
University of Huddersfield Repository

Su, Yang and Xu, Zhijie

Parallel Implementation of Wavelet-based Image Denoising on Programmable PC-grade Graphics
Hardware

Original Citation

Su, Yang and Xu, Zhijie (2010) Parallel Implementation of Wavelet-based Image Denoising on
Programmable PC-grade Graphics Hardware. Signal Processing, 90 (8). pp. 2396-2411. ISSN 0165-
1684

This version is available at http://eprints.hud.ac.uk/id/eprint/3374/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

 Elsevier Editorial System(tm) for Signal Processing

 Manuscript Draft

Manuscript Number: SIGPRO-D-08-00879R1

Title: Parallel Implementation of Wavelet-based Image Denoising on Programmable PC-grade

Graphics Hardware

Article Type: Special Issue: High-Dimensional Masses

Keywords: Discrete Wavelet Transform, Image denoising, Graphics accelerator, General-purpose

Computing on Graphics Processing Unit

Corresponding Author: Dr Zhijie Xu, PhD

Corresponding Author's Institution: University of Huddersfield

First Author: Yang Su, Master of Computing and Communication

Order of Authors: Yang Su, Master of Computing and Communication; Zhijie Xu, PhD

Abstract: The intensive computation of Discrete Wavelet Transform (DWT) due to its inherent

multilevel data decomposition and reconstruction operations brings a bottleneck that drastically

reduces its performance and implementations for real-time applications when facing large size

digital images and/or high-definition videos. Although various software-based acceleration

solutions, such as the lifting scheme, have been devised and achieved a higher performance in

general, the pure software accelerated DWT still struggle to cope with the demands from real-time

and interactive applications. With the growing capacity and popularity of graphics hardware,

personal computers (PCs) nowadays are often equipped with programmable Graphics Processing

Units (GPUs) for graphics acceleration. The GPU offers a cost-effective parallel data processing

mechanism for operations on large amount of data, even for applications beyond graphics. This

practice is commonly referred as General-purpose Computing on GPU (GPGPU). This paper

presented a GPGPU framework with the corresponding parallel computing solution for wavelet-

based image denoising by using off-the-shelf consumer-grade programmable GPUs. This

framework can be readily incorporated with different forms of DWT by customising the parameter of

the wavelet kernel. Experiment results show that the framework gains applicability in data

parallelism and satisfaction performance in accelerating computations for wavelet-based denoising.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1

Parallel Implementation of Wavelet-based Image Denoising on

Programmable PC-grade Graphics Hardware

Yang Sua,b, Zhijie Xua,*

aSchool of Computing & Engineering, University of Huddersfield

Queensgate, Huddersfield HD1 3DH, UK
bSchool of Communication & Information Engineering, Xi’an University of Science & Technology, Xi An

710054, China

Abstract — The Discrete Wavelet Transform (DWT) has been extensively used for

image compression and denoising in the areas of image processing and computer vision.

However, the intensive computation of DWT due to its inherent multilevel data

decomposition and reconstruction operations brings a bottleneck that drastically reduces

its performance and implementations for real-time applications when facing large size

digital images and/or high-definition videos. Although various software-based

acceleration solutions, such as the lifting scheme, have been devised and achieved a

higher performance in general, the pure software accelerated DWT still struggle to cope

with the demands from real-time and interactive applications. With the growing capacity

and popularity of graphics hardware, personal computers (PCs) nowadays are often

equipped with programmable Graphics Processing Units (GPUs) for graphics

acceleration. The GPU offers a cost-effective parallel data processing mechanism for

operations on large amount of data, even for applications beyond graphics. This practice

is commonly referred as General-purpose Computing on GPU (GPGPU). This paper

presented a GPGPU framework with the corresponding parallel computing solution for

wavelet-based image denoising by using off-the-shelf consumer-grade programmable

GPUs. This framework can be readily incorporated with different forms of DWT by

customising the parameter of the wavelet kernel. Experiment results show that the

framework gains applicability in data parallelism and satisfaction performance in

accelerating computations for wavelet-based denoising.

Keywords: Discrete Wavelet Transform; Image denoising; Graphics accelerator;

General-purpose Computing on Graphics Processing Unit

* Corresponding author. Email: z.xu@hud.ac.uk, Tel: +44(0) 1484 472156.

2. Manuscript
Click here to view linked References

http://ees.elsevier.com/sigpro/viewRCResults.aspx?pdf=1&docID=3757&rev=1&fileID=90099&msid={FD1F83CE-3F18-4F11-8990-2783C83E5B47}

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

2

1. Introduction

The wavelet transforms are usually classified into two categories, Continuous Wavelet

Transform (CWT) and Discrete Wavelet Transform (DWT). It has become an important

tool in image denoising due to its abilities in obtaining multi-resolution analysis results

with localized features both in the frequency and the time domain. When the DWT

applied in image denoising, implementation involves the following three processing

phases [1]:

1) Decomposition

Select a suitable base wavelet and a decomposition level to generate the

approximation and detail coefficients of a noisy image at the chosen level.

2) Thresholding

For each level, to generate a threshold and apply it through hard/soft thresholding to

the detail coefficients.

3) Reconstruction

Compute for reconstructions using the modified coefficients of various levels.

Various kind of base wavelet, such as Haar, Daubechies, CDF biorthogonal, Coiflet,

Daubechies’ Symlet, can be employed by the above procedures [2]. Since the

thresholding strategy directly determines the quality of wavelet-based denoising, some

methods have been proposed for improvement on performance by Birgé and Massart [3,

4], Donoho and Johnstone [5,6,7], and many others [8,9]. For example, the Birgé-Massart

strategy, in which the numbers of detail coefficients are kept for the process of

reconstruction, is dependent on the decomposition level and the length of the coarsest

approximation coefficients of the noisy signal [3]. In comparison, Donoho and Johnstone

devised an adaptive thresholding procedure, named as SureShrink, for adapting to

unknown smoothness via wavelet shrinkage [5]. In the SureShrink process, a threshold

level is assigned to each dyadic resolution level by the principle of minimizing the Stein

Unbiased Estimate of Risk (SURE) for the threshold estimates. In addition, Donoho and

Johnstone also developed a minimax model for nonlinear estimation of noisy data in

wavelet domain [6]. Donoho and Kerkyacharian further developed a universal threshold

strategy in which the threshold determination is related to the signal length and the noise

http://en.wikipedia.org/wiki/Daubechies_wavelet

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

3

standard deviation. For a two dimensional signal such as an image, this method can be

extended to incorporate to the image size [7].

Although a rich and advanced body of work on wavelet-based denoising theories evolved

in the last decade, in contrast, the practical implementation of their counterparts on

computers have limited success so far due to the computational intractability caused by

the large amount of computation brought by the transform. It is well acknowledged that

the intensive computation of DWT through multilevel decomposition and reconstruction

will often introduce serious computational bottlenecks, especially when the data size is

large. To solve this problem, Sweldens [10] proposed an accelerated implementation

method of DWT, known as the lifting scheme through reusing the intermediate values

from previous calculation steps. The lifting scheme achieves a higher performance than

conventional filter bank scheme (FBS). However, its pure software realization is still

facing the harsh challenges from dealing with large data sets and to achieve real-time or

interactive rate performance. Other solutions through employing hardware accelerators,

such as field programmable gate array (FPGA) and very large scale integration (VLSI)

were proposed by some researchers [11,12]. Unfortunately, these implementations

require extra computer hardware and accessories which are often costly and difficult to

set up.

In recent years, consumer-grade graphics processing unit (GPUs) – initially designed for

computer game enthusiasts -- have evolved into powerful parallel processors with various

degree of programmability and precisions [13]. Except for graphical intensive

computation through specially designed data formats and process flows, other more

general purpose computing using GPU (GPGPU) have also been attempted ranging from

numeric computing operations such as dense and sparse matrix transform [14], solving

partial differential equations, linear algebraic operations [15], to physical simulations

such as fluid mechanics solvers, as well as signal processing through fast Fourier

Transform (FFT) [16] and DWT [17,18,19].

In this paper, we propose a GPGPU framework for supporting wavelet-based denoising

and process acceleration. Through careful balancing, most of the DWT computations are

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

4

performed on GPU rather than CPU. Hence it improves the efficiency when facing large

data streams, such as from high resolution digital images or high definition videos.

Furthermore, this framework is so designed to support wavelet-based denoising that

employs different forms of DWT and thresholding strategies through using GPU textures

for updating the input parameters. The flexibility and effectiveness of the proposed

framework are tested and evaluated by comparing with the performance measured from

software based solutions.

2 GPGPU Review

General Purpose Computation on GPUs (GPGPU) as a reincarnated concept can be

traced back to the early 1990s when the Pixel Machine was of the state-of-the-art.

However, it was not till 2002 when consumer-grade graphics cards became truly

“programmable”, the concept was becoming widely accepted. Almost all of today’s

commodity GPUs and their computational flows follow a similar infrastructure called the

graphics pipeline which is depicted in Fig.1.

Fig.1 Overview of the 3D Graphics Pipeline.

The inputs of this pipeline are vertices from a 3D polygonal mesh defined by their spatial

and appearance information such as coordinates, colors, and texture mapping values, and

the output is a 2D array of colored pixels to be displayed on the screen. The process of

the pipeline mainly consists of three stages that are vertex processing, rasterization, and

fragment processing [20]. In chip design and component layout, each stage is

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

5

implemented as a separate piece of hardware on the GPU card in a so-called task-parallel

machine organization. This hardware structure was historically a fixed-function pipeline

(FFP), where limited numbers of operations available at each stage of the graphics

pipeline were hardwired for specific tasks. In the last decade, major graphics vendors

such as ATi and Nvidia have transformed the fixed-function pipeline into a more flexible

programmable one. This effort has been primarily concentrated on two stages of the

pipeline: the vertex processing and the fragment processing. The fixed-function

operations in these two stages are replaced by the user-defined vertex program and

fragment program respectively [21]. Furthermore, the support inherited from existing

offline rendering systems, especially the introduction of high level shading languages,

has made the general-purpose computing on GPU an accessible and cost-effective

platform for application developers, in which GPU acts as a parallel processor that adopts

single instruction multiple data (SIMD) architecture to provide data parallelism [22]. The

latest development trend driven by Microsoft’s Direct3D10 and unified shading language

such as CUDA is trying to insulate GPGPU developers from the distinctive vertex, pixel

or even the geometry shading stages.

The data parallelism offered by the modern GPUs stems back to the early super-

computers equipped by the SIMD technology. The SIMD architecture distinguishes

GPGPU’s programming paradigm from the traditional sequential programming model of

CPUs. In the common GPGPU framework, the fully programmable vertex and fragment

processors perform the roles of the computational kernels while the video memory (i.e.,

frame-buffers, textures) provides runtime data access services. An operation referred as

texture mapping on the GPU is analogous to the random read-only memory interface on

the CPUs, while the ability to render directly into texture (off-screen rendering) available

on most modern GPUs provides a memory-write mechanism. However, by default of its

specialized design, commodity GPU has a more restricted memory model when

compared to a CPU (i.e. random memory write is not allowed). In addition, texture

memory caches on GPUs are designed for access speed, and general prohibit concurrent

read and write into the same memory address. Thus distinctive read and write texture

phases must be applied so they can be swapped after each rendering pass in a so-called

ping-pong mode.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

6

In order to implement an algorithm on a GPU, different computational steps are often

manually mapped to various vertex and fragment programs as a common practice prior to

the emerging of unified GPU languages such as CUDA from Nvidia. For each

computational step, the appropriate vertex or fragment program are bound to the

corresponding processors and invoked by various rendering operations. The rasterization

engine on GPU generates a stream of fragments and can also provide a fast way of

interpolating numbers. Most GPGPU applications execute multiple vertex and/or

fragment programs in a series of successive off-screen rendering passes. Some

specialized render-to-texture schemes, such as the pixel-buffers (pBuffers) [23] and the

framebuffer objects (FBOs) [24] were introduced by GPU vendors to provide a simple

and efficient off-screen rendering mechanism. Further details about GPGPU

programming techniques and know-hows were discussed in Pharr’s text published in

2005 [25].

Many matured and widely applied algorithms for image processing map well into GPU’s

parallel stream processing model and hence opening a new front for real-time image or

even video processing. Image processing tasks which can be applied on multiple pixels

simultaneously (eg. convolution) can be performed efficiently by fragment programs

through exploiting the parallelism provided by multiple fragment streams. Since 2002,

there has been a growing interest in the image processing community to solve important

and computationally expensive imaging problems using this new found computer power,

for example, using wavelet transform for image compression. Hopf and Ertl at the

University of Stuttgart in Germany, first implemented a 2D-DWT on graphics hardware

[17]. Wong at the Chinese University of Hong Kong also developed a GPU

implementation for a 2D-DWT, which has been integrated into an open-source

JPEG2000 codec called “JasPer” [18]. These pilot projects experienced various degree of

success but were all restricted by the functions of the graphics hardware and shading

languages at the time. This drawback will be further discussed in Section 4 following the

review of wavelet-based denoising in the next section.

3 Wavelet-based signal denoising

3.1 Analysis of wavelet transform

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

7

Wavelet transform is used to construct a time-frequency representation of a signal, which

offers excellent time and frequency localization. For a continuous, square-integrable

function f(t), its continuous wavelet transform (CWT) is defined as the sum over all time

of the signal multiplied by scaled, shifted versions of the wavelet function ψ:

 dttntranslatioscaletfntranslatioscaleC),,()(),((1)

The results of the CWT are a series of wavelet coefficients, which are functions of scale

and translation. In mathematical terms, the accurate definition of CWT on f(t) at a scale

a>0 and a translation value b (where b is a real number) is expressed by the following

integral

 dt

a

bt
tf

a
baCW)()(

1
),((2)

, where ψ* represents complex conjugation of ψ.

To recover the original signal f(t) from reserved wavelet coefficients, the inverse CWT

can be exploited as

0 2
)(

1
),(

1
)(dbda

a

bt

a
baC

a
tf W (3)

, where φ (t) is the dual function of ψ(t).

CWTs operate on every possible scale and translation over a signal spectrum. However,

the calculation of coefficients at every scale and translation is a substantial work that

often generates a huge amount of data, In addition, any signal processing operations

performed on a computer using real-world data must be carried out on a discrete signal

that is, a signal measured at discrete times. The discrete wavelet transform (DWT) uses a

specific subset of scale and translation values where the chosen scale and translation are

based on the powers of two, which is the so-called dyadic scales and translations. In this

case, the wavelet analysis is much more efficient but just as accurate. When it is

implemented, the DWT of f(t) is calculated by passing f(k) that is the discrete expression

of f(t) through a series of low-pass (LP) and high-pass (HP) filters respectively. The

bandwidth of the filter outputs are half the bandwidth of the input signal, which allows

the downsampling of the output signals by the factor of two without losing any

information according to the Nyquist theorem. The downsampled signals from the LP

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

8

and HP filters are referred to as the approximation and the detail coefficients,

respectively. The prior is the high-scale and low-frequency component of the signal, and

the latter is the low-scale and high-frequency component. The decomposition process can

be iterated, with successive approximation coefficients being generated in turn so that a

signal can be broken down into many lower resolution components.

The inverse discrete wavelet transform (IDWT) is used for reconstructing the original

signal. It involves two distinctive operations of upsampling and filtering. Upsampling is

the process of lengthening a signal component by inserting zeros between samples. The

filtering part of the reconstruction process also consists of a series of LP and HP filters

which are associated with the decomposition filters in DWT. These form a system of

what is called the quadrature mirror filters to guarantee reproducing the original signal

accurately. Fig. 2 illustrates a multi-level DWT and IDWT of a signal with bandwidth F.

Fig.2 Multi-level DWT and IDWT

A noisy signal f(k) is commonly modeled as the following form:

)()()(kekskf (4)

where s(k) is the helpful one which is often a low frequency or stationary component in

the practical implementation. e(k) is the actual noise, which is usually of a high frequency

domain that contains high frequency details. As stated by [1], the general wavelet

denoising procedure consists of three steps, forward transformation of the signal to the

wavelet domain, modifying the wavelet coefficients, and inverse transformation to the

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

9

native domain. The following section discusses the thresholding strategy and other

related issues.

3.2 Thresholding strategy

As widely cited by many publications in various application domains, the most practical

thresholding methods were mainly initiated by the work of Birgé and Massart [3,4], and

Donoho and Johnstone [5,6,7].

Based on the work of Birgé and Massart, the thresholding methods used in practice can

be classified into the following two categories:

 Scarce High, Medium, and Low (SHML)

 Penalized High, Medium, and Low (PHML)

The SHML methods work as the following: for a noisy signal that is decomposed to a

level J, the approximation coefficients at level J are kept; for a random level i from 1 to J,

the ni largest coefficients are kept in the form stated as formula (5).

ai iJ

M
n

)2(
 (5)

In the above equation, the value of parameter a and M are determined by the practical

applications. The SHML methods can be further classified by the value of parameter a.

For the PHML, a threshold T applied to the detail coefficients for the wavelet case can be

generalized as:

*)(tcT (6)

with

],...,1));log((2}),({min[arg* 2 nt
t

n
avttkkcsumt (7)

In equation (6) and (7), c(.) is all the detail coefficients of DWT, the coefficients c(k) are

sorted in a decreasing order of their absolute values, where v is the noise variance. The

value of a that corresponds to the method of PHML are in the range of 2.5≤a<10,

1.5<a<2.5, and 1<a<2 respectively.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

10

Regarding the issue of denoising, Donoho and Johnstone have devised four different

thresholding options [5,6,7]:

1. Rigrsure

Rigrsure is an adaptive threshold selection approach using the Stein’s unbiased risk

estimate criterion. The Rigrsure method defines the threshold level T by

)log(log2 2 NNT e (8)

Where N is the number of signal samples; and σ is the standard deviation of the

noise.

2. Sqtwolog

The Sqtwolog method defines the universal threshold slightly different from the

Rigrsure method in a fixed form

)(log2 NT e (9)

3. Heursure

Heursure is a synthesis version of the aforementioned two rules resulting in an

optimal forecasting variable threshold.

4. Minimaxi

Minimaxi is a threshold selection scheme using the minimax principle, in which a

fixed threshold is selected to obtain the minimum of the maximum mean square

error that is obtained for the worst function in a given set, when compared against

an ideal procedure.

All the above thresholding criteria is based on a simplified model that suppose a noise is

a Gaussian white noise with standard deviation σ =1. For the general cases that noises are

unscaled or nonwhite ones, the threshold level should be rescaled according to the

aforementioned thresholding criteria. The actual level is commonly obtained by

multiplying a rescaling factor by the thresholding value determined by the Sqtwolog

method. Two rescaling options have been proposed. The first one is to rescale the noise

based on coefficients in the first level of the wavelet decomposition. In this option,

Daubechies (Db) 1 wavelet is used to obtain the detail coefficients of decomposition level

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

11

1, then the rescaling factor is made to equal to the median values of all absolute values of

the detail coefficients. If the median absolute value is equal to 0, the actual threshold

value Ts is expressed as:

Ts= 0.05×max(abs(c)) (10)

where abs(c) represents a set of absolute values of detail coefficients at decomposition

level 1 of the Db1 wavelet. The first rescaling option then treats the Ts as a global

rescaling factor for the whole reconstruction. The second rescaling option, which is best

used for nonwhite noise, determines different rescaling factors at various reconstruction

levels.

In fact, there are a variety of noises in practical engineering and computer science

applications. It is almost impossible to adopt a uniform thresholding strategy to achieve

the best performance of denoising for all applications when facing noises with various

characteristics. Actually, there are many other thresholding methods specially designed to

deal with various forms of noise in specific fields. The performance evaluation of

different denoising methods are often carried out by means of Mean Square Error(MSE),

Signal to Noise Ratio (SNR), and Peak Signal-to-Noise Ratio (PSNR) with many past

publications being focused on.

Except the aforementioned precision performance evaluation measures, another vital but

often omitted factor also determines the perspective of successful implementation –

computational cost. Extremely high computational cost (slow process and long delay to

users) will constrain the application of denoising methods that demand a large pool of

computer resources. This problem can become very serious when wavelet-based

denoising are used for large size noisy images or high-definition videos, for example,

satellite image processing and real-time surveillance video processing, or even

Augmented Reality applications, in which enormous number of pixels need to be

processed in a fraction of a second. In this research, a hardware accelerated solution for

wavelet-based denoising has been proposed for alleviating the problem of computational

cost and process speed.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

12

4. Wavelet-based denoising on GPU

The amount of computation of wavelet-based denoising are mainly originated from the

recursive operations of wavelet decomposition and reconstruction. With the constant

increasing horse-power of commodity GPUs, extensive researches on implementing

DWT on GPU have been carried out for image processing. The most relevant

contributions are works from Hopf and Ertl [17] at the University of Stuttgart in

Germany, and Wong at the Chinese University of Hong Kong [18]. Hopf and Ertl

developed an OpenGL-based model of the filter bank scheme (FBS) for implementing

DWT on a Silicon Graphics workstation by using high-level OpenGL routines, for

example, OpenGL convolution filters. The project had experienced a degree of success

on process acceleration. However, the solution has no direct mapping on hardware, which

limits the efficiency of the implementation with some of the GPU resources left to spare.

For the works of Wong, the convolution, downsampling, and upsampling operations were

performed in sequence on a GPU’s fragment processors (FPs). Due to the restrictions on

GPU programmability at the time and coding facilities, the texture mapping prior to the

convolution process was issued by establishing texture lookup tables in which every

single texture coordinate is pre-defined in advance by separate CPU programs. The

potential benefit of hardware-driven acceleration by using the GPU’s hardware

interpolators for generating texture coordinates and texture fetch were not fully exploited,

and in turn hampers the performance of the consequent FP programs.

Based on the existing GPU-based denoising work, the GPGPU framework proposed in

this research aimed at seeking further hardware empowered process acceleration for

wavelet-based denoising through directly implementing texture fetching using hardware

interpolators. When issuing filtering, kernels for downsampling and upsampling in the

stages of decomposition and reconstruction, there is no need to employ any pre-defined

values issued by separate CPU routines in advance. Furthermore, filtering and down-

sampling operations can be carried out on GPU simultaneously, for instance, to

implement the two operations on a single FP to exploit the performance gain from GPU’s

intrinsic functions.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

13

However, against media over-exposure and many confident proclaims, GPGPU is hardly

a computational panacea. There are still many issues regarding the hardware structure

and programming paradigm to be tackled before a proper match against its CPU

counterparts becoming a reality. In this project, the task partitioning in the proposed

framework that decides which part of the work will be conducted on the GPU and which

part should be left to the CPU for the current generation of hardware will also be

discussed in the remaining sections.

4.1 Implementation strategies

The GPGPU framework for wavelet-based denoising developed in this project has

synthesized OpenGL graphics library and the C for Graphics (Cg) shading language from

Nvidia for processing 2D signals such as digital images. In the framework, a 2D-DWT

was implemented by applying separate 1D-DWTs along the horizontal and vertical

directions respectively. The decomposition process has adopted the common square

decomposition method which is depicted as in Fig.3, where cAj, cHj, cVj , and cDj

represent approximation coefficients (cA0 represents original 2D signal), and the detail

coefficients along horizontal, vertical, and diagonal orientations.

Fig.3 The square decomposition scheme

The thresholding approach chosen in this project has employed Sqtwolog method

introduced in Section 3.2 to integrate with the global rescale options. As discussed

earlier, the global rescaling factor is normally determined by the median absolute values

of the detail coefficients obtained by the Db1 wavelet process, in which a sort operation

on the absolute values of detail coefficients is essential. The sort operation requires

random memory write accessibility, which is often not available from fragment

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

14

processors on today’s GPU in the so-called “scatter” memory operations (i.e., indexed-

write array operations). The GPGPU framework devised in this research then assigned

the task of thresholding to a CPU while concentrating GPU resources on issuing the

operations of decomposition and reconstruction solely on the GPU. The entire framework

can be summarized as in Fig.4.

Fig.4 Overview of the framework of the GPGPU-based wavelet-based denoising

The following section will discuss the flows and processes hosted by the structure.

4.2 Technical notes of the GPU implementation

As a standard practice for GPU-based operations, the Red-Green-Blue-Alpha (RGBA)

floating point vectors were used for storing pixels of an image. All the approximation

coefficients (cAj) and the detail coefficients (cHj, cVj, cDj) obtained by deploying the

same base wavelet were also stored in the same texture with RGBA four channels. A

back buffer technique – the Framebuffer Objects (FBOs) – was employed as an off-

screen rendering mechanism for storing intermediate computation results.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

15

4.2.1 Decomposition

There are three main steps concerning decomposition being integrated into the

framework including image edge extension, filtering and sampling. After investigating

common extension schemes that include periodic padding, symmetric padding, and zero

padding summarized by Strang and Nguyen[26], this research has applied the

symmetrical periodic extension for its simplicity as shown in Fig.5. In the diagram the

extension length L is determined by the kernel length of a filter employ in decomposition.

Fig.5 The symmetrical periodic extension scheme

Fig.6 shows a GPU program snippet for extending the left edge of an image on a GPU.

The extended edge consists of the part outside the left boundary as indicated in Fig.5. The

computational area is specified by an intrinsic OpenGL instruction glBegin(GL_Quads)

for defining an off-screen quad canvas with specified vertex coordinates. The left edge

extension was then issued with the following fragment program (FP).

Fig.6 FP for edge extension

Two separable 1D-DWTs were issued following the edge extension, to enable

convolutions between the image texture and the filter kernel for downsampling along the

horizontal and vertical dimensions. In this project, the downsampling was issued by using

functions from OpenGL library to control the actual sample intervals in the texture

fetching operations. For example, if using the variables tex_width and tex_height to

fragout_float main(vf30 IN,
 uniform samplerRECT image, //image texture
 uniform float L //extension length)
{
 fragout_float OUT;
 OUT.col =f4texRECT(image, float2(2L-IN.TEX0.x, IN.TEX0.y));
 OUT.col.a=0.0;
 return OUT;
}

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

16

represent the width and height of an image texture, the convolution between the image

texture and the filter kernel along the horizontal dimension for dowsampling can be

combined into the following OpenGL instruction sets and FP process, as shown in Fig.7

and Fig.8.

Fig.7 OpenGL instructions for controlling filtering and downsampling

Fig.8 Corresponding fragment program for filtering in horizontal dimension

When implemented in the proposed GPGPU denoising framework, the filter kernel was

stored in the R channel of a texture. As shown in Fig.8, a factor of 0.5 for addressing the

pixel center when fetching a texture has been adopted.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

17

The operation of filtering and down-sampling along the vertical direction is an analogue

to the horizontal ones.

4.2.2 Thresholding

As highlighted in Fig.4, a critical step in the thresholding stage is to implement a Db1

wavelet on a GPU and to retrieve corresponding coefficients from the GPU’s framebuffer

and to transfer them to a CPU’s memory for generating a rescaling factor. The task

performed on the CPU is the sorting operation. This back-and-forward process is the

most time-consuming step in the entire process for the reasons stated in Section 4.1.

Although some researchers claimed to have developed GPU-based sorting libraries for

implementing the sorting algorithms at 16-bit and 32-bit floating precision at a CPU

comparable performance, it is noticed that the implementations still struggle to sort arrays

with non power-of-two image sizes [27]. For the adaptability, sorting operations in the

devised framework in this project are still performed on the CPU. After threshold values

being computed, it is then downloaded to GPU for modifying the detail coefficients

obtained in the stage of decomposition.

4.2.3 Reconstruction

The reconstruction phase in the framework is an inverse process of the decomposition,

which is achieved by applying 1D inverse DWT vertically and horizontally in turn. For

reconstruction, the process started from the lowest decomposition level – referred as J;

and then the approximation coefficients cAj, and the modified detail coefficients (

''' ,, jjj cDcVcH) would be upsampled and filtered by corresponding reconstruction filters

along vertical and horizontal dimensions respectively. The four computational results

originated from cAj,
''' ,, jjj cDcVcH would then be synthesized to form the approximation

coefficients of the upper level j-1. After a series of recursive computation, the ultimate

denoised image can be obtained. Fig.9 and Fig.10 illustrate the upsampling operations at

the image size of tex_width and tex_height.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

18

Fig.9 OpenGL commands that implement upsampling along the vertical dimension

Fig.10 Fragment program for upsampling along vertical direction

The effects of vertical upsampling and horizontal upsampling are display in Fig.11.

 (a) Vertical upsampling (b) Horizontal upsampling

Fig.11 The effect of upsampling

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

19

5 Denoising effect analysis and performance evaluation

In this project, Db4 and Sym4 base wavelet have been experimented as the denoising

wavelets in the framework respectively to validate the framework’s functionality. In

addition to the denoising effect to be benchmarked, another key performance is the

computational efficiency that is often exponentially linked indicator to a specified base

wavelet and the image size. For various base wavelets, the kernel length of the low-pass

or high-pass filter is normally less than 20, therefore the image size becomes the

dominant factor that influences the computational efficiency of the wavelet-based

denoising. Section 5.2 will focus on analyzing the acceleration factor of the devised

framework when applied for processing different image sizes.

5.1 Effect of denoising

Two noisy image samples that contain nonzero-mean white noise were tested in this

project as shown in Fig.12. The two images formed by distinctive pixel groups with one

displaying a night-sky cityscape consisting of synthesis straight lines and corners and the

other showing an organic plant with arbitrary curves and edges.

(a) Noisy image a

(b) Noisy image b

Fig.12 Two samples of noisy image

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

20

A Db4 wavelet was employed for de-noise image a and a Sym4 wavelet was used for

image b. The maximum number of wavelet decompositions chosen for the test was 4. The

synthesized images at different reconstruction level corresponding to the approximation

coefficients (cAs) at the reconstruction are illustrated in Fig.13 and Fig.14.

 (a) cA3 (b) cA2 (c) cA1

(d) The ultimate denoised image (cAo)

Fig.13 Denoising effects using the Db4 wavelet

 (a) cA2 (b) cA1

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

21

(c) The ultimate denoised image (cAo)

Fig.14 Denoising effects using Sym4 wavelet

It was observed that during the process of reconstruction, much of the useful image

details were resorted with the noise signals in the background region reduced. In real

applications, noise rejection and oversmoothing are often a dilemma which is sometimes

causing unsatisfying effects such as edge blurring. There exists a tradeoff between these

two factors when choosing and balancing a donoising approach. In general, as indicated

in Fig.13 and Fig.14 that the wavelet-based denoising achieved a good performance on

GPU and restored a substantial percent of strong edges which can be seen from the

reconstructed images, which further approves the effectiveness of wavelet for image

denoising.

5.2 Evaluation on computational efficiency

5.2.1 Comparison with the software-based wavelet denoising

The computational efficiency of the developed GPGPU framework for image denoising

was evaluated against the acceleration factor comparing with software-based wavelet

implementations on a Pentium IV 2.6 GHz PC equipped with Nvidia’s GeForce 7900

GTX graphics card. Five test images ranging from 512×512 to 2048×2048 were

processed. Table 1 lists the comparison results regarding the overall operational time on

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

22

software-based wavelet denoising and on the GPGPU denoising framework with the

accelerating factors computed.

Table 1 Runtime comparisons on different image size (in ms)

Image size 512×512 800×600 1024×1024 1280×1024 2048×2048

Software-based 2125ms 2703ms 6094ms 7562ms 26234ms

GPGPU-based 222ms 348ms 725ms 1275ms 3324ms

Accelerating factor 9.6 7.8 8.4 5.9 7.9

To evaluate the acceleration performance of the framework on the distinctive

decomposition and reconstruction stages, a further breakdown of computational time in

regard to each stage is listed in Table 2 with a Db4 wavelet as a chosen target. It was

envisaged that the framework had a satisfactory performance especially in the

decomposition stage. On the other hand, the accelerating factor for the reconstruction is

much lower than the decomposition. The reason for that is to obtain the approximation

coefficients at level j (cAj), the approximation and detail coefficients at level j+1 (cAj+1,

cHj+1, cVj+1, and cDj+1) need to be upsampled and filtered in sequence in the framework,

which increases the computational cost and results in the reduced acceleration

performance comparing to the decomposition. In fact, the operations on all coefficients in

the reconstruction stage are the same. Therefore a more optimal mechanism for texture

mapping in the framework in order to enable all coefficients in the stage of reconstruction

to be processed in parallel need to be researched in the future.

Table 2 Breakdown of computational time (in ms)

Image size 512×512 800×600 1024×1024 1280×1024 2048×2048

Software-based

decomposition
423ms 658ms 1596ms 1923ms 5862ms

GPGPU-based

decomposition
15ms 16ms 31ms 94ms 158ms

Accelerating factor 28.2 41.1 51.5 20.5 37.1

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

23

Software-based

reconstruction
516ms 798ms 2112ms 2670ms 10968ms

GPGPU-based

reconstruction
125ms 171ms 391ms 593ms 2000ms

Accelerating factor 4.1 4.7 5.4 4.5 5.5

Since most of the tasks in the stage of thresholding are actually carried out by CPU, the

impact of this workload distribution on the GPGPU framework has also been evaluated.

Table 3 lists the runtime of key steps in thresholding operation, which includes issuing

the Db1 wavelet decomposition on a GPU, transferring coefficients of the Db1

decomposition at level 1, and sorting the coefficients to compute the median absolute

values for generating the rescale factor. It can be observed that most of the runtime

latency was caused by the reading of coefficients back from GPU’s framebuffer and the

sorting operation on CPU. Table 4 lists the proportion of the runtime of these two tasks in

the entire GPGPU framework. It can be seen that the runtime of these two tasks

dramatically increases along with the image size.

Table 3 Runtime of key steps in thresholding (in ms)

Image size 512×512 800×600 1024×1024 1280×1024 2048×2048

Issue Db1 Decomp. 3ms 5ms 9ms 11ms 36ms

Read-back

framebuffer
31ms 47ms 109ms 359ms 500ms

Sort operation 31ms 62ms 125ms 156ms 562ms

Table 4 Proportional benchmarking of GPU-CPU data transfer latency

Image size 512×512 800×600 1024×1024 1280×1024 2048×2048

Latency of GPU-

CPU uploading
62ms 109ms 234ms 515ms 1062ms

Total time cost 222ms 348ms 725ms 1275ms 3324ms

Proportion of the

cross border delay
27.9% 31.3% 32.3% 40.4% 31.9%

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

24

5.2.2 Comparison with another GPU-based solution

The performance of the developed GPGPU framework was also compared with another

GPU-based solution devised by Wong’s group at the Chinese University of Hong Kong.

The core of Wong’s solution is to establish lookup tables along horizontal and vertical

directions respectively to store the texture coordinates for texture fetching used in the

fragment programs for DWT and IDWT at different level. The lookup tables were

initialized by a program running on CPU initially.

Adopting the same approach for thresholding operations as explained in Section 4.2.2, a

series of experiments for image decomposition and reconstruction that employed Wong’s

method was also issued. Table 5 lists the runtime performances regarding the sub-stages

of decomposition, reconstruction and lookup table initialization.

Table 5 Runtime of sub-stages on various image sizes using Wong’s method (in ms)

Image size 512×512 800×600 1024×1024 1280×1024 2048×2048

Decomposition 13ms 25ms 56ms 149ms 248ms

Reconstruction 16ms 31ms 59ms 154ms 251ms

Lookup table

initialization
235ms 360ms 901ms 1479ms 3034ms

Comparing with the results shown in Table 2, it is observed that for the GPGPU

framework devised in this project, the runtime of image decomposition is less than that of

the Wong’s method. While using the Wong’s solution, the runtime of image

reconstruction is faster than the proposed framework. Based on the processing flow of

image reconstruction depicted in Fig.4, it can be seen that the processes of upsampling

and filtering in IDWT are actually issued by different fragment programs running in

multiple passes on GPU. The snippets of the fragment programs have been shown in Fig.

8 and Fig.10 respectively. In comparison, by using Wong’s method, the upsampling and

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

25

filtering can be issued by the same fragment program based on the pre-built texture

coordinates lookup tables. In another term, these two processes can be implemented

simultaneously. This is the reason why the runtime of image reconstruction using Wong’s

method is faster than the proposed solution. However, the Wong’s approach requires a

constant construction of processing phase related lookup tables which can be a time-

consuming process to implement. Table 5 also lists the cost of runtime for establishing

the texture coordinates lookup tables when using Wong’s method, which dominates the

application’s runtime.

Table 6 lists the comparison results regarding the overall runtime performances of the

devised GPGPU framework in this project. It can be seen that the overall processing time

of the proposed framework is less than that of Wong’s. Another advantage of this

solution is that it only allocates textures for image and filter kernels which are essential

for the GPU operation. The additional textures to store the lookup tables are unnecessary

during the whole operation cycle; hence spare the hosting CPU program’s involvement

completely. This design further improves the GPU’s memory usage when issuing

wavelet-based denoising on large size digital images and/or high-definition videos.

Table 6 Runtime comparisons on different image size (in ms)

Image size 512×512 800×600 1024×1024 1280×1024 2048×2048

Wong’s solution 284ms 466ms 1103ms 1877ms 4231ms

The new method 222ms 348ms 725ms 1275ms 3324ms

6 Conclusions and Future Works

A GPGPU framework has been devised and evaluated for wavelet-based denoising in this

project. It harnesses the parallel processing ability and programmability of modern

consume-level graphics hardware for accelerating the image processing speed. Popular

signal denoising algorithms and techniques have been integrated to the design with GPU

resources mapped to the corresponding processes. The work is particularly effective

when the denoising approach is issued on large amount of noisy data. This framework

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

26

has been focusing on the existing denoising approaches. Its overall performance were

assessed on the visual quality and computational efficiency. It has been observed that the

framework achieves a great performance increase in both fronts.

Currently, the proposed GPGPU framework is mainly used for 2D image processing.

However, in some practical applications, such as video event detection using Closed

Circuit Television (CCTV), a series of continuous video images will be processed and the

pixel-oriented information are commonly treated as 3D volumes, in which a voxel is the

basic volumetric data unit similar to a pixel in a 2D image. Processing of a large amount

of voxels can bring in huge challenges to the computational efficiency. It has been

envisaged that even using a low-definition video camera for analyzing the frames taken at

a relatively short period of time, for example 60 seconds, can cause a big delay for a

standard computational platform due to the large data size – a few hundred megabytes

without compression. Based on the proposed GPGPU framework for 2D image

processing, potentials have been noticed for extending it into the 3D-based data

processing domain. A pilot project for accelerating a CCTV surveillance system for low

volume crime detection has been started, which aims at developing techniques to

generate real-time and automatic classification schemes for identifying events in a video.

GPU-based image segmentation, edge/surface detection in a 3D spatial-temporal volume

has been investigated.

It was also envisaged that although modern GPUs are fast co-processors, they are not

designed to implement all the tasks and replace the CPU. How to optimize the allocation

of computational tasks automatically in between CPU and GPU is a continuing research

topic, which is tightly related to the evolution of computer hardware. Cell CPU and SLi-

GPU present both opportunities and challenges. Further work in this project will focus on

these issues aiming to obtain a series of generic cost-effective GPGPU solutions for

signal processing. In addition, most of the GPUs nowadays only support floating

operations at single-precision, which presents a major drawback when applied on

applications requiring higher precision. Techniques to perform integrated extended-

precision arithmetic on GPUs will also be a vital part for the future success of GPGPU.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

27

References

[1] A. Bovik, Handbook of image and video processing (Second Edition), Elsevier
Academic Press, London, 2005.

[2] K. Amolins, Y. Zhang, P. Dare, Wavelet based image fusion techniques — An
introduction, review and comparison, Journal of Photogrammetry and Remote Sensing.
62(4) (2007), 249-263.

[3] L. Birgé, P. Massart, From model selection to adaptive estimation, Festschrift for
Lucien Le Cam/ Research Papers in Probability and Statistics, Springer(1997), pp. 55-88.

[4] A. Barron, L. Birgé, P. Massart, Risk bounds for model selection via penalization,
Probability Theory and Related Fields, 113(3)(1999) 301-413.

[5] D. L. Donoho, I. M. Johnstone, Adapting to unknown smoothness via wavelet
shrinkage, Journal of the American Statistical Association, 90 (1995), pp.1200-1224.

[6] D. L. Donoho, I. M. Johnstone, Minimax estimation via wavelet shrinkage, Journal of
Applied Probability, 26 (3) (1998), 879-921.

[7] D. L. Donoho, I. M. Johnstone, G. Kerkyacharian, D. Picard, Wavelet shrinkage:
Asymptopia, Journal of the Royal Statistical Society, Series B(Methodological), 57(2)
(1995), pp. 301-369.

[8] E. Chicken, T. T. Cai, Block thresholding for density estimation: local and global
adaptivity, Journal of Multivariate Analysis, 95(1)(2005), 76-106.

[9] A. Azzalini, M. Farge, K. Schneider, Nonlinear wavelet thresholding: A recursive
method to determine the optimal denoising threshold, Applied and Computational
Harmonic Analysis, 18(2)(2005),177-185.

[10] W. Sweldens, The lifting scheme:Aconstruction of second generation wavelets,
SIAM J. Math. Anal.. 29(2)(1998), 511–546.

[11] K. Kuzume, K. Niijima, S. Takano, FPGA-based lifting wavelet processor for real-
time signal detection, Signal Processing. 84(10),2004, 1931-1940.

[12] M. Vishwanath, R. M. Owens (1995), VLSI architecture for the discrete wavelet
transform, IEEE Transactions on Circuit & System. 42(5)(1995), 305-316.

[13] W. R. Mark, R. S. Glanville, K. Akeley, and M. J. Kilgard, Cg: A system for
programming graphics hardware in a C-like language, in ACM Trans. Graphics, 2003.

javascript:buildNewList('http%3A%2F%2Fwebcat.hud.ac.uk%2Fipac20%2Fipac.jsp%3Fsession%3D122597R9X76E5.21915%26profile%3Dcls%26source%3D%7E%21horizon%26view%3Ditems%26uri%3Dfull%3D3100001%7E%21453568%7E%211%26ri%3D1%26aspect%3Dsubtab33%26menu%3Dsearch%26ipp%3D20%26spp%3D20%26staffonly%3D%26term%3DHandbook%2Bof%2BImage%2B%2526%2BVideo%2BProcessing%26index%3D.GW%26uindex%3D%26aspect%3Dsubtab33%26menu%3Dsearch%26ri%3D1','http%3A%2F%2Fwebcat.hud.ac.uk%2Fipac20%2Fipac.jsp%3Fsession%3D122597R9X76E5.21915%26profile%3Dcls%26source%3D%7E%21horizon%26view%3Ditems%26uri%3Dfull%3D3100001%7E%21453568%7E%211%26ri%3D1%26aspect%3Dsubtab33%26menu%3Dsearch%26ipp%3D20%26spp%3D20%26staffonly%3D%26term%3DHandbook%2Bof%2BImage%2B%2526%2BVideo%2BProcessing%26index%3D.GW%26uindex%3D%26aspect%3Dsubtab33%26menu%3Dsearch%26ri%3D1','true')
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6VF4-4P5RKT2-1&_user=495973&_coverDate=09%2F30%2F2007&_alid=819544748&_rdoc=3&_fmt=high&_orig=search&_cdi=6000&_sort=d&_st=4&_docanchor=&_ct=6&_acct=C000024198&_version=1&_urlVersion=0&_userid=495973&md5=ad3714c86621ea11ab829ffccebc6db6
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6VF4-4P5RKT2-1&_user=495973&_coverDate=09%2F30%2F2007&_alid=819544748&_rdoc=3&_fmt=high&_orig=search&_cdi=6000&_sort=d&_st=4&_docanchor=&_ct=6&_acct=C000024198&_version=1&_urlVersion=0&_userid=495973&md5=ad3714c86621ea11ab829ffccebc6db6
http://www.springerlink.com/content/100451/?p=aa5e7557e8cb4dbe969fc39ae380ebfe&pi=0
http://projecteuclid.org/Dienst/getRecord?id=euclid.aos/1024691081/
http://projecteuclid.org/Dienst/getRecord?id=euclid.aos/1024691081/
http://projecteuclid.org/Dienst/getRecord?id=euclid.aos/1024691081/
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WK9-4D98242-2&_user=495973&_coverDate=07%2F31%2F2005&_alid=823455946&_rdoc=4&_fmt=high&_orig=search&_cdi=6901&_sort=d&_st=4&_docanchor=&_ct=7&_acct=C000024198&_version=1&_urlVersion=0&_userid=495973&md5=8cbde99a15b4cd338eecb5ebdd184bfb
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WK9-4D98242-2&_user=495973&_coverDate=07%2F31%2F2005&_alid=823455946&_rdoc=4&_fmt=high&_orig=search&_cdi=6901&_sort=d&_st=4&_docanchor=&_ct=7&_acct=C000024198&_version=1&_urlVersion=0&_userid=495973&md5=8cbde99a15b4cd338eecb5ebdd184bfb
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WB3-4F6CR99-1&_user=495973&_coverDate=03%2F01%2F2005&_alid=823460079&_rdoc=5&_fmt=high&_orig=search&_cdi=6699&_sort=d&_st=4&_docanchor=&_ct=10&_acct=C000024198&_version=1&_urlVersion=0&_userid=495973&md5=5df7ccbe5822290af2a954ed5186c5db
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WB3-4F6CR99-1&_user=495973&_coverDate=03%2F01%2F2005&_alid=823460079&_rdoc=5&_fmt=high&_orig=search&_cdi=6699&_sort=d&_st=4&_docanchor=&_ct=10&_acct=C000024198&_version=1&_urlVersion=0&_userid=495973&md5=5df7ccbe5822290af2a954ed5186c5db
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V18-4CYV10P-1&_user=495973&_coverDate=10%2F01%2F2004&_alid=819566185&_rdoc=3&_fmt=high&_orig=search&_cdi=5668&_sort=d&_st=4&_docanchor=&_ct=5&_acct=C000024198&_version=1&_urlVersion=0&_userid=495973&md5=9fd71c3dc39b26daead704b4c8be3c39
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V18-4CYV10P-1&_user=495973&_coverDate=10%2F01%2F2004&_alid=819566185&_rdoc=3&_fmt=high&_orig=search&_cdi=5668&_sort=d&_st=4&_docanchor=&_ct=5&_acct=C000024198&_version=1&_urlVersion=0&_userid=495973&md5=9fd71c3dc39b26daead704b4c8be3c39

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

28

[14] J. Bolz, I. Farmer, E. Grinspun, and P. Schreoder, Sparse matrix solvers on the GPU:
Conjugate gradients and multigrid, in ACM Trans. Graphics, 2003.

[15] J. Krüger and R. Westermann, Linear algebra operators for GPU implementation of
numerical algorithms, in ACMTrans. Graphics, 2003.

[16] K. Moreland and E. Angel, The FFT on a GPU, Proc.
ACMSIGGRAPH/EUROGRAPHICS Conf. Graphics Hardware (HWWS’03), pp. 112-
119, 2003.

[17] M. Hopf and T. Ertl, Hardware-Accelerated Wavelet Transformations, Proc.
EG/IEEE TVCG Symp. Visualization (SisSym ’00), pp. 93-103, May 2000.

[18] T. T. Wong, C. S. Leung, P. A. Heng, and J. Q. Wang, Discrete Wavelet Transform
on Consumer-Level Graphics Hardware, IEEE Transaction on Multimedia. 9(3)(2007)
668-673.

[19] C. Tenllado, J. Setoain, M. Prieto, L. Pinuel, F. Tirado, Parallel Implementation of
the 2D Discrete Wavelet Transform on Graphics Processing Units: Filter Bank versus
Lifting, IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS.
19(3)(2008) 299-310.

[20] K. Engel, M. Hadwiger, J. M. Kniss, A. E. Lefohn, et al., Real-Time Volume
Graphics, Course Notes 28 in SIGGRAPH2004(2004) 13-18.

[21] J. D.Owens, D. Luebke, N. Govindaraju, M. Harris, et al., A Survey of General-
Purpose Computation on Graphics Hardware, Computer Graphics Forum. 26 (1)(2007)
80 -113.

[22] R. Strzodka, M. Doggett, A.Kolb, Scientific Computation for Simulation on programmable
Graphics Hardware, Simulation Modelling Practice and Theory. 13(8)(2005) 667-681.

[23] C. Oat. Rendering to an off-screen buffer with WGL_ARB_pbuffer, Technology
paper of ATI Inc. pp.1-13. Available on: http://ati.amd.com/developer/ATIpbuffer.pdf.

[24] E. Persson. Framebuffer Objects, Technology paper of ATI Inc. pp.1-12. Available
on:
http://ati.amd.com/developer/SDK/AMD_SDK_Samples_May2007/Documentations/Fra
mebufferObjects.pdf.

[25] M. Pharr, R. Fernando, GPU Gems 2: Programming Techniques for High-
Performance Graphics and General-Purpose Computation. Addison-Wesley Press,
London ,2005.

[26] G. Strang and T. Nguyen, Wavelets and Filter Banks. Cambridge,MA: Wellesley-
Cambridge, 1996.

http://www.nvidia.com/page/geforce_8800.html
http://ati.amd.com/developer/ATIpbuffer.pdf
http://ati.amd.com/developer/SDK/AMD_SDK_Samples_May2007/Documentations/FramebufferObjects.pdf
http://ati.amd.com/developer/SDK/AMD_SDK_Samples_May2007/Documentations/FramebufferObjects.pdf

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

29

[27] GPUSort: A high performance GPU sorting library. Available on
http://gamma.cs.unc.edu/GPUSORT/.

http://gamma.cs.unc.edu/GPUSORT/

RESPONSE TO REVIEWERS AND LIST OF CHANGES

MANUSCRIPT NUMBER: SIGPRO-D-08-00879

REVIEWER 1

The paper was well presented. This includes the experiments and analysis which

was done very thoroughly and in great detail. However, as mentioned in the paper,

future experiments needs to be conducted using standard database of images eg

Ferret's to cater to all aspects of possible, image features. Maybe, other denoising

experiments can be done on other signals for eg audio or video images.

Response: The authors thoroughly agree with the review’s suggestion on the adoption of

widely recognisable benchmarking images for the future quantitative tests. Measures and

experiments have been carried out to cover other image features by deploying the devised

GPGPU framework. Results so far are largely satisfactory and will be reported in a separate

article focusing on the generic image processing issues. To clarify the main objectives of this

investigation and the following phase, the text below has been added at the second paragraph

in Section 6 (Conclusions and Future Works).

Currently, the proposed GPGPU framework is mainly used for 2D image processing.

However, in some practical applications, such as video event detection using Closed Circuit

Television (CCTV), a series of continuous video images will be processed and the pixel-

oriented information are commonly treated as 3D volumes, in which a voxel is the basic

volumetric data unit similar to a pixel in a 2D image. Processing of a large amount of voxels

can bring in huge challenges to the computational efficiency. It has been envisaged that even

using a low-definition video camera for analyzing the frames taken at a relatively short

period of time, for example 60 seconds, can cause a big delay for a standard computational

platform due to the large data size – a few hundred megabytes without compression. Based

on the proposed GPGPU framework for 2D image processing, potentials have been noticed

for extending it into the 3D-based data processing domain. A pilot project for accelerating a

CCTV surveillance system for low volume crime detection has been started, which aims at

developing techniques to generate real-time and automatic classification schemes for

identifying events in a video. GPU-based image segmentation, edge/surface detection in a 3D

spatial-temporal volume has been investigated.

* Response to Reviewers

REVIEWER 2

This paper proposed a wavelet based denoising by using the GPU. The novelty of

this work is an efficient implementation of DWT arranged for current generation

GPUs. I think the paper is well organized and worth to be published. But in

simulation, authors only show the comparison with the CPU based denoising. They

should show the simulation comparison with the conventional GPU based method

such as Wong's method.

Response: The authors appreciate the importance in assessing the performance differences

in between different GPU-based image denosing approaches. Through deploying the source

code released by Wong’s research group on their website, the authors were able to analyse

the two distinctive GPU acceleration strategies and carrying out tests on their runtime

performances on the same computing platform. The results have been shown in Section 5.2.2

with corresponding analysis.

5.2.2 Comparison with another GPU-based solution

The performance of the developed GPGPU framework was also compared with another GPU-based

solution devised by Wong’s group at the Chinese University of Hong Kong. The core of Wong’s

solution is to establish lookup tables along horizontal and vertical directions respectively to store the

texture coordinates for texture fetching used in the fragment programs for DWT and IDWT at

different level. The lookup tables were initialized by a program running on CPU initially.

Adopting the same approach for thresholding operations as explained in Section 4.2.2, a series of

experiments for image decomposition and reconstruction that employed Wong’s method was also

issued. Table 5 lists the runtime performances regarding the sub-stages of decomposition,

reconstruction and lookup table initialization.

Table 5 Runtime of sub-stages on various image sizes using Wong’s method (in ms)

Image size 512×512 800×600 1024×1024 1280×1024 2048×2048

Decomposition 13ms 25ms 56ms 149ms 248ms

Reconstruction 16ms 31ms 59ms 154ms 251ms

Lookup table

initialization
235ms 360ms 901ms 1479ms 3034ms

Comparing with the results shown in Table 2, it is observed that for the GPGPU framework devised

in this project, the runtime of image decomposition is less than that of the Wong’s method. While

using the Wong’s solution, the runtime of image reconstruction is faster than the proposed

framework. Based on the processing flow of image reconstruction depicted in Fig.4, it can be seen

that the processes of upsampling and filtering in IDWT are actually issued by different fragment

programs running in multiple passes on GPU. The snippets of the fragment programs have been

shown in Fig. 8 and Fig.10 respectively. In comparison, by using Wong’s method, the upsampling and

filtering can be issued by the same fragment program based on the pre-built texture coordinates

lookup tables. In another term, these two processes can be implemented simultaneously. This is the

reason why the runtime of image reconstruction using Wong’s method is faster than the proposed

solution. However, the Wong’s approach requires a constant construction of processing phase related

lookup tables which can be a time-consuming process to implement. Table 5 also lists the cost of

runtime for establishing the texture coordinates lookup tables when using Wong’s method, which

dominates the application’s runtime.

Table 6 lists the comparison results regarding the overall runtime performances of the devised

GPGPU framework in this project. It can be seen that the overall processing time of the proposed

framework is less than that of Wong’s. Another advantage of this solution is that it only allocates

textures for image and filter kernels which are essential for the GPU operation. The additional

textures to store the lookup tables are unnecessary during the whole operation cycle; hence spare the

hosting CPU program’s involvement completely. This design further improves the GPU’s memory

usage when issuing wavelet-based denoising on large size digital images and/or high-definition

videos.

Table 6 Runtime comparisons on different image size (in ms)

Image size 512×512 800×600 1024×1024 1280×1024 2048×2048

Wong’s solution 284ms 466ms 1103ms 1877ms 4231ms

The new method 222ms 348ms 725ms 1275ms 3324ms

REVIEWER 3

This paper proposes a GPU implementation of Wavelet based image denoising

using Discrete Wavelet Transform (DWT). The paper proposes a GPU

implementation based on the new graphics hardware features and shows

improvements as compared to earlier implementation of DWT. From my perspective,

this is a useful contribution for people who are interesting in accelerating image

processing and filtering applications. Overall, the algorithm is well presented and the

snippet shader programs for fragment shader and upsampling operations is quite

clear. A couple of minor comments related to the text:

i) Page 2 (and in other places in the paper): instead of mother wavelet, use "base" or

"parent" wavelet

ii) Page 8, line 54: instead of "is consisted" use "consists"

iii) Page 10, Line 3: cite the reference related to Donoho and Johnstone

iv) Page 10, Line 45-46: the sentence construction is incorrect

v) Page 12, line 10: "many researches" is not gramatically correct

vi) Page 12, Line 27: replace "in sequential" with "in sequence"

vii) Page 12, Line 43: replace "aiming at seeking" with "aimed at seeking"

Response: The authors would express sincere thankfulness to the reviewer and his/her

thorough reviewing. All the errors pointed out have been amended accordingly in this

version.

Fig.1 Overview of the 3D Graphics Pipeline

Fig.2 Multi-level DWT and IDWT

Fig.3 The square decomposition scheme

Figure

Fig.4 Overview of the framework of the GPGPU-based wavelet-based denoising

Fig.5 The symmetrical periodic extension scheme

Fig.6 FP for edge extension

fragout_float main(vf30 IN,

 uniform samplerRECT image, //image texture

 uniform float L //extension length)

{

 fragout_float OUT;

 OUT.col =f4texRECT(image, float2(2L-IN.TEX0.x, IN.TEX0.y));

 OUT.col.a=0.0;

 return OUT;

}

Fig.7 OpenGL instructions for controlling filtering and downsampling

Fig.8 Corresponding fragment program for filtering in horizontal dimension

Fig.9 OpenGL commands that implement upsampling along the vertical dimension

Fig.10 Fragment program for upsampling along vertical direction

Fig.11 (a) Vertical upsampling

Fig.11 (b) Horizontal upsampling

Fig.12(a) Noisy image a

Fig.12(b) Noisy image b

Fig.12 Two samples of noisy image

Fig.13(a) cA3

Fig.13(b) cA2

Fig.13(c) cA1

Fig.13(d) The ultimate denoised image (cAo)

Fig.13 Denoising effects using the Db4 wavelet

Fig.14(a) cA2

Fig.14(b) cA1

Fig.14(c) The ultimate denoised image (cAo)

Fig.14 Denoising effects using Sym4 wavelet

Table 1 Runtime comparisons on different image size (in ms)

Image size 512×512 800×600 1024×1024 1280×1024 2048×2048

Software-based 2125ms 2703ms 6094ms 7562ms 26234ms

GPGPU-based 222ms 348ms 725ms 1275ms 3324ms

Accelerating factor 9.6 7.8 8.4 5.9 7.9

Table 2 Breakdown of computational time (in ms)

Image size 512×512 800×600 1024×1024 1280×1024 2048×2048

Software-based

decomposition
423ms 658ms 1596ms 1923ms 5862ms

GPGPU-based

decomposition
15ms 16ms 31ms 94ms 158ms

Accelerating factor 28.2 41.1 51.5 20.5 37.1

Software-based

reconstruction
516ms 798ms 2112ms 2670ms 10968ms

GPGPU-based

reconstruction
125ms 171ms 391ms 593ms 2000ms

Accelerating factor 4.1 4.7 5.4 4.5 5.5

Table 3 Runtime of key steps in thresholding (in ms)

Image size 512×512 800×600 1024×1024 1280×1024 2048×2048

Issue Db1 Decomp. 3ms 5ms 9ms 11ms 36ms

Read-back

framebuffer
31ms 47ms 109ms 359ms 500ms

Sort operation 31ms 62ms 125ms 156ms 562ms

Table

Table 4 Proportional benchmarking of GPU-CPU data transfer latency

Image size 512×512 800×600 1024×1024 1280×1024 2048×2048

Latency of GPU-

CPU uploading
62ms 109ms 234ms 515ms 1062ms

Total time cost 222ms 348ms 725ms 1275ms 3324ms

Proportion of the

cross border delay
27.9% 31.3% 32.3% 40.4% 31.9%

Table 5 Runtime of sub-stages on various image sizes using Wong’s method (in ms)

Image size 512×512 800×600 1024×1024 1280×1024 2048×2048

Decomposition 13ms 25ms 56ms 149ms 248ms

Reconstruction 16ms 31ms 59ms 154ms 251ms

Lookup table

initialization
235ms 360ms 901ms 1479ms 3034ms

Table 6 Runtime comparisons on different image size (in ms)

Image size 512×512 800×600 1024×1024 1280×1024 2048×2048

Wong’s solution 284ms 466ms 1103ms 1877ms 4231ms

The new method 222ms 348ms 725ms 1275ms 3324ms

