
taken every frame.

8.3 gameProgressionUpdate

The game progression update tracker is set up so that there is a barrier that will track
when certain game criteria are met for advancement. This barrier is different for each stage
of the game plan.

• Level 1 - 10 Completed Builder Units

• Level 2 - Complete Bunker, Complete Bunker Squad

• Level 3 - Complete Academy, Complete Scouting Squad

• Level 4 - Complete Defence Squad, Complete Stim Pack Research

CREATION OF BOTS FOR RTS GAMES 79

When each of the game stage criteria are met, the next stage of the bot’s game plan
is sent to the Production Queue and orders are given.

8.4 onUnitCreate

Calls the production queue’s unitStructureStarted method and the Builder Manager’s
unitBuildingStarted method.

8.5 onUnitMorph

Calls the production queue’s unitStructureStarted method and the Builder Manager’s
unitBuildingStarted method.

8.6 onUnitComplete

Calls the builder manager’s unitComplete method.

Then for each squad that the Squad Manager holds, checks to see if that squad
requires a unit of this type, and if it does, assigns the unit to that squad.

8.7 onUnitDestroy

Calls the production queue’s unitStructureDestroyed method, the builder manager’s
unitBuildingKilled method, the enemy base tracker’s unit destroyed method and the squad
manager’s onUnitDestroy method.

Then after that, checks to see if enough units are in production to fulfil all squad
needs. If there isn’t then it adds what’s needed to the queue.

8.8 onUnitDiscover

Calls the enemy base tracker’s unitFound method.

8.9 getBuildTile

This is an example method provided by http://sscaitournament.com/index.php?action=tutorial
It will find the first available place to start a a building of a given type by outward searching
from a point to see if there is an open place to build of that size.

	Introduction
	StarCraft
	BWAPI
	Visual Programming
	Aim and Objectives
	Contributions to Knowledge
	Report Breakdown

	Bots in Real Time Strategy Games
	RTS Games
	BWAPI
	Atlantis API

	Visual Programming Languages
	Scratch
	Unreal Engine Blueprints: Visual Scripting System
	Analysis of Scratch compared with Unreal Blueprint Scripting System

	Specifications
	Aesthetics
	Mechanics

	Design
	Production Queue
	Enemy Base Tracking
	Builder Manager
	Squad Management

	Testing Plan
	Production Queue
	Enemy Base Tracking
	Builder Manager
	Squad Management
	Example Bot using New Library

	Evaluation
	Evaluation by members of the Bot Development community
	Evaluation by developers with no prior experience

	Conclusion
	Future Work
	Closing

	References
	Glossary
	Appendices
	A: Testing Documentation

