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An improved particle swarm optimization (PSO) method applied to the design of a new wideband log-periodic antenna (LPA) 

geometry is introduced. This new PSO variant, called PSO with velocity mutation (PSOvm), induces mutation on the velocities of those 

particles that cannot improve their position. The proposed LPA consists of wire dipoles with lengths and distances varied according to 

an exponential rule, which is defined by two specific parameters called length factor and spacing factor. The LPA is optimized for 

operation in 790-6000MHz frequency range, in order to cover the most usual wireless services in practice, and also to provide in this 

range the highest possible forward gain, gain flatness below 2dB, secondary lobe level below –20dB with respect to the main lobe peak, 

and standing wave ratio below 2. To demonstrate its superiority in terms of performance, PSOvm is compared to well-known 

optimization methods. The comparison is performed by applying all the methods on several test functions and also on the LPA 

optimization problem defined by the above-mentioned requirements. Furthermore, the radiation characteristics of the PSOvm-based 

LPA give prominence to the effectiveness of the proposed exponential geometry compared to the traditional Carrel’s geometry. 

 
Index Terms—Antenna optimization, log-periodic antennas, log-periodic dipole arrays, particle swarm optimization 

 

I. INTRODUCTION 

OG-PERIODIC antennas (LPAs) are special structures used 

for signal reception in many practical applications and 

particularly in cases where a wideband behavior is required by 

the receiver [1]. By properly adjusting its geometric 

dimensions, an LPA may provide optimal values for several 

radiation characteristics inside the desired operating frequency 

range, such as the standing wave ratio (SWR), forward gain 

(FG), front-to-back ratio (FBR), side lobe level (SLL) and gain 

flatness (GF) (i.e., the maximum forward gain variation inside 

the operating bandwidth of the antenna). An attempt to 

optimize any of the above-mentioned characteristics is a hard 

non-linear design problem and its difficulty is due the fact that 

the radiation characteristic under discussion has to be 

optimized not only for a single frequency but for every 

frequency inside the operating bandwidth. The only exception 

is GF, which is calculated due to its definition for the entire 

bandwidth and not for every frequency. The problem becomes 

harder if the demand is to simultaneously optimize all the 

above characteristics over this bandwidth. Such a design 

problem is classified as multi-target, and few efforts have been 

made so far to solve it and only for limited bandwidths [2]. 

The most popular LPA design method, considered now as 

traditional one, has been proposed by Carrel [1]. Carrel’s 

method is based on the assumption that the LPA consists of 

wire dipoles all located inside the same angular sector. 

According to this assumption, the LPA geometry can easily be 

described by using two parameters, known as scale factor τ 

and relative spacing σ. The optimal values of τ and σ are 

defined according to the desired average directivity by 

utilizing the constant directivity contour curves of the well-

known Carrel’s graph [1]. The whole LPA geometry (i.e., 

dipole lengths, radii and distances) is estimated by taking into 

account the boundaries of the required operating bandwidth as 

well as the optimal values of parameters τ and σ. The antenna 

derived from Carrel’s method is usually able to achieve 

optimal SWR values over the desired bandwidth. Nevertheless, 

this method cannot provide optimization of FG, GF, FBR or 

SLL in this bandwidth.  

The concurrent optimization of SWR, FG, FBR and SLL for 

every frequency inside a given bandwidth as well as GF for 

the same bandwidth is a multi-target non-linear design 

problem, as mentioned before, and can effectively be solved 

by employing evolutionary optimization algorithms. Such 

algorithms have already been used in the past but only for 

limited bandwidths and not to optimize all the above 

characteristics [3]. An effort to concurrently optimize SWR, 

FG, FBR, SLL and GF in a wide frequency range is made in 

the present study. Here, the LPA is required to operate in the 

frequency range 790-6000MHz, in order to cover the most 

usual wireless services in practice (2G, 3G, 4G and Wi-Fi), 

and also to achieve over this range (i) SWR ≤ 2, (ii) the highest 

possible FG, (iii) GF ≤ 2dB, and (iv) secondary lobe level 

(SecLL) ≤ –20dB with respect to the main lobe peak. Such an 

antenna can be used for spectrum monitoring, radiation 

measurements and signal reception from multiple wireless 

services. It is noted that the calculation of SecLL considers all 

the side lobes and the back lobe of the radiation pattern. 

Therefore, if the LPA achieves SecLL ≤ –20dB, it satisfies two 

requirements at once concerning respectively FBR and SLL 

(i.e., FBR ≥ 20dB and SLL ≤ –20dB). To calculate the 

radiation characteristics, the LPA undergoes full wave 

analysis by applying CST Microwave Studio (CST MWS).  

To help the LPA reach more easily the above-mentioned 

requirements, we propose an exponential LPA geometry. In 

this geometry, the lengths and distances of the wire dipoles 

that compose the LPA vary according to an exponential rule 

(Fig. 1). Thus, the dipoles are no longer considered as being 

inside the same angular sector as in Carrel’s method. It is 
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believed that this type of geometry in combination with an 

evolutionary optimization method induces a greater design 

freedom and therefore the concurrent satisfaction of the four 

requirements specified before may more easily be achieved. 

To simultaneously satisfy these requirements, we introduce 

an improved particle swarm optimization (PSO) variant, called 

PSO with velocity mutation (PSOvm). In PSOvm, a mutation 

mechanism is applied on the velocities of those particles that 

are not able to find a better position. To demonstrate its 

superiority in terms of performance, PSOvm is compared to 

well-known evolutionary optimization methods, such as the 

conventional PSO [4], the differential evolution (DE) [5], the 

invasive weed optimization (IWO) [2], and a typical genetic 

algorithm (GA). The comparison is performed by applying 

them on several test functions and also to the exponential LPA 

design. Finally, to demonstrate the effectiveness of the 

proposed exponential LPA, the radiation characteristics of the 

PSOvm-based LPA are compared to those of a traditional LPA 

designed by Carrel’s method. 

II. DESCRIPTION OF EXPONENTIAL GEOMETRY 

The proposed exponential geometry of an M-dipole LPA is 

explicitly described in Fig. 1. The lengths Lm (m=1,...,M) of 

the wire dipoles and their distances Sm (m=1,...,M–1) from 

their next ((m+1)-th) dipole undergo an exponential variation 

as moving from larger dipoles to shorter ones (i.e., in 

ascending order of index m), as given by the expressions: 

 

 1 exp 1 , 1,...,     mL L a m m M  (1) 

 1 exp 1 , 1,..., 1      mS S b m m M  (2) 

 

 
Fig. 1.  Exponential LPA geometry with a < b. 

 

where L1 is the length of the largest (1st) dipole, S1 is the 

distance between the 1st and 2nd dipole, a is the length factor 

used to describe the variation of Lm, and b is the spacing factor 

used to describe the variation of Sm. On the other hand, the 

dipole radii rm (m=1,...,M) are all equal to the typical value of 

2mm for easy practical fabrication. Fig. 1 displays the LPA 

layout when a<b. The exponential envelope (dotted line) that 

enfolds the dipoles is vertically flipped when a>b. Apparently, 

in the special case where a=b, the exponential geometry is 

transformed into the conventional (linear) one. 

To satisfy the above four requirements, we must find proper 

values for the following seven parameters: L1, S1, a, b, the 

length SM of the boom segment between the shortest dipole 

and the feeding point, the dimension dy of the rectangular 

cross-section of each rod of the boom along y-direction, and 

finally the distance sz between the closest surfaces of the rods 

along z-direction (Fig. 1). The dimension dz of each rod of the 

boom along z-direction is considered fixed and equal to 4mm. 

This value was chosen since it was found after several trials 

that a decrease in dz improves the radiation characteristics of 

the LPA. Thus, dz was decided to have the lowest possible 

value that still provides the ability to attach the dipoles to the 

boom. This value is equal to the dipole diameter (4mm). 

III. PSO WITH VELOCITY MUTATION 

Several PSO variants have been proposed so far with 

remarkable performance [6], [7]. PSOvm is a PSO variant that 

adopts the gbest model of the constriction coefficient based 

PSO (CCPSO) version [4]. By assuming that a swarm of N 

particles disperses in a D-dimensional search space (where D 

is actually the number of parameters to be optimized), the 

velocities and positions of the particles are respectively 

updated at the i-th iteration (i=1,…,I), as considered in 

CCPSO, by the following expressions: 
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where vnd and xnd are respectively the d-th velocity component 

and the d-th position coordinate (d=1,…,D) of the n-th particle 

(n=1,…,N), pnd and gd are the d-th coordinates of the best 

positions found at the end of the i-th iteration respectively by 

the n-th particle and the whole swarm, and R represents 

random numbers uniformly distributed in the interval (0,1). 

Also, as explained in [4], φ1 and φ2 are respectively the 

cognitive coefficient and the social coefficient, both equal to 

2.05, and finally k is the constriction coefficient equal to 0.73. 

The basic idea for proposing a mutation process in PSOvm 

is the consideration that if a particle cannot improve its fitness, 

then its previous velocity vector should not directly affect its 

next velocity vector, as happens in (3), but it should undergo a 

slight random perturbation. So, if any n-th particle fails to 

achieve a better fitness at the end of any i-th iteration, then, its 

velocity components vnd(i) are mutated by multiplying them by 

a factor Fm=(0.6+0.1m)(2R–1), where m is the number of 

iterations passed in a row with no fitness improvement for this 

particle. In such a case, the velocity update is given by: 
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The position update for such a particle is applied by using (4). 

The form of Fm has been derived from findings extracted after 

many trials on PSOvm. So, it was found that if only one 

failure of fitness improvement occurs (m=1), it is better to 

multiply vnd(i) by random numbers uniformly distributed in 

the interval (–0.7,+0.7). Also, the absolute values of both 

boundaries of this interval must be increased by 0.1, for every 

additional failure in a row. Finally, for the sake of 

convergence speed, the mutation process must be applied for 

up to six failures in a row (m=1,…,6 in (5)). Thus, the 

mutation process stops when either six failures of fitness 

improvement occur in a row or the mutation results in a better 

fitness. Then, in the next iteration, the particle’s velocity is 

updated by using (3). 

 
TABLE I 

STATISTICAL MEAN AND STANDARD DEVIATION OF FINAL FITNESS VALUES 

Test Function PSOvm 
Mean Fit 

/ Std Dev 

CCPSO 
Mean Fit 

/ Std Dev 

DE 
Mean Fit 

/ Std Dev 

IWO 
Mean Fit 

/ Std Dev 

Ackley’s 0.4489 

/ 0.2753 

4.3439 

/ 2.7085 

6.5223 

/ 1.8891 

1.3135 

/ 1.5335 
De Jong’s N.1 0.0000 

/ 0.0000 
0.0000 

/ 0.0000 

0.6171 

/ 0.7936 

0.0075 

 / 0.0019 

De Jong’s N.3 0.0409 

/ 0.0389 
0.0614 

/ 0.3511 
0.2938 

/ 0.3244 
0.1812 

/ 0.2881 

De Jong’s N.4 0.0000 

/ 0.0000 
0.0000 

/ 0.0000 

0.0830 

/ 0.1905 
0.0000 

/ 0.0000 
Easom (2D) -1.0000 

/ 0.0000 

-1.0000 

/ 0.0000 

-1.0000 

 / 0.0000 

-1.0000 

/ 0.0000 

Eggholder -16326.3 

/ 1475.5 

-16232.9 

/ 1283.2 

-14301.2 

/ 3549.5 

-14184.4 

/ 984.5 

Holder Table 

(2D) 
-19.2315 

/ 0.3719 

-19.1084 

/ 0.5159 

-18.8920 

/ 0.6507 

-19.2085 

/ 0.4718 
Levy 6.6263 

/ 5.7797 

6.7984 

/ 4.9205 

4.3218 

/ 2.6525 
1.0559 

/ 1.2247 

Michalewicz -22.4942 

/ 1.1055 
-22.3976 
/ 1.4193 

-14.3558 
/ 2.0444 

-21.9247 
/ 1.1057 

Rana’s -10271.8 
/ 945.4 

-10249.7 
/ 793.3 

-11408.4 

/ 1147.5 
-8156.2 
/ 460.7 

ShiftedRotated 

Griewank 
-179.8591 

/ 0.0450 

-179.6796 

/ 0.3304 

-123.3609 

/ 56.8099 

-178.7402 

/ 0.1661 
ShiftedRotated 

Rastrigin 
-275.3862 

/ 55.8026 

-105.0404 

/ 77.1869 

-99.0923 

/ 19.6590 

-180.2995 

/ 10.6864 

Shifted 
Rosenbrock 

600.6099 

/ 260.5250 
600.6779 

/ 318.6767 
1.15e8 

/ 1.57e8 
5440.3 

/ 7186.2 

Schwefel -328.1901 

/ 16.4253 

-326.8062 

/ 16.5886 

-289.2526 

/ 31.1652 

-295.1572 

/ 17.3701 
Shubert (2D) -186.7309 

/ 0.0000 

-186.7309 

/ 0.0000 

-186.7309 

/ 0.0000 

-186.7309 

/ 0.0000 

Sinewave 8.8087 

/ 1.0246 
9.0188 

/ 1.0503 
11.8375 
/ 0.4725 

9.7411 
/ 0.6878 

 

Restrictions on particle velocities and positions used in 

CCPSO are also used in PSOvm [4]. So, every velocity 

component is restricted in PSOvm by a maximum allowed 

value (vmax) defined to be equal to 15% of the width of the 

search space in the respective dimension. To confine the 

particles within the search space, the absorbing walls 

condition is adopted in PSOvm as well. 

To demonstrate its superiority, PSOvm is compared to the 

conventional CCPSO [4], a DE algorithm based on the 

popular DE/rand/1/bin strategy [5], and the conventional IWO 

[2]. All the methods use populations of 20 particles (N=20). 

The comparison is made by applying the methods on 16 well-

known mathematical test functions considered as fitness 

functions to be minimized. The use of such functions is typical 

for comparisons among evolutionary optimization methods. 30 

variables (D=30) are used for all functions except for those 

indicated as 2D functions, which use only two variables (D=2) 

due to their structure. Each method is executed 500 times for 

each test function. Each execution terminates after 2×104 

fitness evaluations and the final fitness value is recorded. 

Therefore, 500 final fitness values are recorded per function 

and per method. These values are used to calculate the mean 

final fitness (Mean Fit) and the respective standard deviation 

(Std Dev). As shown in Table I, the mean value and standard 

deviation of final fitness achieved by PSOvm are better than 

(or at least equal to) the respective values achieved by the 

other three methods for most test functions. 

IV. LPA OPTIMIZATION RESULTS 

PSOvm, CCPSO, DE and IWO that were used above and a 

typical GA are all employed here to solve a multi-target 

problem, which is to design a 15-dipole exponential LPA 

(M=15) that concurrently satisfies requirements for SWR, FG, 

GF and SecLL, as defined in Section I, over the 790-6000MHz 

frequency band. However, the aim of all these methods is to 

find the near global minimum of a single mathematical 

function known as fitness function. To deal with this, the 

above four requirements must be described by respective 

mathematical terms and these terms must merge into a fitness 

function Fit in such a way that, when Fit achieves its near 

global minimum, all the terms reach their respective minimum 

values and therefore all the requirements are satisfied. Thus, 

Fit is defined as a linear combination of four terms as follows: 

 

   

   

1 max 2 min

3 4 max

max , 2

max , 2 max , 20

  

  

Fit k SWR k FG

k GF k SecLL
 (6) 

 

where SWRmax, FGmin and SecLLmax are respectively the 

maximum SWR, the minimum FG in dBi and the maximum 

SecLL in dB found over the 790-6000MHz frequency band. 

As FGmin increases, the 2nd term of (6) decreases and thus is 

used to maximize FG over the entire bandwidth. The rest three 

terms are built in such a way that values of SWRmax, GF and 

SecLLmax respectively less than 2, 2dB and –20dB do not cause 

further minimization of Fit, since the respective requirements 

have already been satisfied. Also, ki (i=1,…,4) are positive 

weights used to balance the minimization rates of the four 

terms of (6). To achieve balancing, the value of each ki must 

be reversely proportional to the difficulty encountered by the 

optimization method in decreasing the respective term. If a 

term decreases with greater difficulty than another term, it 

must be multiplied by a greater weight and then its lower 

minimization rate is emphasized more than the higher rate of 

the other term. In this way, both rates are balanced. After 
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many trials, we arrived at the following weights: k1=45, k2=8, 

k3=12 and k4=35. 

To save computational time, SWR, FG and SecLL are not 

calculated for every frequency inside the above band. Thus, a 

set of equally spaced frequency samples at steps of 25MHz is 

chosen to represent this band. So, when a fitness calculation is 

required by any optimization algorithm, CST MWS is called 

to perform full wave analysis on the LPA and extract the 

values of SWR, FG and SecLL only for the frequency samples. 

These values are then used to find SWRmax, FGmin, GF and 

SecLLmax, which are utilized in (6) for the fitness calculation. 

Each optimization method uses a population of 20 particles 

(N=20) and terminates after 500 fitness evaluations in total, 

while the best fitness value is recorded at the end of every 

iteration. The graphical representation of fitness variation with 

respect to the number of fitness evaluations is called 

convergence graph and is estimated for every optimization 

method. These graphs are given in Fig. 2. It is obvious that 

PSOvm outperforms CCPSO, DE, IWO and GA, since it is 

capable of achieving the lowest fitness value at the end of the 

process. This means that the optimized exponential LPA 

geometry found by PSOvm is closer to the requirements than 

the respective geometries found by CCPSO, DE, IWO and 

GA. The parameters that define the PSOvm-based geometry 

are: L1=214.2mm, S1=72mm, a=0.2079, b=0.2009, dy=2.6mm, 

sz=2mm, and SM=2.4mm. 

 

 
Fig. 2.  Convergence graphs. 

 

The optimized LPA derived by PSOvm is finally compared 

to a conventional LPA, which has the same length ST=0.372m 

(see Fig. 1) and operates in the same frequency range (790-

6000MHz) as the PSOvm-based LPA. The conventional LPA 

is derived by applying Carrel’s method described explicitly in 

[1]. In particular, if we consider antenna length equal to 

0.372m and operating bandwidth 790-6000MHz, then we get 

from Carrel’s graph τ = 0.8517 and σ = 0.1554. These two 

parameters are used to calculate the dipole lengths and 

distances. Since Carrel’s method imposes direct 

proportionality between dipole lengths and radii, the length 

values are used to calculate the radii, provided that we already 

know the radius value of the largest dipole. This value is set 

equal to 2mm, i.e., equal to the fixed radius value of all the 

dipoles of the PSOvm-based LPA. The evident drawback of 

the derived Carrel-based LPA is that it consists of 18 dipoles, 

i.e., three dipoles more than the 15-dipole PSOvm-based LPA. 

The two LPAs are also compared in terms of SWR, FG, GF 

and SecLL. From the results shown in Figs. 3-5, it is obvious 

that Carrel’s geometry induces greater fluctuations in SWR, 

FG and SecLL, mainly in low frequencies, and thus it cannot 

come close to the requirements like the PSOvm-based LPA. 

 

 
Fig. 3.  Comparative graphs of SWR vs. frequency. 

 

 
Fig. 4.  Comparative graphs of FG vs. frequency. 

 

 
Fig. 5.  Comparative graphs of SecLL vs. frequency. 

V. CONCLUSION 

The comparison among all optimization methods used in 

this work reveals that PSOvm provides the best results at 

exactly the same computational time (the same number of 

fitness function evaluations) for most test functions and, most 

importantly, for the antenna design problem. On the other 

hand, the PSOvm-based exponential LPA is proved to be 

superior compared to Carrel’s geometry, since it comes closer 

to the requirements initially defined for SWR, FG, GF and 

SecLL over an ultra-wide frequency range. 
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