
University of Huddersfield Repository

West, Margaret M., Kitchin, Diane E. and McCluskey, T.L.

Validating planning domain models using B-AMN

Original Citation

West, Margaret M., Kitchin, Diane E. and McCluskey, T.L. (2002) Validating planning domain
models using B-AMN. In: PlanSIG 2002, 21st/22nd Nov 2002, Delft University of Technology,
Holland. (Unpublished)

This version is available at http://eprints.hud.ac.uk/id/eprint/3267/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

Validating Planning Domain Models Using B-AMN

M. M. West, D. E. Kitchin and T. L. McCluskey

The School of Computing and Engineering,

The University of Hudders�eld,

Hudders�eld, UK

Abstract

The validation of planning domain models is an important issue and can present prob-

lems. In this paper we describe ongoing work which attempts to overcome these problems

through the construction of a B-AMN speci�cation which models the domain. The B-

Method utilises B-AMN, a state-based formal speci�cation language with tool support

provided by the B-Toolkit. We describe how this tool support provides facilities for both

animation and proof, and we propose the use of the B-Method at an initial level of domain

capture. The approach is illustrated using a simple transport domain, where a high-level

model, which can be reasoned with, is produced. In addition, animation allows validation

by users.

1 Introduction

Much AI planning research has focused on improving the e�ciency of planning algorithms,

but the problems associated with modelling, encoding and validating an AI planning domain

model also need to be addressed. Most would agree with Penix et al's remarks:

A system with a totally correct reasoning algorithm will be ine�ective if its

model of the world is
awed. Therefore, validation becomes a critical task of

evaluating a part of the system to be deployed. [12].

When AI planning researchers encode a new planning domain model their usual approach

is to encode it immediately in either a domain de�nition language such as PDDL [1] or a

domain modelling language such as OCLh [6]. This model would then be validated by testing

it with one or more planning engines on a number of tasks. Some researchers would also make

use of tools, such as syntax and operator consistency checkers [7]. However, it is likely that

any reasonably sized realistic domain model will continue to contain errors and inconsistencies

for some time. A planner may manage to produce a solution despite the fact that the domain

model is
awed. One approach to this is to use model checking for validation, as in [12], but

this is limited by potential state space explosion, as is planning. Another approach could be

to assume that the domain model will be incomplete as in the SiN algorithm [10]. This is a

fruitful assumption in many ways, as philosophically no model can ever be `proved' correct.

However, this approach neglects the issue of correctness - the incomplete parts must still be

validated and bugs identi�ed and eliminated. In this paper we explore an alternative method of

validation, using B-AMN (B Abstract Machine Notation) and the B-Toolkit [5]. The method

is illustrated by a simple model of a transport planning domain, based on the Towns machine

1

in [15]. We show how the approach we describe enables the development of a precise, high-

level model which can be validated both by animation and proof. The advantage of animation

within the B-Toolkit is that the user can validate the behaviour of the speci�cation without

having to access or understand the formal speci�cation language.

2 Formal Methods in Software Engineering and Planning

Formal Methods in software engineering covers the capture and analysis of a (formal) speci�-

cation of software within a structured formal language, as well as the re�nement of a formal

speci�cation into an e�cient implementation. The formal speci�cation language has to be

appropriate to the application at hand, be su�ciently abstract to allow formal reasoning,

and be well supported with a tools environment. The primary concerns in formal methods

are to show that the initial speci�cation is internally consistent and externally valid, and to

prove that that the derived implementation is correct with respect to the speci�cation. These

processes are meant to improve the quality of the software process and product, as they are

aimed at the early identi�cation and removal of bugs. There are a variety of speci�cation

languages, an important distinction being whether the language is explicitly based on alge-

bra or whether it is based on an explicit notion of an abstract state [19]. Super�cially at

least, there is a strong similarity between state-based formal speci�cation languages and plan-

ning languages. Both kinds of languages are designed to allow engineers to represent actions

precisely and declaratively. For example, B-AMN and a STRIPS-language are both based

around the notion of a state, allow the developer to create operators, and in both cases those

operators are de�ned using pre- and postconditions. Further, they are both based on the

assumptions of closed world, default persistence and instantaneous operator execution. The

B-Method requires the creation of state invariants for validity and documentation purposes.

State invariants are also used in some planning languages, though the function of invariants

for validation and veri�cation purposes has been extended to operational concerns such as

plan generation speed-up [13].

The di�erence between those using formal speci�cation to describe systems and those using

a planning language to model a planning domain, is that in the former case the speci�cation

is used as a blueprint for design, whereas in the latter case the speci�cation is used as input to

a planner to be reasoned with in order to construct plans to achieve goals. States in languages

such as B-AMN are built up from mathematical data types such as sets, relations, sequences

etc. Thus B-AMN is richer expressively than a typical language used for encoding a planning

domain model. With some exceptions, such as in deductive planning [3] , much of the work

carried out in planning research assumes little or no structure to types.

3 Modelling a Transport Planning Domain

3.1 The B-Method

The B-Method was developed during the late 1980s by Jean-Raymond Abrial. The B-Method

in common with other `state based' methods utilises the concept of a state machine and B-

AMN is a state-based formal speci�cation language. AMN allows for static type checking

of speci�cations, dynamic validation and mathematical veri�cation by proof to ensure the

correctness of the design process. Although B-AMN is itself non-executable, it is possible to

2

`execute' speci�cations in B-AMN to make their behaviours visible to the customer or user.

(This type of speci�cation execution is often termed animation.) The B-Method and notation

can be used within the B-Toolkit. This provides support in the form of an interface, editors,

syntax and type checkers, an animator, proof obligation generators and provers, and document

production.

A speci�cation will be constructed from one or more abstract machines, with the com-

ponents of a machine being its variables, invariant, initialisation and operations. A typical

abstract machine state comprises several variables which are constrained by the machine

invariant and initialised. Operations on the state contain explicit preconditions; the postcon-

ditions are expressed as `generalised substitutions', giving the language a `program-like feel'.

For example, the postcondition of an operation which incremented a state variable v1, would

be v1 := v1+1. Proof obligations check that, for example, the machine invariant remains true

throughout the machine's operations. To illustrate the method we use a simple example, con-

sisting of a single abstract machine: a fragment of a transport domain consisting of a number

of places which may be linked by roads, and a number of objects which have to be transported

between places via existing roads. Some objects are regarded as mobile and person is a class

of mobile object. An example of a mobile non-person is car and an example of a non-mobile

object is tent . This domain is similar to the planning Logistics domain included with the

SHOP planner [11].

3.2 Speci�cation of TownsXXX

The speci�cation of the transport domain and possible states it may inhabit is accomplished in

B-AMN by a state machine calledTownsXXX where the variables and constants of TownsXXX

are formed from deferred sets (i.e. not instantiated).1 The sets of TownsXXX are OBJECT ;

TOWN and constants and variables are derived from these sets via types. For example, person

and mobile are both constants: person � mobile where mobile � OBJECT. Variables form

part of the state of TownsXXX and include

� roads and Links which are both relations between TOWN and itself

(roads 2 TOWN $ TOWN and similarly for Links). Links is a variable expressing all

possible connections of roads between towns and is formed by the transitive closure of

roads, where the idea for this was taken from [15];

� at town is a function between an object and a town (at town 2 OBJECT 7! TOWN)

which models an object's place, and captures the fact that an object can only be in one

town at any one time;

� Can carry , a relation between objects. obj1 7! obj2 2 Can carry means that obj1 can

carry obj2. Can carry is transitive, so if Can carry(x) = y and Can carry(y) = z ,

then Can carry(x) = z ;

� Picked up is a function linking an object obj1 to a set of other objects, meaning that

obj1 has picked up the set of objects. As objects are introduced to the functional

domain of Can carry , they are also introduced to the domain of Picked up where they

1More information about TownsXXX is provided at http://helios.hud.ac.uk/scommmw/TownsXXX/ which

contains postscript versions of machine and proofs, together with an animation script.

3

are initialised to the empty set. That is, all objects which can carry other objects are

modelled so that they are immediately added to the picked up function, but initially

they will not have picked anything up. This ensures that only those objects able to carry

another object can pick an object up.

The types of the variables of the machine are declared in an invariant which also contains other

constraints on their values. For example the constraint on the values of functions Can carry

and Picked up is expressed in the invariant of TownsXXX as:

dom (Can carry) = dom (Picked up).

The operations of TownsXXX potentially change its state and we view them as being of two

kinds:

(i) Knowledge Accumulation

Each of the variables of the machine are initialised to the empty set and these operations

provide a means of inputting knowledge into the planning domain. For example there is an

operation which links two towns to form a road, and an operation for placing an unplaced ob-

ject. This facility for knowledge accumulation (i.e. not relying on a single initialised domain)

makes for greater generality. In planning, initial states would be de�ned as part of a planning

problem to be solved. Here we can use knowledge accumulation operators to build up to any

initial state. An example follows of an operation parachute in which places an object at a

town. In the example, obj , town are inputs and := means assignment, denoting the change

in variable at town.

parachute in (obj , town) =

PRE town 2 TOWN ^ obj 62 dom (at town) ^ obj 2 OBJECT

THEN at town := at town [f obj 7! town g

END

The preconditions for the above operation include the condition that knowledge is not

overridden:

obj 62 dom (at town)

means that before the operation obj is not attached to a place.

(ii) Performance of Tasks

These operations perform tasks, for example pick up an object or move an object between

towns. The result of the operation drop object is that obj2 is dropped by obj1 (which it

has previously picked up).

drop object (obj1 , obj2) =

PRE obj1 2 dom (Picked up) ^ obj2 2 OBJECT ^

obj2 2 Picked up (obj1)

THEN Picked up := Picked up <+ f obj1 7! Picked up (obj1) � f obj2 g g

END

Picked up links an object obj1 to a set of other objects. In the above, obj2 is dropped and

is removed from the set. However no other variable is altered, so that obj1 and obj2 remain

4

in the same place. There are no assumptions in the speci�cation about any ordering of the

operations. Thus knowledge can be accumulated between tasks. The preconditions for the

tasks e�ectively orders them. Thus an object must have been picked up before it is dropped:

obj2 2 Picked up (obj1).

3.3 Validation of the Transport Domain

TownsXXX was validated using the complementary activities of animation and proof [9]. For-

mal proof compensates for the fact that tests used for animation can seldom be exhaustive.

On the other hand there is no use in seeking a formal proof of a property of a speci�cation if

counter examples indicate that the property is not present. The proof engine of the B-Toolkit

uses backwards and forwards inference, and rewriting is treated as a special form of backwards

inference and is used for animation.

3.3.1 Animation

An advantage of the B-Toolkit is that it provides a tool which allows the developer to animate

a speci�cation. During animation, the deferred sets will be instantiated via the tool, and

operations can be executed on the state. The interface shows the values of variables before

and after execution, allowing validation by the user. In order to check that the TownsXXX

machine behaved as expected it was animated, and deferred sets were instantiated so that

TOWN was provided with set members Hudders�eld ;Bradford ;Leeds ; etc and OBJECT with

members alice; fred ; car ; bike; tent ; rucksack ; etc. Subsets falice; fred ; car ; bikeg, falice; fredg

model mobile; person respectively. Knowledge was accumulated by, for example, linking towns

to form roads and placing objects. The results of the animation can be output to a script (and

one is available from the web page). Animation showed that the machine captured the limited

transport domain. The following example of animation shows the before and after states of

the car dropping the rucksack. In the before state, the car carries the rucksack and fred , and

all are at Bradford . In the after state, the car is carrying only fred , but the places of car ,

rucksack and fred are unaltered { all remain at Bradford .

Current State /* before the operation */

/* Links is omitted as it is lengthy */

roads {Hudds |-> Bradford , Hudds |-> Leeds}

at_town {car |-> Bradford , rucksack |-> Bradford , elephant |-> Hudds ,

alice |-> Hudds , fred |-> Bradford}

Can_carry {elephant |-> rucksack , fred |-> rucksack , car |-> fred ,

elephant |-> car , car |-> rucksack , elephant |-> fred}

Picked_up {fred |-> {} , elephant |-> {} , car |-> {rucksack , fred}}

==

5

drop_object (obj1=car , obj2=rucksack)

Current State /* after the operation */

roads {Hudds |-> Bradford , Hudds |-> Leeds}

at_town {car |-> Bradford , rucksack |-> Bradford , elephant |-> Hudds ,

alice |-> Hudds , fred |-> Bradford}

Can_carry {elephant |-> rucksack , fred |-> rucksack , car |-> fred ,

elephant |-> car , car |-> rucksack , elephant |-> fred}

*Picked_up {car |-> {fred} , elephant |-> {} , fred |-> {}}

==

This facility for animation is similar to a stepper in a planning tool support environment,

such as the one in GIPO [16] and has much the same e�ect: it provides an excellent way of

identifying and removing bugs.

3.3.2 Proof

The B-Toolkit has a facility for generating proof obligations (theorems) for checking consis-

tency. For example a proof obligation is generated which checks that the invariant is obeyed

initially. Also for every operation, op, assuming that the machine invariant, inv(TownsXXX),

and operation precondition, pre (op), is true, the condition must remain true after each op-

eration. For example a proof obligation associated with drop object is that assuming that inv

(TownsXXX) and pre (drop object) are true, the domain of Picked up is (still) the same

as the domain of Can carry .

inv (TownsXXX) ^ pre (drop object))

dom (Can carry) = dom (Picked up <+ f obj1 7! Picked up (obj1) � f obj2 g g)

Proof obligations are discharged either automatically or with some interaction. In all 24

proof obligations were generated, of which 16 were discharged automatically, 4 interactively

and 4 proof obligations (currently) remain undischarged.

4 Discussion

We would envisage using the B-Tool at an initial level of domain capture, to produce a

high-level model. The production of such a high-level model helps clarify thinking about a

domain and helps develop intuitions about it in much the same way as it can during software

engineering requirements speci�cation. We can also reason about this model at an early stage

and at di�erent levels. This can be done independently of any particular planning engine,

whereas typical AI planning domain validation requires the use of a planner. The B-Tool aids

user or domain expert validation of the model as the animator provides a simple interface for

the domain expert to see the e�ect of applying operators directly on the state without going

through a possibly lengthy plan generation process. It also means that the domain expert

does not need to understand the details of the speci�cation language itself. The B-Tool can

produce both proof obligations and proofs which demonstrate the consistency and validity

of the model. The animator provides validation that is complementary to proof, while the

6

proofs demonstrate consistency (or the lack of it). Formal proof can be expensive and time

consuming. Animation tests speci�c cases and can be made understandable to a customer or

a user of the implemented system. This means that potential misunderstandings as to the

functionality of the system can be avoided. However testing can seldom be exhaustive so that

proof provides for the general case. Having validated the model by both animation and proof

obligation generation and discharge, the speci�cation would then provide the basis for the

development of a more detailed implementation-level model.

The development using the B-Tool allows a high-level exploration of the workings and

modelling of the domain. While this may not be vital in small domains, potentially it may

be very valuable in large ones. As is often the case in the use of formal methods in software

engineering, the approach we present here may be particularly useful in the modelling of

planning domains for safety-critical applications, or for high integrity systems, such as space

applications. The B-Method and AMN have been successfully used in the speci�cation of a

number of systems, including the SACEM system to control train speeds on the RER Line

A in Paris [4] and an automatic train control system [17]. The B-Method was also used

for the design and validation of the transaction mechanism for smart card applications [14].

As security in smart card applications is paramount, the use of the B formal method gives

con�dence and provides mathematical proof that the design of the transaction mechanism

ful�lls the security requirements. B-AMN was also used to specify a computer system which

supported the collection and organisation of data for the French population census of 1991 [2].

This data was used for statistical purposes and was critical for the success of the census

process. The use of formal methods in knowledge engineering has been advocated by [20],

and [8] also argue that the use of formal speci�cations for the veri�cation and validation of

knowledge-based systems will improve the quality of those systems. The perceived advantages

of using tool-supported formal methods are:

� Lack of Ambiguity - Models expressed in a formal speci�cation language have a precise

syntax and semantics based on mathematics, which eradicates the ambiguity found in

natural language

� Design - We see the B AMN speci�cation as providing a high level model which can be

used to capture unambiguously the details of a new domain. After validation this can

be used as the basis for an implementation in a language that can be input to a planner

� Validation and Veri�cation - In this case via the animator and proofs

� Evaluation and Maintenance The existence of a precise, high-level speci�cation would

allow new domain features to be added or altered in the future, and the model re-tested

for consistency and validity, as it is a simple matter to regenerate proof obligations.

5 Conclusions and Future Work

This paper work describes work in progress. Future work might be as follows:

� Investigation of the process of implementation. By this we mean the translation from

the AMN speci�cation into a language suitable for input to a planner. The B-Toolkit

supports the processes of re�nement and implementation of an abstract machine, but

7

the target language would be a programming language such as C++ or Java. We need

to test whether the translation from AMN to PDDL or OCLh is straightforward, and if

it preserves the qualities of the formal speci�cation.

� Speci�cation and implementation of a larger example. This would allow us to test the

whole process from speci�cation to implementation. Validation of the speci�cation via

a non-planning expert and via proofs would be further investigated for e�ectiveness.

� Some work has been carried out into the automatic synthesis of domain-dependent plan-

ners from speci�cations [18]. It would be interesting to investigate the possibility of a

similar synthesis of domain model encodings from formal speci�cations.

In conclusion, the development of a high-level model in B-AMN using the B-Toolkit may

be particularly useful in the development of domain models for large, complex and/or safety-

critical applications. It allows the modeller to develop a precise, unambiguous speci�cation,

which can be validated by the user via the animator. Further validation can be performed

via the generation and discharge of proof obligations. The tool support provided by the B-

Toolkit means that the user does not need to be familiar with B-AMN. User validation of a

planning domain model is not easy without some form of tool support, as it is unlikely that

domain experts would be familiar with or fully understand, for example, pieces of ADL or an

HTN operator. One of the reasons often cited for formal methods not being employed in the

development of software engineering systems is that the formalisms are not understandable

to most stake-holders in the proposed system. The approach we describe here o�ers the

advantages associated with the use of formal methods, plus easier validation by domain experts

who are not required also to be experts in either formal methods or AI planning.

References

[1] AIPS-98 Planning Competition Committee. PDDL - The Planning Domain De�nition

Language. Technical Report CVC TR-98-003/DCS TR-1165, Yale Center for Computa-

tional Vision and Control, 1998.

[2] P. Bernard and G. La�tte. The French Population Census for 1991. In J. P. Bowen and

M. G. Hinchey, editors, ZUM'95 { 9th International Conference of Z User's, September

1995, Limerick, Ireland, pages 334 { 352. LNCS 967, Springer-Verlag, 1995.

[3] S. Biundo and W. Stephan. Modeling Planning Domains Systematically. In Proceedings

of the 12th European Conference on Arti�cial Intelligence, 1996.

[4] G. Guiho and C. Hennebert. Sacem software validation. In Proceedings of 12th Inter-

national Conference on Software Engineering, pages 186{191. IEEE Computer Society

Press, 1990.

[5] B-Core (UK) Ltd. http://www.b-core.com/.

[6] T. L. McCluskey. Object Transition Sequences: A New Form of Abstraction for HTN

Planners. In The Fifth International Conference on Arti�cial Intelligence Planning Sys-

tems, 2000.

8

[7] T. L. McCluskey and D. E. Kitchin. A Tool-Supported Approach to Engineering HTN

Planning Models. In Proceedings of 10th IEEE International Conference on Tools with

Arti�cial Intelligence, 1998.

[8] P. Meseguer and A. D. Preece. Assessing the role of formal speci�cations in veri�cation

and validation of knowledge-based systems. In S. Bologna and G. Bucci, editor, Procedings

of the Third International Conference on Achieving Quality in Software, pages 317{328.

Chapman & Hall,London, 1996.

[9] P. Mukherjee. Computer-aided validation of formal speci�cations. Software Engineering

Journal, 10(4):133{140, July 1995.

[10] H. M. Munoz-Avila, D. W. Aha, D. Nau, R. Weber, L. Breslow, and F. Yaman. SiN: Inte-

grating case-based reasoning with task decomposition. In Proceedings of the Seventeenth

International Joint Conference on Arti�cial Intelligence, pages 999{1004, 2001.

[11] D. Nau, Y. Cao, A. Lotem, and H. Munoz-Avila. SHOP: Simple Hierarchical Ordered

Planner. In Proceedings of the Sixteenth International Joint Conference on Arti�cial

Intelligence, 1999.

[12] J. Penix, C. Pecheur, and K. Havelund. Using Model Checking to Validate AI Planner

Domain Models. In Proceedings of the 23rd Annual Software Engineering Workshop,

NASA Goddard, 1998.

[13] J. M. Porteous. Compilation-Based Performance Improvement for Generative Planners.

PhD thesis, Department of Computer Science, The City University, 1993.

[14] D. Sabatier and P. Lartigue. The use of the B formal method for the design and the

validation of the transaction mechanism for smart card applications. In J. M. Wing,

J. Woodcock, and J. Davies, editors, Proceedings of FM'99: World Congress on Formal

Methods, volume 1709 of Lecture Notes in Computer Science (Springer-Verlag), pages

348 {368. Springer Verlag, 1999.

[15] S. Schneider. The B-Method: An Introduction. Palgrave, 2001.

[16] R. M. Simpson, T. L. McCluskey, W. Zhao, R. S. Aylett, and C. Doniat. GIPO: An Inte-

grated Graphical Tool to support Knowledge Engineering in AI Planning. In Proceedings

of the 6th European Conference on Planning, 2001.

[17] I. H. Sorensen and D. Neilson. The speci�cation of an automatic train control system.

B-Core(UK) Ltd, 2002.

[18] B. Srivastava and S. Kambhampati. A Structured Approach for Synthesizing Planners

from speci�cations. In Proceedings of the 12th IEEE International Conference on Auto-

mated Software Engineering, 1997.

[19] J. G. Turner and T. L. McCluskey. The Construction of Formal Speci�cations: an Intro-

duction to the Model-Based and Algebraic Approaches. McGraw-Hill Software Engineering

Series, London. ISBN 0-07-707735-0, 1994.

9

[20] F. van Harmelen and D. Fensel. Formal Methods in Knowledge Engineering. Technical

report, The University of Amsterdam, 1995.

10

