
University of Huddersfield Repository

Guo, Wei

Improving reliability of service oriented systems with consideration of cost and time constraints in
clouds

Original Citation

Guo, Wei (2016) Improving reliability of service oriented systems with consideration of cost and
time constraints in clouds. Doctoral thesis, University of Huddersfield.

This version is available at http://eprints.hud.ac.uk/id/eprint/31699/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

1 | Page

IMPROVING RELIABILITY OF SERVICE

ORIENTED SYSTEMS WITH CONSIDERATION OF

COST AND TIME CONSTRAINTS IN CLOUDS

WEI GUO

A thesis submitted to the University of Huddersfield in partial fulfilment of the

requirements for the degree of Doctor of Philosophy

School of Computing and Engineering

The University of Huddersfield

March 2016

2 | Page

Copyright statement

i. The author of this thesis (including any appendices and/or

schedules to this thesis) owns any copyright in it (the “Copyright”)

and s/he has given The University of Huddersfield the right to use

such copyright for any administrative, promotional, educational

and/or teaching purposes.

ii. Copies of this thesis, either in full or in extracts, may be made only

in accordance with the regulations of the University Library. Details

of these regulations may be obtained from the Librarian. This page

must form part of any such copies made.

iii. The ownership of any patents, designs, trademarks and any and

all other intellectual property rights except for the Copyright (the

“Intellectual Property Rights”) and any reproductions of copyright

works, for example graphs and tables (“Reproductions”), which

may be described in this thesis, may not be owned by the author

and may be owned by third parties. Such Intellectual Property

Rights and Reproductions cannot and must not be made available

for use without the prior written permission of the owner(s) of the

relevant Intellectual Property Rights and/or Reproductions

3 | Page

Abstract

Web service technology is more and more popular for the implementation of

service oriented systems. Additionally, cloud computing platforms, as an efficient

and available environment, can provide the computing, networking and storage

resources in order to decrease the budget of companies to deploy and manage

their systems. Therefore, more service oriented systems are migrated and

deployed in clouds. However, these applications need to be improved in terms of

reliability, for certain components have low reliability. Fault tolerance approaches

can improve software reliability. However, more redundant units are required,

which increases the cost and the execution time of the entire system. Therefore, a

migration and deployment framework with fault tolerance approaches with the

consideration of global constraints in terms of cost and execution time may be

needed.

This work proposes a migration and deployment framework to guide the designers

of service oriented systems in order to improve the reliability under global

constraints in clouds. A multilevel redundancy allocation model is adopted for the

framework to assign redundant units to the structure of systems with fault

tolerance approaches. An improved genetic algorithm is utilised for the generation

of the migration plan that takes the execution time of systems and the cost

constraints into consideration. Fault tolerant approaches (such as NVP, RB and

Parallel) can be integrated into the framework so as to improve the reliability of the

components at the bottom level. Additionally, a new encoding mechanism based

on linked lists is proposed to improve the performance of the genetic algorithm in

order to reduce the movement of redundant units in the model.

The experiments compare the performance of encoding mechanisms and the

model integrated with different fault tolerance approaches. The empirical studies

show that the proposed framework, with a multilevel redundancy allocation model

integrated with the fault tolerance approaches, can generate migration plans for

4 | Page

service oriented systems in clouds with the consideration of cost and execution

time.

5 | Page

Acknowledgements

I would like to show my deepest gratitude to my supervisor, Prof. Joan Lu for her

supervision and financial support for my tuition fee and some living cost. Thanks

to her trust. I also thank my second supervisor, Dr. Qiang Xu, who gives me the

suggestions of my thesis.

I shall extend my thanks to Dr. Hugh Osborne for his valuable advice to my

progress reports. I also want to thank the School of Computing and Engineering

for offering the great opportunity and facilities of study.

I want to thank my parents, Zhenjie Guo and Li Zhang who support my study no

matter how big difficulties arise. More than anyone else, I would like to thank my

wife, Jinyan Li, for her patience and love.

6 | Page

Declaration

This dissertation is submitted for the degree of Doctor of Philosophy at the

University of Huddersfield. I declare that the work in this dissertation was carried

out in accordance with the Regulations of the University of Huddersfield.

This work is original except where acknowledgment and references are made to

the previous work. Neither this nor any substantially similar dissertation has been

or is being submitted for a degree, diploma or other qualification at any other

universities.

7 | Page

Contents

ABSTRACT….. ... 3

ACKNOWLEDGEMENTS ... 5

DECLARATION ... 6

CONTENTS……. .. 7

LIST OF TABLES .. 10

LIST OF FIGURES .. 11

CHAPTER 1 INTRODUCTION ... 13

1.1 INTRODUCTION ... 13

1.2 IMPORTANCE AND SIGNIFICANCE ... 16

1.3 AIMS AND TASKS ... 17

1.4 CONTRIBUTIONS ... 18

1.5 STRUCTURE OF THE THESIS .. 19

CHAPTER 2 BACKGROUND .. 20

2.1 INTRODUCTION ... 20

2.1.1 Migration of service oriented systems into clouds ... 20

2.1.2 The reliability of service oriented systems ... 20

2.1.3 Fault tolerance strategies .. 21

2.1.4 Redundancy allocation problems (RAPs) .. 21

2.2 RELATED WORK .. 22

2.2.1 Migration of service oriented systems ... 22

2.2.2 Literature review of the reliability of service oriented systems 26

2.2.3 Related work of Fault tolerance strategies .. 29

2.2.4 Related work of redundancy allocation problems .. 30

2.3 FAULT TOLERANCE STRATEGIES FOR SERVICE ORIENTED SYSTEMS 33

2.3.1 Recovery block (RB) (Bonvin, Papaioannou, & Aberer, 2010) 34

2.3.1.1 System structure ... 35

2.3.1.2 Quantitative and qualitative analysis (Zheng & Lyu, 2015) 39

2.3.2 N-version programming (NVP) (Avizienis, 1995) ... 39

2.3.2.1 System structure ... 40

2.3.2.2 Quantitative and qualitative analysis ... 43

2.3.3 Parallel (Qiu, Zheng, Wang, Yang, & Lyu, 2014) ... 43

8 | Page

2.3.3.1 Quantitative and qualitative analysis ... 44

2.3.4 The comparison of the fault tolerance schemes .. 44

2.4 RELATED TECHNOLOGIES ... 45

2.4.1 Web service ... 45

2.4.1.1 Concepts ... 45

2.4.1.2 Major Classes of Web services ... 46

2.4.1.3 Communication ... 47

2.4.1.4 Tools .. 48

2.4.2 Cloud computing ... 49

2.4.2.1 Concepts ... 49

2.4.2.2 Theoretical models .. 50

2.4.2.3 Structures .. 50

2.4.2.4 Communications ... 51

CHAPTER 3 APPLICATION MIGRATION AND DEPLOYMENT FRAMEWORK 53

3.1 INTRODUCTION ... 53

3.2 DESIGN OF THE MIGRATION AND DEPLOYMENT FRAMEWORK ... 61

3.2.1 Usage environment ... 61

3.2.2 Components of the framework .. 63

CHAPTER 4 MULTILEVEL REDUNDANCY ALLOCATION MODEL 66

4.1 INTRODUCTION ... 66

4.2 TERM DEFINITION ... 67

4.3 ADOPTION OF A MULTILEVEL REDUNDANCY ALLOCATION MODEL .. 68

4.4 ADOPTION AND MODIFICATION OF AN OPTIMISATION PROBLEM .. 70

4.4.1 Adoption of reliability computing .. 71

4.4.2 Adoption of cost computing ... 74

4.4.3 Development of execution time computing ... 74

4.4.4 Modification of the optimisation problem ... 76

4.5 ADOPTION AND MODIFICATION OF GENETIC ALGORITHM .. 77

4.5.1 Traditional encoding mechanism ... 77

4.5.2 Development of linked list based encoding mechanism .. 83

4.5.3 Adoption of genetic algorithm framework .. 85

4.5.4 Adoption and modification of fitness function .. 86

4.5.5 Development of population initialisation .. 88

4.5.6 Development of the wheel selection method ... 90

4.5.7 Adoption and modification of sensitivity analysis .. 91

4.5.8 Development of local search method .. 94

4.5.9 Development of MLRAP with RB, Parallel and NVP ... 95

4.6 SUMMARY .. 97

CHAPTER 5 DESIGN OF EXPERIMENTS .. 99

9 | Page

5.1 INTRODUCTION ... 99

5.2 TEST BED DESIGN AND IMPLEMENTATION ... 99

5.2.1 Objectives and requirements ... 99

5.2.2 Development tools ... 100

5.2.2.1 The tools for the migration and deployment framework .. 100

5.2.2.2 The tools for service oriented systems and the cloud ... 101

5.3 PROBLEM-A AND PROBLEM-B ... 103

CHAPTER 6 RESULTS AND DISCUSSIONS .. 108

6.1 RESULTS .. 108

6.1.1 Performance comparison of encoding mechanisms ... 108

6.1.2 Experimental results on Problem-A ... 109

6.1.3 Experimental results on Problem-B .. 112

6.1.4 Experimental results on Problem-A and Problem-B ... 114

6.1.4.1 w = 0 .. 115

6.1.4.2 w = 1 .. 116

6.1.4.3 w = 0.5 and K = 3 .. 118

6.1.5 Analysis .. 119

6.1.6 Discussion .. 119

CHAPTER 7 CONCLUSION AND FUTURE WORK .. 121

7.1 CONCLUSION ... 121

7.2 FUTURE WORK ... 124

REFERENCE…. ... 126

10 | Page

List of Tables

Table 2.1: The summary of the fault tolerance strategies ... 44

Table 4.1: The formulas of the fault tolerance strategies .. 96

Table 5.1: The input parameters of the units in Problem-A and Problem-B 104

11 | Page

List of Figures

Figure 1.1: An example of the deployment of service oriented systems in clouds 15

Figure 1.2: A four-level multi-level system (Kumar, Izui, Yoshimura, & Nishiwaki, 2009) 16

Figure 2.1: Idealised module with RB (Randell & Xu, 1995) ... 35

Figure 2.2: The execution steps of RB .. 37

Figure 2.3: The sequence diagram of the execution steps of RB ... 37

Figure 2.4: The UML activity diagram of the execution steps of RB 38

Figure 2.5: The programming description of the execution steps of RB 38

Figure 2.6: The system structure of NVP .. 41

Figure 2.7: The sequence diagram of the execution steps of NVP 41

Figure 2.8: The activity diagram of the execution steps of NVP ... 42

Figure 2.9: The programming description of the execution steps of NVP 42

Figure 2.10: The relationship between UDDI, service consumers and service providers 47

Figure 2.11: The relationship between users and cloud computing platforms (Rajaraman,

2014) ... 51

Figure 2.12: The relationship between SaaS, PaaS and IaaS (Rajaraman, 2014) 52

Figure 3.1: An example of a service oriented system ... 54

Figure 3.2: An example of SaaS and IaaS in a cloud computing platform 55

Figure 3.3: An example of the deployment of a migrated service oriented system in clouds 57

Figure 3.4: An example of an original module ... 58

Figure 3.5: Redundancy arrangement for components .. 59

Figure 3.6: Redundancy arrangement for the entire module .. 59

Figure 3.7: The migration and deployment framework for service oriented systems 63

Figure 4.1: An example of the transformation of a multilevel redundancy allocation model . 69

Figure 4.2: An example of redundancy allocation model .. 71

Figure 4.3: The serial relationship between two units ... 72

Figure 4.4: The parallel relationship between two units .. 72

Figure 4.5: The algorithm of computing reliability ... 73

Figure 4.6: The algorithm of computing cost ... 74

Figure 4.7: The algorithm for computing the execution time ... 75

Figure 4.8: An example of a tri-level multilevel redundancy allocation model 78

Figure 4.9: The model after redundancy allocation ... 78

Figure 4.10: The traditional encoding mechanism .. 79

Figure 4.11: The example of the increase operation of a redundant unit 81

Figure 4.12: An example of the decrease operation of a redundant unit 82

Figure 4.13: The structure of the new encoding mechanism .. 83

Figure 4.14: The increase operation of a redundant unit .. 84

Figure 4.15: The decrease operation of a redundant unit ... 85

Figure 4.16: The genetic algorithm framework.. 86

Figure 4.17: The algorithm of the fitness function ... 88

Figure 4.18: An example of the population initialisation approach .. 88

Figure 4.19: The relationship between the parent and children units 89

Figure 4.20: The algorithm of the population initialisation ... 90

12 | Page

Figure 4.21: The algorithm of the wheel selection function ... 91

Figure 4.22: An original system as the example of the sensitivity analysis 92

Figure 4.23: A redundant unit added to a unit at the bottom level ... 92

Figure 4.24: A redundant unit added to a unit at the subsystem level 93

Figure 4.25: The algorithm of the local search method ... 94

Figure 4.26: The increase and decrease operation of generating new solutions 95

Figure 5.1: The multilevel configuration of Problem-A .. 103

Figure 5.2: The multilevel configuration of Problem-B .. 104

Figure 5.3: The classes and functions of the genetic algorithm .. 105

Figure 6.1: Performance comparison of increase operation on Problem-A 108

Figure 6.2: performance comparison of decrease operation on Problem-A 108

Figure 6.3: Performance comparison of increase operation on Problem-B 109

Figure 6.4: Performance comparison of decrease operation on Problem-B 109

Figure 6.5: Reliability on Problem-A (w=0.4) .. 110

Figure 6.6: Reliability on Problem-A (w=0.5) .. 111

Figure 6.7: Reliability on Problem-A (w=0.6) .. 112

Figure 6.8: Reliability on Problem-B (w=0.4) ... 113

Figure 6.9: Reliability on Problem-B (w=0.5) ... 113

Figure 6.10: Reliability on Problem B (w=0.6) .. 114

Figure 6.11: Reliability on Problem-A (w=0) ... 115

Figure 6.12: Reliability on Problem B (w=0) ... 116

Figure 6.13: Reliability on Problem-A (w=1) ... 117

Figure 6.14: Reliability on Problem B (w=1) ... 117

Figure 6.15: Reliability on Problem-A (w=0.5 and K=3) ... 118

Figure 6.16: Reliability on Problem-B (w=0.5 and K=3) ... 119

13 | Page

Chapter 1 Introduction

1.1 Introduction

Web services are becoming more and more popular for the design and

development of systems and applications in distributed network environments.

Service oriented systems provide interoperable machine-to-machine

communication and interaction in distributed networks. Organisations have a

large number of software systems, which may need to communicate with each

other at service and system levels. Web service technology is common and

available to support communication and data exchange between two systems or

components. It can provide unique and standard interfaces (Ahmed, Wu, & Zheng,

2015) for transferring messages. Additionally, systems may be designed and

implemented in various programming languages, which may cause difficulties in

integrating their services or functions.

Web services can be described by universal description, discovery and

integration (UDDI), which defines the accessed components of systems and the

data types of their parameters. An XML-based interface definition language, Web

services description language (WSDL) is utilised to depict functionalities of a

service (Qiu, Zheng, Wang, Yang, & Lyu, 2014). There are two roles in

communication between two systems, which are the service provider and the

service requester, respectively. Service requesters send requests and the service

provider is responsible for processing requests and sending responses back to

the service requester. UDDI is called the service broker. Specifically, if one

system requires a specific function provided by a service of another application, it

can be found out via UDDI. Thereafter, the service requester sends data via a

protocol called the simple object access protocol (SOAP). Once the service

provider receives the request, it is processed and its response is sent back.

Representational state transfer (REST) or RESTful Web services are another way

of implementing communication between computers. Computer systems can

14 | Page

send requests and manipulate Web resources with a uniform and stateless

operations (Maciel & Hirata, 2013). The usage of a stateless protocol is for fast

performance.

In the software reliability field, four methods are commonly utilised to enhance

software reliability, which are separately fault prevention, fault tolerance, fault

removal and fault forecasting (Qiu, Zheng, Wang, Yang, & Lyu, 2014). Current

systems and applications are commonly complex, including a lot of functionalities

and services which are implemented with various technologies. A function of an

application may consist of several subcomponents. Fault prevention and fault

removal strategies are insufficient to prevent the occurrence of faults and remove

software faults (Qiu, Zheng, Wang, Yang, & Lyu, 2014). Fault forecasting may

detect possible software faults. Certain faulty components, however, cause

serious economic losses if these faults cannot be identified and occur. The only

possible alternative to solve faults in distributed systems is fault tolerance

strategies, which adds redundant equivalent components into systems to tolerate

faults so as to improve their reliability (Zheng & Lyu, 2015). In addition, distributed

systems are also influenced by the deployment platforms (Qiu, Zheng, Wang,

Yang, & Lyu, 2014).

Cloud computing is an approach of availing network, computational and storage

resources to end-users through the Internet from companies, organisations and

individuals. Cloud computing provides shared network, computational and

storage resources on demand. End users of clouds can access these resources

and return them after utilisation. Providing resources on demand enables users to

access cloud computing platforms according to their actual requirements, which is

like the electricity grid (Altmann & Kashef, 2014; Armbrust, Fox, Griffith, Joseph,

Katz, Konwinski, Lee, Patterson, Rabkin, Stoica, & Zaharia, 2009). Clouds are

universally being utilised by a large number of companies, and more and more

legacy applications are being migrated to cloud computing platforms (Qiu, Zheng,

Wang, Yang, & Lyu, 2014). Several companies have already provided cloud

15 | Page

services to end users, such as Gmail and OneDrive (Rajaraman, 2014). Figure

1.1 depicts an example of the deployment of a service oriented in clouds.

Software as a service (SaaS) is a delivery model in which applications are

deployed in distributed systems and accessed by users through Web browsers

(Kureshi, Pulley, Brennan, Holmes, Bonner, & James, 2013). The circles at the

SaaS layer are services distributed in virtual machines supported by physical

machines at the physical layer.

Figure 1.1: An example of the deployment of service oriented systems in clouds

Service oriented systems are deployed in cloud computing platforms as shown in

Figure 1.1. To improve the reliability, fault tolerance strategies can be employed

(Qiu, Zheng, Wang, Yang, & Lyu, 2014). However, more redundant units add

additional costs to the configuration of fault tolerance strategies and redundant

components, which forces companies deploying services to pay more expenses.

Therefore, a trade-off between the reliability of systems and cost needs to be

considered. The problem is generally called redundancy allocation problems

(RAPs) (Fyffe, Hines, & Lee, 1968), which are used to depict systems consisting

of several subsystems. The aim of RAPs is to maximise the reliability of systems

by allocating redundancy to these subsystems under the constraints, such as cost,

etc. RAPs are general nonlinear integer programming problems and NP-hard (He,

Wu, Xu, Wen, & Jiang, 2013). Therefore, RAPs attempt to identify the optimal

16 | Page

redundancy allocation of systems in order to maximise their reliability under

several constraints.

Multilevel redundancy design is commonly employed in computing systems,

control systems, communication systems and critical power systems(Wang,

Loman, & Vassiliou, 2004). Figure 1.2 illustrates an example of a four-level

system. In multi-level systems, some assumptions (He, Wu, Xu, Wen, & Jiang,

2013; Kumar, Izui, Yoshimura, & Nishiwaki, 2009; Wang, Tang, & Yao, 2010) are

commonly made: (1) units at system and subsystem levels are serial; (2) for a unit

at the component level, the relation of duplicated units is parallel; (3) units at all

levels can have redundancy allocation.

Figure 1.2: A four-level multi-level system (Kumar, Izui, Yoshimura, & Nishiwaki,

2009)

1.2 Importance and significance

Redundancy allocation to one unit can improve reliability of a system. However,

the additional units of equivalent functions need more extra computational,

network and storage resources, which enable companies migrating and deploying

service oriented systems in clouds to consider additional expenses. Therefore, it

may be necessary to design an algorithm to improve the reliability of systems and

take cost into consideration. In addition, the performance of service oriented

systems may be represented by the execution time, which can be computed via

17 | Page

all their units. Therefore, the proposed algorithm in this work not only enhances

the reliability of systems, but also meets the cost and execution time constraints.

Importance and significance are depicted as follows.

1) The reliability of service oriented systems needs to be improved, for

software bugs are difficult to detect in distributed platforms (Qiu, Zheng,

Wang, Yang, & Lyu, 2014).

2) The cost and execution time constraints may be considered for the

migration and deployment of service oriented systems to clouds so as to

reduce companies’ expenses.

1.3 Aims and tasks

When a Web service based system is being migrated into a cloud, redundant

services can be assigned in order to improve the reliability. However, currently

there is less research to treat it as an optimization problem. In practice, computing,

storage and networking resources limit and higher reliability should be balanced.

Therefore, this work proposes the hypothesis that migration of Web service based

systems into clouds is an optimization problem.

The aims and tasks of this work are described as follows.

1) A migration framework for service oriented systems to clouds needs to be

proposed, which utilises a multilevel redundancy allocation model to

describe service oriented system structure with the consideration of cost

and execution time constraints. The generated migration plan via the

framework can guide developers to perform the migration and deployment

of service oriented systems to clouds.

2) A model needs to be created in order to describe the redundancy

allocation problem for service oriented systems in clouds.

18 | Page

3) An algorithm needs to be created to generate the optimal solution for the

migration of service oriented systems under the cost and execution time

constraints.

In summary, the aims and tasks in this work are to propose a migration framework

with a model describing the structure of service oriented systems in clouds. It can

generate an optimal migration plan under the cost and execution time constraints.

1.4 Contributions

The main contributions of this work are summarised as follows,

1) A migration framework of service oriented systems to clouds is proposed,

which considers cost and execution time features and is different from

previous research (Qiu, Zheng, Wang, Yang, & Lyu, 2014; Zheng & Lyu,

2015). The framework can automatically generate an optimal migration

and deployment plan for service oriented systems in clouds.

2) The multilevel redundancy allocation model is utilised to describe the

structure of service oriented systems.

3) One genetic algorithm in the multilevel redundancy allocation field is

employed to explore the optimal migration and deployment plan under the

cost and execution time constraints. Additionally, it can be integrated with

some fault tolerance strategies, such as Recovery Block (RB), N-version

programming (NVP) and Parallel.

4) The cost and execution time constraints are taken into consideration for

the exploration of the optimal migration and deployment plans.

5) A new encoding mechanism is proposed to improve the performance of

the genetic algorithm.

In summary, the contributions in this work propose a migration framework with a

genetic algorithm expanding TDA-HGA (He, Wu, Xu, Wen, & Jiang, 2013), which

is a multilevel redundancy allocation method with two dimensional arrays

19 | Page

encoding mechanism and hybrid genetic algorithm. The framework in this work

can generate the optimal migration and deployment plan for a service oriented

system under cost and time constraints. Additionally, this work proposes a new

encoding mechanism to improve TDA-HGA performance.

1.5 Structure of the thesis

Chapter 1 illustrates the importance and significance, aims and tasks and

contributions. This thesis proposes a migration framework for service oriented

systems in clouds to guide developers in order to improve their reliability under

the cost and execution time constraints.

Chapter 2 describes the related work in reliability, service and cloud computing

field. The fault tolerance strategies, RB, NVP, Parallel are described.

Chapter 3 depicts the migration framework. The log files and predefined

constraints are input parameters and the optimal solution can be generated

automatically for the developers.

Chapter 4 describes the multilevel redundancy allocation model, which is

improved to take reliability, cost and execution time constraints into consideration.

Furthermore, a new encoding mechanism is proposed to improve performance.

Chapter 5 depicts the design of the experiments in this thesis.

Chapter 6 illustrates the empirical studies. The performance comparison between

traditional and proposed encoding mechanisms has been performed. The results

from the model integrated with RB, NVP and Parallel are shown and compared.

Chapter 7 depicts the conclusion and the future work of the thesis.

20 | Page

Chapter 2 Background

2.1 Introduction

In this chapter, relevant algorithms, approaches, schemes and techniques are

listed and discussed. Previous research is listed in terms of the migration of

service oriented systems, their reliability, fault tolerance strategies and the

multilevel redundancy allocation problem.

2.1.1 Migration of service oriented systems into clouds

Cloud computing platforms enable companies and end users to use computing,

networking and storage resources (Zhu, Zheng, & Lyu, 2013). This type of

resource organisation decreases hardware and human costs and budgets.

Meanwhile, the companies providing the resources of the clouds can efficiently

organise computer resources and offer stable and extensible platforms to users.

Clouds are ideal computing platforms for small scale companies to deploy their

distributed systems and applications (Zheng, Zhang, & Lyu, 2010). The

distributed computing environment, however, cannot confirm the stability of the

deployed systems. Therefore, the reliability of service oriented systems needs

fault tolerance strategies to guarantee stable and reliable services for users (Qiu,

Zheng, Wang, Yang, & Lyu, 2014).

2.1.2 The reliability of service oriented systems

Currently, the algorithms and approaches to solve the reliability problem of

service oriented systems mainly focus on the selection of some key components

of systems, which are frequently invoked by end users or other components. If

these components crash or fail to work, the whole system perhaps cannot

successfully complete corresponding tasks. If they are related to finance or

human safety, financial losses or accidents may occur. Current algorithms and

approaches select the key components and provide these components with fault

tolerance approaches (Zheng & Lyu, 2015), which enhance the reliability of

service oriented systems in clouds. They, however, bring extra costs and

21 | Page

execution time, since additional components utilised in fault tolerance strategies

require more design, development and configuration costs and execution time.

2.1.3 Fault tolerance strategies

Failure definition: A failure is that the delivered service no longer complies with

the specifications (Zheng & Lyu, 2015).

Fault definition: A fault is an abnormal condition or defect at the component,

equipment, or sub-system level which may lead to a failure (Zheng & Lyu, 2015).

Fault tolerance approaches assign functionally equivalent components in order to

improve reliability (Wang, Tang, & Yao, 2010). Commonly used fault tolerance

strategies include RB, NVP and Parallel (Duan, Peisert, & Levitt, 2014; Kotla,

Alvisi, Dahlin, Clement, & Wong, 2009 ; Qiu, Zheng, Wang, Yang, & Lyu, 2014).

The detailed description of these strategies is as follows,

1) Recovery Block (RB) (Bonvin, Papaioannou, & Aberer, 2010): If a service

fails to work, one functionally equivalent service continues to perform the

request. If the selected service fails to work either, another sequential

service continues to finish the request.

2) N-Version Programming (NVP) (Brin & Page, 1998): All the services in

NVP are invoked in parallel and the final response is voted on and

determined by the majority of responses from all the services.

3) Parallel (Wang & Li, 2012): A request is assigned to all the services in

Parallel. The final result is determined by the first arrival response from the

services.

2.1.4 Redundancy allocation problems (RAPs)

RAPs assign additional identical units to a component in a parallel manner to

enhance its reliability. As a special problem of RAPs, multilevel redundancy

allocation problem (MLRAP) adopts a layer approach to describe the system

structure. Theoretically, a system or application can be depicted as a tree

22 | Page

structure. Each layer of the tree structure can be allocated with redundant units.

MLRAP not only provides redundancy allocation to each component at the bottom

layer, but the ones at the abstract layers as well (He, Wu, Xu, Wen, & Jiang, 2013;

Onishi, Kimura, James, & Nakagawa, 2007; Wang, Tang, & Yao, 2010; Yalaoui,

Chatelet, & Chu, 2005).

2.2 Related work

2.2.1 Migration of service oriented systems

A component ranking framework has been proposed for services in cloud

computing platforms (Zheng, Zhang, & Lyu, 2010). A network can be utilized to

describe software structure. However, a software system in reliability may be a

tree. The location of the services of the applications has been utilised for reliability

prediction (Lo, Yin, Deng, Li, & Wu, 2012). The location can affect execution and

message transferring time. Two personalised prediction approaches for Web

services have been proposed (Zheng & Lyu, 2013). Software reliability can be

predicted early (Cheung, Roshandel, Medvidovic, & Golubchik, 2008). An

empirical analysis of predictive algorithms has been performed in the reliability

research (Breese, Heckerman, & Kadie, 1998). These work describes a system

as a graph. Total cost and qualities can be calculated via collecting each service

information.

The latency and time-correlated faults of the applications in distributed platforms

have been considered in a lot of research. The time correlation of the failures of

applications has been investigated in distributed environments (Yigitbasi, Gallet,

Kondo, Iosup, & Epema, 2010). The work takes the fundamental network

mechanism, failure group window, into account. Dynamic request transferring has

been performed in clouds in order to tolerate latency variability (Zhu, Zheng, &

Lyu, 2013). Hybrid architecture in clouds has been proposed to decrease the

latency of on-demand games (Choy, Wong, Simon, & Rosenberg, 2014). Time

cost in distributed environments can affect software quality. The factors impacting

the response time of the applications in clouds have been investigated (Wang,

23 | Page

Kanemasa, Li, Jayasinghe, Kawaba, & Pu, 2012). The latency of services has

been regarded as a QoS indicator in cloud computing platforms (Pedersen, Tahir

Riaz, Dubalski, Ledzinski, Júnior, & Patel, 2013). Therefore, time cost of service

execution and message transferring should be considered to improve software

availability.

The representational state transfer (REST) and SOAP interfaces have been

researched in terms of latencies of service invocation and processing (Aihkisalo &

Paaso, 2012). The work embeds the latency mechanism into communication

protocols. However, if applications are not based on REST or SOAP, the latency

mechanism may be not utilized. The latency of Web services in health care

systems has been investigated via GSM networks (Meiappane, Murugan,

Murugan, Arun, & Ramachandran, 2010). Methods to reduce Web latency have

been proposed (Flach, Dukkipati, Terzis, Raghavan, Cardwell, Cheng, Jain, Hao,

Katz-Bassett, & Govindan, 2013). A Web service positioning framework has been

proposed for response time prediction (Zhu, Kang, Zheng, & Lyu, 2012). The

location has been regarded as an element of the decision in a QoS based service

recommendation (Yu & Huang, 2014). In summary, latency can influence the

performance of service oriented systems and needs to be considered for the

migration and deployment of service oriented systems into clouds.

A lot of research has been undertaken in cloud computing (Armbrust, Fox, Griffith,

Joseph, Konwinski, Lee, Patterson, Rabkin, Stoica, & Zaharia, 2010; Assuncao,

Calheiros, Bianchi, Netto, & Buyya, 2013; Baroncelli, Martini, & Castoldi, 2010;

Borsato, 2015; Jung & Sim, 2011; Kumar & Vidhyalakshmi, 2012; Liu, 2013;

Lombardi & Di Pietro, 2011; Phyu & Thein, 2011; Qian, Hardjawana, Shi, &

Vucetic, 2015; Ro, 2015; Shen, Chen, Shen, Mei, & Pu, 2014; Tian & Meng, 2010;

Wei, Pearson, Matsuura, Lee, & Naik, 2014). Cloud computing platforms are the

foundation of SaaS providers (Armbrust, Fox, Griffith, Joseph, Katz, Konwinski,

Lee, Patterson, Rabkin, Stoica, & Zaharia, 2009). Grid scheduling based on a

service level agreement (SLA) has been proposed (Hasanzadeh Mofrad, Jalilian,

24 | Page

Rezvanian, & Meybodi, 2016). The resources of clouds have been provided for

application deployment (Yangui, Ben Nasrallah, & Tata, 2013). A distributed

storage management system has been proposed with reliable, efficient and

transparent features (Kosar, Akturk, Balman, & Wang, 2011). A mechanism

should be utilized to improve software reliability transparently in clouds. Some

studies have been performed based on Citrix (Dunn, 2007; Feng, Luo, & Jin, 2012;

Jung, Bae, & Lee, 2011; Schlosser, Staehle, Binzenhöfer, & Boder, 2010; Shirey,

Charng, & Nguyen, 2013; Staalinprasannah & Suriya, 2013).

Some cloud computing platforms are being widely utilized. A lot of research is

based on OpenStack (Campos, Fernández-del-Castillo, Heinemeyer,

Lopez-Garcia, Pahlen, & Borges, 2013; Corradi, Fanelli, & Foschini, 2014; Kim &

Mook, 2013; Kostantos, Kapsalis, Kyriazis, Themistocleous, & da Cunha, 2013;

Kureshi, Pulley, Brennan, Holmes, Bonner, & James, 2013). Windows Azure is a

popular cloud computing platform for software deployment (Cała & Watson, 2010;

Dave, Lu, Jackson, & Barga, 2011; Zhao, Ren, Li, & Sakurai, 2012).

Some studies have been performed on the integration of application on cloud

computing platforms and big data platforms (Assunção, Calheiros, Bianchi, Netto,

& Buyya, 2015; Baek, Vu, Liu, Huang, & Xiang, 2015; Chang, Tsai, Chen, Huang,

& Hsu, 2015; Hashem, Yaqoob, Anuar, Mokhtar, Gani, & Ullah Khan, 2015; Hu,

2015; Yeo & Crawford, 2015). Apache Hadoop as a tool of big data has been

investigated (Saraladevi, Pazhaniraja, Paul, Basha, & Dhavachelvan, 2015; Yao,

Tian, Li, Tian, Qian, & Li, 2015; Yu, Zhao, Wang, Wang, & Zhang, 2015). Apache

HBase has been applied for data storage in big data platforms (Agrawal,

Chakravorty, Rong, & Wlodarczyk, 2014; Chang, Tsai, Guo, & Chen, 2015;

Huang, Wang, Zhu, Wang, & Yu, 2014; Lee & Zheng, 2015; Serrano, Han, &

Stroulia, 2015; Wang, Cheng, Wu, Wu, & Teng, 2015). Apache Hive has been

investigated for big data platforms (Chao, Li, Liang, Lu, & Xu, 2015; Luo, Liu, &

Watfa, 2014; Wang, Bian, Chen, Wang, & Xu, 2014). Based on the research

25 | Page

above, cloud computing platforms is a suitable environment for the migration and

deployment of service oriented systems.

In terms of the reliability of service oriented systems in clouds, there has been a

lot of research. The method of component ranking for applications in cloud

computing platforms has been proposed, which can rank the services of

applications according to their structures and the invocation frequencies (Zheng,

Zhou, Lyu, & King, 2012). A framework for service oriented applications in clouds

has been illustrated, which can identify the important components and improve

their reliability with fault tolerance strategies (Zheng, Zhou, Lyu, & King, 2010).

Software systems are described as graphs. After these algorithms calculate

component ranking, the most significant services can be selected. However,

sometimes a group of neighbouring components are important. These algorithms

may consider the whole application instead of some small groups.

Some work based on Bayesian work has be investigated. A knowledge

engineering framework based on a Bayesian network for the management of the

services in distributed environments has been illustrated (Wang, Wang, Yang, Liu,

Liu, & Zeng, 2013). Bayesian networks have been exploited for software defect

prediction (Okutan & Yıldız, 2014). Research has been performed on Byzantine

fault tolerance for applications (Zhao, 2007). A method based on Byzantine fault

tolerance has been investigated for services with commutative operations (Chai &

Zhao, 2014). A novel approach has been proposed to integrate Byzantine fault

tolerance and Shamir’s method to detect failures in stored data in clouds (AlZain,

Soh, & Pardede, 2013). An approach based on Byzantine fault tolerance

strategies can also be utilised for unreliable processors (Hsieh & Chiang, 2011).

The Byzantine fault tolerance method has been exploited in federated cloud

computing platforms (Garraghan, Townend, & Xu, 2011). A Byzantine

fault-tolerant framework has been designed and developed for service oriented

applications (Zhao, 2009). An investigation of Byzantine fault tolerance

approaches has been performed for MapReduce in big data platforms (Costa,

26 | Page

Pasin, Bessani, & Correia, 2013). A fused data structure has been utilised for fault

tolerance in distributed environments (Balasubramanian & Garg, 2013). However,

execution time of algorithms based on Bayesian networks is a problem.

Some migration frameworks for applications into clouds have been proposed. A

database has been placed intelligently in cloud computing platforms (Yu, Qiu,

Reinwald, Zhi, Wang, & Wang, 2012). The services of applications can be placed

in the federated hybrid clouds with the consideration of cost model (Altmann &

Kashef, 2014). A new scheme for the migration of the cloud applications has been

proposed in order to minimise resource consumption (Tziritas, Khan, Xu,

Loukopoulos, & Lalis, 2013). A pattern based approach has been described for

the migration of applications in clouds (Cai, Zhao, Wang, Yang, Qin, & Yin, 2015).

A method for cost-effective migration to cloud computing platforms has been

depicted (Huang, Yi, Song, Yang, & Zhang, 2014). The migration of a multi-tier

application has been investigated (Liu & He, 2015). However, although these

frameworks can compute the total resources, time and configuration cost,

software reliability has not been considered during migration.

2.2.2 Literature review of the reliability of service oriented systems

For the reliability of applications, a lot of research has been proposed (Brun, Bang,

Edwards, & Medvidovic, 2015; Jais, 2015; Manen, Brandt, Ekris, & Geurts, 2015;

Sharma, Saket, & Sagar, 2015; Singh, Tripathi, & Vinod, 2015; Zhu, Zhang, &

Pham, 2015). A roadmap of software reliability engineering has been proposed to

describe the methods and the trends of fault tolerance strategies (Lyu, 2007). The

Quality of Service (QoS) is an important feature for distributed applications.

Additionally, QoS features of Web services in the real world have been

investigated in order to provide data sets (Zheng, Zhang, & Lyu, 2014), which can

be employed for the experiments in the Web service field. The ranking of the

components and modules of applications can be performed according to usage

relations (Inoue, Yokomori, Yamamoto, Matsushita, & Kusumoto, 2005). The

page ranking approach has been exploited for large-scale applications (Brin &

27 | Page

Page, 1998). Therefore, they both need to identify significant software

components.

A QoS aware fault tolerant middleware for dependable service composition has

been proposed (Zheng & Lyu, 2008). A QoS aware fault tolerance strategy has

been described, which enables a QoS system to dynamically adjust the fault

tolerance approaches in order to achieve optimal reliability of the entire

application (Zhu, Qin, & Qiu, 2011). These work apply fault tolerance strategies to

the selected important components. The failures in the service of applications can

be extracted from server logs and the reliability can be evaluated through the

faults (Huynh & Miller, 2009). In these publications, it is clear that a service

oriented system can be described as a network and the QoS features can be

utilised to describe its performance.

Some models and patterns are designed to improve the reliability of service

oriented systems. A fuzzy model has been depicted to measure software

reliability, which can evolve procedures from the unreliable state to the reliable

state of the applications (Kumar, Khatter, & Kalia, 2011). A model has been

proposed for high-performance computing applications to resolve simultaneous

failures (Thanakornworakij, Nassar, Leangsuksun, & Paun, 2013). A tool has

been proposed so that the reliability of the applications can be conducted based

on reliability patterns (Coppolino, Romano, & Vianello, 2011). The concurrent

software applications with the consideration of software architecture are analysed

for efficient reliability (El Kharboutly & Gokhale, 2014). The impact of the

middleware service on the reliability of the systems has been investigated based

on simulation analysis through the experiment on a Java application server

(Huang, Wang, Liu, & Mei, 2011).

Some investigations have been performed for the prediction and analysis of

reliability. A reliability model has been depicted for the reliability prediction of

service oriented systems according to their architectures (Mirandola, Potena,

28 | Page

Riccobene, & Scandurra, 2014). The work analyses and predicts software

reliability in the abstract perspective. A case study was performed for an

architectural reliability analysis of the applications (Rahmani, Azadmanesh, & Siy,

2014). A fault tolerance approach to enhance the reliability of service oriented

applications based on business process execution language (BPEL) has been

described (Wu, Xiong, Han, Huang, Hu, Gu, & Hang, 2013). However, the work

may not suit to the situation when service oriented applications do not utilize

BPEL.

Intelligent systems have been investigated for the reliability prediction of

applications (Mohanty, Ravi, & Patra, 2013). A Bayesian network based model

has been proposed for service oriented systems in terms of QoS assessment

(Wang, Wang, Yang, Liu, Liu, & Zeng, 2013). The utilization of a Bayesian

network may cost much execution time. Therefore, in practice, execution time

may be a problem.

Some work takes software reliability in distributed environments into consideration.

The research provides service generated big data and Data-as-a-Service (Zheng,

Zhu, & Lyu, 2013). A method for SOA based applications has been proposed in

order to improve their reliability (Delac, Silic, & Srbljic, 2015). An analysis of

energy waste related to failures in the cloud computing platforms has been

performed (Garraghan, Moreno, Townend, & Xu, 2014). A framework to predict

the performance of service oriented systems has been proposed (Zhang, Zheng,

& Lyu, 2014). An open architecture has been researched to design a system in

distributed environments (Resnick, Iacovou, Suchak, Bergstrom, & Riedl, 1994).

In service recommendations, QoS features are still important measure for

software quality. The matrix factorisation has been exploited for the QoS

prediction of Web services (Zheng, Ma, Lyu, & King, 2013). Parts of objects can

be learnt via nonnegative matrix factorisation (Seung & Lee, 1999). Matrix

factorisation as one of big data algorithms is widely utilized for recommendation.

29 | Page

In Web service recommendations, QoS features are also utilised (Zheng, Ma, Lyu,

& King, 2011). The location is considered when the QoS based service

recommendation is performed (Yu & Huang, 2014). The characteristics of

non-functional requirements have been integrated to improve recommendation

accuracy (Chen, Zheng, Liu, Huang, & Sun, 2013).

Fault tree analysis can be exploited to describe the faults of applications.

Software fault trees are very useful for safety-focused applications (Cha & Yoo,

2011). Fault trees and unified modelling language (UML) state machine diagrams

are utilised for safety analyses (Kim, Wong, Debroy, & Bae, 2010). The research

focuses on efficient analysis via fault trees with voting gates (Xiang, Yanoo,

Maeno, Tadano, Machida, Kobayashi, & Osaki, 2011). In fault tree analysis,

defining gates is always considered to describe various states of services.

Flexible analysis with fault trees is performed with component logic models

(Forster & Schneider, 2010). The reliability of the dynamic fault tree has been

evaluated via a tool combining FT and Monte Carlo Simulink (Manno & Chiaccho,

2011). Timing analysis has been performed via fault trees with the consideration

of time dependencies and timed state-charts (Magott & Skrobanek, 2011). Fault

detection, identification and recovery have been defined via dynamic decision

networks and extended fault trees (Portinale & Codetta Raiteri, 2011). Although a

lot of research has been investigated based fault trees, it is complex to represent

all states of a distributed system.

2.2.3 Related work of Fault tolerance strategies

Some research takes the fault tolerance strategies into consideration in the

design and development of systems. The hardware and software architectures

have been defined and analysed in terms of fault tolerance (Laprie, Arlat,

Beounes, & Kanoun, 1990). The design is performed to consider the fault

tolerance feature in the protocol, SOAP 1.2 (Fang, Liang, Lin, & Lin, 2007). A fault

tolerance mechanism can be integrated SOAP 1.2. However, for services

implemented with REST, the mechanism may be not suitable. An architecture

30 | Page

supporting fault tolerance for Web services has been investigated in order to

resolve value, omission and stops (Santos, Lung, & Montez, 2005). The work in

this thesis also considers fault tolerance to resolve stops. A middleware with

Byzantine fault tolerance for Web service based applications has been designed

and developed (Merideth, Iyengar, Mikalsen, Tai, Rouvellou, & Narasimhan,

2005). Byzantine fault tolerance needs more message transferring time for

different stages. Additionally, once a fault is detected, a consistent protocol will be

triggered and also needs more time. Therefore, in practice, Byzantine fault

tolerance may be not suitable for distributed platforms. A framework for Web

services with replications has been investigated (Salas, Sorrosal, Martínez, &

Peris, 2006). This thesis also utilizes service replications to tolerate faults.

To improve software reliability, fundamental fault tolerance strategies can be

involved. In this work, RB, NVP and Parallel are described and integrated into a

multilevel redundancy allocation model. Approaches about service replication can

be utilized and integrated in the model in this thesis.

2.2.4 Related work of redundancy allocation problems

An overview of reliability optimisation has been produced (Kuo & Prasad, 2000).

An improved constraint method has been proposed to solve the redundancy

allocation problem (Onishi, Kimura, James, & Nakagawa, 2007). In this thesis,

software migration into cloud computing platforms is regarded RAPs. The work

considers to maximize reliability and minimize cost and execution time under

predefined constraints.

A two-stage discrete particle swarm optimisation method has been proposed to

resolve the problem of multilevel redundancy allocation (Yeh, 2009). A hybrid

particle swarm optimisation algorithm has been presented to solve the

redundancy allocation problem (Beji, Jarboui, Eddaly, & Chabchoub, 2010). A

hybrid particle swarm optimisation and local search have been exploited for

series-parallel multi-state systems (Wang & Li, 2012). The artificial bee colony

algorithm has been exploited for the solution of the redundancy allocation problem

31 | Page

(Yeh & Hsieh, 2011). In a parallel-series system, a novel dynamic programming

approach has been illustrated (Yalaoui, Chatelet, & Chu, 2005). This thesis

divides services into two categories: abstract and detailed services. In the view of

the model, a service based application is a series-parallel system.

Some evolution algorithms have been investigated for series-parallel systems. A

scaling approach has been utilised for reliability redundancy allocation (Ha & Kuo,

2005). The degraded ceiling algorithm and coupling ant colony have been

performed for the redundancy allocation problem in series-parallel systems

(Nahas, Nourelfath, & Ait-Kadi, 2007). A genetic algorithm has been proposed to

solve multilevel redundancy allocation in series systems (Yun, Song, & Kim,

2007). A heuristic algorithm has been presented for multi-state series-parallel

systems (Ramirez Marquez & Coit, 2004). A heuristic algorithm and a genetic

algorithm have been utilised and some examples have been presented for series

systems (Yun & Kim, 2004). A hierarchical genetic algorithm has been employed

for the solution of multilevel redundancy allocation in series and series-parallel

systems (Kumar, Izui, Yoshimura, & Nishiwaki, 2009). A hierarchical genetic

algorithm can be utilized for series-parallel systems and some constraints can be

predefined, which is suitable to the problem proposed in this thesis.

Three methods based on a differential evolution algorithm have been proposed

(Beji, Jarboui, Siarry, & Chabchoub, 2012). A penalty guided bees search

approach has been presented for series-parallel systems (Hsieh & Yeh, 2012). A

three-phase scheme based on a corridor method has been proposed (Caserta &

Voß, 2014). A combination of the dynamic programming and the depth-first

search algorithms has been proposed (Ng & Sancho, 2001). Tabu search has

been utilised for the solution of the redundancy allocation problem efficiently

(Kulturel-Konak, Smith, & Coit, 2003). An ant colony optimisation algorithm has

been presented for the redundancy allocation problem (Liang & Smith, 2004). A

max-min approach has been presented for series-parallel systems (Ramirez

Marquez, Coit, & Konak, 2004). A theoretical condition and an alternative method

32 | Page

based on an approximated function have been proposed for a series-parallel

system (Yalaoui, Chu, & Châtelet, 2005).

A tree heuristic has been proposed for the redundancy allocation problem (Ha &

Kuo, 2006a). An improved realisation has been presented for nonconvex

nonlinear programming problems (Ha & Kuo, 2006b). Simulated annealing

algorithms have been presented for reliability redundancy optimisation (Kim, Bae,

& Park, 2006). A multi-agent ant system has been described for a multi-state

power system (Bendjeghaba & Ouahdi, 2008). An optimisation model has been

presented for a multi-state series-parallel system (Tian, Zuo, & Huang, 2008). A

two-phase heuristic approach has been proposed for performance evaluation

(Kumar, Chaturvedi, & Pahuja, 2009). A fuzzy random parallel-series system has

been analysed via a redundancy allocation model (Wang & Watada, 2009). A

chaotic differential evolution method has been proposed for reliability redundancy

optimisation (Coelho, 2009). A method has been presented to solve highly

constrained redundancy optimisation problems in binary complex systems

(Agarwal, Aggarwal, & Sharma, 2010). A redundancy allocation method has been

utilised for reliable storage in a distributed environment (Xu, Lin, Wang, Liu, Shi, &

Zhang, 2012). A discrete-binary transformation has been illustrated for the

reliability redundancy allocation problem (Caserta & Voß, 2015).

A hierarchical genetic algorithm has been exploited for multilevel redundancy

allocation optimisation (Kumar, Izui, Masataka, & Nishiwaki, 2008). Multilevel

redundancy allocation has been resolved via a memetic algorithm (Wang, Tang, &

Yao, 2010). A hybrid genetic algorithm with a new encoding mechanism based on

two dimensional arrays has been proposed for multilevel redundancy allocation

(He, Wu, Xu, Wen, & Jiang, 2013). A bacterial-inspired evolutionary algorithm has

been exploited for multilevel reliability systems (Hsieh, 2014). Therefore, the

multilevel redundancy allocation model can describe the structure of service

oriented systems under constraints.

33 | Page

In summary, there may be no research on the utilisation of the multilevel

redundancy allocation model for service oriented systems. However, the model

can describe the structure of the systems and redundant modules can be

assigned to ones at different levels. Additionally, few studies have been

performed on the migration of service oriented systems to clouds with constraints.

However, this may be a possible and significant challenge, for the consideration

of constraints may reduce companies’ expenses for the migration of service

oriented systems in clouds.

2.3 Fault tolerance strategies for service oriented systems

Fault tolerance strategies are commonly utilised for significant and critical

systems. For example, airplane flight control systems and nuclear power station

management systems adopt fault tolerance strategies to improve their reliability

(Qiu, Zheng, Wang, Yang, & Lyu, 2014). These strategies always have diverse

requirements for the implementation of services, in terms of various programming

languages and technologies. The possible reasons are as follows.

Design methods: For an identical functional requirement, various companies or

organisations may have different design methods and plans for its implementation,

which tends to lead to different reliability (Zheng & Lyu, 2010). If a service is

equipped with fault tolerance strategies, and crashes or fails to execute requests

from clients because of a bug, redundant services with the same functional

requirement from different companies may replace the broken service and

continue working. Therefore, for fault tolerance approaches, diversity of service

resources from different organisations or designers is required. They have the

same specifications, different design and implementation. However, their qualities

cannot be guaranteed.

Integration approach: The Web service technique changes the integration

approach of traditional software. Different services communicate with each other

via the SOAP protocol, which do not need to be on the same server. This allows

34 | Page

services to integrate with ease. The new integration approach can lead to easy

maintenance of service oriented systems. If one service in the system has bugs or

its reliability is not sufficient, an existing similar service with identical functions is

integrated to replace the original one. This integration approach makes the

utilisation of the fault tolerance strategies easier for service oriented systems.

Additionally, the communication of all the services in the system is based on the

SOAP protocol, which adopts the HTTP protocol to exchange data and messages.

For almost all network facilities, the HTTP protocol can work well without any

change of their configuration, which may be another widely accepted reason for

Web service technology.

Programming languages: The Web service technique allows services to be

implemented with various programming languages, which causes different

reliability for a service. Fault tolerance strategies need a diversity of services.

Ensuring the diversity of services comes from either the development involvement

of varied organisations or the utilisation of various programming languages.

In the Web service field, the fault tolerance strategies recovery block (RB),

N-version programming (NVP), and Parallel are commonly utilised for the

reliability of distributed systems (Zhang, Zheng, & Lyu, 2011; Zheng & Lyu, 2010;

Zheng, Ma, Lyu, & King, 2013; Zheng, Zhou, Lyu, & King, 2012). In this section,

the quantitative and qualitative analysis of these fault tolerance strategies are

described in terms of the failure rate 𝑓, the response time 𝑡 and the required

resources 𝑟.

2.3.1 Recovery block (RB) (Bonvin, Papaioannou, & Aberer, 2010)

This section describes recovery block (RB), which will be described in terms of

system structure and quantitative and qualitative analysis. The first design and

implementation of RB was in the early 1970s at Newcastle, which stemmed from

a discussion about software reliability. Error-free programs and applications are

required in the real world. To tackle the challenge of the creation of error-free

35 | Page

systems, one method is that a better testing approach is needed to check for bugs

or residual faults. Another approach to achieve the same task is to add a fault

tolerance strategy to hide residual faults.

Some research shows that one of the most significant reasons for application

failures is residual faults (Randell & Xu, 1995). Service oriented applications are

becoming more and more complex in terms of software structure and source

codes. This has more potential to cause residual software faults. RB is designed

to utilise redundancy allocation to solve this type of problem in order to hide the

occurrence of faults.

2.3.1.1 System structure

In this section, the system structure of RB is described. Before the description of

the structure, an idealised module with RB is depicted. The idealised module is a

sample of a component with RB and almost all fault tolerance strategies are

proposed based on this module.

Adjudicator EHadj

Service
requests

Normal
responses

Controller

V1 EH1 V2 EH2 Vn EHn...

Abnormal
responses

Figure 2.1: Idealised module with RB (Randell & Xu, 1995)

Figure 2.1 shows the idealised module with fault tolerance strategies. The aim of

the module is to explain that the reliability of a software component can be

36 | Page

improved with redundant units. From the figure, the component includes two parts:

one is the controller and the other is the exception handler (EH). Specifically, the

controller is the manager of all the submodules in the idealised module. A module

can complete the detailed requirements of a request. The idealised module

comprises a lot of submodules, which are called variants and they follow an

identical specification. Namely, all the variants in an idealised module complete

an identical task. Additionally, each variant has an exception handler. From the

name “exception handlers”, it is clear that they are proposed to handle exceptions

and errors. Since these submodules within an idealised module are able to cause

errors or exceptions, an exception handler is required for each variant. The

idealised module is utilised to deal with requests from end users or an application

with strategies. Therefore, in the figure, a request can be sent to the idealised

module. Thereafter, the module can respond with two types of results. One type of

result is the normal response, which means that the idealised module has

successfully completed the request. Note that, in this case, this does not mean

that there are no exceptions. For example, perhaps one or more exceptions is

performed, but the correct response still arises and is sent back to the requester.

When the adjudicator cannot decide on the final response or all the variants in the

idealised module cannot complete the request, an abnormal exception would be

sent back to the requester. All fault tolerance strategies focus on the design of

interactions between these submodules and communication between different

roles in an idealised module.

The steps of the idealised module handling a request in Figure 2.1 are first that a

requester sends a request to the module. When the module receives the request,

it will send the request to the first variant or some of the variants. The detailed

situation about the assignment of the request depends on specific fault tolerance

strategies. If the request can be successfully completed, the module would send

back the final response to the requester. Otherwise, if some exceptions or errors

arise, the idealised module would deal with them. If they can be solved, the final

37 | Page

and correct response is still returned to the requester and the requester would not

realise the detailed processing of the module. However, if they cannot be solved,

an abnormal response would be returned.

Figure 2.2: The execution steps of RB

Figure 2.2, Figure 2.3 and Figure 2.4 show the execution steps of RB, which

needs to include a lot of functionally equivalent units, which are called alternates.

All the alternates need to follow identical specifications, which denote that they

can complete the same requirement. It is apparent that all the alternates are

sequential. The responses may be errors or the final correct results.

Figure 2.3: The sequence diagram of the execution steps of RB

Primary alternate

Service
requests

Normal
responses

.

.

.

Errors

Alternate 2

Alternate n

Final
result

...Priamry
alternate

Alternate
1

Alternate
2

Alternate
n

Send a request

Send a response Or send a request

Send a response Or send a request

Send a response Or send a request

Send a response

38 | Page

Figure 2.4: The UML activity diagram of the execution steps of RB

Input: A request

Output: A response or errors

 The main execution steps of RB

Step 1 If the primary alternate is OK

Step 2 Process the request

 Return a response

Step 3 else if the alternate 2 is OK

Step 4 .

.

.

Step 5 else if the alternate n is OK

Step 6 Process the request

 Return a response

Step 7 else

Step 8 Return errors

Figure 2.5: The programming description of the execution steps of RB

Figure 2.5 illustrates the programming description of the execution time of the RB.

In terms of the utilisation of RB in the service field, each alternate can be regarded

Primary alternate

A requester

Send a request

Send a response

Alternate x

Cannot finish the task

Errors

39 | Page

as a service. All the services in the strategy are developed and implemented

based on an identical specification. It is obvious that RB needs more than one

service to be involved to provide a fault tolerance ability.

2.3.1.2 Quantitative and qualitative analysis (Zheng & Lyu, 2015)

All the functionally equivalent components in a module are sequential. If a

component crashes or fails to respond to the requester, the next component in

order would receive the request, execute it and send back responses.

𝑓 =∏ 𝑓𝑖
𝑛

𝑖=1
 (2.1)

This formula is to calculate the failure rate of the module with RB. In the formula,

𝑓𝑖 is the failure rate of the 𝑖𝑡ℎ component. The reliability of the module is

computed as follows,

𝑅 = 1 −∏ 𝑓𝑖
𝑛

𝑖=1
 (2.2)

The following formula is employed to calculate the execution time that RB utilises

for the processing of a request. The time is related with failure rate. The formula

means that the previous 𝑖 − 1 functionally equivalent components fail to execute

the request and the 𝑖𝑡ℎ component successfully handles it.

𝑡 =∑ 𝑡𝑖∏ 𝑓𝑖
𝑖−1

𝑘=1

𝑛

𝑖=1
 (2.3)

𝑟 =∑ 𝑟𝑖∏ 𝑓𝑖
𝑖−1

𝑘=1

𝑛

𝑖=1
 (2.4)

This formula shows the number of resources when the number of components is

𝑛. Whether the 𝑖𝑡ℎ component is invoked depends on the operation situation of

the previous (𝑖 − 1) components.

2.3.2 N-version programming (NVP) (Avizienis, 1995)

N-version programming (NVP) is a fault tolerance strategy which tends to

generate a final response with a decision algorithm according to the responses

delivered by two or more functionally equivalent components. The strategy needs

these responses to be produced independently in order to minimise the

40 | Page

relationship between any two components. In this case, an exception from a

component possibly does not influence others and the final result is determined

by the majority votes from all these components. Therefore, the number of the

components in a module with NVP needs to be more than 2, namely, 𝑛 > 2. All

the components in the module are designed and developed based on an identical

specification. When a request is sent to the module, all the components would

receive it. Since these components have the same initial state, they theoretically

return the same responses if no errors arise. If there are faults or exceptions in

some of the components, the final results would be not identical. Therefore, in this

case, a comparison of all the results would be performed and the final result with

the majority votes would be sent back to the requester.

Whether the scheme can be successfully employed for an application depends on

whether the faults are produced by n versions of programs (Avizienis, 1995).

Therefore, the development and implementation of independence can reduce the

possibility of the concurrent occurrence of the faults from n versions of programs.

Therefore, for a service oriented application, the services based on the same

specification need to be developed by different individuals or organisations. This

can improve design and implementation diversity.

2.3.2.1 System structure

In this section, the system structure of NVP is described. A simple and generic

system structure is depicted as follows.

41 | Page

Figure 2.6: The system structure of NVP

Figure 2.6 shows the system structure of NVP. To equip NVP to a component, the

𝑛 − 1 components need to be developed based on an identical specification. All

the components can perform the same business logic and they are required to be

designed and developed separately and individually, which tends to reduce the

possibilities of the occurrence of faults at the same time. In the figure, it is

apparent that there are two parts to the module. One is the n versions of programs

and the other one is the decision algorithm. The decision algorithm is adopted to

compare the results produced by these n versions of components. The final

consensus result would be sent back to the requester.

...Decision
algorithm
module

Version 1 Version 2 Version n

Send a request

Send a response

Send a request

Send a request

Send a response

Send a response

The consensus result

Figure 2.7: The sequence diagram of the execution steps of NVP

Version 1

Service
requests

Consensus
results

Version 2 Version n...

Decision
algorithm

42 | Page

Figure 2.8: The activity diagram of the execution steps of NVP

Input: A request

Output: The consensus response

 The main execution steps of NVP

Step 1 All the versions of the components receive the request

Step 2 Execute the request

Step 3 Send the responses to the decision algorithm

Step 4 Compare the results

Step 5 Send back the consensus response to the requester with the

majority votes

Figure 2.9: The programming description of the execution steps of NVP

Figure 2.7, Figure 2.8 and Figure 2.9 illustrate the sequence diagram, the activity

diagram and the programming description of the execution steps of NVP. When a

request is sent to the module with NVP, all the components, namely, n versions of

programs, can receive the request and execute it. After they complete the

execution of the request, they would send their responses to the decision

algorithm which is responsible for the comparison of the results. All the arrived

responses would be compared. The response with the majority of votes would be

set as the final consensus result. Once the consensus result is determined, it

would be transmitted to the requester.

A requester

Send a request

Version 1 Version 2 Version n

Send a request Send a request

Send a response
Send a response Send a response

The decision

algorithm

Send back the consensus result

43 | Page

2.3.2.2 Quantitative and qualitative analysis

All the components in the module with NVP are in parallel. When a requester

sends a request to the module, the request would be transmitted to all the

components. Subsequently, each component handles the request and sends a

response back to the decision manager. The final response to the requester is

determined by the majority of votes of all the components in the module.

𝑓 = 1 −∑ 𝐹(𝑖)
𝑛

𝑖=
𝑛+1
2

 (2.5)

This formula is the failure rate of the module with NVP. 𝐹(𝑖) represents the

failure rate of the 𝑖𝑡ℎ version of the component, since all the components may be

designed and developed by different individuals or organisations. The design and

implementation variety cause different failure rates of all the components. 𝐹(𝑖) is

based on the actual situation of the module. 𝑖 = (𝑛 + 1)/2 denotes the number,

which is more than half the amount of components. The final consensus response

is the result with the majority of votes.

𝑡 = 𝑚𝑎𝑥𝑡𝑖 (2.6)

This formula shows the execution time of NVP. Since all the components in the

module are in parallel and the final response is determined by the majority of

votes, the execution time is the value of the last component completing the

request processing.

𝑟 =∑ 𝑟𝑖
𝑛

𝑖=1
 (2.7)

This formula describes the total resources required by NVP. The total resources

of NVP should be the sum of the resources of each component in the scheme.

2.3.3 Parallel (Qiu, Zheng, Wang, Yang, & Lyu, 2014)

In this section, the fault tolerance Parallel is described. Parallel is similar to NVP.

The main difference is that the first arrival response from a component in a

module to the decision manager is regarded as the final result. Therefore, the

system structure can be seen in Figure 2.6, Figure 2.7, Figure 2.8 and Figure 2.9.

44 | Page

2.3.3.1 Quantitative and qualitative analysis

Parallel does not need to decide the final result with the majority of votes. All the

components in the module need to execute the request. Therefore, the failure rate

is shown as follows.

𝑓 =∏ 𝑓𝑖
𝑛

𝑖=1
 (2.8)

Since the final result is determined by the first arrived response from one of the

components, the execution time of the entire module is the least time.

𝑡 = 𝑚𝑖𝑛 𝑡𝑖 (2.9)

Parallel still needs to be equipped with 𝑛 redundant components. Therefore, the

resource cost is represented as follows.

𝑟 =∑ 𝑟𝑖
𝑛

𝑖=1
 (2.10)

2.3.4 The comparison of the fault tolerance schemes

In this section, a comparison of the fault tolerance strategies is performed. The

failure rate, the execution time and resource costs are listed. RB, NVP and

Parallel are compared in terms of these three aspects. Table 2.1 shows the

summary of the strategies.

Table 2.1: The summary of the fault tolerance strategies

Strategies Failure rate Execution time Resource cost Reference

RB 𝑓 =∏ 𝑓𝑖
𝑛

𝑖=1
 𝑡 =∑ 𝑡𝑖∏ 𝑓𝑖

𝑖−1

𝑘=1

𝑛

𝑖=1
 𝑡 =∑ 𝑡𝑖∏ 𝑓𝑖

𝑖−1

𝑘=1

𝑛

𝑖=1

(Bonvin,

Papaioannou, &

Aberer, 2010)

NVP 𝑓 = 1 −∑ 𝐹(𝑖)
𝑛

𝑖=(𝑛+1)/2
 𝑡 = 𝑚𝑎𝑥𝑡𝑖 𝑟 =∑ 𝑟𝑖

𝑛

𝑖=1

(Avizienis, 1995)

Parallel 𝑓 =∏ 𝑓𝑖
𝑛

𝑖=1
 𝑡 = 𝑚𝑖𝑛 𝑡𝑖 𝑟 =∑ 𝑟𝑖

𝑛

𝑖=1

(Qiu, Zheng,

Wang, Yang, &

Lyu, 2014)

In Table 2.1, it is apparent that the strategies RB and Parallel have an identical

failure rate when they have the same number of components. NVP needs to take

45 | Page

advantage of the majority of votes from the components in the module in order to

decide the final consensus response. Hence, the correctness of the (𝑛 + 1)/2

components needs to be guaranteed.

The execution time of RB is based on the number of the invoked components.

The execution time of NVP is the maximum time of all the returned responses.

However, Parallel needs the least time of all the components.

Apart from the execution time and reliability, another difference of these strategies

is the resource cost. For RB, not all the components are possibly invoked. Once

one component successfully processes the request, the remaining components

would not be invoked. For NVP and Parallel, all the components are needed.

In summary, the selection of the different strategies depends on the specific

requirements from end users. If they want an efficient response from a module,

RB or Parallel may be the best choice.

2.4 Related technologies

In this section, related technologies utilised in this work are described in terms of

their concepts and tools.

2.4.1 Web service

The Web service technique provides a new communication method for software

functionalities deployed on distributed computers over a network. The utilisation

of a Web service offers an interoperable machine-to-machine interaction between

modules in systems or between different systems, which provides a method for

integration of service oriented systems with extensible markup language (XML),

Web service description language (WSDL) and universal description discovery

and integration (UDDI).

2.4.1.1 Concepts

The Web service technique involves XML, WSDL and UDDI concepts. These

concepts are described as follows,

46 | Page

XML: Extensible markup language (XML) is a markup language. The language

defines a set of rules and specifications, which makes the encoded documents

human-readable and machine-readable (Karunamurthy, Khendek, & Glitho, 2012).

XML is commonly used in the Web service technique, because XML can hide the

detailed implementation of distributed services developed in various programming

languages.

WSDL: Web service description language (WSDL), based on XML, is an interface

definition language. WSDL is utilised to depict the functionalities of Web services,

which comprise the number and structure of input and output parameters (Wu,

Chen, Zheng, Lyu, & Wu, 2014).

UDDI: Universal description, discovery and integration (UDDI) is an XML based

registry, which allows the publication of Web services from various organisations

and individuals in the world. The registered services can be found by other

organisations or individuals and accessed through UDDI, which records the

detailed network access address of the Web services.

SOA: A service oriented architecture (SOA) enables applications from different

places in the world to be integrated without the consideration of detailed

implementation of programming languages. SOA is a software architectural

pattern for software architecture design, which enables services of distributed

applications to be accessed by other software systems over a network (Delac,

Silic, & Srbljic, 2015).

2.4.1.2 Major Classes of Web services

There are two major classes of Web services in terms of implementation. One

class is simple object access protocol (SOAP) and the other one is

representational state transfer (REST).

SOAP: Simple object access protocol (SOAP) includes rules and specifications

for the format of exchanging information between Web services. SOAP uses XML

47 | Page

rules to organise information and is based on other protocols, such as hypertext

transfer protocol (HTTP) and simple mail transfer protocol (SMTP) (Delac, Silic, &

Srbljic, 2015).

REST: Representational state transfer as the other implementation of Web

service technique enables developers to perform the invocation of Web services

via specified uniform resource identifiers (URIs). REST is easy to be understood

and can be easily supported by servers or clients, although they can support the

hypertext transfer protocol (HTTP) or HTTP secure (HTTPS). Web services can

be accessed through the HTTP GET, POST, PUT, DELETE, HEAD, OPTIONS

methods. Therefore, developers can implement applications easily based on the

existing IT infrastructure.

2.4.1.3 Communication

In this section, communication between UDDI, service consumer and service

provider are shown and described.

Figure 2.10 illustrates the relationship between UDDI, service consumers, service

providers, SOAP and WSDL. The detailed explanation is shown as follows,

UDDI
(Service registry)

Service consumers
(Client side code or other software
systems)

Service providers
(Registered Web services)

SOAP
Publish Web services

SOAP
Find Web services

SOAP
Communicate

Service
specifications

WSDL
Service description

Web services
Web service stub

12

3

Figure 2.10: The relationship between UDDI, service consumers and service

providers

48 | Page

Service providers: They are companies, organisations or individuals, which

provide Web services to the world. Additionally, they may be from different places

in the world and utilise varied techniques to implement services.

Service consumers: They send requests to the services and deal with the

corresponding responses.

The main workflow in Figure 2.10 is that service providers firstly publish their

developed Web services in UDDI, namely, registration of their Web services in the

service registry. Meanwhile, these service providers also offer the specifications

of their services. Service consumers can find services according to their

requirements in UDDI. If the services are confirmed, the actual address of the

services can be received and the requests can be sent.

For a REST web service, a request can be sent by service consumers to a URI.

The response may be in XML, JSON or other defined formats.

2.4.1.4 Tools

In this section, the tools for manipulating Web services are described. In this work,

the Java programming language is employed to develop Web services. A detailed

description of the tools is as follows.

Apache Axis2: A Web service engine for Java and C programming languages.

Web services developed by Apache Axis2 use SOAP and are exposed to the

outside of service oriented systems via WSDL.

Eclipse: Eclipse is a free integrated development environment (IDE). When

Eclipse is downloaded from its official website, there are already some basic

plugins integrated in the IDE. However, developers can expand the functions of

the IDE through the addition of new plugins. Eclipse is developed mostly in Java

programming language and it is mainly an environment for Java. In this work,

Apache Axis2 plugins are utilised and integrated in Eclipse to generate Web

services and stub source code.

49 | Page

Service archive generator and code generator wizard (Apache Axis2 Eclipse

plugins): These two plugins can be downloaded from their official Website and

integrated with Eclipse, which can work well with the Eclipse EE edition. The

service archive generator can generate Java Web services and WSDL files

according to their source code. The code generator wizard uses WSDL files to

build stub source code, which is used to access Web services.

Web service call composer: Stylus Studio includes a Web service call composer,

which can locate and call Web service methods from Stylus Studio. Additionally,

the studio can generate SOAP envelopes and supports the technologies (e.g.,

WSDL, SOAP, UDDI, etc.).

2.4.2 Cloud computing

2.4.2.1 Concepts

Cloud computing as a computing model integrates computing, networking and

storage resources provided by ubiquitous computers as a resource tool for users.

Virtual machines (VMs) share these resources and users work in VMs.

Specifically, if a user finishes their work in the VM and want to quit the cloud

computing platform, the computing, networking and storage resources would be

released for other users. The method maximises the utilisation of these resources

and users do not need to consider the specific configuration modifications. End

users can use these resources in third-party data centres, namely, in cloud

computing platforms. When users work in a VM, their working manner is similar to

their local computers. Cloud computing is also an available and convenient choice

for small scale companies to deploy their systems and develop their applications

in VMs. For administrators of a whole cloud computing platform, they can

efficiently manage the platform. Specifically, once the cloud computing platform is

set up, almost all the computing, networking and storage configurations can be

performed in a single computer, which specifically comprises the management of

VMs, resources pools, networking access, data centres and storage.

50 | Page

2.4.2.2 Theoretical models

According to the different services provided by clouds, cloud computing platforms

are divided into the following types. They are employed for varied purposes.

Infrastructure as a service (IaaS): IaaS provides physical resources where cloud

computing managers set up operating systems for end users. The physical

resources are computing, network and storage hardware.

Platform as a service (PaaS): Platform vendors provide PaaS to other

organisations and individuals. Platform vendors set up development toolkits,

operating systems, programming language execution environments, databases,

Web servers, etc. Users can utilise these resources to develop applications and

deploy them in VMs.

Software as a service (SaaS): Service oriented systems can be deployed in VMs

and then the services can be accessed by users outside of the cloud computing

platform.

2.4.2.3 Structures

Figure 2.11 shows the structure and the relationship between cloud computing

platforms and users. The cloud computing platform can be divided into three

layers. The infrastructure layer includes servers, network devices (such as routers,

switches, etc.), cables, etc., which mainly offer the hardware foundation to the

higher layers (the working environments layer and the applications layer).

51 | Page

UsersUsers

Servers

Database

Servers Servers

Infrastructure

Working environments

Data centerData center

Runtime
Environment

Applications

M

October 15

T W T F S S

1 2 3 4

5 6 7 8 9
1
0

1
11

2
1
3

1
4

1
5

1
6

1
7

1
81

9
2
0

2
1

2
2

2
3

2
4

2
52

6
2
7

2
8

2
9

3
0

3
1

Application server

Mobile phones

Figure 2.11: The relationship between users and cloud computing platforms

(Rajaraman, 2014)

The working environments layer supports VMs where database management

systems, data centres, runtime environments and application servers (such as IIS,

Apache Tomcat, etc.) are provided. Cloud users log onto the VMs in the cloud to

utilise these resources. Users not only do their work within a VM as their local

computer, but develop and deploy their applications as well. The applications

layer includes installed applications for users, which may be Microsoft Office,

integrated development environments (such as Eclipse, Microsoft Visual Studio),

etc.

2.4.2.4 Communications

In this section, the communications between IaaS, PaaS, SaaS and different

types of users are described. Users include clouds administers, PaaS providers,

application developers and SaaS end users.

52 | Page

IaaS
Physical resources: computing,
network and storage resources

PaaS
Toolkits, programming language
execution environments, etc.

SaaS
Deployed Web services and
services.

Client
Client side stub, Web pages,
mobile devices, other systems,
etc.

Cloud
computing
platform
administrators

PaaS providers

Application
developers

SaaS users
Access services

Develop applications

Set up environments

Manage

Manage

Manage

Provide services

Figure 2.12: The relationship between SaaS, PaaS and IaaS (Rajaraman, 2014)

Figure 2.12 shows the relationship between IaaS, PaaS, SaaS, the clients and

roles in clouds. IaaS provides physical computing, network and storage resources

to PaaS, which offers toolkits, programming language execution environments,

etc. to SaaS. The deployed services are at the SaaS layer and are accessed by

clients, which include client side stub, Web pages, mobile devices, other systems,

etc. Cloud computing platform administrators manage the entire platform (IaaS,

PaaS and SaaS). PaaS providers are responsible for the configuration of PaaS

platforms. Application developers design, develop and deploy systems at the

SaaS layer. SaaS users can access services supported by the SaaS layer.

53 | Page

Chapter 3 Application Migration and

Deployment Framework

In this chapter, an application migration and deployment framework is proposed,

which utilise a genetic algorithm to compute the optimal migration plan under the

cost and execution time constraints. The framework can guide designers or

developers to migrate and deploy their service oriented systems on a cloud

computing platform. The detailed method of how the framework should work will

be depicted in the following. The framework as an interface of the genetic

algorithm is responsible for the data collection and the display of migration plans.

3.1 Introduction

In this section, the proposed migration and deployment framework in this work is

described. The existing migration and deployment frameworks of service oriented

systems in cloud computing platforms are depicted and possible insufficient

features are proposed.

Figure 3.1 shows an example of a service oriented system, which is based on

components and there are some relationships between these 𝑚 modules.

Module 1 is at the top level of the system. In this work, this type of module

describes an abstract function of an application, or an entire application. An

application possibly comprises a lot of modules, which represent varied logical

functions and all of them make up the entire system. From Figure 3.1, it is clear

that this system includes 𝑚 modules and 𝑝 database management systems.

54 | Page

Module 1

Module 2 Module 3 Module i

Module i+1 Module i+2 Module n

Module n+1 Module n+2 Module m

...

...

...

Figure 3.1: An example of a service oriented system

Additionally, from the figure, multiple levels are shown. There are four total levels

for data processing and one level for data storage. The modules at the high levels

can invoke ones at the low levels. For example, component 1 can send a request

to modules 2 and 3. Moreover, these modules can also send requests to the

modules at the lower levels. The modules at the lowest level are the components

of an application, which means that they actually process business logic and may

be implemented in different programming languages. Therefore, an application or

a function can be described as a tree as the example in the figure.

In terms of data storage, an application or a system may take advantage of

different types of database management systems (e.g., relational database

management systems, object oriented database management systems, XML

database management systems, Hadoop distributed file system, HDFS, etc.).

When a service oriented system is migrated and deployed in a cloud, the

migration of the data storage needs to be considered as well. The corresponding

fault tolerant approaches need to be employed for this part of work and resource

costs for the placement of the database management systems need to be

planned in advance. However, in this work, only the problem of service reliability

is taken into consideration.

55 | Page

Figure 3.2: An example of SaaS and IaaS in a cloud computing platform

Figure 3.2 describes an example of SaaS and IaaS in a cloud computing platform.

The reason the example is depicted here is that the structure of a cloud

computing platform should be shown and then the method to migrate and deploy

service oriented systems can be explained clearly. In the figure, there are four

layers which are the IaaS layer, the SaaS layer, the cloud access layer and the

user layer.

The IaaS layer mainly includes various types of network facilities, servers and

other types of hardware. Servers are employed to provide computing ability for

the entire cloud computing platform. The distributed servers in the cloud can work

together to offer powerful computing ability. Network facilities are responsible for

the connection of different servers and other network facilities, such as switches,

routers, bridges, etc. All the servers, computers and workstations can theoretically

communicate with each other via these network facilities. Additionally, cloud

computing platforms always offer a network interface. It means that all data

Server Server Server Server Server

...

IaaS

Windows OS Mac OS UNIX Others

Support

SaaS

Cloud

Cloud access layer

IE Firefox Chrome Others

Access

Cloud

clients

Users

Access or manage

Access or manage

Users

56 | Page

between the inside and outside of a cloud computing platform are exchanged via

the unified port.

The SaaS layer mainly comprises different types of operation systems. In the

figure, Windows operating systems, Mac operating systems and UNIX are the

examples shown. A cloud computing platform can comprise more than one

operating system for end users. Their types and number mainly depend on the

ability that a cloud computing platform can support. Note that different cloud

computing providers may provide various operating systems on VMs. In these

operating systems, there are some applications which are set up for users to

deploy their services. For example, Apache Tomcat and Apache Axis 2 can be

deployed in these operating systems to support the execution of applications

developed in Java programming language. For data storage, corresponding

database management systems are required to be built on these VMs. The

commonly used systems are MySQL, SQL Server, Oracle, Apache Hadoop, etc

(Song, Guo, Wang, Zhang, Yu, & Pierson, 2015).

The cloud access layer is the bridge between end users and cloud computing

platforms, and mainly consists of two types of tools. One is Web browsers and the

other one is specific cloud clients. The cloud clients from different clouds are not

always compatible with others.

The tools at the user layer comprise mobile devices, laptops, etc. Furthermore,

end users can access a cloud computing platform via wireless and wired

networks.

Based on the above description, the services of a migrated system are distributed

in VMs at the SaaS layer. Users can utilise various devices to access them.

57 | Page

Module 1

Module 2 Module 3 Module i

Module i+1 Module i+2 Module n

Module n+1 Module n+2
Module m

...

...

...

Cloud 1 Cloud 2

Figure 3.3: An example of the deployment of a migrated service oriented system in

clouds

Figure 3.3 shows an example of the deployment of a migrated service oriented

system shown in Figure 3.1 in clouds. As explained and described above, the

modules from 𝑛 + 1 to 𝑚 are the services of the system, while other modules

describe abstract business logic. In Figure 3.3, there are two cloud computing

platforms, which are named cloud 1 and 2. In this work, the migration and

deployment framework can be utilised for service oriented systems in multiple

clouds.

There are already frameworks (Qiu, Zheng, Wang, Yang, & Lyu, 2014; Zheng &

Lyu, 2010, 2015; Zheng, Zhou, Lyu, & King, 2010) for the migration and

deployment of service oriented systems, which guide designers to migrate the

systems in a cloud computing platform with the consideration of some QoS

features (such as availability, price, popularity, data size, success probability,

response time, overall success probability, overall response time, etc.).

The similarity of these frameworks is the main workflow. When designers use

these frameworks to create a migration plan, they need to provide some

information about the service oriented system including its structure files and log

58 | Page

files. Thereafter, the frameworks can automatically calculate the structure of the

application in order to generate a network comprising all the components. In the

network, the components with more degrees are selected to utilize fault tolerance

strategies. On the other hand, the components with lower reliability tend to be

selected. The selected top 𝑘 components are arranged with fault tolerance

strategies. In the group of fault tolerance redundant units, they follow fault

tolerance strategies (Duan, Peisert, & Levitt, 2014; Kotla, Alvisi, Dahlin, Clement,

& Wong, 2009 ; Qiu, Zheng, Wang, Yang, & Lyu, 2014), which will be depicted in

the following section in terms of reliability, execution time and cost. Note that all

the fault tolerance strategies are only utilised for the selected components in the

frameworks.

The work (Zheng & Lyu, 2010) collects QoS data from collaborated users in order

to adjust optimal fault tolerance configuration to achieve good performance. The

work (Zheng, Zhou, Lyu, & King, 2010) has proposed a component ranking based

framework to identify significant units in a Web base application. Thereafter, fault

tolerance strategies (e.g., NVP, RB, etc.) are assigned to these units. The

framework (Qiu, Zheng, Wang, Yang, & Lyu, 2014) based on the framework

(Zheng, Zhou, Lyu, & King, 2010) takes public and private clouds into

consideration.

However, the units selected via these frameworks are distributed in a Web based

application. This work can assign fault tolerance strategies to a group of Web

services under the same abstract layer. One example is given as follows.

Figure 3.4: An example of an original module

U1 U2

Module

59 | Page

Figure 3.4 shows an example of an original module, which comprises two

components, U1 and U2. They are different functions and have a serial

relationship.

Figure 3.5: Redundancy arrangement for components

Figure 3.5 describes redundancy arrangement for the components in Figure 3.4.

There are 𝑚 redundant components for the component 𝑈1 and 𝑛 components

for the component 𝑈2. The relationship between these two groups is serial, for the

module needs to invoke both 𝑈1 and 𝑈2. The traditional frameworks consider the

addition of a fault tolerance strategy for the components at the bottom level.

Therefore, the possible optimal solution of the redundancy assignment of the

entire system may be not received under predefined cost and execution time

constraints.

Figure 3.6: Redundancy arrangement for the entire module

Figure 3.6 depicts the redundancy arrangement for the entire module. This

approach is adopted in this work, which allows redundant units to be arranged to

both components and modules at the different levels. The framework proposed in

U1
m

Module

U1
1 U2

nU2
1... ...

U1
1 U2

1

Module

U1
k U2

l... U1
1 U2

1

Module

U1
i U2

j...

...

... ...

60 | Page

the work allows redundancy arrangement for modules at both the bottom and

higher levels. Therefore, it can result in a larger solution space to search for an

optimal solution. In the larger solution space, more solutions can be generated

and the optimal solution can be selected to guide designers or cloud managers to

migrate and deploy their service oriented systems.

Although the work in (Qiu, Zheng, Wang, Yang, & Lyu, 2014) considers the cost of

different fault tolerance strategies, it does not take the global cost constraint into

consideration. However, before designers and developers decide to migrate their

service oriented systems into a cloud, the cost of the entire system may be

computed in advance. From the description of the migration and deployment of

service oriented systems, it is clear that a predefined cost constraint may be

required and is a key factor of computing the optimal migration solution. Therefore,

the cost constraint should be considered in the new migration framework.

Additionally, the execution time of the entire system may be considered in the

migration and deployment framework in clouds. The execution time can measure

the performance of an application or system. For example, if an application or

system can complete all the requests in a shorter execution time, it means that it

may have better performance. Based on this reason, the execution time should be

considered in the migration and deployment framework. Therefore, the framework

in this work considers it to allow the designers to specify the execution time

constraint in advance for the integrated genetic algorithm to compute the optimal

solution.

The framework in this work considers service reliability, the execution time and

cost constraints of a service oriented system, which can employ different fault

tolerance strategies (such as RB, NVP and Parallel) for the services. Additionally,

it describes a service oriented system as a tree intuitively and all the levels can be

assigned with redundant units. The detailed description of the framework and the

corresponding integrated algorithm are shown in the following section.

61 | Page

To get the optimal solution to the migration and deployment of service oriented

systems, the framework in the work utilises a genetic algorithm. A set of solutions

can be generated via the predefined number of iterations. Thereafter, the optimal

solution can be selected under the predefined execution time and cost

constraints.

3.2 Design of the migration and deployment framework

In this section, the structure of the migration and deployment framework in the

work is proposed. The usage environment and components are described.

3.2.1 Usage environment

Software faults are hard to identify, especially the faults of service oriented

systems (Zheng & Lyu, 2010). Therefore, various fault tolerance strategies are

developed which utilise the redundant units. Namely, more than one redundant

functionally equivalent unit deals with a request and then they send back their

responses. A decision mechanism collects these responses in order to send back

the final response to the requester.

The migration and deployment framework in this work can be used when a

company plans to migrate their service oriented systems into a cloud computing

platform with the consideration of the addition of fault tolerance strategies in order

to improve reliability. Before the company uses the framework, the structure of

their systems needs to be described as a tree. At the same time, the reliability of

services, execution time and cost constraints are required as input parameters of

the framework. Thereafter, the framework will compute the solutions to the

migration of the systems. After the certain number of iterations, an optimal

solution would be received and sent back to the designers.

There are four main roles involved in the framework when the optimal solution is

automatically generated, which are developer, tester, designer and cloud

administrator. They are described as follows.

62 | Page

Developers: The developers are responsible for the development of service

oriented systems. They have been involved in the stages of software

development and realise the structure of the systems. Since the framework needs

the structure of the system as an input parameter, the developers need to be

involved in the framework.

Testers: The testers of the systems need to be involved in the migration and

deployment, for they can provide the log files of all the services. Once they work

for a period of time, log files would be generated in servers. Testers can extract

the reliability of services and organise them in files. The reliability can reflect the

states of these services. For example, the stability and invocation times can be

described in the log files. At the same time, the location of end users invoking

certain services can be recorded in the files as well. According to the location

information, statistical facts can be collected and analysed. The framework in this

work needs these log files to define the reliability of each service of an application.

Administrators: They focus on the management of cloud computing platforms.

They are responsible for deploying the applications and systems and manage

VMs in the cloud computing platform. Companies planning to migrate service

oriented systems to a cloud need to purchase computing, storage and networking

resources in advance. After they finish the purchase of these resources from

cloud computing providers, the migration plan for their applications needs to be

generated. Thereafter, the administrators of the cloud computing platform are to

deploy their applications and perform corresponding configurations.

Designers: The designers take responsibilities for the management of the

migration plans for the systems. When a service oriented system is required to be

migrated into a cloud, fault tolerance strategies may be required in order to

enhance the reliability of the services. The optimal solution for the migration plan

is really hard for a designer to compute manually under cost and execution time

constraints. Therefore, a migration and deployment framework with a genetic

63 | Page

algorithm is needed to help designers to build up optimal migration and

deployment plans.

The framework in this work can automatically compute the solutions as a

migration and deployment plan with a genetic algorithm. Developers only need to

provide the structure of the service oriented systems, the cost and execution time

constraints and log files which describe failure information and warning messages

from all of the services. After the certain number of iterations, the genetic

algorithm can generate the optimal solution for service oriented systems in

clouds.

3.2.2 Components of the framework

In this section, the migration and deployment framework proposed in the work is

described. The framework utilises four stages to compute the optimal solution as

follows.

An optimal plan
Application

documents

Multilevel

redundancy

allocation model

Hybrid genetic

algorithm

Reliability of

services

Cost and time

constraint

Iterate

Log files

Map

Extract

Generate

Input

Input

Input

The algorithms

pool

Preparation stage Input stage Computing stage Output stage

Figure 3.7: The migration and deployment framework for service oriented systems

Figure 3.7 shows the migration and deployment framework for service oriented

systems in clouds. Based on the previous work (Qiu, Zheng, Wang, Yang, & Lyu,

2014; Zheng & Lyu, 2015; Zheng, Ma, Lyu, & King, 2013), this thesis proposes

cost and time constraints during software migration, uses multilevel redundancy

allocation model to describe service oriented applications structure and utilizes

64 | Page

hybrid genetic algorithm to calculate an optimal migration plan under these

constraints.

Intuitively, there are four stages in the figure, which are the preparation stage, the

input stage, the computing stage and the output stage. The detailed functions of

all the stages are illustrated as follows.

Preparation stage: This stage mainly prepares all the necessary information for

the migration and deployment framework, which includes two components: one is

for application documents and the other one is for log files. The component to

deal with the application documents mainly receives the structure of service

oriented systems as the input parameter for the framework in this work. The

application documents are always provided by the developers or administrators in

a company. From the application documents, all the information about the design

of the application can be collected. Information about the structure of the service

oriented system is needed, from which it can be described as a tree, where the

abstract functions are regarded as modules at the high levels and the detailed

services are at the bottom levels. The tree representation of the system is

employed for the multilevel redundancy allocation model, since the genetic

algorithm in our work needs to assign redundant units to different levels. From the

log files, the reliability of the services can be extracted for input to the framework.

Log files: There are two approaches to generate log files. One method is to get

the log files from Web servers (e.g., Apache Tomcat). Another approach is that

developers can manually insert source code into Web services to generate log

files. In this work, the latter is adopted. In the log files, the states of services

(errors and warning messages), execution time, client IP addresses and access

time are recorded.

Input stage: Includes three components, which are the multilevel redundancy

allocation model, the reliability of the services and the cost and execution time

constraints. The multilevel redundancy allocation model describes the structure of

65 | Page

the service oriented system. The reliability of the modules can be extracted from

the log files. The cost and execution time constraints can be predefined for the

generation of the solution. Execution time constraints can measure the

performance of a service oriented system.

Computing stage: This stage mainly includes the genetic algorithms. After a

certain number of iterations, an optimal solution can be obtained.

Output stage: This stage is responsible for showing the generated optimal

solution and sending it to the designers.

66 | Page

Chapter 4 Multilevel Redundancy Allocation

Model

4.1 Introduction

In this chapter, the multilevel redundancy allocation model is utilised for service

oriented systems. Fault tolerance strategies are integrated into the model for the

services at the bottom level. An improved genetic algorithm based on (He, Wu, Xu,

Wen, & Jiang, 2013) is proposed and adopted in the migration and deployment

framework described in the previous chapter.

Complex software requirements make current software systems larger and larger

(Qiu, Zheng, Wang, Yang, & Lyu, 2014). If an error or a warning can be detected

and solved, the reliability of the corresponding module can be improved. However,

for a service oriented system in a cloud, it is complex and almost impossible to

check each service and solve all the possible errors. Therefore, fault tolerance

strategies are needed to improve software reliability.

In distributed environments, the reliability of the large-scale software systems

cannot be guaranteed (Zheng & Lyu, 2010). Therefore, reliability is always taken

into account at the stage of system design in the multilevel redundancy field (He,

Wu, Xu, Wen, & Jiang, 2013), which can be calculated from the bottom layer to

the top layer. For a multilevel system, there are two approaches to improve

reliability: one is to enhance the reliability of each component and the other one is

to allocate unit redundancy to the components at different levels. Service oriented

systems can be represented as a multilevel redundancy model.

For the optimisation of the multilevel redundancy allocation model, the encoding

mechanism plays a key role in the performance of a genetic algorithm. An

encoding mechanism called two dimensional arrays encoding has been proposed

(He, Wu, Xu, Wen, & Jiang, 2013). Instead of the utilisation of an unfixed length of

arrays in the genetic algorithm, a two dimensional array with a fixed length

67 | Page

represents a solution to multilevel redundancy allocation problem (MLRAP). In the

array, the first dimension means the units assembling the multilevel system. The

second dimension of the array denotes the redundant number of the current unit.

The new encoding mechanism reduces the complexity of the development of

generic algorithm (GA). However, the mechanism also brings new problems.

When the algorithm runs, solutions calculated in previous iterations need to be

refined. To expand the exploration space of GA, the redundancy of units need to

be modified, which leads to the movement of the elements in the array. The

disadvantage may be that when a column of children units is added or removed,

the following columns must be moved forward or backward. The movement of

other columns may increase the additional operations of the algorithm and

decrease its efficiency.

To tackle the problem, this work proposes a new encoding mechanism named the

linked list based encoding mechanism. A linked list based array is employed to

represent the solution, which is also the structure of a multilevel redundancy

allocation model. The array can avoid the movement of the elements when a

column of the related children units needs to be added or removed. A detailed

description of the array is in the following sections.

4.2 Term definition

In this section, the utilised terms of MLRAP and the new encoding mechanism are

depicted. To avoid description confusion, the definition of the following items in

this work is listed.

1) Unit: The nodes of a multilevel redundancy allocation model.

2) System unit: The root node of a multilevel redundancy allocation model.

The unit comprises a lot of subsystem units.

3) Subsystem unit: All the units between the system unit at the top level and

the components at the bottom level.

68 | Page

4) Component: Components are the units at the bottom level. They represent

the detailed functions of business logic. In service oriented systems, they

denote the services.

4.3 Adoption of a multilevel redundancy allocation model

In this section, a multilevel redundancy allocation model (He, Wu, Wen, & al, 2010;

He, Wu, Xu, Wen, & Jiang, 2013; Wang, Tang, & Yao, 2010) is adopted for the

migration and deployment framework. The model is always utilized to resolve

hardware reliability problems. In this thesis, the model is integrated with fault

tolerance approaches, RB, NVP and Parallel to describe a service based system

in clouds.

For a multilevel redundancy allocation model, redundancy allocation can be

performed for the different layers. If the units at the subsystem or system layers

are allocated with redundancy, their children units at the lower layer need to be

changed a lot.

The entire service oriented system is described as a tree, where the relationship

between units is the invocation. The components can work together and

constitute an abstract unit. For example, a waybill management unit may consist

of the waybill creation, waybill modification, waybill delivery units, etc. The

structure of applications can be extracted from software documents.

69 | Page

U1

U1

System

U1

U13U12U11

U1

U13U12U11

U1

U11 U12 U13

U1
1 U1

2

U11
1 U11

2 U12
1 U12

2 U13
1 U11

1 U11
2 U11

3 U12
1 U13

1

U11
1 U12

1

U11
2 U12

2

U13
1

U11
1

U11
1

U11
3

U12
1 U13

1

Original system

After redundancy allocation

Figure 4.1: An example of the transformation of a multilevel redundancy allocation

model

Figure 4.1 shows an example of the transformation of an original multilevel

system to a redundant structure. The original model is a bi-level system, which

includes one system unit and three components, which have a serial relationship.

The original system could be regarded as a function of a service oriented system

where the components are the services. 𝑈1 is an abstract unit and 𝑈11, 𝑈12 and

70 | Page

𝑈13 are components. In this work, we assume that all the components are atomic

services.

In Figure 4.1, the middle graph is a bi-level system after redundancy allocation.

The system unit and the components of the original system are separately

assigned with redundant units. The system unit 𝑈1 is assigned with redundancy.

Therefore, for 𝑈11, 𝑈12 and 𝑈13, redundant units would be assigned. In Figure

4.1, for 𝑈1
1, the numbers of the redundant units of 𝑈11, 𝑈12 and 𝑈13 are 2, 2 and

1. For 𝑈1
2, the numbers of the redundant units of 𝑈11, 𝑈12 and 𝑈13 are 3, 1 and

1. Note that the relationship of the redundant units with the identical unit is

parallel.

In Figure 4.1, the graph at the bottom is another description style of the redundant

model, which shows the business flow of a service oriented system. It is obvious

that the redundant units are not only allocated to the bottom layer, but the abstract

layers as well. Therefore, the reliability of the represented system is enhanced via

the redundancy of the units at the abstract layers and the component layer.

4.4 Adoption and modification of an optimisation problem

In this section, the multilevel redundancy allocation optimisation problem is

described. In this work, three features of a service oriented system are taken into

consideration, which are the reliability, the resource cost and the execution time.

The following sections describe the computing approach of the features of a

model. An example is given as follows.

Figure 4.2 shows an original system and the system with redundant units. In the

original system, there are two levels. After redundancy allocation, the units, 𝑈11,

𝑈12 and 𝑈13 are equipped with five, three and two redundant units.

71 | Page

Figure 4.2: An example of redundancy allocation model

4.4.1 Adoption of reliability computing

In this section, the reliability computing method of the multilevel redundancy

allocation model is described. The reliability of the entire model can be computed

via the addition of redundant units from the bottom level to the top level (He, Wu,

Wen, & al, 2010; He, Wu, Xu, Wen, & Jiang, 2013; Wang, Tang, & Yao, 2010).

Since all the components have their own reliability, the total reliability of the model

needs to add all the values together. There are two types of relationships between

the units in the model at different levels. One is parallel and the other one is serial.

For these two types, the computing approaches are different, which are described

as follows.

U1

U11 U12 U13

U1
1 U1

2

U11
1 U11

2 U12
1 U12

2 U13
1 U11

1 U11
2 U11

3 U12
1 U13

1

Original system

After redundancy allocation

72 | Page

Figure 4.3: The serial relationship between two units

Figure 4.3 shows the serial relationship between two units. The serial relationship

means that they have different functions and perform different tasks. Therefore,

the reliability of the model shown in Figure 4.3 is computed as follows.

𝑅 = (1 − 𝑓11) × (1 − 𝑓12) (4.1)

In the formula, 𝑅 is the reliability of the entire model. 𝑓11 and 𝑓12 are the failure

rates of the units, 𝑈11 and 𝑈12, respectively.

Figure 4.4: The parallel relationship between two units

Figure 4.4 shows the parallel relationship between two units. The units are

identical, for the original unit is replicated. Hence, they could finish the same

request. In this case, the reliability of the module in Figure 4.4 can be computed

as follows.

𝑅 = 1 − 𝑓11
1 × 𝑓11

2 (4.2)

𝑓11 denotes the failure rate of the original unit. Since they are replicated, a

minimum of one unit needs to be guaranteed to perform the processing of a

request and return its response.

𝑅𝑖 =∏[1 −∏(1 − 𝑅𝑖𝑘
𝑗
)

𝑥𝑖𝑘

𝑗=1

]

𝑚𝑖

𝑘=1

 (4.3)

U1

U11 U12

U11
1 U11

2

73 | Page

Based on the analysis above, the reliability of a multilevel redundancy allocation

model with a serial and parallel relationship of the units can be calculated in the

formula. 𝑅𝑖 represents the reliability of the subsystem unit 𝑖. 𝑅𝑖𝑘
𝑗

 denotes the

reliability of the 𝑗𝑡ℎ redundant unit of the 𝑘𝑡ℎ unit. The Figure 4.5 illustrates the

algorithm for computing reliability.

Algorithm name: Compute_reliability

Input: 𝑆: The structure of a multilevel redundancy allocation

model

Output: 𝑅: The reliability

Steps:

// Compute all the nodes from the bottom level to the top level

for(int 𝑖 = levels_num; i > 0; i--) {

 if(S(i) is a component) {

 𝑅𝑖 = Compute_parallel(𝑆(𝑖)); // Compute the parallel relationship

 } else if(𝑆(𝑖) is not a component) {

 𝑅𝑠𝑦𝑠 = Compute_serial(𝑆(𝑖), 𝑅𝑖, 𝑅𝑠𝑦𝑠);

 }

}

return 𝑅𝑠𝑦𝑠;

Figure 4.5: The algorithm of computing reliability

Therefore, the reliability of the model in Figure 4.2 can be calculated in the

formula. 𝑅𝑠𝑦𝑠 is the reliability of the entire model.

𝑅𝑠𝑦𝑠 = 1 − {1 − [(1 −∏(1 − 𝑅11
𝑗
)

2

𝑗=1

)(1 −∏(1 − 𝑅12
𝑗
)

2

𝑗=1

)(𝑅13
1)]} × {1 − [(1 −∏(1 − 𝑅11

𝑗
)

3

𝑗=1

) (𝑅12
1)(𝑅13

1)]} (4.4)

In this thesis, service reliability can be calculated via collecting data from logs.

Since a migration plan needs to be generated before an application migrates into

a cloud computing platform, it is impossible to get service logs in the cloud.

Therefore, to get the service reliability, a program can be completed to send some

requests to these services. Thereafter, the states of requests and responses can

be collected. Service reliability is the ratio of correct and total responses.

74 | Page

4.4.2 Adoption of cost computing

In this section, the algorithm for computing the cost of a multilevel redundancy

allocation model is illustrated. The cost of the entire model can be calculated

through the addition of the cost of units from the bottom level to the top level (He,

Wu, Xu, Wen, & Jiang, 2013; Wang, Tang, & Yao, 2010).

𝐶𝑖 =∑(∑𝐶𝑖𝑘
𝑗
+ (𝜕𝑖𝑘)

𝑥𝑖𝑘

𝑥𝑖𝑘

𝑗=1

) (4.5)

𝑚𝑖

𝑘=1

The formula shows the cost of a model. 𝜕𝑖𝑘 is the configuration cost of the

redundancy allocation for 𝑈𝑖𝑘.

Algorithm name: Compute _cost

Input: 𝑆: The structure of the multilevel redundancy allocation

model

Output: 𝐶: The cost

Steps:

// Compute all the nodes from the bottom level to the top level

for(int i = levels_num; i > 0; i--) {

 if(𝑆(𝑖) is a component) {

 𝐶𝑖 = Compute_component_cost (𝑆(𝑖));

 } else if(𝑆(𝑖) is not a component) {

 𝐶𝑠𝑦𝑠 = Compute_sum(𝑆(𝑖), 𝐶𝑖, 𝐶𝑠𝑦𝑠);

 }

}

return 𝐶𝑠𝑦𝑠;

Figure 4.6: The algorithm of computing cost

According to the above formula and algorithm, the cost of the model in the Figure

4.2 is shown as follows. 𝐶𝑠𝑦𝑠 is the cost of the entire model.

𝐶𝑠𝑦𝑠 = [(∑𝐶11
𝑗
+ (𝜕11)

2

2

𝑗=1

) + (∑𝐶12
𝑗
+ (𝜕12)

2

2

𝑗=1

) + (𝐶13 + 𝜕13)] +

 [(∑𝐶11
𝑗
+ (𝜕11)

3

3

𝑗=1

) + (𝐶12 + 𝜕12) + (𝐶13 + 𝜕13)] (4.6)

4.4.3 Development of execution time computing

In this section, the computing method for the execution time is described. To

improve processing correctness, a request needs to be received and processed

by all the redundant units. Therefore, in the parallel relationship at the bottom

75 | Page

level, the execution time of a request is the maximum value, which means the

execution time of the last response.

𝑇𝑖 =∑(max(𝑡𝑖𝑗
𝑘) + 𝜆|𝑀𝑘|)

𝑚

𝑗=1

, 𝑘𝜖𝑌 (4.7)

This formula shows the execution time of a multilevel redundancy allocation

model. 𝑡𝑖𝑗
𝑘 represents the execution time of the 𝑘𝑡ℎ redundant unit of the 𝑗𝑡ℎ

unit in the model 𝑖. 𝜆 is the extra time of the redundancy configuration. 𝑀𝑘 is

the redundant number of the unit j.

Algorithm name: Compute_execution_time

Input: 𝑆: The structure of the multilevel redundancy allocation

model

Output: 𝑇: The execution time

Steps:

// Compute all the nodes from the bottom level to the top level

for(int i = levels_num; i > 0; i--) {

 if(𝑆(𝑖) has redundant units) {

 𝑇𝑠𝑦𝑠 = Compute_max_time (𝑆(𝑖));

 } else if(𝑆(𝑖) does not have redundant units) {

 𝑇𝑠𝑦𝑠 = Compute_sum(𝑆(𝑖), 𝑇𝑖, 𝑇𝑠𝑦𝑠);

 }

}

return 𝑇𝑠𝑦𝑠;

Figure 4.7: The algorithm for computing the execution time

Figure 4.7 shows the algorithm for computing the execution time. In the algorithm,

there are two types of relationship: one is a parallel relationship and the other is a

serial relationship. Therefore, as with the algorithm for computing the reliability,

the computing method for the execution time depends on the specific structure of

the model. For a parallel relationship, the execution time is the maximum value of

time of all the responses. On the other hand, for a serial relationship, the

execution time of the model needs to add the maximum time of all the responses.

Therefore, in Figure 4.7, the functions, Compute_max_time() and

76 | Page

Compute_sum(), are responsible for computing the maximum value of the

execution time and the sum of all given ones.

Based on the above analysis and description, the execution time in Figure 4.2 can

be shown as follows. 𝑇𝑠𝑦𝑠 is the execution time of the entire model.

𝑇𝑠𝑦𝑠 = (𝑀𝑎𝑥(𝑡11
2) + 𝑀𝑎𝑥(𝑡12

2) + 𝑡13) + (𝑀𝑎𝑥(𝑡11
3) + 𝑡12 + 𝑡13) (4.8)

4.4.4 Modification of the optimisation problem

In this section, the optimisation problem is defined based on the computing

approaches for the reliability, the cost and the execution time of a service oriented

system. The reliability problem of a multilevel redundancy allocation model is an

optimisation problem. Since redundant units can be allocated to all the levels of a

model, the optimal solution for redundancy allocation needs to be determined,

which can maximise the reliability of the entire model and meet the predefined

constraints. In our work, the predefined constraints are the cost constraints and

the execution time constraints.

The reason to propose the cost of a unit is that the redundant units both bring

higher reliability and cause extra cost. The redundant units lead to extra

configuration cost as well. In clouds, the computing, networking and storage

resources commonly need to be purchased. The optimal migration and

deployment plan allows companies to adopt the minimum cost in order to

maximise reliability. Therefore, the cost constraints need to be considered.

The execution time is a feature to measure the performance of a service oriented

system. The quick processing of a request from end users is pivotal. Apart from

the cost, the execution time is also taken into consideration in this work.

Additionally, the performance of a service oriented system is also influenced by

the network condition. However, in this work, the network condition will be ignored,

since in the actual deployment, an application or a system ideally can be deployed

in an identical cloud. Therefore, the optimisation problem is described as follows.

77 | Page

Maximize 𝑅𝑠𝑦𝑠 = 𝑅(𝑥11, … , 𝑥𝑖𝑘) (4.9)

Subject to 𝐶𝑠𝑦𝑠 = 𝐶(𝑥11, … , 𝑥𝑖𝑘) ≤ 𝐶0, 1 ≤ 𝑥𝑖𝑚 ≤ 𝛼𝑖 (4.10)

𝑇𝑠𝑦𝑠 = 𝑇(𝑥11, … , 𝑥𝑖𝑘) ≤ 𝑇0 (4.11)

The formula shows the optimisation problem of a multilevel redundancy allocation

model. 𝑅𝑠𝑦𝑠 is the reliability of the entire model. 𝑥𝑖𝑘 is the units of the model.

𝐶𝑠𝑦𝑠 denotes the cost and the configuration cost of the entire model. 𝐶0

represents the predefined cost constraint. 𝛼𝑖 is maximum redundant number of a

unit. 𝑇𝑠𝑦𝑠 is the execution time of the entire model and 𝑇0 is the predefined

execution time constraint. In the following section, an available and efficient

algorithm is employed to generate the optimal solution for the migration and

deployment plan.

4.5 Adoption and modification of genetic algorithm

In this section, a hybrid genetic algorithm is adopted with a new encoding

mechanism to generate an optimal solution. An improved genetic algorithm based

on (He, Wu, Xu, Wen, & Jiang, 2013) is employed for the generation of the

migration plan for service oriented services in clouds. To improve performance, a

new encoding mechanism is proposed. Additionally, the hybrid genetic algorithm

can integrate with NVP, RB and Parallel for the components at the bottom level in

order to acquire the optimal solution.

The genetic algorithm needs to take reliability, cost and execution time into

consideration, which are the purposes that the migration and deployment

framework will achieve. Additionally, the genetic algorithm needs to be efficient,

for it needs to continue generating solutions. Therefore, the encoding mechanism

to operate the increase and decrease of units of a model can affect the

performance of the genetic algorithm.

4.5.1 Traditional encoding mechanism

The hierarchical encoding mechanism is commonly utilised in genetic algorithms

in order to generate the optimal solution for a multilevel redundancy allocation

78 | Page

model (He, Wu, Xu, Wen, & Jiang, 2013; Kumar, Izui, Masataka, & Nishiwaki,

2008; Wang, Tang, & Yao, 2010). The hierarchical encoding mechanism (He, Wu,

Xu, Wen, & Jiang, 2013) is at first described. Based on the mechanism, a novel

encoding mechanism is proposed, which can save the storage space and improve

the performance of the genetic algorithm.

Figure 4.8: An example of a tri-level multilevel redundancy allocation model

To explain the traditional hierarchical encoding mechanism, an example of a

multilevel redundancy allocation model with three levels is described in Figure 4.8,

which has three levels and eleven units.

Figure 4.9: The model after redundancy allocation

Figure 4.9 describes the model after redundancy allocation. In the figure, the unit,

𝑈11 is allocated one redundant unit. Since there are three children units of 𝑈11,

the units are replicated as well. In this case, it is apparent that the redundancy

U1

U11 U12 U13

U111 U112 U113 U121 U122 U131 U132

1

2 3 4

5 6 7 8 9 10 11

U111 U112 U113

U111

U111

U112

U112

U113

U121

U121

U122

U131

U131

U132

U131

U132

U132

79 | Page

allocation for a unit at a higher level leads to bigger changes to the structure of the

model.

Figure 4.10: The traditional encoding mechanism

Figure 4.10 illustrates the traditional encoding mechanism, which utilises a two

dimensional array to store the redundancy of all the units at different levels. The

structure of the model can be described via the indices of the array. For example,

the root of a model is in the first row. In the same manner, the units, 𝑈11, 𝑈12 and

𝑈13 at the second level are in the second, third and fourth rows. Therefore, the

model shown in Figure 4.9 is described in Figure 4.10. In the two dimensional

array, all the elements describe the redundant number of each unit. For example,

𝑈1 does not have redundant units. Hence, the redundant value in the array is 1.

Additionally, since 𝑈11 has one redundant unit, the values of 𝑈111, 𝑈112 and

𝑈113 are (1, 2) , (1, 2) and (1, 1). The redundant number of the parent unit

determines the amount of columns of children units in the array. The utilisation of

the two dimensional array can intuitively describe the structure and the number of

the redundant units.

U1

U11

U12

U13

U111

U112

U113

U121

U122

U131

U132

1

2

3

4

5

6

7

8

9

10

11

1

2

1

2

1

1

1

2

1

2

1

2

2

1

2

1

x1
1

x1
11

x1
12

x1
13

x1
111

x1
112

x1
113

x1
121

x1
122

x1
131

x1
132

x2
111

x2
112

x2
113

x2
132

x2
131

80 | Page

The encoding mechanism needs more storage space than it actually requires. To

define the array, the length of the array needs to be predefined in most

programing languages. However, in Figure 4.10, it is obvious that the abstract

units commonly utilise some of the storage space, namely, some of the columns

of the array. When the redundancy allocation model has a lot of levels, the

problem may be serious. For example, the array in Figure 4.10 must have more

than 11 × 25 × 5 = 1375 elements, when the maximum redundancy number of

each unit in the model is 5. Specifically, 11 is the number of the units in the model.

The situation with the maximum redundant units is that the root has 5 redundant

units. Therefore, its children units have a maximum of 5 columns and the

maximum value of each element is 5. Thereafter, the maximum number of the

column of the units at the bottom level would be 25. Therefore, when the two

dimensional array is defined, the row and column number needs to be 11 and 25,

respectively. We can imagine that in this situation the number of the empty

columns at the first row is 24 and the amount of the empty columns at the second

level is 20. According to Figure 4.10, the total number of the maximum empty

elements is 24 + 20 × 3 = 84. Therefore, it is clear that the encoding mechanism

wastes a lot of storage space.

Another problem of the encoding mechanism may be the efficiency of the

operation of each element in the array. Specifically, the genetic algorithm needs

to generate and obtain the optimal solution via iteration. In each generation, new

solutions will be generated. The approach to generate a new solution is to

increase or decrease the redundant number denoted in the array. A detailed

explanation of the operation is shown as follows.

Figure 4.11 shows the example of increase operation of a redundant unit. The

root unit adds a redundant unit. Since the root unit is at the top level of the model,

the change would alter the structure of the entire model at different levels. At first,

the units at the second level add a new column to store new redundant units. In

Figure 4.11, the units, 𝑈11 , 𝑈12 and 𝑈13 , separately add a column with the

81 | Page

values of 𝑥1, 𝑥2 and 𝑥3. The transformation of the units at the second level leads

to the increase operation of the components at the bottom level, which add 𝑥1, 𝑥2

and 𝑥3 columns, separately. After the increase operation of the redundant units

for the different levels, the new redundant number is generated randomly.

Thereafter, the solution would be computed and the reliability, the cost and the

execution time would be compared with the predefined constraints.

Figure 4.11: The example of the increase operation of a redundant unit

In another example, if the new generated column is between the first and the

second column at the second row, the second column with the value 𝑥1 would be

moved backward. When a unit has a lot of redundant units, its children units can

have more columns to store redundant numbers. In this case, the newly

generated column makes the elements of the children units move a lot of columns

backwards. The number of the moved columns equals the increase amount of the

added redundant values of the parent unit. Similar to the increase operation of the

redundant units, the approach to decrease redundant units is illustrated as

follows.

U1

U11

U12

U13

U111

U112

U113

U121

U122

U131

U132

1

2

3

4

5

6

7

8

9

10

11

1

2

1

2

1

1

1

2

1

2

1

2

2

1

2

1

U1

U11

U12

U13

U111

U112

U113

U121

U122

U131

U132

1

2

3

4

5

6

7

8

9

10

11

1+1=2

2

1

2

1

1

1

2

1

2

1

2

2

1

2

1

x1

x2

x3

y1 yx1...

y1 yx1...

y1 yx1...

z1 zx2...

z1 zx2...

m1 mx3...

m1 mx3...

82 | Page

Figure 4.12 describes an example of the decrease operation of a redundant unit,

which utilises the original model shown in Figure 4.8. The decrease operation is

performed for the unit 𝑈13. When the number of the redundant units is changed

from 2 to 1, the number of the columns of its children units would be changed to 1.

Originally, these children units had two columns. Based on the genetic algorithm

(He, Wu, Xu, Wen, & Jiang, 2013), the element of a random column would be

removed. In the example of Figure 4.12, the element of the first column is

removed. After the removal operation, the elements after the column in the same

row would be moved forward. Similar to the increase operation of a redundant unit,

the decrease operation would influence a lot of columns, if its parent unit has

several redundant units.

Figure 4.12: An example of the decrease operation of a redundant unit

In summary, the traditional encoding mechanism needs to be improved in terms

of data storage and the increase and decrease operation of redundant units. In

terms of data storage, if the mechanism can utilise the storage space when it

needs, space can be saved. For the increase and decrease operation of

redundant units, if it would not influence the elements in other columns in the

U1

U11

U12

U13

U111

U112

U113

U121

U122

U131

U132

1

2

3

4

5

6

7

8

9

10

11

1

2

1

2

1

1

1

2

1

2

1

2

2

1

2

1

U1

U11

U12

U13

U111

U112

U113

U121

U122

U131

U132

1

2

3

4

5

6

7

8

9

10

11

1

2

1

2-1=1

1

1

1

2

1

2

1

2

2

1

2

1

83 | Page

same row, a few steps would be performed. In each iteration, new solutions will

be explored. Therefore, fewer movement steps during solution generation can

result in higher performance. Therefore, in the following section, the new

encoding mechanism will be proposed to resolve these two problems.

4.5.2 Development of linked list based encoding mechanism

In this section, a linked list based encoding mechanism is proposed, which is

based on the mechanism (He, Wu, Xu, Wen, & Jiang, 2013). The new encoding

mechanism can save storage space and improve the performance of the increase

and decrease operation of redundant units.

Figure 4.13: The structure of the new encoding mechanism

Figure 4.13 describes the structure of the new encoding mechanism, which stores

the model based on the original system shown in Figure 4.8. In the encoding

mechanism, the structure of a solution is stored as a linked list based array. The

indices of the array describe the structure of the model. However, for each unit at

a row in the array, the elements of the columns are connected based on a linked

list structure. The value of the redundant units is stored in a node of the linked list.

U1

U11

U12

U13

U111

U112

U113

U121

U122

U131

U132

1

2

3

4

5

6

7

8

9

10

11

1

2

1

2

1

1

1

2

1

2

1

2

2

1

2

1

x1
1

x1
11

x1
12

x1
13

x1
111

x1
112

x1
113

x1
121

x1
122

x1
131

x1
132

x2
111

x2
112

x2
113

x2
132

x2
131

84 | Page

The mechanism can save storage space and reduce the overhead of the increase

and decrease operation of redundant units. The detailed description is shown as

follows.

Figure 4.14: The increase operation of a redundant unit

Figure 4.14 depicts the increase operation of a redundant unit for the root unit.

With the addition of 1 redundant unit to the root unit, the children units, 𝑈11, 𝑈12

and 𝑈13, need to add more nodes to the corresponding linked list. The encoding

mechanism does not need the array with the predefined fix length for each unit in

advance, which arranges the storage space according to the actual requirements.

When a redundant unit is added to a unit, its children units only need to create

new nodes and find out the position where the nodes would be inserted, and

added them in the linked list. Additionally, the increase operation of the elements

of a unit in the traditional mechanism is replaced by the change of the

corresponding pointers. The linked list can avoid the movement of these

elements.

Figure 4.15 illustrates the decrease operation of a redundant unit. To explain the

decrease operation, the similar structure shown in Figure 4.12 is given as an

example. In the figure, the redundant value of the first node of the unit 𝑈13 is

changed from 2 to 1. Accordingly, the children units, 𝑈131 and 𝑈132, need to be

U1

U11

U12

U13

U111

U112

U113

U121

U122

U131

U132

1

2

3

4

5

6

7

8

9

10

11

1

2

1

2

1

1

1

2

1

2

1

2

2

1

2

1

U1

U11

U12

U13

U111

U112

U113

U121

U122

U131

U132

1

2

3

4

5

6

7

8

9

10

11

1+1=2

2

1

2

1

1

1

2

1

2

1

2

2

1

2

1

x1

x2

x3

y1 yx1...

y1 yx1...

y1 yx1...

z1 zx2...

z1 zx2...

m1 mx3...

m1 mx3...

85 | Page

changed. The first nodes of these two linked lists are removed. The

corresponding resources of the nodes are released. Similar to the increase

operation of a redundant unit, the decrease operation in this work does not need

to move other elements. Only the position needs to be confirmed and the

corresponding links need to be modified.

Figure 4.15: The decrease operation of a redundant unit

In summary, the utilisation of the linked list not only saves the storage space, but

improves the performance of the change of redundant units as well. Since the

utilised genetic algorithm focuses on the operation of the array, this can reduce

the overhead of the entire algorithm. This work takes advantage of the linked list

based array as the data storage of the solutions generated by the genetic

algorithm. The following section would describe the utilised genetic algorithm.

4.5.3 Adoption of genetic algorithm framework

In this section, the genetic algorithm framework is described. The framework

describes the main steps of the genetic algorithm. All the parts of the algorithm

will be described in the following sections. In this work, the similar framework (He,

Wu, Xu, Wen, & Jiang, 2013; Wang, Tang, & Yao, 2010) is proposed as follows.

U1

U11

U12

U13

U111

U112

U113

U121

U122

U131

U132

1

2

3

4

5

6

7

8

9

10

11

1

2

1

2

1

1

1

2

1

2

1

2

2

1

2

1

U1

U11

U12

U13

U111

U112

U113

U121

U122

U131

U132

1

2

3

4

5

6

7

8

9

10

11

1

2

1

2-1=1

1

1

1

2

1

2

1

2

2

1

2

1

86 | Page

Figure 4.16 shows the genetic algorithm framework. Note that there is iteration in

the framework. The genetic algorithm is to find out the optimal solution via a lot of

attempts. In each generation, some new solutions are generated and the solution

set is refined. At last, the optimal solution can be got.

Algorithm name: Genetic algorithm framework

Input parameters: None

Output parameters: None

1. Initialize population 𝑃0 with 𝑁 individuals.

2. // 𝑡 < max _𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛_𝑣𝑎𝑙 is defined in advance

3. While 𝑡 < max _𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛_𝑣𝑎𝑙 {

4. Randomly select 𝑋 solutions from 𝑃0 and invoke local_search method to

generate new solutions to 𝑄

5. 𝑅 = 𝑃0 + 𝑄

6. Invoke fitness_value method to compute the fitness values of the solutions

in 𝑅

7. Sort 𝑅 in descending order according to the fitness values

8. Select top 𝑁 solutions from 𝑅 and store them to 𝑃0 for the next

generation

9. }

Figure 4.16: The genetic algorithm framework

4.5.4 Adoption and modification of fitness function

In this section, the fitness function is proposed. Since the multilevel redundancy

allocation problem needs to be optimised under the predefined constraints, there

needs to be a mechanism to evaluate the quality of the solutions generated in

each generation, which would influence the final result, namely, the optimal

solution of the genetic algorithm.

𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑣𝑎𝑙𝑢𝑒(𝑋) = 𝑅(𝑋) × 𝑝(𝑋) (4.12)

The formula is the fitness function, where p(x) denotes a penalty function

proposed by (Gen & Cheng, 1996). Since the fitness function evaluates the

quality of the solutions generated by the genetic algorithm, it should take the

reliability, the cost and the execution time constraints into consideration.

𝑝(𝑋) = 𝑤1𝑝𝑐(𝑋) + 𝑤2𝑝𝑡(𝑋) (4.13)

Where

87 | Page

𝑤1 + 𝑤2 = 1 (4.14)

The formula shows the penalty function, which considers the cost and the

execution time of a solution. Since there are two predefined constraints, the

solutions need to meet the constraints. In the formula, the weights, 𝑤1 and 𝑤2,

are employed to adjust the influence of the cost and the execution time, which can

be set in advance by the designers for the migration and deployment of service

oriented systems. The higher reliability and less resource cost and execution time

are the purpose of the quality evaluation. 𝑝𝑐(𝑋) has been shown in (He, Wu, Xu,

Wen, & Jiang, 2013)

𝑝𝑡(𝑋) = 1 − 𝑝𝑜𝑤((𝑇(𝑋) − 𝑇0)/∆𝑇𝑚𝑎𝑥), 𝐾) (4.15)

Similar to the representation of the cost, the formula shows the penalty function of

the execution time. 𝑇(𝑋) is the execution time of the current solution, 𝑋. 𝑇0 is

the predefined execution time constraint. 𝑇𝑚𝑎𝑥(𝑋) is the maximum value of the

execution time of all the solutions in the current generation. 𝐾 is a parameter

proposed in the work (He, Wu, Xu, Wen, & Jiang, 2013). The Figure 4.17 shows

the algorithm of the fitness function.

In summary, the fitness function mainly evaluates the quality of the solutions

generated by the genetic algorithm in terms of the reliability, the cost and the

execution time. The penalty function can be expanded to comprise more

constraints.

Algorithm name: fitness_value

Input parameters: A solution 𝑋, the resource cost constraint 𝐶0, the execution time

constraint 𝑇0, the weights 𝑤1 and 𝑤2

Output parameters: The fitness value of 𝑋

Steps:

1. Compute the reliability of 𝑋 and set the result to 𝑅(𝑋).

2. Compute the resource cost of 𝑋 and set the result to 𝐶(𝑋).

3. Calculate the execution time of X and give the value to T(X).

4. Calculate ∆𝐶 = 𝐶𝑚𝑎𝑥 − 𝐶𝑖 and get the maximal ∆𝐶𝑚𝑎𝑥

5. Compute ∆𝑇 = 𝑇𝑚𝑎𝑥 − 𝑇𝑥 and get the maximal ∆𝑇𝑚𝑎𝑥

6. If ∆𝐶𝑚𝑎𝑥 == 0, ∆𝐶𝑚𝑎𝑥 = 1. The same operation is performed to ∆𝑇𝑚𝑎𝑥

88 | Page

7. Compute pcos𝑡 = 1 − 𝑝𝑜𝑤((𝐶(𝑋) − 𝐶0)/∆𝐶𝑚𝑎𝑥), 𝐾)

8. Compute 𝑝𝑡 = 1 − 𝑝𝑜𝑤((𝑇(𝑋) − 𝑇0)/∆𝑇𝑚𝑎𝑥), 𝐾)

9. return 𝑅𝑥 ∗ (𝑤1 ∗ 𝑝𝑐𝑜𝑠𝑡 + 𝑤2 ∗ 𝑝𝑡)

Figure 4.17: The algorithm of the fitness function

4.5.5 Development of population initialisation

In this section, the population initialisation approach (He, Wu, Xu, Wen, & Jiang,

2013) is utilised and described. Before the execution of the genetic algorithm, a

set of solutions would be generated as the initial ones. Thereafter, the genetic

algorithm performs the local search based on the solutions in order to generate

the optimal solution.

The population initialisation approach tries to generate a set of multilevel

redundancy allocation solutions. The redundancy numbers of the different units

are randomly created in the range of 1 and the predefined maximum value. The

generation of a solution begins from the top level to the bottom level. The

following presents the detailed method.

Figure 4.18: An example of the population initialisation approach

Figure 4.18 shows an example of the population initialisation approach. The root

unit, 𝑈1, has 3 redundant units. Therefore, its children units have three nodes in

U1

U11

U12

U13

U111

U112

U113

U121

U122

U131

U132

1

2

3

4

5

6

7

8

9

10

11

3

3 3 1 3 1 2

89 | Page

the linked list. When a node in the linked list is generated, the value between 1

and the predefined maximum redundant value is randomly generated.

Figure 4.19: The relationship between the parent and children units

Figure 4.19 describes the relationship between the parent and children units,

when the population initialisation is performed. After the redundant units are

allocated to the units at the second level, the corresponding components at the

bottom level would be handled. Therefore, after the unit, 𝑈11 is allocated with

redundancy, 𝑈111 is arranged with redundant units. In the figure, there are 6

nodes in the linked list of the unit, 𝑈111, for the total redundancy number of the

parent unit, 𝑈11 , is 3 + 1 + 2 = 6. Therefore, the redundancy number of the

children units equals the sum of the values of the nodes in the parent’s linked list.

All the units with the identical parent unit have the same node numbers in its

linked list. Additionally, when the population initialisation is performed, the

operation is actually iteration. After a parent unit is allocated with a set of

redundant nodes, its children units would be handled in the same manner. When

the operation of a branch of the tree-like structure is completed, another branch

begins to be processed. The detailed algorithm is described as follows.

U1

U11

U12

U13

U111

U112

U113

U121

U122

U131

U132

1

2

3

4

5

6

7

8

9

10

11

3

3 1 2

2 3 2 5 1 4

90 | Page

Algorithm name: population_initialization

Input parameters: The empty fundamental population 𝑃, the current unit index

𝑖ndex, the parent’s redundant number 𝑝𝑎𝑟𝑒𝑛𝑡_𝑛𝑢𝑚

Output parameters: The initialized population 𝑃

Steps:

1. If(𝑃[𝑖𝑛𝑑𝑒𝑥] is not a component at the bottom level)

2. create a linked list 𝑙𝑖𝑠𝑡

3. While(𝑗 < 𝑝𝑎𝑟𝑒𝑛𝑡_𝑛𝑢𝑚)

4. 𝑙𝑖𝑠𝑡 = 𝑐𝑟𝑒𝑎𝑡𝑒_𝑛𝑜𝑑𝑒(𝑙𝑖𝑠𝑡)

5. 𝑃[𝑖𝑛𝑑𝑒𝑥] = 𝑙𝑖𝑠𝑡

6. If(𝑃(𝑖𝑛𝑑𝑒𝑥) has children units)

7. While(𝑗 < 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛_𝑛𝑢𝑚)

8. 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛_𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛(𝑃, 𝑖𝑛𝑑𝑒𝑥_𝑐ℎ𝑖𝑙𝑑, 𝑟𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡_𝑛𝑢𝑚)

9. End

10. End

11. Else // 𝑃(𝑖𝑛𝑑𝑒𝑥) is a component at the bottom level

12. Return 𝑃

13. End

Figure 4.20: The algorithm of the population initialisation

Figure 4.20 shows the algorithm of the population initialisation. It is clear that the

entire algorithm is iteration. The performance of the population initialisation is

mainly influenced by the level number of a model, the branch number and unit

number.

4.5.6 Development of the wheel selection method

In this section, the wheel selection method is described in order to select an index

representing a unit in a model from the top level to the bottom level due to the

values computed via the sensitivity analysis. The utilised wheel selection method

is shown as follows.

Figure 4.21 shows the algorithm of the wheel selection method, which selects the

index of the units in the array according to the values computed through the

sensitivity analysis described in the section, 4.5.7. Since the change of the

redundant number of a unit at a high level can lead to the bigger transformation of

the structure of the entire model, the sensitivity analysis is configured to give a

91 | Page

smaller value to the units at a higher level. This makes the exploration space of

new solutions to be a valid range.

Algorithm name: wheel_selection

Input parameters: The change values of all the units from sensitivity analysis, 𝑆𝐴()

Output parameters: The selected index 𝑖𝑛𝑑𝑒𝑥

Steps:

1. Get the sum of all the values in 𝑆𝐴().

2. 𝑟𝑎𝑛𝑑 = 𝑟𝑎𝑛𝑑_𝑛𝑢𝑚() // Randomly generate a value between 0 and the sum.

3. While(𝑗 < 𝑙𝑒𝑛𝑔𝑡ℎ(𝑆𝐴()))

1) 𝑠𝑢𝑚+= 𝑆𝐴(𝑗)

2) If(𝑟𝑎𝑛𝑑 < 𝑠𝑢𝑚)

3) Return 𝑗

4. End

Figure 4.21: The algorithm of the wheel selection function

4.5.7 Adoption and modification of sensitivity analysis

In this section, the sensitivity analysis for the solutions of the genetic algorithm is

described based on the sensitivity analysis (He, Wu, Xu, Wen, & Jiang, 2013),

which can be used for the service oriented services. The unit can be selected

according to the sensitivity values, which are computed in terms of the reliability,

the cost and the execution value. Since it is complex to consider modification of

units of each solution, the method to compute the reliability and cost values of

sensitivity analysis according to the change of units in original system has been

proposed (He, Wu, Xu, Wen, & Jiang, 2013). Therefore, the approach to compute

the execution time is given as follows.

92 | Page

Figure 4.22: An original system as the example of the sensitivity analysis

Figure 4.22 shows an original system as the example of the sensitivity analysis.

There are seven units and three levels.

Figure 4.23: A redundant unit added to a unit at the bottom level

U1

U11 U12

U111 U112 U121 U122

U1

U11 U12

U111
1

U112 U121 U122

U111
2i i

Z

93 | Page

Figure 4.24: A redundant unit added to a unit at the subsystem level

𝑇𝑠𝑦𝑠𝑖 =

{

(∑ 𝑇𝑗
𝑗∈𝑍&𝑖≠𝑗

) + [𝑇𝑖 + (𝜆𝑖)
2] 𝑖 ∈ 𝑍,

(∑ 𝑇𝑗
𝑗∈𝑍&𝑗∉𝑌

) + 2∑𝑇𝑘
𝑘∈𝑌

 𝑖 ∉ 𝑍.

 (4.16)

The formula illustrates the execution time of a multilevel redundancy allocation

model, which includes two situations illustrated in Figure 4.23 and Figure 4.24. 𝑍

is the set of the units at the bottom level.

To measure the influence of a redundant unit, the reliability, the cost and the

execution time should be taken into consideration. Therefore, the weights in the

wheel selection method described can be calculated as follows.

𝑤𝑖 =

{

𝑤𝑖−1 +

Δ𝑅𝑠𝑦𝑠𝑖
𝑤1Δ𝐶𝑠𝑦𝑠𝑖

+𝑤2Δ𝑇𝑠𝑦𝑠𝑖

∑
Δ𝑅𝑠𝑦𝑠𝑗

𝑤1Δ𝐶𝑠𝑦𝑠𝑗
+𝑤2Δ𝑇𝑠𝑦𝑠𝑗

𝑁
𝑗=1

 1 ≤ 𝑖 ≤ 𝑁,

0 𝑖 = 0.

 (4.17)

Where,

Δ𝑅𝑠𝑦𝑠𝑖

𝑤1Δ𝐶𝑠𝑦𝑠𝑖 + 𝑤2Δ𝑇𝑠𝑦𝑠𝑖
=

𝑅𝑠𝑦𝑠𝑖 − 𝑅𝑠𝑦𝑠

𝑤1(𝐶𝑆𝑦𝑠𝑖 − 𝐶𝑠𝑦𝑠) + 𝑤2(𝑇𝑠𝑦𝑠𝑖 − 𝑇𝑠𝑦𝑠)
 (4.18)

U1

U11
2 U12

U111
2 U112

2
U121 U122

Z

U11
1

U111
1 U112

1

Y Y

94 | Page

4.5.8 Development of local search method

In this section, the local search method is described, which is responsible for

generating new solutions and refining current solutions. Similar to the local search

approach (He, Wu, Xu, Wen, & Jiang, 2013), the method in this work does not use

genetic operators, but the linked list based array, which can save more storage

space and improve the efficiency of generating new solutions.

Figure 4.25 shows the algorithm of the local search method. The iteration

procedure generates the new solutions. In the iteration procedure, the increase

and decrease operation of the redundancy numbers would be performed. The

encoding mechanism in this work can save storage space and reduce the

overhead of the movement of redundant elements.

Algorithm name: local_search

Input parameters: a solution 𝑥, sensitivity analysis values, 𝑤_𝑖, current population

𝑃0, iteration number 𝑛 = 1

Output parameters: Generated solutions 𝑄

1. Randomly select a unit 𝑖 according to 𝑤_𝑖

2. Randomly select a node number 𝑗 from the unit 𝑖

// 𝛼𝑖 is the maximal redundant value

3. Add a redundant unit to the position 𝑥𝑖,𝑗 to generate a new solution 𝑥′, if

𝑣𝑎𝑙(𝑥𝑖,𝑗) is smaller than 𝛼𝑖

4. Decrease a redundant unit from the position 𝑥𝑖,𝑗 to generate a new solution

𝑥′′, if 𝑣𝑎𝑙(𝑥𝑖,𝑗) is greater than 1

5. Add 𝑥′ and 𝑥′′ to 𝑄

// 𝑀_𝐼_𝑁 is the maximal exploration value

6. if 𝑛 < 𝑀_𝐼_𝑁 {

7. local_search(𝑥′, 𝑤𝑖 , 𝑃0, 𝑛 + 1)

8. local_search(𝑥′′, 𝑤𝑖 , 𝑃0, 𝑛 + 1)

9. return 𝑄

Figure 4.25: The algorithm of the local search method

Figure 4.26 shows the operation of generating new solutions as an example of the

local search method. In the figure, the index 4 is selected according to the wheel

selection method, which would be depicted in the following section. Therefore, the

unit, 𝑈13 is selected. Since there is only one node in the corresponding linked list,

the value of the node is added by 1 and subtracted by 1 shown in Figure 4.26.

95 | Page

After the increase and decrease operation, the redundancy number of its child

units would be performed. For the increase operation, a node is inserted to the

end of the linked list of the child units, 𝑈131 and 𝑈132, respectively. For the

decrease operation, a node in the linked list is randomly selected. In the example,

the first node is chosen and removed. The new encoding mechanism allows the

change of the links in order to avoid the movement of other nodes.

Figure 4.26: The increase and decrease operation of generating new solutions

4.5.9 Development of MLRAP with RB, Parallel and NVP

In this section, the formulas of RB, Parallel and NVP are described in terms of the

reliability, the cost and the execution time. In this work, the strategies can be

U1

U11

U12

U13

U111

U112

U113

U121

U122

U131

U132

1

2

3

4

5

6

7

8

9

10

11

1

2

1

2

1

1

1

2

1

2

1

2

2

1

2

1

U1

U11

U12

U13

U111

U112

U113

U121

U122

U131

U132

1

2

3

4

5

6

7

8

9

10

11

1

2

1

2-1=1

1

1

1

2

1

2

1

2

2

1

2

1

U1

U11

U12

U13

U111

U112

U113

U121

U122

U131

U132

1

2

3

4

5

6

7

8

9

10

11

1

2

1

2+1=3

1

1

1

2

1

2

1

2

2

1

2

1 1

2

Increase

Decrease

96 | Page

integrated with MLRAP for the fault tolerance of the components at the bottom

level of a model.

Table 4.1: The formulas of the fault tolerance strategies

Fault tolerance strategies Formulas

MLRAP(He, Wu, Xu, Wen, & Jiang,

2013)

𝑅𝑖 =∏[1 −∏(1 − 𝑅𝑖𝑘
𝑗
)

𝑥𝑖𝑘

𝑗=1

]

𝑚𝑖

𝑘=1

𝐶𝑖 = ∑ (∑ 𝐶𝑖𝑘
𝑗
+ (𝜕𝑖𝑘)

𝑥𝑖𝑘𝑥𝑖𝑘
𝑗=1).

𝑚𝑖
𝑘=1

𝑇𝑖 =∑(max(𝑡𝑖𝑗
𝑘) + 𝜆|𝑀𝑘|)

𝑚

𝑗=1

, 𝑘𝜖𝑌.

 (4.19)

RB(Bonvin, Papaioannou, & Aberer,

2010)

𝑅𝑖 =∏[1 −∏(1 − 𝑅𝑖𝑘
𝑗
)

𝑥𝑖𝑘

𝑗=1

] .

𝑚𝑖

𝑘=1

𝐶𝑖 =∑(∑𝐶𝑖𝑘
𝑗
+ (𝜕𝑖𝑘)

𝑥𝑖𝑘

𝑥𝑖𝑘

𝑗=1

) .

𝑚𝑖

𝑘=1

𝑇𝑖 =∑(∑ 𝑡𝑖𝑗∏ (1
𝑖−1

𝑘=1

𝑛

𝑖=1

𝑚

𝑗=1

− 𝑅𝑖,𝑗) + 𝜆
|𝑀𝑘|).

 (4.20)

Parallel(Qiu, Zheng, Wang, Yang, &

Lyu, 2014)

𝑅𝑖 =∏[1 −∏(1 − 𝑅𝑖𝑘
𝑗
)

𝑥𝑖𝑘

𝑗=1

] .

𝑚𝑖

𝑘=1

𝐶𝑖 =∑(∑𝐶𝑖𝑘
𝑗
+ (𝜕𝑖𝑘)

𝑥𝑖𝑘

𝑥𝑖𝑘

𝑗=1

) .

𝑚𝑖

𝑘=1

𝑇𝑖 =∑(min(𝑡𝑖𝑗
𝑘) + 𝜆|𝑀𝑘|)

𝑚

𝑗=1

, 𝑘𝜖𝑌.

 (4.22)

NVP(Brin & Page, 1998)

𝑅𝑖 =∏ ∑ 𝐹(𝑖)

𝑛

𝑖=(𝑛+1)/2

.

𝑚𝑖

𝑘=1

𝐶𝑖 =∑(∑𝐶𝑖𝑘
𝑗
+ (𝜕𝑖𝑘)

𝑥𝑖𝑘

𝑥𝑖𝑘

𝑗=1

) .

𝑚𝑖

𝑘=1

𝑇𝑖 =∑(max(𝑡𝑖𝑗
𝑘) + 𝜆|𝑀𝑘|)

𝑚

𝑗=1

, 𝑘𝜖𝑌.

 (4.23)

97 | Page

In Table 4.1, the formulas of MLRAP, RB, Parallel and NVP are illustrated.

Therefore, the reliability, the cost and the execution time of a multilevel

redundancy allocation model can be computed based on the formulas.

4.6 Summary

In this section a migration and deployment framework for service oriented

systems is proposed, which is different from previous research, for it considers

the execution time and global constraints. The framework can guide the designers

and the administrators to migrate their applications. The genetic algorithm

integrated in the framework can be utilised to compute the optimal solution,

namely, the optimal migration plan. A service oriented system is described as a

tree-like structure. The redundancy can be allocated to each node of the

structure.

The migration and deployment framework is utilised to generate the optimal

migration plan for the service oriented systems in clouds. The designers need to

offer the reliability, the execution time and the cost of all the services. Thereafter,

the framework automatically computes the available plans and after a certain

number of generations, the optimal plan can be selected as the final result sent to

them.

The improved genetic algorithm based on (He, Wu, Xu, Wen, & Jiang, 2013) is

utilised in the migration and deployment framework in clouds. The multilevel

redundancy allocation model has not been employed for service oriented systems

before. This work considers it for the migration and deployment of the services in

clouds. At first, the model is employed to describe the structure of the systems.

Thereafter, the genetic algorithm is utilised to compute the optimal solutions under

the predefined constraints. However, the genetic algorithm needs to take the

execution time into consideration.

98 | Page

In this work, the linked list based encoding mechanism is proposed to improve the

performance of the genetic algorithm. The genetic algorithm attempts to find the

possible and available solutions in predefined number of iteration. In each

generation, it needs to decrease and increase the redundant units. Therefore, the

execution time of the genetic algorithm is mainly influenced by the decrease and

increase operations. Therefore, the new mechanism can enhance the

performance of the entire genetic algorithm. In this work, the linked list based

encoding mechanism is utilised, which describe the multilevel redundancy

allocation model via a linked list based array. In each generation, the nodes of the

linked list do not need to be moved forward or backword. The only operation is to

locate the node in a linked list and modify the pointers or change its value.

99 | Page

Chapter 5 Design of Experiments

5.1 Introduction

In this chapter, the test bed design and implementation are described. The

genetic algorithm is implemented in Java programming language, which is not

related to the platforms. Once the Java programs are developed, they can be

executed in various operating systems. In terms of the integrated development

environment (IDE), Eclipse is selected to edit Java programs.

Two examples of the multilevel redundancy allocation models are utilised to test

the genetic algorithm in the migration and deployment framework, which are

always employed to evaluate the performance of the algorithms (He, Wu, Xu,

Wen, & Jiang, 2013; Wang, Tang, & Yao, 2010).

5.2 Test bed design and implementation

5.2.1 Objectives and requirements

In this section, the objectives and the requirements of the empirical studies are

described. Detailed descriptions of the objectives and the requirements are as

follows.

 The implementation of the migration and deployment framework: To

maximise the compatibility of the framework, Java programming language

is selected, which allows the developed applications to execute on various

platforms. With the consideration of end users, the framework needs to

work on different operating systems.

 The implementation of the genetic algorithm: The algorithm with the new

encoding mechanism has been implemented according to the design

described in the previous sections. The genetic algorithm also uses Java

programming language to implement all the functions and methods.

100 | Page

The comparison of MLRAP, MLRAP with RB, Parallel and NVP is performed in

terms of reliability under the cost and execution time constraints. The genetic

algorithm is implemented and integrated with RB, Parallel and NVP separately.

5.2.2 Development tools

5.2.2.1 The tools for the migration and deployment framework

The section describes the tools for the migration and deployment framework.

Here, the framework includes the implementation of the framework, the genetic

algorithm and the encoding mechanism proposed in this work. At first, Java

programming language is selected for the development of the framework. The

advantages of the utilisation of this programming language are described as

follows.

 The compatibility of the programs: The programs developed in Java

programming language can be implemented once and executed anywhere.

Since the end users may have various operating systems (such as,

Windows, Mac OS, Linux, etc.), the framework will need to work on them.

Therefore, Java programming language may be the optimal choice. In this

work, the framework, the genetic algorithm and the encoding mechanism

are all implemented in Java programming language.

 The packaging of the future service: There are some existing applications

in the lab and the staff are very familiar with the Java programming

language. Hence, the maintenance and the improvement of the framework

can be completed with ease. Additionally, different client applications may

be designed and developed in future and the framework may be packaged

as Web services. In this case, the existing services based on Java

programming language can be invoked or integrated with the packaged

framework.

 Scientific computing support: Java programming language supports

scientific computing well. Some classes are designed in JDK to set up

101 | Page

programs in the field of scientific computing. For example, Big Decimal is

an internal class defined in the JDK to represent exact numbers. In this

work, reliability, the execution time and the cost need to be computed and

some operations are performed based on Big Decimal, which needs exact

computing. Additionally, the new encoding mechanism utilises the linked

list data structure. All the units of a solution with redundancy need to be

represented by one array. Therefore, the class ArrayList in JDK can be

directly utilised to denote the solutions of the genetic algorithm. The Java

programming language has already some functions to operate ArrayList,

which can make the programs concise and save the developers’ time in

order to make them focus on the algorithm.

Based on these reasons, Java programming language is employed for the

implementation of the migration and deployment framework. Once the

programming language is confirmed, the tools for Java will be utilised. At first,

JDK 8u111 is selected, which was the latest version when this work was

undertaken.

After the selection of the foundation of Java applications, the integrated

development environment (IDE) should be taken into account. With the

consideration of the utilised operating systems, Eclipse IDE for j2ee developer

(Europa packages) is chosen, which is free and can be installed on Windows,

Mac OS and Linux platforms.

5.2.2.2 The tools for service oriented systems and the cloud

In this section, the tools for the service oriented systems and the cloud computing

platform are described. Similar to the description of the tools for the

implementation of the migration and deployment framework, the programming

language is firstly selected for the service oriented systems. Thereafter, the tools

are expanded based on it.

102 | Page

Two programming languages are selected for the systems. One is Java

programming language and the other one is PHP programming language. The

advantages of Java programming language are described in the previous section.

Therefore, the reasons for the selection of PHP programming language are

described as follows.

 The utilisation is easy: Knowledge of PHP programming language can be

learnt with ease. Additionally, it is open source and examples can be

found on the Internet.

 The support from some open source tools: PHP programming language is

popular and there are a lot of tools to support the development of

applications based on PHP. For example, XAMPP including the tools

(such as, Apache, MySQL, PHP, etc.) can be installed and utilised with

ease on various operating systems.

Due to these reasons, PHP is selected for the implementation of the service

oriented systems. The IDE, Eclipse for PHP developers, is selected. The selection

reasons for the IDE are the same as Java programming language. In terms of the

execution environment, XAMPP is utilised, which is the most popular PHP

development environment. This tool is free and easy to install on various

operating systems.

Since some services of the service oriented systems are developed with Java, the

execution environment, Axis2, is selected for the service execution, which is a

Web service, SOAP and WSDL engine developed by the Apache software

foundation (Zheng, Zhang, & Lyu, 2014). The plugins, service archive generator

and code generator wizard, can be integrated with the IDE Eclipse in order to

automatically generate the Web services according to Java source code.

For the setup of the cloud computing platform, the tools provided by VMware

Company are selected. In this work, ESXi is utilised as the hypervisor of the VMs

103 | Page

to be deployed on each physical server. The vCenter server as a management

platform is utilised to manage all the ESXi hosts. Through the vCenter server, the

computing, networking and storage resources can be collected and configured.

The operating systems utilised for the VMs of the cloud computing platform are

Windows Server 2016 and Ubuntu 16.04.1.

5.3 Problem-A and Problem-B

In this section, the test bed design is described based on two multilevel

redundancy allocation models shown in and , which are utilized in the works

(He, Wu, Xu, Wen, & Jiang, 2013; Kumar, Izui, Masataka, & Nishiwaki, 2008;

Wang, Tang, & Yao, 2010). The testing of all the fault tolerance strategies in this

work is performed based on them.

Figure 5.1: The multilevel configuration of Problem-A

M1

M11 M12 M13

M111 M112 M113 M121 M122 M131 M132

(A)

104 | Page

Figure 5.2: The multilevel configuration of Problem-B

The first system includes three levels and the second system comprises four

levels, which are referred to as Problem-A and Problem-B. Both of them have

been utilised by (He, Wu, Xu, Wen, & Jiang, 2013; Wang, Tang, & Yao, 2010).

Table 5.1 lists the input parameters of the units in Problem-A and Problem-B

utilized in this thesis.

Table 5.1: The input parameters of the units in Problem-A and Problem-B

Problem-A

Module Reliability Cost 𝛛 Execution time 𝝀

𝑀111 0.9 5 3 (4,5,6) 3

𝑀112 0.95 6 4 (5,6,7) 4

𝑀113 0.85 5 4 (4,5,6) 4

𝑀121 0.85 7 4 (6,7,8) 4

𝑀122 0.9 6 4 (5,6,7) 4

𝑀131 0.9 8 3 (7,8,9) 3

𝑀132 0.8 7 4 (6,7,8) 4

Problem-B

𝑀1111 0.9 7 4 (6,7,8) 4

𝑀1112 0.8 6 4 (5,6,7) 4

𝑀1121 0.75 8 4 (7,8,9) 4

𝑀1122 0.7 9 4 (8,9,10) 4

𝑀1211 0.95 5 4 (4,5,6) 4

𝑀1212 0.9 6 4 (5,6,7) 4

𝑀1221 0.85 5 4 (4,5,6) 4

𝑀1222 0.8 8 4 (7,8,9) 4

M1

M11 M12

M111 M112 M121 M122

M1111 M1112 M1121 M1122 M1211 M1212 M1221 M1222

(B)

105 | Page

One computer is exploited with the parameters, Intel Celeron CPU 1007U 1.5

GHz and RAM 4.00GB. The maximum generation number is set to 500. The

maximum redundancy number for each unit at different layer is set to 5 and the

population size is set to 100. The local search rate is set to 0.2. The iteration

number in the local search method is set to 3.

Figure 5.3: The classes and functions of the genetic algorithm

Figure 5.3 shows the classes and functions of the genetic algorithm. Two classes,

Entrance and GeneticAlgorithm, are created. Detailed descriptions of the

functions are illustrated as follows.

 Entrance: This is a Java class, which is the entrance of the migration and

deployment framework. All the predefined parameters and constraints are

sent to the specific genetic algorithms via this class.

 GeneticAlgorithm: This class is the implementation of the genetic

algorithm in this work. More genetic algorithms can be integrated with the

framework and each algorithm is regarded as a Java class.

 initialise_node_redundancy: The storage space of the initial solutions is

generated by this method, which is the foundation of the new solutions.

Entrance

initialize_node_redundancy

set_problem_type

genetic_algorithm_pool

GeneticAlgorihm

initialize_solutions

initialize_each_solution

calculate_weight sensitivity_analysis calculate_CX

calculate_RX

local_search

roulette_wheel_selection

increase

decrase

iterate

calculate_ET

106 | Page

 set_problem_type: The different multilevel redundancy allocation models

can be set in this method. After the model is predefined, the structure of

the models represented by an array is sent to the genetic algorithm.

 genetic_algorithm_pool: This method is the access interface for different

genetic algorithms. It means that if a new genetic algorithm is added, it

should be registered in this method.

 iterate: This method is the core of the genetic algorithm and each

algorithm needs to have the similar method. Since all the genetic

algorithms attempt to generate more solutions, this method can manage

their iterations.

 local_search: This method is utilised to invoke other methods. The

detailed function has been described in the previous sections.

 roulette_wheel_selection: This method is exploited to randomly select a

unit from the structure of the multilevel redundancy allocation model

according to the value computed by the sensitivity_analysis method.

 calculate_weight: This method can calculate the weights of all the units of

the multilevel redundancy allocation models for the

roulette_wheel_selection method.

 decrease: After the selection of a unit of the model via the

roulette_wheel_selection method, the decrease method can operate the

structure in order to generate a new solution.

 increase: Similar to the decrease method, the increase method can

generate a new solution via the increase operation of a selected unit.

 calculate_RX: A solution can be inputted into the method to generate its

reliability.

 calculate_CX: This method is utilised to compute the cost of a solution.

107 | Page

 calculate_ET: This method is adopted for the computing of the execution

time of a solution.

 initialise_each_solution: Since the genetic algorithm needs to initialise a

set of solutions before the operation of the local_search method, this

method is exploited to randomly generate a solution.

 initialise_solutions: This method invokes the initialise_each_solution

method to generate the predefined number of solutions as the

fundamental ones.

 sensitivity_analysis: This is the sensitivity analysis method and the

detailed description of the method is performed in the previous sections.

108 | Page

Chapter 6 Results and Discussions

6.1 Results

In this section, the experiments of the genetic algorithm are performed and the

comparison between different algorithms is shown. 6.1.1

6.1.1 Performance comparison of encoding mechanisms

In this section, the performance of traditional and linked list based encoding

mechanisms has been compared in terms of increase and decrease operations on

problem A and B. In the experiment, 𝒘 is set to 𝟎. 𝟓. In the following graphs,

traditional mechanism is the two dimensional array based encoding mechanism

and the new mechanism is proposed in this thesis, linked list based encoding

mechanism.

Figure 6.1: Performance comparison of increase operation on Problem-A

Figure 6.2: performance comparison of decrease operation on Problem-A

0

5000000

10000000

15000000

MLRAP NVP Parallel RB

ms

Traditional mechanism New mechanism

0

500000

1000000

1500000

2000000

2500000

MLRAP NVP Parallel RB

ms

Traditional mechanism New mechanism

109 | Page

Figure 6.1 and Figure 6.2 show the experimental data on Problem-A. In all

algorithms, traditional mechanism needs more time than the new mechanism to

complete the increase and decrease operations.

Figure 6.3: Performance comparison of increase operation on Problem-B

Figure 6.4: Performance comparison of decrease operation on Problem-B

Figure 6.3 and Figure 6.4 show the experimental data on Problem-B. In all

algorithms, traditional mechanism needs to spend more time to increase and

decrease nodes in multilevel redundancy allocation models.

6.1.2 Experimental results on Problem-A

In this section, the experiment results for Problem-A are shown. The cost and time

constraints are set to 300. 𝑤 is set to 0.4, 0.5 and 0.6. The generation is set to

500. The reliability of MLRAP, MLRAP with NVP, Parallel and RB are compared.

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

16000000

MLRAP NVP Parallel RB

ms

Traditional mechanism New mechanism

0

500000

1000000

1500000

2000000

2500000

MLRAP NVP Parallel RB

ms

Traditional mechanism New mechanism

110 | Page

The purpose of the experiment is to get the reliability of the algorithms with

different values of 𝑤.

Figure 6.5: Reliability on Problem-A (w=0.4)

Figure 6.5 shows the experimental data on Problem-A when 𝑤 is set to 0.4.

MLRAP, Parallel and RB can get convergence, namely, achieve the optimal

solution within 150 generations, while NVP needs about 400 generations to

complete the convergence. Additionally, the optimal solutions that MLRAP and

Parallel generate are higher than RB and NVP. The highest reliability is about

0.9835. MLRAP can get the optimal solution within 500 generations.

111 | Page

Figure 6.6: Reliability on Problem-A (w=0.5)

Figure 6.6 presents an overview of the performance of the four algorithms on

Problem-A when 𝑤 is set to 0.5. In this situation, RB and Parallel can get the

optimal solutions with higher reliability, 0.9811. MLRAP can get a similar result,

but it needs more generations. In the experiment, about 500 generations are

needed. NVP still gets the lowest reliability. What is interesting in this data is that

the algorithms tend to converge after 150 generations.

112 | Page

Figure 6.7: Reliability on Problem-A (w=0.6)

Figure 6.7 compares the reliability of the four algorithms when 𝑤 is set to 0.6.

MLRAP and RB can get convergence within 100 generations, while NVP and

Parallel need more than 250 generations. In this experiment, Parallel needs

more than 400 generations in order to get the optimal solution. MLRAP can get

the highest reliability, 0.9801.

6.1.3 Experimental results on Problem-B

In this section, the experiment results for Problem-B are provided. Since

Problem-B has a more complex structure than Problem-A, the cost and time

constraints are set to 500. w is set to 0.4, 0.5 and 0.6. The generation is set to

500. The reliability of MLRAP, MLRAP with NVP, Parallel and RB are compared.

The purpose of the experiment is to get the reliability of the algorithms on

Problem-B with different values of w.

113 | Page

Figure 6.8: Reliability on Problem-B (w=0.4)

Figure 6.8 shows the results obtained from the performance experiment on

Problem-B. All the four algorithms can get convergence within 150 generations.

RB and MLRAP need fewer generations to get the optimal solution. In this

experiment, NVP still cannot get higher reliability than other algorithms. The

highest reliability is obtained by RB and it is 0.9792.

Figure 6.9: Reliability on Problem-B (w=0.5)

114 | Page

When 𝑤 is set to 0.5, the execution time and cost have identical weights on the

genetic algorithm. Figure 6.9 presents some of the main characteristics of the

convergence of the four algorithms. It is apparent from this figure that MLRAP,

Parallel and RB can get higher reliability than 0.95. NVP only gets the reliability

0.928 within 400 generations. In terms of reliability, Parallel can obtain the

highest reliability in the experiment.

Figure 6.10: Reliability on Problem B (w=0.6)

As shown in Figure 6.10, RB and Parallel get more significant reliability than other

algorithms. Additionally, they need fewer than 100 generations to get the optimal

solutions. Although MLRAP can get higher reliability than 0.95, it needs about

400 generations. Similar to the above experimental results, NVP needs more

generations to generate the optimal solution.

6.1.4 Experimental results on Problem-A and Problem-B

The value of 𝑤 can influence the performance of the genetic algorithm.

Therefore, different values are set to 𝑤 in the experiment for the four algorithms

115 | Page

on Problem-A and Problem-B.

6.1.4.1 𝒘 = 𝟎

When 𝑤 is set to 0, only the execution time is taken into consideration in the

genetic algorithm. Therefore, the cost constraint cannot influence the generated

solutions.

Figure 6.11: Reliability on Problem-A (w=0)

Figure 6.11 shows the experimental data on Problem-A when w is set to 0.

MLRAP and Parallel can get convergence within 300 generations, while RB and

NVP need more than 320 generations to get the optimal solutions. In the

experiment, MLRAP, Parallel and RB can obtain the highest reliability, 0.9805.

Compared with MLRAP and Parallel, RB needs more generations to achieve the

identical reliability.

116 | Page

Figure 6.12: Reliability on Problem B (w=0)

As shown in Figure 6.12, MLRAP, Parallel and RB can get convergence within

100 generations compared with NVP. The experimental results on the

performance of the four algorithms present that MLRAP can generate the highest

reliability.

6.1.4.2 𝒘 = 𝟏

When w is set to 1, only the cost is considered in the genetic algorithm. The

following is to describe the performance of the four algorithms on Problem-A and

Problem-B.

117 | Page

Figure 6.13: Reliability on Problem-A (w=1)

Figure 6.13 compares an overview of the reliability of the four algorithms on

Problem-A when 𝑤 = 1. Parallel and RB can get the highest reliability compared

to MLRAP and NVP. What is interesting in this data is that both of them need

about 400 generations to generate the optimal solutions.

Figure 6.14: Reliability on Problem B (w=1)

118 | Page

The results shown in Figure 6.14 present that Parallel can generate the optimal

solution with the highest reliability. It is apparent from this figure that Parallel

almost directly generates the optimal solution. Compared with Parallel, MLRAP

and RB can generate the solution with identical reliability. These algorithms can

get convergence within 100 generations.

6.1.4.3 𝒘 = 𝟎. 𝟓 and 𝑲 = 𝟑

The parameter 𝐾 can influence the fitness function so as to filter the generated

solutions in each generation. In the experiment, 𝐾 and 𝑤 are set to 3 and 0.5,

respectively.

Figure 6.15: Reliability on Problem-A (w=0.5 and K=3)

Figure 6.15 shows the experimental data on Problem-A when 𝑤 = 0.5 and 𝐾 =

3. It is apparent that RB can generate the optimal solution with the highest

reliability. However, it needs about 400 generations to get the solution. In terms

of reliability, MLRAP and Parallel obtain more than 0.95.

119 | Page

Figure 6.16: Reliability on Problem-B (w=0.5 and K=3)

Figure 6.16 provides the experimental data on the reliability for Problem-B when

𝑤 = 0.5 and 𝐾 = 3. All the algorithms need more generations to generate the

optimal solutions.

6.1.5 Analysis

In this section, the analysis of the empirical results is described. The analysis is

mainly based on Problem-A and Problem-B.

The reliability of MLRAP, MLRAP with Parallel, MLRAP with RB and MLRAP with

NVP: In terms of different structures of the system, MLRAP, Parallel and RB tend

to get the optimal solution with the highest reliability. Compared with the

algorithms, NVP always generates the solutions with the lowest reliability.

Additionally, NVP needs more generations to generate the optimal solutions

whether the problem is A or B.

6.1.6 Discussion

The discussion mainly focuses on the multilevel redundancy allocation, the

performance of MLRAP, MLRAP with NVP, MLRAP with RB and MLRAP with

120 | Page

Parallel.

In the Web service field, there are already some migration and deployment

frameworks for service oriented systems. The traditional frameworks take fault

tolerance approaches into consideration and arrange the redundant units to the

selected top 𝑘 services, which are considered to be the significant units of the

applications, and their reliability may be not high. The frameworks tend to improve

the reliability of the applications with redundancy allocation to some certain

services. However, sometimes there may be a set of services which have

relationships and need to be improved. Additionally, redundancy allocation to the

entire system may need to be considered as well in order to obtain the optimal

solution with the highest reliability.

This work describes the structure of service oriented systems as a tree. All the

units in the model can be allocated with redundant units. The algorithm can

generate the optimal solution in terms of the entire system under execution time

and cost constraints. The algorithm takes more features into consideration when a

service oriented system is deployed in clouds. The execution time as an important

feature is exploited in order to measure the performance of the systems.

Additionally, the migration and deployment of the applications needs various

resources in cloud computing platforms. These resources need to be purchased.

Therefore, the migration and deployment frameworks need to take the cost into

consideration. The cost and execution time constraints can be predefined by the

designers or the administrators. Additionally, the performance of the genetic

algorithms to generate the optimal solution is always a problem. To reduce the

execution time of the genetic algorithm, a new encoding mechanism is proposed

based on the linked list based array. The utilisation of the array can reduce the

number of the steps to generate new solutions.

121 | Page

Chapter 7 Conclusion and Future Work

7.1 Conclusion

In this section, a conclusion is described. In this work, a migration and deployment

framework is proposed.

1) The migration and deployment framework: A migration and deployment

framework is proposed in this work in order to guide designers and

administrators to migrate and deploy service oriented systems into clouds.

The structure of the application as a tree needs to be applied to the

framework, because the genetic algorithm integrated in the framework

considers the applications as a tree structure. Additionally, the related

information of all the services of the systems needs to be given to the

framework. The framework can generate new solutions via the increase

and decrease operations of the redundant units. To achieve the optimal

solution, namely, the optimal deployment plan, reliability, execution time

and cost need to be taken into consideration. Therefore, the features of

each service need to be given to the framework. The reliability of the

services can be collected in two ways. One method is to get all the

information of the errors and exceptions from the log files of servers which

depict the states of the services in the actual environment. The other

approach is to use a program to access each of the services a certain

number of times. After the number of invocations, the reliability of the

services can be computed. The migration and deployment framework

takes the actual requirements of end users into consideration. The

computing, networking and storage resources need to be purchased.

Therefore, the migration and deployment framework needs to consider

these features. End users can provide the execution time and the cost

constraints to the framework. Either of these constraints can be defined for

the generation of the optimal migration plan.

122 | Page

The execution time may represent the performance of a service oriented

application. Some services or applications need quick responses to the

requests from the end users. In terms of the cost, companies need to

purchase resources to deploy their systems. However, if they have their

own cloud computing platforms and a lot of VMs can be exploited, the cost

constraint probably does not need to be considered. Therefore, the

designers and the administrators using the framework in this work can

select to provide both of the constraints or one of them via the defined

weight. After the computing of the solutions based on the constraints, the

optimal migration and deployment plan can be generated and provided to

the designers and the administrators, and can clearly describe the

structure of the system with redundant units.

2) The genetic algorithm: The algorithm is proposed based on the research

(He, Wu, Xu, Wen, & Jiang, 2013). The multilevel redundancy allocation

model is utilised for Web service based applications for the first time,

which describes service oriented systems as a tree and the services are

regarded as the components at the bottom level. The abstract functions

are the units at the higher level and they can comprise a set of detailed

services. The genetic algorithm can generate new solutions based on this

model.

3) The traditional algorithms in the multilevel redundancy allocation field take

reliability and resource costs into consideration. However, these two

features are not sufficient to describe service oriented systems. The

execution time of the services needs to be considered in the algorithm,

when a solution is generated. Therefore, the algorithm in this work

expands the traditional algorithms to add the execution time feature.

4) The new encoding mechanism: This is proposed in this work in order to

improve the performance of the genetic algorithm. The genetic algorithm is

123 | Page

the core of the migration and deployment framework and the encoding

mechanism is the central component of the genetic algorithm. Therefore,

the encoding mechanism of the genetic algorithm can influence the

framework in terms of the performance. The traditional encoding

mechanism proposed in (He, Wu, Xu, Wen, & Jiang, 2013) is based on a

two dimensional array, which is exploited to store all the solutions. The

genetic algorithm attempts to generate new solutions according to

predefined principles. The operations of generating new solutions are

based on the array. During the period of the generation of solutions, the

number of the redundant units is increased and decreased. Since all the

units can be allocated with the redundant units in the multilevel

redundancy allocation model, the units at the higher level can be arranged

with the redundancies. In the model, the modification of the redundant

units at the higher level can lead to a greater change of the units at the

lower levels. For example, if a redundant unit is added for the one at the

higher level, the structure comprising its children units would be assigned

with the redundancies. In this case, the elements of the two dimensional

array may be moved. Additionally, sometimes the movement would be

performed from the first element of the one dimensional array to the end.

The genetic algorithm mainly generates new solutions via the modification

of the redundant units of the fundamental solutions.

To handle the performance problem of the genetic algorithm, a new

encoding mechanism is proposed in the work. The encoding mechanism

is based on a linked list data structure. A one-dimensional array is utilised

to represent the structure of the solutions. In each element of the array, a

linked list is created in order to denote the redundant units of each unit at

different levels. Compared with the traditional mechanism, the linked list

does not need to move the elements when an element is removed or a

new element is added, for the only links need to be changed. Therefore,

124 | Page

for the new encoding mechanism, there are only two steps to perform the

increase and decrease operations. One is to locate the position of the

element required to be changed. The other one is to change the links or

the value of an element. Therefore, the mechanism can reduce the

movement of other elements in order to improve the performance of the

genetic algorithm.

In summary, a migration and deployment framework integrating a genetic

algorithm with the new encoding mechanism is proposed in the work. The

framework takes the execution time and the cost constraints into consideration.

The theory of the genetic algorithm in multilevel redundancy allocation models is

firstly exploited for service oriented systems. Based on the traditional genetic

algorithm in the multilevel redundancy allocation model, a new encoding

mechanism based on a linked list based array is proposed to improve the

performance of the genetic algorithm.

7.2 Future work

In this section, possible future work is described based on the current work.

Detailed descriptions of the future work are as follows.

1) More non-functional requirements: For service oriented systems, the

requirements include two parts: one is functional requirements and the

other one is the non-functional requirements. In this work, the

non-functional requirements reliability, cost and execution time are taken

into consideration. However, in the service field, there are more

non-functional requirements which need to be considered, such as the

response time, the reputation, etc. In future work, more features may be

utilised in the framework in order to measure the quality of the entire

application.

125 | Page

2) Deployment of the applications in different cloud computing platforms: In

the real deployment of the applications, more cloud computing platforms

may be exploited, which are not close to each other. In this case, more

factors influence the performance of applications, especially the network

situation. For example, a request from the end users is sent to a specific

service and it may invoke another one in a different cloud computing

platform. The worst situation is that these two services are very far apart

and the rules of these cloud computing platforms may be totally different.

In this case, the response time of these services may be so long that the

end users could not tolerate them. Due to this phenomenon, the locations

and the transfer time between the services in different cloud computing

platforms may need to be considered when the service oriented systems

are migrated and deployed in some cloud computing platforms.

126 | Page

Reference

1. Agarwal, M., Aggarwal, S., & Sharma, V. K. (2010). Optimal redundancy allocation in

complex systems. Journal of Quality in Maintenance Engineering, 16(4), 413-424.

2. Agrawal, B., Chakravorty, A., Rong, C., & Wlodarczyk, T. W. (2014). R2Time: a framework

to analyse open TSDB time-series data in HBase. IEEE 6th International Conference,

970-975.

3. Ahmed, W., Wu, Y., & Zheng, W. (2015). Response time based optimal Web service

selection. IEEE Transactions on Parallel and Distributed Systems, 26(2), 551-561.

4. Aihkisalo, T., & Paaso, T. (2012). Latencies of service invocation and processing of the

REST and SOAP Web service interfaces. IEEE Eighth World Congress on Services,

100-107.

5. Altmann, J., & Kashef, M. M. (2014). Cost model based service placement in federated

hybrid clouds. Future Generation Computer Systems, 41, 79-90.

6. AlZain, M. A., Soh, B., & Pardede, E. (2013). A Byzantine fault tolerance model for a

multi-cloud computing. IEEE 16th International Conference on Computational Science

and Engineering (CSE), 130-137.

7. Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R. H., Konwinski, A., Lee, g.,

Patterson, D. A., Rabkin, A., Stoica, I., & Zaharia, M. (2009). Above the clouds: a berkeley

view of cloud computing. Electrical engineering and computer sciences university of

California at Berkeley, 1-25.

8. Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Konwinski, R. K. A., Lee, G., Patterson,

D., Rabkin, A., Stoica, I., & Zaharia, M. (2010). A view of cloud computing.

Communications of the ACM, 53, 50-58.

9. Assuncao, M. D., Calheiros, R. N., Bianchi, S., Netto, M. A. S., & Buyya, R. (2013). Big

data computing and clouds: challenges, solutions, and future directions. Distributed,

Parallel, and Cluster Computing, 79-80, 1-39.

10. Assunção, M. D., Calheiros, R. N., Bianchi, S., Netto, M. A. S., & Buyya, R. (2015). Big

data computing and clouds: trends and future directions. Journal of Parallel and

Distributed Computing, 79-80, 3-15.

11. Avizienis, A. (1995). The methodology of N-version programming. Software fault

tolerance, 23-46.

12. Baek, J., Vu, Q. H., Liu, J. K., Huang, X., & Xiang, Y. (2015). A secure cloud computing

based framework for big data information management of smart grid. IEEE Transactions

on Cloud Computing, 3(2), 233-244.

13. Balasubramanian, B., & Garg, V. K. (2013). Fault tolerance in distributed systems using

fused data structures. IEEE Transactions on Parallel and Distributed Systems, 24(4),

701-715.

127 | Page

14. Baroncelli, F., Martini, B., & Castoldi, P. (2010). Network virtualization for cloud computing.

Annals of telecommunications, 65(11), 713-721.

15. Beji, N., Jarboui, B., Eddaly, M., & Chabchoub, H. (2010). A hybrid particle swarm

optimization algorithm for the redundancy allocation problem. Journal of Computational

Science, 1(3), 159-167.

16. Beji, N., Jarboui, B., Siarry, P., & Chabchoub, H. (2012). A differential evolution algorithm

to solve redundancy allocation problems. International Transactions in Operational

Research, 19(6), 809-824.

17. Bendjeghaba, O., & Ouahdi, D. (2008). Multi-agent ant system for redundancy allocation

problem of multi states power system. 1270-1274.

18. Bonvin, N., Papaioannou, T., & Aberer, K. (2010). A self-organized, fault-tolerant and

scalable replication scheme for cloud storage. SoCC '10 Proceedings of the 1st ACM

symposium on Cloud computing, 205-216.

19. Borsato, D. (2015). Cloud. Canadian Theatre Review, 162, 74-75.

20. Breese, J. S., Heckerman, D., & Kadie, C. (1998). Empirical analysis of predictive

algorithms for collaborative filtering. Proceedings of the Fourteenth Conference on

Uncertainty in Artificial Intelligence, 1-10.

21. Brin, S., & Page, L. (1998). The anatomy of a large-scale hypertextual Web search engine.

Computer Networks and ISDN Systems, 30(1), 107-117.

22. Brun, Y., Bang, J. y., Edwards, G., & Medvidovic, N. (2015). Self-adapting reliability in

distributed software systems. IEEE Transactions on Software Engineering, 41(8),

764-780.

23. Cai, Z., Zhao, L., Wang, X., Yang, X., Qin, J., & Yin, K. (2015). A pattern-based code

transformation approach for cloud application migration. 2015 IEEE 8th International

Conference on Cloud Computing (CLOUD), 33-40.

24. Cała, J., & Watson, P. (2010). Automatic software deployment in the azure cloud. DAIS'10

Proceedings of the 10th IFIP WG 6.1 international conference on Distributed Applications

and Interoperable Systems, 155-168

25. Campos, I., Fernández-del-Castillo, E., Heinemeyer, S., Lopez-Garcia, A., Pahlen, F., &

Borges, G. (2013). Phenomenology tools on cloud infrastructures using OpenStack. The

European Physical Journal C, 1-25.

26. Caserta, M., & Voß, S. (2014). A corridor method based hybrid algorithm for redundancy

allocation. Journal of Heuristics, 22, 405-429.

27. Caserta, M., & Voß, S. (2015). A discrete-binary transformation of the reliability

redundancy allocation problem. Mathematical Problems in Engineering, 2015(2015), 1-6.

28. Cha, S., & Yoo, J. (2011). A safety-focused verification using software fault trees. Future

Generation Computer Systems, 28(8), 1272.

128 | Page

29. Chai, H., & Zhao, W. (2014). Byzantine fault tolerance for services with commutative

operations. SCC '14 Proceedings of the 2014 IEEE International Conference on Services

Computing, 219-226.

30. Chang, B. R., Tsai, H. F., Chen, C. Y., Huang, C. F., & Hsu, H. T. (2015). Implementation

of secondary index on cloud computing NoSQL database in big data environment.

Scientific Programming, 2015, 1-10.

31. Chang, B. R., Tsai, H. F., Guo, C. L., & Chen, C. Y. (2015). Remote cloud data center

backup using HBase and Cassandra with user-friendly GUI. 2015 IEEE International

Conference on Consumer Electronics, 420-421.

32. Chao, L., Li, C., Liang, F., Lu, X., & Xu, Z. (2015). Accelerating Apache Hive with MPI for

Data Warehouse Systems. IEEE 35th International Conference on Distributed Computing

Systems, 664-673.

33. Chen, X., Zheng, Z., Liu, X., Huang, Z., & Sun, H. (2013). Personalized QoS-aware Web

service recommendation and visualization. IEEE Transactions on Services Computing,

6(1), 35-47.

34. Cheung, L., Roshandel, R., Medvidovic, N., & Golubchik, L. (2008). Early prediction of

software component reliability. ICSE '08 Proceedings of the 30th international conference

on Software engineering, 111-120.

35. Choy, S., Wong, B., Simon, G., & Rosenberg, C. (2014). A hybrid edge-cloud architecture

for reducing on-demand gaming latency. Multimedia Systems, 20(5), 503-519.

36. Coelho, L. d. S. (2009). Reliability–redundancy optimization by means of a chaotic

differential evolution approach. Chaos, Solitons and Fractals, 41(2), 594-602.

37. Coppolino, L., Romano, L., & Vianello, V. (2011). Security engineering of SOA

applications via reliability patterns. Journal of Software Engineering and Applications, 4(1),

1-8.

38. Corradi, A., Fanelli, M., & Foschini, L. (2014). VM consolidation: a real case based on

OpenStack Cloud. Future Generation Computer Systems, 32, 118–127.

39. Costa, P., Pasin, M., Bessani, A. N., & Correia, M. P. (2013). On the performance of

Byzantine fault-tolerant MapReduce. IEEE Transactions on Dependable and Secure

Computing, 10(5), 301 - 313

40. Dave, A., Lu, W., Jackson, J., & Barga, R. (2011). CloudClustering: toward an iterative

data processing pattern on the cloud. IEEE International Symposium on Parallel and

Distributed Processing Workshops and Phd Forum (IPDPSW), 1132 - 1137

41. Delac, G., Silic, M., & Srbljic, S. (2015). A reliability improvement method for SOA-based

applications. IEEE Transactions on Dependable and Secure Computing, 12(2), 136-149.

42. Duan, S., Peisert, S., & Levitt, K. (2014). hBFT: speculative Byzantine fault tolerance with

minimum cost. IEEE Transactions on Dependable and Secure Computing(99), 1-14.

43. Dunn, D. (2007). Citrix Systems: versatile tools. CITRIX Systems Inc. COMPUTER

software(75), 62-62.

129 | Page

44. El Kharboutly, R., & Gokhale, S. S. (2014). Efficient reliability analysis of concurrent

software applications considering software architecture. International Journal of Software

Engineering and Knowledge Engineering, 24(1), 43-60.

45. Fang, C., Liang, D., Lin, F., & Lin, C. (2007). Fault tolerant Web services. Journal of

Systems Architecture, 53(1), 21-38.

46. Feng, X., Luo, X., & Jin, Y. (2012). An acceleration system for long distance live migration

of virtual machine. 10th International Conference on Optical Internet (COIN), 10 - 11

47. Flach, T., Dukkipati, N., Terzis, A., Raghavan, B., Cardwell, N., Cheng, Y., Jain, A., Hao,

S., Katz-Bassett, E., & Govindan, R. (2013). Reducing web latency: the virtue of gentle

aggression. Proceedings of the ACM SIGCOMM 2013 conference on SIGCOMM, 43,

159-170.

48. Forster, M., & Schneider, D. (2010). Flexible, any-time fault tree analysis with component

logic models. IEEE 21 st International Symposium on Software Reliability Engineering,

51-60.

49. Fyffe, D. E., Hines, W. W., & Lee, N. K. (1968). System reliability allocation and a

computational algorithm. IEEE Transactions on Reliability, R-17(2), 64-69.

50. Garraghan, P., Moreno, I. S., Townend, P., & Xu, J. (2014). An analysis of failure-related

energy waste in a large-scale cloud environment. IEEE Transactions on Emerging Topics

in Computing Journal Article, 2(2), 166-180.

51. Garraghan, P., Townend, P., & Xu, J. (2011). Byzantine fault-tolerance in federated cloud

computing. IEEE 6th International Symposium on Service Oriented System Engineering

(SOSE), 280 - 285

52. Gen, M., & Cheng, R. (1996). A survey of penalty techniques in genetic algorithms.

Proceedings of IEEE Inernational Conference on Evolutionary of Computation, 804-809.

53. Ha, C., & Kuo, W. (2005). Multi-path approach for reliability-redundancy allocation using a

scaling method. Journal of Heuristics, 11(3), 201-217.

54. Ha, C., & Kuo, W. (2006a). Multi-path heuristic for redundancy allocation: the tree

heuristic. IEEE Transactions on Reliability, 55(1), 37-43.

55. Ha, C., & Kuo, W. (2006b). Reliability redundancy allocation: an improved realization for

nonconvex nonlinear programming problems. European Journal of Operational Research,

171(1), 24-38.

56. Hasanzadeh Mofrad, M., Jalilian, O., Rezvanian, A., & Meybodi, M. R. (2016). Service

level agreement based adaptive grid superscheduling. Future Generation Computer

Systems, 55, 62-73.

57. Hashem, I. A. T., Yaqoob, I., Anuar, N. B., Mokhtar, S., Gani, A., & Ullah Khan, S. (2015).

The rise of big data on cloud computing: review and open research issues. Information

Systems, 47, 98-115.

58. He, P., Wu, K., Wen, J., & al, e. (2010). Improved memetic algorithm for multilevel

redundancy allocation IEEE transactions on Reliability, 59, 754-765.

130 | Page

59. He, P., Wu, K., Xu, J., Wen, J., & Jiang, Z. (2013). Multilevel redundancy allocation using

two dimensional arrays encoding and hybrid genetic algorithm. Computers and Industrial

Engineering, 64(1), 69-83.

60. Hsieh, H. C., & Chiang, M. L. (2011). A new solution for the Byzantine agreement problem.

Journal of Parallel and Distributed Computing, 71(10), 1261-1277.

61. Hsieh, T. (2014). Hierarchical redundancy allocation for multi-level reliability systems

employing a bacterial-inspired evolutionary algorithm. Information Sciences, 288,

174-193.

62. Hsieh, T., & Yeh, W. (2012). Penalty guided bees search for redundancy allocation

problems with a mix of components in series-parallel systems. Computers and Operations

Research, 39(11), 2688-2704.

63. Hu, P. (2015). The cooperative study between the Hadoop big data platform and the

traditional data warehouse. The Open Automation and Control Systems Journal, 7(1),

1144-1152.

64. Huang, D., Yi, L., Song, F., Yang, D., & Zhang, H. (2014). A secure cost-effective

migration of enterprise applications to the cloud. International Journal of Communication

Systems, 27(12), 3996-4013.

65. Huang, G., Wang, W., Liu, T., & Mei, H. (2011). Simulation-based analysis of middleware

service impact on system reliability: Experiment on Java application server. The Journal of

Systems & Software, 84(7), 1160-1170.

66. Huang, S., Wang, B., Zhu, J., Wang, G., & Yu, G. (2014). R-HBase: a multi-dimensional

indexing framework for cloud computing environment. IEEE International Conference on

Data Mining Workshop, 569-574.

67. Huynh, T., & Miller, J. (2009). Another viewpoint on evaluating web software reliability

based on workload and failure data extracted from server logs. Empirical Software

Engineering, 14(4), 371-396.

68. Inoue, K., Yokomori, R., Yamamoto, T., Matsushita, M., & Kusumoto, S. (2005). Ranking

significance of software components based on use relations. IEEE Transactions on

Software Engineering, 31(3), 213 - 225.

69. Jais, M. K. (2015). Redefining reliability evaluations for software-intensive systems.

Annual Reliability and Maintainability Symposium, 1-4.

70. Jung, G., & Sim, K. M. (2011). Agent-based adaptive resource allocation on the cloud

computing environment. The 40th International Conference on Parallel Processing

Workshops (ICPPW), 345 - 351

71. Jung, J., Bae, C., & Lee, J. (2011). Instant virtual desktop system with dynamic I/O client

device. International Conference on Engineering and Industries (ICEI), , 1-3

72. Karunamurthy, R., Khendek, F., & Glitho, R. H. (2012). A novel architecture for Web

service composition. Journal of Network and Computer Applications, 35(2), 787-802.

131 | Page

73. Kim, & Mook, J. (2013). A secure smart-work service model based OpenStack for Cloud

computing. Cluster computing, 17(3), 691-702.

74. Kim, H., Bae, C., & Park, D. (2006). Reliability-redundancy optimization using simulated

annealing algorithms. Journal of Quality in Maintenance Engineering, 12(4), 354-363.

75. Kim, H., Wong, W. E., Debroy, V., & Bae, D. (2010). Bridging the gap between fault trees

and UML state machine diagrams for safety analysis. 2010 Asia Pacific Software

Engineering Conference, 196-205.

76. Kosar, T., Akturk, I., Balman, M., & Wang, X. (2011). PetaShare: A reliable, efficient and

transparent distributed storage management system. Scientific Programming, 19(1),

27-43.

77. Kostantos, K., Kapsalis, A., Kyriazis, D., Themistocleous, M., & da Cunha, P. R. (2013).

Open-source IaaS fit for purpose: a comparison between opennebula and OpenStack.

International Journal of Electronic Business Management, 11(3), 191-201.

78. Kotla, R., Alvisi, L., Dahlin, M., Clement, A., & Wong, E. (2009). Zyzzyva: speculative

byzantine fault tolerance. ACM Transactions on Computer Systems (TOCS), 27(4), 1-39.

79. Kulturel-Konak, S., Smith, A. E., & Coit, D. W. (2003). Efficiently solving the redundancy

allocation problem using Tabu search. IIE Transactions, 35(6), 515-526.

80. Kumar, P., Chaturvedi, D. K., & Pahuja, G. L. (2009). Heuristic algorithm for constrained

redundancy reliability optimization and performance evaluation. Proceedings of the

Institution of Mechanical Engineers, 223(O4), 381-386.

81. Kumar, R., Izui, K., Masataka, Y., & Nishiwaki, S. (2008). Multilevel redundancy allocation

optimization using hierarchical genetic algorithm. IEEE Transactions on Reliability, 57(4),

650-661.

82. Kumar, R., Izui, K., Yoshimura, M., & Nishiwaki, S. (2009). Optimal multilevel redundancy

allocation in series and series–parallel systems. Computers & Industrial Engineering,

57(1), 169-180.

83. Kumar, R., Khatter, K., & Kalia, A. (2011). Measuring software reliability: a fuzzy model.

ACM SIGSOFT Software Engineering Notes, 36(6), 1-6.

84. Kumar, V., & Vidhyalakshmi, P. (2012). Cloud computing for business sustainability. Asia

Pacific Journal of Management Research and Innovation, 8(4), 461-474.

85. Kuo, W., & Prasad, V. R. (2000). An annotated overview of system-reliability optimization.

IEEE Transactions on Reliability, 49(2), 176-187.

86. Kureshi, I., Pulley, C., Brennan, J., Holmes, V., Bonner, S., & James, Y. (2013). Advancing

research infrastructure using OpenStack. International Journal of Advanced Computer

Science and Applications, 3(4), 64-70.

87. Laprie, J. C., Arlat, J., Beounes, C., & Kanoun, K. (1990). Definition and analysis of

hardware- and software-fault-tolerant architectures. Computer, 23(7), 39-51.

132 | Page

88. Lee, C., & Zheng, Y. (2015). Automatic SQL-to-NoSQL schema transformation over the

MySQL and HBase databases. 2015 International Conference on Consumer

Electronics-Taiwai (ICCE-TW), 426-427.

89. Liang, Y., & Smith, A. E. (2004). An ant colony optimization algorithm for the redundancy

allocation problem (RAP). IEEE Transactions on Reliability, 53(3), 417-423.

90. Liu, H. (2013). Big data drives cloud adoption in enterprise. IEEE Internet Computing,

17(4), 68-71

91. Liu, H., & He, B. (2015). VMbuddies: coordinating live migration of multi-tier applications in

cloud environments. IEEE Transactions on Parallel and Distributed Systems, 26(4),

1192-1205.

92. Lo, W., Yin, J., Deng, S., Li, Y., & Wu, Z. (2012). Collaborative Web service QoS prediction

with location-based regularization. 2013 IEEE 20th International Conference on Web

Services, 464-471.

93. Lombardi, F., & Di Pietro, R. (2011). Secure virtualization for cloud computing. Journal of

Network and Computer Applications, 34(4), 1113-1122.

94. Luo, W., Liu, B., & Watfa, A. K. (2014). An open schema for XML data in Hive. 2014 IEEE

International Conference on Big Data, 25-31.

95. Lyu, M. R. (2007). Software reliability engineering: A roadmap. Future of Software

Engineering, 153-170.

96. Maciel, L. A. H. d. S., & Hirata, C. M. (2013). Fault-tolerant timestamp-based two-phase

commit protocol for RESTful services. Software: Practice and Experience, 43(12),

1459-1488.

97. Magott, J., & Skrobanek, P. (2011). Timing analysis of safety properties using fault trees

with time dependencies and timed state-charts. Reliability Engineering & System Safety,

97(1), 14-26.

98. Manen, S., Brandt, E., Ekris, J., & Geurts, W. (2015). TOPAAS: an alternative approach to

software reliability quantification. Quality and Reliability Engineering International, 31(2),

183-191.

99. Manno, G., & Chiaccho, F. (2011). MatCarloRe: an integrated FT and Monte Carlo

Simulink tool for the reliability assessment of dynamic fault tree. Expert Systems with

Applications, 39(12), 10334.

100. Meiappane, A., Murugan, S. S., Murugan, S. S., Arun, A., & Ramachandran, A. (2010).

Latency of Web service in health care system using GSM networks. 2010 Second

International Conference on Machine Learning and Computing, 22-26.

101. Merideth, M. G., Iyengar, A., Mikalsen, T., Tai, S., Rouvellou, I., & Narasimhan, P. (2005).

Thema: Byzantine fault tolerant middleware for Web-service applications. Proceedings of

the 2005 24th IEEE Symposium on Reliable Distributed Systems, 131-140.

102. Mirandola, R., Potena, P., Riccobene, E., & Scandurra, P. (2014). A reliability model for

service component architectures. Journal of Systems and Software, 89, 109-127.

133 | Page

103. Mohanty, R., Ravi, V., & Patra, M. R. (2013). Hybrid intelligent systems for predicting

software reliability. Applied Soft Computing, 13(1), 189-200.

104. Nahas, N., Nourelfath, M., & Ait-Kadi, D. (2007). Coupling ant colony and the degraded

ceiling algorithm for the redundancy allocation problem of series–parallel systems.

Reliability Engineering and System Safety, 92(2), 211-222.

105. Ng, K. Y. K., & Sancho, N. G. F. (2001). A hybrid dynamic programming/depth-first search

algorithm, with an application to redundancy allocation. IIE Transactions, 33(12),

1047-1058.

106. Okutan, A., & Yıldız, O. T. (2014). Software defect prediction using Bayesian networks.

Empirical Software Engineering, 19(1), 154-181.

107. Onishi, J., Kimura, S., James, R. J. W., & Nakagawa, Y. (2007). Solving the redundancy

allocation problem with a mix of components using the improved surrogate constraint

method. IEEE Transactions on Reliability, 56(1), 94-101.

108. Pedersen, J. M., Tahir Riaz, M., Dubalski, B., Ledzinski, D., Júnior, J. C., & Patel, A.

(2013). Using latency as a QoS indicator for global cloud computing services.

Concurrency and Computation: Practice and Experience, 25(18), 2488-2500.

109. Phyu, M. P., & Thein, N. L. (2011). Efficient storage management for distributed storage

system. Fourth International Conference on Machine Vision, 8350, 1-12.

110. Portinale, L., & Codetta Raiteri, D. (2011). Using dynamic decision networks and extended

fault trees for autonomous FDIR. 2011 23rd IEEE International Conference on Tools with

Artificial Intelligence, 480-484.

111. Qian, M., Hardjawana, W., Shi, J., & Vucetic, B. (2015). Baseband processing units

virtualization for cloud radio access networks. IEEE Wireless Communications Letters,

4(2), 189-192.

112. Qiu, W., Zheng, Z., Wang, X., Yang, X., & Lyu, M. R. (2014). Reliability based design

optimization for cloud migration. IEEE Transactions on Services Computing, 7(2),

223-236.

113. Rahmani, M., Azadmanesh, A., & Siy, H. (2014). Architectural reliability analysis of

framework-intensive applications: A web service case study. Journal of Systems and

Software, 94, 186-201.

114. Rajaraman, V. (2014). Cloud computing. Resonance, 19(3), 242-258.

115. Ramirez Marquez, J. E., & Coit, D. W. (2004). A heuristic for solving the redundancy

allocation problem for multi-state series-parallel systems. Reliability Engineering and

System Safety, 83(3), 341-349.

116. Ramirez Marquez, J. E., Coit, D. W., & Konak, A. (2004). Redundancy allocation for

series-parallel systems using a max-min approach. IIE Transactions, 36(9), 891-898.

117. Randell, B., & Xu, J. (1995). The evolution of the recovery block concept. Fault Tolerance,

1-21.

134 | Page

118. Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., & Riedl, J. (1994). GroupLens: an

open architecture for collaborative filtering of netnews. Proceedings of the 1994 ACM

Conference on Computer Supported Cooperative Work, 175-186.

119. Ro, C. (2015). Modeling and analysis of memory virtualization in cloud computing. Cluster

computing, 18(1), 177-185.

120. Salas, J., Sorrosal, F. P., Martínez, M. P., & Peris, R. J. (2006). WS-replication: a

framework for highly available web services. Proceedings of the 15th International

Conference on World Wide Web 357-366

121. Santos, G. T., Lung, L. C., & Montez, C. (2005). FTWeb: a fault tolerant infrastructure for

web services. Proceedings of the 2005 Ninth IEEE International EDOC Enterprise

Computing Conference, 95-105.

122. Saraladevi, B., Pazhaniraja, N., Paul, P. V., Basha, M. S. S., & Dhavachelvan, P. (2015).

Big Data and Hadoop: a study in security perspective. Procedia Computer Science, 50,

596-601.

123. Schlosser, D., Staehle, B., Binzenhöfer, A., & Boder, B. (2010). Improving the QoE of

Citrix thin client users. 2010 IEEE International Conference on Communications, 1-6.

124. Serrano, D., Han, D., & Stroulia, E. (2015). From relations to multi-dimensional maps:

towards an SQL-to-HBase transformation methodology. IEEE 8th International

Conference on Cloud Computing, 81-89.

125. Seung, H. S., & Lee, D. D. (1999). Learning the parts of objects by non-negative matrix

factorization. Nature, 401(6755), 788-791.

126. Sharma, L. K., Saket, R. K., & Sagar, B. B. (2015). Software reliability growth models and

tools - a review. 2015 2nd International Conference on Computing for Sustainable Global

Development, 2057-2061.

127. Shen, Y., Chen, H., Shen, L., Mei, C., & Pu, X. (2014). Cost optimized resource provision

for cloud applications. 2014 IEEE International Conference on High Performance

Computing and Communications, 1060-1067.

128. Shirey, J., Charng, A., & Nguyen, Q. (2013). Researching and communicating the

complexity of IT image management. Newsletter Communication Design Quarterly

Review, 1(3), 28-33

129. Singh, L. K., Tripathi, A. K., & Vinod, G. (2015). Approach for parameter estimation in

Markov model of software reliability for early prediction: a case study. IET Software, 9(3),

65-75.

130. Song, J., Guo, C., Wang, Z., Zhang, Y., Yu, G., & Pierson, J.-M. (2015). HaoLap: A

Hadoop based OLAP system for big data. Journal of Systems and Software, 102,

167-181.

131. Staalinprasannah, N., & Suriya, S. (2013). Implementation of Xenserver to ensuring

business continuity through power of virtualization for cloud computing. 2013 Fourth

135 | Page

International Conference on Computing, Communications and Networking Technologies,

1-6.

132. Thanakornworakij, T., Nassar, R., Leangsuksun, C. B., & Paun, M. (2013). Reliability

model of a system of k nodes with simultaneous failures for high-performance computing

applications. International Journal of High Performance Computing Applications, 27(4),

474-482.

133. Tian, G., & Meng, D. (2010). Failure rules based node resource provision policy for cloud

computing. 2010 International Symposium on Parallel and Distributed Processing with

Applications, 397-404.

134. Tian, Z., Zuo, M. J., & Huang, H. (2008). Reliability redundancy allocation for multi-State

series-parallel systems. IEEE Transactions on Reliability, 57(2), 303-310.

135. Tziritas, N., Khan, S. U., Xu, C. Z., Loukopoulos, T., & Lalis, S. (2013). On minimizing the

resource consumption of cloud applications using process migrations. Journal of Parallel

and Distributed Computing, 73(12), 1690-1704.

136. Wang, K., Bian, Z., Chen, Q., Wang, R., & Xu, G. (2014). Simulating Hive cluster for

deployment planning, evaluation and optimization. 2014 IEEE 6th International

Conference on Cloud Computing Technology and Science, 475-482.

137. Wang, L., Cheng, C., Wu, S., Wu, F., & Teng, W. (2015). Massive remote sensing image

data management based on HBase and GeoSOT. 2015 IEEE International Geoscience

and Remote Sensing Symposium, 4558-4561.

138. Wang, Q., Kanemasa, Y., Li, J., Jayasinghe, D., Kawaba, M., & Pu, C. (2012). Response

time reliability in cloud environments: an empirical study of n-tier applications at high

resource utilization. 2012 IEEE 31st Symposium on Reliable Distributed Systems,

378-383.

139. Wang, S., & Watada, J. (2009). Modelling redundancy allocation for a fuzzy random

parallel–series system. Journal of Computational and Applied Mathematics, 232(2),

539-557.

140. Wang, W., Loman, J., & Vassiliou, P. (2004). Reliability importance of components in a

complex system. Proceedings of the Annual Reliability and Maintainability Symposium,

6-11.

141. Wang, W., Wang, H., Yang, B., Liu, L., Liu, P., & Zeng, G. (2013). A Bayesian network

based knowledge engineering framework for IT service management. IEEE Transactions

on Services Computing, 6(1), 76-88.

142. Wang, Y., & Li, L. (2012). Heterogeneous redundancy allocation for series-parallel

multi-state systems using hybrid particle swarm optimization and local search. IEEE

Transactions on Systems, Man, and Cybernetics, 42(2), 464-474.

143. Wang, Z., Tang, K., & Yao, X. (2010). A memetic algorithm for multi-level redundancy

allocation. IEEE Transactions on Reliability, 59(4), 754-765.

136 | Page

144. Wei, D. S. L., Pearson, S., Matsuura, K., Lee, P. P. C., & Naik, K. (2014). Guest editorial:

cloud security. IEEE Transactions on Cloud Computing, 2(4), 377-379.

145. Wu, J., Chen, L., Zheng, Z., Lyu, M. R., & Wu, Z. (2014). Clustering Web services to

facilitate service discovery. Knowledge and Information Systems, 38(1), 207-229.

146. Wu, Z., Xiong, N., Han, W., Huang, Y. N., Hu, C. Y., Gu, Q., & Hang, B. (2013). A fault

tolerant method for enhancing reliability of services composition application in WSNs

based on BPEL. International Journal of Distributed Sensor Networks, 2013, 1-11.

147. Xiang, J., Yanoo, K., Maeno, Y., Tadano, K., Machida, F., Kobayashi, A., & Osaki, T.

(2011). Efficient analysis of fault trees with voting gates. IEEE International Symposium on

Software Reliability Engineering, 230-239.

148. Xu, G., Lin, S., Wang, G., Liu, X., Shi, K., & Zhang, H. (2012). HERO: heterogeneity aware

erasure coded redundancy optimal allocation for reliable storage in distributed networks.

IEEE 31st International Performance Computing and Communications Conference,

246-255.

149. Yalaoui, A., Chatelet, E., & Chu, C. (2005). A new dynamic programming method for

reliability & redundancy allocation in a parallel-series system. IEEE Transactions on

Reliability, 54(2), 254-261.

150. Yalaoui, A., Chu, C., & Châtelet, E. (2005). Reliability allocation problem in a series–

parallel system. Reliability Engineering and System Safety, 90(1), 55-61.

151. Yangui, S., Ben Nasrallah, M., & Tata, S. (2013). PaaS-independent approach to provision

appropriate cloud resources for SCA based applications deployment. 2013 Ninth

International Conference on Semantics, Knowledge and Grids, 14-21.

152. Yao, Q., Tian, Y., Li, P. F., Tian, L. L., Qian, Y. M., & Li, J. S. (2015). Design and

development of a medical big data processing system based on Hadoop. Journal of

Medical Systems, 39(3), 1-11.

153. Yeh, W. C. (2009). A two stage discrete particle swarm optimization for the problem of

multiple multi-level redundancy allocation in series systems. Expert Systems with

Applications, 36(5), 9192-9200.

154. Yeh, W. C., & Hsieh, T. J. (2011). Solving reliability redundancy allocation problems using

an artificial bee colony algorithm. Computers and Operations Research, 38(11),

1465-1473.

155. Yeo, H., & Crawford, C. H. (2015). Big data: cloud computing in genomics applications.

IEEE International Conference on Big Data, 2904-2906.

156. Yigitbasi, N., Gallet, M., Kondo, D., Iosup, A., & Epema, D. (2010). Analysis and modeling

of time correlated failures in large-scale distributed systems. 2010 11th IEEE/ACM

International Conference on Grid Computing, 65-72.

157. Yu, C., & Huang, L. (2014). A Web service QoS prediction approach based on time and

location aware collaborative filtering. Service Oriented Computing and Applications, 10(2),

135-149.

137 | Page

158. Yu, T., Qiu, J., Reinwald, B., Zhi, L., Wang, Q., & Wang, N. (2012). Intelligent database

placement in cloud environment. 2012 IEEE 19th International Conference on Web

Services, 544-551.

159. Yu, Y., Zhao, J., Wang, X., Wang, Q., & Zhang, Y. (2015). Cludoop: an efficient distributed

density based clustering for big data using Hadoop. International Journal of Distributed

Sensor Networks, 2015.

160. Yun, W. Y., & Kim, J. W. (2004). Multi-level redundancy optimization in series systems.

Computers & Industrial Engineering, 46(2), 337-346.

161. Yun, W. Y., Song, Y. M., & Kim, H.-G. (2007). Multiple multi-level redundancy allocation in

series systems. Reliability Engineering and System Safety, 92(3), 308-313.

162. Zhang, Y., Zheng, Z., & Lyu, M. R. (2011). BFTCloud: a byzantine fault tolerance

framework for voluntary resource cloud computing. 2011 IEEE International Conference

on Cloud Computing (CLOUD), 444-451

163. Zhang, Y., Zheng, Z., & Lyu, M. R. (2014). An online performance prediction framework for

service oriented systems. IEEE Transactions on Systems, Man, and Cybernetics, 44(9),

1169-1181.

164. Zhao, L., Ren, Y., Li, M., & Sakurai, K. (2012). Flexible service selection with user-specific

QoS support in service-oriented architecture. Journal of Network and Computer

Applications, 35(3), 962–973.

165. Zhao, W. (2007). Byzantine fault tolerance for nondeterministic applications. Third IEEE

International Symposium on Dependable, Autonomic and Secure Computing, 108-115.

166. Zhao, W. (2009). Design and implementation of a Byzantine fault tolerance framework for

Web services Journal of Systems and Software, 82(6), 1004-1015.

167. Zheng, Z., & Lyu, M. R. (2008). A QoS-aware fault tolerant middleware for dependable

service composition. IEEE 19th International Symposium on Software Reliability

Engineering, 239-248.

168. Zheng, Z., & Lyu, M. R. (2010). An adaptive QoS-aware fault tolerance strategy for web

services. Empirical Software Engineering 15(4), 323-345

169. Zheng, Z., & Lyu, M. R. (2013). Personalized reliability prediction of Web services. ACM

Transactions on Software Engineering and Methodology (TOSEM), 22(2), 1-25.

170. Zheng, Z., & Lyu, M. R. (2015). Selecting an optimal fault tolerance strategy for reliable

service oriented systems with local and global constraints. IEEE Transactions on

Computers, 64(1), 219-232.

171. Zheng, Z., Ma, H., Lyu, M. R., & King, I. (2011). QoS aware Web service recommendation

by collaborative filtering. IEEE Transactions on Services Computing, 4(2), 140-152.

172. Zheng, Z., Ma, H., Lyu, M. R., & King, I. (2013). Collaborative Web service QoS prediction

via neighborhood integrated matrix factorization. IEEE Transactions on Services

Computing, 6(3), 289-299.

138 | Page

173. Zheng, Z., Zhang, Y., & Lyu, M. R. (2010). CloudRank: a QoS-driven component ranking

framework for cloud computing. 2010 29th IEEE International Symposium on Reliable

Distributed Systems, 184-193.

174. Zheng, Z., Zhang, Y., & Lyu, M. R. (2014). Investigating QoS of real world Web services.

IEEE Transactions on Services Computing, 7(1), 32-39.

175. Zheng, Z., Zhou, T. C., Lyu, M. R., & King, I. (2012). Component ranking for fault tolerant

cloud applications. IEEE Transactions on Services Computing, 5(4), 540-550.

176. Zheng, Z., Zhu, J., & Lyu, M. R. (2013). Service generated big data and big

data-as-a-service: an overview. 2013 IEEE International Congress on Big Data, 403-410.

177. Zheng, Z. B., Zhou, T. C., Lyu, M. R., & King, I. (2010). FTCloud: a component ranking

framework for fault tolerant cloud applications. 2010 IEEE 21st International Symposium

on Software Reliability Engineering (ISSRE), 398-407

178. Zhu, J., Kang, Y., Zheng, Z., & Lyu, M. R. (2012). WSP: a network coordinate based Web

service positioning framework for response time prediction. 2012 IEEE 19th International

Conference on Web services, 90-97.

179. Zhu, J., Zheng, Z., & Lyu, M. R. (2013). DR2: dynamic request routing for tolerating latency

variability in online cloud applications. 2013 IEEE Sixth International Conference on Cloud

Computing, 589-596.

180. Zhu, M., Zhang, X., & Pham, H. (2015). A comparison analysis of environmental factors

affecting software reliability. Journal of Systems and Software, 109, 150-160.

181. Zhu, X., Qin, X., & Qiu, M. (2011). QoS aware fault tolerant scheduling for real-time tasks

on heterogeneous clusters. IEEE Transactions on Computers, 60(6), 800-812.

