
University of Huddersfield Repository

Zhao, Lin, Thulasiraman, Krishnaiyan, Ge, Xiaocheng and Niu, Ru

Failure Propagation Modeling and Analysis Via System Interfaces

Original Citation

Zhao, Lin, Thulasiraman, Krishnaiyan, Ge, Xiaocheng and Niu, Ru (2016) Failure Propagation 
Modeling and Analysis Via System Interfaces. Mathematical Problems in Engineering. ISSN 1024-
123X 

This version is available at http://eprints.hud.ac.uk/id/eprint/31669/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/



Research Article
Failure Propagation Modeling and Analysis
via System Interfaces

Lin Zhao,1 Krishnaiyan Thulasiraman,2 Xiaocheng Ge,3 and Ru Niu1

1State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing 100044, China
2School of Computer Science, University of Oklahoma, Norman, OK 73019, USA
3Institute of Railway Research, University of Huddersfield, Huddersfield HD1 3DH, UK

Correspondence should be addressed to Lin Zhao; lzhao3@bjtu.edu.cn

Received 12 January 2016; Revised 30 March 2016; Accepted 5 April 2016

Academic Editor: Egidijus R. Vaidogas

Copyright © 2016 Lin Zhao et al.This is an open access article distributed under the Creative CommonsAttribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Safety-critical systems must be shown to be acceptably safe to deploy and use in their operational environment. One of the key
concerns of developing safety-critical systems is to understand how the system behaves in the presence of failures, regardless of
whether that failure is triggered by the external environment or caused by internal errors. Safety assessment at the early stages of
system development involves analysis of potential failures and their consequences. Increasingly, for complex systems, model-based
safety assessment is becomingmore widely used. In this paper we propose an approach for safety analysis based on system interface
models. By extending interactionmodels on the system interface level with failure modes as well as relevant portions of the physical
system to be controlled, automated support could be provided for much of the failure analysis. We focus on fault modeling and on
how to compute minimal cut sets. Particularly, we explore state space reconstruction strategy and bounded searching technique to
reduce the number of states that need to be analyzed, which remarkably improves the efficiency of cut sets searching algorithm.

1. Introduction

Our society is relying more and more on the safety of a
number of computer-based systems, for example, the control
system of managing air traffic or operating a nuclear power
plant.These systems are usually called safety-critical systems,
which are a class of engineered systems that may pose
catastrophic risks to its operators, the public, and the environ-
ment. The development of these systems demands a rigorous
process of system engineering to ensure that safety risks of
the system, even if some of its components fail, are mitigated
to an acceptable level. System safety analysis techniques are
well established and are used extensively during the design of
safety-critical systems.

The size, scale, heterogeneity, and distributed nature
of current (and likely future) systems make them difficult
to verify and to analyze, particularly for nonfunctional
properties including availability, performance, and security,
as well as safety. Due to the manual, informal, and error-
prone nature of the traditional safety analysis process, the

use of models and automatic analysis techniques as an
aid to support safety-related activities in the development
process has attracted increasing interest. Model-based safety
analysis (MBSA), where the analysis is carried out on formal
system models that take into account system behaviors in
the presence of faults, has been proposed to address some of
the issues specific to safety assessment. Recent work in this
area has demonstrated some advantages of this methodology
over traditional approaches, for example, the capability of
automatic generation of safety artifacts, and shown that it
is a promising way to reduce costs while further improving
efficiency and quality of safety analysis process.

The existing approaches to MBSA, for example, ESACS/
ISAAC [1, 2], AltaRica [3–5], Failure Propagation and Trans-
formation Notation (FPTN) [6, 7], Hierarchically Performed
HazardOrigin and Propagation Studies (HiP-HOPS) [8], and
the AADL with its error annex [9], can be classified into
two groups: (a) failure logic based or (b) system states based.
Original MBSA techniques, such as FPTN and HiP-HOPS,
have sought to unify classical safety analysis methods such

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2016, Article ID 8593612, 11 pages
http://dx.doi.org/10.1155/2016/8593612



2 Mathematical Problems in Engineering

as Fault Tree Analysis (FTA) and Failure Modes and Effects
Analysis (FMEA) and to provide a formalism for capturing
a single authoritative safety model of the system. These
approaches emphasized the model of failure propagation
logic. The second group of MBSA approaches addresses the
analysis of the transition of system states [10–12], in order
to identify the routes that a system transits from a safe state
to a hazardous state. Since these search-based techniques
normally require exhaustive enumeration of all reachable
states, they do not fully exploit the advantage of the internal
structure of the state space and domain knowledge of safety
analysis.

Safety is clearly an emergent property of a system that
can only be determined in the context of the whole. As
an emergent property, safety arises only when the system
components interactwith each other in an environment. Such
property is controlled or enforced by a set of constraints
related to behaviors of system components. Accidents often
result from interactions among components that violate these
constraints. In general, the term interaction is conceptually
simple; it is a kind of action that occurs as two ormore objects
have an effect upon one another. In practice, interactions
among the components dramatically increase the complexity
of the overall system. It is intuitively obvious that growing
interaction complexity poses a great challenge to engineer
safety of the system. In some cases, although hazard iden-
tification and safety assessment had been undertaken for
system components, the hazards could be missed apparently
at least in part because they arise out of the complex and
indirect interactions in a complex system, especially when the
components of the system are independently developed or
operated. The new challenge to MBSA due to the complexity
of a system is that it is very hard to analyze all possible
dysfunctional interactions in the system so that its hazardous
states which reflect the effects of dysfunctional interactions
and inadequate enforcement of safety constraints can be
identified.

Using interface models to capture these interactions
would offer twofold benefits. Interface information could be
abstracted from the existing system design models conve-
niently. This is helpful to the tight integration of the systems
and safety engineering processes. Furthermore, interface
models are often more abstract and contain much less
corresponding implementation details, which help to combat
the state space explosion problem in the following automatic
analysis.

In this paper, we propose an approach of model-based
safety analysiswhich utilizes extended interface automata [13]
to model the nominal behaviors as well as fault behaviors of
the system. To avoid the exploration of the entire reachability
set, we present a structural analysis strategy, which takes into
account the inner structure of state space. This has made
possible development of efficient algorithms for the purpose
of safety analysis. By applying state space reduction and
heuristic search, a much smaller reachable space needs to be
explored and thus the efficiency of proposedminimal cut sets
algorithm has been improved.

The rest of the paper is organized as follows. In Section 2,
we introduce interface automaton as a formalmodel for safety

analysis. In Section 3, we show how to use domain knowledge
for efficient state space reduction and minimal cut sets
generation. Section 4 mainly demonstrates our approach on
a small yet realistic safety-related example whereminimal cut
sets are generated and analyzed.Conclusions andoutlooks for
future work are presented in Section 5.

2. Interfaces and Fault Modeling

2.1. Definitions and Notation. Interface automata give a
formal and abstract description of the interactions between
components and the environment. This formalism captures
the temporal aspects of component interfaces, including
input assumptions and output guarantees, in terms of 𝐼/𝑂

actions and the order in which they occur in automata.
Input assumptions describe the possible behaviors of the
component’s external environment, while output guarantees
describe the possible behaviors of the component itself.

Definition 1 (interface automata). An interface automaton is
defined as a tuple 𝑃 = ⟨V

𝑃
,VInit
𝑃

,I
𝑃
,O
𝑃
,H
𝑃
,T
𝑃
⟩, where

(i) V
𝑃
is a finite set of states,

(ii) VInit
𝑃

⊆ V
𝑃
is a set of initial states,

(iii) I
𝑃
, O
𝑃
, and H

𝑃
are mutually disjoint sets of input,

output, and internal actions; one denotes by A
𝑃

=

I
𝑃

∪ O
𝑃

∪ H
𝑃
the set of all actions,

(iv) T
𝑃

⊆ V
𝑃

× A
𝑃

× V
𝑃
is a transition relation.

A trace on interface automaton is an alternating
sequence consisting of states and actions, such as
𝑝
0
, 𝑎
0
, 𝑝
1
, 𝑎
1
, . . . , 𝑎

𝑘−1
, 𝑝
𝑘
, where 𝑝

𝑖
∈ V
𝑃
and 𝑎

𝑗
∈ A
𝑃

(𝑖 ∈ {0, . . . , 𝑘} and 𝑗 ∈ {0, . . . , 𝑘 − 1}). If an action 𝑎 ∈ I
𝑃

(resp., 𝑎 ∈ O
𝑃
, 𝑎 ∈ H

𝑃
), then (V, 𝑎, V) ∈ T

𝑃
is called an

input (resp., output, internal) transition. We denote by TI
𝑃

(resp., TO
𝑃
, TH
𝑃
) the set of input (resp., output, internal)

transitions. An action 𝑎 ∈ A
𝑃
is enabled at a state V ∈ V

𝑃

if there is a transition (V, 𝑎, V) ∈ T
𝑃
for some V ∈ V

𝑃
. We

denote by I
𝑃
(V), O

𝑃
(V), and H

𝑃
(V) the subsets of input,

output, and internal actions that are enabled at the state V.
We illustrate the basic features of interface automata by

applying them to the modeling of a railroad crossing control
system. Figure 1 depicts the interfaces of three components
modeling the train, controller, and gate, respectively. Two
sensors are used to detect the approach and exit of the train.
The state changes of the controller stand for handshaking
with the train (via the actions Approach and Exit) and the
gate (via the actions Lower and Raise by which the controller
commands the gate to close or to open). When everything is
ready, a signal Enter is sent to authorize the entrance of the
train.

In the graphic representation, each automaton is enclosed
in a box, whose ports correspond to the input and output
actions. The symbols ? and ! are appended to the name of the
action to denote that the action is an input and output action,
respectively. An arrowwithout source denotes the initial state
of the automaton.



Mathematical Problems in Engineering 3

Approach!

Approach Enter

Exit!

Exit

Enter?

t0 t1

t2

(a) Train

Approach?

Approach

Raise!

Raise

Lower!

Lower

Exit?

Exit

c0 c1

c3 c2

(b) Controller

Raise? Enter!

EnterRaise Lower

Lower?g0 g1

g2

(c) Gate

Figure 1: The interface models of railroad crossing control system.

The parallel composition of interface automata shows
how they all relate and work together. In Alfaro and Hen-
zinger’s original paper of interface automata [13], providing
a particular form of parallel composition mainly aimed to
analyze the compatibility of components. In this paper, the
compatibility is not our concern. Therefore, we abandon
this kind of parallel composition, using a more traditional
one which is common in automaton theory. Two interface
automata 𝑃 and 𝑄 are composable if I

𝑃
∩ I
𝑄

= ⌀ = O
𝑃

∩

O
𝑄
; that is, they have neither common inputs nor common

outputs. We let shared(𝑃, 𝑄) = A
𝑃

∩ A
𝑄
. In a composition,

the two automata will synchronize on all common actions
and asynchronously interleave all other actions.

Definition 2 (parallel composition). If 𝑃 and 𝑄 are compos-
able interface automata, the parallel composition 𝑃 × 𝑄 is the
interface automaton defined by

V
𝑃×𝑄

= V
𝑃

× V
𝑄

,

V
Init
𝑃×𝑄

= V
Init
𝑃

× V
Init
𝑄

,

I
𝑃×𝑄

= (I
𝑃

∪ I
𝑄

) \ shared (𝑃, 𝑄) ,

O
𝑃×𝑄

= (O
𝑃

∪ O
𝑄

) \ shared (𝑃, 𝑄) ,

H
𝑃×𝑄

= (H
𝑃

∪ H
𝑄

) \ shared (𝑃, 𝑄) ,

T
𝑃×𝑄

= {((V, 𝑢) , 𝑎, (V, 𝑢)) | (V, 𝑎, V) ∈ T
𝑃

∧ 𝑎

∉ shared (𝑃, 𝑄) ∧ 𝑢 ∈ V
𝑄

}

∪ {((V, 𝑢) , 𝑎, (V, 𝑢)) | (𝑢, 𝑎, 𝑢

) ∈ T

𝑄
∧ 𝑎

∉ shared (𝑃, 𝑄) ∧ V ∈ V
𝑃
}

∪ {((V, 𝑢) , 𝑎, (V, 𝑢)) | (V, 𝑎, V) ∈ T
𝑃

∧ (𝑢, 𝑎, 𝑢

)

∈ T
𝑄

∧ 𝑎 ∈ shared (𝑃, 𝑄)} .

(1)

The parallel composition of train and controller is shown
in Figure 2(a). Here, we have only depicted the reachable

Approach

Enter?

Enter?

Raise!

Lower!

Lower!

Exit
(a) Train × controller

Approach

Raise

Enter

Lower

Exit
(b) Train × controller × gate

Figure 2: The parallel composition of interface models.

states of the composition.The automaton 𝑡𝑟𝑎𝑖𝑛×𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟×

𝑔𝑎𝑡𝑒 in Figure 2(b), where all the actions have been hidden
as internal ones after synchronization, describes the system
function in an orderly and concise manner.

2.2. Fault Propagation Modeling on Interface Automata. For
model-based safety analysis, failure modes must be explicitly
modeled. Our approach to modeling fault behaviors is to
specify them using the interface automata notation itself.
The incorporation of the fault behaviors directly on the
system interface models will promote ease of specification of
complex fault behaviors for both the system design and safety
engineers, allowing them to create simple but realisticmodels
for precise safety analysis.

Fault modeling is aiming to specify the direct effects of
failure modes. In our approach, this is done via importing
new actions, states, and transitions to the existing models.
There are two types of faults in interface automata: basic faults
and propagating faults. Basic faults differ from propagating
faults in their activation condition. Basic faults are intrinsic to
a component and originate within the component boundary.
Their activation occurs independently of other component
failures and can be modeled using an independent input
action.

The faults that get activated by interaction or interference
due to error propagation are considered as propagating faults.
In interface automata, propagating faults will be synchro-
nized during the composition of two components and then



4 Mathematical Problems in Engineering

Broken

Broken?Empty
Empty?

Water

Water
Water?

Water!

NoWater

NoWater NoWater?

Pumping!

Pumping

Stop!

Stop

NoWater!

Pow_F

Pow_F?

Figure 3: Basic faults and propagating faults in interface automata.

hidden as internal actions. We denote by Ebf and Epf ,
respectively, the mutually disjoint sets of basic faults and
propagating faults.

Consider the cooling water supply system in Figure 3.
This system consists of an electric pump and a water tank.
Two components synchronize on actionWater, which means
there is water in the tank and the pump will start working
(action Pumping). However, the tank may be broken or
empty, denoted by input actions Broken and Empty. Here,
Broken and Empty are basic faults since they originate within
the tank component. NoWater is defined as a propagating
fault to model the failure propagation from water tank to
the pump. Also, there are other propagating faults, like
power failure (action Pow F) and the stop of pump (action
Stop), between pump and other devices not listed in this
example.

Our extension towards interface automata lies on two
aspects. Firstly, as shown in Figure 3, the extended definition
of interface automata could be regarded as a 7-tuple 𝑃 =

⟨V
𝑃
,VInit
𝑃

,I
𝑃
,O
𝑃
,H
𝑃
,T
𝑃
,Ebf

,Epf
⟩. Since Ebf and Epf

also have input or output attributes, they do not need special
treatment during the composition. Besides, solid lines in the
figure depict the nominal system interfaces, while the dash
lines show the fault behaviors of each of the components.
Based on the real system interfaces, this kind of extension is
easy to perform and easy to understand and provides useful
system insights and shared formalmodels between the design
and safety analysis stages.

3. Algorithms Assist in Failure Analysis

Minimal cut set is the combination of basic faults which can
guarantee occurrence of a top-level event (TLE), that is, a set
of undesired states, but only has the minimum number of
these faults.The key problem investigated in this paper is how
to efficiently produce minimal cut sets through exhaustive
state space exploration.We first give the following definitions
of (minimal) cut sets.

Definition 3 (cut set). Let 𝑃 = ⟨V
𝑃
,VInit
𝑃

,I
𝑃
,O
𝑃
,H
𝑃
,T
𝑃
⟩

be an interface automaton,Ebf the set of basic faults, and top-
level event TLE ⊆ V

𝑃
. cs ⊆ Ebf is a cut set of TLE if there

exists a trace 𝑡 = 𝑝
0
, 𝑎
0
, 𝑝
1
, 𝑎
1
, . . . , 𝑎

𝑘−1
, 𝑝
𝑘
on 𝑃 satisfying the

following:

(1) 𝑝
0

∈ VInit
𝑃

, 𝑝
𝑖
∉ VInit
𝑃

(𝑖 ∈ {1, . . . , 𝑘}), and 𝑝
𝑘

∈ TLE;

(2) ∀𝑖 ∈ {0, . . . , 𝑘 − 1} (𝑎
𝑖
∈ Ebf

→ 𝑎
𝑖
∈ cs);

(3) ∀𝑎 ∈ cs → 𝑎 ∈ 𝑡.

Intuitively, a cut set is a combination of some basic faults
which can lead to the occurrence of the given top-level
event, that is, the set of all basic faults contained in a trace
from initial states VInit

𝑃
to top-level event (TLE) is a cut set

with respect to TLE. We use CS𝑃TLE to represent all cut sets
on automaton 𝑃 with respect to TLE. Minimal cut sets are
formally defined as follows.

Definition 4 (minimal cut sets). Let CS𝑃TLE be the set of all cut
sets on automaton 𝑃 with respect to TLE. One has the set of
all minimal cut sets of TLE on automaton 𝑃 as follows:

MCS𝑃TLE = {cs ∈ CS𝑃TLE | ∀cs

∈ CS𝑃TLE (cs ⊆ cs → cs = cs)} .

(2)

Based on the previous definitions, the computation of
minimal cut sets is to find out all traces leading to the TLE,
that is, all cut sets CS𝑃TLE, and then minimize these sets.

3.1. State Space Reconstruction. Several automatic analysis
techniques for minimal cut sets generation have been devel-
oped on a variety of models, for example, Petri net, finite
state machine, NuSMV model, and AltaRica model. The
main difficulty in this kind of search-based minimal cut sets
generation is state space reduction, because in general the
complexities of searching algorithms depend on the size of
the state space.

We observed that, for safety analysis on interface models,
only those actions that contribute to the occurrence of
the predefined TLE need to be analyzed. During the state
exploration, noncontributing actions could be ruled out as far
as possible. This means that a majority of transitions relevant
to internal and output actions could be peripheral to our core
searching algorithm. Based on this observation, we develop a
procedure of state space reduction.

To reconstruct the state space of the given interface mod-
els, our approach is to cluster states that are noncontributing
to the occurrence of TLE into equivalent classes and eliminate



Mathematical Problems in Engineering 5

relevant transitions.The numbers of states and transitions are
reduced using a restricted forward and backward reachability
analysis from initial states and TLE, respectively. The result
is a representation of the state space that is compact and
minimal in some sense and keeps all necessary information
about faults propagation.

Definition 5 (state space partition). Let 𝑃 be an interface
automaton, Ebf the set of basic faults, and top-level event
TLE ⊆ V

𝑃
. The set of states V

𝑃
consists of three dis-

joint parts, denoted by SafetyArea𝑃, TriggeringArea𝑃, and
HazardCore𝑃, where

(i) SafetyArea𝑃 is a forward closure𝑈 ⊆ V
𝑃
such that (1)

VInit
𝑃

⊆ 𝑈 and (2) if 𝑢 ∈ 𝑈 and (𝑢, 𝑎, 𝑢

) ∈ (TO

𝑃
∪TH
𝑃

),
then 𝑢


∈ 𝑈;

(ii) HazardCore𝑃 is a backward closure𝑈 ⊆ V
𝑃
such that

(1) TLE ⊆ 𝑈 and (2) if 𝑢 ∈ 𝑈 and (𝑢

, 𝑎, 𝑢) ∈ (TO

𝑃
∪

TH
𝑃

), then 𝑢


∈ 𝑈;
(iii) TriggeringArea𝑃 = V

𝑃
\ (SafetyArea𝑃 ∪ Hazard

Core𝑃).

Definition 5 divides the state space of an interface
automaton into three separate areas based on top-level event
(TLE). Intuitively, the set SafetyArea contains the reachable
states of an automaton from the initial states by taking
only internal or output transitions. In this area, the current
running of the system is safe and there is no occurring
of any basic faults. HazardCore consists of all states that
can reach TLE through a series of continuous internal or
output transitions. States within the scope of HazardCore
could evolve into TLE without any external stimulation, that
is, the occurrence of any basic fault. TriggeringArea is a
complement set containing all states of V

𝑃
excepting those

in SafetyArea ∪ HazardCore. According to this definition, all
of the basic faults are contained in the TriggeringArea, which
is the focus of our state exploration algorithm forminimal cut
sets generation.

We use a directed graph DG
𝑃
, consisting of vertices and

labeled edges, to denote the underlying transition diagram of
an interface automaton 𝑃.

Definition 6 (state space reconstruction). Given an interface
automaton 𝑃, 𝑅𝑒𝑑𝑢𝑐𝑒𝑑(DG

𝑃
) is the reduced form of its

original transition diagram by applying the following steps
on DG

𝑃
:

(1) remove all transitions from TriggeringArea𝑃 to
SafetyArea𝑃;

(2) remove all transitions from HazardCore𝑃 to
SafetyArea𝑃 or TriggeringArea𝑃;

(3) combine all states of SafetyArea𝑃 into a new state Init;
(4) combine all states of HazardCore𝑃 into a new state

Top.

Definition 6 and Figure 4 show the process of our state
space reduction strategy. All states in the set SafetyArea are

Init

Top

Triggering
area

Safety area

Hazard core

Triggering
area

State
space

Figure 4: The reconstruction of system state space.

merged into a new state Init. All states in the set HazardCore
are combined into state Top. After removing all reverse
transitions on the fault propagation path, we get a new state
space for further analysis.

Theorem 7. Let 𝑃 be an interface automaton. If 𝑐𝑠 is a cut set
with respect to top-level event (𝑇𝐿𝐸), then there exists a trace 𝑡

in 𝑅𝑒𝑑𝑢𝑐𝑒𝑑(𝐷𝐺
𝑃
) from Init to Top, containing all elements of

𝑐𝑠.

Proof. Since the set of basic faults cs is a cut set of
TLE, according to Definition 3, there is a trace 𝑡


=

𝑝
0
, 𝑎
0
, 𝑝
1
, 𝑎
1
, . . . , 𝑎

𝑘−1
, 𝑝
𝑘
in DG

𝑃
fromVInit

𝑃
to TLE satisfying

∀𝑎 ∈ cs → 𝑎 ∈ 𝑡
. By applying steps (3) and (4) of

Definition 6 at both ends of this trace, respectively, we get
a new path 𝑡 = Init, 𝑎

𝑚
, 𝑝
𝑚+1

, . . . , 𝑝
𝑛
, 𝑎
𝑛
,Top. Obviously, 𝑡 is

in 𝑅𝑒𝑑𝑢𝑐𝑒𝑑(DG
𝑃
). During this process, only those internal

and output transitions in SafetyArea𝑃 and HazardCore𝑃 are
removed. Because all basic faults are defined as input actions,
hence no basic fault is eliminated from 𝑡

; that is, trace 𝑡 still
contains all elements of cs.

The essence of the search-based minimal cut sets gen-
eration is to find out all combinations of basic faults that
contributed to the top-level event in DG

𝑃
. Theorem 7 shows

that DG
𝑃
and𝑅𝑒𝑑𝑢𝑐𝑒𝑑(DG

𝑃
) are equivalent for this purpose,

whereas the latter contains far fewer states and transitions.We
use an example to illustrate the effectiveness of this approach.
Reconsider the previous railroad crossing control system in
Figure 1, which is in an ideal world where no errors occur.The
next step is to extend thesemodels such that failuremodes are
also correctly described. The following three failure modes
are taken into account in this example:

(i) Failure of the sensors (actions 𝑆1 𝐹 and 𝑆2 𝐹) which
will prevent sending signals (actions Approach and
Exit) when the train is approaching or exiting.

(ii) Failure of the brake (action Bra 𝐹) which will lead to
nonauthorized entering of the cross, that is, bypassing
action Enter.

(iii) Failure of the barrier (action Stuck) which results in
the barrier being stuck at any location; a new state 𝑔

3

is added to represent the stuck state of the barrier.

These failure modes are integrated into the formal inter-
face models, as shown in Figure 5.This model extension pro-
vides us a failure propagationmap on nominal systemmodel,



6 Mathematical Problems in Engineering

S2_F

S2_F?

S1_F

S1_F?

Bra_F

Bra_F?

Approach!

Approach Enter

Exit!

Exit

Enter?

t0 t1

t2

(a) Train

Approach?

Approach

Raise!

Raise

Lower!

Lower

Exit?

Exit

c0 c1

c3 c2

(b) Controller

Stuck

Stuck!

Stuck!

Stuck!

Raise? Enter!

EnterRaise Lower

Lower?g0 g1

g3

g2

(c) Gate

Figure 5: The extended interface models of railroad crossing control.

Init

Stuck? Bra_F?

Top

(a)

Init

Stuck?

Stuck?

Stuck?

Bra_F?Bra_F?Bra_F?

Top

S1_F?

S1_F?Approach

(b)

Stuck? Stuck?

Stuck?

Stuck?

Stuck?

Exit
Stuck?

Stuck?

Stuck?

Bra_F?

Bra_F?

Bra_F?
Bra_F?

Top

Init

S1_F?

S1_F?

S1_F?

S2_F?

S1_F?

S1_F?

S2_F?

(c)

Figure 6: The reshaped state space 𝑅𝑒𝑑𝑢𝑐𝑒𝑑(DGRC).

reflecting both normal interactions and fault propagation.
The safety goal of this system is clear:

SR 1: it must never happen that the train is on the crossing
(at state 𝑡

2
) and the crossing is not secured (at state 𝑔

0

or 𝑔
3
).

RC = 𝑡𝑟𝑎𝑖𝑛×𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟×𝑔𝑎𝑡𝑒 is the parallel composition
of those extended interfacemodels.There are 30 states and 63
transitions in the state space DGRC. By using the state space
reduction technique in Definition 6, we can obtain a reduced
state space𝑅𝑒𝑑𝑢𝑐𝑒𝑑(DGRC), as shown in Figure 6, which only
contains 17 states and 31 transitions. For brevity, we use 3

separate subgraphs to represent the entire state space, while
these subgraphs have the common endpoints Init and Top.

3.2. Minimal Cut Sets Generation. Here, we discuss the basic
searching algorithm for cut sets generation using forward
reachability analysis.Thefirst step is to find all possible simple
paths (paths without cycles) between two vertices, that is, Init
and Top, in the graph 𝑅𝑒𝑑𝑢𝑐𝑒𝑑(DG

𝑃
). To solve this problem,

the traditional depth-first search algorithm could be adjusted
in the following manner:

(1) Start at source vertex Init and perform a depth-first
walk. All nodes on the path are pushed in a stack and
set as visited.

(2) When the top element of the stack is target node Top,
a path is successfully found. Record this path, pop out
Top, and set it as unvisited.

(3) For the current top of the stack 𝑢, find its successor
that is unvisited and push this node in the stack. If
no such successor exists, pop out 𝑢 and set 𝑢 and its
successors unvisited.

(4) Go back to step (2) until the stack is empty.
To better visualize this process, one can think of a search

tree rooted at the vertex Init, and all simple paths leading to
node Top constitute the body of this tree. As an illustration,
consider the searching of Figure 6(b). The tree structure in
Figure 7(a) depicts all simple paths between Init and Top
generated by the above algorithm. Since a cut set only consists
of basic faults, we get the following four cut sets from this tree
by removing extra actions and duplicate paths:

{Stuck,Bra 𝐹} ,

{Stuck, 𝑆1 𝐹,Bra 𝐹} ,

{𝑆1 𝐹,Bra 𝐹} ,

{𝑆1 𝐹, Stuck,Bra 𝐹} .

(3)

After finding all possible cut sets in 𝑅𝑒𝑑𝑢𝑐𝑒𝑑(DG
𝑃
),

it is easy to identify those minimal ones. According to



Mathematical Problems in Engineering 7

Init

Stuck? Stuck?

Stuck?

S1_F?

S1_F?

Bra_F? Bra_F?

Bra_F?Bra_F?Bra_F?

Approach

Top

Top Top Top

Top

(a)
Init

S1_F?

(b)

Figure 7: The comparison of different search strategies.

Definition 4, given two cut sets cs
1
and cs

2
, if cs
1

⊂ cs
2
, cs
2

must not be a minimal cut set. This fact could be used to
design a simple filter through pairwise comparison of these
cut sets. It is worth noting that sorting this set of cut sets by
size in advance will make the comparison more efficient. So
far, we have presented a simple search-based algorithm for
minimal cut sets generation.

Unfortunately, this naive algorithm has a major draw-
back: it needs to traverse all possible simple paths between
Init and Top during the searching. However, from a practical
perspective, some branches of the search tree could be
pruned. Since the ultimate goal is to get minimal cut sets,
according to Definition 4, no further extension of the current
path is necessary if it contains a cut set which has been
found in the previous exploration. Using this observation,
we present a heuristic searching strategy based on a bounded
breadth-first search to improve the performance of state space
exploration.

The basic idea is to search for all simple paths between
Init and Top whose lengths are bounded by some integer 𝑘.
This problem can be efficiently solved in 𝑅𝑒𝑑𝑢𝑐𝑒𝑑(DG

𝑃
) via

a breadth-first search with bound 𝑘. The result is a set of cut
sets whose lengths are nomore than 𝑘, denoted by 𝐾sets, and
can therefore be used for guiding the branch pruning during
the rest searching. Figure 7 shows a very distinct optimization
effect on the graph 𝑅𝑒𝑑𝑢𝑐𝑒𝑑(DGRC). Firstly, we perform a
bounded breadth-first search (let 𝑘 = 1) on 𝑅𝑒𝑑𝑢𝑐𝑒𝑑(DG

𝑃
).

Via a breadth-first search with depth 1, the searching process
will find two traces from Init to Top, which are exactly shown
as Figure 6(a). Thus, we get

𝐾sets = {{Stuck} , {Bra 𝐹}} . (4)

We then use part of the state space (i.e., Figure 6(b)) to
demonstrate the branches pruning effect of𝐾sets. Figure 7(a)
shows the paths generated by the naive algorithm, while
Figure 7(b) represents the results of the optimized algorithm
which uses𝐾sets to prune superfluous paths.The comparison
indicates that over half of the total vertices and edges are
ruled out of the searching. In order to tail off the search space
and boost converging rate of the algorithm, unnecessary
branches are trimmed in terms of the results of the 𝑘 bounded
searching.

Algorithm 1 implements the above discussed techniques,
which takes as input a directed graph 𝑅𝑒𝑑𝑢𝑐𝑒𝑑(DG

𝑃
), a set of

basic faults BasicFaults, and bounded searching result 𝐾sets.
The output MCSList returns all minimal cut sets as a list,
which will be initialized with 𝐾sets. The set cs is used to
record all basic faults in the current path, and it will be added
to the end ofMCSList once the node Top in 𝑅𝑒𝑑𝑢𝑐𝑒𝑑(DG) is
reached. All nodes on the current searching path are pushed
into a stack 𝑆. If the top element of the stack is node Top
or cs ∈ 𝑀𝐶𝑆𝐿𝑖𝑠𝑡, the algorithm will backtrack to continue
the search for a new path by popping out the old stack
top and trying out the unvisited neighbor of the new stack
top. This procedure is repeated over and over until 𝑆 gets
empty. Procedure Filter(MCSList) carries out the pairwise
comparison of all elements in MCSList to get those minimal
cut sets, as we mentioned before.

For 𝑅𝑒𝑑𝑢𝑐𝑒𝑑(DGRC) in Figure 6, computing 𝐾sets =

{{Stuck}, {Bra 𝐹}} with 𝑘 = 1 firstly and then using Algo-
rithm 1 to perform a full search in state space, we get all
minimal cut sets 𝑀𝐶𝑆𝐿𝑖𝑠𝑡 = {{Stuck}, {Bra 𝐹}}. This result
shows that the necessary and sufficient conditions for the
occurrence of top-level event (i.e., a train is on the crossing,
while the crossing is not secured) are as follows: the barrier
is stuck or the brake fails, while sensors failure will not
consequentially lead to a dangerous situation.

In this approach, the choosing of parameter 𝑘 in the
bounded searching is relatively flexible, depending on the
size of 𝑅𝑒𝑑𝑢𝑐𝑒𝑑(DG). The role of 𝐾sets will gradually change
with the increasing of 𝑘. Obviously, if the value of 𝑘 is big
enough, all simple paths between Init andTopwill be found in
a breadth-first way with low efficiency. Therefore, providing
an appropriate value for 𝑘 is key to the solution. For large
models, we recommend a relatively small 𝑘 for the bounded
searching firstly. If Algorithm 1 can not terminate within
a reasonable amount of time, gradually increase 𝑘 until an
adequate number of searching branches have been cut down
so that the algorithm gets terminated.

4. Fuel Supply System Example

In this section, we exemplify our approach with a fuel supply
system for small aircraft. Figure 8 is the schematic diagram
of this system. The engine is supplied with fuel pumped at
high pressure from a collector tank—a small tank located
close to the engine.This demonstration is not concernedwith
the high-pressure fuel system. The main fuel storage in the
aircraft is in the left and rightmain tanks. Each tank contains a
low-pressure pump (𝑃 and 𝑄 in the diagram) which transfers
fuel to the collector tank via valves 𝐴 and 𝐵 as required. In



8 Mathematical Problems in Engineering

Input: 𝑅𝑒𝑑𝑢𝑐𝑒𝑑(DG), 𝐵𝑎𝑠𝑖𝑐𝐹𝑎𝑢𝑙𝑡𝑠, 𝐾𝑠𝑒𝑡𝑠

Output: 𝑀𝐶𝑆𝐿𝑖𝑠𝑡 is a list of minimal cut sets.
(1) Push 𝑅𝑒𝑑𝑢𝑐𝑒𝑑(DG).𝐼𝑛𝑖𝑡 in stack 𝑆 and set it visited;
(2) 𝑀𝐶𝑆𝐿𝑖𝑠𝑡 fl 𝐾𝑠𝑒𝑡𝑠;
(3) cs fl 𝑁𝑢𝑙𝑙;
(4) while 𝑆 is not empty do
(5) V fl 𝑆.𝑡𝑜𝑝(); // Get the top element of stack 𝑆

(6) if There exist a vertex 𝑢 satisfying ((V, 𝑏, 𝑢) ∈ 𝑅𝑒𝑑𝑢𝑐𝑒𝑑(DG) ∧ 𝑢 is unvisited) then
(7) if 𝑏 ∈ 𝐵𝑎𝑠𝑖𝑐𝐹𝑎𝑢𝑙𝑡𝑠 then
(8) Add basic fault 𝑏 into the set cs;
(9) if cs ∉ 𝑀𝐶𝑆𝐿𝑖𝑠𝑡 then
(10) Push 𝑢 in stack 𝑆;
(11) else
(12) Remove 𝑎 from cs;
(13) Set 𝑢 visited;
(14) else
(15) Pop V from stack 𝑆 and set V as well as its successors unvisited;
(16) 𝑈𝑝𝑑𝑎𝑡𝑒(cs);
(17) if the current top element of the stack is 𝑅𝑒𝑑𝑢𝑐𝑒𝑑(DG).𝑇𝑜𝑝 then
(18) Add a copy of cs to the end of 𝑀𝐶𝑆𝐿𝑖𝑠𝑡;
(19) Pop out 𝑅𝑒𝑑𝑢𝑐𝑒𝑑(DG).𝑇𝑜𝑝 and set it unvisited;
(20) 𝑈𝑝𝑑𝑎𝑡𝑒(cs);
(21) Filter(𝑀𝐶𝑆𝐿𝑖𝑠𝑡);
(22) Return(𝑀𝐶𝑆𝐿𝑖𝑠𝑡);

Algorithm 1: Generation of minimal cut sets.

flight, valves 𝐴 and 𝐵 are normally left open. The aircraft
also has a smaller reserve tank, also fitted with its own low-
pressure pump 𝑅. All pumps are protected by nonreturn
valves 𝑊, 𝑋, 𝑌, and 𝑍. Valves 𝐶 and 𝐷 (normally closed
and opened when required) allow fuel to be transferred from
the reserve to either wing tank as necessary. The pumps have
built-in overpressure protection; in the event of attempting
to pump into a closed or blocked pipe, the overpressure relief
system will simply return fuel to the tank.

We model this system at interface level by three com-
ponents interacting with each other, as shown in Figure 9.
The automaton at the top left, denoted by 𝑃Left, describes the
interface behavior of the left tank, pump 𝑃, and valves 𝑊

and 𝐴. The top right model 𝑃Right consists of the right tank,
pump 𝑄, and valves 𝑋 and 𝐵. The reserve tank, pump 𝑅, and
valves 𝐶, 𝐷, 𝑌, and 𝑍 are modeled as 𝑃Bottom at the bottom.
The solid part of the figure depicts the nominal interactions
among these components.

In order to analyze the system behavior in presence of
faults, we would like to extend this nominal system model
with the given failuremodes. In Table 1, we list all faults under
consideration, defined as input or output actions, and their
intuitive meaning. Those dash lines as well as the new added
actions in Figure 9 demonstrate our model extension. The
parallel composition FSS = 𝑃Left×𝑃Bottom×𝑃Right describes the
behavior of this fuel supply system in the presence of faults.

There are 140 states and 560 transitions in the state space
DGFSS.

For this example, assume that the safety requirement is as
follows:

SR 2: simultaneous loss of fuel supply from the left and right
main tank will not occur.

That is to say, it must never happen that 𝑃Left is at the state 𝑝
2

and at the same time 𝑃Right at 𝑞
2
. Thus, the top-level event is

TLE = 𝑝
2

∗ 𝑞
2
, where ∗ is used as a wildcard to substitute for

any state of automaton𝑃Bottom.The set of all basic faults could
be obtained from Table 1, that is,

E
bf

= {𝐴 𝐹, 𝐵 𝐹, 𝐶 𝐹, 𝐷 𝐹, 𝑋 𝐹, 𝑌 𝐹, 𝑍 𝐹, 𝑊 𝐹,

𝐸𝑚𝑝𝑡𝑦 𝑃, 𝐸𝑚𝑝𝑡𝑦 𝑄, 𝐸𝑚𝑝𝑡𝑦 𝑅} .

(5)

According to Definition 5, DGFSS could be divided
into three parts: SafetyAreaFSS, TriggeringAreaFSS, and
HazardCoreFSS, while TriggeringAreaFSS is the focus of our
attention. Using the reconstruction approach given in Def-
inition 6, we get a reduced state space 𝑅𝑒𝑑𝑢𝑐𝑒𝑑(DGFSS). In
contrast, the new state space only contains 88 states and 442
transitions.



Mathematical Problems in Engineering 9

Table 1: Parameters of the fuel supply system interface models.

Name Action Type Meaning
𝐴 𝐹, 𝐵 𝐹 Input Basic fault Unintended shutdown of valve 𝐴 or 𝐵

𝐶 𝐹, 𝐷 𝐹 Input Basic fault Failure to open valve 𝐶 or 𝐷

𝑊 𝐹, 𝑋 𝐹, 𝑌 𝐹, 𝑍 𝐹 Input Basic fault Clogging of valve 𝑊, 𝑋, 𝑌, or 𝑍

𝑃 𝐹, 𝑄 𝐹, 𝑅 𝐹 Input Basic fault Pump failure in 𝑃, 𝑄, or 𝑅

𝑂𝑢𝑡𝑝𝑢𝑡𝑃, 𝑂𝑢𝑡𝑝𝑢𝑡𝑄 Output Propagating fault Fuel supplied successfully by pump 𝑃 or 𝑄

𝑁𝑜 𝑜𝑢𝑡𝑝𝑢𝑡𝑃, 𝑁𝑜 𝑜𝑢𝑡𝑝𝑢𝑡𝑄 Output Propagating fault No Fuel supplied by pump 𝑃 or 𝑄

𝐸𝑚𝑝𝑡𝑦 𝑃, 𝐸𝑚𝑝𝑡𝑦 𝑄, 𝐸𝑚𝑝𝑡𝑦 𝑅 Input Basic fault Left, right, or reserve tank is empty
𝐼𝑛𝑝𝑢𝑡𝑃𝑅, 𝐼𝑛𝑝𝑢𝑡𝑄𝑅 Input & output Propagating fault Fuel supplied successfully from reserve tank to the left or right one
𝑁𝑜 𝑖𝑛𝑝𝑢𝑡𝑃𝑅, 𝑁𝑜 𝑖𝑛𝑝𝑢𝑡𝑄𝑅 Input & output Propagating fault No Fuel supplied from reserve tank to the left or right one

Engine

Collector

A B

Right

Q

Left

P

ZDY C

R

W X

Reserve

Figure 8: The fuel supply system for a small aircraft.

In our case, we choose 𝑘 = 4 for the bounded breadth-first
search which returns a few cut sets 𝐾sets as a key parameter
for the further computation, where

𝐾sets = {{𝑃 𝐹, 𝑄 𝐹} , {𝑃 𝐹, 𝑋 𝐹} , {𝑃 𝐹, 𝐵 𝐹} ,

{𝑊 𝐹, 𝑄 𝐹} , {𝑊 𝐹, 𝑋 𝐹} , {𝑊 𝐹, 𝐵 𝐹} , {𝐴 𝐹, 𝑄 𝐹} ,

{𝐴 𝐹, 𝑋 𝐹} , {𝐴 𝐹, 𝐵 𝐹}} .

(6)

Then, Algorithm 1 is performed with 𝐾sets and its successful
termination returns the following MCSList, including 39
minimal cut sets:

{𝑃 𝐹, 𝑄 𝐹} {𝑃 𝐹, 𝑋 𝐹} {𝑃 𝐹, 𝐵 𝐹} {𝑊 𝐹, 𝑄 𝐹}

{𝑊 𝐹, 𝑋 𝐹}

{𝑊 𝐹, 𝐵 𝐹} {𝐴 𝐹, 𝑄 𝐹} {𝐴 𝐹, 𝑋 𝐹} {𝐴 𝐹, 𝐵 𝐹}

{𝑃 𝐹, 𝑅 𝐹, 𝐸𝑚𝑝𝑡𝑦𝑄}

{𝑃 𝐹, 𝐸𝑚𝑝𝑡𝑦𝑅, 𝐸𝑚𝑝𝑡𝑦𝑄} {𝑃 𝐹, 𝐷 𝐹, 𝐸𝑚𝑝𝑡𝑦𝑄}

{𝑃 𝐹, 𝑍 𝐹, 𝐸𝑚𝑝𝑡𝑦𝑄}

{𝑊 𝐹, 𝑅 𝐹, 𝐸𝑚𝑝𝑡𝑦𝑄} {𝑊 𝐹, 𝐸𝑚𝑝𝑡𝑦𝑅, 𝐸𝑚𝑝𝑡𝑦𝑄}

{𝑊 𝐹, 𝐷 𝐹, 𝐸𝑚𝑝𝑡𝑦𝑄}

{𝑊 𝐹, 𝑍 𝐹, 𝐸𝑚𝑝𝑡𝑦𝑄} {𝐴 𝐹, 𝑅 𝐹, 𝐸𝑚𝑝𝑡𝑦𝑄}

{𝐴 𝐹, 𝐸𝑚𝑝𝑡𝑦𝑅, 𝐸𝑚𝑝𝑡𝑦𝑄}

{𝐴 𝐹, 𝐷 𝐹, 𝐸𝑚𝑝𝑡𝑦𝑄} {𝐴 𝐹, 𝑍 𝐹, 𝐸𝑚𝑝𝑡𝑦𝑄}

{𝐸𝑚𝑝𝑡𝑦𝑃, 𝑅 𝐹, 𝑄 𝐹}

{𝐸𝑚𝑝𝑡𝑦𝑃, 𝑅 𝐹, 𝑋 𝐹} {𝐸𝑚𝑝𝑡𝑦𝑃, 𝑅 𝐹, 𝐵 𝐹}

{𝐸𝑚𝑝𝑡𝑦𝑃, 𝑅 𝐹, 𝐸𝑚𝑝𝑡𝑦𝑄}

{𝐸𝑚𝑝𝑡𝑦𝑃, 𝐸𝑚𝑝𝑡𝑦𝑅, 𝑄 𝐹} {𝐸𝑚𝑝𝑡𝑦𝑃, 𝐸𝑚𝑝𝑡𝑦𝑅, 𝑋 𝐹}

{𝐸𝑚𝑝𝑡𝑦𝑃, 𝐸𝑚𝑝𝑡𝑦𝑅, 𝐵 𝐹}

{𝐸𝑚𝑝𝑡𝑦𝑃, 𝑌 𝐹, 𝐵 𝐹} {𝐸𝑚𝑝𝑡𝑦𝑃, 𝐶 𝐹, 𝑄 𝐹}

{𝐸𝑚𝑝𝑡𝑦𝑃, 𝐶 𝐹, 𝑋 𝐹}

{𝐸𝑚𝑝𝑡𝑦𝑃, 𝐶 𝐹, 𝐵 𝐹} {𝐸𝑚𝑝𝑡𝑦𝑃, 𝑌 𝐹, 𝑄 𝐹}

{𝐸𝑚𝑝𝑡𝑦𝑃, 𝑌 𝐹, 𝑋 𝐹}

{𝐸𝑚𝑝𝑡𝑦𝑃, 𝐸𝑚𝑝𝑡𝑦𝑅, 𝐸𝑚𝑝𝑡𝑦𝑄}

{𝐸𝑚𝑝𝑡𝑦𝑃, 𝐶 𝐹, 𝐷 𝐹, 𝐸𝑚𝑝𝑡𝑦𝑄}

{𝐸𝑚𝑝𝑡𝑦𝑃, 𝐶 𝐹, 𝑍 𝐹, 𝐸𝑚𝑝𝑡𝑦𝑄}

{𝐸𝑚𝑝𝑡𝑦𝑃, 𝐷 𝐹, 𝐸𝑚𝑝𝑡𝑦𝑄, 𝑌 𝐹}

{𝐸𝑚𝑝𝑡𝑦𝑃, 𝑌 𝐹, 𝑍 𝐹, 𝐸𝑚𝑝𝑡𝑦𝑄}

Additionally, this kind of automatic analysis on interface
models provides a convenient way to explore the feasibility
of different architectures and design choices. For instance,
consider the following safety requirement:

SR 3: any loss of fuel supply from the left or right main tank
is not allowed.

An interface automaton implicitly represents both
assumptions about the environment and guarantees about
the specified component. One interesting note about this
formalism is that while the environment changed, it would
exhibit different system behavior. The environment could
also be modeled explicitly by another interface automaton.
For safety requirement SR 3, any occurrence of output
actions 𝑁𝑜 𝑜𝑢𝑡𝑝𝑢𝑡𝑃 or 𝑁𝑜 𝑜𝑢𝑡𝑝𝑢𝑡𝑄 will lead to danger. The
automaton in Figure 10 provides such an environment by
accepting these actions as legal inputs. Using the composition



10 Mathematical Problems in Engineering

Table 2: The comparison of experimental results.

RC + SR 1 FSS + SR 2 FSS2 + SR 3
States in DG 30 140 132
States in 𝑅𝑒𝑑𝑢𝑐𝑒𝑑(DG) 16 88 26
Transitions in DG 63 560 536
Transitions in 𝑅𝑒𝑑𝑢𝑐𝑒𝑑(DG) 31 442 176
Paths generated by naive searching 19 59721 603
Paths generated by Algorithm 1 8 34875 316
Minimal cut sets 2 39 14

No_outputP! No_outputQ!

No_inputQR?No_inputPR?

W_F?

P_F?

A_F?

p0

p1
p q2q1

q0

q4 q3

2

p3p4

EmptyP?OutputP!

OutputP!

InputPR? 

InputPR! 

InputQR! No_inputPR!

No_inputPR!

No_inputPR! No_inputQR!

No_inputQR!

No_inputQR!

EmptyQ?

EmptyR?

OutputQ!

OutputQ!

InputQR?

X_F?

Q_F?

B_F?

C_F?

Y_F?

R_F?

Z_F?

D_F?

Figure 9: The interface models of fuel supply system.

No_outputQ?

No_outputP?

e1e0

Figure 10: An environment model of fuel supply system.

of FSS and Env, we can quickly locate all dangerous states by
TLE = ∗∗∗ 𝑒

1
in the new interfacemodel FSS2 = FSS×Env,

which consist of 132 states and 536 transitions. In a similar
way, the state space can be reduced to 𝑅𝑒𝑑𝑢𝑐𝑒𝑑(DGFSS2),
containing only 26 states and 176 transitions, and then the
corresponding minimal cut sets are generated as follows
(with the choice of parameter 𝑘 = 2):

{𝑃 𝐹} {𝑊 𝐹} {𝐴 𝐹} {𝑄 𝐹} {𝑋 𝐹} {𝐵 𝐹}

{𝐸𝑚𝑝𝑡𝑦𝑃, 𝑅 𝐹}

{𝐸𝑚𝑝𝑡𝑦𝑃, 𝐸𝑚𝑝𝑡𝑦𝑅} {𝐸𝑚𝑝𝑡𝑦𝑃, 𝐶 𝐹} {𝐸𝑚𝑝𝑡𝑦𝑃, 𝑌 𝐹}

{𝑅 𝐹, 𝐸𝑚𝑝𝑡𝑦𝑄}

{𝐸𝑚𝑝𝑡𝑦𝑅, 𝐸𝑚𝑝𝑡𝑦𝑄} {𝐷 𝐹, 𝐸𝑚𝑝𝑡𝑦𝑄}

{𝑍 𝐹, 𝐸𝑚𝑝𝑡𝑦𝑄}

The above demonstration and experimental results
shown in Table 2 indicate that not only is the state space
reduction effect satisfactory, but also the improved searching
algorithm has more quick convergence speed than naive
exhaustive searching. Both of these models can benefit
from state space reconstruction, but the impact is more
pronounced on FSS2 where nearly eighty percent of the
states and seventy percent of the transitions are eliminated.
The number of simple paths generated by the searching
process is considered as an index of efficiency. The naive
searching strategy will deliver all corresponding simple
paths in the state space, while Algorithm 1 discards some
unnecessary branches for further exploration. Essentially,
these two technical measures contribute to the efficiency
improvement by narrowing down the search region from
different perspectives.



Mathematical Problems in Engineering 11

5. Conclusions and Future Directions

Safety analysis is indispensable for ensuring the system safety
but is very time-consuming and error-prone. The approach
presented in this paper has shown that applying interface
automata and restricted reachability analysis techniques to
faults modeling and minimal cut sets generation yields a
promising means to improve automation and reduce the
effort of the analysis. We believe that it is in these areas that
formalmethods could bemost effectively used to aid in safety
analysis.

Although several search-based failure analysis approach-
es have been proposed, this is the first reported application
of using the characteristics of faults propagation and cut
sets to speed up the search process in a reduced state
space (i.e., via our state space reconstruction and guided
searching strategy). Besides taking full advantage of domain
knowledge, a further very important merit is the flexibility of
this approach. With different setting of environment param-
eters, interface automata could exhibit different behavior
which provides an efficient way for engineers to explore
different design choices, as we have shown in the case
study.

However, we note that directly adding complex fault
behaviors to nominal system model tends to severely clutter
the model with failure information. This added complexity
typically obscures the actual nonfailure system functionality
which will make model evolution and maintenance difficult.
Without favorable tool supporting, manual incorporation of
the fault behaviors may also lead to error-prone extension
of the nominal model. Therefore, it is crucial to sepa-
rately specify fault behavior with a formal notation (e.g.,
FPTN) and provide a merge mechanism for automatic model
extension.

In this paper, we concentrated our attention on fault
propagation analysis, but the other important features such
as failure ordering analysis and fault tree generation and
optimizationwere not discussed.Wewill work on those issues
and larger case studies aimed at analyzing the scalability
of this approach will be the emphasis of our further work.
Furthermore, we find some useful characteristics of our state
space partition strategy, such as the identification of Hazard-
Core and TriggeringArea, can provide valuable information
for runtime monitoring, failure forecast, and fault diagnosis.
That might be an interesting attempt to explore the role
of model-based safety analysis in system verification and
validation.

Competing Interests

The authors declare that they have no competing interests.

Acknowledgments

This work was partially supported by the National Basic
Research Program of China (no. 2014CB340703), the Foun-
dation of State Key Laboratory of Rail Traffic Control and
Safety (no. RCS2015ZT002), and the Fundamental Research
Funds for the Central Universities (no. 2015JBM113).

References

[1] M. Bozzano, A. Villafiorita, O. Åkerlund et al., “ESACS: an inte-
grated methodology for design and safety analysis of complex
systems,” in Proceedings of the European Safety and Reliability
Conference, pp. 237–245, 2003.

[2] O. Akerlund, P. Bieber, E. Boede et al., “ISAAC, a framework for
integrated safety analysis of functional, geometrical and human
aspects,” in Proceedings of 3rd European Congress on Embedded
Real Time Systems (ERTS ’06), pp. 109–120, Toulouse, France,
January 2006.

[3] A. Arnold, G. Point, A. Griffault, and A. Rauzy, “The AltaRica
formalism for describing concurrent systems,” Fundamenta
Informaticae, vol. 40, no. 2-3, pp. 109–124, 1999.

[4] M. Boiteau, Y. Dutuit, A. Rauzy, and J.-P. Signoret, “The
AltaRica data-flow language in use: modeling of production
availability of a multi-state system,” Reliability Engineering and
System Safety, vol. 91, no. 7, pp. 747–755, 2006.

[5] P. Bieber, C. Castel, and C. Seguin, “Combination of fault tree
analysis and model checking for safety assessment of complex
system,” in Proceedings of the European Dependable Computing
Conference, pp. 19–31, Toulouse, France, 2002.

[6] P. Fenelon and J. A. McDermid, “New directions in software
safety: causal modelling as an aid to integration,” Tech. Rep.,
High Integrity Systems Engineering Group, Department of
Computer Science, University of York, 1992.

[7] P. Fenelon and J. A. McDermid, “An integrated tool set for
software safety analysis,” The Journal of Systems and Software,
vol. 21, no. 3, pp. 279–290, 1993.

[8] Y. Papadopoulos and M. Maruhn, “Model-based synthesis of
fault trees from Matlab-Simulink models,” in Proceedings of the
International Conference on Dependable Systems and Networks
(DSN ’01), pp. 77–82, Goteborg, Sweden, July 2001.

[9] P. Feiler and A. Rugina, “Dependability modeling with the
architecture analysis & design language (AADL),” Tech. Rep.,
Software Engineering Institute, Carnegie Mellon University
(SEI/CMU), 2007.

[10] J. Bowen and V. Stavridou, “Safety-critical systems, formal
methods and standards,” Software Engineering Journal, vol. 8,
no. 4, p. 189, 1993.

[11] A. Rauzy, “Mode automata and their compilation into fault
trees,” Journal of Logic and Algebraic Programming, vol. 78, no.
1, pp. 1–12, 2002.

[12] M. Bozzano and A. Villafiorita, “Improving system reliability
via model checking: the FSAP/NuSMV-SA safety analysis plat-
form,” inComputer Safety, Reliability, and Security, S. Anderson,
M. Felici, and B. Littlewood, Eds., vol. 2788 of Lecture Notes in
Computer Science, pp. 49–62, 2003.

[13] L. D. Alfaro and T. A. Henzinger, “Interface automata,” in
Proceedings of ACM SIGSOFT International Symposium on
Foundations of Software Engineering, pp. 109–120, September
2001.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


