
University of Huddersfield Repository

Zhang, Wei Emma, Sheng, Quan Z., Qin, Yongrui, Taylor, Kerry and Yao, Lina

Learning-based SPARQL query performance modeling and prediction

Original Citation

Zhang, Wei Emma, Sheng, Quan Z., Qin, Yongrui, Taylor, Kerry and Yao, Lina (2017) Learning-
based SPARQL query performance modeling and prediction. World Wide Web Journal. ISSN 1386-
145X

This version is available at http://eprints.hud.ac.uk/id/eprint/34182/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

Noname manuscript No.
(will be inserted by the editor)

Learning-based SPARQL Query Performance
Modelling and Prediction

Wei Emma Zhang · Quan Z. Sheng ·
Yongrui Qin · Kerry Taylor · Lina Yao

Received: date / Accepted: date

Abstract One of the challenges of managing an RDF database is predicting per-
formance of SPARQL queries before they are executed. Performance character-
istics, such as the execution time and memory usage, can help data consumers
identify unexpected long-running queries before they start and estimate the sys-
tem workload for query scheduling. Queries can be rewritten to reduce time cost or
rescheduled when the resource is not in contention. Extensive works address such
issues in traditional SQL queries but they are not directly applicable when dealing
with SPARQL queries. Further, the effort exploiting machine learning techniques
is limited. In this paper, we adopt machine learning techniques to predict the
performance of SPARQL queries. Our work focuses on modelling features of a
SPARQL query to a vector representation and use these feature vectors to train
predictive models. This method does not depend on underlying systems and any
knowledge of the underlying data, but only on the nature of SPARQL queries. We
adopt multiple regression models as prediction models and propose an one-step
and an two-step prediction processes. Query performances in both cold and warm
stages are studied. Evaluations are performed on real world SPRAQL queries,
whose execution time ranges from milliseconds to hours. The results demonstrate

Wei Emma Zhang
School of Computer Science, The University of Adelaide, Australia
E-mail: wei.zhang01@adelaide.edu.au

Quan Z. Sheng
Department of Computing, Macquarie University, Australia
E-mail: michael.sheng@mq.edu.au

Yongrui Qin
School of Computing and Engineering, University of Huddersfield, United Kingdom
E-mail: y.qin2@hud.ac.uk

Kerry Taylor
Research School of Computer Science, Australian National University, Australia
E-mail: kerry.taylor@anu.edu.au

Lina Yao
School of Computer Science and Engineering, The University of New South Wales, Australia
E-mail: lina.yao@unsw.edu.au

2 Wei Emma Zhang et al.

that the proposed approach can effectively predict SPARQL query performance
and outperforms state-of-the-art approaches.

Keywords SPARQ · Feature modelling · Prediction · Query performance

1 Introduction

The Semantic Web, with its underlying data model Resource Description Frame-
work (RDF) and its query language SPARQL Protocol and RDF Query Language
(SPARQL), has received increasing attention among researchers and data con-
sumers in both academia and industry. RDF essentially represents data as a set of
three-attribute tuples, i.e., triples. The attributes are subject, predicate and object,
where predicate is the relationship between subject and object. Over the recent
years, RDF has been increasingly used as a general data model for conceptual
description and information modelling. For example, knowledge management ap-
plications such as DBpedia1 and Freebase2 offer large collections of facts about
entities and their relations with RDF-based representations. Domain knowledge
bases provide biology resources (e.g., UniProt3, BioPortal4) and spatial data (e.g.,
LinkedGeoData5). Since the number of publicly available RDF datasets and their
volume grow dramatically, it becomes essential for efficient querying of large scale
RDF datasets. This is an important issue in the sense that whether we can obtain
knowledge efficiently affects the adoption of RDF data as well as the underlying
Semantic Web technologies.

1.1 Motivation

Substantial works focus on the prediction of query performance (e.g., execution
time) [1,6,14,24]. Prediction of query execution performance can benefit many
system management decisions, including:

– Workload Management : Predicting the execution performance accurately be-
fore executing incoming queries can help estimate workloads and effectively
arrange available resources.

– Query Scheduling : Understanding the query performance metric of an incom-
ing query can help decide whether and when to run the query to avoid system
hanging. The long-running query can be rewritten in order to improve perfor-
mance.

– System Sizing : The sizing of systems (e.g., CPU, Memory etc.) is dependent
on the peak value of resources required to complete unforeseen queries.

– Capacity Planning : Given an expected change to a workload, the decision on
whether to upgrade the system for required resources depends on the accurate
estimation of query execution performance.

1 http://dbpedia.org/
2 https://www.freebase.com/
3 http://www.uniprot.org/
4 http://bioportal.bioontology.org/
5 http://linkedgeodata.org/

Learning-based SPARQL Query Performance Modelling and Prediction 3

Studies show that cost model based query optimizers are insufficient for query
performance prediction [2,7]. Therefore, approaches that exploit machine learn-
ing techniques to build predictive models have been proposed [2,7,22]. These ap-
proaches treat the database system as a black box and focus on learning query
performance prediction models, which are evaluated as feasible and effective [2].
These works extract the features of queries by exploring the query plan that can
provide estimated values such as estimated execution time, estimated row count
and these two estimations for each query operator (e.g., AND).

For SPARQL queries, the query engines can be grouped into two categories:
RDBMS-based and RDF native triple stores. RDBMS-based engines rely on opti-
mization techniques provided by relational databases. However, due to the absence
of schematic structure in RDF, cost-based approaches show problematic query es-
timation which cannot effectively predict the query performance [23]. RDF native
query engines typically use heuristics and statistics about the data for selecting
efficient query execution plans [21]. Heuristics and statistics based optimization
techniques generally work without any knowledge of the underlying data, but in
many cases, statistics are often missing [23].

Hassan [9] proposes the first work on predicting SPARQL query execution time
by utilizing machine learning techniques. In the work, multiple regression using
Support Vector Regression (SVR) is adopted. The evaluation is performed on
benchmark queries on an open source triple store Jena TDB6. The feature models
are extracted based on Graph Edit Distances (GED) between each of training
queries. However, in practice, we observe that the calculation of GED is very time
consuming, which is not a desirable method when the training dataset is large.
Moreover, their work omits the study of the cold stage of the system, where query
compilation time should not be ignored. In this work, we will investigate the total
elapsed time that includes both compilation time and execution time of a query.
When the system is in the warm stage of query processing, i.e., the query is not
executed for the first time, the compilation time is omitted, thus the elapsed time is
equal to the execution time. When the query is new to the system, i.e., in the cold
stage of the system, the compilation time cannot be ignored when examining total
elapsed time. Although we discuss elapsed time in our work, we will use execution
time hereafter for expressivity. In addition to execution time, other performance
metrics such as CPU usage and memory usage also need to be considered.

1.2 Challenges

To effectively predict SPARQL query performance, we draw ideas from Hassan
but adopt different machine learning techniques to address the issues of training
large datasets and investigation of the cold stage of the system. The challenges in
our work center on capturing characteristics of SPARQL queries and representing
the characteristics as features for the application of machine learning techniques.

– Feature Obtaining. Our aim is to promote higher usability of Semantic Web and
more effective consumption of RDF-represented information, thus the work on
open source triple stores is more applicable. The intuitive solution for obtaining
feature is to leverage the query plan provided by triple stores. Similar works

6 https://jena.apache.org/documentation/tdb/

4 Wei Emma Zhang et al.

✁✂✄☎✆☎✆✝ ✟✠✡✂☎✡☛

• ☞✡✌✍✎✡

• ✏✑✒✂✄✌✒ ☎✆✓✍✂✔✄✒☎✍✆

• ✕✡✔✍✖✡ ☎✆✖✄✗☎✎ ✘✠✡✂☎✡☛

���������	
�����

���
����	��	
���������

✌✗✡✄✆ ✘✠✡✂☎✡☛

✙✡✄✒✠✂✡ ✔✄✒✂☎✑

• ✙✡✄✒✠✂✡ ✚✡✗✡✌✒☎✍✆✛

✙✡✄✒✠✂✡ ✏✑✒✂✄✌✒☎✍✆

• ✕✡☛✌✄✗☎✆✝

✟✠✡✂✜ ✕✡✘✠✡☛✒

�����������	������

✢✂✡✎☎✌✒✡✎ ✂✡☛✠✗✒☛

✙✡✄✒✠✂✡ ✖✡✌✒✍✂

✢✂✡✎☎✌✒☎✍✆

✣✍✎✡✗
✤✆✡✥✚✒✡✦

✢✂✡✎☎✌✒☎✍✆ ✁✧✍✥✚✒✡✦

✢✂✡✎☎✌✒☎✍✆

★✗✄☛☛☎✓☎✌✄✒☎✍✆

Fig. 1 SPARQL Query Performance Prediction

for SQL queries are presented in [2,7]. However, explicit plan information is
hardly available in open source triple stores (we have examined four most com-
monly used open source triple stores Virtuoso (open source edition)7, Fuseki8,
Sesame9 and 4Store10). Furthermore, as aforementioned, if the plan informa-
tion is explicit, it is still based on cost model estimations, which are shown
ineffective. Therefore, we cannot leverage query plans to construct the feature
of a SPARQL query. Then the question comes to: What else information can we
obtain from a SPARQL query that captures the characteristics of the query?

– Feature Representation. Given the feature acquired from a SPARQL query, a
vector representation is required for machine learning algorithms. How can we
convert the features to a feature vector that effectively represents the query
without losing information?

– Feature Extraction. The training of the prediction model is based on the query
features. Irrelevant features will introduce noise in the training process, which
leads to distortion of prediction results. How can we select the most predictive
features?

1.3 Approaching SPARQL performance prediction

To address the above challenges, in this work, we propose three approaches for
modelling features, namely query algebra features, Basic Graph Pattern (BGP)
features and hybrid features. Specifically, we transform the algebra and BGPs into
a feature vector. We propose a feature selection process based on heuristic to build
hybrid features and also compare the feature selection and extraction approaches
on the performance of prediction. Once the features are built, they can then be
used to estimate the performance of a new requested query based on the feature
values that can be obtained without executing the query. We consider both k-

7 http://virtuoso.openlinksw.com/
8 http://jena.apache.org/documentation/serving data/
9 http://rdf4j.org/

10 http://4store.org/

Learning-based SPARQL Query Performance Modelling and Prediction 5

nearest-neighbour (k-NN) regression and SVR as prediction models. Both average
k-NN and weighted k-NN are investigated.

To improve the prediction performance, we develop a two-step prediction pro-
cess in addition to the one-step prediction, depicted in Figure 1. The figure shows
that our prediction process consists of three main components, namely data pre-
processing, feature modelling and prediction. Both training queries and new re-
quested queries are cleaned by the data pre-processing component. In the training
component, prediction models are derived from the training queries with observed
query performance metrics. In this component, queries are represented as a set of
features (i.e., predictive variables) with corresponding performance metrics (i.e.,
target variables). A feature matrix is obtained with each row representing a feature
vector of a query. The columns are instances of different features. After obtaining
features, we further apply feature selection to reduce the dimension of the feature
matrix to extract the most predictive features. In the one-step prediction, feature
matrix of the training queries are fed into the prediction model training compo-
nent, with the goal of creating a mapping between feature values and observed
query performance metrics. The prediction models are then used to predict the
performance of new requested queries. In the two-step prediction, a classification
step is added before training the model. The aim of classification is to group queries
with different ranges of execution time. Multiple models are trained for different
classes and different performance metrics separately. In this work, we classify the
queries into four classes and we perform prediction for execution time, CPU usage
and memory usage of SPARQL queries.

For the detailed discussion of the three components, we focus on discussion of
feature modelling and prediction in Section 4 and Section 5 and provide a brief
introduction of data processing in experiment set-up.

1.4 Contributions and structure

Our approach can be applied in the situation that no estimations of query execu-
tion performance are provided, or such estimations are implicit or inaccurate. In
practice, this applies to most triple stores that are publicly available. In a nutshell,
the main contributions of this work are summarized as follows:

– We adopt machine learning techniques to effectively predict the query perfor-
mance before their execution. Rather than only predicting query performance
on the warm stage, we also consider the cold stage query execution, which is
not discussed in the state-of-the-art works. The proposed methods are easy
to reproduce as we mainly adapt the most commonly used algorithms in the
machine learning field. Furthermore, little domain expertise is required.

– We propose three ways to model features of a SPARQL query. The algebra
and BGP features can be acquired from the parsing of the query. The hybrid
feature can be derived from algebra and BGP features. All features can be
easily obtained without the information provided by the underlying systems.

– We perform extensive experiments on real queries obtained from widely ac-
cessed SPARQL endpoints. The triple store we used is one of the most used
systems in the community of Semantic Web. Thus our work will benefit a large
population of users. Our approach is transferable and can be applied to other
triple stores.

6 Wei Emma Zhang et al.

The remainder of this paper is structured as follows. Existing research efforts on
the related topics are discussed in Section 2. In Section 3, the basic techniques used
in this work are briefly introduced. Section 4 presents our feature modelling ap-
proaches in detail and Section 5 describes our prediction approaches. In Section 6,
we report the experimental results. Finally, we conclude the paper by discussing
the issues we observed in this work and some future research directions.

2 Related Work

Although there are very limited previous works that pertain to predicting query
performance via machine learning algorithms in the context of SPARQL queries,
the literature of the approaches and ideas presented in this paper is extensive. In
this section, we introduce some representative works that are closely related to
our work.

2.1 Query performance prediction via machine learning algorithms

Predicting query execution time by leveraging machine learning techniques has
recently gained significant interest in the database research community. Akdere et
al. [2] propose to predict the execution time using Support Vector Machine (SVM).
They build predictors by leveraging query plans provided by the PostgreSQL op-
timizer. The authors also choose operator-level predictors and then combine the
two with heuristic techniques. The work studies the effectiveness of machine learn-
ing techniques for predicting query latency of both static and dynamic workload
scenarios. Ganapathi et al. [7] consider the problem of predicting multiple per-
formance metrics at the same time. The authors also choose query plans to build
the feature matrix. Kernel Canonical Correlation Analysis (KCCA) is leveraged to
build the prediction model as it is able to correlate two high-dimensional datasets.
As addressed by the authors, it is hard to find a reverse mapping from feature space
back to the input space and they consider the performance metric of k-nearest-
neighbours to estimate the performance of target query. Li et al. [14] estimate CPU
time and I/O of a query execution plan. The work also addresses the problem of
robust estimation for queries that are not observed in the training stage.

2.2 SPARQL query optimization

RDBMS-based triple stores rely on the query optimization techniques of the re-
lational database systems to evaluate SPARQL queries. Recent works focus on
optimizing the joins of SPARQL queries [8,16]. Neumann et al. [16] introduce char-
acteristic sets, which work with dynamic programming algorithm to provide more
accurate selectivity estimations for star-like SPARQL queries. Gubichev et al. [8]
propose a SPARQL-tailored join-ordering algorithm aiming at large SPRAQL
queries. RDF native query engines use rule-based optimization or leverage heuris-
tics and statistics about the data for selecting efficient query plans [21]. These
approaches generally work without any knowledge of the underlying data. Quilitz
et al. [18] apply a set of logical rules to a query engine, to calculate all equivalent

Learning-based SPARQL Query Performance Modelling and Prediction 7

query plans for a given query and then choose the most optimised query plan to be
executed. Stocker et al. [21] present optimization techniques with pre-computed
statistics. Based on the statistics, triple patterns are reordered before execution
to achieve efficient query processing. Tsialiamanis et al. [23] propose a heuristics-
based SPARQL optimizer to maximize the number of merge-joins to speed up the
query processing.

3 Preliminaries

3.1 SPARQL query

A SPARQL query can be represented as a graph structure, the SPARQL graph [8].
Given the notation B for blank nodes, I for Internationalized Resource Identifier
(IRIs) , L for literals and V for variables, a SPARQL graph pattern expression is
defined recursively (bottom-up) as follows [17]:

(i) A valid triple pattern T ∈ (IV B)× (IV)× (IV LB) is a Basic Graph Pattern
(BGP), where a triple pattern is the triple that any of its attributes is replaced
by a variable (A BGP is a graph pattern represented by the conjunction of
multiple triple patterns. It models the SPARQL conjunctive queries and is the
most used subset of SPARQL queries [4]).

(ii) For BGPi and BGPj , the conjunction (BGPi and BGPj) is a BGP.
(iii) If Pi and Pj are graph patterns, then (Pi AND Pj), (Pi UNION Pj) and (Pi

OPTIONAL Pj) are graph patterns.
(iv) If Pi is a graph pattern and Ri is a SPARQL build-in condition, then the

expression (Pi FILTER Ri) is a graph pattern.

3.2 Multiple regression

Multiple regression focuses on finding the relationship between a dependent vari-
able and multiple independent variables (i.e., predictors). It estimates the ex-
pectation of the dependent variable given the predictors. Given a training set
(xi, yi), i = 1, ...n, where xi ∈ Rm is a m-dimensional feature vector (i.e., m pre-
dictors), the objective of multiple regression is to discover a function yi=f(xi)
that best predicts the value of yi associated with each xi [19].

Support Vector Regression (SVR) is to find the best regression function by selecting
the particular hyperplane that maximizes the margin, i.e., the distance between the
hyperplane and the nearest point, called support vectors [20]. The error is defined
to be zero when the difference between actual and predicted values are within a
certain amount ξ. The problem is formulated as an optimization problem:

min wTw, s.t. yi(w
Txi + b) ≥ 1− ξ, ξ ≥ 0 (1)

where parameter b
‖w‖ determines the offset of the hyperplane from the origin along

the normal vector w. If we extend the dot product of xi · xj to a different space
of larger dimensions through a functional mapping Θ(xi), then SVR can be used
in non-linear regression. Θ(xi) · Θ(xj) is called kernel function. An advantage of
SVR is its insensitivity to outliers [19].

8 Wei Emma Zhang et al.

k-Nearest Neighbours (k-NN) [3] is a non-parametric classification and regression
method. The k-NN regression predicts based on k nearest training data. It is often
successful in the cases where the decision boundary is irregular, which applies to
our training data [9]. By training the k-NN model, the predicted query time can
be calculated by the average time of its k nearest neighbours:

tQ =
1

k

k∑
i=1

(ti), (2)

where ti is the execution time of the ith nearest query.

3.3 Dimension reduction

In machine learning, dimension reduction is the process of reducing the number of
random variables to describe a large set of data while still describing the data with
sufficient accuracy. Dimension reduction is often performed before other machine
learning tasks, such as clustering, classification and prediction. Other benefits in-
clude enhancing the interpretatiblity of data, reducing over-fitting and shortening
the training times [11].

Dimension reduction is divided into two sub-types: feature selection and fea-
ture extraction. Feature selection returns a subset of the features and the feature
selection techniques are often used in the domains where representative features
need to be identified, such as weight and height of subjects in healthcare. Feature
extraction creates new features from original features by transforming the original
features in a high-dimensional space to a space of lower dimensions. The trans-
formation may be linear or non-linear. It is often used to avoid the effects of the
curse of dimensionality [19].

4 Feature Modeling

The prediction relies on the features in the training sets, thus the performance
of prediction is highly dependent on how much information the features can ob-
tain from the data and how well the features represent the data. In order to utilize
machine learning algorithms for SPARQL query performance prediction, we trans-
form the query into vector representation. We formulate the problem as follows:

Definition 1 (SPARQL Feature Modeling) Let Q = (F, P) denote a SPARQL
query, where F is the SPARQL query form in {Select, Describe, Construct and
Ask}. P is the query pattern of Q, feature modeling is the transformation that
maps Q→ q, where q ∈ Rm and m is the number of features.

In this study, we use only static, compiling time features which can be extracted
prior to execution. Algebra features and BGP features are obtained by parsing the
query text (see Section 4.1 and 4.2). Hybrid features are generated by applying the
selection algorithm we develop based on algebra and BGP features (see Section
4.3).

Learning-based SPARQL Query Performance Modelling and Prediction 9

4.1 Algebra features

The step of parsing the query string to algebras is prior to optimization by query
engines. The algebras can be presented as a tree:

Definition 2 (Algebra Tree) Given an SPARQL query Q, algebra tree TAlgebra(Q)
is a tree where the leaves are BGPs and nodes are algebra operators presented hi-
erarchically. The parent of each node is the parent operator of current operator.

We obtain the SPARQL algebra tree and then traverse the tree to construct
the Algebra Set by recording the occurrences and hierarchical information of each
algebra operator.

Definition 3 (Algebra Set) Given an algebra tree denoted as TAlgebra(Q), the
Algebra Set is a set of tuples {(opti, ci,maxhi,minhi)}, where opti is the operator
name, ci is the occurrence count of opti in TAlgebra(Q), maxhi and and minhi are
opti’s max height and min height in TAlgebra(Q), respectively.

We then transform the algebra set to a vector by concatenating all the tuples
in the algebra set sequentially. We further insert the tree’s height at the beginning
of the vector. The values of each position is considered as an instance of a feature,
thus we obtain a feature vector for a query. Figure 2 illustrates an example of
algebra feature modelling. We have a 40-dimensional feature vector for the example
SPARQL query.

�������

��	
�������

���������

����
�

�����������������

�������

���
�

��	
������

���������

���

������

�����
�����

��
����

��� ���

�����

��	������

✁✂✄☎✆✝ ✟✄✠✡☛☞✠☎✌✍✆✎ ✟✄✠✡☛ ✏✑✠✝✒✓ ✔✆✡✔

���������

��	������ ����� ���

� � � � � � � � �

 !������������

�������	��������

"#�!���!�����

�!������������

"���!���!�����

�!������������

���

���

$�%�& �'�()�*��+

���������+���������	
����������������,�

����������-./0.���+����
�����������������������1����	
�����������������,�

����������02 /0.3%�+�����������������	�
��
����,��

����������4/% �*�5���"��!�
5����5��
����6������66

,
�%�7������044$� ��

!���!�

�

Fig. 2 Algebra Feature Modeling

10 Wei Emma Zhang et al.

4.2 BGP features

Algebra features take occurrences and hierarchical information of operators into
consideration. For complementary, we propose to leverage graph structure of BGPs,
the most used subset of SPARQL queries [4] to form BGP features. We propose
to capture the characteristics of BGPs and transform them into a vector represen-
tation. We firstly examine BGPs that consist of sets of triple patterns. We could
follow the way in the algebra feature modeling to count the number of occurrences
of triple patterns. However, in this way, we fail to represent the hierarchy of triple
patterns that are rooted at the target BGP. We further consider that a triple
pattern is essentially a graph. Figure 3 illustrates the graph representation of two
triple patterns (?s, p, o) and (?s, p, ?o). The question mark indicates that the
corresponding component is a variable. However, it is hard to tell the differences
of the two graphs, as they are structurally identical.

✁✂✄ ☎ ✁✂✄ ✂☎

✆✂✄✝ ✁✝ ☎✟ ✆✂✄✝ ✁✝ ✂☎✟

Fig. 3 Example Triple Patterns

In our work, we formulate the problem as follows:

Definition 4 (BGP Graph Modeling) Let bgpi = {tp1, tp2, ..., tpn} denote a BGP
of an SPARQL Query. The tpk, k ∈ (1, n) is a triple pattern rooted at bgpi.
ged(go, gd) represents the graph edit distance between graph go and graph gd.
BGP graph modeling is the task that models each tpk to a graph gtpk satisfying
ged(gtpk , gtpl) > 0 when k 6= l.

To address the above problem, we propose to map all the eight types of triple
patterns to eight structurally different graphs, as shown in Figure 4 (left). To
exemplify, we model the triple patterns of BGPs in the example query in Figure
2 to a graph, which is depicted in Figure 4 (right). The black rectangles in the
figure are conjunction nodes. Triple patterns of a query are connected according
to the hierarchy of these patterns in the query.

✁✂✄ ✆✄ ✝✞✟✁✝✂✄ ✆✄ ✞✟✁✂✄ ✆✄ ✞✟

✁✂✄ ✝✆✄ ✝✞✟✁✂✄ ✝✆✄ ✞✟

✁✝✂✄ ✆✄ ✝✞✟

✁✝✂✄ ✝✆✄ ✝✞✟✁✝✂✄ ✝✆✄ ✞✟ ✁✝✂✄ ✆✄ ✞✟ ✁✝✂✄ ✆✄ ✞✟✁✝✂✄ ✆✄ ✝✞✟ ✁✝✂✄ ✆✄ ✝✞✟

Fig. 4 Mapping Triple Patterns to Graphs. Left: eight types of triple patterns are mapped to
eight structurally different graphs. Right: mapping example query in Figure 2 to a graph.

After transforming the query to a graph, we propose to use the graph edit
distances between queries to build feature vectors for queries. Graph edit distance

Learning-based SPARQL Query Performance Modelling and Prediction 11

between two graphs is the minimum amount of edit operations (i.e., deletion,
insertion and substitutions of nodes and edges) needed to transform one graph to
the other. We take the edit path from (?s, p, o) to (?s, p, ?o) in Figure 4 (left)
as an example, the steps are shown in Figure 5.

✁✂✄☎ ✝☎ ✞✟ ✁✂✄☎ ✝☎ ✂✞✟

Fig. 5 Graph Edit Path from (?s, p, o) to (?s, p, ?o)

For a query q, the GEDs between q and other queries could form a feature
vector, in which each feature instance is a GED. In [9], the authors propose to use
GEDs between q and all training queries (used for training prediction models) to
form the feature vector of q. However, this calculation is very time consuming and
lack of scalability. To address this issue, we propose to select some representative
queries as target queries and calculate the GEDs between q and the target queries.
These GEDs form a feature vector for q. The computation is thus largely reduced.
DBPSB benchmark query templates [15] represent the most used patterns in real-
world queries. Therefore, we choose queries generated from its templates as the
representative queries (or target queries). Specifically, we choose 18 valid ones out
of 25 templates in the DBPSB benchmark (templates that cannot generate queries
are excluded: Templates 1, 2, 3, 10, 16, 21 and 23) and generate one target query
for each template. We model the BGPs of q and the 18 target queries based on
graph mappings depicted in Figure 4 (left). Then the GEDs between graph of q
and target graphs are calculated. By recording the GEDs between q with 18 target
graphs, we obtain a 18-dimensional feature vector for q.

4.3 Hybrid features

We build a hybrid feature by selecting the most predictive features based on al-
gebra and BGP features. Most feature selection approaches rank the candidate
features and use this ranking to guide a heuristic search to identify the most
predictive features. In this paper, we will use a similar forward feature selection
algorithm, but we choose the contribution to overall prediction performance as
the heuristic. The algorithm performs a best-first search in the feature space. It
starts with building predictive models using a small number of features and it-
eratively builds more complex and accurate models by using more features. In
each iteration, a new feature is constructed, tested, and added to the feature set.
If it improves the overall prediction performance, the feature is selected. We do
not consider building multiple models of different types of features for solving the
model selection problem. Instead, we use a single type of prediction model, k-NN,
because of its excellent performance. Finally, we simply consider the completion
of traversing all features as the stopping condition.

Algorithm 1 presents the feature selection algorithm. Firstly, we choose from
feature described in Section 4.1 and Section 4.2 (line 2). We put BGP features

12 Wei Emma Zhang et al.

Algorithm 1 Plan Feature Selection Algorithm
Input: Training Queries:data
Input: Prediction Model:model
Input: Feature Models:feature models
Output: Prediction performance metric value:val
Output: Selected feature list:list
1: Initialize: val← zero; list← ∅
2: for fm in feature models
3: while feature←get feature next(fm,data)
4: do
5: list=list.add(feature)
6: [predictions, new val]=apply model(data,list)
7: if new val>val then
8: val←new val
9: else

10: list.remove(feature)
11: end
12: end for

ahead of algebra features. Then we forwardly choose single feature from these
features and evaluate the performance of prediction with current chosen feature
(line 3-6). When a new chosen feature contributes to the overall performance, we
add it to the candidate list (line 7-8). Otherwise, it is not selected (line 10). The
output of the algorithm is a list of selected features.

5 Predicting SPARQL Query Performance

To predict query performance metrics prior to query execution, we apply machine
learning techniques on historical executed queries (the training set). We work with
query execution time, CPU usage and memory usage as the query performance
metrics. Once a prediction model is derived from the training queries, it can then
be used to estimate the performance of new requested queries based on the query
feature values that can be obtained without executing the query. We train separate
prediction models for each of the performance metrics. Our approach does not
require prior knowledge of the underlying RDF data, thus it is treated as a black
box that the behaviour of queries are learned only from the executed queries.

5.1 Predictive models

We choose two regression approaches in this work, SVR and k-NN Regression
because SVR is insensitive to outliers [25] and k-NN is suitable for irregular data
points [9]. The models are trained with features of training queries as well as
the actual query performances of these queries. Then the models can be used to
estimate the performance of a new issued query through extracting its features.

5.1.1 SVR

Four commonly used kernels are considered in our prediction: namely Linear,
Polynomial, Radial Basis and Sigmoid, with different kernel parameters γ and r:

Learning-based SPARQL Query Performance Modelling and Prediction 13

– Linear: K(xi,xj) = xT
i xj .

– Polynomial: K(xi,xj) = (xT
i xj)

r.
– Radial Basis: K(xi,xj) = exp(−γ||xi − xj ||2), γ > 0.
– Sigmoid: K(xi,xj) = tanh(γxT

i xj) + r.

5.1.2 KNN regression

We apply four kinds of k-NN regression by considering different weighting schemes.

– Nearest. The execution time of the nearest (k=1) neighbour is considered as
the predicted time for the new query.

– Average. We assign equal weights to each of the k nearest neighbours and use
the average of their execution time as the predicted time. The calculation is
based on Equation (2) (Section 3.2).

– Power. The weights in Power is the power value of weighting scale α. The
predicted query time is calculated as follows:

tQ =
1

k

k∑
i=1

(αi ∗ ti), (3)

where αi is the weight of the i-th nearest query.
– Exponential. We apply an exponential decay function with decay scale α to

assign weights to neighbors with different distance.

tQ =
1

k

k∑
i=1

(e−di∗α ∗ ti), (4)

where di is the distance between target query and its i-th nearest neighbor.

5.2 Two-step prediction

We observe that prediction process with one-step, i.e., all the training data are
input into the model training stage, gives undesirable performance. A possible
reason is the fact that our training dataset has queries with various time ranges.
Fitting a curve in such irregular data points is often inaccurate. Then we follow
a two-step prediction process. We firstly split the training data according to ex-
ecution time ranges, then we train different prediction for different time ranges.
Specifically we put the training queries in four bins (or classes), namely short,
medium short, medium, and long. The time ranges in these four bins are <0.1 sec-
ond, 0.1 to 10 seconds, 10 to 3,600 seconds, and >3,600 seconds respectively. We
correspondingly label training queries into four labels. Then 12 prediction models
are trained, with three models for execution time, CPU usage and memory usage
respectively for each of the four classes. When a new query comes, we first classify
it to the possible class, then apply the corresponding prediction models of the
target class. In this way, the performance improves significantly (see Section 6.5).

14 Wei Emma Zhang et al.

6 Experiments

6.1 Setup

Real world queries. We use real world queries gathered from USEWOD 2014 chal-
lenge11, which provides query logs from DBPedia’s SPARQL endpoint12 (DBpe-
dia3.9). These logs are formatted in Apache Common Log Format and are en-
coded. In the data preprocessing step, we process the log files and extract valid
queries by decoding, extracting interesting values (IP, date, query string), iden-
tifying SPARQL queries from query strings and removing duplicated and invalid
queries. Here, invalid queries include all incomplete queries, queries in languages
rather than English and queries with syntax errors according to the SPARQL1.1
specification. We work on SELECT queries in the experiments as more than 98%
of queries are SELECT queries [26]. We finally retrieve 198,235 valid queries from
DBpedia3.9. We randomly choose 10,000 valid queries in our prediction evaluation.
We execute these queries 11 times as suggested in [8] and record their execution
execution time, CPU usage and memory usage. We consider the first time as the
cold stage and the remaining 10 times as the warm stage. We calculate the average
of the remaining 10 times as the actual performance of each query for warm stage
prediction. We split the collection to training and test sets according to the 4:1
tradition.

System. The backing system of our local triple store is Virtuoso 7.2, installed
on 64-bit Ubuntu 14.04 Linux operation system with 32GB RAM and 16 CPU
cores. We set up a local mirror of DBpedia3.9 English dataset on the Virtuoso
server. Table 1 shows summary statistics of the dataset. The query performance
(execution time, CPU usage and memory usage) and query plans are obtained
from executing the queries when enabling the profile function of Virtuoso. All the
machine learning algorithms are performed on a PC with 64-bit Windows 7, 8GB
RAM and 2.40GHZ Intel i7-3630QM CPU.

Table 1 Statistics for DBpedia3.9 (English)

#.Triples #.Subject #.Predicate #.Object
463,342,557 27,706,241 53,338 133,397,629

Implementation. We use SVR for kernel and linear regression available from LIB-
SVM [5]. We also use SVM supported by LIBSVM for the classification stage in
two-step prediction. k-NN and weighted k-NN regression is designed and imple-
mented using Matlab programming. The heuristic based feature selection algo-
rithm is also implemented in Matlab. The algebra tree used for extracting algebra
features is parsed using Apache Jena-2.11.2 library, Java API. Graph edit distance
used for building BGP features is calculated using the Graph Matching Toolkit13.

11 http://usewod.org/
12 http://dbpedia.org/sparql/
13 http://www.fhnw.ch/wirtschaft/iwi/gmt

Learning-based SPARQL Query Performance Modelling and Prediction 15

Table 2 Relative Error (%) of prediction on multiple performance metrics. SVR-L denotes
SVR-Linear, SVR-P is SVR-Polynomial, SVR-R is SVR-RadialBasis and SVR-S is SVR-
Sigmoid.

SVR-L SVR-P SVR-R SVR-S k-NN (k = 1)
Execution time (Cold) 99.69 99.46 99.74 99.68 21.94
Execution time (Warm) 97.59 97.33 97.86 97.57 20.89
CPU usage (Cold) 111.39 110.53 112.25 111.36 38.22
CPU usage (Warm) 106.72 105.46 107.33 106.68 36.25
Memory usage (Cold) 103.39 103.34 103.85 103.41 26.85
Memory usage (Warm) 101.39 101.25 101.93 101.37 23.49

Evaluation metric. We follow the suggestion in [2] and use the mean relative error
as our prediction metric:

relativeerror =
1

N

N∑
i=1

|actuali − estimatei|
actualmean

(5)

The difference with the calculation in [2] is that we divide actualmean instead of
actuali because we observe there are zero values for actuali.

Relative error is useful when we aim to minimize the relative prediction error
for all queries regardless of the actual value. Non-relative error metrics such as
square error would be better for minimizing the absolute difference (or its square)
in actual and predicted values. One other most widely used metric R2 is usually
computed on the training data [7], but we want to evaluate the fitting of test data.

6.2 Prediction models comparison

We compared the Linear SVR and SVR with three kernels, namely Polynomial,
Radial Basis and Sigmoid. We also calculated the relative error for k-NN when
k=1. The feature model used in the experiments was the hybrid feature.

Table 2 gives the relative error of predictions of the targeted performance
metrics. From the result we can see that the SVR models with various kernels have
higher relative errors than k-NN. All the relative errors exceed 97%, indicating the
predictions are far from the true values. For cold stage prediction of execution time,
k-NN model performs much better with 21.94% in relative error. In warm stage,
the relative error goes down to 20.89%. For CPU and memory usage, k-NN model
performs much better than SVR models with relative error under 40%, whereas
the values exceed 100% using SVR models. We further investigate this result and
find two possible reasons. One is that the execution time has a broad range and
SVR considers all the data points in the training set to fit the real value, whereas
k-NN only considers the points close to the test point. The other reason is we use
mean of actual value in Equation (5), and the values that are far from average will
lead to distortion of mean value. Given this result, we chose to use k-NN model
by default in the following evaluations. Only in the two-step prediction evaluation,
we compared SVR with k-NN.

16 Wei Emma Zhang et al.

Cold Warm
0

10

20

30

40

50

60

70

80

90

100

53.98% 51.87%

25.76% 24.34%21.94% 20.89%

R
el

at
iv

e
E

rr
or

(%
)

Algebra
BGP
Hybrid

(a) Execution time

Cold Warm
0

10

20

30

40

50

60

70

80

90

100

79.8% 77.78%

44.78% 43.69%
38.22% 36.25%

R
el

at
iv

e
E

rr
or

(%
)

Algebra
BGP
Hybrid

(b) CPU usage

Cold Warm
0

10

20

30

40

50

60

70

80

90

100

63.98%
60.87%

30.23% 28.45%26.85%
23.49%

R
el

at
iv

e
E

rr
or

(%
)

Algebra
BGP
Hybrid

(c) Memory usage

Fig. 6 One-step prediction for multiple performances with different features.

6.3 Feature modelling comparison

We evaluate the prediction ability of three proposed feature modelling, namely
algebra features, BGP features and hybrid features. We further adopt dimensional
reduction on hybrid features to evaluate the performance of three most used di-
mensional reduction algorithms.

6.3.1 Performance of three types of features

As the hybrid feature model is built on the feature selection algorithm (see Algo-
rithm 1), we compared its performance with the algebra and BGP feature models
to demonstrate the performance comparison with and without feature selection.
Figure 6 gives the result, showing the relative errors for these three approaches in
both cold and warm stages.

From the figure we can see for all three performance metrics, the hybrid feature
performs the best and the BGP feature performs better than the algebra feature.
The prediction of execution time gives the best result, with 21.94% relative error
in the warm stage and 20.89% relative error in the cold stage. CPU usage is the
percentage of CPU used for executing a query. The prediction of CPU usage is
slightly poorer. The best prediction is 36.25% relative error when using the hybrid
features in the warm stage, and 38.22% is achieved in the cold stage. The reason of
prediction on CPU usage having higher relative error is that the CPU scheduling
of the underlying operating system for each thread is not the same. Therefore, even
for the same query, each time it is executed, the CPU usage might be different.

Learning-based SPARQL Query Performance Modelling and Prediction 17

6.3.2 Performance of dimensional reduction algorithms on hybrid features

Based on the selected hybrid features, we further applied three feature extrac-
tion algorithms to extract the most predictive information. We examine tree most
used dimension reduction techniques in this work, namely Principle Component
Analysis (PCA)[12], Canonical Component Analysis (CCA) [10] and Nonnegative
Matrix Factorization (NMF) [13]. We implement them to reduce the dimension of
query feature matrix.

Figure 7 presents the prediction results for three performance metrics on both
warm and cold stages. We observe that NMF shows the worst result, CCA gives
medium performance and PCA has the best performance among the three. How-
ever, the performance difference between PCA and with or without dimensional
reduction is not obvious, indicating that dimension reduction is not suitable for our
data. The reason is that dimension reduction algorithms perform well when the
original dimension is high, but the dimension of our feature matrices and vectors
is relatively low (less than 100). Therefore, we do not apply dimension reduction
algorithms in our following evaluations.

6.4 Comparison of different weighting schemes in k-NN regression

We evaluated three weighting schemes discussed in Section 5.1.2, namely Aver-
age, Power and Exponential. All the scaling parameters were chosen through five-
fold cross-validation. We used hybrid features in this evaluation. Both warm and
cold stages were evaluated. We presented only the result for execution time be-
cause other performance metrics provide similar results. We observe from Figure
8 that the power weighting achieves the best performance. In the warm stage, the
15.32% relative error is achieved when k=5. The trend of relative error returns
to upward after k=5. Average is the worst weighting method for our data. Expo-
nential weighting does not perform as well as we expected although it is better
than average weighting. Weighting schemes show similar performances when the
query execution is in the cold stage, i.e., when k=5, the power weighting achieves
the lowest relative error of 18.29%. We therefore used k=5 power weighting in
following evaluations.

6.5 Performance of two-step prediction

We observe that the performance of one-step prediction is not desirable with the
lowest relative error 15.32% when predicting execution time for warm stage query-
ing. A possible reason is the broad execution time range of actual SPARQL queries.
The long time queries will distort the mean of actual observations that make the

Table 3 Relative errors (%) of two-Step prediction with k-NN and SVR. The values delimited
by comma are for (cold, warm) respectively.

Prediction model Execution time (sec.) CPU usage Memory usage
5NN(α = 0.3) 11.06,9.81 37.78,35.34 23.58,18.94

SVR-Polynomial 22.39,20.30 60.15,58.56 40.34,36.62

18 Wei Emma Zhang et al.

1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Curse of Dimensions

R
el

at
iv

e
E

rr
or

PCA
CCA
NMF
noDR

(a) Execution time (Cold)

1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Curse of Dimensions

R
el

at
iv

e
E

rr
or

PCA
CCA
NMF
noDR

(b) CPU usage (Cold)

1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Curse of Dimensions

R
el

at
iv

e
E

rr
or

PCA
CCA
NMF
noDR

(c) Memory usage (Cold)

1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Curse of Dimensions

R
el

at
iv

e
E

rr
or

PCA
CCA
NMF
noDR

(d) Execution time (Warm)

1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Curse of Dimensions

R
el

at
iv

e
E

rr
or

PCA
CCA
NMF
noDR

(e) CPU usage (Warm)

1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Curse of Dimensions

R
el

at
iv

e
E

rr
or

PCA
CCA
NMF
noDR

(f) Memory usage (Warm)

Fig. 7 Comparison of dimension reduction algorithms on hybrid features in one-step predic-
tion. X-axis is the number of dimensions.

relative error inaccurate. We thus propose the two-step prediction process as dis-
cussed in Section 5.2. Here we evaluate the performance of two-step prediction. We
used Support Vector Machine for the classification task in two-step prediction and
achieved accuracy of 98.36%, indicating that we can accurately predict the time
range in the first step. For comparison, we use log-log plotting for the one-step
and two-step prediction in Figure 9. We only show the results for execution time
in both cold and warm stages here. The one-step warm stage prediction is worse
than the two-step cold stage prediction and the performance gap to two-step warm
stage prediction is larger.

We also apply SVR-Polynomial in two-step prediction for comparison. We se-
lect polynomial here because it shows the best performance among all the kernels
we considered in this paper (See Table 2). We used the power weighting of k-NN
with k=5 and α = 0.3 as it shows the best performance (Section 6.4). Table 3

Learning-based SPARQL Query Performance Modelling and Prediction 19

shows the result of comparison. It shows that SVR regression model still does not
perform desirably.

6.6 Comparison to the State-of-the-art

The only work that exploits machine learning algorithms to predict SPARQL query
is the work in [9]. In our evaluation, we implement their approach and compare
their work with ours. To implement the approach in [9], we calculate GED for
all pairs of 1,000 randomly chosen queries and cluster the training queries using
X-means per description in [9], then build distance feature vectors for each test
query, and each instance is the distance between the test query and the center
query of each cluster. We then train prediction models for each cluster. Finally we
use the trained model to predict the performance of test queries. Table 4 shows the
result of comparison on warm stage querying. The training time includes feature
modelling, clustering and classification for work in [9]. The first part takes most
time because the calculation of GED for all training queries is time-consuming. In
our approach, we reduce the GED calculation dramatically. But this calculation
still takes most of the time in the prediction process. The time gap of training
process between ours and theirs will be enlarged when more training queries are
involved because their approach takes squared time. We do not have a clustering
process that further reduces the time. Our approach also shows better prediction
performance with lower relative error for all three prediction performances.

Table 4 Comparison to the state-of-the-art work. Training time for 1,000 queries are compared
as well as the relative errors for each performance metric.

Our approach Approach in [9]
Models SVN+Weighted KNN X-means+SVM+SVR
Training time 1k queries(sec.) 51.36 1548.45
err% of Execution time 9.81 14.39
err% of CPU usage 35.34 38.67
err% of Memory usage 18.94 22.24

K=1 K=2 K=3 K=4 K=5 K=6 K=7
18

19

20

21

22

23

24

25

26

27

28

K of KNN

R
el

at
iv

e
E

rr
or

(%
)

Average
Power
Exponential

(a) Cold

K=1 K=2 K=3 K=4 K=5 K=6 K=7
14

16

18

20

22

24

26

K of KNN

R
el

at
iv

e
E

rr
or

(%
)

Average
Power
Exponential

(b) Warm

Fig. 8 One-step execution time prediction of different weighting method on k-NN

20 Wei Emma Zhang et al.

10
−4

10
−2

10
0

10
2

10
4

10
−4

10
−2

10
0

10
2

10
4

Predicted Execution Time

A
ct

ua
l E

xe
cu

tio
n

T
im

e
Perfect

Prediction

(a) One-step (Warm)

10
−4

10
−2

10
0

10
2

10
4

10
−4

10
−2

10
0

10
2

10
4

Predicted Execution Time

A
ct

ua
l E

xe
cu

tio
n

T
im

e

Perfect
Prediction

(b) Two-step (Cold)

10
−4

10
−2

10
0

10
2

10
4

10
−4

10
−2

10
0

10
2

10
4

Predicted Execution Time

A
ct

ua
l E

xe
cu

tio
n

T
im

e

Perfect
Prediction

(c) Two-step (Warm)

Fig. 9 One-step and two-step prediction fitting for execution time (seconds)

7 Discussions

In this section, we discuss the observations and issues from this work.

7.1 Plan features

Some works use machine learning techniques that leverage the information pro-
vided by the query plan, which is given by a query optimizer. The information that
the plan provides in these works includes estimated total execution time, estimated
result row count, estimated time and row count for each operators. However, there
are two obstacles for using such information in our work. Firstly, this information
is based on the cost model estimation, which has been proven ineffective [2,7].
It is unlikely to achieve desirable performances based on inaccurate estimations.
Secondly, as we target open source triple stores to benefit more data consumers,
we are only able to obtain information from these systems. However, most of them
fail to provide an explicit query plan. Thus we turn to choose structure-based
features that can be obtained directly from query text. As argued in many works,
similarly structured queries may have huge performance gaps due to the irregular
distribution of values in the queried data. But from our practical experience in
this work, we observed that although it leads to distortion of the prediction, the
error rate is acceptable based on the limited features we can acquire.

Learning-based SPARQL Query Performance Modelling and Prediction 21

7.2 Cost model vs machine learning

Cost model based optimization estimates execution time based on the cost. Al-
though it is arguably less accurate than machine learning based prediction, it is
faster than machine learning prediction. The downside is that those estimations
are always inaccessible for personal users. To promote the usability of Semantic
Web techniques and RDF data, it is better to be more consumer friendly. There-
fore, the machine learning approaches are a better choice, as the publicly accessible
tools are easy to use for training and testing.

7.3 Training size

In the training process, the larger the size of the training data, the better per-
formance we can get. The reason is that more data variety is seen and the model
will be less sensitive to unforeseen queries. However, in practice, it is time con-
suming to obtain the query execution time of a large collection of queries. That is
the possible reason why many other works only use small sizes of queries in their
evaluation. This fact will cause the bias of the prediction result and makes similar
works hard to compare. Although our experimental query set is larger than theirs,
we still consider to further enlarge the size of our query set to cover more various
queries in the future.

7.4 Dynamic vs static data

In dynamic query workloads, the queried data is frequently updated. Therefore,
the prediction might perform poorly due to lack of update of training data. Our
work focuses on prediction on static data and we expect training to be done in
a periodical manner. In the future we plan to investigate the techniques that can
make prediction more available for continuous retraining, which reflects recently
executed queries.

Moreover, the query performance would vary when execution environment
changes. Thus we perform the evaluations on fixed dataset and run 10 times to
get the warm stage performance. Our approach shows desirable prediction perfor-
mance in this scenario. Although our approach is not designed to predict query exe-
cution performance under changing environments (e.g., updating of data, changing
of resources etc.), it can be an indicator of the query performance compared to
other queries.

8 Conclusion

To conclude, we leverage machine learning techniques to predict multiple perfor-
mance metrics for SPARQL queries. We transform a given SPARQL query to a
vector representation. Feature vectors are built by exploiting the syntactic and
structural characteristics of SPARQL queries. SVR and KNN regression models
are adopted as prediction models in this work. We observe that KNN performs

22 Wei Emma Zhang et al.

better than SVR for our data because of the irregular distribution of query perfor-
mance. The dimension reduction technique is not suitable for our low-dimension
feature matrices and vectors. The proposed two-step prediction performs much
better because it considers the broad range of observed execution time. The pre-
diction of execution time is more accurate, however for CPU usage, the prediction
is not desirable. The reason is that the CPU usage is rarely consistent even for
identical queries executed in the warm stage. The prediction in the warm stage is
generally better than in the cold stage. We observe that the reason comes from
same structured queries. We also observe that many queries are issued by pro-
grammatic users, who tend to issue queries using query templates. In the future,
we plan to consider the dynamic workload when data is not static. Techniques that
can incorporate new training data into an existing model will also be considered.

References

1. Ahmad, M., Duan, S., Aboulnaga, A., Babu, S.: Predicting completion times of batch
query workloads using interaction-aware models and simulation. In: Proc. of the 14th
International Conference on Extending Database Technology (EDBT 2011), pp. 449–460.
Uppsala, Sweden (2011)

2. Akdere, M., Çetintemel, U., Riondato, M., Upfal, E., Zdonik, S.B.: Learning-based query
performance modeling and prediction. In: Proc. of the 28th International Conference on
Data Engineering (ICDE 2012), pp. 390–401. Washington DC, USA (2012)

3. Altman, N.S.: An Introduction to Kernel and Nearest-Neighbor Nonparametric Regression.
The American Statistician 46(3), 175–185 (1992)

4. Bursztyn, D., Goasdoué, F., Manolescu, I.: Optimizing reformulation-based query answer-
ing in RDF. In: Proc. of the 18th International Conference on Extending Database Tech-
nology (EDBT 2015), pp. 265–276. Brussels, Belgium (2015)

5. Chang, C., Lin, C.: LIBSVM: A library for support vector machines. ACM Transactions
on Intelligent Systems and Technology 2(3), 27 (2011)

6. Duggan, J., Çetintemel, U., Papaemmanouil, O., Upfal, E.: Performance prediction for
concurrent database workloads. In: Proc. of the 2011 International Conference on Man-
agement of Data (SIGMOD 2011), pp. 337–348. Athens, Greece (2011)

7. Ganapathi, A., Kuno, H.A., Dayal, U., Wiener, J.L., Fox, A., Jordan, M.I., Patterson, D.A.:
Predicting Multiple Metrics for Queries: Better Decisions Enabled by Machine Learning.
In: Proc. of the 25th International Conference on Data Engineering (ICDE 2009), pp.
592–603. Shanghai China (2009)

8. Gubichev, A., Neumann, T.: Exploiting the query structure for efficient join ordering in
SPARQL queries. In: Proc. of the 17th International Conference on Extending Database
Technology (EDBT 2014), pp. 439–450. Athens, Greece (2014)

9. Hasan, R.: Predicting SPARQL Query Performance and Explaining Linked Data. In: Proc.
of the 11th Extended Semantic Web Conference (ESWC 2014), pp. 795–805. Anissaras,
Crete, Greece (2014)

10. Hotelling, H.: Relations between two sets of variates. Biometrika 28(3/4), 321–377 (1936)
11. James, G., Witten, D., Hastie, T., Tibshirani, R.: An Introduction to Statistical Learning.

Springer (2013)
12. Jolliffe, I.: Principal Component Analysis. Wiley Online Library (2002)
13. Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix factorization.

Nature 401(6755), 788–791 (1999)
14. Li, J., König, A.C., Narasayya, V.R., Chaudhuri, S.: Robust Estimation of Resource Con-

sumption for SQL Queries using Statistical Techniques. The VLDB Endowment (PVLDB)
5(11), 1555–1566 (2012)

15. Morsey, M., Lehmann, J., Auer, S., Ngomo, A.N.: Usage-Centric Benchmarking of RDF
Triple Stores. In: Proc. of the 26th AAAI Conference on Artificial Intelligence. Toronto,
Canada (2012)

16. Neumann, T., Moerkotte, G.: Characteristic sets: Accurate cardinality estimation for RDF
queries with multiple joins. In: Proc. of the 27th International Conference on Data Engi-
neering (ICDE 2011), pp. 984–994. Hannover, Germany (2011)

Learning-based SPARQL Query Performance Modelling and Prediction 23

17. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and Complexity of SPARQL. ACM Trans-
actions on Database Systems 34(3), 16:1–16:45 (2009)

18. Quilitz, B., Leser, U.: Querying distributed rdf data sources with sparql. In: Proc. of
the 5th Extended Semantic Web Conference (ESWC 2008), pp. 524–538. Tenerife, Spain
(2008)

19. Rajaraman, A., Ullman, J.D.: Mining of Massive Datasets. Cambridge University Press
(2011)

20. Smola, A., Vapnik, V.: Support Vector Regression Machines. Advances in neural informa-
tion processing systems 9, 155–161 (1997)

21. Stocker, M., Seaborne, A., Bernstein, A., Kiefer, C., Reynolds, D.: SPARQL Basic Graph
Pattern Optimization Using Selectivity Estimation. In: Proc. of the 17th International
World Wide Web Conference (WWW 2008), pp. 595–604. Beijing, China (2008)

22. Tozer, S., Brecht, T., Aboulnaga, A.: Q-Cop: Avoiding bad query mixes to minimize client
timeouts under heavy loads. In: Proc. of the 26th International Conference on Data
Engineering (ICDE 2010), pp. 397–408. Long Beach, USA (2010)

23. Tsialiamanis, P., Sidirourgos, L., Fundulaki, I., Christophides, V., Boncz, P.A.: Heuristics-
based query optimisation for SPARQL. In: Proc. of the 15th International Conference on
Extending Database Technology (EDBT 2012), pp. 324–335. Uppsala, Sweden (2012)

24. Wu, W., Chi, Y., Zhu, S., Tatemura, J., Hacigümüs, H., Naughton, J.F.: Predicting query
execution time: Are optimizer cost models really unusable? In: Proc. of the 29th Interna-
tional Conference on Data Engineering (ICDE 2013), pp. 1081–1092. Brisbane Australia
(2013)

25. Wu, X., Kumar, V., Quinlan, J.R., Ghosh, J., Yang, Q., Motoda, H., McLachlan, G.J.,
Ng, A.F.M., Liu, B., Yu, P.S., Zhou, Z., Steinbach, M., Hand, D.J., Steinberg, D.: Top 10
algorithms in data mining. Knowledge and Information Systems 14(1), 1–37 (2008)

26. Zhang, W.E., Sheng, Q.Z., Taylor, K., Qin, Y.: Identifying and Caching Hot Triples for Ef-
ficient RDF Query Processing. In: Proc. of the 20th International Conference on Database
Systems for Advanced Applications (DASFAA 2015), pp. 259–274. Hanoi, Vietnam (2015)

