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Abstract9

A surprising phenomenon witnessed by many is the sinking bubbles seen in a settling pint of10

stout beer. Bubbles are less dense than the surrounding fluid so how does this happen? Previous11

work has shown that the explanation lies in a circulation of fluid promoted by the tilted sides of the12

glass. However, this work has relied heavily on computational fluid dynamics (CFD) simulations.13

Here we show that the phenomenon of sinking bubbles can be predicted using a simple analytic14

model. To make the model analytically tractable we work in the limit of small bubbles and consider15

a simplified geometry. The model confirms both the existence of sinking bubbles and the previously16

proposed mechanism.17
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I. INTRODUCTION18

One of the most important ways in which stout beers such as Guinness differ from other19

beers is that the mixture of dissolved gases within the beer includes nitrogen as well as20

carbon dioxide.1 In most beers the only dissolved gas is carbon dioxide. The introduction21

of dissolved nitrogen into the gas mixture used to make the beer foam radically changes22

the appearance and taste of the beer, as well as affecting the way in which the beer must23

be poured or canned.2 Nitrogen is less acidic in solution than carbon dioxide, giving stout24

beers a smoother, less acidic taste. Also, nitrogen is much less soluble than carbon dioxide25

so that, even though overall the dissolved gases in stout beers are at a higher pressure than26

in carbonated beers, the molar amount of the dissolved gases is actually much smaller. The27

low solubility of nitrogen is the reason why the head of a stout beer is much longer lasting28

than the head of a carbonated beer.3 It also causes difficulties in making the beers foam29

which is why, unlike carbonated beers, stout beers require special technology in the tap or30

can: restrictor plates and widgets respectively.4 The small amount of dissolved gases results31

in smaller bubbles in stout beers: stout beer bubbles are typically a tenth of a millimetre in32

size whereas in carbonated beers typical sizes are of the order of millimetres.633

The small bubbles of stout beers are behind many of the distinctive features of these34

beers. Small bubbles in the head are the reason for the creamy mouthfeel of stout beers and35

also play a role in the famous phenomenon of sinking bubbles.7 However, as sinking bubbles36

have also been observed in other systems with larger bubbles (e.g. bubbles produced by a37

fizzing tablet in water8) the role the small bubbles plays may be simply to make the sinking38

bubbles easier to observe. (For the impatient drinker the small bubbles are also responsible39

for the long wait for a pint of stout beer to settle.) The origin of the sinking bubbles has40

long been controversial as indeed has been whether this happens at all or if the phenomena41

is an optical (or alcohol induced) illusion. The latter point was laid to rest by researchers42

who successfully videoed the sinking bubbles, showing that the phenomenon was due to43

a circulation within the glass with downwards currents close to the wall of the glass and44

opening the phenomenon up to scrutiny outside the pub.8 The origin was also investigated45

via a series of computational fluid dynamics studies9,10 which also found a circulatory flow46

within the glass resulting in the bubbles sinking due to the flow rather than rising due to47

their buoyancy. That is to say that although the bubbles are rising relative to the liquid48
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due to their buoyancy, they are still falling relative to glass because the circulating liquid49

is falling faster than the bubbles are rising relative to the liquid. Finally, the origin of the50

circulatory flow was demonstrated as an example of the Boycott effect11,12 promoted by the51

shape of the Guinness glass,13 a factor which had not been fully investigated in previous52

studies of settling in stout beers.53

A particularly persuasive argument of Ref. 13 was the experimentally confirmed predic-54

tion that both rising and sinking bubbles should be seen in a stout beer settling in a tilted55

measuring cylinder. However, one weakness in the argument was that it jumped from con-56

ceptual models straight to computational fluid mechanics models. An analytically tractable57

mathematical model capturing the essence of the phenomena would be valuable both to58

increase confidence that the explanation is correct and to build intuition regarding the phe-59

nomena. Here we report such a model taking inspiration from the tilted measuring cylinder60

experiment, which allows a number of simplifications to be made.61

The structure of the remaining parts of the paper is as follows. In Sec. II we present a62

mathematical model of the motion of beer and bubbles in an idealised version of the tilted63

measuring cylinder geometry. The model is much simpler than the full set of equations64

describing bubbly flows typically solved by CFD simulations. We show that the slender65

nature of the geometry and small size of the bubbles allow us to justify these assumptions,66

which result in a set of decoupled equations in which we can independently solve for flows67

across the cylinder and along the cylinder. (Note that to keep the equations as simple as68

possible we will sometimes have to assume that bubbles are smaller than they are in reality.)69

A mathematical appendix discusses these assumptions in more detail. Sec. III discussed flow70

across the cylinder. In this direction bubbles and beer are constrained to flow in opposite71

directions leading to a slow flow in which a bubble free region forms on the lower edge of72

the cylinder and a bubble rich region forms at the upper surface of the cylinder. In Sec. IV73

we discuss the implications of the bubble free region along the lower edge of the cylinder for74

flow parallel to the axis of the cylinder—in this direction bubbles and beer are constrained75

to flow together. We show that sinking bubbles are predicted by this flow. Sec. V discusses76

how this model and the assumptions used to describe it relate to reality. Finally, conclusions77

are given in Sec. VI.78
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II. MATHEMATICAL MODEL79

The flow of bubbles and beer in a ‘tulip’ pint glass is very complex, and can only really be80

addressed by computational fluid dynamics simulations. These simulations solve six partial81

differential equations (assuming the simulations take advantage of the cylindrical symmetry82

of the pint glass). Two equations describe the conservation of volume occupied by the83

beer and bubbles respectively. The remaining four equations are momentum equations:84

describing conservation of momentum of bubbles and beer in the z and r directions.85

Modern computing hardware and algorithms can solve this complicated set of equations86

very rapidly. The simulations reported in Ref. 13 were run on a desktop computer. However,87

the ability to reproduce a phenomenon in a simulation does not always lead to a better88

understanding of that phenomenon, any more than observing it in the real world does.89

This can clearly be seen from the fact that it was 13 years after the first reported CFD90

simulation ‘explaining’ the sinking bubbles that the crucial role of the geometry of the glass91

in determining whether bubbles are seen to sink or rise was recognised.92

In this paper we take inspiration from the measuring cylinder experiments discussed above93

and create a simplified set of equations which can describe this situation. Our approach is94

to derive a set of equations containing only those terms which physical intuition suggests are95

the most important and then use dimensionless numbers to confirm that the terms neglected96

are negligible. The geometric and physical parameters used are given in Table I.97

The geometry under consideration is shown in Fig. 1. We consider a ‘two-dimensional98

cylinder’ consisting of two parallel plates tilted at an angle θ to the vertical. For simplicity99

the word ‘cylinder’ will still be used to describe the system. The height H is much greater100

than its length L. We take a coordinate system embedded in the cylinder so that the x-axis101

is perpendicular the axis of the cylinder and the y-axis is parallel to the axis of the cylinder.102

The variables of the system are103

• φ the volume fraction of the bubbles104

• u the velocity of bubbles in the x direction105

• U the velocity of beer is the x direction106

• v the velocity of bubbles in the y direction107
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TABLE I. Physical and geometric properties.

Parameter Value Reference

ρbeer 1007 kg m−3 7

ρbubble 1.223 kg m−3 13

µ 2.06× 10−3 Pa s 7

r 61µm 6

θ 5◦

g 9.81 m s−2

L 2 cm

φ0 0.02 13

φHead 0.80

uStokes 3.45× 10−4 m s−1

vStokes 3.95× 10−3 m s−1

• V the velocity of beer in the y direction108

• p the pressure in the system109

In discussions below the words ‘horizontal’ and ‘vertical’ and ‘up’ and ‘down’ refer to the110

x-y coordinate system embedded in the cylinder.111

The key assumptions we make are that the bubble size is small (the question of what this112

means in practice is discussed below) and that L� H. In most cases the actual size of the113

bubbles r = 61µm, will be sufficiently small to justify the simplifications we make: we will114

discuss in more detail cases in which this is not true. The fact that L � H suggests that115

there will be a slow variation in properties in the y direction compared to the x direction.116

Thus we assume that all the system variables are independent of y. That is to say that φ,117

u, v, U and V are functions of x and t only. (The pressure, p, is a special case that will118

be discussed later.) Note that it does not follow from this assumption that v = V = 0:119

although quantities do not, to a first approximation, depend on y there is no prohibition120

against vectors pointing in the y direction.121

When coupled with the assumption that both the bubbles and the beer are incompressible
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FIG. 1. Geometry of the tilted cylinder showing the coordinate system embedded in the cylin-

der and the components of the velocity fields of bubbles and beer. Note that the tilt has been

exaggerated in this diagram.

(also assumed by CFD simulations) this has important implications for the types of flow that

are possible in the x and y directions. No net flow is possible in either direction. However

flow through a horizontal surface need not be uniform, so a circulatory flow in which the

flow is downwards at some locations and upwards in other locations is possible. In contrast

flow through any vertical surface must be zero. Stating these conditions as equations we

have

0 = φu+ (1− φ)U, (1)

0 =

∫ L

0

[φv + (1− φ)V ] dx. (2)

In particular these equations tell us that for motion in the x direction beer and bubbles must122

be travelling in opposite directions whilst for flow in the y direction there is no prohibition123

against beer and bubbles moving in the same direction—so as long as the overall flow is124

circulatory in nature so there is no net flow through a horizontal surface.125

The small size of bubbles leads to a number of further simplifications. The trajectories126

of small bubbles are dominated by drag forces. Thus, where net flows are possible, i.e., in127

the y direction, we expect any difference between the velocities of the bubbles and beer to128
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be negligible compared with the overall velocities. So for flows in the y direction it makes129

sense to assume v = V and model the flow of the beer and bubbles together as ‘bubbly130

beer’ with a single velocity V̄ but with a non-uniform density ρ = (1− φ) ρbeer + φρbubbles.131

Additionally we can use ρbubbles � ρbeer to justify the approximation ρ ≈ (1− φ) ρbeer.132

We cannot make this assumption for flow in the x direction. This is an advantage however,133

since it suggests a separation of timescales. Since bubbles and beer are constrained to move134

in opposite directions in the x direction this means that the timescale associated with flow135

in the x direction will be much longer than the timescale associated with flow in the y136

direction. This means that flow in the y direction can be considered as quasi-static and we137

can neglect time derivatives for flow in the y direction.138

These considerations suggest the following equations for φ(x, t), u(x, t), U(x, t) and

V̄ (x, t). For flow in the x direction:

∂φ

∂t
= −∂ (uφ)

∂x
, (3)

with a constitutive equation describing u − U as a function of φ described in Sec. III. For

flow in the y direction:

V̄ = φv + (1− φ)V (4)

0 =

∫ L

0

V̄ dx (5)

0 = −∂p
∂y
− ρg cos(θ) + µ

∂2V̄

∂x2
(6)

where the pressure p is discussed in more detail in Sec. IV. In the sections below we show139

that this system of equation is sufficient to produce a model in which sinking bubbles appear.140

III. FLOW ACROSS THE CYLINDER141

As discussed above, the equations describing flow across the cylinder are

0 = φu+ (1− φ)U, (7)

∂φ

∂t
= −∂ (uφ)

∂x
. (8)

The first equation follows from the incompressibility of beer and bubbles, the second de-142

scribes conservation of bubbles.143

7



As currently stated the system is underdetermined since we have two equations and three144

fields to solve for: φ, u and U . In a computational fluid dynamics simulation these equations145

would be closed by the inclusion of momentum equations. However, here we follow Kynch14
146

in closing the system of equations by assuming that the relative velocity of the bubbles and147

beer only depends on φ:148

u− U = uStokesf(φ) , (9)

where uStokes is the (horizontal) Stokes velocity,149

uStokes =
2

9

r2 (ρbeer − ρbubbles) g sin θ

µ
. (10)

To solve these equations we eliminate u and U to get a partial differential equation for φ.150

∂φ

∂t
+

∂

∂x
[uStokesφ (1− φ) f(φ)] = 0 (11)

This equation can be solved using initial condition φ(x, 0) = φ0 ≈ 0.02, and boundary151

conditions φ(0, t) = 0, φ(H, t) = φHead.152

A variety of forms can be taken for f(φ),15 here for simplicity we assume that bubbles

either move at the Stokes velocity when the beer density is low or come to rest when the

bubble density is at a similar level to that found in the foam forming head of a pint:

(1− φ) f(φ) = 1, φ < φHead, (12)

(1− φ) f(φ) = 0, φ ≥ φHead, (13)

where φHead ≈ 0.8 is the bubble volume fraction of the head of a pint of beer.153

Since this equation is a hyperbolic first order partial differential equation it can be solved154

using the method of characteristics. This shows that the system separates into three regions.155

A region containing only beer (φ = 0), a region containing bubbly beer (φ = φ0) and a region156

containing foam (φ = φHead). There is a discontinuous change in φ at the interfaces between157

these regions, so to find the positions of these interfaces as a function of time the Rankine-158

Hugoniot jump conditions for describing shocks must be used to find the location of the159

shock separating beer from bubbly beer x1(t), and the location of the shock separating160

bubbly beer from foam x2(t).161

However, once the structure of the solutions has been recognised it is much easier to

deduce the locations of the shocks from physical principles. The interface between beer and
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FIG. 2. In the x direction the system partitions into regions containing beer, bubbly beer and

foam.

bubbly beer, x1, must be moving upwards from x = 0 at the same speed as the bubbles so

x1(t) = uStokest.

The location of the second shock x2 separating bubbly beer and foam can be calculated from

conservation of bubbles. That is to say we must have (L− x2)φHead + (x2 − x1)φ0 = Lφ0.

We can solve this equation to give

x2(t) = L− φ0uStokest

(φHead − φ0)

These results are illustrated in Fig. 2. Eventually these two shocks will collide to give a162

single interface separating beer from foam. However we will be most interested in what163

happens before then.164

IV. FLOW ALONG THE CYLINDER165

As discussed above flow parallel to the walls can be described in terms of the motion of

a single fluid with a velocity V̄ and density depending on x. The equations describing the
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flow are

0 =

∫ L

0

V̄ dx, (14)

0 = −∂p
∂y
− ρg cos(θ) + µ

∂2V̄

∂x2
. (15)

The first equation follows from the fact that the bubbles and beer are incompressible, and166

that the end of the cylinder is closed. It states that there is no net flow through any167

horizontal surface. The second equation describes momentum transfer. Three aspects of168

this equation require further discussion.169

The first consideration is that this equation assumes the fluid is Newtonian with the same170

viscosity as pure beer (Boussinesq approximation5). This is a reasonable assumption in the171

beer and bubbly beer regions, but foams typically have a non-Newtonian rheology in which172

a non-zero shear stress is needed to initiate flow cf. the behaviour of paints. For simplicity,173

here we assume that the imposed shear stress does not exceed this threshold: so we assume174

that the foam is motionless. Furthermore since φ0 � φhead it follows that L − x2 � L, so175

we approximate x2 by L. We therefore assume that176

φ =

0 0 ≤ x < x1 = uStokest,

φ0 x1 ≤ x ≤ L,
(16)

and that the boundary conditions are V̄ = 0 when x = 0 or x = L.177

The second consideration is the neglect of the inertia terms in the equation. This as-178

sumption is discussed in Appendix A 2. As discussed in that appendix this assumption is179

valid in the small bubble limit, but, strictly speaking, the size of bubbles actually found in180

stout beers are not small enough to justify this assumption. For simplicity we continue to181

make this assumption and discuss the consequences of relaxing it in Sec. V.182

The third consideration is the role of the pressure p. Above it was stated that all the183

fields of the system φ, u, v, U , V were only dependent on x and independent of y. This is184

not quite true for p, here it is the pressure gradient ∂yp that is independent of y. In fact185

in order to preserve the y-independence of the velocities ∂yp must be independent of x too.186

Thus the y-component of the pressure gradient is a constant which we denote by py. The187

easiest physical picture of the role of this constant is as a Lagrange multiplier that enables188

us to impose the condition of no net flow through a horizontal surface.189
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FIG. 3. Velocity in the y direction as a function of position in the x direction for the case in which

x1 = L/20. The shaded region shows the layer of pure beer. As can be seen the velocity is negative

in the bubbly beer region, i.e. sinking bubbles are predicted.

Now that we know the pressure gradient is a constant we can solve Eq. (15) by integrating190

twice and choosing the constants of integration to impose the no-slip conditions at x = 0191

and x = L. (This process imposes continuity of V̄ and ∂xV̄ at x = x1). The value of the192

constant py is chosen so that the V̄ will satisfy Eq. (14). This gives193

V̄ = −gφ0ρbeer cos θ

2µL3
x (L− x1)2 (2x1L− xL− 2xx1) (17)

when 0 ≤ x < x1, and194

V̄ = −g φ0 ρbeer cos θ

2µL3
x21 (L− x)

(
L2 + 2xx1 − 3xL

)
(18)

when x1 ≤ x ≤ L.195

Figure 3 shows a plot of V̄ when x1 = 0.05L. As the figure shows V̄ is negative for x & x1196

and thus this model correctly predicts sinking bubbles at the lower edge of the cylinder. (It197

also correctly predicts rising bubbles near the upper edge of the cylinder.)198

V. DISCUSSION199

As has been shown above the simple model presented above reproduces the phenomenon200

of sinking bubbles in stout beers. This model is an important confirmation of the arguments201
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presented in Ref 13, since in that work the arguments were supported by computational202

fluid dynamics simulations. Computational fluid dynamics simulations are very general and203

contain all sorts of additional physical effects. Thus it is impossible to completely rule out204

other potential mechanisms behind the sinking bubbles. Unlike those simulations, the model205

presented here contains only the physical ingredients essential to the argument and it can206

be seen that sinking bubbles still emerge.207

The model presented is applied to two-dimensional version of the experimentally observed208

measuring cylinder case. Thus the assumptions made in setting up the model are not directly209

applicable to the sinking bubbles seen in a tulip pint glass. Nevertheless the qualitative210

features of the phenomena are the same in each case. Below we discuss some of the other211

differences between the model presented and the real world phenomena.212

One important assumption made (which is also commonly made in computational fluid213

dynamics simulations) is that the bubbles are monodisperse, i.e. all the same size. In reality214

there is a range of bubble sizes. Differently sized bubbles will rise at different rates and so215

in the real polydisperse case the sharp interfaces between regions of beer, bubbly beer and216

foam predicted in Sec. III will be replaced by transition regions in which φ gradually changes.217

However, this gradual rather than abrupt change will not affect the main conclusion that218

sinking bubbles will be observed.219

The assumption that our variables are not functions of y is valid only far from the220

bottom and the top of the cylinder. Much more complex two dimensional flow patterns will221

be seen in these regions. It seems unlikely that these can be modelled without resorting to222

numerical simulations. However the existence of the bottom of the cylinder is important in223

our calculation since the impermeable base is the origin of the constraint that the net flow224

through a horizontal surface must be zero.225

An additional assumption made was the neglect of inertia terms in the momentum equa-226

tion for flow parallel to the walls of the cylinder. As noted in Sec. IV and Appendix A 2,227

whilst this assumption is valid in the limit of small bubbles, the bubbles found in stout228

beers are not small enough to justify this assumption. Employing this assumption removed229

any time derivative terms from the equation. Had this term been left in the velocity profile230

along the cylinder would have retained a memory of previous conditions. Thus whilst the231

quantitative details of the flow would change the qualitative aspects of the flow would have232

remained the same, in particular the phenomenon of sinking bubbles would still have be233
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observed. A numerical calculation demonstrating this is discussed in Appendix B.234

Finally the observed flow patterns of sinking bubbles are much more complex than has

been described by this model: as is well known the sinking bubbles form waves. A one

dimensional model of this phenomenon has been presented6. However the shear flow shown

in Fig. 3 suggests an alternative mechanism based on shear instability. The most commonly

discussed form of shear instability is the Kelvin-Helmholtz instability seen when there is a

transverse discontinuity in the velocity. This would be observed in our model in the limit

µ → 0. However shear instabilities are also possible in viscous fluids. In case of inviscid

flows it is known that a strong indicator that a flow will be unstable is the existence of an

inflection point at which the shear gradient ∂2y V̄ changes sign. Differentiation shows that

∂2y V̄ always changes sign at x1, suggesting that such an instability is present.

∂2y V̄ =
gφ0ρbeer
µL3

(L− x1)2 (2x1 + L) > 0 x < x1 (19)

∂2y V̄ = −gφ0ρbeer
µL3

x21 (3L− 2x1) < 0 x > x1 (20)

A complete analysis of the instability of the flow is possible but would be very complex.235

Investigating the instability would involve a more complex series of equations with the236

missing t and x derivatives reinstated.237

VI. CONCLUSIONS238

The sinking bubbles of stout beers are an everyday example of a complex two phase flow239

phenomenon. We have shown that a relatively simple, analytically solvable mathematical240

model can explain this phenomenon. The model works in the limit of small bubble size and241

a long thin geometry.242
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Appendix A: Mathematical Appendix247

In this section we give more details of the considerations used to develop the simplified248

system of equations used. The essence of our procedure is to use physical intuition develop249

equations which include only the most important terms. Having done this we confirm by250

calculating dimensionless numbers that the terms neglected will be small.251

1. Horizontal Motion252

Consider first the flow in the horizontal direction. Here we assumed that the momentum253

equation is dominated by a balance between the Stokes drag force and the hydrostatic254

pressure. This leads to the assumption that the velocity of the bubbles will be the Stokes255

velocity256

uStokes =
2

9

r2 (ρbeer − ρbubbles) g sin θ

µ
. (A1)

In making this assumption we are neglecting virtual mass forces. The magnitude of virtual257

mass forces acting on a single bubble will be258

fVM ∼
CVMρbeeruscaler

3

tscale
, (A2)

where CVM is a dimensionless order-1 coefficient we take to be unity for simplicity here,259

uscale and tscale are characteristic velocity and time scales of the system. A sensible choice260

for the velocity scale would be the Stokes velocity uStokes, while a sensible choice for the time261

scale would be the the time it takes a bubble travelling at the Stokes velocity to traverse262

the system tscale = L/uStokes263

fVM =
ρbeeru

2
Stokesr

3

L
. (A3)

We can demonstrate that it is reasonable to neglect virtual mass forces in our equations264

by calculating a dimensionless number comparing the magnitude of virtual mass to the265

magnitude of drag forces (given by the Stokes drag law)266

fD = 6πµruStokes (A4)
267

fVM

fD
=
ρbeeruStokesr

2

6πµL
≈ 1.6× 10−6 � 1 (A5)

This demonstrates that virtual mass forces are negligible compared to drag forces, and can268

safely be neglected in the equations.269
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2. Vertical Motion270

The equations describing the vertical velocity field rely on two assumptions. These are271

that (1) bubble motion relative to beer motion can be neglected so that flow in the vertical272

direction can be modelled as that of a single fluid; (2) the velocity of the fluid is determined by273

a balance between weight/buoyancy forces and viscous forces, with inertial forces neglected.274

Weight and buoyancy forces can be estimated as fbuoyancy = ρbeerφ0g cos(θ), while viscous275

forces can be estimated as fviscous = µVscale/x
2
scale. Taking xscale to be L, the extent of the276

system allows us to estimate Vscale as277

Vscale =
ρbeerφ0g cos(θ)L2

µ
(A6)

by balancing viscous and buoyant forces.278

The validity of assumption (1) that bubbles and beer can be considered as moving together279

can be investigated by comparing the magnitude of Vscale with the velocity of the bubbles280

relative to the beer, approximated by the vertical Stokes velocity. (Note that horizontal and281

vertical Stokes velocities are different.)282

vStokes
Vscale

=
µvStokes

gφ0ρbeerL2 cos θ
≈ 1.0× 10−4 � 1. (A7)

Since the relative velocity is much smaller that the overall velocity it makes sense to consider283

the bubbles and beer as moving together and describe their motion by a single combined284

equation.285

The final assumption is the neglect of inertial forces. The magnitude of these can be286

approximated by finertial = ρbeerVscale/tscale, where the relevant timescale tscale is that of the287

motion of bubbles in the horizontal direction since it is the horizontal motion of bubbles288

driving the whole process. For our analysis to be correct the ratio of inertial to viscous289

forces should be small. In fact we have290

finertial
fviscous

≈ 3, (A8)

This shows our analysis is not strictly correct. However since the ratio is proportional to291

r2 (via the Stokes velocity), so if the bubble radius is small enough the analysis will be292

valid. A numerical calculation of the velocity field with inertial terms included is discussed293

in Appendix B.294
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Appendix B: Numerical treatment of Inertia Terms.295

As discussed above the assumption that flow in the y direction could be treated as qua-296

sistatic made in the main body of the paper is valid in the limit of small bubble sizes but297

only for bubble sizes significantly smaller than are observed in practice. If we relax this298

assumption the equations that must be solved are299

ρbeer
∂V̄

∂t
= −py − ρbeerg (1− φ) + µ

∂2V̄

∂x2
(B1)

as before we are make a Boussinesq assumption5 in taking the density of fluid to be the300

density of bubble free beer. The bubble volume fraction is given by301

φ =

0 x < uStokest

φ0 x ≥ uStokest
(B2)

and py is chosen to impose302

0 =

∫ L

0

V̄ dx. (B3)

This can be discretised with implicit Euler timestepping as303

ρbeer
vα+1
i − vαi
δt

= −py − ρbeerg (1− φαi ) + µ
vα+1
i+1 − 2vα+1

i − vα+1
i−1

δx2
(B4)

where vαi is the velocity at coordinate iδx and time αδt. In matrix form this can be written304

as305

Mvα+1 = −py1 + b (B5)

where M is a tridiagonal matrix, 1 is a vector of 1’s and b is a vector. py is chosen so that306

v · 1 = 0 (the discrete equivalent of Eq. (14))307

py =
1TM−1b

1TM−11
. (B6)

The results of a numerical calculation of the velocity is shown in Fig. 4 and shows that308

sinking bubbles are still expected.309

∗ Currently at: School of Computing and Engineering, University of Huddersfield, Queensgate,310

Huddersfield, UK.; w.lee@hud.ac.uk; www.industrial-maths.com311
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FIG. 4. Numerical calculation of velocity in the y direction as a function of position in the x

direction. The bubble free region is shaded in grey.
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