H

University of
HUDDERSFIELD

University of Huddersfield Repository

McCluskey, T.L.

Knowledge engineering: issues for the Al planning community
Original Citation

McCluskey, T.L. (2002) Knowledge engineering: issues for the Al planning community. In: The
AIPS-2002 Workshop on Knowledge Engineering Tools and Techniques for Al Planning, April
24th, 2002, Toulouse, France. (Unpublished)

This version is available at http://eprints.hud.ac.uk/id/eprint/3282/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

* The authors, title and full bibliographic details is credited in any copy;
* A hyperlink and/or URL is included for the original metadata page; and

* The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/



Knowledge Engineering:
Issues for the Planning Community

T. L. McCluskey
School of Computing and Mathematics,
University of Huddersfield, UK
email: lee@zeus.hud.ac.uk

Abstract

Knowledge engineering for Al planning is the process
that deals with the acquisition, validation and main-
tenance of planning domain models, and the selection
and optimization of appropriate planning machinery to
work on them. Evidence from the growing body of ex-
perience in applying planning technology suggests that
knowledge engineering issues are crucial to an applica-
tion’s success. The Knowledge Engineering Technical
Co-ordination Unit of PLANET! has been active for
several years now in carrying out workshops and spon-
soring cross-site visits on the subject. Here I briefly
summarise some of the material in our roadmap doc-
ument(McCluskey et al. 2000), selecting some of the
important research questions from it, and introduce the
papers that are to be presented in this workshop.

Introduction

Knowledge Engineering (KE) for AI Planning is the
process that deals with the acquisition, validation and
maintenance of planning domain models, and the selec-
tion and optimization of appropriate planning machin-
ery to work on them. Hence, knowledge engineering
processes support the planning process - they comprise
all of the off-line, knowledge-based aspects of planning
that are to do with the application being built.

KE issues have to be engaged by our community if
we are to get non-Al Planning people to use our tech-
nology. These issues are recognised as a major prob-
lem in the application of planning systems. Experience
with planners adapted for aerospace and military appli-
cations (Wilkins 1999; Tate, Drabble, & Dalton 1996;
Muscettola et al. 1998) has pointed to KE aspects as
being those most in need of attention.

In the field of Knowledge-based Systems, from
whence the term ‘Knowledge Engineering’ originates,
the need for modelling knowledge at the conceptual
level has long been accepted in the development of KBS
methodologies. Specifying components and their inter-
faces at the knowledge rather than implementational
level leads to the kind of abstractions that facilitates in-
teroperability and re-use. The knowledge-level principle

!The EU-funded Network of Excellence in Planning

of Alan Newell (Newell 1982) influenced and directed
much KBS work into this direction. Hence the pursuit
of KE within planning may be seen as a special case
of KE within the general knowledge-based system field.
It may prove useful to derive methods and adapt tools
from KBS, as the work of Tate et al (Tate, Polyak, &
Jarvis 1998) has attempted. There are peculiarities of
planning that clearly distinguish engineering planning
knowledge from general expert knowledge:

e the ultimate use of the planning domain model is to
be part of a system involved in the ‘synthetic’ task of
plan construction. This makes it very specific in the
world of KBS, where many successful systems are, in
contrast, aimed at solving diagnostic or classification
problems.

e the knowledge elicited in planning is largely knowl-
edge about actions and how objects are effected by
actions. This knowledge has to be adequate in con-
tent (and ultimately in form) to allow efficient auto-
mated reasoning and plan construction.

In branches of requirements capture in software engi-
neering knowledge is elicited about processes or actions
in the domain of interest, similar to that in Planning.
Very expressive and formal languages and development
environments have been introduced for this purpose. In
software engineering however, the purpose of this cap-
ture in very different - it is to help in the analysis and
understanding of a system, and to be used in the cre-
ation and validation of a new system model.

Despite the peculiarities mentioned above, it seems
fruitful to pursue research and developments in KE
for planning in the context of related developments in
KBS and software requirements engineering. In par-
ticular, it is appears inevitable that research in Al
Planning must adopt multi-disciplinary approaches to
knowledge-based planning.

The Growth of Tool Support

Not too many years ago tools for planning domain ac-
quisition and validation amounted to little more than
syntax checkers. ‘Debugging’ a planning application
would naturally be linked to bug finding through dy-
namic testing. The two pioneering KBS planners O-



Plan and SIPE have of course, by necessity, developed
methods and tool support. The O-Plan system has for
example its ‘Common Process Editor’ (Tate, Polyak,
& Jarvis 1998) and SIPE has its Act Editor (Myers &
Wilkins 1997). These visualisation environments arose
because of the obvious need in knowledge intensive ap-
plications of planning to assist the engineering process.
They are quite specific, however, having been designed
to help overcome problems encountered with domain
construction in previous applications of these planning
systems.

One of the earliest types of tool support for AI Plan-
ning grew from research into Machine Learning (ML).
From an ML point of view, siting a learning mechanism
with a clean, classical planner led to an attractive way
to evaluate the automated learning algorithms. Hence
ML tools for planning have received considerable at-
tention over the last 20 years. For example, tools have
been built to induce operator descriptions from traces
of actions, and to acquire or tune heuristics in the form
of macro-operators, state evaluation functions and goal
orders.

More recently interest has grown in the area of do-
main analysers. These tools process a domain model
with the goal of making explicit useful information, and
they may be embedded in an online planner or be stand-
alone. In the latter case, they can function as part
of a modelling environment, helping a user to perform
static validation on an acquired model. For example,
tools may: check that a planning operator is consis-
tent (e.g. it never inputs a valid state and outputs an
invalid state); reason with operators and output state
invariants to be visually checked by a user; or output
necessary goal orderings, to check for impossible goal
combinations. Also, domain analysis tools can help in
the acquisition of heuristics that customise a general
planning engine to an application, or more importantly
to identify the kind of planner appropriate for solve
problems within the application domain.

A further step is to produce tools environments for
acquiring, modelling and prototyping planning applica-
tions in such a way that the tools are integrated and
the environment is open. An open environment means
that users can attach their own tools which integrate
with the other tools. Research into and the develop-
ment of such an environment for classical Al planning
was one of the goals of the PLANFORM project (Plan-
form 1999). GIPO, an outcome of this project, is a GUIL
designed to integrate tools in support of knowledge en-
gineering for AI planning. GIPO is purely a ‘labora-
tory’ system aimed as a testbed for knowledge acqui-
sition techniques and planning tool integration. Users
can attach their planners to GIPO via a PDDL (AIPS-
98 Planning Competition Committee 1998) interface,
but other more knowledge-rich interfaces are yet to be
developed. Truly open environments are essential for
the development of planning technology, but this re-
quires a level of standardisation not yet present in the
community.

Representation Languages and
Standardisation

Both to help the Planning field mature, and to help
engineers apply and integrate the technology, represen-
tation language conventions should be sought. This has
been achieved in a very limited way with PDDL, a com-
munity accepted standard for communicating minimal
dynamical models of a domain. PDDL has been a low-
est common denominator for planning systems running
under many of the classical STRIPS-assumptions, al-
lowing sets of domain models to be distributed and
certain classes of planning engines to be compared in
competitions. There is a need to exchange and to some
degree standardise much more than bare domain dy-
namics - for example, domain structures and heuristics.
Specifically, it would be useful to share and exchange
generic object structures that could be re-used over a
range of applications. More generally, creating a plan-
ning knowledge base without re-use seems at best ineffi-
cient. There is some work emerging on planning ontolo-
gies (for example see (Gill & Blythe 2000)) but there is
still a long way to go.

When considering standard representations one must
consider the function and content of the representation
itself. For example, in contrast to domain specification
languages, there have been attempts at creating stan-
dard languages for plan specifications - notably the work
surrounding the creation of SPAR (Tate 1998). Another
class of representation language, which concerns knowl-
edge engineers in particular, is one in which languages
are specifically designed with pragmatic features that
help the process of domain acquisition and modelling.
Our roadmap (McCluskey et al. 2000) postulates cri-
teria for such languages, asserting that they should be
well structured, tool supported, expressive, customiz-
able, well founded, and finally, embedded within a mod-
elling method. Languages that have been developed
from the point of view of knowledge acquisition, and ful-
fill some of these criteria, include DDL.1 (Cesta & Oddi
1996), Act (Myers & Wilkins 1997), TF (Tate, Polyak,
& Jarvis 1998) and OC' Ly, (McCluskey & Kitchin 1998).

A Note about Terminology

Research papers that concern KE in planning often ap-
pears to use inconsistent, confusing or imprecise ter-
minology. I will choose a simple but pervasive exam-
ple to illustrate the point. In this volume of papers
phrases such as ‘domain description’, ‘domain specifi-
cation’, ‘domain definition’, ‘domain model’, ’domain
theory’ and simply ‘domain’ are used. Firstly, a dis-
tinction: let the domain denote the reality being mod-
elled within the corresponding planning system. Let
any form of symbols representing parts of the domain
be called a domain description — for example a doc-
ument containing natural language describing the do-
main. Domain description is the most vague term of
the set.

The term domain specification is less vague than a



description. It implies something that is finished, and
something that can be reasoned with. In other words,
we expect a domain specification to be complete and
precise, and often formal in the sense that valid infer-
ences can be made using it, about the domain itself. Of
course most specifications fail in these aspects!

The term domain model implies that we have a rep-
resentation that can be used to perform operations in
the same manner that occur in the domain; and that
there is a well-known operational semantics for con-
structs in the model. Further, the term ‘model’ im-
plies that named objects within it correspond directly
to named objects in the domain, and there is an obli-
gation on the developer to check that the model accu-
rately predicts changes in the domain. I would argue
that the traditional operator-based domain descriptions
fall exactly into this last case - they are domain mod-
els. In software engineering there is a divide between
implicit or property-based formal specifications on the
one hand, and executable formal specifications on the
other. While the former might state properties of the
domain, it may or may not contain operational details.
Hence, a domain model is rather like the idea of an ex-
ecutable specification in software engineering.

In summary, we call the outside reality the Domain;
the Domain Description is any set of documents about
the Domain, possibly in natural language; the Domain
Specification is an abstract, formalised account of the
Domain; and the Domain Model is a Domain Specifica-
tion which is in an operational form, containing explicit
details of domain dynamics, and suitable for processing
by a planning engine.

Issues for the Planning Community

Planet’s KE Roadmap (McCluskey et al. 2000) lists
a number of concerns and research challenges for the
future in the area. Here I list several but expect that
many more will arise as a result of the workshop.

evaluation of knowledge engineering methods:
How do we evaluate knowledge engineering methods,
tools and techniques? Case studies and controlled
experiments are very expensive compared to evalua-
tion of a planner against a set of benchmarks. Is the
introduction of challenges or competitions feasible or
desirable to promote this area?

improved representation languages: Pragmatic
aspects of programming languages (objects, types,
modules) are very well developed to help one to
program. On the other hand, it can be argued
that PDDL is at the level of a ‘machine code’
for domain description. What kind of standard,
pragmatic structures are needed in domain modelling
languages?

further standardisation: There are many reasons
why standardisation can help advance a field - one
in particular is to help us develop components of
a planning system flexibly. Should we be devel-
oping languages for standardising the exchange of

heuristics, and other planning - related knowledge?
Given the potential for applying planning technology
through the internet, should we not be developing
web-friendly ‘semantic’ mark-up languages for this
purpose?

ontologies: Given the emphasis on Ontologies in
Knowledge-based Systems, should we be developing
Planning Ontologies, and if so, in what form? The
availability of libraries of components from which to
assemble planning knowledge bases and planning sys-
tems seems very desirable (Gill & Blythe 2000), but
how do we go about funding and evaluating this
work? Hertzberg in the last section of reference
(Hertzberg 1996) declares that there is a lack of a
‘vocabulary for describing the characteristics of do-
mains, plans ...’. In the context of Knowledge En-
gineering, the pursuit of such a classification system
and/or vocabulary is still on the to-do list, and well
worthy of action.

The Workshop Papers

Aylett and Doniat tackle the very difficult area of
knowledge acquisition for planning, using an approach
inspired by the KBS community. Their focus is on help-
ing a domain expert rather than a planning expert per-
form such a task. The aim of Simpson et al’s work is
also knowledge acquisition, but at a more detailed spe-
cific level where libraries of generic types could be used
to aid the acquisition of new domains. Murray’s paper
too concerns generic types, but rather than for domain
structure, he attempts to use them as abstract control
rules that could form a generic control rule library.

The papers by Cresswell et al and Varrentrapp et al
both concern support tools. The first deals with a much
needed extension to an existing domain analyser, while
the second postulates an open environment specifically
for evaluating planners using dynamic testing.

The work of Fernandez et al falls into the category of
using learning techniques to tune planning heuristics.
Of note is their use of a Neural Network as the learning
technique, resulting in interesting coding issues center-
ing on the representation of states and goals as inputs
to such a network.

Bartak’s paper is ambitious in that it proposes the
creation of a modelling framework which spans both
planning and scheduling, and which regards resources
and activities with durations as fundamental. Influ-
enced by scheduling applications, Bartak’s work pro-
vides a good counterpoint to emerging modelling plat-
forms aimed at AI planning.

Finally, Jarvis’s paper calls for a change in Al Plan-
ning’s research direction away from the easily evaluated
‘stand-alone’ knowledge sparse planner (of the AIPS
competition variety), to the more embedded, mixed-
initiative expressive kind. He introduces the idea of
‘computer aided planning’ rather than ‘computer re-
placed planning’ and argues most convincingly that this
is both a more feasible and useful direction for main-



stream planning research. Perhaps the AI Planning
Community will split up along these lines, with a gap
emerging between Al scientists, interested in planning
capabilities per se, and Al Planning engineers, inter-
ested in exploiting the technology. These issues will no
doubt be discussed at the Panel session!

References

AIPS-98 Planning Competition Committee. 1998.
PDDL - The Planning Domain Definition Language.
Technical Report CVC TR-98-003/DCS TR-1165,
Yale Center for Computational Vision and Control.

Cesta, A., and Oddi, A. 1996. DDL.1: A Formal
Description of a Constraint Representation Language
for Physical Domains. In Ghallab, M., and Milani,
A., eds., New Directions in AI Planning. IOS Press.
341-352.

Gill, Y., and Blythe, J. 2000. PLANET: a shareable
and reusable ontology for representing plans. In Pro-
ceedings 17th International Conference on Al

Hertzberg, J. 1996. On Building a Planning Tool Box.
In Ghallab, M., and Milani, A., eds., New Directions
in Al Planning. 10S Press. 3—18.

McCluskey, T. L., and Kitchin, D. E. 1998. A Tool-
Supported Approach to Engineering HTN Planning
Models. In Proceedings of 10th IEEE International
Conference on Tools with Artificial Intelligence.

McCluskey, T. L.; Aler, R.; Borrajo, D.; Haslum,
P.; Jarvis, P.; and Scholz, U. 2000. Knowl-
edge Engineering for Planning ROADMAP.
http://scom.hud.ac.uk/planet/.

Muscettola, N.; Nayak, P. P.; Pell, B.; and Williams,
B. C. 1998. Remote Agent: To Boldly Go Where
No AI System Has Gone Before. Artificial Intelligence
103(1-2):5-48.

Myers, K., and Wilkins, D. 1997. The Act-Editor
User’s Guide: A Manual for Version2.2. SRI Interna-
tional, Artificial Intelligence Center.

Newell, A. 1982. The Knowledge Level. Artificial
Intelligence 18:87 — 127.

Planform. 1999. An open environment for building
planners. http://scom.hud.ac.uk/planform.

Tate, A.; Drabble, B.; and Dalton, J. 1996. O-Plan:
a Knowledged-Based Planner and its Application to
Logistics. AIAI, University of Edinburgh.

Tate, A.; Polyak, S. T.; and Jarvis, P. 1998. TF
Method: An Initial Framework for Modelling and
Analysing Planning Domains. Technical report, Uni-
versity of Edinburgh.

Tate, A. 1998. Roots of spar - shared planning and
activity representation. Knowledge Engieering Review
13:121 — 128.

Wilkins, D. 1999. Using the SIPE-2 Planning System:
A Manual for SIPE-2; Version5.0. SRI International,
Artificial Intelligence Center.



