
University of Huddersfield Repository

McCluskey, T.L., Cresswell, S.N., Richardson, N.E., Simpson, R.M. and West, Margaret M.

An evaluation of Opmaker2

Original Citation

McCluskey, T.L., Cresswell, S.N., Richardson, N.E., Simpson, R.M. and West, Margaret M. (2008) 
An evaluation of Opmaker2. In: The 27th Workshop of the UK Planning and Scheduling Special 
Interest Group, December 11-12th, 2008, Edinburgh. 

This version is available at http://eprints.hud.ac.uk/id/eprint/3391/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/



An Evaluation of Opmaker2

T.L.McCluskey, S.N.Cresswell, N.E.Richardson, R.M.Simpson and M.M.West
School of Computing and Engineering

The University of Huddersfield, Huddersfield HD1 3DH, UK

Abstract

Opmaker2 is a knowledge acquisition and for-
mulation tool, which inputs a domain ontology
and a training sequence, and outputs a set of
PDDL operator schema. This paper evaluates
Opmaker2 (a) by comparing it against GIPO’s
object life history editor tool (b) by analysis
of its method and its robustness to choice of
training sequence.

Introduction

The increasing number of applications embody-
ing a planning function, and community events
such as the international competitions in knowl-
edge engineering for planning and scheduling
ICKEPS (Bartak and McCluskey 2006), have
led to a growing interest in the field of knowledge
engineering for automated planning. Evaluation
of knowledge engineering tools is problematic for
many reasons, not least because the success of a
tool often depends on the expertise of the user.
The problems encountered in staging ICKEPS
mirrors the problems of evaluating research con-
tributions within the KE area. In this paper
we attempt to analyse and evaluate a recently
constructed tool for use in knowledge formula-
tion (Opmaker2), by experiment and compari-
son with a rival tool.

Opmaker2 inputs a domain ontology and a
solution to a problem, and automatically con-
structs operator schema for each distinct step
in the solution. This is used instead of hand-
crafting operator definitions, relieving the do-
main encoder the task of constructing, debug-
ging and maintaining them. In this paper we
give an overview of Opmaker2, and we evalu-
ate the use of the system by its application to
the acquisition and maintenance of a new do-
main: the operator schema needed for automa-
tion of a role playing game (an RPG). We com-
pare Opmaker2 with GIPO’s OLHE (Simpson,
Kitchin, and McCluskey 2007), by applying it

to the same domain. The OLHE is a tool which
in large part led to GIPO’s success in ICKEPS-
2005. We analyse Opmaker2’s method, and ex-
plore the conditions under which the method
will produce a unique set of operator schema.

An RPG Domain

The motivation behind the construction of a
“role playing game” domain model was to show
the potential of AI Planning to computer games
students, and to illustrate a possible role for AI
Planning in making games more believable. We
want to be able to show how non-player charac-
ters (NPCs) can behave intelligently in a game
scenario, by constructing and following rational
plans. The game was designed as follows: there
is one overall ’database’ which can completely
describe any state of the game. There are two
opposing forces - one which controls a set of
knights (NPCs) that attempt to bring about a
set of goals (eg acquire treasure, kill monsters).
There is another force which controls the mon-
sters, with goals such as blocking doors, dis-
abling knights etc. Both forces can use deliber-
ative planning to try to achieve goals. The idea
is that both forces execute their plans and re-
plan when their plans are no longer executable.
The player character could, for example, play
the role of a ’wizard’ that observed one force’s
plans and attempted to help achieve them.

A step towards this goal was to construct a
planning domain model with operator schema
representing the capabilities of the characters,
and the effects of their actions. Two sets of op-
erator schema, representing the two views of the
overall domain model, have to be generated for
this, one for each view of the opposing sides.
These views would constitute two distinct oper-
ator sets, whereas the object structures (classes,
legal states) would be common to both and con-
stitute the database.

A snapshot (or state) of the world is illus-



trated in Figure 1. From the point of view of
the force controlling the knights:
• knights can move between rooms and pas-

sages. Movement will take place via propo-
sitional steps such as “move-into-room” and
“move-to-passage”;

• passages can be blocked by monsters or locked
doors;

• locked doors need to be opened by the correct
key;

• knights can acquire keys if they are near them
and exchange some treasure for them;

• monsters that are sleeping can be killed by a
knight if it is near them and has a weapon
(however the weapon is then spent);

• monsters that are awake are similar to sleep-
ing monsters except the knight needs to pick
up protection first (a shield or a spell) before
fighting them;

• treasure can be picked up by a knight if it is
in the same room as the treasure.
For example, consider the state in Figure 1.

Assume that a goal to be achieved is for Aragorn
to acquire the ring. Then the planner would
have to generate a plan for him to move through
rooms and passages to acquire a key to unlock
one of the pasages leading to r2 (the only route
to the ring in r1); and to acquire some treasure
so that he can trade it for protection, so that he
will be able to overcome the orc guarding room
r1, when he eventually arrived there.

Opmaker2 Overview
The Opmaker2 algorithm was detailed in a pa-
per in Plansig 2007 (McCluskey et al. 2007), and
in a recent PhD thesis (Richardson 2008). It fol-
lowed on from the original Opmaker idea (Mc-
Cluskey, Richardson, and Simpson 2002). Its
aims are similar to systems such as ARMS
(Wu, Yang, and Jiang 2005) in that it supports
the automated acquisition of a set of operator
schema that can be used as input to an auto-
mated planning engine. It differs from ARMS
in its method: while ARMS inputs many train-
ing examples and constraints, and is based on a
propositional-style (PDDL) representation, Op-
maker2 requires only one example of each op-
erator schema that it learns, but also requires
an ontology of objects and classes (called a par-
tial domain model) as input. Opmaker’s on-
tology is based on OCL (Liu and McCluskey
2000), where a state is defined as a set of object
identifiers mapped to one of a set of well de-
fined object-state values. After induction, Op-
maker2’s output operator schema can be trans-

lated to PDDL, as the description of states as-
sociated with object identifiers can be regarded
as propositions.

Opmaker2 learns by example, and the form of
a training sequence(s) input to it is a sequence of
step names followed by a list of parameters. Ex-
ample 1 and 4 below are examples of such train-
ing sequences. Each member of the parameter
list is a reference to some object in the domain.
They are the components necessary and suffi-
cient to describe what happens at each step (no
other object reference plays a role in the named
step). We assume the world is structured in that
objects have their own states, and the set of pos-
sible states can be enumerated. Additionally,
within a training sequence:
• the same object is referred to by the same

object identifier throughout the training se-
quence;

• objects that are named but do not change
state are flagged (in the examples a “@” is
used)

• objects are typical of their class
As introduced above, Opmaker2 has access to

a “partial domain model” (PDM), and the ini-
tial and final state of each object referred in the
sequence. The PDM contains the classes of the
objects in the example, and the set of abstract
states (abstract states are defined according to
Simpson et al’s state machine view (Simpson,
Kitchin, and McCluskey 2007)), that each ob-
ject may be in during plan execution. A two step
procedure is used to induce operator schema as
reported in detail in (McCluskey et al. 2007):

1. From the initial state of the training exam-
ple, attempt to find enough details of each in-
termediate state description after the execution
of each step, sufficient to derive a deterministic
specification of what happens at each step.

2. Based on the “typical” nature of objects in
a class, generalise the specifications to form an
operator schema.
The training sequence used needs to contain
at least one example of each required operator
schema. Whereas our previous work also em-
phasised the benefit of using training sequences
to encapsulate heuristics, here we concentrate on
evaluating the domain construction and mainte-
nance aspects of the method.

An Empirical Evaluation of
Opmaker2 using the RPG domain

Up to now, published evaluations of both Op-
maker (McCluskey, Richardson, and Simpson
2002) and OpMaker2 (McCluskey et al. 2007)
were based on using domains that had been



Figure 1: A state of the RPG

previously crafted. In this section we detail
the initial construction of the RPG domain us-
ing Opmaker2. We then compare this with its
construction using GIPO’s OLHE, arguably the
more powerful feature of GIPO version 3 (Simp-
son, Kitchin, and McCluskey 2007).

Comparative Criteria
We used Opmaker2 and GIPO’s OLHE (Simp-
son, Kitchin, and McCluskey 2007) tools to ac-
quire the RPG domain model from the point of
view of the force controlling the knights. We will
compare them by investigating:

- the amount and nature of effort required to
formulate the domain to the point that planning
could be enabled (and plans generated such as
the one in Example 2)

- the amount of effort required to maintain the
domain when a significant change is required.
With respect to the second point, we assume
that after the initial version of the domain is
created and operational, we would like to change
the domain in the following respects.

• as a knight moves into a room it uses a unit
of strength.

• rooms may contain food equivalent to a unit of
strength which can be picked up from rooms

• knights start with a number of units of
strength

Given the nature of the experiment, we can-
not expect to use much more than an ordinal
metric regarding the relative effort used in each,
as the amount of effort is clearly dependent on
the user.

Domain Acquisition using Opmaker2
The first step was to create a partial domain
model using basic GIPO editors. This consisted
of object names, their classes, the set of abstract
object states for each class, and constraints spec-
ifying room and passage connectivity. To assist
this process we used a sketch of a typical state
(see Figure 1). This helped the user to decide
on the kinds of states each object could occupy.

GIPO’s basic validation tools helped to de-
velop and refine the PDM, until we could use its
random task generator to create random tasks
(consisting of initial states and goal states). We
then picked an initial state, and started a train-
ing sequence from this. As the training sequence
is grown to include a new operator instance, at
each step we create a new goal state for the af-
fected objects, and run Opmaker2 to create a
set of new operator schema. This was carried
iteratively until reaching the 14 steps shown in
Example 1 below. As mentioned above, objects
annotated with “@” are deemed not to be af-
fected by the step.
move-to-passage @p47 knight @r4



move-into-room @p47 knight @r7
pick-up-treasure @knight @r7 locket
move-to-passage @p67 knight @r7
exchange locket key1 @knight @r7 @p67
move-into-room @p67 knight @r6
kill-sleeping-monster @knight sword troll

p56 @r6
move-to-passage @p56 knight @r6
move-into-room @p56 knight @r5
get-protection shield @knight @r5
fight-and-kill-monster @knight shield

knife orc p35 @r5
move-to-passage @p35 knight @r5
move-into-room @p35 knight @r3
unlock-passage p23 @r3 @knight @key1

Example 1: A training sequence for the RPG

Initial Domain Formulation: As Op-
maker2 was run iteratively it generated new
(deterministic) operators. A set of 8 operator
schema was output by Opmaker2 after the full
sequence in Example 1 was input (corresponding
to the 8 distinct names in the sequence).

The generated operator set was tested with
sample tasks and it was found that 4 operator
schema were overgeneralised, as the connectivity
constraint “contains(room,passage)” was omit-
ted in each case, allowing operators to be exe-
cuted without sufficient constraints (eg knights
could kill monsters without being near them).
After four constraint predicates were added, the
domain functioned as expected under sustained
testing. Example 2 below gives an example of a
goal and solution (the initial state in illustrated
in Figure 1), found using Hoffman’s FF (Hoff-
mann 2000) in less than one second.
Goal: BOROMIR kills the TROLL and
ARAGORN acquires the RING
Solution found by FF:
0: MOVE-TO-PASSAGE P67 BOROMIR R7
1: MOVE-TO-PASSAGE P45 ARAGORN R4
2: MOVE-INTO-ROOM P45 ARAGORN R4 R5
3: GET-PROTECTION ARAGORN R5 SHIELD
4: MOVE-INTO-ROOM P67 BOROMIR R7 R6
5: KILL-SLEEPING-MONSTER BOROMIR

R6 P56 KNIFE TROLL
6: PICK-UP-TREASURE BOROMIR R6 LOCKET
7: MOVE-TO-PASSAGE P67 BOROMIR R6
8: MOVE-INTO-ROOM P67 BOROMIR R6 R7
9: MOVE-TO-PASSAGE P67 BOROMIR R7
10: EXCHANGE BOROMIR R7 P67 LOCKET KEY1
11: MOVE-INTO-ROOM P67 BOROMIR R7 R6
12: MOVE-TO-PASSAGE P56 BOROMIR R6
13: MOVE-INTO-ROOM P56 BOROMIR R6 R5
14: UNLOCK-PASSAGE BOROMIR R5 P25 KEY1
15: MOVE-TO-PASSAGE P25 ARAGORN R5
16: MOVE-INTO-ROOM P25 ARAGORN R5 R2
17: FIGHT-AND-KILL-MONSTER ARAGORN

R2 P12 SHIELD SWORD ORC
18: MOVE-TO-PASSAGE P12 ARAGORN R2
19: MOVE-INTO-ROOM P12 ARAGORN R2 R1

20: PICK-UP-TREASURE ARAGORN R1 RING

Example 2: An example goal and plan
generated by FF for the RPG

The effort to create the domain model from
conception to a functioning domain model out-
putting solutions as in Example 2, was equal to
less than one day’s effort. Half of this time was
devoted to developing the PDM, while the other
half was used in developing the training example
and running Opmaker2.

Domain Maintenance: Following the new
requirement above, a new class was created to
represent “units of strength” in the PDM. Three
abstract state classes were designed as follows:
in use by a knight, stored in a room in the form
of food, or spent. The initial state and goal
states for the training sequence were updated to
include the new objects. The sequence itself was
changed as follows (where s1,s2,s3,s4 are units of
strength):
move-to-passage @p47 knight @r4
move-into-room @p47 knight @r7 s1
...
move-into-room @p67 knight @r6 s2
acquire-food @knight @r6 s4
...
move-into-room @p56 knight @r5 s3
...
move-into-room @p35 knight @r3 s4
...
Example 3: Changes in the training sequence

A new set of 9 operator schema was created,
with the new operator “acquire-food” and an
updated “move-into-room”. As previously, the
extra four constraints had to be added to the
four over-generalised operators, before the full
set could be used operationally. The change
took under one hour.

Domain Acquisition using GIPO’s
OLHE
GIPO’s Object Life History Editor is a tool
to create domain models graphically (Simpson,
Kitchin, and McCluskey 2007). The user uses
a kind of state-machine metaphor to represent
classes of objects, and records interactions be-
tween each class. The tool is extensible in that
one can create and store machine primitives (eg
bi-state, tri-state, portable, stack etc), and re-
use these to build future models. On request
GIPO can translate the diagram constructed
from the OHLE into a formal (textual) domain
description, pass it through various validation
checks, use it with an internal planner or export
the domain as PDDL to a third party planner.

Initial Domain Formulation: After the
first RPG version was created using Opmaker2,



Figure 2: The Game captured within the OLHE

the OLHE was used to create a new version.
This encoding took slightly more effort than
with Opmakers, but still of the order of a day’s
effort, resulting eventually in the diagram shown
in Figure 2 (the diagram is best viewed in colour
as this is used to differentiate the various roles
of arcs and nodes). The idea of the object states
already developed in the PDM for Opmaler2
helped speed the choice from the library of ma-
chines from which to compose the domain model
(4 tri-states and 3 bi-states). However, the pro-
cess of domain construction is quite different
from Opmaker2, as no partial domain model is
explicitly constructed or no training examples
are needed. Apart from editing and annotating
the nodes and arcs shown in the figure, the user
need only name objects for each class, and define
any additional constraints required.

The exercise illuminated some interesting ob-
servations of the OLHE, in that several required
features of the domain had to be encoded af-
ter the domain model was generated from the
diagram:

• associations between two objects of distinct
classes have to be produced by annotating
a connection by a “+”. However, this asso-
ciation might only occur at the initial state
and hence the only way to specify it is man-
ually. For example, the set of weapons held
by knights are resourced from the initial state
only;

• associations of > 2 arity or adding mul-
tiple constraints regarding the same
transition, have to be carried out af-
ter domain model generation (eg adding
contains(roomX,passageZ) and con-
tains(roomY,passageZ) to show that the
same passage is contained in different rooms,
is not possible unless the constraints are
added as static constraints, rather that as
properties of rooms or passages);

• letting some states have certain properties
and some not is problematic. For example,
we may want a protection to have a position
property when it is doing nothing, but then
this property does not exist after a knight has



picked it up. It is only possible to achieve this
by artificially introducing null property val-
ues. For example to indicate that the position
of a “ring” was no longer applicable it may be
given the property position(ring,none).

The domain model resulting from the diagram
shown therefore needed some textual changes
along these lines, before becoming operational.

Domain Maintenance: Following the new
requirement above, the original OLHE diagram
was used and a new tri-state class was created
to represent the unit of strength class. The arc
connecting up this class with “move-into-room”
was created, forming a transition for a unit of
strength to be spent. The transition for acquir-
ing food was connected with the precondition
node that a knight had to be present.

This group of changes was relatively straight-
forward to construct. However, the main prob-
lem is that any change that has had to be
made subsequently to the auto-generated do-
main model needs to be redone. Clearly, as the
number of changes required after the OHLE-
generation of the model grows, continued use
of the OHLE graphics is less appealing. This is
consistent with the observed behaviour of stu-
dent use of GIPO. They enthusiastically use the
OLHE as far as possible, but after a certain level
of complexity they return to the use of GIPO’s
more “hands-on” tools. Once they have changed
the model significantly, the OLHE diagram can-
not be re-used.

Summary: To conclude, both methods
supported the automated creation of operator
schema for this domain successfully, so that the
inevitable bugs introduced by hand-crafting op-
erators did not appear. However, in both cases
the generated models were incomplete. The
OLHE appeared to be less useful after mainte-
nance, as a number of hand-crafted changes to
the domain tends to make the graphical model
obsolete.

Analysis of Opmaker2
In this section we attempt to analyse why, and
under what conditions, Opmaker2 works. One
way of viewing the training problem is that the
given PDM implicitly specifies a very large set of
operator schema. What is not specified is which
objects go through transitions together, which
transitions are possible, and what are the con-
straints on each set of transitions. The training
example is used to fill in these details.

The core of the induction problem identified
in Opmaker2 is in deriving the details of inter-
mediate states of objects involved in a training
example. Once this is determined, the operator

schema can be induced relatively easily. Nor-
mally training sequences involve several objects
changing state. The object transitions are con-
strained by the known initial and goal states and
whether or not there must be a state change. For
example, an object that has 3 abstract states,
starts at a different state than it ends, and is af-
fected by 2 operators in sequence, has a unique
path.

In general, the number of possible combina-
tions of object transitions will grow combinato-
rially. Assume the number of abstract states of
an object O i is O i

c , and assume the number of
objects’ states affected (changed) by an operator
is N. Then an estimate of the number of possible
operators at any step of the solution will be:

(O1
c − 1) ∗ (O2

c − 1) ∗ ... ∗ (On
c − 1)

This assumes that objects are independent of
each other, and none of the transitions are close
to their initial or final state The number of po-
tential paths (in the worst case) through the
space of vectors of object values is thus the cross
product of the formula above at each step in the
training sequence, where each step represents a
new operator. In general, however, where oper-
ators affect different groups of objects, the final
state of an object might occur part way though
a training sequence, if no operator after that
changes that object. For example, “locket” in
Example 1 reaches its final state after the fifth
step.

As a concrete example, assume a proposi-
tional encoding of a tyre world, with a wheel be-
ing described as one of 4 states: wheel-in, have-
wheel, wheel-on, wheel-fastened. The training
sequence is “fetch-wheel, attach-wheel, fasten-
wheel” The initial state contained fetch-in, and
the goal state was wheel-fastened. In this case
there are 7 possible paths through the object
state space as follows:

wheel-in => have-wheel =>
wheel-in => wheel-fastened

wheel-in => have-wheel =>
wheel-on => wheel-fastened

wheel-in => wheel-on =>
wheel-in => wheel-fastened

wheel-in => wheel-on =>
have-wheel => wheel-fastened

wheel-in => wheel-fastened =>
wheel-in => wheel-fastened

wheel-in => wheel-fastened =>
wheel-on => wheel-fastened

wheel-in => wheel-fastened =>
have-wheel => wheel-fastened

In this case it would not be possible to in-
duce a deterministic operator schema set from
the training sequence. However, in general, ob-
jects are not independent of one another but re-



lated. For example, consider the following set of
abstract states for a relational version of tyre-
world (where wheel, boot and hub are object
classes):

wheel in-a boot
wheel fastened-to-a hub
wheel hanging-on-a hub
wheel picked-up

Returning to the example in this new relational
representation, assume the initial state contains
“wheel1 in-a boot1”, and the goal condition is
“wheel1 fastened-to-a hub1”. The training se-
quence would be
fetch-wheel wheel1 @boot1
attach-wheel wheel1 hub1
fasten-wheel wheel1 hub1

Given that the first step in this sequence does
not refer to a hub, or two different boots, only
the first of the four possible forms of transition
below would be applicable:
wheel in-a boot => wheel picked-up
wheel in-a boot => wheel-fastened-to-a hub
wheel in-a boot => wheel hanging-on-a hub
wheel in-a boot => wheel in-a boot

(-where the boots are different)

The next transition choice for attach-wheel:
wheel picked-up => wheel hanging-on-a hub
wheel picked-up => wheel in-a boot
wheel picked-up => wheel-fastened-to-a hub
wheel picked-up => wheel picked-up

(-where the wheels are different)

again is determined as being the first of the pos-
sible transition forms. The second step in the
training sequence contains a hub object and not
a boot object, hence the second possibility is
eliminated. The third option is eliminated by
the constraint of the goal state, and the fourth
is eliminated as the training step does not re-
fer to two different wheels. Hence the presence
of objects in the training sequence reduces the
space of paths to one in this example. In gen-
eral, where the set of abstract states for each
class are distinguished by references to different
object classes, Opmaker2 will obtain determin-
istic operator schema.

A further method to ensure Opmaker2 returns
a unique set of operator schema is to add, within
the PDM, a set of domain invariants which re-
strict the set of states. These invariants are used
by Opmaker2 to provide constraints on the legal
patterns of objects from different classes, when
a set of operator schema are created from one in-
stance in a training sequence, and the operators
involved in the transition contain objects from
more than one class. In this case the invari-
ants are used to check that accumulated right

hand sides of transitions in the candidate op-
erators may form a consistent state. Whereas
in the RPG model above no such invariants
were needed, in tests reported with the tyre do-
main (McCluskey et al. 2007) eight invariants
were required.

A systematic test for robustness

To investigate the robustness of Opmaker2’s
method with respect to training sequence choice
and length, we decided to extend the testing re-
ported in (McCluskey et al. 2007), and generate
random training sequences within the tyre do-
main. This allowed us to explore the sensitivity
of the method to choice and length of training
sequence.

The tyre world PDM was input to GIPO, and
a set of 25 random tasks were generated using
GIPO’s random task generator. The random
task generator works by picking a state at ran-
dom (using the abstract state descriptions in
the PDM) for each of the N dynamic objects
in the domain (dynamic objects are those that
can have a changable state). These are all amal-
gamated into an initial state. Then it picks a
random number M between 1 and N and gener-
ates M random goal conditions for the M distinct
objects, again utilising each object’s class’s ab-
stract state description. These are amalgamated
into the goal of the task. For each of the tasks,
we used GIPO’s inbuilt planners and the hand-
crafted domain model to find solutions. Tasks
that could not be solved or had solutions that
were less than 3 operators in length were ig-
nored.

Results: The solutions to the remaining ran-
dom tasks (10) were input to OpMaker2 as a
set of training sequences. In 6 out of 10 cases,
Opmaker2 produced a unique set of operators
schema for each operator instance in the train-
ing set. In each case, the induced set of oper-
ator schema matched the hand-crafted set for
one feature: there was an extra precondition
“jack-in-use” placed on four of the operators.
Although this precondition was implicit in the
original domain model, it can be seen to tighten
it (and arguably improve it).

Four of the 10 training sequences resulted in
OpMaker2 outputting no operators. GIPO’s
planner using the original operators had found a
solution, but opmaker2’s invariants for this do-
main (see (McCluskey et al. 2007) for a list of
the invariants) did not. We found that the set
of invariants input to Opmaker2 were logically
stronger than the hand crafted operators. For
example, the invariants excluded the possibility
of fastening up a hub without first attaching a



wheel, whereas the original set of operators al-
lows this to happen.

This suggests that the task length or optimal-
ity of a training sequence does not have a bear-
ing on whether a unique set of operator schema
are induced. The example below is the solution
to the full “change-wheel” flat tyre problem in
Opmaker2 input ready form. It was formed from
a (non-optimal) solution output from a standard
planner using a hand crafted domain model. In-
putting this into Opmaker2, 16 operator schema
were output, identical to those produced by the
random training sequences described above.

open_container boot
fetch_wheel @boot wheel1
fetch_jack @boot jack0
fetch_wrench @boot wrench0
close_container boot
loosen @wrench0 @hub0 nuts_1
jack_up hub0 jack0
undo @wrench0 hub0 @jack0 nuts_1
remove_wheel wheel2 hub0 @jack0
put_on_wheel wheel1 hub0 @jack0
do_up @wrench0 hub0 @jack0 nuts_1
jack_down hub0 jack0
tighten @wrench0 @hub0 nuts_1
open_container boot
putaway_wheel @boot wheel2
putaway_wrench @boot wrench0
putaway_jack @boot jack0
close_container boot

Example 4: A training sequence equivalent to
the solution of the ‘‘change-wheel" problem

These experiments add weight to the ar-
gument that OpMaker2’s domain construction
technique is not sensitive to the order or the
make − up of training examples. On the other
hand, the utility of the heuristics acquired by
OpMaker2 in the form of methods, are very
much dependent on an expert choosing to sup-
ply “typical” problems and solutions, as argued
previously (McCluskey et al. 2007).

Conclusions

Despite some fielded applications of planning,
and two runs of the ICKEPS competition, there
are few evaluations or critical analyses of tools
for knowledge acquisition, formulation or engi-
neering of planning domain models. Exceptions
include the work of Grant (Grant 1996) and
Wu (Wu, Yang, and Jiang 2005).

In this paper we evaluated the knowledge ac-
quisition tool Opmaker2 against GIPO’s OLHE
using the formulation and maintenance of a new
domain, the RPG. The generated domain mod-
els output from both tools had to undergo some
“hand-crafting” before they were operational.

This was less so with Opmaker2, as most prob-
lems arise from the underlying ontology: GIPO
generates this, whereas Opmaker2 expects the
user to create it.

We also analysed Opmaker2’s method, and
used random tasks to explore the robustness
of the method to choice of training sequence.
While the method formed the same operator
schema regardless of training sequence, it also
showed that the induction process could discover
potential insecurities in the hand-crafted set.

For the future, we see the extension of KA
tools to domains requiring more complex repre-
sentations (eg hierarchical state decrptions, nu-
merical attributes) as being desirable. Also, the
extension of Opmaker2 to encompass incremen-
tal learning is desirable, as this may obviate the
need to craft a strong set of invariants to include
in the partial domian model.

References
Bartak, R., and McCluskey, T. L. 2006. The first
competition on knowledge engineering for planning
and scheduling. AI Magazine.

Grant, T. J. 1996. Inductive Learning of
Knowledge-Based Planning Operators. Ph.D. Dis-
sertation, de Rijksuniversiteit Limburg te Maas-
tricht.

Hoffmann, J. 2000. A Heuristic for Domain In-
dependent Planning and its Use in an Enforced
Hill-climbing Algorithm. In Proceedings of the 14th
Workshop on Planning and Configuration - New
Results in Planning, Scheduling and Design.

Liu, D., and McCluskey, T. L. 2000. The OCL
Language Manual, Version 1.2. Technical report,
Department of Computing and Mathematical Sci-
ences, University of Huddersfield .

McCluskey, T.; Cresswell, S.; Richardson, N.; and
West, M. 2007. Opmaker2: Efficient action schema
acquisition. In Proceedings of the 26th Workshop
of the UK Planning and Scheduling Special Interest
Group, Prague, Czech Republic, December 2007.

McCluskey, T. L.; Richardson, N. E.; and Simpson,
R. M. 2002. An Interactive Method for Inducing
Operator Descriptions. In The Sixth International
Conference on Artificial Intelligence Planning Sys-
tems.

Richardson, N. E. 2008. An Operator Induction
Tool Supporting Knowledge Engineering in Plan-
ning. Ph.D. Dissertation, School of Computing and
Engineering, University of Huddersfield, UK.

Simpson, R. M.; Kitchin, D. E.; and McCluskey,
T. L. 2007. Planning Domain Definition Using
GIPO. The Knowledge Engineering Review 22(1).

Wu, K.; Yang, Q.; and Jiang, Y. 2005. Arms:
Action-relation modelling system for learning ac-
quisition models. In Proceedings of the First In-
ternational Competition on Knowledge Engineer-
ing for AI Planning.


