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Abstract  

LTβR and HVEM are non-death domain-containing TNFRs that can induce cell death via 
possible recruitment of TNFR-associated factors (TRAF), thus may share similarities to other 
TNFR members (e.g. CD40). This thesis aimed to investigate the effects of soluble LT 
agonists on a panel of carcinoma cells of colorectal (CRC) and bladder (UCC) origins and to 
compare the ability of these agonists to induce cell death against membrane-bound LIGHT 
(mLIGHT), and to unravel for the first time the cell signalling pathways responsible for 
mLIGHT-mediated cell death.  

Due to the complexity of some of the approaches used, a significant part of the experimental 
work involved optimisations involving not only soluble LT agonists, cytokines, specific 
pharmacological inhibitors but mainly optimisation for the first time of a co-culture system for 
the delivery of the mLIGHT signal to epithelial cells (involved co-culture of target cells with 
growth-arrested third-party L cells expressing surface mLIGHT). Several assays were also 
optimised for detection of cell viability, cell death (based on protease release, caspase 
activation and DNA fragmentation) and for detection of pro-inflammatory cytokine secretion. 
Moreover, immunoblotting techniques were optimised and utilised for detection of proteins 
associated with intracellular LTβR and HVEM-signalling. Transfection experiments using 
specific small interfering RNAs (siRNAs) were also employed to knockdown the expression 
of LTβR and HVEM proteins in CRC and UCC cells. 

This project revealed for the first time that normal human urothelial cells (NHU), CRC and 
UCC cells express LTβR and HVEM, and that the activation of LTβR and HVEM by mLIGHT, 
in the absence of IFN-γ, is pro-apoptotic in carcinoma cells, whereas mLIGHT appeared to 
be cyto-protective in NHU cells. By contrast, soluble LT agonists were weakly pro-apoptotic 
and required IFN-γ to kill HT29 cells, yet this combination did not kill other, well-characterised 
carcinoma cell lines, in particular HCT116 and EJ cells. Moreover, mLIGHT caused some 
DNA fragmentation in HCT116, yet little DNA fragmentation was detected in HT29 and EJ 
cells. It was also found that mLIGHT caused IL-8 and GM-CSF secretion. mLIGHT triggered 
TRAF1 and TRAF3 induction and caused little detectable differences in phospho-ERK, -JNK 
and -p38 expression in CRC and UCC cells. Functional inhibition experiments showed that 
blockade of MEK/ERK abrogated death in all cell lines tested, and JNK inhibition attenuated 
death in HCT116 and EJ (but not HT29 cells) and p38 inhibition significantly attenuated, but 
not fully, mLIGHT-mediated cell death in CRC and UCC cells. Moreover, an NF-κB inhibitor 
partially reduced mLIGHT-mediated death in CRC cells and potentiated it in UCC cells, 
whereas, inhibition of AP-1 partially blocked mLIGHT-mediated death in HCT116 and EJ 
cells. By contrast, AP-1 blockade did not cause any statistically significant effect in mLIGHT-
mediated death in HT29 cells. Moreover, mLIGHT-mediated death is ROS dependent in 
CRC and UCC cells as the antioxidant NAC attenuated death. The current work has also 
provided evidence for the first time that a role for NOX enzyme in cell death of HCT116 and 
EJ cells as it was found that mLIGHT induced the phosphorylation of p40phox (a subunit of 
NOX). Importantly, despite observing that ASK1 was activated in HCT116 cells, but not other 
cells, mLIGHT caused downregulation of Thioredoxin-1 expression in CRC and UCC. siRNA 
experiments for LTβR and HVEM knockdown showed some preliminary evidence that LTβR 
and HVEM might signal cooperatively in the context of LIGHT-mediated cell death.  

Collectively, this thesis has demonstrated for the first time that triggering cell death in CRC 
and UCC is clearly dependent on signal quality, cell-type specificity and death is tumour cell-
specific. The current study has also provided some mechanistic insight into how cell death 
induced by mLIGHT-LTβR/HVEM interactions occurs, which may involve a novel pathway of 
receptor-TRAF3-MAPK-NOX interactions, which utilise ROS for the activation of cell death 
pathways in CRC and UCC cells. These findings have not only improved our understanding 
of how TNFRs induce carcinoma cells death, but may also help in the design of better 
therapeutic strategies in the future. 
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1.1 Programmed Cell Death–Overview  

Organism homeostasis is maintained through a balance between cell growth or 

proliferation and cell death. Cell death or programmed cell death (PCD) is a 

physiological process that normally occurs during the life span of multicellular 

organisms, whose cells must die at some point, which is known as the “point of no 

return” during development or aging (Kroemer et al., 2009; Tower, 2015). PCD was first 

described in the mid-1960s (Kerr, 1965; Lockshin and Williams, 1964; Lockshin and 

Williams, 1965) and traditionally classified in 1973 by Schweichel and Merker 

(Schweichel and Merker, 1973) into three subtypes, apoptosis, autophagy, and necrosis.  

Apoptosis (PCD type-I) is a form of regulated cell death that is characterized by cell 

rounding up, cell shrinkage, reduction in cell volume (pyknosis), plasma membrane 

blebbing, and chromatin and nuclear condensation (Kroemer et al., 2005) – this type of 

PCD will be largely discussed in section 1.2. Autophagic cell death (PCD type-II) is a 

regulated form of cell death characterized by double-membraned autophagic vacuoles; 

however, it lacks chromatin condensation (Galluzzi et al., 2007; Kroemer et al., 2005; 

Kroemer et al., 2009). Necrosis (PCD type-III) is different from apoptosis and autophagy 

in morphological features. It is traditionally known as an unregulated and passive form of 

cell death (unorganized events) where cells are killed accidently. Necrosis is 

characterized by swelling of the cell, disruption of the cell membrane, and release of 

cellular contents into the extracellular milieu, which in turn may damage the cells, 

resulting in local inflammation, and possibly promotion of tumour growth (Kroemer et al., 

2009; Vakkila and Lotze, 2004). In addition, another type of PCD was identified as an 

alternative means of regulated cell death known as necroptosis (Degterev et al., 2005), 

which is characterized by the same morphological features as unregulated necrotic cell 

death. Necroptosis is not well understood and still under investigation (Degterev et al., 

2014; Degterev et al., 2008; Zhou and Yuan, 2014).  
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PCD forms have been reviewed recently (Tower, 2015) and summarised  in Table 1.1 

and Figure 1.1. PCD usually refers to apoptosis; however, it is important to note that 

apoptosis and PCD are not synonymous because cell death and/or PCD occur during 

physiological development and PCD may also be characterized by nonapoptotic 

features (Baehrecke, 2002; Roach and Clarke, 2000).  

The mechanisms and morphological features of apoptosis, autophagy, and necrosis are 

distinguishable and diverse. However, there are some overlapping features among 

them. PCD generally exhibits apoptotic morphology but could be also characterized by 

more necrotic features with the depletion of total intracellular adenosine triphosphate 

(ATP), inhibition of caspases (e.g., using pharmacological inhibitors), or elimination of 

caspase activators such as Apoptotic protease-activating factor 1 (Apaf-1) (Golstein and 

Kroemer, 2005; Kroemer and Martin, 2005; Nicotera et al., 1998). Because necrosis and 

apoptosis are characterized by the expression of shared biochemical molecules, this is 

often known as the “apoptosis–necrosis continuum” (Zeiss, 2003). This finding is 

supported by studies which demonstrated that receptor-interacting protein kinase (RIP) 

can inhibit ATP and adenosine diphosphate functions on mitochondrial membrane and 

causes TNF-induced necrosis (Temkin et al., 2006). Moreover, PCD can exhibit an 

autophagic phenotype, which can be converted to a necrotic morphology once the early 

steps of autophagy process are inhibited (Degenhardt et al., 2006; Golstein and 

Kroemer, 2007; Shimizu et al., 2004). The appearance of specific forms of PCD 

(whether apoptosis, autophagy, necrosis or necroptosis) depends on several factors 

such as the nature of death stimulus and cell or tissue type, thus it is highly context-

specific (Fiers et al., 1999; Zeiss, 2003). 
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 Apoptosis Autophagy  Necrosis  Necroptosis  
Death mode  Programmed  Programmed Accidental  Programmed 
Triggers Stress, UV, 

genotoxic 
substances, TNF-
α, FasL, TRAIL, 
CD40L or LT 
ligands  

Hypoxia, nutrient 
deprivation, histone 
deacetylase 

Trauma, 
toxins  

TNF-α, FasL, or 
TRAIL 

Main 
signalling 
pathways  

Intrinsic and 
extrinsic pathway 
caspase 
dependent  

Caspase-
independent, 
autophagosome 
and lysosome 
proteases  

- TNFR signalling, 
JNK activation, 
caspase 
independent 
RIP1/3 
necrosome  

Inflammation  No No Yes Yes 
Morphological 
features  

non-lytic, 
shrinkage, DNA 
fragmentation, 
apoptotic bodies 

non-lytic Lytic, 
plasma 
membrane 
rupture 

non-lytic, swollen, 
plasma 
membrane loss  

Expression 
marker 

PS 
Ecto-CRT 

LPC 
PS 

PS LPC 
PS 

Table 1.1. Summary of PCD forms and their features   

The table shows the comparisons between PCD forms; apoptosis, autophagy, necrosis and necroptosis. 
Abbreviations: PS: phosphatidylserine. Ecto-CRT, calreticulin. LPC: lysophosphatidylcholine. JNK: c-Jun 
N-terminal kinase. Different markers are expressed by PCD forms, including ecto-CRT and LPC, on the 
cell membrane. 
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Figure 1.1. Schematic representation of the different forms of PCD 

The figure shows the types of cell death, when normal cells are exposed to a stimulus. Apoptosis is 
triggered by the activation of various initiator caspases that play critical role in activating effector caspases 
in order to be cleaved and become active. Apoptotic cells are characterised by the condensation of their 
cytoplasmic and nuclear membrane, DNA damage, formation of apoptotic bodies, and maintenance of an 
intact plasma membrane. The apoptotic bodies are phagocytosed, and in the case of phagocytosis 
absence, apoptotic bodies may transform to apoptotic necrosis. Autophagy is characterised by 
degradation of cellular components within the intact dying cell in autophagic vacuoles; vacuolization is one 
of the morphological features of autophagy. Phagocytosis can take up the autophagic cells and degrade 
them. Necrosis exhibits cellular organelle swelling, membrane breakdown features and causing 
inflammatory cellular contents release. Necroptosis is one of the cell death types and has not been well 
characterised yet. Figure modified from (Labbe and Saleh, 2008). 
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1.2 Apoptosis – Background  

The term ‘apoptosis’ derives from the Greek word ‘falling off’ as leaves fall from a tree. 

Apoptosis was described by Kerr and colleagues in 1972, after they observed similar 

specific features of toxin-treated liver cells to those embryonic cells during ontogenesis 

and development – this phenomenon was then named as apoptosis (Kerr et al., 1972). 

Apoptosis exhibits various features most of which are explained below.     

1.2.1 Physiological and pathological roles of apoptosis  

It is evident that apoptosis normally occurs during development and homeostasis, which 

maintains cell populations in tissues. Apoptosis appears to also be a key player in 

immune defence as it eliminates damaged cells (e.g. following immune reaction) or 

removes mutated cells (e.g. exposing cells to noxious agents), in order to keep the 

balance between cells under control and to comply with the rule “better death than 

wrong” (Kroemer et al., 2007; Norbury and Hickson, 2001). The process of apoptosis is 

essential and important for maintaining cell death and cell growth, and has to be neatly 

balanced, otherwise imbalance in apoptosis and cell growth can lead to autoimmune 

disease, oncogenesis and tumour progression (Koff et al., 2015), whereas excessive 

apoptosis contributes to degenerative diseases (e.g. stroke) and infectious diseases 

(e.g. intoxications and septic shock) (Reed, 2002; Thompson, 1995). Apoptotic bodies 

demonstrate typical features, such as chromatin condensation and DNA fragmentation, 

which subsequently can be taken up by phagocytic cells, and degraded within  

phagosomes (which fused with lysosome resulting in digestion of the foreign antigens) in 

macrophages (Savill and Fadok, 2000). This causes death of macrophages and leads to 

the engulfment of dying macrophages by dendritic cells in order to present theses 

antigens to T cells, and trigger innate and adaptive immune responses (Albert, 2004).    
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1.2.2 Biochemical components of apoptosis   

1.2.2.1 Phosphatidylserine (PS)  

During apoptosis PS (a phospholipid component of the cell’s lipid bilayer) translocates 

from the intracellular to the extracellular surface of the plasma membrane. PS found on 

the surface of apoptotic cells is utilised as an ‘eat-me’ signal, as it is recognised by 

phagocytes. Studies have shown that Annexin I (cellular proteins found mostly in 

eukaryotic organisms) and calreticulin proteins are expressed on the cell surface during 

apoptosis. Also, Annexin V (a recombinant PS binding protein) can detect apoptosis, as 

it interacts strongly and specifically with PS residues (Arur et al., 2003; Bratton et al., 

1997).  

1.2.2.2 Caspases  

Caspases exist in an inactive form as proenzymes, and when they activated they tend to 

cleave themselves, as well as other pro-caspases, allowing initiation of a protease 

cascade process (Cohen, 1997). Caspases are able to activate and cleave proteins at 

aspartic acid residues. This proteolytic cascade amplifies the apoptotic signalling 

pathway and thus leads to rapid cell death. To date, several caspases have been 

classified into three groups: initiator caspases (caspases-2, 8, 9, 10), inflammatory 

caspases (caspases-1, 4, 5) and executioner or effector caspases (caspases-3, 6 and 7) 

(Salvesen, 2002). Each of these caspases has different roles and specificities in the 

apoptosis cascade (Cohen, 1997; Hu et al., 1998; Rai et al., 2005). 
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1.2.2.3 Protein cross-linking and DNA fragmentation  

Another characteristic of the apoptotic cell is extensive protein cross-linking and this is 

produced through the expression and activation of tissue transglutaminases (Nemes et 

al., 1996). During apoptosis, DNA is broken down by Ca2+ and Mg2+ dependent 

endonuclease in DNA fragments of 180 to 200 base pairs. These DNA fragments or 

“DNA ladder” can be observed by agarose gel electrophoresis with an ethidium bromide 

stain and ultraviolet illumination (Hengartner, 2000; Martinvalet et al., 2005). 

1.3 Pathways of apoptosis  

The decision for a cell to undergo apoptosis can be triggered by three pathways: a) the 

extrinsic (TNFR-mediated), b) the intrinsic (mitochondrial), and c) the perforin/granzyme 

pathways (that relates to cytotoxic T lymphocytes and NK cells) (Elmore, 2007; 

Martinvalet et al., 2005). These pathways converge at the execution caspase pathway 

(the execution pathway is initiated by caspase-3 and caspase-7, leading to the 

degradation of nuclear proteins, cell cytoskeleton, DNA fragmentation and the end form 

of apoptotic bodies) (Li and Yuan, 2008). The intrinsic and the alternative pathway of T-

cell mediated cytotoxicity have been previously reviewed (Trapani and Smyth, 2002). 
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1.3.1 The perforin/granzyme pathway  

This pathway involves immune cells and specifically cytotoxic T lymphocyte CD8 T cells 

(CTLs) and natural killer (NK) cells. These cells can kill their target cells (e.g. infected or 

transformed cells) by two mechanisms; the first mechanism (the extrinsic pathway – to 

be discussed below) is by the interaction of Fas and FasL, and a significant function of 

this pathway is to eliminate self-reactive lymphoid cells (van Parijs and Abbas, 1996). 

The second mechanism is to cause pores in the target cell membrane by delivering their 

protease toxins known as pore-forming protein (‘perforin’) and by inserting granzyme 

(granzyme A and B) leading to cell death of the target cells (Smyth and Trapani, 1995; 

Trapani and Smyth, 2002). Cell death via this pathway can be both caspase-dependent 

and caspase-independent (Sarin et al., 1997; Trapani et al., 1998).  

Granzyme A is able to kill target cells via the cleavage of nuclear proteins, which 

ultimately leads to DNA degradation (Beresford et al., 1999), whereas, granzyme B acts 

differently and can cleave proteins at aspartate residues and is believed to be the most 

potent protease for caspase-mediated, as well as caspase-independent, cell death 

(Motyka et al., 2000).  

The exact mechanism of perforin action is still unknown, but perforin polymerises once it 

is exposed to calcium and forms polyperforin. Polyperforin is able to induce pores in cell 

membranes and cause the release of proteins, thus causing necrosis of target cells. 

However, perforin alone is not sufficient to cause apoptosis for nucleated cells in vitro 

and both perforin and granzyme are important and required for the cleavage of specific 

substrates of death (Shresta et al., 1999).  
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It is reported that granzyme B can directly and cleaved pro-apoptotic BH3 only proteins, 

such as BH3-interacting domain death agonist (BID) (Alimonti et al., 2001). BID is able 

to trigger the release of pro-apoptotic mediators from mitochondria, such as cytochrome 

c, into cytosol (Alimonti et al., 2001). The alternative pathway of T-cell mediated 

cytotoxicity has been reviewed elsewhere (Trapani and Smyth, 2002).  

1.3.2 The intrinsic pathway 

The intrinsic pathway is also known as the mitochondrial pathway. Although 

mitochondrion is the main source of metabolic energy in the form of ATP to maintain cell 

survival, mitochondria are often in the ‘’centre’’ of apoptosis induction. Dysfunction in 

mitochondria, such as when triggered by stress (e.g. ultra violet, irradiation and drugs) 

causes mitochondrial outer membrane permeabilisation (MOMP) (Chipuk et al., 2006; 

Galluzzi et al., 2012). There are two suggested mechanisms for the initiation of MOMP 

and these are described briefly in the following sections. 

1.3.2.1 Voltage dependent anion channel (VDAC) 

The first mechanism or the alternative mechanism that mitochondria can be 

permeabilized by its proteins is voltage dependent anion channel 1 and 2 (VDAC1 and 

2) - dependent mechanism and the adenosine nucleotide transporter (ANT), and under 

normal conditions both these proteins maintain mitochondrial homeostasis. However, 

during dysfunction, the presence of high concentration of Ca2+ results in pores in 

mitochondria known as mitochondrial permeability transition (MPT) (De Marchi et al., 

2004), or hexokinase I and II (HKI and HKII)/ the voltage dependent anion channel 1 

and 2 (VDAC1 and 2) -dependent mechanism (Rizzuto and Pozzan, 2006). VDAC is the 

most abundant protein present in the mitochondrial outer membrane (MOM) (Colombini, 

2004), it has several physiological functions, and plays a critical role with HK-I and –II in 

triggering MPT and apoptosis induction (Pastorino et al., 2002; Pastorino et al., 2005; 

Robey and Hay, 2005; Shimizu et al., 1999; Tsujimoto and Shimizu, 2000; Zaid et al., 

2005).      
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1.3.2.2 Bcl-2 members 

The second mechanism for triggering MOMP is orchestrated by a family of proteins 

known as B cell lymphoma-2 (Bcl-2) family. Bcl-2 is a family of proteins that contains at 

least one Bcl-2 homology domain (BH) (Chipuk and Green, 2008), and this family is 

classified into three groups based on their functional activity and the presence of BH 

domain that is discussed below.  

1.3.2.3 Anti-apoptotic Bcl-2 members  

The first group of Bcl-2 proteins contains four BH domains (BH1, 2, 3, 4) and a C-

terminal hydrophobic tail and referred to as anti-apoptotic proteins (possess anti-

apoptotic activity). Archetypical members of this group are B-cell lymphoma 2 (Bcl-2) 

and B-cell lymphoma-extra-large (Bcl-XL). This also includes other proteins, such as B-

cell lymphoma w (Bcl-w), B-cell lymphoma-related protein; A1, myeloid cell leukaemia 

sequence 1 protein (Mcl-1), and Bcl-2 associated athanogenes (BAG) (Figure 1.2). The 

anti-apoptotic proteins are mainly present within the outer surface of mitochondria for the 

purpose of neutralising the pro-apoptotic proteins of the Bcl-2 family that induce MOMP 

and apoptosis (Green and Kroemer, 2004; Kroemer and Reed, 2000; Kroemer et al., 

2007).  

1.3.2.4 Pro-apoptotic (group I) Bcl-2 members   

The second group contains three BH domains (BH1, 2, 3) and has a similar structure to 

the first group, apart from the fact that they mostly contain an N-terminal hydrophobic 

tail. Such of these members are Bcl-2 associated x protein (Bax), Bcl-2 homologous 

antagonist killer (Bak), Bcl-2-related ovarian killer (Bok), and p53 upregulated modulator 

of apoptosis (Puma) (Figure 1.2), which all share three domains and are all 

characterised by hydrophobic surface grooves (Fesik, 2000; Hengartner, 2000).  
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1.3.2.5 Pro-apoptotic (group II) Bcl-2 members  

This third group is also referred to as pro-apoptotic proteins, but they differ in structure 

from the proteins Bcl-2 members in that they contain only one BH (BH3). Typical 

members of this group are BH3-interacting domain death agonist (Bid), Bcl-2-associated 

death promoter (Bad) and Bcl-2-like protein 11 known as Bim (Letai et al., 2002) (Figure 

1.2). Taken together, both pro-apoptotic groups (I and II) are essential for apoptosis 

induction and damage-sensing, BH3-only proteins clearly depend on the activation of 

Bax/Bak, because they cannot kill cells lacking both Bax (cytosolic protein) and Bak 

(associated with the MOM) and it has been suggested that both Bax/Bak are important 

for apoptosis induction (Cheng et al., 2001; Wei et al., 2001; Zong et al., 2001).  

On the other hand, it has been shown that p53 (the tumour suppressor protein) is 

transactivated by DNA damage and therefore it mediates apoptosis through the 

transcriptional regulation of several pro-apoptotic proteins of the Bcl-2 family, such as, 

Bax (Schuler and Green, 2001).  
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Figure 1.2. Classical examples of Bcl-2 members 

Bcl-2 members consists of Bcl-2 homology domains (BH) and classified into three groups; (a) anti-
apoptotic Bcl-2 members comprise of BH1, 2, 3, and 4 and a C-terminal transmembrane (C-TM) domain 
such as Bcl-2 and Bcl-XL, (b) shows pro-apoptotic I Bcl-2 members which consist of BH1,2 and 3 and a 
TM, (c) pro-apoptotic II Bcl-2 members consist of BH3-only and a TM. Figure modified from (Giménez-
Cassina and Danial, 2015). 
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1.3.3 Mitochondrial outer membrane permeabilisation (MOMP)  

As part of the induction of the intrinsic apoptosis pathway, MOMP is initiated when the 

cytosolic pro-apoptotic protein Bax translocates to the MOM (Nechushtan et al., 2001; 

Wolter et al., 1997), that is thought to form supramolecular openings or pores for the 

MOM alone or with the help of other pro-apoptotic proteins, such as Bak or the active 

form of Bid, truncated Bid (tBid) (Kuwana et al., 2002; Li et al., 1998; Luo et al., 1998). 

The relocalisation of Bax from cytosol to MOM is essential for triggering apoptosis, 

otherwise if retained in cytosol, MOMP and apoptosis are inhibited. As a result of 

MOMP, apoptogenic factors are released from mitochondria, including either a) 

caspase-activating (leading to apoptosis via caspase-dependent pathway – discussed in 

section 1.3.3.1) molecules, such as cytochrome c (a component of the electron transport 

chain in mitochondria), second mitochondria derived activator of caspase/direct inhibitor 

of apoptosis protein (Smac/Diablo) and serine protease Omi/HtrA2, or b) apoptosis-

inducing factor (AIF), endonuclease G (Endo G) and DNA proteolytic enzyme caspase-

activated DNase (CAD) causing ultimately apoptosis via a caspase-independent 

pathway (Du et al., 2000; Fulda et al., 2002; Kroemer and Reed, 2000; van Loo et al., 

2002).  

1.3.3.1 Caspase-dependent apoptosis 

Following its release into the cytosol, cytochrome c forms a complex with apoptosis 

protease-activator factor 1 (Apaf-1) and dATP and cytosolic procaspase-9, known as the 

high molecular weight caspase-activating complex “apoptosome” (Cain et al., 1999; Cain 

et al., 2000; Chinnaiyan, 1999; Hill et al., 2004; Li et al., 1997; Zou et al., 1997). Once 

the complex is formed, it leads to the activation of initiator caspase (procaspase-9) that 

triggers the activation of executioner caspases and then activates the other 

procaspases-2,-6,-8 and -10, which in turn lead to a feedback amplification of the 

apoptotic signal (Slee et al., 1999; Van De Craen et al., 1999).  
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The release of other molecules from mitochondria, such as Smac/Diablo and Omi/HtrA2, 

promotes caspase activation and prevent the effects of inhibitors, such as inhibitor of 

apoptosis proteins (IAPs) (Ferri and Kroemer, 2000). IAP proteins regulate both extrinsic 

and intrinsic pathways of apoptosis. However, IAP can inhibit the function of receptors 

containing death domain, such as TNFRI and Fas (Liston et al., 2003). Eight IAP human 

inhibitor proteins are well characterised, such as X-linked mammalian inhibitor of 

apoptosis protein (XIAP) and Survivin that inhibit IAP activity (Deveraux and Reed, 

1999).   

1.3.3.2 Caspase-independent apoptosis  

Caspase-independent apoptosis can be triggered after MOMP releases molecules, 

which include apoptosis-inducing factor (AIF), endonuclease G and CAD. AIF interacts 

with endonuclease G and causes DNA fragmentation and CAD. DNA fragmentation and 

nuclear chromatin condensation are caused by AIF translocation into the nucleus, a 

process which is referred to as ‘stage I condensation’ (Joza et al., 2001). In addition, 

endonuclease G translocates to the nucleus and causes nuclear chromatin cleavage, 

which forms oligonucleosomal DNA fragments (Li et al., 2001). Both AIF and 

endonuclease G activation are mediated in a caspase-independent manner. CAD also 

causes oligonucleosomal DNA fragmentation, and chromatin condensation after the 

cleavage by caspase-3, a process which is referred to as ‘stage II condensation’ (Enari 

et al., 1998; Susin et al., 2000).  

Also, some studies reported that there is a role for other members of the Bcl-2 family, 

such as Bad; Bad under normal conditions is sequestered in the cytosol and bound to 

14-3-3 (a member of a family of multifunctional phosphoserine binding molecules). In 

case of dephosphorylation, non-phosphorylated Bad heterodimerizes with Bcl-XL at 

membrane sites and contributes to cell death (Zha et al., 1996b). 
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1.3.4 The extrinsic pathway 

The extrinsic pathway (also known as the death receptor pathway) is triggered by the 

ligand–induced activation of death or non-death receptors of tumour necrosis factor 

superfamily (TNFSF) members on the cell surface. In this regard, the best characterised 

extrinsic pathway of apoptosis is the one triggered by classical death receptors, such as 

Fas, TNFR-I and TNF-related apoptosis inducing ligands (TRAIL -R1 and -R2), which all 

known as death receptors (Scaffidi et al., 1998).  

The TNFSF comprises a group of cytokines that have critical functional importance in 

immunity, inflammation, cytodifferentiation and apoptosis (Dempsey et al., 2003). The 

archetypal members of the TNFSF are discussed in greater detail in the following 

sections.  
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1.4 The TNFSF   

The TNFSF consists of a large and complex network of ligands (TNFLs) and receptors 

(TNFRs) and each subgroup of the family may function in distinct ways, based on their 

signalling capacity and their ability to regulate specific gene expression and 

subsequently cell fate. By means of signalling triggered via interactions of these 

receptors with their cognate ligand(s), TNFRs play a critical role in cellular homeostasis 

(Li et al., 2004; Mauri et al., 1998; Remouchamps et al., 2011; Ruland and Mak, 2003).  

TNFLs and TNFRs have multifunctional roles ranging from promotion of cell growth or 

induction of differentiation, to cytotoxicity by activation of cell death (mainly apoptosis) 

(Albarbar et al., 2015). The members of TNFLs and TNFRs are summarised in Table 

1.2, with additional information on their cellular origins and recruited intracellular proteins 

(Gravestein and Borst, 1998; Screaton and Xu, 2000; Smith et al., 1994). Whilst, to date, 

18 ligands and 29 receptors have been identified (Wiens and Glenney, 2011; Zhang, 

2004), this thesis will focus on receptors and ligands of the Lymphotoxin (LT) system, 

and compare them with other closely related TNFSF systems that share structural and, 

particularly, functional similarities (Table 1.2).  

1.4.1 TNFLs 

TNFLs are type II transmembrane proteins that contain an intracellular N-terminus and 

extracellular C-terminus with the C-terminus region characterised by a conserved TNF 

homology domain (THD) (Bodmer et al., 2002; Idriss and Naismith, 2000). TNFLs are 

encoded by 18 genes clustered within the human leukocyte antigen (HLA) and major 

histocompatibility complex class three (MHC-III) regions, located on the short arm of 

chromosome 6 (Bodmer et al., 2002; Collette et al., 2003; Granger and Ware, 2001). 
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TNF-α is expressed in full-length on the cell surface as a 26kDa membrane ligand 

(mTNF-α) and as a 17kDa soluble cytokine (sTNF-α) after shedding (Aggarwal, 2000). 

By contrast, LT-α is always shed as a soluble cytokine, yet LTβ is expressed only in a 

membrane-bound form, as the latter does not contain a cleavage site. LTα and LTβ can 

assemble together and form two membrane bound complexes of LTαβ. The LTα1β2 

complex consists of a single ββ and two unique αβ sites and exhibits high affinity to 

LTβR; LTα2β1 on the other hand binds to TNFR –I and TNFR –II, but with less affinity to 

LTβR (Ware, 2005). LIGHT also known as TNFSF14 or TL4, is encoded by a gene 

located on chromosome 19 and exists also in either a membrane bound form (29kDa) or 

a soluble form following cleavage by a yet undefined furin-like proteinase (Collette et al., 

2003; Granger and Ware, 2001) and can bind both LTβR and the HVEM receptor, but 

not TNFR –I and TNFR –II (Ware, 2005).  

1.4.2 TNFRs  

The majority of the TNFRs are type I transmembrane glycosylated proteins with an 

extracellular N-terminus and an intracellular C-terminus, but some TNFRs are type III 

transmembrane proteins such as B cell maturation antigen/TNFRSF17 (BCMA), 

transmembrane activator and CAML interactor/TNFRSF13B (TACI), and X-linked 

ectodermal dysplasia receptor (XEDAR) (Bodmer et al., 2002). Structurally, TNFRs 

comprise three domains; an extracellular domain (ECD), a transmembrane domain 

(TMD) and an intracellular domain (ICD) (Albarbar et al., 2015). All TNFRs share a four 

cysteine-rich domain (CRD) in the ECD region, which is responsible for the specificity 

and affinity of these receptors for their cognate ligands (Banner et al., 1993). The genes 

encoding TNFRI, CD27 and LTβR are located on chromosome 12 in humans and 

chromosome 6 in the mouse, and the other receptors, with the exception of Fas, are 

located on chromosome 1p36 (Collette et al., 2003; Granger and Ware, 2001) (Table 

1.2).  
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TNFR  Cellular origin Signal  TNFL Reference 
TNFRI, TNFRSF1A, p55-60, and 

CD120a, TNFR60 and TNFRSF1A 

Nucleated cells and all 

tissues  

DD plus 

TRAF2,5 
TNFα, cachectin, DIF, LTα3 

(Armitage, 1994; Kitson et al., 1996; Loetscher et al., 1990; 

Terry Powers et al., 2010; Vince et al., 2009)  

TNFRII, CD120b, p75-80 and TNFRSF1B 
Inducible on immune cells 

and hematopoietic  
TRAF1,2,3 LTα3, TNFα, LTα2β1 

(Armitage, 1994; Cabal-Hierro and Lazo, 2012; Cabal-Hierro et 

al., 2014; Smith et al., 1990) 

LTβR, TNFRSF3, CD18, TNFCR, 

TNFRIII 

Fibroblast, epithelial, 

myeloid cells and most 

tumour cells  

TRAF2,3,5 LTβ, LTα2β1, LTα1β2, LIGHT 

(Bista et al., 2010; Crowe et al., 1994; Force et al., 1997; Kuai 

et al., 2003; Nakano et al., 1996; Sanjo et al., 2010; 

VanArsdale et al., 1997)  

CD95, APO-1, Fas, TNFRSF6 APT1 and 

DR2 

T and B cells and 

epithelial cells 
DD plus TRAF2 

FasL, APT1LG1 CD278, and 

TNFSF6 

(Chinnaiyan et al., 1996; Leithäuser et al., 1993; Muntané, 

2011; Pitti, 1998) 

DR3, WSL-LR, TRAMP, TR3, LARD, 

APO-3, DDR3, TNFRSF12 

Activated T cells and 

tissues of thymus, spleen 

and fetal kidney 

DD plus TRAF2 
APO-3L, TWEAK, DR3LG, 

TL1A, TNFSF12 

(Bodmer et al., 1997; Chinnaiyan et al., 1996; Marsters et al., 

1996; Screaton et al., 1997; Tan et al., 1997) 

DR4, Apo2, TRAILR1 and TNFRSF10A Most cells and cell lines DD TRAIL, Apo2L, TL2, TNFSF10 
(Chaudhary et al., 1997; Kischkel et al., 2000; Pan et al., 1997; 

Schneider et al., 1997; van Geelen et al., 2011) 

DR5, TRAILR2, KILLER, TRICK2 and 

TNFRSF10B 
Most cells and cell lines DD TRAIL, Apo2L, TL2, TNFSF10 

(Chaudhary et al., 1997; Kischkel et al., 2000; MacFarlane et 

al., 1997; Schneider et al., 1997; van Geelen et al., 2011) 

DR6, TR-7, TNFRSF21 

Lymphoid organs, tissues 

lymphoid cells and 

tumours 

DD plus TRAF2 N.D (Kitson et al., 1996; Pan et al., 1998a; Pan et al., 1998b). 

DcR1, TRAILR3, TRID, Apo2, LIT and 

TNFSF10C 
Various human tissues  Absent  TRAIL, TL2, TNFSF10 

(Degli-Esposti et al., 1997c; MacFarlane et al., 1997; Marsters 

et al., 1997a; Pan et al., 1997; Sheridan et al., 1997) 

DcR2, TRAILR4, TRUNDD Various human tissues Absent  TRAIL, TL2, TNFSF10 
(Degli-Esposti et al., 1997a; Marsters et al., 1997a; Pan et al., 

1998a) 

DcR3, TR6, M68, TNFRSF6B 

Monocytes, dendritic 

cells, lung tissues, 

adenocarcinomas 

Absent  FasL, LIGHT, TL1A (Pitti, 1998; Yu et al., 1999) 

CD27, TNFRSF7, S152 and Tp55 
T, B cell and some 

tumours 
TRAF2,3,5 CD27L, TNFSF7 and CD70 

(Akiba et al., 1998; Armitage, 1994; Camerini et al., 1991) 

(Nakano et al., 1999; Yamamoto et al., 1998) 

CD30, TNFSF8 
Lymphoid cells and some 

tumours   
TRAF1,2,3,5 CD30L 

(Armitage, 1994; Inoue et al., 2000; Smith et al., 1994; Wajant 

et al., 2001a) 

CD40, GP39, HIGM1, IMD3, TNFRSF5, 

TRAP 

T, B cells and some 

tumours  
TRAF2,3,5,6 

CD40L, CD154, CD140, HIGM1, 

TNFSF5 

(Armitage, 1994; Bishop et al., 2007; Ishida et al., 1996a; Van 

den Oord et al., 1996) 
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Table 1.2. TNFLs and TNFRs members 

The table summarises all known TNFRs and their cognate ligands, the cell types in which TNFRs are expressed and the adaptor proteins involved 
in signalling triggered by the receptor in each case. N.D, not determined.  

OX40, gp34, TNFRSF4, TXGP1L,CD134, 

ACT35 
T cells and some tumours  TRAF1,2,3,5,6 OX40L, TNFSF4, TXGP1 

(Croft et al., 2009; Dürkop et al., 1995; Imura et al., 1997; 

Kawamata et al., 1998; Mallett et al., 1990; Wajant et al., 

2001a)  

NGFR, P75, P75NGFR, P75NTR, 

CD271, TNFRSF16 

Nervous system, kidney, 

lung, hair follicles and 

some tumours 

DD plus 

TRAF1,2,3,4,5,6 
NGF, TNFSF16 

(Geetha et al., 2012; Powell et al., 2009; Radeke et al., 1990; 

Roux and Barker, 2002; Wheeler et al., 1998) 

AITR, GITR and TNFRSF18 T cells and some tumours TRAF1,2,3,4,5 
AITRL, TL6, hGITRL and 

TNFSF18 

(Basak et al., 2007; Esparza and Arch, 2004; Esparza et al., 

2006; Kim et al., 2007; Nocentini et al., 1997; Suvas et al., 

2005) 

HVEM, HveA, TL1, CD270, TNFRSF14, 

ATAR, TR2 

T cells, lymphoid and 

non-lymphoid cells, and 

some tumours  

TRAF1,2,3,5 
LIGHT, LTα3, CD258, HVEM-L 

TL4, TNFSF14 
(Hsu et al., 1997; Marsters et al., 1997b) 

4-1BB, TNFRSF9, CD137 and ILA T cells and thymocytes TRAF1,2,3 4-1BBL and TNFSF9 
(Inoue et al., 2000; Pollok et al., 1993; Vinay and Kwon, 1999; 

Wajant et al., 2001a) 

RANK, TRANCE-R, TNFRSF11A  

Activated T cells, 

dendritic cells, lymph 

nodes 

TRAF1,2,3,5,6 
RANKL, OPGL, ODF TRANCE, 

TNFRSF11A, TNFRSF11B 

(Inoue et al., 2000; Kanazawa et al., 2003; Simonet et al., 

1997; Wong et al., 1998)  
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1.4.3 Regulation of TNFLs and TNFRs function by shedding 

Decoy receptors (DcRs) are not the only factors negatively modulating TNFR activation, 

because regulation of receptor signalling involves shedding of both ligands and 

receptors into soluble forms by the action of a family of metalloprotease known as 

sheddases. Shedding is often associated with attenuation of ligand-mediated receptor 

activation. Such enzymes include disintegrin and metalloproteinase such as a disintegrin 

and metalloprotease domain (ADAM-17). The latter is also referred to as TNF-alpha-

converting enzyme (TACE) and was originally identified for its ability to shed membrane 

(mTNF-α) to soluble ligand (sTNF-α) (Figure 1.3). Importantly, there is evidence to 

suggest that cleavage of both mTNFRs and mTNFLs into soluble forms limits the 

bioavailability and thus concentrations of TNFLs and their respective TNFRs and this 

has a direct impact on receptor functionality (Black et al., 2002; Black et al., 1997; Moss 

et al., 1997; Vardouli et al., 2009).  
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Figure 1.3. Mechanism of TNFLs and TNFRs shedding 

TNFLs (top) and TNFRs (bottom) are expressed in two forms; membrane-bound (via a transmembrane 
domain anchoring the protein within the cell membrane) or a soluble trimeric form. Signalling via 
membrane-bound forms of TNFLs requires cell-cell contact to achieve activation of membrane-bound 
forms of TNFRs to induce receptor trimerisation and trigger intracellular signalling. Soluble TNFLs or 
TNFRs are membrane-bound forms that had been cleaved into soluble forms through metalloproteinase 
action.  
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1.5 TNFR signalling 

In order to initiate TNFR-mediated cell signalling, TNFLs (either in soluble form or in 

membrane-bound form on the surface of an effector cell) induce TNFR clustering, 

aggregation and oligomerisation (cross-linking) on target cells. Downstream signalling is 

generally accepted to require trimeric ligands to drive/enable receptor trimerisation or 

possibly multimerization. However, TNFRs may not exist as monomers that trimerise 

only upon ligand binding. There is in fact evidence for the existence of a pre-ligand 

assembly domain (PLAD) residing within the CRD of the receptors, which appears to be 

critical for the function of the receptor (Chan, 2000; Chan, 2007). Studies reported that 

PLAD is formed for a number of receptors such as, Fas, TNFRI, and CD40. PLAD is 

located opposite to the receptor ligand binding site (Chan et al., 2000). Typically, once 

the receptor is activated, signal transduction is triggered via recruitment of adaptor 

proteins in order to ultimately activate transcription factors such as NF-κB or c-Jun N-

terminal kinase/activator protein-1 (JNK/AP-1) for induction of either proliferation, 

differentiation or, more typically for a large proportion of the TNFSF, cell death (Albarbar 

et al., 2015). The precise nature, timing and extent of adaptor protein recruitment and 

overall TNFR activation are dependent on several factors, such as cell type, cellular 

context/state, and ‘quality’ of the signal i.e. the strength of ligand-receptor interaction 

(discussed further in subsequent sections) (Wajant, 2015). These factors are critical for 

adaptor protein recruitment and intracellular signalling and thus functional outcome 

(Georgopoulos et al., 2006).  
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1.6 TNFR sub-groups 

TNFRs can be divided into three sub-groups based on the specific structural features 

that they contain within their ICD (Chung et al., 2002; Dempsey et al., 2003). An 

important characteristic defining the first and more classical TNFR group is that the ICD 

contains a death domain (DD) and includes members such as TNFR-I, Fas and TRAIL-

Rs. The DD permits signalling initiation via adaptor protein recruitment; these adaptor 

proteins are modular, as they contain a DD (that allows interaction with the receptor) as 

well as a death effector domain (DED). Examples of such proteins include the TNFR-

associated DD (TRADD) for TNFR-I and Fas-associated DD (FADD) for Fas and TRAIL-

Rs. The existence of the DED permits induction of apoptotic signalling via recruitment of 

DED-comprising, initiator pro-caspases, in particular caspase-8 and in some cases 

caspase-10 (Dempsey et al., 2003; Engels et al., 2005; Micheau and Tschopp, 2003) 

(Figure 1.4).  

The second TNFR group is characterised by the presence of another type of domain 

known as the TRAF-interacting motif (TIM). Receptor activation leads to recruitment of 

TNFR-associated factors (TRAFs), which are zinc RING finger proteins with a C-terminal 

region responsible for receptor binding, and these adaptors mediate recruitment and/or 

activation of downstream signalling pathways, mainly Mitogen Activated Protein Kinases 

(MAPKs) such as p38 and JNK (Arch et al., 1998; Inoue et al., 2000; Kuchroo et al., 

2008) resulting in activation of transcription factors (TFs) such as NF-κB and AP-1 

(Georgopoulos et al., 2006). To date, seven TRAF proteins have been identified and 

different TNFRs rely on distinct signalling pathways mediated by different TRAFs 

following receptor activation (Wajant and Scheurich, 2001; Wajant et al., 2001a; Zapata 

et al., 2001).  

The third group of TNFRs is characterised by the lack of intracellular signalling function, 

due to the lack of an ICD in their cytoplasmic region. Yet, by maintaining the capacity to 

bind to TNFLs, these receptors act as decoy receptors and attenuate TNFR signalling 

(Zhan et al., 2011). The best characterised receptors of the third group are the TRAIL 

decoy receptors TRAIL-R3 (DcR1) and -R4 (DcR2) (Ashkenazi, 2002; Hehlgans and 

Pfeffer, 2005). 
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1.7 Death receptors   

Death receptors (DRs) refer to unique sensor expressed within the cell surface. They   

are defined as CRD, and additionally contains homologous intracellular cytoplasmic 

sequence known as classical death domain (DD). DD is a potential receptor function to  

transmit the death signals from extracellular to intracellular causing cell apoptosis 

following the activation and recruitment of various proteins such as the TNFR-associated 

DD (TRADD) for TNFR-I and Fas-associated DD (FADD) for Fas and TRAIL-Rs TNFR-

associated DD (TRADD) (Ashkenazi and Dixit, 1998). DD permits signalling initiation via 

adaptor protein recruitment following receptor activation. The existence of the DED 

permits induction of apoptotic signalling via recruitment of DED-comprising, initiator pro-

caspases, in particular caspase-8 and in some cases involve the activation of caspase-

10 (Dempsey et al., 2003; Engels et al., 2005; Micheau and Tschopp, 2003). The 

recruitment of these proteins form a complex called a death-inducing signalling complex 

(DISC) (Boldin et al., 1996; Debatin and Krammer, 2004; Muzio et al., 1996; Wang et al., 

2001a). Once the caspase-8 is activated, the execution pathway of apoptosis is 

triggered by the activation of caspase 3 and 7 which results ultimately in apoptosis 

(Figure 1.4). However, in some conditions, apoptosis can be inhibited by cellular FLICE-

inhibitory protein (c-FLIP) binding to FADD and caspase-8, preventing their function. It 

has been also shown that a potential protein known as Toso is able to block Fas-

induced apoptosis in T lymphocytes via the inhibition of caspase-8 processing (Hitoshi et 

al., 1998; Kischkel et al., 1995; Scaffidi et al., 1999). 
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1.7.1 TNFRI and TNF-α ligand 

TNF-α, the main ligand for the TNFR –I and –II receptors (where it can activate multiple 

signalling transduction pathways (Vilcek and Lee, 1991), is the archetypal pro-

inflammatory cytokine and is a highly pleiotropic factor that plays critical roles in a variety 

of physiological mechanisms (Aggarwal, 2000; Beutler and Cerami, 1989). TNF-α is 

either secreted or maintained as a membrane-bound ligand by various immune and non-

immune cell types including natural killer cells (NK), neutrophils, macrophages, 

monocytes, T cells, mast cells and granulocytes, as well as neurons, keratinocytes, 

smooth muscle cells, fibroblasts, endothelial cells and some malignant non-lymphoid cell 

lines  (Aggarwal, 2000) (Table 1.2). An intriguing feature of the TNF-α/TNFR-I/II system 

is that differential receptor expression and/or receptor activation by TNF-α can regulate 

the balance between cell survival and apoptosis (Cabal-Hierro and Lazo, 2012).   

Previous studies demonstrated that membrane-bound TNF-α induces stronger signalling 

via TNFR –I and –II than via its soluble counterpart, which can fundamentally alter the 

functional outcome of receptor activation (Ardestani et al., 2013b; Grell et al., 1995). 

Therefore, TNF-α exhibits both cell type- and context-specificity and TNF-α-mediated 

signalling can have highly pleiotropic effects. TNFRs –I and –II are mainly activated by 

TNF-α although receptor ligation can be induced by soluble LTα3 (due to its highly 

homologous structure to TNF-α) and by LTα2β1 (Williams-Abbott et al., 1997). TNFR-I is 

constitutively expressed on most nucleated cell types but is predominantly found on 

cells of epithelial and fibroblast origins (Armitage, 1994). Overall, TNFR-I has a greater 

abundance than TNFR-II, with TNFR-II mainly expressed on monocytic, lymphocytic, 

myeloid, hematopoietic, endothelial and neuronal cells (Grell et al., 1998; Hohmann et 

al., 1989; Tartaglia et al., 1993; Tartaglia et al., 1991). During inflammation, both TNFR-I 

and TNFR-II receptors can be quickly shed into soluble receptors believed to be 

important in down-regulating the inflammatory effects of TNF-α and these sTNFRs have 

been detected in human urine and blood serum of cancer patients (Engelmann et al., 

1990; Idriss and Naismith, 2000; MacEwan, 2002).  
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Activation of TNFR –I and –II induces distinct signalling pathways; for instance, it has 

been demonstrated that the stimulation of individual TNFR –I or –II on mouse 

thymocytes and cytotoxic T cell line CT-6 by murine TNF (but not human TNF) induced 

differential effects in these cells (Tartaglia et al., 1991). Agonistic antibodies specific for 

TNFR-I caused cytotoxicity whereas antibodies for TNFR-II failed to reciprocate this. 

Moreover, TNFR-II stimulation triggered cell proliferation (Tartaglia et al., 1991).  

Through its DD and TRADD, TNFR-I activation can activate the caspase-mediated 

pathway of apoptosis in numerous tumour cell lines (Andera, 2009; Ashkenazi and Dixit, 

1998; Chinnaiyan et al., 1995; Gommerman and Summers deLuca, 2011; Hagemann et 

al., 2007; Nagata, 1997) (Figure 1.4). Activation of TNFR-I by TNF-α also induces the 

activation of NF-κB (Legler et al., 2003; Micheau and Tschopp, 2003) and this is a 

negative regulator for apoptosis mediated by TNFRs signalling (Karin and Lin, 2002; 

Ware, 2005). It has been shown that cell death could be augmented by the inhibition of 

NF-κB after TNF-α treatment (Karin and Lin, 2002; Varfolomeev and Ashkenazi, 2004) 

or the specific activation of TNFR-II (Wajant et al., 2003).  

Pham and colleagues further demonstrated soluble TNF-α-induced apoptosis in NF-κB-

deficient cells (Pham et al., 2004) which was due to JNK activation (Davis, 1998; Karin, 

1998). TNFR-I also contains a TIM domain which interacts with TRADD, TRAF1 and 

TRAF2 and this triggers the activation of receptor interacting protein kinase (RIP). RIP 

and TRAF2 form a complex with TRADD in order to induce either MAPKs which lead to 

NF-κB, or c-Jun N-terminal kinase (JNK/AP-1) activation (Hehlgans and Pfeffer, 2005). 

RIP is a critical player that participates in various biological processes for intracellular 

and extracellular stresses and is found to stimulate TNF-induced apoptosis and necrosis 

(Hsu et al., 1996b; Kelliher et al., 1998; Lin et al., 2004; Zhang et al., 2010).  
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Figure 1.4. Schematic representation of the intrinsic and extrinsic pathways 

This figure shows the two main mechanisms of apoptosis; intrinsic and extrinsic pathways. Each pathway 
is mediated by specific caspases, such as initiator caspases (8, 9, and 10) which lead to the activation of 
the executioner caspases. a, intrinsic pathway is initiated by cellular stress such as ultraviolet (UV) 
irradiation, chemotherapeutic or growth factor withdrawal. The cellular stress causes MOMP and promotes 
the release of cytochrome c, which subsequently interacts with Apaf-1 and triggers procaspase-9 
activation. This results in the activation of procaspase-3, which leads to the activation of executioner 
pathway as well as apoptosis. b, extrinsic pathway is mediated by the activation of caspase-8, following 
activation of death receptors such as TNFRI, Fas or TRAIL-R. Consequently, death-inducing signalling 
complex (DISC) is formed and procaspase-8 is activated, which leads to the activation of other caspases 
such as, caspases-3, -6 and -7. Once activated, the extrinsic and intrinsic pathways converge at the 
executioner pathway which ultimately leads to cell changes including, cell shrinkage, chromatin 
condensation, and also membrane cytoplasmic bleb formation as well as apoptotic bodies. Figure 
modified from (de Vries et al., 2006).  
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1.8 Non-DD-containing TNFRs receptors  

These receptors include TNFRII, CD40 and LT receptors that are discussed in depth in 

this chapter. Non-DD receptors have a lack of death domains and mediate their 

intracellular pathways via a domain known as the TRAF-interacting motif (TIM), which 

directly binds or interacts with specific TRAF proteins (Dempsey et al., 2003; Xie, 2013). 

1.8.1 TRAF proteins  

TRAFs are typically adaptor proteins that are characterised structurally by two domains 

the carboxyl-terminal half of the TRAF domain (highly conserved) known as TRAF-C 

(which functions to interact with TNFRs, forming homo- or heterodimers, or interaction 

with other signalling proteins) and a less conserved coiled-coil domain known as N-

terminal portion (mostly consists of a RING finger and several zinc finger motifs that 

function to downstream signalling events) (Xie, 2013; Yang and Sun, 2015). To date, 

seven members of TRAFs have been identified and six are well described (TRAF1 to 6). 

A novel protein TRAF7 (it does not contain a TRAF homology domain) (Xu et al., 2004) 

(Figure 1.5). TRAF2, 3, 5 and 6, but not TRAF1, possess E3 ubiquitin ligase activities 

(Deshaies and Joazeiro, 2009; Ha et al., 2009; Häcker et al., 2011; Xie, 2013). They can 

induce downstream signalling of several kinases (such as the activation of NF-κB, AP-1, 

p38, JNK and other MAPKs), which can ultimately control and regulate cellular 

processes ranging from cell survival to cell death (Albarbar et al., 2015).   
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1.8.1.1 TRAF1 

TRAF1 is a unique protein. It shares the structural features with other TRAFs that 

consist of a C and N-terminal, however, TRAF1 lacks both areas of zinc fingers and zinc 

ring in C-rich associated with RING and TRAF (CART) domains (Bradley and Pober, 

2001) (Figure 1.5). TRAF1 has a restricted tissue distribution and its expression is 

upregulated by TNFLs/TNFRs interactions (Georgopoulos et al., 2006; Schwenzer et al., 

1999). TRAF1 or TRAF2 triggers the activation of RIP. RIP and TRAF2 form a complex 

with TRADD in order to induce either MAPKs which may lead to NF-κB or JNK/AP-1 

activation (Georgopoulos et al., 2006; Hehlgans and Pfeffer, 2005).  

1.8.1.2 TRAF2 

TRAF2 and TRAF1 were discovered as TNRFII-interacting proteins (Rothe et al., 1994; 

Rothe et al., 1995). Unlike TRAF1, TRAF2 contains of C-terminal TRAF domain as well 

as a zinc finger domain with a variable number of zinc fingers like other TRAFs (Ha et 

al., 2009) (Figure 1.5).  

In terms of the functional role of TRAF2, it is reported that TRAF2 can regulate two 

distinct pathways of kinase cascades that contribute ultimately to the activation of NF-κB 

and MAPK, such as JNK (Jobin et al., 1999; Rothe et al., 1995). One finding reports NF-

κB to be not activated but JNK activation was massively inhibited in transgenic mice 

following using dominant negative TRAF2 (Lee et al., 1997), but other studies 

demonstrate that TRAF2 plays a critical role in activation of inhibitor of kappa B kinase 

(IKK) and stress-activated protein kinases (SAPKs), JNK and p38 (Arch et al., 1998; 

Park et al., 2000).  
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1.8.1.3 TRAF3 

TRAF3 is also known as CD40bp, LAP-1 or CRAF1 and was first described by several 

groups as an adaptor protein that binds to the cytoplasmic tail of CD40 and Epstein-Barr 

virus (latent membrane protein-1 (LMP-1) (Cheng et al., 1995; Hu et al., 1994; Kuhné et 

al., 1997; Mosialos et al., 1995; Sato et al., 1995a) (Figure 1.5). Studies reported that 

the C-terminal cytoplasmic domain of TRAF3 contains binding sites that is able to 

interact with other TRAF proteins, such as TRAF1, 2 and 5, which mediates EBV 

induced B cell proliferation and the activation of NF-κB (Izumi et al., 1999). Many studies 

report that TRAF3 is important for the induction of cell death, and mainly by CD40 

(Eliopoulos et al., 1996; Georgopoulos et al., 2006). It is also reported that TRAF3 is 

recruited following the activation of LTβR that in turn inhibits the activation of NF-κB and 

results in the induction of cell death (VanArsdale et al., 1997), which was confirmed by a 

subsequent study which demonstrated that a dominant negative mutant of TRAF3 

inhibits cell death that is triggered by LTβR signalling (Force et al., 1997).  

1.8.1.4 TRAF5 

TRAF5, TRAF1, TRAF2 and TRAF3 share binding to the same receptors (Figure 1.5). 

TRAF5 was discovered as an adaptor protein that can bind to CD40 and LTβR (Ishida et 

al., 1996a; Nakano et al., 1996). TRAF5 has been further investigated with other 

members of TNFRs and found to be implicated in NF-κB activation by CD27 and CD30 

signalling (Aizawa et al., 1997; Akiba et al., 1998). A study demonstrated that 

overexpression of full-length TRAF5 in HEK392 cells (a human embryonic kidney cells) led 

to the activation of transcription factor NF-κB (Nakano et al., 1996).  
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1.8.1.5 TRAF6 

TRAF6 shares structural similarities with TRAF4 (Figure 1.5), but both TRAF6 and 

TRAF4 are divergent from TRAF1, 2, 3 and 5 (Inoue et al., 2000). Based on 

crystallographic studies, the binding site of TRAF6 is different to other TRAFs and may 

interact with distinct peptides (Wong et al., 1998).  

TRAF6 was first identified in 1996 as a signal transducer for IL-1 (Cao et al., 1996). It is 

reported that overexpression of TRAF6 activates NF-κB, JNK and p38 (Song et al., 

1997). TRAF6 interacts with CD40, receptor activator of nuclear factor-kB (RANK), 

TNFR-II and nerve growth factor (NGF) receptors (Darnay et al., 1999; Galibert et al., 

1998; Ishida et al., 1996b; Khursigara et al., 1999; Tsukamoto et al., 1999; Wong et al., 

1998).  

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                                                                                       

32 
 

 

 

 

Figure 1.5. Structural organisation of TRAFs 

TRAFs comprise the carboxyl-terminal of the TRAF domain (TRAF-C), a coiled-coil domain known as N-
terminal portion (TRAF-N), zinc finger and RING finger motifs. a, TRAF1 domain organisation. b, TRAF2, 
3, 4, 5 and 6 organisation. c, TRAF7 contains a RING finger domain, a zinc finger domain and also 
contains seven WD40 repeats instead of the archetypical C-terminus. Figure modified from (Zotti and Vito, 
2012). 
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1.8.2 Mitogen-activated protein kinases (MAPKs)  

Cells respond to extracellular stimuli (such as growth factors, cytokines and cell 

damaging agents) by triggering intracellular signalling cascades, and in response to 

these stimuli, TRAFs are recruited and relocated to membrane lipid rafts and 

subsequently MAPKs cascades are activated. MAPKs are components of intracellular 

pathways that regulate a number of cellular activities and are involved in regulation of 

gene expression, cell differentiation, cell survival and cell death (apoptosis) (Kim and 

Choi, 2010). Four subgroups of MAPKs have been identified in mammals: a) 

Extracellular signal-regulated kinases (ERK1 and ERK2); b) c-Jun amino-terminal 

kinases or stress-activated protein kinases (JNKs/SAPKs) (including JNK1, 2 and 3); c) 

p38 (isoforms α, β, γ and δ) and d) ERKs 3, 4 and 5 (Cargnello and Roux, 2011; Low 

and Zhang, 2016; Roux and Blenis, 2004).  

1.8.2.1 ERK1/ERK2 

ERK1 and 2 represent the classical mitogen kinase cascade signalling axis that consists 

of MAPK kinase kinases (MAPKKKs) such as A-Raf, B-Raf, Raf-1, MAPKKs (e.g. MEK1 

and MEK2) which feeds into the MAPKs; ERK1 and ERK2 (Cargnello and Roux, 2011) 

(Figure 1.6). Briefly, following the extracellular stimulus, signals are transmitted by cell 

surface receptors, such as tyrosine kinases (RTK) and G protein-coupled receptors 

(GPCR), which  transmit the activating signal through various isoforms of the small GTP-

binding protein known as Ras to MAPKs Raf, MEK and ERK pathways (Campbell et al., 

1998; Geyer and Wittinghofer, 1997; Wood et al., 1992) as reviewed elsewhere (Chong 

et al., 2003; Geyer and Wittinghofer, 1997). Once Raf is activated by Ras (proto-

oncogene), it binds and phosphorylates MEK1 and 2, which in turn phosphorylates 

ERK1 and 2 through their conserved Thr-Glu-Tyr (TEY) motif (Hallberg et al., 1994). It is 

reported that MEK1 and 2 are specific for ERK activation (Figure 1.6) (Kyriakis and 

Avruch, 2012). Upon phosphorylation, a significant population of ERK1 and 2 

translocates to the nucleus (Chen et al., 2001; Gonzalez et al., 1993; Lenormand et al., 

1993; Pouysségur et al., 2002).  
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Activated ERK1 and 2 trigger the phosphorylation of a number of substrates in cellular 

compartments including membrane proteins (e.g. CD120a and calnexin), cytoskeleton 

proteins (e.g. paxillin and neurofilaments) and nuclear substrates (e.g. SRC-1 and c-

Myc) (Chen et al., 2001). 

1.8.2.2 JNK 

The c-Jun NH2-terminal kinase (JNKs) were first identified and isolated from rat livers 

treated with cycloheximide (Kyriakis and Avruch, 1990). JNK has three isoforms; JNK1 

(SAPKγ), JNK2 (SAPKα) and JNK3 (SAPKβ). With the exception of JNK3, all JNKs are 

expressed ubiquitously, whereas JNK3 mainly presents in the brain and heart (Kyriakis 

and Avruch, 2001; Roux and Blenis, 2004). It has been demonstrated that JNKs are 

robustly activated by stimuli such as cytokines, UV, DNA-damaging chemicals, growth 

factors and G protein-coupled receptors (Roux and Blenis, 2004). It was found that JNK 

has a short from expressed at MW 46kDa and a long form expressed at MW 54kDa 

(Pulverer et al., 1991).   

Like other kinases, ERK1, ERK2 and p38, JNK is activated by dual phosphorylation at 

tyrosine and threonine within the conserved Thr-Pro-Tyr (TPY) motif that is catalysed by 

MEK4 (also known as MKK4, SEK1, JNKK1 and SAPK-kinase 1) and MEK7 (also 

known as MKK7, JNKK2 and SKK4). MEK4 and 7 are phosphorylated by various 

MAPKKKs (e.g. MEKK1-4, MLK2 and 3, DLK, TAK1 and ASK1 and 2 (Kyriakis and 

Avruch, 2001) (Figure 1.6). It is reported that MEK4, but not MEK7, can also activate 

p38, whereas MEK7 phosphorylates all isoforms of JNKs (Kyriakis and Avruch, 2012). 

Once JNK is activated, JNK phosphorylation leads to the activation and phosphorylation 

of transcription factor AP-1 and related genes (c-Jun, JunD and ATF2) (Karin et al., 

1997). 
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JNK cooperates with p38 and regulates several physiological processes, such as cell 

proliferation, cell survival and apoptosis (Dhanasekaran and Johnson, 2007). For 

example, activation of CD40 and Toll-like receptor 7 (TLR7) lead to the activation of JNK 

that enhances IL-6 secretion, which is crucial for B cell responses (Bush and Bishop, 

2008). In mouse model studies, it has been shown that deficiency in JNK severely 

decreases susceptibility to diethylnitosamine-induced hepatocarcinogenesis (Sakurai et 

al., 2006). Other studies suggest that JNK can enhance tumour cell growth and can also 

act as anti-tumour target (Papachristou et al., 2003; Yang et al., 2003; Zenz and 

Wagner, 2006). Previous studies reported that JNK is activated in cell death triggered by 

chemotherapy drugs (Davis, 2000; Hayakawa et al., 2004; Potapova et al., 2001).  

1.8.2.3 p38 MAPKs  

p38 MAPKs were identified when first isolated as a protein with MW 38kDa that was 

quickly phosphorylated in response to lipopolysaccharide (LPS) (Han et al., 1993; Han 

et al., 1994). p38 MAPKs (also termed as CSBP, mHOG1, RK, SAPK2 and p40) are 

activated by cellular stress or extracellular stimuli (Han et al., 1994; Lee et al., 1994). 

p38 has four isoforms: p38α, p38β, p38γ and p38δ (Cuenda and Dorow, 1998; Jiang et 

al., 1996; Kumar et al., 1997; Lechner et al., 1996; Li et al., 1996) (Figure 1.6). p38 has 

multifunctional activities and participates in mediating T cell differentiation and apoptosis 

by controlling the production of IFN-γ (Ono and Han, 2000). It is also reported that p38 

maintains specific cellular mRNAs that are involved and important for immune 

responses (Ono and Han, 2000).  

p38 is activated by MEK3 and 6 (which is activated by MAPKKKs) (Figure 1.6). MEK3 

and 6 are activated by physical or chemical stimuli, such as TNF-α or UV irradiation. 

MEK3 and 6 are specific for p38 activation (Cargnello and Roux, 2011). MEK6 

phosphorylates all p38 isoforms, whereas MEK3 preferentially activates p38α and β 

(Chen et al., 2001). Activation of p38 is as a result of MEK3 and 6 phosphorylation at a 

conserved threonine and tyrosine (Thr-Gly-Tyr (TGY) motif residues (Enslen et al., 

2000).  
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p38 is the best studied MAP kinase and was found to be expressed in most cell types 

and present in cytoplasm and nucleus. However,  following stimulation, one study 

suggests that active p38 translocates from the cytoplasm to the nucleus (Raingeaud et 

al., 1995) and another study reported that active p38 is also present in the cytoplasm 

(Ben-Levy et al., 1998).  

 
Figure 1.6. Simplified schematic representation of MAPK signalling pathway 

(1) An extracellular stimulus (e.g. growth factors or stress factors) activates (2) MAPKKK such as Raf1, 
TAK1 and MEKKK1-4, MAPKKK phosphorylates and activates (3) MAPKK (MEK1/2, MEK3/6 and 
MEK4/7), which phosphorylates and activates (4) MAPK (ERK1/2, p38 and JNK), leading to (5) various 
cellular biological response. Modified from (Kim and Choi, 2010).  
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1.8.3 Transcription factors (TFs)  

TFs are central components in a number of signalling pathways that control gene 

expression and their activation is triggered by several physiological and environmental 

stimuli (Baldwin Jr, 1996; Pahl, 1999). TFs can be involved in many physiological 

processes e.g. inflammation, development, differentiation, oncogenesis and cell death 

(Li and Verma, 2002; Shaulian and Karin, 2002).  

The activation of TFs is often regulated by phosphorylation or dephosphorylation via the 

involvement of several intracellular signalling pathways. Such as two very well-

characterised TFs are AP-1 and NF-κB (Collins et al., 2000; Devary et al., 1993; 

Yasumoto et al., 1992).  

1.8.3.1 AP-1 

AP-1 is a family of proteins of homotrimers and heterodimers, which are comprised of 

basic region-leucine zipper (bZIP) proteins that are main components for Jun (c-Jun, 

JunB and JunD) Fos (c-Fos, FosB, Fra-1 and Fra-2), Jun dimerization partners including 

JDP1 and JDP2 and other members, such as ATF2, LRF1, ATF3 and B-ATF (Johnson 

and Nakamura, 2007). Jun proteins can form a stable dimeric complex that is able to 

bind to AP-1 DNA recognition site known as TREs (Shaulian and Karin, 2002). Evidence 

suggests that proteins of the Fos sub-family are not able to form a complex directly, but 

they indirectly form heterodimers with Jun proteins resulting in DNA binding, (previously 

reviewed (Shaulian and Karin, 2002). It is reported that AP-1 regulates cell cycle 

controlling Cyclin D1 (Cyclin D1 is a protein involved in cell cycle regulation and it is 

important for the initiation and transition of G1 to G1/S phase, respectively) (Baldin et al., 

1993), p53, p21, cell proliferation, cell survival and cell death (Shaulian and Karin, 

2001). c-Jun of AP-1 is activated following JNK activation (Biswas et al., 2006). 
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Most cells contain the predominant form of AP-1 heterodimers Fos/Jun that bind to the 

AP-1 site with high affinity, whereas other forms of homodimers Jun/Jun bind to the AP-

1 site with less affinity (Ransone and Verma, 1990; Shaulian and Karin, 2002). The 

induction of AP-1 is initiated by the activation of ERK subgroup of MAPKs that 

translocates to the nucleus (Cavigelli et al., 1995; Hipskind et al., 1994; Rao and Reddy, 

1994; Shore and Sharrocks, 1994; Wang and Prywes, 2000). Members of transcriptional 

factor AP-1, such as Fos, FosB and others, are regulated in their promoters mainly by 

serum responsive elements (SREs) (Sassone-Corsi and Verma, 1987; Verma and 

Sassone-Corsi, 1987). 

1.8.3.2 NF-κB  

NF-κB was identified in 1986 as a factor in the nucleus that binds the promoter of the 

kappa chain of immunoglobulins in B cells (Aggarwal, 2004). NF-κB is a nuclear 

transcription factor that regulates expression of a number of genes and plays essential 

roles in inflammation, apoptosis, tumourigenesis and various autoimmune diseases 

(Davies et al., 2005a). NF-κB consists of a family of proteins including: NF-κB1 

(p50/p105), NF-κB2 (p52/p100), RelA (p65), RelB, and c-Rel. NF-κB family proteins that 

share similarity in possessing highly conserved Rel (is a proto-oncogene and one of NF-

κB subunits) homology domain (RHD; ~300 aa) with bi-functional roles, are responsible 

for DNA binding and for interacting with IκB (intracellular inhibitor of NF-κB). NF-κB is 

present in the cytosol of cells as an inactive protein bound to its inhibitor IκBs, but during 

stress or any stimulus NF-κB is activated and causes the phosphorylation for IκB and 

ultimately degradation, which results in NF-κB gene translocation to the nucleus 

(Baldwin Jr, 1996; Bonizzi and Karin, 2004). NF-κB is the best studied TF and is a 

critical transcriptional activator of many genes involved in innate and adaptive immunity, 

inflammatory responses, as well as development and maintenance of the immune 

system (Bonizzi and Karin, 2004; Ghosh and Karin, 2002; Karin and Greten, 2005).   
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The NF-κB participates in two pathways; the classical (canonical) and alternative (non-

canonical). In the context of the TNFSF, the canonical pathway often mediates 

inflammatory responses, while the non-canonical pathway is involved in immune cell 

proliferation, maturation and is responsible for secondary lymphoid organogenesis and 

previously reviewed (Ghosh and Karin, 2002; Hayden and Ghosh, 2008; Sun, 2010; 

Vallabhapurapu and Karin, 2009).  

1.9 The TNFR-II and TNF-α system 

TNFR-II binds to mTNF-α with high affinity, thus it has been suggested that there must 

be cell-cell contact in order for TNF-α to activate TNFRII effectively (Goetz et al., 2004; 

Grell et al., 1995). TNFR-II also recruits TRAF1 and TRAF2, and the latter plays a 

critical role in activation of IKK and stress kinases JNK and p38  (Arch et al., 1998; Park 

et al., 2000) (Table 1.2). Activation of these is regulated by reactive oxygen species 

(ROS) release, which can occur either from nicotinamide adenine dinucleotide 

phosphate-oxidase (NADPH or NOX) or following mitochondrial disruption (Devin et al., 

2003; Hsu et al., 1996a; Hsu et al., 1995; Hsu et al., 1996b; Stanger et al., 1995; 

Westwick et al., 1994).  

More recently, mTNF-α was shown to be highly cytotoxic to carcinoma cells due its 

ability to cause ROS-mediated necrosis (Ardestani et al., 2013a). Interestingly, it was 

confirmed that apoptosis was driven by mTNF-α-mediated ligation of TNFR –II and not –

I (Ardestani et al., 2013a; Ardestani et al., 2013b) (Figure 1.7). 
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1.10 The CD40 and CD40L system 

CD40 was first functionally characterised in B cells (although originally identified as an 

antigen expressed in bladder carcinomas) and was found to share homology with NGFR 

(Stamenkovic et al., 1989). CD40 is a type I transmembrane protein with a MW 40-

45kDa and is constitutively expressed on activated T cells, B cells, dendritic cells (DCs), 

antigen presenting cells (APCs), but also at low level on monocytes, platelets, as well as 

fibroblasts, epithelial, endothelial, neuronal cells and is also found to be expressed in a 

variety of carcinomas (Table 1.2) (Bourgeois et al., 2002; Kooten and Banchereau, 

1997; Larsen and Pearson, 1997; Stamenkovic et al., 1989; Tan et al., 2002; Van den 

Oord et al., 1996).  

The ligand of the CD40 receptor is CD40L (CD154), a type II transmembrane protein 

with MW between 31-39kDa (van Kooten and Banchereau, 2000) (Figure 1.7). CD40L is 

predominantly expressed on activated CD4+ T cells and B cells, activated APCs (such 

as DCs) as well as platelets (Danese et al., 2003; Higuchi et al., 2002). The 

CD40/CD40L dyad is critical in cellular and humoral immune responses, and is essential 

for lymphocyte proliferation as well as differentiation and maturation (Korniluk et al., 

2014). CD40/CD40L engagement mediates DC activation and the activated DCs 

promote the upregulation of other co-stimulatory molecules such as B7 family members 

which result potent production of pro-inflammatory cytokines in order to enhance 

productive immune responses (Table 1.2) (Yang and Wilson, 1996). The role of 

CD40L/CD40 interaction in humoral immunity for the production immunoglobulins such 

as IgA, IgE, IgG and IgM (Ma and Clark, 2009). The absence of CD40L/CD40 interaction 

results in severe defect in production of immunoglobulins IgA, IgE and IgG and causes 

patients with symptoms of hyper IgM syndrome (HIM) (Aruffo et al., 1993). The role of 

CD40/CD40L in immune system has been reviewed recently elsewhere (Elgueta et al., 

2009; Korniluk et al., 2014).  
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One interesting characteristic of the CD40 system, is that receptor expression is not 

restricted only to normal cells but it is also expressed in both mouse and human in many 

cancers such as lymphocytic leukaemia, lymphoma, multiple myeloma, acute myeloid 

leukaemia (AML) as well as in both non-Hodgkin’s lymphomas (NHLs) and Hodgkin’s 

lymphomas (Aldinucci et al., 2002; Kato et al., 1998; Pellat-Deceunynck et al., 1996; 

Teoh et al., 2000). Moreover, CD40 is expressed on non-lymphoid cells where receptor 

engagement by CD40L contributes to cytokine and chemokine secretions and also can 

lead to fibroblast and endothelial cell proliferation (Dallman et al., 2003; Kawabe et al., 

2011). Although CD40 expression is low on normal epithelial cells, it is often particularly 

highly expressed on solid tumours such as melanoma and lung cancers as well as in 

carcinomas of the nasopharynx, bladder, cervix and in ovarian cancer although it 

appears to be absent from prostate carcinomas (Agathanggelou et al., 1995; Altenburg 

et al., 1999; Cooke et al., 1999; Gallagher et al., 2006; Tan et al., 2002; Young et al., 

1989) (Figure 1.7). The outcome of CD40/CD40L signalling ranges from proliferation 

and differentiation to growth inhibition and cell death in a cell type- and context-

dependent manner (Korniluk et al., 2014). With regards to its function in tumour cells, 

CD40 ligation was found to have growth inhibitory effects in carcinoma cell lines of 

ovarian, breast, bladder (urothelial) and colorectal tumour cells in vitro when such cells 

were treated with a soluble form of CD40L or agonistic anti-CD40 antibodies (Bugajska 

et al., 2002; Georgopoulos et al., 2006; Jiang et al., 2008).   

CD40 signalling starts with the recruitment of adaptor proteins, in particular, TRAF1, 

TRAF2, TRAF3, TRAF5 and TRAF6 (Gommerman and Summers deLuca, 2011). It has 

been shown that TRAF2, TRAF3 and TRAF6 bind directly to cytoplasmic tail of CD40 

whereas TRAF1 and TRAF5 are recruited indirectly via interactions with TRAF2 and 

TRAF3, respectively (Bishop et al., 2007; Hauer et al., 2005; Pullen et al., 1999a; Pullen 

et al., 1998; Pullen et al., 1999b). Following TRAF recruitment, signalling cascades 

triggered include the p38 MAPK, AKT, JNK/AP-1, signal transducer and activator of 

transcription 5 (STAT5) pathways and the activation of canonical and noncanonical 

pathways of NF-κB. The activation of such cascades is dependent and attributed to the 

precise TRAF protein recruitment pattern (Albarbar et al., 2015). In B cells, for instance 

TRAF2 and MEKK1 recruitment activates the JNK, p38 mitogen activated protein kinase 
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(MAPK) and AKT pathways (Gallagher et al., 2006; Hostager et al., 2003; Lee et al., 

1997), whereas TRAF5 and TRAF3, are found to be required for canonical and 

noncanonical pathways of NF-κB activation (Bishop et al., 2007; Hauer et al., 2005; 

Nakano et al., 1999).  

Overall, a number of signalling and functional properties appear to be shared by CD40 

with other members of TNFRs such as LTβR. It has been reported that these receptors 

are able to induce the maturation and immunogenic activity for DCs, and this is because 

they share similarities in activating adaptor proteins as part of their intracellular 

signalling, e.g. TRAF3 induction activates the noncanonical pathway (Moore and 

Bishop, 2005) (Figure 1.7). Previous studies also reported that LIGHT cooperates with 

CD40 in signalling that activates B cells (Duhen et al., 2004; Pasero et al., 2009a). 

Moreover, LIGHT cooperates with CD40L (CD154) resulting in DC maturation (Morel et 

al., 2001; Zou and Hu, 2005).   
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1.11 The Lymphotoxin system: receptors 

1.11.1 LTβR 

This receptor is mainly expressed on stromal fibroblasts, epithelial cells, monocytes, 

DCs and mast cells but is absent on lymphocytes (Browning et al., 1997; Stopfer et al., 

2004) (Table 1.2). 

1.11.1.1 Role of LTβR in the immune system 

Expression of LTβR by stromal cells in the intestine is important for normal production of 

IgA after antigen recognition (Kang et al., 2002). Constitutive LTβR-mediated signalling 

leads to the development of autoimmune disease, including Sjogren’s disease and 

experimental autoimmune encephalomyelitis (EAE). Moreover, LTα-/- and LTβR-/- mice 

demonstrated a reduction in chemokine and adhesion molecule expression within 

lamina propria lymphocytes (Kang et al., 2002). Blocking of LT pathways in normal adult 

mice using soluble receptor-immunoglobulin fusion protein (LTβR-Ig) caused inhibition 

of splenic germinal centre formation and defective humoral responses (Mackay et al., 

1997).  

Thus, such studies using genetically modified mice indicate that LTβR is a key molecule 

involved in lymphoid organogenesis and in adaptive humoral immunity (Fütterer et al., 

1998; Locksley et al., 2001; Mackay and Browning, 1998). LTβR is activated by three 

ligands; the two heterotrimeric LTαβ complexes and the homotrimeric LIGHT (Ware, 

2005) (Figure 1.7). Two studies using a fusion protein to inhibit LTβR signalling through 

LTα1β2 and LIGHT attenuation, have also shown that LT receptors regulate the normal 

development lymph nodes of mice offspring (Fava et al., 2003; Rennert et al., 1996). 

More recent studies have indicated that little LTβR expression is found in normal human 

colon tissue and adenomas, but receptor expression is increased on colon 

adenocarcinomas (Hu et al., 2013), thus indicating that LT receptor expression may 

increase during carcinogenesis.   
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1.11.1.2 Role of LTβR in epithelial cells  

Activation of the LTβR receptor in vitro by either LIGHT mutein (LIGHT-R228E – which 

is mutated form of LIGHT that preferentially interacts with LTβR over HVEM) or agonistic 

anti-LTβR antibody, induces chemokine (IL-8) secretion in HEK293 and 375 melanoma 

cells and inhibits the growth of 375 melanoma cells, and this appears to be due to 

differential modulation of the MAPKs signalling molecules ASK1, JNK1/2, AP1, and NF-

κB (Chang et al., 2002; Chen et al., 2003; Degli-Esposti et al., 1997b; Hehlgans and 

Männel, 2001; Sabapathy et al., 2004; Tobiume et al., 2001). Unlike TNFRI which 

activates the canonical pathway of NF-κB, LTβR can activate both NF-κB pathways 

(Dempsey et al., 2003; Hehlgans and Pfeffer, 2005) (Table 1.2).  

Lukashev et al. (2006) have previously demonstrated that agonistic multivalent 

pentameric anti-LTβR antibody CBE11 can reduce the growth of colon and cervical 

tumours in vivo. More recently, Hu et al. (2013) demonstrated that LTβR activation using 

LTβR agonistic antibody BS-1 was found to induce growth inhibition (as well as NF-κB 

activation) in colon carcinoma cell lines HT29 and CT26, mammary carcinoma 4T1 and 

soft-tissue sarcoma CMS4.  

Moreover, BS-1 was able to trigger the activation of caspase -8 and -3 as well as the 

release of cytochrome c in tumour cells, all of which were mediated by LTβR activation 

(Hu et al., 2013). This provides evidence that cell growth inhibition of these tumour cells 

could be partially driven by caspase-dependent mechanism (Hu et al., 2013). The 

aforementioned study also reported that the activation of LTβR by using a different 

monoclonal anti-LTβR antibody (ACH6) suppressed the colon carcinoma metastasis in 

vivo (Hu et al., 2013). These findings are in support of previous work by Browning and 

colleagues demonstrating that anti-LTβR monoclonal antibody alone caused cell death 

in vitro (Browning et al., 1996). Therefore, signalling through LTβR either by its natural 

ligands or via agonistic anti-LTβR antibodies triggers cell death for a variety of tumour 

cell lines (Browning et al., 1996; Rooney et al., 2000).  
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In vivo studies involving the inhibition of tumour growth in mice deficient in LTα1β2 

demonstrated the requirement for LTβR activation and signalling on the tumour cells by 

host cell-derived LTα1β2 (Hehlgans et al., 2002). The growth of colon and cervical 

carcinoma cell lines in xenograft models was shown to be inhibited by agonistic antibody 

LTβR (CBE11) and this potentiated tumour responses to chemotherapeutic treatment 

(Lukashev et al., 2006). In vitro, however, some contradictory findings have been 

reported, as the activation of LTβR with an agonistic LTβR antibody in melanoma cell 

lines (Hs294T, SKMel5, SKMel28, and WM115) leads to the activation of the NF-κB and 

enhances tumour cell proliferation (Dhawan et al., 2008). Mackay and colleagues 

reported that activation of LTβR with either soluble LTα1β2 or agonistic anti-LTβR 

antibody (CBE11) induced activation of NF-κB in HT29 and WiDr human 

adenocarcinoma lines and human lung fibroblasts WI-38 (Mackay et al., 1996), however, 

Browning et al. (1996) demonstrated that recombinant LTα1β2 together with IFN-γ were 

cytotoxic to an array of carcinoma cell lines, including HT29 and WiDr, breast 

adenocarcinoma cell line (MDA-MB-468) and cervical carcinoma (HT-3) cells  

1.11.1.3 The LTβR signalling pathway    

Signal transduction through LTβR involves recruitment of adaptor proteins such TRAF -

2, -3, and -5 to the cytoplasmic tail of the receptor upon its ligation (Nakano et al., 1996; 

Rooney et al., 2000; VanArsdale et al., 1997) (Figure 1.7) and these interactions 

regulate TFs activation. TRAF2 and TRAF5 recruitment lead to NF-κB activation, but 

TRAF3 was found to be a negative regulator for NF-κB activation and associated with 

induction of cell death, as shown in the tumour cell line HT29 and in human embryonic 

kidney cells (HEK293T) (Force et al., 1997; Sanjo et al., 2010; VanArsdale et al., 1997). 

Their findings are in accordance with such an effect for TRAF3 in signalling triggered by 

other TNFSF members (Bechill and Muller, 2014; Hauer et al., 2005).  
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A study by Kim and colleagues also demonstrated using HeLa cells in vitro that TRAF2 

and TRAF3 were recruited following the LIGHT/LTβR ligation and their recruitment led to 

the activation of NF-κB and JNK in HeLa cells (Kim, 2005). Bista and colleagues 

reported that TRAF3 functions as a pro-survival molecule during LTβR activation, 

through canonical and noncanonical NF-κB function. In fact, LTβR-induced signalling 

complexes enhanced TRAF3 recruitment, but decreased TRAF2 recruitment which 

attenuated the phosphorylation of Ikβα and RelA genes of NF-κB (Bista et al., 2010). 

Triggering LTβR signalling in WI-38 cells was also found to activate NF-κB and induced 

cell proliferation, whereas, there was no observation of NF-κB activation in human 

umbilical vein endothelial cells (Chen et al., 2003; Dempsey et al., 2003). Another study 

has demonstrated that hepatocytes are LTβR responsive cells whilst the inhibition of 

LTβR in LTαβ transgenic mice with hepatitis suppresses the formation of hepatocellular 

carcinoma (Haybaeck et al., 2009).  

Moreover, Chen and colleagues demonstrated using human hepatoma cells (Hep3BT2), 

HeLa and HEK293 cells that the activation of LTβR by using either LIGHT mutein 

(LIGHT-R228E) or agonistic monoclonal antibody anti-LTβR (clone 31G4D8) led to the 

recruitment of TRAF3 and TRAF5 and the production of ROS, which in turn activated 

ASK1 to induce caspase-dependent and caspase-independent LTβR-mediated death 

(Chen et al., 2003).  
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1.11.2 HVEM 

This receptor is expressed by lymphoid and non-lymphoid cells, but primarily it is 

expressed transiently by NK cells and constitutively on naive CD4+ and CD8+ T cells 

(Table 1.2), and it binds to two ligands LIGHT and LTα (Fan et al., 2006; Kwon et al., 

1997; Sedy et al., 2004; Ware, 2005) (Figure 1.7).  

1.11.2.1 Role of HVEM in the immune system  

HVEM has dual roles acting both as receptor and as a ligand and it was first described 

as a receptor for herpes simplex virus-1 (HSV-1) glycoprotein D (HSV-gD), the main 

component of the HSV envelope for entry into human and mouse cells (Montgomery et 

al., 1996; Spear et al., 2006). HVEM functions as ligand and binds the immunoglobulin 

(Ig) superfamily members, B and T lymphocyte attenuator (BTLA), and CD160 

(glycosylphosphatidylinositol-anchored member of immunoglobulin (Ig) domain protein), 

and is expressed by many immune cells (Šedý et al., 2014). Two studies found that 

BTLA and CD160 bind to the first cysteine-rich domain at the N-terminus of HVEM, 

compared with LIGHT, which most likely binds to the second and third cysteine-rich 

domains on the opposite face (Cai et al., 2008; Compaan et al., 2005).   

However, other studies reported that soluble LIGHT binds to HVEM without binding to 

BTLA, and also found that soluble LIGHT and LTα can enhance the binding of BTLA 

with HVEM forming a trimolecular complex (Cheung et al., 2005; Gonzalez et al., 2005). 

Cai and colleagues reported that HVEM is critical for T cell activation depending on the 

engagement of HVEM with CD160 and BTLA as well as T lymphocytic LIGHT.  
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CD160 also functions as a negative regulator of CD4+ T cell activation via the interaction 

with HVEM receptor (Cai et al., 2008). The binding of LIGHT to HVEM-expressing T 

cells in vitro acts also as a co-stimulatory signal for their activation, proliferation and 

cytokine secretion via NF-κB activation. Other studies also found that blocking the 

interaction of LIGHT and HVEM by using HVEM-Ig inhibited proliferation of T cells 

(Harrop et al., 1998a; La et al., 2002; Wang et al., 2001b). Moreover, the differentiation 

of effector cells T helper cell 2 (Th2) and (Th1) into memory cells depends on the LIGHT 

and HVEM signaling (Soroosh et al., 2011). 

1.11.2.2 Role of HVEM expression in carcinoma 

It is reported that in most B cell malignancies including B-chronic lymphocytic leukaemia 

(B-CLL), mantle cell lymphoma, acute lymphoblastic leukaemia (ALL) and Burkitt’s 

lymphoma express HVEM. HVEM is also expressed by all primary myeloma cells and in 

plasma cell leukaemia (Costello et al., 2003) (Table 1.2).   

It has been demonstrated that engagement of soluble LIGHT with HVEM-expressing 

U937 cells induced a weak increase in NF-κB activity (Harrop et al., 1998b). 

Overexpression of HVEM in 293 cells enhances the recruitment of adaptor proteins, 

TRAF -1, -2, -3, and -5, which result in activation of NF-κB and AP-1 (Hsu et al., 1997; 

Marsters et al., 1997b). By contrast, other studies demonstrated that HVEM activation 

more likely recruits TRAF2 and TRAF5, which are key mediators for the activation of NF-

κB as well as AP-1 (Kim, 2005; Kuai et al., 2003; Marsters et al., 1997b; Nakano et al., 

1996).  

Pasero and colleagues demonstrated that LIGHT-mediated HVEM signalling is able to 

induce cell death in freshly isolated B-CLL tumour cells, while LTβR was not expressed 

or expressed at low levels. The mechanisms responsible for cell death in the B-CLL 

tumour cells related to expression of FasL, p53, Bax, Bid, Bcl-Xs and mitochondrial 

cytochrome c release (Pasero et al., 2009b).  
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Interestingly, it was found that broad caspase inhibition via z-VAD-FMK did not prevent 

apoptosis, suggesting that both intrinsic and extrinsic pathways of apoptosis were active 

(Gross et al., 1999; Korsmeyer et al., 1994; Pasero et al., 2009b). This data suggests 

that despite the co-stimulatory and co-inhibitory role for HVEM during immune 

regulation, HVEM could in fact function as a tumour suppressor if utilised in the correct 

context. However, there is evidence to suggest that the way HVEM modulates cell fate 

might be indirect and more complex than the aforementioned studies suggested (Bechill 

and Muller, 2014). 

1.11.3 DcR3  

Decoy receptor 3 (DcR3) is a secreted protein which is closely related to osteoprotegerin 

(which is a member of TNFRSF) (Simonet et al., 1997) and is classified as a TNFRSF 

member which can bind to several TNFLs, such as LIGHT, FasL and TL1A  (Migone et 

al., 2002; Pitti, 1998) (Table 1.2). Reports demonstrated that DcR3 is expressed in some 

normal tissues including colon, stomach, spleen, lymph node and lung (Hsu et al., 

1996b; Pitti, 1998) and interestingly it is found in serum of rheumatoid arthritis patients. 

DcR3 is also overexpressed in tumours, such as those derived from primary lung, colon 

(SW480), gastrointestinal and hepatocellular, and its overexpression might help tumour 

growth by neutralization of the cytotoxicity and regulatory effects of LIGHT, Fas and 

TL1A  (Migone et al., 2002; Pitti, 1998; Yu et al., 1999) (Figure 1.7).  
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Figure 1.7. TNF and LT associated intracellular signalling pathways  

Schematic representation of TNFL and TNFR interactions and associated signalling, with the upper 
portion showing TNFL expression by an effector cell and lower portion showing TNFR expression by 
target cell. TNFα can be both either membrane-bound or secreted and binds to and activates TNFRI and 
TNFRII, whereas LTα3 exists in soluble homotrimeric form. LTβ is not shed into soluble form and can bind 
with LTα to form LTαβ complexes. Heterotrimeric LTα1β2 binds LTβR and LTα2β1 binds with TNFRI, 
TNFRII as well as LTβR. LIGHT binds LTβR and HVEM as well as soluble receptor DcR3. Arrows indicate 
high affinity interactions, the dotted red arrow indicates possible binding and the dashed lines indicate 
binding with low affinity. TNFR-mediated signalling is triggered via intracellular proteins associating with 
either the death domain (as for TNFRI) or a TRAF binding motif (as for CD40, LTβR). Members of the 
TRAF family are indicated: TRAF1 (purple), TRAF2 (black), TRAF3 (green), TRAF5 (red), and TRAF6 
(blue). The two main signalling axes are JNK and NF-κB (for precise explanations see text). Activation of 
ROS triggers ASK1 and subsequently cell death which can be either caspase-dependent or independent. 
Activation of NF-κB may involve canonical (classical) and noncanonical (alternative) pathways. The 
canonical pathway depends on NIK and activation of trimeric complex of IKKαβγ and phosphorylation of 
IKBα to p50/RelA; the noncanonical pathway of NF-κB is dependent on NIK and IKKα and followed by 
activation of p100/RelB to p52/RelB. The activity of p50/RelA and p52/RelB in the nucleus leads to 
activation of specific gene transcription.  
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1.12 The Lymphotoxin system: ligands  

1.12.1 LTα 

The discovery of LTα came shortly after the discovery of TNF-α. Both ligands are able to 

interact with both TNFR –I and –II receptors, albeit with different affinities (Table 1.2). 

Unlike other TNFRs such as Fas, TRAIL-R or CD40 which almost exclusively have a 

single cognate ligand, the LT system is far more complex with ligands LTα, LTβ, 

LTα1β2, LTα2β1, and LIGHT being able to interact with the two main transmembrane 

receptors LTβR and HVEM, the TNFRs –I and –II as well as the soluble receptor DcR3  

(Ware, 2005) (Figure 1.7). 

LTα is a ligand and often used as a term to describe the biologically active trimer LTα3 

(Ware, 2005; Ware et al., 1996), but can exist in three different forms; soluble 

homotrimeric LTα3, or as two transmembrane heterotrimeric complexes termed LTα1β2 

and LTα2β1 (Tracey et al., 2008). LTα1β2 and LTα2β1 complex formation occurs when 

soluble LTα binds to LTβ bound on the cell membrane. Thus signalling via LTαβ-LTβR 

interaction requires target-effector cell contact (Tracey et al., 2008; Ware, 2005). In 

addition to binding to TNFR, LTα3 may bind HVEM, although this binding has been 

reported to be with low affinity (Mauri et al., 1998). LTα is secreted by activated 

lymphocytes, resting B cells, non-hematopoietic and myeloid lineage cells. Like TNF-α, 

LTα secretion has been found in some immortalised T cell lines including Jurkat and 

Hut78 (Gommerman and Browning, 2003). It is also found to be secreted following 

stimulation of Raji B lymphocytes with phorbol ester (Ware et al., 1992). It has been 

shown that when LTα is mutated at either D50N or Y108F, it will only remain as a 

homotrimer which is not able to bind TNFRI or TNFRII and is not able to induce HT29 

cell apoptosis. The modified LTα ligand, however, co-assembled with LTβ, formed a 

stable ligand heterotrimer complex (LTαβ), which was functionally active and able to 

trigger cell death in the adenocarcinoma cell line due to its capability to bind LTβR 

(Williams-Abbott et al., 1997).  
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In addition, Browning and colleagues reported that the LTα1β2 with mutated LTα was 

functionally active on HT29 and WiDr cells (Browning et al., 1996). Interestingly, over-

secretion of LTα has been associated with an increased risk of bladder, endometrial, 

cervical, prostate, bone, breast and gastric cancer, as well as various lymphomas thus 

overall suggesting it may contribute to carcinogenesis (Niwa et al., 2005; Nonomura et 

al., 2006). Although how LTα increases carcinogenesis is unknown, evidence implies 

this is due to over activation of LTβR and not due to its concomitant ability to activate 

TNFRII (Browning et al., 1996; Degli-Esposti et al., 1997b; Wilson and Browning, 2002; 

Winter et al., 2007; Yang et al., 2007).  

1.12.2 LTβ and LTαβ complexes 

The non-cleavable membrane LTβ ligand is active when homotrimeric and it ligates with 

LTβR (Williams-Abbott et al., 1997) (Figure 1.7). LTβ is known to be expressed in 

splenic naive B cells in the adult spleen, CD4+ T cells, and mature DCs (Edwards et al., 

2003; Junt et al., 2006). Evidence suggests that the expression of LTβ on these 

lymphocytes enhances the immune response, and is also responsible for antiviral 

immunity on non-lymphocytes by facilitating antigen presentation by APCs (Junt et al., 

2006). LTβ remains largely under-researched, not only perhaps due to its lack of 

malignant cell toxicity, but because it mainly assembles with LTα in order to form 

membrane stable complexes of LTαβ (Williams-Abbott et al., 1997) (Table 1.2).  

As in the case of LTβ, the effects of LTαβ complexes (via LTβR activation) remain 

relatively under investigated, despite the ability of LTαβ ligands to induce cytotoxic 

effects in vitro and in vivo (Browning et al., 1996; Williams-Abbott et al., 1997). The 

expression of both LTα1β2 and LTα2β1 complexes is regulated by IL-2, which leads to 

their induction on human peripheral blood T cells (Ware et al., 1992). Interestingly, LTαβ 

ligands exhibit differential receptor binding specificities due to the differences in their 

stoichiometry (Ware, 2005).  
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In murine studies, LTαβ expression shows induction on splenic T cells in response to the 

cytokines IL-4 and IL-7 and the chemokines CCL19 and CCL21 (Browning et al., 1993; 

Luther et al., 2002), but it is still not yet reported how this relates to humans. The 

interaction of LTαβ with its receptor LTβR is also important for the maintenance of the 

gut-associated lymphoid tissues (GALT), including, lymph nodes and Peyer’s patches 

and also for the formation of germinal centres (Gommerman and Browning, 2003; Ware, 

2005). This suggests that the system is important in normal development and immune 

regulation following adulthood. There is a report that LTα1β2 can be secreted following 

its cleavage by ADAM17 metalloproteinase (MMP) and MMP-8 and the soluble form was 

detected in serum of patients with rheumatoid arthritis (Young et al., 2010). Some 

studies have looked at the importance of the LTαβ complexes in signal transduction 

(Androlewicz et al., 1992; Browning et al., 1991; Browning et al., 1995; Ware et al., 

1995; Ware, 2005). Of the two types of LTαβ membrane complexes, recombinant 

LTα1β2 was able to induce cell death in a range of human carcinoma cell lines such as 

HT29 and HT-3 cells in the presence of IFN-γ (Browning et al., 1996).  
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1.12.3 LIGHT 

Lymphotoxin-like exhibits inducible expression and competes with herpes simplex virus 

glycoprotein D for HVEM, HVEM being a receptor expressed on T lymphocytes (LIGHT) 

was identified and classified as a TNFL member when it showed sequence homology 

with TNFα (27%), LTα (27%), LTβ (34%), FasL (31%) and CD40L (26%) (Table 1.2) 

(Mauri et al., 1998). LIGHT is constitutively expressed on myeloid cells, primary 

immature DCs and its expression can be induced on the surface of activated T cells and 

macrophages (Harrop et al., 1998b; Mauri et al., 1998; Morel et al., 2000).  

1.12.3.1 Role of LIGHT in the immune system 

LIGHT can ligate both LTβR and HVEM receptors (and can bind to soluble receptor 

DcR3) (Figure 1.7) to regulate cell proliferation, differentiation and growth inhibition 

(Black et al., 2002; Granger et al., 2001; Mauri et al., 1998). The interaction of LIGHT 

with LTβR and HVEM plays an important role in the induction of positive co-stimulatory 

signals between immune cells as reviewed in detail elsewhere (Steinberg et al., 2011; 

Ware and Šedý, 2011). LIGHT also plays a crucial role in regulating gene expression in 

innate and adaptive immune system against pathogens but also conversely may be 

linked to disease (autoimmunity and cancer) (Gommerman and Browning, 2003).  

Work in transgenic mice showed that LIGHT is important for T cell proliferation and in 

regulation of T cell homeostasis (Wang et al., 2001c). Two further studies in vitro 

showed that LIGHT induces T cell proliferation, IFN-γ secretion and NF-κB activation 

(Tamada et al., 2000a; Tamada et al., 2000b). Morel and colleagues demonstrated that 

LIGHT also cooperates with CD40 ligand (CD154) contributing to DC maturation (Duhen 

et al., 2004; Morel et al., 2001; Pasero et al., 2009a).  
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LIGHT induces the expression of chemotactic molecules (CCL21), adhesion molecules 

such as Mucosal vascular addressin cell adhesion molecule (MAdCAM-1), MIG/CXCL9 

and IP-10/CXCL10 most likely via LTβR signalling (Farber, 1997; Ngo et al., 1999; 

Sharma et al., 2003; Yu et al., 2004). The release of MIG and IP-10 possibly reduces 

tumour angiogenesis and enhances the infiltration of activated tumour antigen-specific T 

cells, which may lead to tumour regression (Tamada et al., 2000a; Yu et al., 2004). A 

study by Petreaca and colleagues demonstrated in a cutaneous wound-healing model 

that LIGHT promotes apoptosis in local macrophages via LTβR in order to reduce 

inflammation (Petreaca et al., 2008).  

Conversely, however, LIGHT may enhance severe inflammation in non-lymphoid tissues 

(Ware, 2005). In vivo, tumours expressing LIGHT have been reported to undergo 

autocrine LIGHT mediated apoptosis thus LIGHT overall has a tumour suppressive 

effect (Zhai et al., 1998). Other studies in mice have also shown that the expression of 

LIGHT caused activation of localised NK cells and the infiltration of cytotoxic CD8 T cell 

lymphocytes (CTL) which assisted tumour eradication (Fan et al., 2006; Yu et al., 2004). 

Mortarini and colleagues further reported that the expression of LIGHT in microvesicles 

attracted and enhanced lymphocytic infiltration (Mortarini et al., 2005). Transfected 

murine fibrosarcoma with stable membrane LIGHT resulted in tumour rejection and 

eradication in vivo and LIGHT expression enhanced the anti-tumour response mainly by 

priming T cells (Tamada et al., 2000b; Yu et al., 2004).  
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1.12.3.2 Role of LIGHT in epithelial cells  

Soluble LIGHT can trigger apoptosis of human tumour cells in vitro but this appears to 

require the presence of IFN-γ (Zhai et al., 1998). The combination of LIGHT/IFN-γ in fact 

has the capacity to cause apoptosis of p53-normal and p53-deficient HT29 

adenocarcinoma cells (Chang et al., 2004; Kim et al., 2004; Walczak and Krammer, 

2000), MDA-MB-231 breast cancer cells (Wu et al., 2003), caspase-3 deficient MCF-7 

breast cancer cells and human hepatoma cells (Chen et al., 2003; Tamada et al., 

2000b). It was reported that LIGHT treatment triggers the activation of caspase-3 with 

concomitant downregulation of anti-apoptotic protein Bcl-2 in HCT116 colorectal 

carcinoma cells (Wang et al., 2013). This is in support of previous studies suggesting 

that the LIGHT/IFN-γ combination induces apoptosis via downregulation of anti-

apoptotic Bcl-2 family members, where the contribution of the Bcl-2 families (pro-

apoptotic and anti-apoptotic) appears to be cell type-dependent (Tamada et al., 2000b; 

Wu et al., 2003).  

Interestingly, LIGHT can ligate with two transmembrane receptors of LT (LTβR and 

HVEM) and one soluble receptor DcR3 (Figure 1.7). A number of studies have 

suggested that the functional outcome of LTβR and HVEM receptor activation by LIGHT 

is dependent on the presence or relative expression levels of these receptors on the 

target cells. Some elegantly performed studies by Ware and colleagues using an HVEM-

selective LIGHT mutant that cannot bind LTβR showed that IFN-γ assisted activation of 

LTβR alone is sufficient and necessary for LIGHT-induced apoptosis in HT29 cells, and 

apoptosis was TRAF3-dependent (Rooney et al., 2000). Interestingly, however, LIGHT-

induced growth inhibition occurs in carcinoma cells MDA-MB-231 and HT29 cells which 

express both receptors LTβR and HVEM, and also LIGHT was not cytotoxic to cells that 

expressed only one of these receptors (Zhai et al., 1998). In that study, LIGHT induced 

growth inhibition in the prostate cancer cell line PC-3 which only expresses LTβR but not 

HVEM. This evidence highlighted two important points: a) LIGHT may not cause cell 

death for target cells expressing one of the receptors LTβR or HVEM, b) LIGHT 

engagement with LTβR or HVEM may trigger different biological mechanism in target 

cells (Zhai et al., 1998).  
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However, such findings contrast previous studies by Pasero et al. (2009b) in cells from 

patients with chronic lymphocytic leukaemia, which suggested that when HVEM is the 

primary available receptor, soluble and mainly membrane-presented LIGHT promoted 

cell death. Interestingly this was found to occur via cross-talk of LIGHT-mediated 

signalling with other TNFSF members, in particular by induction of endogenous TNF-α, 

which enhanced HVEM mediated cell-death.  

Therefore, the effect of LIGHT-induced signalling on cell fate appears complex and 

studies like those discussed above have not only suggested receptor level-related 

effects, but also, as soluble LIGHT does not bind to other TNFRs, e.g. Fas, DR4, or DR5 

shown by in vitro binding assays (Chen et al., 2003), it is possible that indirect signalling 

(via cross-talk) may be important, too.  
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1.13 LT receptor cross-linking and functional outcome  
One fundamental property of the TNFSF that despite its clear importance is very 

rarely highlighted relates to how “signal quality” (i.e. the degree of receptor activation 

or cross-linking) affects or determines the outcome of receptor ligation. There is a 

plethora of reports in the literature clearly indicating that highly cross-linked agonistic 

antibodies, cross-linked soluble recombinant ligands and particularly membrane-

presented ligand (achieved by co-culture of target cells with growth-arrested, ligand-

expressing third-party cells) induce a greater extent of carcinoma cell death in vitro in 

comparison to non-cross-linked agonists.   

Studies in the CD40 system have demonstrated how ligand valency, and 

consequently the extent of receptor cross-linking, can dictate cell death against 

survival signals (Bugajska et al., 2002). Specifically in carcinoma cell lines, 

membrane-presented CD40 ligand (mCD40L), but not soluble agonists (e.g. 

sCD40L), induces high level of pro-inflammatory cytokine secretion and causes 

extensive cell apoptosis (Bugajska et al., 2002; Engels et al., 2005; Zapata et al., 

2001), whilst remaining a tumour-cell specific death signal (Bugajska et al., 2002; 

Shaw et al., 2005). CD40 activation can induce downstream signalling pathways of 

both pro- and anti-apoptotic nature; this is entirely dependent on the type of tumour 

and the state of differentiation of the target cells (Elgueta et al., 2009; Korniluk et al., 

2014; Tong and Stone, 2003). This is not a unique property of CD40, for instance it 

has been reported that mTNF-α generates higher cytotoxicity than soluble ligand in 

certain tumour cell lines leading even to necrotic cell death (Ardestani et al., 2013b).   

In the context of LT signalling, the majority of previous studies have focused on the 

activation of LTβR, and to a lesser extent on HVEM, by soluble LT agonists. It is well 

established in carcinoma cell lines that cross-linking of LTβR in Hep3BT2, HeLa and 

HEK293 cells by soluble mutein LIGHT (LIGHT-R228E), which activates LTβR, and 

agonistic anti-LTβR monoclonal antibody (clone 31G4D8) were able to induce cell 

death in these cells (Chen et al., 2003; Rooney et al., 2000). Degli-Esposti and 

colleagues (1997b) reported that cross-linking of LTβR with immobilized agonistic 

anti-LTβR monoclonal antibody (M12) induced secretion of IL-8 and RANTES in 

A375 cells, but not cell death, and similar observations were made with membrane-

bound LTβ and LTαβ (ligands for LTβR).  
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On the other hand, Browning and colleagues (1996) demonstrated that immobilised 

agonistic monoclonal antibody anti-LTβR (CBE11) induced cell death efficiently for 

HT29, WiDr, MDA-MB-468 and HT-3 better than when the agonist was added to 

cultures in non-cross-linked form. Importantly, the activation of LTβR was more 

enhanced when the same agonistic antibody was engineered and converted into an 

IgM-like oligomer and thus delivered in pentameric form (CBE11p). The pentameric 

agonistic antibody was shown to inhibit cell proliferation and induced cell death for 

HT29 in the presence or absence of IFN-γ to a greater extent than did the monomeric 

mAb form CBE11 (Lukashev et al., 2006).  

Interestingly, soluble recombinant LTα1β2 (another ligand for LTβR) was toxic when 

combined with IFN-γ in adenocarcinoma cell lines (Browning et al., 1996) and these 

studies by Browning and colleagues using different cross-linked forms of LT ligands 

(e.g. LTα1β2) and antibodies for LTβR activation have provided some evidence for 

the importance of the degree of receptor cross-linking in functional outcome for a 

number of cell lines in vitro. Of note also, there is evidence that cross-linking of 

HVEM receptor in CLL-derived cells (showing weak or no expression of LTβR) with 

agonistic antibody could induce downstream signalling involving pro- and anti-

apoptotic proteins, which was more enhanced when LIGHT was presented in a 

membrane-bound form (Pasero et al., 2009b). Moreover, recent studies by Bechill et 

al. (2014) have demonstrated that LTβR and HVEM in HeLa and HT29 cells 

activated by membrane-bound LIGHT (via target cell co-culture with CHO cells 

expressing LIGHT ligand) or mutant LIGHT (LIGHT-R228E) in the presence of IFN-γ 

induced high levels of secretion of the CXCL10 chemokine. 

An interesting, yet related, aspect of the LT system is the clear requirement for 

synergy with IFN-γ for the induction of apoptosis. There is evidence that when LT 

receptor activation by LIGHT is combined with IFN-γ this enhanced LIGHT 

cytotoxicity (Zhai et al., 1998), in accordance with studies that cross-linking LTβR 

alone with soluble LIGHT in presence of IFN-γ is sufficient to induce cell death 

(Rooney et al., 2000). The studies by Bechill et al. (2014) showing that in HeLa and 

HT29 cells LIGHT/IFN-γ induced a higher level of cytokine secretion compared with 

LIGHT treated cell alone further support this notion.  
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Therefore, there is an emerging picture that although the activation of LT receptors 

(LTβR and/or HVEM) requires the synergistic action of IFN-γ to induce adequate 

cytotoxicity, membrane-presented agonist may engage the apoptotic pathway more 

effectively thus negating the need for IFN-γ synergy. These observations on the 

importance of the quality of the signal in determining functional outcome following LT 

system-triggered signalling demonstrate intriguingly clear parallels with the mode of 

operation of the CD40/CD40L dyad, where membrane-bound agonist provides a 

stronger pro-apoptotic signal that overrides anti-apoptotic mechanisms (Bugajska et 

al., 2002; Georgopoulos et al., 2006).  

This complexity is evident at the signal transduction level as well as the level of 

receptor activation. For instance, there is clear difference between the ability of TNF 

agonists to trigger cell signalling when presented in a soluble versus membrane-

bound form. Often soluble agonists lack cytotoxic potency when administrated as a 

single treatment (without synergism by co-treatment with cytokines) yet membrane-

presented ligands are superior. And although such studies have been informative to 

a great extent, the use of a variety of ligand/agonist format (soluble or membrane) 

between different studies per se often makes it difficult to form a collective 

understanding into the function of the ligand.  

Moreover, there is often a lack of consistency when it comes to the cell models used 

to study the functional role of receptor-ligand interactions. This perhaps may explain 

some of the inconsistencies evident in the literature. It is thus essential that well-

characterised in vitro models (e.g. cell lines representative of tissues of origin) are 

employed to study the role of TNFRs mainly LT receptors. Equally, it is important that 

the effect of LT receptors signalling is also tested in the normal counterparts of such 

cells to examine tumour cell specificity.  
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1.14 Aims and objectives  

The effect of LTβR and HVEM ligation by LT agonists and membrane-bound LIGHT 

(mLIGHT) in well-characterised in vitro models (e.g. cell lines representative of 

tissues of origin) has not yet been investigated. The main aim of this thesis was to 

investigate the effects of LT agonists on a panel of carcinoma cells of colorectal 

(CRC) and bladder (UCC) origins and compare the ability of these agonists to induce 

cell death to mLIGHT. Moreover the project investigated the molecular mechanisms 

of mLIGHT-mediated apoptosis.  

More specifically: 

• Chapter Three: The effects of LTβR and HVEM activation triggered by LT 

agonists (receptor-specific anti-LTβR – BS-1) and soluble ligand (LIGHT) on 

carcinoma cell lines were investigated using a number of assays for detection 

of cell death, such as cell viability assay (MTS), CytoTox-Glo and flow 

cytometry. 

• Chapter Four: Establishment and optimisation for a co-culture system to 

activate LTβR and HVEM by mLIGHT (co-culture target cells with growth-

arrested third party L cells expressing mLIGHT). Several assays were 

performed to detect cell death, caspase activity, DNA fragmentation and 

cytokine secretion. 

• Chapter Five: Using the co-culture system for induction of mLIGHT-mediated 

cell death, immunoblotting techniques and functional inhibition experiments 

(using specific pharmacological inhibitors) were carried out to determine early 

events in LT-associated signalling. 

• Chapter Six: Based on the co-culture system, immunoblotting techniques for 

pro-apoptotic mediator detection, pharmacological inhibitors, flow cytometry 

and CytoTox-Glo, reactive oxygen species (ROS) detection and inhibition, 

caspase inhibitors and RNA interference (RNAi) were utilised to determine the 

nature of the mLIGHT-associated apoptotic pathways. 
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Chapter 2 

Materials and Methods 
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2.1 Cell culture  

All tissue cultures were set using aseptic techniques under a HEPA filtration 

CellGarda microbiological safety class II cabinet manufactured by NUAIRE (Triple 

Red Technologies). To avoid any possible contamination, all cell culture working 

areas of the cabinet were cleaned before and after use with diluted ethanol 70% 

(w/v). For a monthly routine sterilisation, the hood was disinfected by using Mikrozid® 

(Gompel Healthcare). Contaminated and unwanted cells and solutions were treated 

with 10% (w/v) Virkon for at least 30mins before removal to a domestic waste drain. 

For centrifugation, a Hettich Zentrifugen Universal 320 bench top centrifuge was 

used for cell isolation and freezing, and the cell suspension was spun for 5mins at 

1200rpm. Cells were then incubated at 37°C in 5% (v/v) CO2 conditions in a 

humidified atmosphere in an incubator manufactured by NUAIRE (Triple Red 

Technologies). 

2.2 Growth medium  

All cells, with the exception of normal human urothelial (NHU) cells, were maintained 

in a 1:1 (v/v) mixture of Dulbecco’s Modified Eagle Medium (DMEM) (Gibco-BRL) 

and Roswell Park Memorial Institute (RPMI-1640) medium (Sigma-Aldrich), 

supplemented with 5% (v/v) of foetal Bovine Serum (FBS) and 1% (v/v) (2mM) L-

Glutamine (Sigma-Aldrich), and this medium was named DR 5%. Normal Human 

Urothelial (NHU) cultures were established in a keratinocyte serum free medium 

(KSFM), and supplemented with 50µg/mL bovine pituitary extract and epidermal 

growth factor (EGF). Growth medium and supplements are detailed in Table 2.1.  
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Culture medium Cat. No Application Supplier 
DMEM (high glucose) with sodium 
bicarbonate, without L-Glutamine 

D6546-6X500ML Growth medium Sigma-Aldrich 

RPMI-1640 with sodium bicarbonate, 
without L-Glutamine 

R0883-6X500ML Growth medium Sigma-Aldrich 

Foetal bovine serum (FBS) 500ml 
(qualified foetal bovine serum) – (FBS) 

F7524-500ML Supplements Sigma-Aldrich 

L-Glutamine 200mM solution G7513-100ML Supplements Sigma-Aldrich 
Keratinocyte-SFM Medium  VX17005075 Growth medium Fisher scientific  
Supplements for keratinocyte-SFM 13028-014 Supplements  Fisher scientific 
DPBS (10x concentrated) liquid 500ml 14200-067 Cell washing  Invitrogen 
Trypsin-EDTA solution 0.25% T4174-20ML Cell detachment  Sigma-Aldrich 
HANKS'  balanced salt solution H9394-6X500ML Cell detachment  Sigma-Aldrich 

Table 2.1. Growth medium, supplements and other reagents  
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2.3 Cell lines 

2.3.1 Normal Human Urothelial (NHU)  

Normal human urothelial (NHU) cells were kindly provided by Professor Jenny 

Southgate (York University). NHU cells were isolated and maintained in complete 

KSFM and incubated at 37°C in 5% (v/v) CO2, as previously described (Crallan et al., 

2006; Southgate et al., 2002). 

2.3.2  Carcinoma cell lines   
Three urothelial cell carcinoma (UCC) derived cell lines were studied: RT4, RT112 

and EJ. RT4 represents well-differentiated papillary non-invasive. RT112 cells are 

moderately differentiated malignant non-invasive cells, whereas EJ is a model of an 

undifferentiated highly invasive malignant UCC cell line (Crallan et al., 2006). Also, 

three colorectal cell carcinoma (CRC) derived tumour cell lines were used that were 

HT29, SW480 and HCT116. HT29 and SW480 cells represent colon 

adenocarcinomas, whereas HCT116 are colon carcinoma cells. CRC cell lines were 

purchased from Sigma-Aldrich (depositor from ATCC) as shown in Table 2.2. CRC 

cells were maintained in recommended medium and then were adapted gradually in 

DR 5%. Cultured cells were incubated at 37°C and 5% (v/v) CO2 until these reached 

a confluency of approximately 80% and were then harvested (for more details see 

the cell detachment and sub-culturing section 2.7) for cell expansion. Stocks were 

frozen in liquid nitrogen for future work. 
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2.3.3 LTK murine fibroblast (L cells) 

LTK murine fibroblasts (L cells) transfected with human cDNA encoding LIGHT 

(LIGHT-transfected L cells) were kindly provided by Professor Daniel Olive, Cancer 

Research Centre of Marseille (CRCM, France); these cells were named mLIGHT-L 

cells. Non-transfected L cells (NT-L-cells) were also used in this study as control cells 

(Table 2.2). To simplify the work, both cell lines were gradually adapted in a DR 

medium supplemented with 10% (v/v) FBS, 1% (v/v) L-Glutamine, with the addition of 

1mg/mL Hygromycin (Invivogen cat # ant-hm-5; supplied by Source Bioscience) for 

mLIGHT-L cells (in order to maintain transgene expression).  

Cell lines Tissue type Cancer type  
HT29 Epithelial CRC/Adenocarcinoma 
SW480 Epithelial CRC/Adenocarcinoma 
HCT116 Epithelial CRC/Carcinoma 
RT112 Epithelial  UCC/Carcinoma 
EJ Epithelial UCC/Carcinoma 
NT-L Fibroblast N/A 
mLIGHT-L  Fibroblast N/A  

Table 2.2. Epithelial and fibroblast cell lines  
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2.4 Soluble agonists     

Agonistic antibody (tetravalent LTβR agonistic BS-1 antibody) specific for LTβR 

activation and soluble ligands (human recombinant LIGHT) were used to activate 

LTβR and HVEM. Recombinant cytokines IFN-γ and TNF-α were used for some 

experiments as presented in Table 2.3. All agonistic antibodies and soluble ligands 

were aliquoted and stored at -20°C according to the manufacturer’s instructions. 

Reagents Cat Target  Supplier Stock 
conc. 

Optimal 
conc. 

MOPC-21 N/A Non-
specific  

A kind gift from Biogen Idec 
– USA  

3.3mg/mL 10µg/mL 

BS-1 N/A LTβR 
receptor 

A kind gift from Biogen Idec 
– USA  

5mg/mL 30µg/mL 

LIGHT Human 
Recombinant 

167310-
09B-B 

LTβR and 
HVEM  

Tebu-bio 15µg 1µg/mL 

IFN-γ Human 
Recombinant 

167300-
02-B 

IFN-γ 
receptor  

Tebu-bio 20x106 Unit 180U/mL 

TNF-α Human 
Recombinant 

167300-
01A-B  

TNFRI and 
TNFRII  

Tebu-bio 20x106 Unit 1000U/mL 

Table 2.3. Soluble agonists: agonistic antibodies and soluble ligands 

 

 

 

 

 

 

 

 

 

 

 

http://www.tebu-bio.com/Product/167300-02-B
http://www.tebu-bio.com/Product/167300-02-B
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2.5 Pharmacological inhibitors 

Functional inhibitors used included cycloheximide (CHX) to inhibit general protein 

synthesis (Sigma-Aldrich). Inhibitors for caspase-3 (z-DEVD-FMK), caspase-8 (z-

IETD-FMK), caspase-9 (z-LEHD-FMK), caspase-10 (Z-AEVD-FMK) and pan-

caspase (z-VAD) were all purchased from R&D Systems. MAPK kinase inhibitors for 

JNK, p38, MEK and NF-κB were purchased from Santa Cruz. All inhibitors were 

dissolved in DMSO and solvent control (vehicle) controls were included in all 

experiments. The antioxidant inhibitors used were NAC and DPI and were purchased 

from Sigma-Aldrich. Optimal concentrations were obtained after the chemical 

inhibitors were pre-titrated. Dose-response experiments were performed using the 

CellTiter 96® AQueous One Solution Cell Proliferation assay. Table 2.4 lists all 

inhibitors used in this study.  

 

Inhibitors  Cat Target  Supplier Stock 
conc. 

Optimal 
conc. 

Cycloheximide 
(CHX) 

C4859-1ML Cell protein 
synthesis 

Sigma-Aldrich 100mg/mL 0.05-0.1µg/mL 

z-DEVD-FMK FMK004  Caspase-3&7 R&D systems 20mM 50-100µM 

z-IETD-FMK FMK007 Caspase-8 R&D systems 20mM 50-100µM 
z-LEHD-FMK FMK008 Caspase-9 R&D systems 20mM 50-100µM 
z-AEVD-FMK FMK009 Caspase-10 R&D systems 20mM 50-100µM 
z-VAD-FMK FMK001 All caspases  R&D systems 20mM 50-100µM 
SP600125 sc-200635 JNK Santa Cruz 100mM 5-10µM 
SB202190 sc-202334B p38 Santa Cruz 200mM 25µM 
U0126 sc-222395A MEK/ERK Santa Cruz 100mM 10-20µM 
NF-κB 
Activation 
inhibitor III 

sc-204818 NF-κB Santa Cruz 100mM 5µM 

NAC A7250-5g ROS Sigma-Aldrich 20mM 1.25-2.5mM 
DPI D2926-10MG NADPH 

oxidase  
Sigma-Aldrich 30mM 0.01562- 

0.03125μM 

Table 2.4. Common pharmacological inhibitors  
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2.6 Reagents and antibodies 

Different antibodies were used to detect the protein of interest. For example, surface 

protein expression was detected by flow cytometry (Table 2.5a), or total protein 

expression or phosphorylated proteins was detected by western blotting (Table 2.5b). 

Secondary antibodies were applied when unconjugated primary antibodies were 

used (Table 2.5c). 

a.  

Ab/format Cat#/Clone Host Reactivity Application Supplier 
TNFRI(CD120a)-
Purified  

550514/mAb 
TNFRI-B1 

Mouse  Human  FC BD 
Bioscience  

TNFRII (CD120b)-
PE 

552418/hTNFR-M1 Rat  Human FC BD 
Bioscience 

IgG1-isotype control 
PE 

556650/MOPC-21 / N/A FC BD 
Bioscience 

CD40-PE 555589/5C3 Mouse  Human  FC BD 
Bioscience 

CD54 / (ICAM-1) 
PE 

555511/HA58 Mouse  Human FC BD 
Bioscience 

LIGHT/CD258-PE FAB664P/115520 Mouse  Human  FC R&D System 
HVEM/CD270-PE MAB356/94801 Mouse  Human  FC, WB, 

ELISA 
R&D System 

HVEM/CD270-PE 318806/122 Human  Human FC Biolegend 
LTα (TNF-β) PE 554556359-81-11 Mouse  Human  FC BD 

Bioscience 
LTβR-PE 551503/hTNFR-

RP-M12 
Mouse  Human FC BD 

Bioscience 
Annexin V-FITC 556547 N/A N/A FC BD 

Bioscience 
Propidium Iodide 556547 N/A N/A FC BD 

Bioscience 

http://www.bdbiosciences.com/ptProduct.jsp?prodId=23302&key=556650&param=search&mterms=true&from=dTable
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b.  

 

Antibody  Cat/Clone Host Reactivity  Dilution Application MW Supplier  
HVEM  MAB356/94801 Mouse  Human 1:500 in 0.1% Tween20 WB ~50 R&D Systems 
TRAF1  sc-7186/(H-186) Rabbit Human 1:500 in 0.1% Tween20 WB 52 Santa Cruz Biotechnology  
TRAF2  sc-876/(C-20) Rabbit Human 1:500 in 0.1% Tween20 WB 50 Santa Cruz Biotechnology 
TRAF3  sc-949/(C-20) Rabbit Human 1:500 in 0.1% Tween20 WB 65 Santa Cruz Biotechnology 
TRAF5  sc-7220/(H-257) Rabbit Human 1:500 in 0.1% Tween20 WB 55 Santa Cruz Biotechnology 
TRAF6  sc-8409/(D-10) Rabbit Human 1:500 in 0.1% Tween20 WB 60 Santa Cruz Biotechnology 
Phospho-p44/42 
MAPK (Erk1)/(Erk2) 

5726S (D1H6G) Mouse Human 1:1000 in 5% w/v non fat 
dry milk, 0.1% Tween20 

WB 42-44 Cell Signalling 

Phospho-JNK/SAPK 
(Thr183/Tyr185) 

9255S Mouse Human 1:1000 in 5% w/v non fat 
dry milk, 0.1% Tween20 

WB 46-54 Cell Signalling 

Phospho-p40phox 
(Thr154) 

4311 Rabbit Human 1:1000 in 5% w/v non fat 
dry milk, 0.1% Tween20 

WB 40 Cell Signalling 

Phospho-ASK-1 
(Thr845) 

3765S Rabbit Human  1:1000 in 5% w/v BSA, 
0.1% Tween20 

WB 155 Cell Signalling 

Phospho-p38 MAPK 
(Thr180/Tyr182) 

4511P Rabbit Human 1:1000 in 5% w/v BSA, 
0.1% Tween20 

WB 43 Cell Signalling 

Thioredoxin 1 2285S Rabbit  Human  WB 12 Cell Signalling 
Bax  2282-MC-100/YTH-

2D2 
Mouse  Human  1:500 in 0.1% Tween20 WB 21 R&D Systems 

Bak AF816 Rabbit  Human  1:500 in 0.1% Tween20 WB 28 R&D Systems 
Anti-β-actin  A5441/AC15 Mouse Human  1:10.000 in 0.1% Tween20 WB 42 Sigma-Aldrich  
Anti-Cytokeratin 8  [X] 18-0185Z/ C51 Mouse Human  1:1000 in 0.1% Tween20 WB 52.5 Invitrogen 
Anti-Cytokeratin 18  C 8541/CY-90 Mouse Human  1:1000 in 0.1% Tween20 WB ~50 Sigma-Aldrich  
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c.  

Table 2.5. Flow cytometry and immunoblotting antibodies   

 

Antibody  Cat#/Clone Host Reactivity  Dilution Application Supplier  
Goat anti-mouse 
IgG,  Alexa Fluor 680 
conjugate 

A-21084 Goat Mouse  1:10.000 in 0.1% Tween20 WB Invitrogen  

Goat anti-rabbit IgG 
conjugated (IRDye 
800) 

039611-132-122 Goat Rabbit  1:10.000 in 0.1% Tween20 WB Tebu-bio 
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2.7 Cell detachment and sub-culturing  

In order to establish cell cultures, all solutions were warmed at room temperature. 

Cultures that reached confluency of approximately 80% were harvested by the 

removal of cultured medium through an aspirator. Subsequently, cultured cells were 

incubated with 0.1% (w/v) in ethylenediaminetetraacetic acid (EDTA) in PBS for 3-

5mins at 37°C (to remove residual FBS and break calcium mediated contacts 

between neighbouring cells) and this is only applied for NHU and epithelial 

carcinoma cells. Recipe for EDTA preparation can be found in Appendix I. Fibroblast 

cells were washed with 1x PBS (to remove any remaining FBS-containing medium). 

The PBS/EDTA or 1x PBS solution was aspirated and cells were incubated with 

Hank’s buffered salt solution containing 0.25% (w/v) trypsin and 0.02% (w/v) EDTA 

[250 and 750µL for T25cm2 tissue culture flasks and T75cm2 tissue flasks, 

respectively] (Table 2.6) for 3mins at 37°C in 5% (v/v) CO2 (or until cells detached 

from the culture flask). Trypsin was neutralised by the addition of KSFM containing 

1% (v/v) FCS for NHU or addition of standard growth medium for carcinoma and 

fibroblast cells to achieve cell suspension, and then transferred to a universal tube to 

perform centrifugation and to pellet the cells. Cell centrifugation was performed at 

1200rpm for 5mins to remove any traces of trypsin. Supernatants were discarded by 

aspiration and fresh medium was added to the pelleted cells, cell suspension was 

well-mixed and appropriate splitting ratio was performed.  

Cells were imaged by using an EVOS™ XL Core inverted microscope (PeqLab) on a 

daily basis. Images were taken by using a 100x immersion objective lens with an 

embedded operating system with image software for image capture. There was a 

routine passage system during this study, NHU cells sub-culturing passages involved 

3 passages and 6-8 passages were performed for epithelial carcinoma and fibroblast 

cells. Following that fresh cultures were used. 
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2.8 Cell counting  

Briefly, after cell centrifugation, cells were resuspended in growth medium and then 

diluted at an appropriate ratio (usually 1:5) with growth medium. When cell 

suspension was not being manipulated, this was incubated at 37°C and 5% (v/v) CO2 

at a humidified atmosphere. Cells were counted manually by using a 

haemocytometer (Neubauer-Improved Chamber) (Table 2.6) and, only bright, healthy 

cells were counted. The following formula was used to calculate the cell number per 

mL:  

                   Cells No/mL = Average counted cells in 4 squares x dilution factor x 104 

2.9 Cell cryopreservation  

For cell cryopreservation, cultured cells were harvested (as described above) and 

collected by centrifugation at a 1200rpm for 5mins. The cell pellet was                  

resuspended in the appropriate volume of freezing medium, (ice-cold growth medium 

consisting of 10% (v/v) FBS and 10% (v/v) dimethylsulphoxide (DMSO)) at a cell 

density not less than 1x106 cells/mL (for epithelial cells). The freezing medium of NT-

L cells and mLIGHT-L cells was different to the freezing medium was used for 

epithelial cells; it consisted of 90% (v/v) FBS and 10% (v/v) DMSO, as these cells 

would not recover when frozen in freezing medium of epithelial cells. Cells were 

aliquoted in a total of 1mL to polypropylene cryovials and then transferred to an ice-

cold Nalgene “Mr Frosty” (Fisher, UK) containing 250mL of isopropanol (Fisher) to 

control the cooling rate to 1°C/minute (Table 2.6). Cells were cryopreserved and 

stored gradually at first in -20ºC and then -80°C (for at least 4hrs and usually 

overnight), and on the second day were placed and stored in liquid nitrogen 

(Statebourne Storage Dewar, at -196°C) for long term storage.  
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For thawing cryopreserved cells, frozen vials were thawed partially until only a portion 

of the contained solution was still in ice form. Then the liquid/ice mix (drop by drop 

with growth medium) was transferred rapidly in a 10mL volume of growth medium 

and spun at 1200rpm for 5mins at room temperature (this was to remove any DMSO 

from the medium). The supernatant was discarded and fresh medium was added and 

mixed with the cell pellet, and then cultured in either T25 or T75 tissue culture flasks 

for cell growth as usual (Table 2.6). On the following day, the cultured medium was 

replaced with fresh medium to enhance cell recovery. 

Item Cat Application Supplier 
Haemocytometer MNK-420-010N Cell counting Fisher 
Haemocytometer spare 
chambers 

MNK-504-030M Cell counting Fisher 

T25cm2 Tissue culture flask 83.1810.002 Cell growth Sarstedt 

T75cm2 Tissue culture flasks 83.1813.002 Cell growth Sarstedt 

Nalgene Mr frosty CRY-120-010T Cell cryopreservation  Fisher 

Polypropylene cryovials 72.38 Cell cryopreservation Sarstedt 

Table 2.6. Tissue culture materials    
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2.10 Cell transfection with siRNAs 

Gene silencing or short interfering (siRNA) is a technique used for down-regulating 

the specific expression of genes in living or mammalian cells by introducing a 

complementary RNA (a double-stranded RNA) that degrades the mRNA of interest. It 

has been reported that the optimal siRNA molecule contains 21 base pairs (bp), 

which can be used to transfect mammalian cells (Elbashir et al., 2001a; Elbashir et 

al., 2001b).  

To knockdown the expression of LTβR or HVEM, Accell SMARTpool siRNAs 

(Dharmacon, supplied by Fisher) were used that can target three sequences 

simultaneously of each of protein expression as described below (Table 2.7). 

a.  

Reagents Cat Target  Supplier Stock 
conc. 

Optimal conc. 

RNA free water B-003000-WB-
100 

Diluent  Fisher N/A N/A 

5x siRNA buffer B-002000-UB-
100 

Diluent  Fisher N/A N/A 

DharmaFECT 2 
Transfection 
Reagent 

T-2002-01 Cell 
membrane  

Fisher  N/A N/A 

Accell Human 
LTβR siRNA, 
SMARTpool 

E-008023-00-
0005 

LTβR Dharmacon 5nmol 100nM 

Accell Human 
HVEM siRNA, 
SMARTpool 

E-008096-00-
0005 

HVEM Dharmacon 5nmol 100nM 
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b.  

Target 
mRNA 

Accell Human SMARTpool siRNA Target Sequence  

 
LTβR 

A-008023-14 GCAUGAAGAUGAAAUUAUA 
A-008023-15 CAAGUGUAUUUAUAUUGUA 
A-008023-16 CCCAUUUCUGGAGAUGUUU 
A-008023-17 GCCCAAGGAACCAAUUUAU 

 
TNFRSF14 
(HVEM) 

A-008096-13 UCGUCAUCGUCAUUGUUUG 
A-008096-14 GUGUGGUGUUUAGUGGAUA 
A-008096-15 CUCCUGUUUUCUAUUUGUC 
A-008096-16 GGAGGAUGUAAAUAUCUUG 

Table 2.7. siRNA molecules and their target sequences for LTβR and HVEM 
expression knockdown  
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2.10.1 siRNA delivery  

Cell knockdown for the surface expression of LTβR and HVEM is difficult to achieve 

efficiently. The successful delivery of the siRNA depends on the cell type, because 

different cell types have varying sensitivities to the introduction of nucleic acids or 

siRNA. In addition, successful transfection requires careful optimisation of conditions, 

so a series of optimisations were performed to determine the conditions that would 

provide effective knockdown and maintain levels of cell death for co-cultured cells. 

Therefore, both improved protein knockdown and cell death were considered during 

optimisation experiments, and described in the following sections.    

2.10.2 siRNA preparations  

Dharmacon transfection reagents were used to deliver siRNA into cultured 

mammalian cells in 96-well plates. Tubes containing siRNA were briefly centrifuged 

to ensure the siRNA pellet was collected at the bottom of the tube. siRNA was 

resuspended in RNase-free 1x siRNA buffer (prepared as a mix of four volumes of 

sterile RNase-free water with one volume of 5x siRNA buffer) to achieve the desired 

final concentration at 20µM. The solution was pipetted gently up and down 3-5 times 

and placed on an orbital shaker for 30mins at room temperature to ensure solution 

homogeneity. Then the solution was aliquoted in RNase and DNase free eppendorf 

tubes and stored in -80C. 

For siRNA preparations (LTβR siRNA and HVEM siRNA), the working solution was 

prepared, and the siRNA solution (stock 20µM) was mixed with an appropriate 

volume of serum-free medium KSFM (to make a concentration of 100nM) and 

pipetted gently up and down 4-5 times before incubation for 5mins at room 

temperature. In a separate tube, each 2µL of DharmaFECT transfection reagent was 

diluted with 1mL of KSFM (as transfection in serum-free medium was necessary), 

gently pipetted and incubated for 5mins. After the incubation time, the contents of 

both tubes were mixed and pipetted carefully up and down 4-5 times and further 

incubated for 20mins at room temperature. This achieved the final concentration 

50nM of siRNA  and 1µL/1mL of transfection reagent. 
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2.10.3 Transfection optimisation  

After reagent preparations, the cell transfection step was performed, where the 

culture medium was removed from the 96-well plate and 100µL of appropriate 

transfection working medium was added to each well. Plates were incubated at 37°C 

in 5% (v/v) CO2 for 24hrs. Three methods of transfection were attempted for co-

cultured cells, and discussed in the following sections. 

2.10.4 siRNA transfection using manufacturer’s protocol 

Target cells were seeded in a 96-well plate and incubated overnight at 37°C in 5% 

(v/v) CO2 On the second day, the culture medium was aspirated and replaced with 

the prepared transfection reagent (as mentioned above) and incubated for 24hrs at 

37°C for the purpose of successful transfection. On the following day, the transfection 

reagent was removed and MMC-treated effector cells were added to the growth 

medium, and post-ligation was conducted. Cells were incubated at 37°C in 5% (v/v) 

CO2 for 72hrs. After the incubation time, cell death of non-transfected and transfected 

cells was detected by the CytoTox-Glo assay.      

2.10.5 Modified protocol for siRNA delivery 

Two methods of transfection optimisation were performed, where cells were 

transfected either twice with siRNA (conc. 50nM) or transfected once with a double 

concentration of siRNA (100nM). Transfection with 100nM of siRNA enhanced 

silencing in protein expression, LTβR or HVEM, as detected by flow cytometry. The 

first method involved a number of cells being split or cultured before transfection, and 

cells were about 40-60% confluent on the day of transfection. Transfection reagents 

were prepared, and the culture medium was removed and replaced with the 

transfection reagent. Cells were incubated for 24hrs at 37°C in 5% (v/v) CO2. After 

the incubation time, the transfection reagent (siRNA conc. 50nM) was replaced with 

growth medium, and cells were placed in the incubator overnight to grow. On the 

following day, cells were split 1:2 and grown for 24hrs. A second transfection (siRNA 

conc. 50nM) was carried out for 24hrs, and after incubation time the cells were 

harvested and co-cultured with effector cells for 72hrs.  
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To achieve effective siRNA delivery into cultured mammalian cells, an appropriate 

number of target cells was seeded in a T25 flask for overnight at 37°C in 5% (v/v) 

CO2. On the second day, the culture medium was aspirated and replaced with 

prepared transfection reagent (conc. 100nM) and incubated for 24hrs at 37°C. In the 

meantime, MMC-treated effector cells were seeded in 96-well plate and incubated 

overnight at 37°C in 5% (v/v) CO2. On the following day, the transfection reagent was 

removed from flasks, and target cells were harvested, counted and co-cultured with 

MMC-treated effector cells. Cells were incubated at 37°C in 5% (v/v) CO2 for 72hrs. 

After the incubation time, the cell death of non-transfected and transfected cells was 

determined by the CytoTox-Glo assay.      

2.11 Flow cytometry  

Flow cytometry is a technique primarily used to identify specific extracellular or 

intracellular proteins on live or dead labelled cells using a fluorochrome conjugated 

antibody which can be detected by passing the cell suspension through the flow 

cytometer. The fluorescent signal is proportional to the level of expression. For 

successful assessment for expression of surface proteins, in all experiments matched 

isotype control fluorochrome either fluorescein isothiocyanate (FITC) or 

Phycoerythrin (PE) was used to determine cell background. Also, cells were labelled 

with a fluorescent marker of the protein of interest. The fluorescence intensity emitted 

by cells corresponds to the quantity of binding sites for the fluorescent antibody on 

the cells. So the more levels of protein expression there are, the more fluorescence 

is emitted, and therefore the higher on the fluorescence intensity scale the data 

appears in comparisons to fluorescence intensity scale of background data (isotype 

control). In some experiments, median fluorescence intensity (MFI) was calculated 

for cell background (matched isotype control) and the protein of interest that has 

been examined.   

Experiments were performed to detect the expression of lymphotoxin receptors on 

the cell surface of NHU and tumour cells. Cells were labelled with conjugated or non- 

conjugated monoclonal antibodies (mAbs). Appropriate isotype control (isotype 

controls such as, PE or FITC) was included. mAbs against any specific protein were 

added per test tube. Test tubes were vortexed very well and incubated for 25-30mins 

at 4°C in the dark conditions. Samples were protected from light during incubation to 
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avoid bleaching the fluorochrome of the conjugated antibodies. After incubation, 

labelled cells were washed with FACS buffer (PBS/1% (v/v) FBS) and centrifuged at 

1500rpm for 5mins. After centrifugation, the supernatant was discarded and cells 

were resuspended in 300 or 400µL of FACS buffer. Samples were analysed on a 

Millipore Guava EasyCyte flow cytometer and 5,000 to 10,000 events were routinely 

acquired. Using gating on live and healthy cells, the results were analysed using 

InCyte2.6 Guava software (Millipore).  

 

2.12 LT receptor cross-linking   

For LT receptor activation, three approaches were used (to activate LTβR alone or 

activate both LTβR and HVEM on target cells) as described below: 

1. Incubation of target cells with soluble agonists; 

a. Agonistic antibody BS-1. 

b. Soluble recombinant trimeric ligand LIGHT. 

2. Co-culture of target cells with fibroblast cells that were transfected to 

constitutively express membrane-presented ligand LIGHT (mLIGHT). 

Cells were incubated at 37°C in 5% (v/v) CO2 for the indicated times, and the effects 

of soluble agonists and mLIGHT were determined by using several assays as 

discussed in the following section.   
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2.13 Determination of cell death  

Cell death of treated cells was measured by utilising various assays as explained 

below, but before explaining these assays, it is essential to address the steps of cell 

treatments and the co-culture system.  

1- For cell treatment with soluble agonists, cells were seeded in 96-well plates 

and treated with either soluble a) agonistic antibody (BS-1 – to activate only 

one receptor LTβR) or b) soluble ligand (LIGHT – to activate both receptors 

LTβR and HVEM) in the absence or presence of IFN-γ. In some experiments, 

CHX was also used in combination with soluble agonists to inhibit cell protein 

synthesis.  

2- For the co-culture system, NT-L-cells (control cells) and a membrane LIGHT-

(mLIGHT) bearing fibroblast cell line were used. Both NT-L-cells and mLIGHT-

L cells were pre-treated with Mitomycin C (MMC) at conc. 15µg/mL and 

incubated for 2hrs (this is to cause effector cell growth-arrest). Cells were 

subsequently washed with sterile 1x PBS three times to remove any excess 

MMC. Subsequently, cells were harvested from flasks by trypsinisation and 

were resuspended in DR 5% medium and counted. Cells were seeded at cell 

density 2x104 cells/well in 96-well plates and incubated overnight at 37°C and 

5% (v/v) CO2 in order to allow cell attachment. On the second day, target cells 

were harvested, counted and seeded onto fibroblasts at a ratio of 1:0.8, and 

incubated for 72hrs at 37°C and 5% (v/v) CO2. An optimal ratio of cell number 

(effector:target) and incubation time was determined after a series of 

optimisations (see Chapter 4 Results).   

The functional outcome of receptor(s) ligation and cell death was determined using 

CytoTox-Glo assay. 
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2.13.1 Cell biomass measurement (MTS assay) 

The CellTiter 96® Aqueous One Solution Cell Proliferation kit was used to measure 

cell biomass. The kit contains a tetrazolium compound 3-(4,5-dimethylthiazol-2-yl)-5-

(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt (MTS); this is 

coupled with an electron reagent known as phenazine methosulfate (PES). PES acts 

to form a stable solution with MTS (Table 2.8). MTS is a colorimetric method for the 

measurement of viable cells. The principle of MTS is that mitochondria in viable cells 

will reduce MTS to a water-soluble coloured formazan product in multi-well plates. 

Formazan levels correspond to cell biomass, which can be quantified by a FLUOstar 

OPTIMA (BMG Labtech) plate reader at a wavelength of 492nm.  

The MTS assay was used only for cell treatment experiments, but not for co-culture 

experiments. Cells were seeded in a 96-well flat bottom cell culture plate and treated 

immediately with either agonistic antibody (BS-1) or treated with soluble ligand 

(LIGHT). In some experiments, IFN-γ and CHX were used in combination with BS-1 

or LIGHT to enhance the cytotoxicity of BS-1 and LIGHT. Treated cells (in a final 

volume of 100µL) were then incubated for 72hrs or 96hrs at 37°C and 5% (v/v) CO2. 

Following incubation time, 20µL of CellTiter reagent was added to plates and 

incubated for 4hrs at 37°C and 5% (v/v) CO2, in order to allow complete reaction. 

Absorbance was measured on a FLUOstar OPTIMA (BMG Labtech) plate reader at a 

wavelength of 492nm. Cell biomass percentage (%) was calculated using the formula 

(Abs T/Abs C) x 100, where Abs T refers to absorbance of treated cells and Abs C 

corresponds to absorbance of control cultures.  

 

 

 

 

 



  

84 
 

2.13.2 Cell Death assay (CytoTox-Glo)  

Cell death was measured by performing a cell death assay known as CytoTox-Glo 

(Promega). The assay uses a luminogenic peptide substrate (alanyl-alanyl-

phenylalanyl-aminoluciferin; AAF-Glo™ Substrate) to measure “dead-cell protease 

activity”, which is released from dead cells that have lost their membrane integrity 

(Table 2.8). The AAF-Glo is cleaved as a result of the release of protease and 

cleavage of AAF-Glo generates a luminescence signal (Figure 2.1), which was 

detected by luminescence measurements on a FLUOstar OPTIMA (BMG Labtech) 

plate reader.  

All CytoTox-GloTM reagents were thawed at room temperature and all components 

were mixed well to ensure homogeneity of the solution. The CytoTox-GloTM reagents 

were prepared by transferring the contents of one bottle of assay buffer to the AAF-

GloTM substrate and steps were followed according to the manufacturer’s protocol. 

50µL of working solution was added to each well of either treated cells or co-cultured 

cells (as mentioned in the section 2.13) to measure dead cell numbers and the Gain 

function on the MARS software was applied (to ensure the measurements were 

taken within the dynamic range of the instrument) and subsequently, the relative 

luminescence unit (RLU) was measured by the plate reader to determine cell death. 

For cell death calculation for co-cultured cells, where target cells were co-cultured 

with control (NT-L) and mLIGHT-L cells, control (NT-L) and mLIGHT-L cells cultures 

alone were included, control (NT-L) and mLIGHT-L cells background luminescence 

values were subtracted pair wise as appropriately, i.e. “control/target cells – control” 

and “mLIGHT/target cells – mLIGHT” readings. Fold increase relative to control was 

generated from background corrected data by comparing mLIGHT/target cell versus 

control/ target cell co-cultures. In all experiments, blank controls were included as 

appropriate.  
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Figure 2.1. Cytotoxicity assay (CytoTox-GloTM) principle 
Cleavage of luminogenic AAF-GloTM substrate occurs by dead-cells, which release protease. A 
substrate for luciferase (aminoluciferin) is released resulting in the luciferase-mediated production of 
light, which can be detected by the plate reader. Figure was adapted from Promega’s manual protocol 
for the CytoTox-Glo assay.  

 

2.13.3 Annexin V/PI assay  

One of the hallmarks of programmed cell death (apoptosis) is loss of plasma 

membrane integrity. This leads to the membrane phospholipid phosphatidylserine 

(PS) being translocated from the intracellular to the extracellular side of the plasma 

membrane, and exposes PS to the cell surface. To detect this, recombinant Annexin 

V conjugated to fluorochrome FITC was used, which is a phospholipid-binding 

protein that has a high affinity for PS and mainly binds to cells with exposed PS in 

order to determine apoptotic cells by flow cytometric analysis (Table 2.8). Also, 

propidium iodide (PI) was used in conjunction with Annexin V in order to detect late 

stage of cell death (dead cells), as the membranes of dead and damaged cells are 

permeable to PI. This study considered and calculated the percentage of total dead 

cells that were collected.  
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Cells were seeded in a 24-well plate (a conversion factor was used to determine cell 

number) and treated with soluble agonists. Cells were incubated for 72hrs at 37°C 

and 5% CO2. Steps of the Annexin V and PI procedure were performed according to 

the manufacturer’s protocol. Cells were trypsinised, collected and centrifuged at 

1500rpm for 5mins, and then washed once with cold PBS and resuspended in 50μL 

of 1x of binding buffer (BD Biosciences). Cells were then stained with Annexin V-

FITC and PI and incubated for 10-20min at room temperature in dark. After the 

incubation time, 200 - 300μL of 1x binding buffer was added to each tube and cells 

were then analysed by flow cytometry within 1hr. Data analysis was performed on 

GuavaSoft 2.6 software and cell death was calculated. 

2.13.4 Caspase activity assay (caspase-3/7 activity detection) 

This assay detects and measures the activity of executioner caspase-3/7 as in Table 

2.8. The principle of this kit is that it contains AFC caspase-3/7, which directly 

measures caspase-3/7 activity in cell culture. The assay (SensoLyte® Homogeneous 

AMC Caspase-3/7 Assay Kit) utilises the Ac-DEVD-AMC substrate as the fluorogenic 

indicator for assaying caspase-3/7 activities via the cleavage of caspase-3/7, and the 

substrate Ac-DEVD-AMC generates the AMC fluorophore as shown in Figure 2.2, 

and this was detected using a FLUOstar OPTIMA (BMG Labtech) plate reader at 

Excitation 380nm/Emission 500nm, respectively.  

All kit components were thawed at room temperature and a working solution was 

prepared according to the manufacturer’s protocol. Before adding the substrate, 50µL 

of DR 5% medium was added to cultures to ensure each well contained a total 

volume of 150µL, according to manufacturer’s protocol. Subsequently, 50µL of 

substrate was added to cells and incubated for few minutes, and the Gain function on 

the MARS software was applied (to ensure the measurements were taken within the 

dynamic range of the instrument) and then the fluorescence signal was measured 

every 10min. For calculation of caspase levels in co-culture cells, where target cells 

were co-cultured with control (NT-L) and mLIGHT-L cells, control (NT-L) and 

mLIGHT-L cells cultures alone were included, control (NT-L) and mLIGHT-L cells 

background fluorescence values were subtracted pair wise as appropriately, i.e. 

“control/target cells – control” and “mLIGHT/target cells – mLIGHT” readings. Fold 

increase relative to control was generated from background corrected data by 
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comparing mLIGHT/target cell versus control/ target cell co-cultures. In all 

experiments, blank controls were included as appropriate. 

 

 

Figure 2.2. The principle of caspase-3/7 activity 

The SensoLyte® Homogeneous AMC Caspase-3/7 Assay Kit uses Ac-DEVD-AMC as the fluorogenic 
indicator for assaying caspase-3/7 activities. Upon activation of caspase-3/7, the cleavages of 
substrate Ac-DEVD-AMC generates the AMC fluorophore that has bright blue fluorescence, which can 
be detected at Excitation 380nm/Emission 500nm respectively, and the reading was measured as a 
relative fluorescence unit (RFU). Figure was adapted from manual protocol for SensoLyte® 
Homogeneous AMC Caspase-3/7 Assay. 

 

2.13.5 DNA fragmentation assay 

Cell death was also investigated by performing DNA fragmentation assay, as DNA 

fragmentation is a hallmark of apoptosis. This assay detects the fragmentation of 

DNA in supernatants of treated cells.  

Prior to LT receptor ligation, target cells were pre-treated and labelled with 5-bromo-

2-deoxyuridine (BrdU) at a concentration of 10µM and incubated for 2hrs at 37°C and 

5% (v/v) CO2 (Table 2.8). This allows the DNA of target cells to be labelled with BrdU 

before ligation, in accordance with the manufacturer’s instructions. After the 

incubation time, cells were harvested and co-cultured with NT-L or mLIGHT-L cells 

and incubated for 72hrs. Unlike the CytoTox-Glo and caspase assay, no cells alone 

background were needed in this assay as epithelial cells pulsed with BrdU were 

included instead. Treated cells with 5µM of staurosporine were served as positive 

control. 
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ELISA plate was coated with an anti-DNA antibody (overnight before the end of 

incubation time for co-cultured cells) and on the following day, the ELISA plate was 

blocked to remove any non-specific binding sites, followed by several washes to 

remove any blocking buffer. Supernatants from cell cultures were collected and 

added at 100µL (which may contain DNA fragments that were pulsed with BrdU, if 

cells underwent apoptosis). Then, a secondary enzyme-linked antibody was added in 

order to recognise BrdU. Ultimately, an enzyme substrate was added, which was 

converted into a blue colour by the secondary enzyme-linked antibody. After 

sufficient colour change (a deep yellow colour representative of and proportional to 

cell apoptosis, the reaction was stopped by adding diluted sulphuric acid (H2SO4) and 

absorbance was measured at 455nm on a FLUOstar OPTIMA (BMG Labtech) plate 

reader. Data were collected using MARS software and percentage (%) apoptotic 

cells were calculated as follows:- 

 

 

 

Reagents Cat Application Supplier 
CellTiter 96(R) AQueous One Solution 
Assay, 5,000 assays 

G3581 Spectrophotometry  Promega 

CytoTox-Glo cytotoxicity assay 
(5x10ml) 

G9291 Spectrophotometry Promega 

SensoLyte homogenous AFC caspase 
-3/7 assay kit 

ANA-71114 Spectrophotometry Cambridge 
bioscience 

Cellular DNA Fragmentation ELISA 11585045001 Spectrophotometry Roche 
Annexin V-FITC/Propidium Iodide 556547 Flow cytometry  BD Bioscience 

Table 2.8. Reagents of cell death assays   
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2.14 Detection of ROS  

2.14.1 H2DCFDA  

Chloromethyl derivative of 6-carboxy-2', 7’-dichlorodihydrofluorescein diacetate (CM-

H2DCFDA) (Fisher Cat 11530166) is a cell-permeant indicator for ROS in cells. CM-

H2DCFDA passively diffuses into cells, and is non-fluorescent itself, but gives green 

fluorescence when acetate groups are removed by intracellular esterases and 

oxidation in the cells. CM-H2DCFDA was dissolved in DMSO in a nitrogen (oxygen 

free) environment and aliquoted and stored at -80°C, as recommended by the 

manufacturer. When co-cultures were carried out, effector cells were not MMC-

treated and seeded overnight. On the second day, target cells were co-cultured and 

incubated for 2, 3, 4 and 6hrs post-ligation. Cells were first washed with PBS to 

remove any culture medium and were then treated with 1, 2 and 4µM of H2DCFDA in 

pre-warmed (37°C) PBS for 30mins at 37°C in 5% (v/v) CO2. Following H2DCFDA 

treatment, cells were washed once and 100µL of PBS was added to each well. 

Fluorescence was then measured by a FLUOstar OPTIMA (BMG Labtech) plate 

reader at Excitation 485nm/Emission 520nm. Data were analysed by using MARS 

software. 
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2.14.2 ROS-Glo 

ROS is superoxide anion radical that is generated in cells and acts as a signalling 

molecule, which can lead to cell damage or death. Most ROS are converted to H2O2 

and has the longest half-life of all ROS in cultured cells. A change in H2O2 level can 

correspond to ROS level. Therefore, the ROS-Glo kit (Promega G8820) was used to 

measure H2O2 levels. The kit contains a substrate that reacts with H2O2 to generate a 

luciferin precursor. The addition of ROS-Glo™ detection reagent containing 

recombinant luciferase and d-Cysteine generates a luminescent signal (which is 

proportional to H2O2 level) that was detected by luminescences measurements as 

shown in Figure 2.3.  

To perform ROS-Glo assay, effector cells were seeded overnight (without 

pretreatment with MMC) in a 96-well plate. On the second day, target cells were 

harvested and pretreated with H2O2 substrate at conc. 25µM for 30mins in 

suspension and incubated in incubator at 37°C and 5% (v/v) CO2. Then target cells 

were co-cultured with effector cells and incubated for 3 and 4hrs post receptor 

ligation. Before just adding the second reagent (ROS-Glo), H2O2 was added at final 

conc. 2mM which served as positive control. ROS-Glo reagent was prepared and 

added at volume 100µL/well and luminescence was then measured on a FLUOstar 

OPTIMA (BMG Labtech) plate reader. Data were analysed by using MARS software. 
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Figure 2.3. ROS-Glo assay principle    

The addition of H2O2 substrate produces luciferin precursor as a result of the presence of H2O2. Then 
the addition of ROS-Glo™ detection reagent reacts with luciferin precursor generates a luminescent 
signal (Light) that can be detected by the plate reader. The luminescent signal is proportional to H2O2 
level which corresponds to ROS level. Figure was adapted from Promega’s manual protocol for the 
ROS-Glo assay.  

   

 

 

 

 

 

https://www.google.co.uk/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjKrM6V08rMAhVrK8AKHbIQCicQjRwIBw&url=https://www.promega.com/products/cell-health-and-metabolism/oxidative-stress-assays/ros_glo-h2o2-assay/&psig=AFQjCNGV2pM246qeTxSFGKF35oLFg-2YcA&ust=1462802783816807
https://www.google.co.uk/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjKrM6V08rMAhVrK8AKHbIQCicQjRwIBw&url=https://www.promega.com/products/cell-health-and-metabolism/oxidative-stress-assays/ros_glo-h2o2-assay/&psig=AFQjCNGV2pM246qeTxSFGKF35oLFg-2YcA&ust=1462802783816807�
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2.15 Measurement of cytokine secretion  

Cell culture supernatants were collected at specific times of post receptor ligation: 6, 

12, 24, 36 and 48hrs, centrifuged, aliquoted and stored in -80°C. Secretion of IL-6, IL-

8 and granulocyte-macrophage colony stimulating factor (GM-CSF) following LTβR 

and HVEM ligation was measured by using human specific monoclonal antibodies IL-

6 (DY206-05), IL-8 (DY208-05) and GM-CSF kit (DGM00). Steps were followed as 

recommended by the manufacturer (R&D Systems). 

2.15.1 Reagent preparation  

All antibodies and standards were brought to room temperature and then were 

reconstituted and working dilutions were prepared and used immediately as 

recommended by the manufacturer’s protocol.    

2.15.2 Plate preparation  

For IL-6 and IL-8 investigations, plates were coated with 100μL/well of prepared 

capture antibody in PBS (without carrier protein). For GM-CSF investigation, GM-

CSF plate was pre-coated by the company and ready for blocking step. After plate 

coating, plates were sealed and incubated overnight at room temperature. Next day, 

each well was aspirated and washed with 400μL of wash buffer for three times and 

liquid was completely removed by inverting the plate and blotting it against clean 

paper towels to ensure good performance. Plates were then blocked by adding 

300μL of blocking buffer to each well and incubated 1hr at room temperature; after 

incubation plates were washed three times as in previous step.  
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2.15.3 Assay procedure  

After plate coating and blocking step, 100μL of sample supernatants or diluted 

standards in reagent diluent was added to each well. Plates were then covered with 

adhesive strip and incubated for 2hrs at room temperature. After incubation time, a 

washing step was repeated as previously. 100μL of the detection antibody (diluted in 

reagent diluent) was added to each well and plates were covered with adhesive strip 

and incubated for 2hrs at room temperature. Washing step was repeated and 100μL 

of working dilution of secondary antibody (Streptavidin-HRP) was added to each well 

and incubated for 20mins at room temperature in the dark. Washing step was 

repeated again as in previous step. Then 100μL of substrate solution was added to 

each well and incubated for 20mins at room temperature. After incubation for 20mins, 

50μL of stop solution was added to each well and plates were gently tapped to 

ensure thorough mixing. Absorbance was measured at wavelength 455nm, data 

were analysed and presented as concentration in pg/mL.   
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2.16 Western blotting   

Western blot is a powerful technique that is used to separate and identify proteins 

(from a mixture of proteins extracted from cells) according to their molecular weight. 

There are four main aspects for performing western blot: 1) quantify the protein 

concentration of cell  lysate (by using Bradford Assay); 2) separate proteins by size 

using Sodium Dodecyl Sulphate-Polyacrylamide Gel Electrophoresis (SDS-PAGE); 

3) protein transfer to solid to polyvinylidinedifluoride membrane (PVDF); and 4) 

immunolabelling of target protein using an appropriate primary and secondary 

antibody to visualise antibody binding. 

2.16.1 Protein extraction 

Cell lysates were prepared from treated cells with soluble agonists or from co-

cultures. Culture medium was aspirated and then cells were washed two times with 

PBS to remove any medium cell debris and/or dead cells. Subsequently, sodium 

dodecyl sulphate (SDS) sample buffer was prepared and aliquoted as 1mL (see 

Appendix I). A working solution or complete lysate buffer was made by addition of 

Dithiothreitol (DTT) (DTT is a reducing agent). Also, protease inhibitor cocktail (PI) 

was added as dilution (1:500) with SDS. Complete lysate buffer was mixed very well 

and an appropriate volume was used; for example, 150μL was added per T75 flask, 

and 50µL per T25 flask or 6 well plates. Cell scraper was inserted into flasks to 

remove and collect the lysates from the flask surface or plates. Cell lysates were 

collected in eppendorf tubes and then were stored at -20°C for future use, or placed 

on ice to be immediately processed.   

The following step was cell lysate sonication, as cell lysates were sonicated (at 75% 

amplitude for 10 seconds) and then were placed immediately back on ice for 30mins. 

Lysate suspension was centrifuged at a high speed of 13000-14000rpm at 4°C for        

30mins. Supernatants were collected carefully without disturbing the pellets and 

aliquoted into small clean eppendorf tubes and stored at -20°C, or kept at -80°C for 

long-term storage.  

http://en.wikipedia.org/wiki/Sodium_dodecyl_sulfate
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2.16.2 Protein Quantification 

Protein concentration of cell lysates was determined for each individual sample by 

using the Bradford Assay (Coomassie protein reagent assay kit, Pierce). Cell lysates 

were diluted as (1:12.5) with dH2O in small eppendorf tubes. Protein standards curve 

of 0-1000µg/mL BSA (Pierce) were added separately as 10µL, dH2O was served as 

a blank (zero concentration), and protein standards were 25, 125, 250, 500, 750 and 

1000 µg/mL. Samples and standards were added in duplicate in 96-well flat bottom 

plates. Subsequently, 200µL of ambient temperature Coomassie reagent was added 

to each well and mixed gently (bubbles were avoided). The addition of Coomassie 

reagent generates a blue colour, which corresponds to protein sample concentration. 

The absorbance was then measured at 595nm using a FLUOstar OPTIMA (BMG 

Labtech) plate reader (Thermo Fisher) against a dH2O control data and to plot a 

standard curve for the BSA from MARS analysis software 2.0 (BMG Labtech) (Figure 

2.4).  
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Figure 2.4. An example of protein Standard Curve 

Standard curve of used standards solutions 25, 125, 250, 500, 750 and 1000µg/mL. Absorbance was 
measured at 595nm. Error bars were applied as shown. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Wavelength A-595 
r 0.999954 
r² 0.999908 
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2.16.3 Sodium dodecyl sulphate Polyacrylamide gel 
Electrophoresis (SDS-PAGE) 

A total of 20 or 40µg of protein lysate was calculated (see Table 2.9) and was then 

diluted with dH2O to make a total volume of 13µL. Following this, lithium dodecyl 

sulphate (LDS) sample buffer (which allows for maximum activity of the reducing 

agent) and reducing agent (to reduce disulphide bonds in protein samples for optimal 

separation by PAGE) were diluted (4x) and (10x), respectively. Samples were 

centrifuged and then were denatured by warming up to 70°C for 10mins in a water 

bath. After incubation time, 10-well NovexTM electrophoresis pre-cast gels were 

placed into an XcellSurelockTM mini-cell upright electrophoresis tank. MES running 

buffer was prepared (1:20) with dH2O mix well and was then poured into the inner 

and outer chambers within the tank. NuPAGETM antioxidant was added (to prevent 

re-oxidation of sensitive amino acids) to the inner chamber prior to loading of the 

samples (cathode). All-Blue Precision PlusProteinTM standard was loaded alongside 

as a marker of protein size and sample lysates were loaded into the other wells 

(Table 2.9).  

Where available a positive control lysate known to express the protein of interest was 

included and used for some experiments. The gel was then run at 200V for 35mins. 

This process allowed proteins to be separated according to their molecular weight 

(MW). 

 

 

 

 

 

 

 

 

http://en.wikipedia.org/wiki/Sodium_dodecyl_sulfate
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Table 2.9. Calculations for protein concentration from cell lysates 

Samples of cell lysates were diluted with dH2O in small eppendorf tube (dilution factor 12.5) and mix 
well (for the purpose of protein concentration dilution and to ensure the protein concentration readout 
by plate reader). 10μL of diluted lysates and protein standards were placed in Microplate (96 well) in 
duplications. 200μL of Commassie blue reagent was added and incubated between 5-10mins at room 
temperature. The absorbance of protein concentration was then measured by using a FLUOstar 
OPTIMA (BMG Labtech) plate reader at 595nm against dH2O control. MARS analysis software 2.0 
(BMG Labtech) was used to plot a standard curve for the BSA and to estimate the protein 
concentration for each sample dH2O = de-ionised water. RA = Reducing agent. LDS = lithium dodecyl 
sulfate. 

 

 

 

 

 

 

 

 

 

 UCC cell lines CRC cell lines CRC 
Transfected 

Fibroblast cell 
lines 

 RT4 RT112 EJ SW480 HT29 HCT116 SW480CD40 3T3-Neo 3T3-
CD40L 

µg/mL 5159.5 6392.7 4188.6 2127.4 5869.2 1499.7 9652.8 3044.1 3234.2 
µg/µL 5.1 6.3 4.1 2.1 5.8 1.4 9.6 3 3.2 
sample 
µL 

3.9 3.1 4.8 9.4 3.4 13.34 2.1 6.6 6.2 

dH2O 
µL 

9.1 9.9 8.2 3.6 9.6 0 11 6.4 6.8 

Final 
µL 

13 13 13 13 13 13.34 13 13 13 

RA (µL) 2 2 2 2 2 2.05 2 2 2 
LDS µL 5 5 5 5 5 5.13 5 5 5 
Total 
µL 

20 20 20 20 20 20.52 20 20 20 
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2.16.4 Electrophoretic membrane transfer 

Before the end of SDS-PAGE, blotting pads and filter paper were soaked in transfer 

buffer and pre-cut (size of blot pad normally) transfer membrane Immobilon-FL 

polyvinylidinedifluoride membrane (PVDF) was dipped in 10mL of methanol in a 

square dish for a few seconds, and then immediately rinsed with dH2O and then kept 

in transfer buffer (see Table 2.10). 

Once SDS-PAGE complete, the gel was taken from tank and the gel knife was used 

to open the cassette and unwanted and extra gel was cut and then placed on an 

equal cut of soaked filter paper on top. The gel was loosened using the gel knife and 

slit at the bottom, and with the aid of gravity the gel was gently prised off onto a blot 

pad, so the filter paper was at the bottom. Forceps were used to place a transfer 

membrane on top of the gel that was protected with more filter paper, and then air 

bubbles were removed very carefully. The gel membrane sandwich was assembled 

cathode to anode as follows: 3x blot pads, filter paper, gel, PVDF membrane, filter 

paper, 3x blot pads and blot module was secured into the ‘x cell sure lock system’ 

and then filled with transfer buffer. The outer chamber was filled with ice-cold dH2O 

and the transfers were performed on ice at 25V for 2hrs. 
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2.16.5 Immunolabelling and detection of antibody binding  

Membranes were blocked in 50:50 (v/v) Odyssey blocking buffer with 10mM TBS pH 

7.4 on a plate rocker for 1hr at room temperature to block for non-specific antibody 

binding. Once the primary antibody was pre-diluted (as required and as 

recommended by the manufacturer’s protocol) in TBS+0.1% (v/v) Tween-20 to total 

volume 8mL and then was poured on membranes and incubated on a rocker 

overnight at 4°C. On the second day, membranes were washed quickly with TBS 

only, and then followed with three washes in TBS/Tween-20 (0.1%) (v/v) for 5mins for 

each wash. Subsequently, secondary antibody was pre-diluted with TBS/Tween-20 

(0.1%) (v/v) (secondary antibody dilution can vary) and incubated with membranes 

for 1hr and then placed on a rocker (at speed between 10-20rpm) at room 

temperature. After incubation, three washes were repeated and then TBS buffer was 

added to membranes, before visualisation using an OdysseyTM Infra-red Imaging 

system (Li-Cor). To detect this correctly, membranes were placed face down on the 

Li-cor scanner protein. Equal loading protein loading was confirmed by using several 

loading control antibodies such as β-actin or Cytokeratin (CK) -8 or -18. 

Item  Cat Application Supplier 
DTT D9779-5g Cell lysate Sigma 
Protease inhibitor cocktail set 535140-1 Cell lysate VWR 
Cell scraper individually wrapped sterile 
250mm handle x 18mm blade 

11597692 Cell lysate Fisher  

Coomassie blue protein assay kit PN23236 Protein assay Fisher 
BSA pre-diluted protein assay PN23208 Protein assay Fisher 
NuPAGE Sample Reducing Agent (10x) NP0009 WB Invitrogen 
NuPAGE LDS sample Buffer (4x) NP0007 WB Invitrogen 
NuPAGE antioxidant NP0005 WB Invitrogen  
NUPAGE 4-12% BT GEL 1.0MM10W NP0321BOX WB Invitrogen    
NuPAGE MES SDS Running buffer (x20) NP0002 WB Invitrogen  
Improved Millipore membrane (PVDF) fdr-523-020q WB Fisher  
Whatman Filter paper 11435248 WB Fisher 
Odyssey® Blocking Buffer (PBS), 500mL  927-40000 WB Li-Cor 
Precision plus all blue protein standards 161-0373 WB Biorad 

Table 2.10. Reagents and materials for immunoblotting  
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2.17 Statistical Analysis 

Results were collected and analysed by using Microsoft Excel. All data were 

presented as mean values and standard deviation ±S.D. Statistical analysis was 

performed by using statistical software (Minitab 17). P-value was generated by using 

two tailed paired student t-test. 
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Chapter 3 

The effects of LTβR and HVEM signalling triggered 
by soluble receptor agonists in carcinoma cells 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

103 
 

3.1 Introduction  

LT receptors LTβR and HVEM (and their cognate ligand LIGHT) belong to the TNF 

family. Both LT receptors are widely expressed in a number of immune and non-

immune cells (Fan et al., 2006; Kwon et al., 1997; Sedy et al., 2004; Ware, 2005). 

The ligand LIGHT is expressed on myeloid cells, primary immature DCs and on 

activated T cells and macrophages (Harrop et al., 1998b; Mauri et al., 1998; Morel et 

al., 2000). LTβR and HVEM signalling plays roles in regulating cell fate both in the 

immune system and in non-lymphoid tissues (Albarbar et al., 2015; Ware, 2005). For 

example, the binding of LIGHT to HVEM on T cells functions as a co-stimulatory 

signal for T cell activation (Harrop et al., 1998a; La et al., 2002; Wang et al., 2001b), 

whereas LTβR and HVEM signalling in tumour cells through receptor engagement by 

LIGHT may lead to cell death (Zhai et al., 1998). The majority of previous studies on 

LT-related effects on epithelial cells have focused on the role of activation of LTβR 

and HVEM using almost exclusively the colorectal cell line HT29. Such studies have 

shown that soluble agonists can induce cytotoxicity only in the presence of IFN-γ. 

LTβR activation by agonistic multivalent antibody BS-1 induces growth inhibition and 

soluble LIGHT (which activates both LTβR and HVEM) combined with IFN-γ triggers 

cell death in HT29 cells (Hu et al., 2013; Zhai et al., 1998).   

As LT receptor expression and signalling have been demonstrated only in limited 

carcinoma cells, we aimed in this chapter: 

- To perform flow cytometry to investigate the protein expression levels of LT 

receptors LTβR and HVEM in a panel of CRC and UCC carcinoma cell lines. 

- To examine the regulation of LT receptors on carcinoma cells by pro-

inflammatory cytokine (IFN-γ and TNF-α) treatment. 

- To perform activation of LTβR and HVEM by LT agonists on the panel of 

carcinoma cells and compare them to the widely used HT29 cells. 
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3.2 Detection of LT receptors and their regulation by pro-
inflammatory cytokines on carcinoma cells 

The surface expression of LT receptors (LTβR and HVEM) in parallel with other 

TNFRs (TNFRI, TNFRII and CD40) and its regulation by pro-inflammatory cytokine 

were investigated on a panel of carcinoma cells of CRC and UCC origins, alongside 

expression of intercellular adhesion molecule-1 (ICAM-1). Studies demonstrated that 

TNFRs can be regulated by pro-inflammatory cytokines (IFN-γ or TNF-α); in 

particular, CD40 expression was shown to be upregulated in epithelial cells following 

IFN-γ or TNF-α treatment (Bugajska et al., 2002; Schwabe et al., 2001; Wingett et al., 

1998). Moreover, Rissoan and colleagues demonstrated that IFN-γ is more effective 

than TNF-α in upregulation CD40 expression in positive cells (Rissoan et al., 1996). 

Like CD40, ICAM-1 has been shown to be expressed on tumour cells and 

upregulated following IFN-γ treatment (Duff et al., 1997; Look et al., 1994).  

To examine the expression of LT receptors, CD40 and ICAM-1 and their regulation 

by IFN-γ or TNF-α in the panel of CRC and UCC lines, epithelial cells were seeded 

and either left untreated or were treated with 1000U/mL of IFN-γ or TNF-α in 6-well 

plates and incubated for 48hrs. For flow cytometry analysis, cells were harvested and 

labelled with mAb for detection of LTβR, HVEM, TNFRI, TNFRII, CD40 and ICAM-1 

for the panel of CRC and UCC cells. Gating strategies for flow cytometry results are 

shown in Figure 3.1 and representative results are shown in Figure 3.2. Moreover, 

microscopy images were taken to observe any morphological changes (as an 

indication of cytotoxicity) in response to IFN-γ or TNF-α treatment compared with 

untreated cells (Figure 3.3) 

LTβR and HVEM expression were detected in CRC lines HT29, SW480 and HCT116 

(Figure 3.2a), and in UCC lines RT4, RT112 and EJ (Figure 3.2b). By contrast, CD40 

expression was only detected in HCT116 and EJ cells but not in HT29, SW480, RT4 

and RT112 cells, in agreement with previous reports (Georgopoulos et al., 2006; 

Georgopoulos et al., 2007). TNFR-I, TNFR-II and ICAM-1 expression was detected in  

some CRC and UCC cell lines (Figure 3.2).  
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Following cell treatment with pro-inflammatory cytokines (IFN-γ and TNF-α), the flow 

cytometry results showed that IFN-γ treatment upregulated LTβR expression in 

RT112, whereas TNF-α treatment upregulated LTβR expression in RT4 and HCT116 

cells compared with untreated cells (Figure 3.2). There was upregulation of HVEM 

expression in HT29, SW480, HCT116, RT4, RT112 and EJ cells in response to IFN-γ 

treatment compared with untreated cells. By contrast, TNF-α treatment increased 

HVEM expression in HT29, HCT116, EJ and RT4 cells (Figure 3.2). As expected and 

in agreement with previous reports (Georgopoulos et al., 2006; Georgopoulos et al., 

2007), EJ and HCT116 cells showed an increase in CD40 expression following IFN-γ 

treatment (Figure 3.2), whilst treatment with neither IFN-γ nor TNF-α could induce 

CD40 expression in CD40-negative cells. A massive upregulation of ICAM-1 

expression was observed in all treated CRC and UCC cell lines with IFN-γ, with the 

exception of RT4 cells, which showed downregulation of ICAM-1 but ICAM-1 

expression was indeed enhanced by TNF-α treatment in RT4 cells (Figure 3.2).  

Following cell treatment with IFN-γ and TNF-α, phase-contrast microscopy showed 

that IFN-γ and TNF-α exhibited cell growth inhibitory effects on bladder lines RT112 

and RT4 (Figure 3.3). IFN-γ and TNF-α treatment appeared to promote cell growth or 

had no effects on the cell growth of HT29, SW480, HCT116 and EJ cells (Figure 3.3). 

Our observations are in agreement with a study which demonstrated that there are 

some carcinoma cells types (of the bladder) where TNF-α can be growth-promoting 

(Bugajska et al., 2002). 
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Figure 3.1. Gating strategies during flow cytometry to detect protein 
expression on carcinoma cells  

Following acquisition, fluorescence intensity was determined following gating on viable populations 
based on forward scatter and side scatter properties, as indicated in R1 in the top histogram. Data 
shown were derived from the HCT116 cell line. Control isotype antibody PE was used (dashed white 
left histogram). CD40 expression was determined by using PE-conjugated anti-CD40 antibody (filled 
grey histograms) and this was compared with control PE.  
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Figure 3.2. The regulation of expression of LT receptors and other TNFRs by 
IFN-γ and TNF-α  

Cells were seeded and left untreated or were treated with IFN-γ or TNF-α for 48hrs in 6-well plates. 
Cells were harvested and labelled with anti-LTβR, TNFRII, HVEM, CD40 and ICAM-1 directly and PE-
conjugated antibody except for TNFRI, which involved labelling with primary TNFRI and followed with 
Alexa fluor 488-conjugated secondary antibody. Matched isotype was also used as control (open 
dashed white histogram), whilst omission of primary antibody was performed for TNFRI labelling. 
Untreated cells (filled grey histograms) were treated with 1000U/mL of IFN-γ (red histograms) or TNF-
α (green histograms) and then analysed by flow cytometry after 48hrs and at least 10,000 cells were 
collected: a. CRC cell lines b. UCC cell lines. 
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b.  
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Figure 3.3. Microscopy images of untreated and treated cells with IFN-γ and 
TNF-α 

Cells were seeded in 6-well plates overnight. On the following day, cells were treated with 1000U/mL 
of either IFN-γ or TNF-α and incubated for 48hrs at 37°C. Figures show untreated cells, treated cells 
with IFN-γ (1000U/mL) and treated cells with TNF-α (1000U/mL): a. shows CRC cell lines (HT29, 
HCT116 and SW480) while b. shows UCC cell lines (EJ, RT112 and RT4), as indicated. Photos were 
taken at magnification a 100x using an EVOSXL inverted microscope (PeqLab). 
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3.3 Activation of LT receptors by soluble agonists 

Based on the finding that all cell lines are positive for LTβR and HVEM expression, 

the effects of soluble LT agonists were tested on the carcinoma cells above as we 

have previously extensively characterised them for their responses to other TNFR 

members and particularly CD40 (Bugajska et al., 2002; Georgopoulos et al., 2007; 

Hill et al., 2008) and compared them to the widely used HT29 cells. To induce 

activation of LTβR alone or activation both of the LT receptors LTβR and HVEM on 

target cells, the following reagents were used:  

a. Agonistic antibody [tetravalent (BS-1)] (Browning et al., 1996) to activate 

LTβR. 

b. Soluble ligand (commercially available recombinant human trimeric LIGHT) 

for activating both LTβR and HVEM on the target cells.  

In some experiments, to enhance the effects of the agonists, cells were treated with 

agonist (BS-1 or soluble LIGHT) plus IFN-γ or cycloheximide (CHX). Following cell 

treatment, the effects of LT agonists were determined by utilising various assays 

including: MTS (Promega Cell Titer assay), CytoTox-Glo (Promega CytoTox-Glo 

Cytotoxicity assay) and flow cytometry using Annexin-V and Propidium iodide (PI); 

however, due to space limitations, Annexin-V/PI data is not presented in this thesis. 
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3.4 Assessment of cytotoxicity by detection of changes in cell 
viability 

3.4.1 LTβR activation using BS-1 antibody  

Using the panel of CRC and UCC lines, we first activated LTβR on target cells by 

using agonistic antibody (BS-1) and determined whether the outcome of this 

activation is cell growth or cell death. Cells were treated with control antibody 

(MOPC-21) and agonistic antibody (BS-1) in the absence or presence of IFN-γ 

(Chapter 2 section 2.13). IFN-γ is a cytokine that enhances inflammation by the 

upregulation of the co-stimulatory molecules and it has also been shown to synergise 

and enhance the cytotoxicity of soluble agonists (IFN-γ titration can be found in 

Appendix II). Cell viability was determined and analysed as shown in Figure 3.4. 

Treatment of cells with agonistic antibody BS-1 alone did not have significant effects 

on cell growth, unless combination of BS-1 and IFN-γ was employed. Our results 

showed that most cells are resistant to the BS-1; in some cells, growth was 

enhanced by BS-1 antibody, thus at certain concentrations the agonist showed a ‘bi-

phasic’ effect (Figure 3.4). 
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e.  

 
Figure 3.4. Effects of BS-1 and BS-1/IFN-γ treatment on carcinoma cell viability  

HT29, SW480, HCT116, RT112 and EJ were seeded in 96-well plates alone or treated with control 
antibody (MOPC-21), BS-1, BS-1/IFN-γ or IFN-γ alone, as indicated, and incubated for 96hrs. 20µL of 
MTS solution was added to each well and incubated for approximately 4hrs. Cell viability was 
determined by a FLUOstar OPTIMA (BMG Labtech) plate reader at a wavelength of 492nm. a, b, c, d 
and e show HT29, SW480, HCT116, RT112 and EJ cells, respectively. Figures represent % cell 
biomass = (sample/control)*100. Data are represented as mean values of 4-5 replicates ±S.D. Stats: 
ns. non-significant; *, p < 0.05; **, p < 0.01; ***, p < 0.001, paired student t-test for MOPC-21 treated 
cells vs BS-1 or BS-1/IFN-γ treated cells, as indicated.     
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Cells were treated with BS-1 antibody combined with CHX aiming to potentially 

enhance the cytotoxic activity of BS-1 on target cells. CHX was used as it acts as an 

inhibitor for protein synthesis and is used in combination with pro-apoptotic agonists 

in many studies in vitro. Previous studies reported that CD40 ligation caused 

apoptosis when soluble CD40 agonist was combined with CHX (Bugajska et al., 

2002).  

Following initial pre-titration experiments, it was found that the addition of CHX to 

cultures was cytotoxic at concentrations 0.125µg/mL and above, compared with 

controls. Treatment of cells with 0.025µg/mL of CHX appeared to have little effect on 

cell viability (see Appendix II). Therefore, the concentration of 0.1µg/mL was selected 

and used in combination with soluble agonists as presented in Figure 3.5.  

Our data showed that treatment with BS-1 in presence of CHX has significant effects 

on cell viability of HCT116 and EJ but no other cells. Our results suggest that 

activating one receptor may not sufficient to induce cell death for most cells even if 

IFN-γ and CHX were used. Therefore, both receptors LTβR and HVEM were 

activated using recombinant LIGHT.  
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e.  

 
Figure 3.5. Effects of BS-1 and BS-1/CHX treatment on carcinoma cell viability  

HT29, SW480, HCT116, RT112 and EJ were seeded in 96-well plates. Cells were treated with MOPC-
21 and BS-1 alone or in combination with CHX, as indicated, and incubated for 96hrs. 20µL of MTS 
solution was added to each well and incubated for 4hrs. Cell viability was determined by a FLUOstar 
OPTIMA (BMG Labtech) plate reader at a wavelength of 492nm. a, b, c, d and e show HT29, SW480, 
HCT116, RT112 and EJ cells. Figures represent % cell biomass = (sample/control)*100. Data are 
represented as mean values of 3-4 replicates ±S.D. Stats: ns. non-significant; *, p < 0.05; **, p < 0.01; 
***, paired student t-test for MOPC-21/CHX treated cells vs treated cells with BS-1/CHX.     
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3.4.2 LTβR and HVEM activation using recombinant LIGHT 

In the previous section we demonstrated that BS-1, which activates only LTβR, 

induced weak cytotoxicity in some cells. Our findings suggest that activating LTβR 

alone without activating HVEM may not be sufficient to trigger cell signalling. 

Therefore, we treated cells with soluble recombinant LIGHT ligand, which interacts 

with and activates both receptors (LTβR and HVEM). A study by Zhai and colleagues 

reported that LIGHT is cytotoxic to tumour cells that express both LTβR and HVEM. 

Zhang and colleagues reported that human breast cancer cell lines (MDA-MB-231 

and MCF-7), colon cancer cell line (HT29) and cervical cancer cell line (HT3) are the 

most susceptible cells to LIGHT-induced cell growth arrest, whereas embryonic 

kidney (293T), human breast cancer cell line (MCF-10A), prostate cancer (PC-3) and 

Jurkat cells were found to be resistant to LIGHT (Wu et al., 2003). It was also shown 

that cells which express both receptors were sensitive to LIGHT-induced cell growth 

inhibition, whereas cells that expressed only one of the receptors was found to be 

resistant to LIGHT-induced cell growth inhibition (Zhai et al., 1998).  

CRC and UCC cells were treated with LIGHT and LIGHT-mediated cytotoxicity was 

examined in these cells and compared with HT29 cells. Treatment of cells with 

LIGHT in the absence or presence of IFN-γ was performed as in the case of the BS-1 

agonistic antibody and data are shown in Figure 3.6. 
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e.  

 
Figure 3.6. Effects of LIGHT and LIGHT/IFN-γ treatment on carcinoma cell 
viability  

HT29, SW480, HCT116, RT112 and EJ were seeded in 96-well plates. Cells were treated with LIGHT 
in the absence or presence of IFN-γ, at different concentrations as indicated and incubated for 96hrs. 
20µL of MTS solution was added to each well and incubated for 4hrs. Cell viability was determined by 
a FLUOstar OPTIMA (BMG Labtech) plate reader at a wavelength of 492nm. a, b, c, d and e show 
HT29, SW480, HCT116, RT112 and EJ cells. Figures represent % cell biomass = 
(sample/control)*100. Data are represented as mean values of 3-4 replicates ±S.D. Stats: ns. non-
significant; *, p < 0.05; **, p < 0.01; ***, p < 0.001, paired student t-test for LIGHT treated cells vs 
treated cells with LIGHT and IFN-γ.     
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Our results showed that HT29 and RT112 are susceptible to LIGHT and combined 

LIGHT/IFN-γ treatment (Figure 3.6). Statistically, LIGHT/IFN-γ treatment significantly 

inhibited cell growth of HT29 and RT112 cells. SW480 cells appeared to be resistant 

to LIGHT and LIGHT/IFN-γ treatment (Figure 3.6). Treatment with LIGHT alone 

shows little effects on reduction of cell viability of EJ and HCT116 cells. Notably, in 

some cells growth was enhanced by low concentrations of LIGHT alone and thus 

showing ‘bi-phasic’ effects.   

As there is a possibility that the cytotoxicity of LIGHT/IFN-γ may be dose-dependent 

on IFN-γ concentration and based on the differential effect results of IFN-γ on our 

cells, we next treated our cells with LIGHT with various concentrations of IFN-γ (at 

60, 120 and 180U/mL). This allowed us to determine the maximum cytotoxicity 

effects of LIGHT in presence of IFN-γ (Figure 3.7). 
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e.  

   

Figure 3.7. Effects of LIGHT treatment combined with varying concentrations of 
IFN-γ on carcinoma cell viability 

HT29, SW480, HCT116, RT112 and EJ were seeded in 96-well plates. Cells were treated with LIGHT 
in the presence or the absence of IFN-γ (60, 120 and 180U/mL), as indicated, and incubated for 
96hrs. 20µL of MTS solution was added to each well and incubated for 4hrs. Cell viability was 
determined by a FLUOstar OPTIMA (BMG Labtech) plate reader at a wavelength of 492nm. a, b, c, d 
and e show HT29, SW480, HCT116, RT112 and EJ cells. Figures represent % cell biomass = 
(sample/control)*100. Data represented as mean values of 3 replicates ±S.D. Stats: ns. non-
significant; *, p < 0.05; **, p < 0.01; ***, p < 0.001, paired student t-test for LIGHT treated cells vs 
treated cells with LIGHT and IFN-γ.   
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Our data showed that the cytotoxic effects of LIGHT combined with IFN-γ is dose-

dependent only in HT29 cells, and that combined LIGHT with IFN-γ (at concentration 

120 or 180U/mL) induced significant reduction cell viability (about 50%) of HT29 

compared with controls (Figure 3.7). By contrast, the same dose of IFN-γ combined 

with LIGHT treatment enhanced cell viability (cytoprotected) in SW480, HCT116 and 

EJ cells. 

Cells were treated with LIGHT in the absence or presence of inhibitor of protein 

synthesis (CHX) to demonstrate LIGHT cytotoxicity on growth of CRC and UCC cells. 

Two optimal concentrations of CHX (0.05 and 0.1µg/mL) were selected to ensure 

there is no cytotoxicity by CHX alone and data were presented as shown in Figure 

3.8. Treatments of cells with LIGHT/CHX caused a significant reduction in cell 

biomass of SW480, HCT116 and EJ cells. LIGHT/CHX has little effects on HT29 cells 

viability and the results in RT112 cells seem the same compared with control (Figure 

3.8).  
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e.  

          

Figure 3.8. Effects of LIGHT and LIGHT/CHX treatment on carcinoma cell 
viability 

HT29, SW480, HCT116, RT112 and EJ were seeded in 96-well plates. Cells were treated with LIGHT, 
CHX, or LIGHT/CHX at various concentrations as indicated and incubated for 96hrs. 20µL of MTS 
solution was added to each well and incubated for 4hrs. The control bar represents cell alone without 
treatment. Cell viability was determined by a FLUOstar OPTIMA (BMG Labtech) plate reader at a 
wavelength of 492nm. a, b, c, d and e show HT29, SW480, HCT116, RT112 and EJ cells, 
respectively. Figures represent % cell biomass = (sample/control)*100. Data are represented as mean 
values of 3 replicates ±S.D. Stats: ns. non-significant; *, p < 0.05; **, p < 0.01; ***, p < 0.001, paired 
student t-test for LIGHT treated cells vs treated cells with LIGHT and CHX, as indicated.    
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3.5 Assessment of cell death using the CytoTox-Glo assay 

3.5.1 LTβR activation using BS-1 antibody  

Because the MTS assay detects effects of cell viability but strictly does not measure 

cell death, and based on previous recommendations that more than one assay 

should be utilised to investigate cell death in vitro (Kroemer et al., 2009), in addition 

to the MTS assay, the CytoTox-Glo assay was employed to detect cell death. 

The basis of the CytoTox-Glo (Promega) is that it uses a luminogenic peptide 

substrate (alanyl-alanyl-phenylalanyl-aminoluciferin; AAF-Glo™ Substrate) to 

measure “dead-cell protease activity” that is released from dead cells (cells have lost 

their membrane integrity). The AAF-Glo is cleaved as a result of the release of 

protease and cleavage of AAF-Glo generates a luminescence signal, which was 

detected by luminescence measurements on a FLUOstar OPTIMA (BMG Labtech) 

plate reader (section 2.13.2).  

In this part of the study, cells were treated with control antibody (MOPC-21), BS-1 in 

the absence or presence of effective dose concentration of IFN-γ (see Chapter 2 

section 2.13 and 2.13.2). Cells were treated with soluble agonists and incubated for 

two time points; 72 and 96hrs (results of cell treatment with BS-1 for 96hrs can be 

found in Appendix III), and this is because it was observed there was a difference in 

cell biomass at 96hrs so it is likely by 72hrs cell death would be observed or initiated. 

Data was presented as raw data and fold increase of luminescence of treated cells 

versus untreated cells as shown in Figure 3.9. 

Our results demonstrated that HCT116 cells showed some detectable death in 

response to BS-1 treatment whereas, treatment with BS-1/IFN-γ caused significant 

cell death (p <0.001) in HT29, HCT116 and RT112 cells (Figure 3.9). SW480 cells 

showed no detectable death in response to BS-1 and BS-1/IFN-γ and it appeared to 

be resistant to the treatments and this is in agreement with the MTS data (Figure 

3.9).  
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Figure 3.9. Detection of cell death following carcinoma cell treatment with BS-1 
and BS-1/IFN-γ  

HT29, SW480, HCT116, RT112 and EJ were seeded in 96-well plates. Cells were treated with BS-1 
(30μg/mL), MOPC-21 (10μg/mL), in the absence or presence of IFN-γ (180U/mL) and incubated for 
72hrs. CytoTox-Glo reagents were prepared and added to each well and then relative luminescence 
unit (RLU) was measured by a FLUOstar OPTIMA (BMG Labtech) plate reader. The intensity of the 
RLU signal corresponds to the degree of dead cells in a population (as described in section 2.13.2). 
Raw data are presented in left panels and fold increase relative to control was generated from raw 
RLU data (left panels) by comparing treated cells versus untreated cells as shown in right panels. a, b, 
c, d and e show HT29, SW480, HCT116, RT112 and EJ cells, respectively. Data are represented as 
mean values of 4-5 replicates ±S.D. Stats: ns. non-significant; *, p < 0.05; **, p < 0.01; ***, p < 0.001, 
paired student t-test for control cells vs treated cells, as indicated.   
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3.5.2 LTβR and HVEM activation using recombinant LIGHT 

Based on previous section data, activating LTβR alone by BS-1 is insufficient to kill 

(hence no death) and required IFN-γ help to kill some cells by using the CytoTox-Glo 

assay. As BS-1 is not efficient to kill, therefore, cells were treated with LIGHT to 

activate both receptors LTβR and HVEM for 72 and 96hrs and death were assessed 

by the CytoTox-Glo assay. The reason for using incubation 72hrs is because we 

thought that if there is a difference in cell biomass by 96hrs, then it is likely by 72hrs 

cell death would have been initiated. We found that activation of LTβR and HVEM by 

LIGHT for 72hrs showed better cell death than 96hrs (results of cell treatment with 

LIGHT for 96hrs can be found in Appendix III). For this reason, data of 72hrs 

incubation time were only presented here as raw data and fold increase of 

luminescence of treated cells versus untreated cells as shown in Figure 3.10. 

Treatment HCT116 cells with LIGHT induced significant cell death and LIGHT co-

treatment with IFN-γ was significantly cytotoxic on HT29, HCT116, and RT112 cells. 

Our results also showed that SW480 cells show no response to LIGHT/IFN-γ 

treatments (Figure 3.10). 
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Figure 3.10. Detection of cell death following carcinoma cell treatment with 
LIGHT and LIGHT/IFN-γ 

HT29, SW480, HCT116, RT112 and EJ were plated in 96-well plates. Cells were treated with LIGHT 
(1μg/mL), in the absence or presence of IFN-γ (180U/mL) and incubated for 72hrs. CytoTox-Glo was 
prepared and added to each well and then relative luminescence unit (RLU) was measured by a 
FLUOstar OPTIMA (BMG Labtech) plate reader. The intensity of the RLU signal corresponds to the 
degree of dead cells in a population (as described in section 2.13.2). Raw data are presented (left 
panels) and fold increase relative to control was generated from raw RLU data used in left panels by 
comparing treated cells versus untreated cells as shown in right panels. a, b, c, d and e show HT29, 
SW480, HCT116, RT112 and EJ cells, respectively. Data are represented as mean values of 4 
replicates ±S.D. Stats: ns. non-significant; *, p < 0.05; **, p < 0.01; ***, p < 0.001, paired student t-test 
for untreated cells vs treated cells, as indicated.    

 

 

 

 



  

135 
 

Summary 

- CRC and UCC cells expressed LTβR, HVEM, TNFRI, TNFRII and ICAM-1. 

Moreover, HCT116 and EJ were detectable for CD40 expression, whereas 

HT29, SW480, RT4 and RT112 were negative for CD40 expression in 

agreement with previous studies (Georgopoulos et al., 2006; Georgopoulos et 

al., 2007).  

- Pro-inflammatory cytokines IFN-γ / TNF-α (and in particular IFN-γ) upregulated 

LTβR in RT112, and also HVEM expression in HT29, SW480, HCT116, RT4, 

RT112 and EJ cells compared with untreated cells.  

- Treatment of cells with soluble receptor agonists (BS-1 or recombinant soluble 

LIGHT) alone has no effect on carcinoma cell viability, but co-treatment with 

IFN-γ caused a significant growth inhibition for HT29 and RT112 cells but not 

SW480, HCT116 and EJ cells.  

- The cytotoxic effects of LIGHT/IFN-γ was IFN-γ dose dependent (at 

concentration 120 or 180U/mL) and showing reduction in cell viability only in 

HT29 cells, whereas the same treatment showed cytoprotected effects in 

SW480, HCT116 and EJ cells. 

- Cells treatment with BS-1 or LIGHT in the presence of protein synthesis 

inhibitor CHX caused a significant reduction in cell viability mainly in HCT116 

and EJ cells but not on other cells.  

- Using the cell death assay (CytoTox-Glo), the combinatorial treatment with 

BS-1/IFN-γ or LIGHT/IFN-γ resulted in extensive cell death in HT29 cells, 

some CRC and UCC lines; HCT116 and RT112 cells, respectively, also 

exhibited significant cell death whereas other (e.g. the highly malignant EJ 

cells) showed little if any cell death. SW480 cells showed no response to the 

cytotoxic effects of BS-1 or LIGHT combined with IFN-γ.   
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Chapter 4 

Optimisation of a co-culture system to investigate 
membrane LIGHT (mLIGHT)-mediated death in 

carcinoma cells 
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4.1 Introduction  

The findings presented in Chapter 3 demonstrated that activating either a) single LT 

receptor, i.e. LTβR using soluble agonist (BS-1 mAb) (section 3.5.1), or b) both LT 

receptors (LTβR and HVEM) using soluble recombinant agonist (LIGHT) induced 

weak or failed to induce cell death in most cells, while there was more substantial 

cytotoxicity in some cells (but not all) when both receptors (LTβR and HVEM) were 

activated by treatment with soluble recombinant LIGHT in combination with IFN-γ 

(LIGHT/IFN-γ) (section 3.5.2). Collectively, these suggest that activating LTβR alone 

may not be sufficient to induce cell death, whilst little cell death was observed when 

both receptors LTβR and HVEM were activated by soluble LIGHT. Significant 

cytotoxicity was observed only upon co-treatment with IFN-γ and that was only for a 

proportion of the cell lines tested.   

These findings have provided evidence that the quality of LT signal may be important 

in determining the functional outcome of receptor ligation. Therefore, treatment with 

soluble agonists was weakly pro-apoptotic and significant cytotoxicity was not 

observed unless synergism with IFN-γ was employed. This apparent lack of 

cytotoxicity by soluble agonists and potential importance of signal quality is 

consistent with studies in the CD40 system which have demonstrated that ligand 

valency, and consequently the extent of receptor cross-linking, can dictate cell death 

against survival signals (Bugajska et al., 2002; Georgopoulos et al., 2006). 

Specifically in carcinoma cell lines, membrane-presented CD40 ligand (mCD40L), but 

not soluble agonists (e.g. sCD40L), induces high level of pro-inflammatory cytokine 

secretion and causes extensive cell apoptosis (Bugajska et al., 2002; Engels et al., 

2005; Zapata et al., 2001), whilst remaining a tumour-cell specific death signal 

(Bugajska et al., 2002; Hill et al., 2008; Shaw et al., 2005).  

Therefore, this study aimed to examine for the first time the hypothesis that 

membrane-presented LIGHT (mLIGHT) may represent a more potent pro-apoptotic 

signal in comparison to soluble agonists. For this purpose, the study employed a co-

culture system that was based on the use of growth-arrested, third-party cells 

(fibroblasts) that were L-cells engineered to express mLIGHT and control cells (non-

transfected L cells/NT-L cells) (Pasero et al., 2009b). These effector cells were co-
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cultured with target epithelial cells to deliver the LT signal. The steps involved in 

these co-culture experiments are described in detail in the Methods (section 2.13).   

The aims of the work presented in this chapter were to: 

- adapt the effector mLIGHT expressing cells (mLIGHT-L) in appropriate cell 

culture medium and confirm expression of mLIGHT in comparison to control 

(NT-L) cells.  

- optimise several parameters of the co-culture system (including to determine 

the optimal Mitomycin C concentration for the purposes of growth arresting the 

effector cells, ensure LIGHT expression on effector cells following treatment, 

and optimisation of the effector:target cell ratios) for the delivery of mLIGHT.  

- detect mLIGHT-mediated cell death using cytotoxicity assays, caspase 

activation and DNA fragmentation as well as determine cytokine secretion in 

carcinoma cells following receptor ligation. 

- study the effects of mLIGHT on carcinoma cells of CRC and UCC origins 

(HT29, HCT116, SW480, RT112 and EJ cells) and for the first time on normal 

epithelial cells (normal human urothelial, NHU, cells).  
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4.2 Confirmation of LIGHT expression on effector cells  

The mLIGHT-L cells (Pasero et al., 2009b) were originally cultured in RPMI medium 

containing the necessary supplements and appropriate concentration of antibiotic for 

the maintenance of transgene (LIGHT cDNA) expression (see section 2.3.3 in the 

Methods). In order to simplify the experimental work and conform with routine 

laboratory procedures for the culture of other effector cells, such as 3T3-CD40L cells 

for the delivery of mCD40L (Bugajska et al., 2002; Georgopoulos et al., 2006), 

mLIGHT-L and control (NT-L) cells were adapted into DR medium (section 2.3.3) 

supplemented with 10% (v/v) FBS, and 1% (v/v) L-Glutamine. Following gradual 

adaptation, and due to possible risk of genetic drifting during culture, it was important 

to ensure that the process of adaptation did not affect LIGHT expression in the 

mLIGHT-L cells.  

Therefore, following adaptation, flow cytometry was performed to examine the 

expression of mLIGHT in the adapted cells compared to the original cells (that were 

maintained in RPMI medium). As shown in Figure 4.1, adapted mLIGHT-L cells 

showed similar levels of mLIGHT expression in comparison to the original mLIGHT-L 

cells (Figure 4.1). Control experiments were also carried out using the same LIGHT-

specific antibody to confirm lack of LIGHT expression on control NT-L cells, which 

confirmed antibody specificity for LIGHT (shown in Appendix IV).  
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Figure 4.1. LIGHT expression on original and adapted mLIGHT-L cells   

mLIGHT-L cells were adapted into DR/10% FBS/10% (v/v) L-glutamine medium. Original (mLIGHT-L 
cells maintained in RPMI/10% FBS/1% (v/v) L-glutamine) and adapted cells were harvested and 
labelled with anti-LIGHT or isotype control antibody PE-conjugated for 20-30mins. Cells were then 
washed and re-suspended in FACS buffer. Samples were acquired on an EasyCyte Guava flow 
cytometer and data analysed using InCyte2.6 Guava software (Millipore). a, Forward and side scatter 
plots for acquired cells; b, mLIGHT-L cells maintained in original medium RPMI on the left, adapted 
cells in DR on the right; c, Mean values of MFI readings for LIGHT expression for 2 replicates. Isotype 
control PE antibody was used to determine background (MFI = 6±1). 
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4.3 Confirmation of LIGHT expression after MMC treatment 

The purpose of MMC treatment is to inhibit cell growth and therefore avoid the 

artefacts of cell overgrowth. In order to induce growth-arrest in the effector (mLIGHT-

L and NT-L cells) for use in co-culture with target carcinoma cells, it was essential to 

determine the optimal concentration of Mitomycin C (MMC). Cells were therefore 

treated with a range of MMC (10, 15 and 20µg/mL) and incubated for 48 and 72hrs 

and cell viability of untreated and MMC-treated cells was determined.   

Using routine microscopy MMC-treated cells appeared to be growth-arrested using 

MMC treatment at 15µg/mL; by contrast, treatment with a concentration of 10µg/mL 

appeared ineffective, whereas the 20µg/mL dose seemed toxic on cells (Appendix 

IV). In agreement with microscopy observations, cell viability experiments 

demonstrated that MMC treatment used at the concentration 15µg/mL effectively 

caused growth-arrest in mLIGHT-L and control cells without significant cytotoxicity 

(Figure 4.2).  

 

 

 

 

 

 

 

 

 

 

 

 

 



  

142 
 

 

a.  

 

b.  

 
Figure 4.2. Effects of MMC treatments on control (NT-L) and mLIGHT-L cells   

Control (NT-L) and mLIGHT-L cells were cultured in T25 flasks until they reached approximately 75% 
confluency. Cells were treated with the indicated concentrations of MMC and incubated for 2hrs at 
37°C and 5% CO2. After 2hrs, cells were washed with PBS and seeded in 96-well plates. After 
incubation for 48 and 72hrs, 20µL of MTS solution was added to each well and incubation for 4hrs 
followed. Cell viability was determined by a FLUOstar OPTIMA (BMG Labtech) plate reader at a 
wavelength of 492nm. Data are represented as mean values of 4-5 replicates ±S.D. a. MMC-treated 
NT-L control cells, b. MMC-treated mLIGHT-L cells.  
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To exclude the possibility that MMC treatment may have an effect on LIGHT 

expression in mLIGHT-L cells, LIGHT expression following MMC treatment was 

tested by flow cytometry. As shown in Figure 4.3, LIGHT expression remained stable 

after the treatment with MMC.  
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c. 

 

Figure 4.3. Detection of LIGHT expression on effector cells following MMC 
treatment  

Untreated and MMC-treated control (NT-L) and mLIGHT-L cells were labelled with LIGHT-PE or 
control PE-conjugated isotype antibody and incubated for 20-30mins. Cells were then washed and re-
suspended in FACS buffer. Samples were analysed on an EasyCyte Guava flow cytometer and data 
analysed using InCyte2.6 Guava software (Millipore): a, overlay histograms of untreated (left) and 
MMC-treated control (NT-L) cells (right), b. untreated (left) and MMC-treated mLIGHT-L cells (right). In 
these plots, isotype control PE antibody was used and shown as an open black histogram, and PE-
conjugated anti-LIGHT is shown as filled grey histogram, c. Mean values of MFI readings for LIGHT 
expression for 2 replicates.  
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4.4 Determination of optimal effector:target cell densities for 
detection of mLIGHT-mediated death using CytoTox-Glo  

As part of the optimisation of the co-culture system, it was important to determine 

optimal cell densities of effector and target cells. NT-L, mLIGHT-L and target cells 

were seeded at ratios 1:0.6, 1:0.8 and 1:1 (with 1x104 effector cells/well) or co-

cultured using the same ratio but the number of effector cells was doubled (i.e. 2x104 

cells/well of effector cells used). The use of two densities was due to the fact that the 

size of the mLIGHT-L cells are relatively small, so there was adequate surface area 

in the wells to double the overall cell number, which may enhance ligation and cell 

death; in fact, it was observed that doubling the densities resulted in higher levels of 

cell death as presented in this chapter (see below).  

Using the optimal MMC concentration (15µg/mL, as determined above), effector cells 

were growth-arrested and co-culture experiments were performed (as detailed in 

section 2.13.2) using a panel of UCC and CRC lines. CytoTox-Glo was used to 

detect cell death and results are shown in Figure 4.4 and are presented as raw data 

(following background correction) as well as fold increase in target cell death for 

mLIGHT-L versus NT-L co-cultures (Figure 4.4). Raw RLU data and fold increase 

relative to controls were calculated using the parameters and equations described in 

section 2.13.2.  

The results showed that co-culture of target cells with mLIGHT-L cells resulted in 

high levels of cell death in CRC and UCC cells with the exception of SW480 cells 

which appeared relatively resistant to mLIGHT, whilst RT112 cells were moderately 

susceptible. Therefore, unlike soluble agonists that alone do not cause significant 

levels of cell death and even in combination with IFN-γ only some cell lines undergo 

significant levels of death, mLIGHT causes high levels of cell death in nearly all cell 

lines tested and in the absence of IFN-γ treatment (Figure 4.4).  

 

 

 



  

146 
 

 
a.   

 
 

b.   
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d.   

  
 

e.           

     
     

Figure 4.4. Detection of mLIGHT-mediated cell death in carcinoma cells 

MMC-treated control (NT-L) and mLIGHT-L cells were seeded at 2x104 cells/well in 96-well white 
plates overnight and on the following day 1.6x104 of HT29, SW480, HCT116, RT112 or EJ cells were 
co-cultured with the control or mLIGHT-L cells. Cells were incubated for 24, 48 and 72hrs at 37°C and 
5% of CO2. After that, 50µL of CytoTox-Glo substrate were added to each well and luminescence was 
measured on a FLUOstar OPTIMA plate reader. Control and mLIGHT alone cultures were included for 
background correction. Background corrected relative luminescence units (RLU) raw data was 
generated using the equation: ‘’control/target cell RLU – control RLU’’ and ‘’mLIGHT/target cell RLU – 
mLIGHT RLU’’ as shown in the left panels. Fold increase relative to control was generated from 
background corrected data by comparing mLIGHT/target cell versus control/ target cell co-cultures (as 
detailed in section 2.13.2) as shown in right panels. a, b, c, d, and e show HT29, SW480, HCT116, 
RT112 and EJ cells, respectively. Bars correspond to mean values of 4 replicates ±S.D. Stats: ns. 
non-significant; *, p < 0.05; **, p < 0.01; ***, p < 0.001, paired student t-test, target cells/control vs 
target cells/mLIGHT, as indicated. 
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4.5 Detection of caspase activation by mLIGHT using the 
SensoLyte caspase-3/7 assay  

Caspases-3 and -7 are structurally related enzymes and are classified as effector 

caspases. The activation of caspase-3/7 is involved in cell death (apoptosis) and 

contributes to mitochondrial events (Lakhani et al., 2006). Caspase-3 plays a critical 

role in controlling DNA fragmentation as well as morphological features of apoptosis, 

whereas caspase-7 is less involved in these processes but it plays a role in the loss 

of cell viability (Lakhani et al., 2006).  

As the CytoTox-Glo assay detects both apoptotic and necrotic cells and also based 

on published recommendations that cell death should be detected using more than 

one assay (Galluzzi et al., 2007), the activation of caspase-3 and -7 following 

treatment of carcinoma cells with mLIGHT using the co-culture system above was 

detected after 72hrs using the Sensolyte Homogenous caspase-3/7 assay (as 

detailed in section 2.13.4). Results are shown in Figure 4.5 and are presented as raw 

data (following background correction) as well as fold increase in target cell death for 

mLIGHT versus NT-L co-cultures. Raw RFU data and fold increase relative to 

controls were calculated using the parameters and equations provided in section 

2.13.4.  

The results demonstrate that mLIGHT induced the activation of caspase-3/7 in HT29, 

HCT116, RT112 and EJ cells after 72hrs, whereas SW480 showed no caspase 

activation (Figure 4.5) which is in agreement with the lack of cell death in SW480 

when assessed by CytoTox-Glo (Figure 4.4). As RT112 cells were moderately 

susceptible to mLIGHT and SW480 cells were completely refractory to mLIGHT-

mediated apoptosis, this study focused on HT29, HCT116 and EJ cells to further 

characterise the nature, biological consequences and the underlying mechanisms of 

mLIGHT-mediated death, whereas the cell lines RT112 and SW480 were not 

investigated further in detail. 
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d.     

 
   

e.     

 
  

Figure 4.5. Induction of caspase-3/7 activation by mLIGHT ligation 

MMC-treated control (NT-L) and mLIGHT-L cells were seeded at 2x104 cells/well in 96-well white 
plates overnight and on the following day 1.6x104 of target cells HT29, SW480, HCT116, RT112 or EJ 
cells were co-cultured with control or mLIGHT-L cells and incubated for 72hrs at 37ºC and 5% CO2. 
50µL of medium was added and then 50µL of substrate of the Anaspec reagent was added to each 
well. Fluorescence was measured by a FLUOstar OPTIMA (BMG Labtech) plate reader. Relative 
Fluorescence Units (RFU) is relative to total levels of caspase-3/7 activation. RFU values were 
subtracted pair wise as appropriately, i.e. “control/target cells – control” and “mLIGHT/target cells – 
mLIGHT” readings (left panels). Fold increase relative to control was generated from background 
corrected RFU data by comparing mLIGHT/target cell versus control/ target cell co-cultures (right 
panels) and as detailed in section 2.13.4. a, b, c, d and e show HT29, SW480, HCT116, RT112 and 
EJ cells, respectively. Bars correspond to mean values of 4 replicates ±S.D. Stats: ns. non-significant; 
*, p < 0.05; **, p < 0.01; ***, p < 0.001, paired student t-test, target cells/control vs target 
cells/mLIGHT, as indicated. 
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4.6 Detection of DNA fragmentation following mLIGHT ligation 

In addition to cell death detection using the CytoTox-Glo assay (which measures the 

release of an active protease from dead cells with a structurally compromised cell 

membrane) and the SensoLyte assay (which measures cellular caspase-3/7 activity 

and thus apoptosis), cell death also was measured using a DNA fragmentation 

ELISA assay (see section 2.13.5). DNA fragmentation is a powerful and robust 

technique to detect apoptosis (as DNA fragmentation is a hallmark of apoptotic cell 

death) and has been shown to be a reliable tool to detect apoptosis in our laboratory 

(Bugajska et al., 2002; Georgopoulos et al., 2006; Georgopoulos et al., 2007) and 

others (Abreu-Martin et al., 1995; Browning et al., 1996; Dealtry et al., 1987). It 

should, however, be noted that members of the TNFSF do not always induce DNA 

fragmentation, particularly when the type of death induced displays both apoptotic 

and non-apoptotic features, as has been reported for TNFRs, such as members of 

the LT family (Wilson and Browning, 2002) and TRAIL-R (Steele et al., 2006). Finally, 

an additional advantage of the technique is that, as part of the methodology, only 

target cells are labelled (with BrdU) for detection (see section 2.13.5 for details) 

which negates the need to include “effector cell-alone” controls for background 

subtraction (as in the case of the CytoTox-Glo assay), thus excluding any possibility 

of interference of the effector cells in the experimental readings obtained.    

We therefore examined the level of DNA fragmentation following treatment of 

carcinoma cells with mLIGHT and experiments were performed as detailed in section 

2.13.5. Data were collected and presented as the percentage (%) of apoptotic/dead 

epithelial cells which was calculated with respect to staurosporine readings (as 

detailed in section 2.13.5) and representative results are shown in Figure 4.6. 

mLIGHT caused relatively low levels of DNA fragmentation in HT29 cells (15% in 

comparison to with 11% for control) and EJ cells (18% compared with 13% for 

control), whereas in HCT116 cells, mLIGHT resulted in more significant levels of 

DNA fragmentation (50% compared with 15% for control) (Figure 4.6).  

 

 

 

 



  

152 
 

a.  

 
b.  

 
c.  

 
Figure 4.6. Detection of DNA fragmentation mediated by mLIGHT 

1.6x104 of BrdU labelled HT29, HCT116 and EJ cells were co-cultured with 2x104 cells/well of control 
(NT-L) or mLIGHT-L cells and incubated for 72hrs. ELISA assay was performed and absorbance was 
measured by a FLUOstar OPTIMA plate reader and the percentage of apoptotic cells was calculated 
(as described in 2.13.5). a, b, and c show HT29, HCT116 and EJ cells, respectively. Bars correspond 
to mean values of 3 replicates ±S.D. Stats: ns. non-significant; *, p < 0.05; **, p < 0.01, paired student 
t-test for co-cultured HT29, HCT116 or EJ/control (NT-L) cells vs mLIGHT-L/HT29, HCT116 or EJ 
cells, as indicated.    
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4.7 Effects of LT receptors ligation by mLIGHT in normal human 
urothelial (NHU) cells 

This study has shown that mLIGHT can efficiently kill CRC and UCC cell lines, 

however no other studies have previously assessed the effects of LT receptors 

ligation in normal cells of epithelial origin. Thus, to determine whether mLIGHT-

mediated death is tumour cell-specific or not, the effects of mLIGHT in urothelial cell 

carcinoma (UCC)-derived cell lines were compared to their normal counterparts, 

normal human urothelial (NHU cells). NHU cells were isolated and used in this study 

(see section 2.3.1) as described elsewhere (Crallan et al., 2006; Southgate et al., 

2002). Before employing the co-culture system to deliver mLIGHT, it was important to 

examine the LTβR and HVEM expression on NHU cells. NHU cells were 

immunolabelled as above (Chapter 3) for detection of LTβR and HVEM by flow 

cytometry and results are shown in Figure 4.7. The flow cytometry results showed 

that NHU cells demonstrated high levels of expression for both the LTβR and HVEM 

receptors (Figure 4.7).  
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Figure 4.7. Detection of LTβR and HVEM expression on NHU cells  

NHU cells were labelled with control PE-conjugated isotype antibody, anti-LTβR or anti-HVEM and 
incubated for 20-30mins. Cells were then washed and re-suspended in FACS buffer. Samples were 
analysed on an EasyCyte Guava flow cytometer and data analysed using InCyte2.6 Guava software 
(Millipore): overlay histograms of LTβR expression (left) and HVEM expression on NHU (right). Isotype 
control PE antibody labelling of cells is shown as an open black histogram; PE-conjugated anti-LTβR 
or anti-HVEM labelled cells are shown as filled grey histogram.  
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In order to activate LTβR and HVEM by mLIGHT and determine the effects of 

mLIGHT-mediated receptor ligation in normal cells, NHU cells were co-cultured with 

control (NT-L) or mLIGHT-L cells in KSFM culture medium for 48 and 72hrs. It is of 

note that both effector and NHU cells were co-cultured in serum-free (KSFM) culture 

medium to ensure that NHU cells maintained their undifferentiated state (Crallan et 

al., 2006) whilst it was also essential to ensure that MMC-treated NT-L (control) or 

mLIGHT-L effector cells do not undergo cell death (due to lack of serum) and thus 

delivered the mLIGHT signal to NHU cells. Phase contrast microscopy images for 

control (NT-L) or mLIGHT-L cells alone and co-cultured cells were taken to observe 

any morphological changes as shown in Figure 4.8. 

It appeared that KSFM culture medium had no or little effect on growth arrested 

control (NT-L) or mLIGHT-L cells as shown in Figure 4.8. In agreement with 

microscopy observations, when co-culture experiments were performed and 

determined by the CytoTox-Glo assay, it was found that the background values of 

control (NT-L) or mLIGHT-L cells in KSFM medium were relatively similar to 

background values of that cells cultured in DR (data not shown) confirming lack of 

changes in effector cell viability. CytoTox-Glo cell death detection assay was 

performed as with the carcinoma cells (see above section 4.4). Results are 

presented in Figure 4.9 as raw data (following background correction) as well as fold 

increase relative to control in NHU for mLIGHT versus NT-L co-cultures. Raw RLU 

data and fold increase relative to controls were calculated using the parameters and 

equations provided in section 2.13.2. 

Strikingly, as can be seen in Figure 4.9, unlike carcinoma cells that responded to 

mLIGHT by cell death, mLIGHT showed a cyto-protective effect on normal (NHU) 

cells.    
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Figure 4.8. Microscopy images of control (NT-L), mLIGHT-L cells and co-
cultured with NHU cells  

MMC-treated cells control (NT-L) and mLIGHT-L cells were seeded at 2x104 cells/well in 96-well 
plates in DR 10% (v/v) or complete KSFM and incubated at 37°C for 72hrs. a, shows control (NT-L) 
cell cultured in DR 10% (upper images) and in KSFM (lower images). b, shows mLIGHT-L cells 
cultured in cultured in DR 10% (upper images) and in complete KSFM (lower images). c and d show 
co-culture of NHU cells with MMC-control (NT-L) (left) and mLIGHT-L cells (right), respectively, for 
72hrs. Photos were taken at a 100x magnification using an EVOSXL inverted microscope (PeqLab). 
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Figure 4.9. Effect of mLIGHT in normal human urothelial (NHU) cells 
MMC-treated control (NT-L) and mLIGHT-L cells were seeded at 2x104 cells/well in 96-well white 
plates overnight and on the following day NHU cells were seeded at 1.6x104. Cells were incubated for 
48 and 72hrs at 37°C and 5% (v/v) of CO2. After that, 50µL of CytoTox-Glo substrate were added to 
each well and luminescence was measured on a FLUOstar OPTIMA plate reader. Results are 
presented as relative luminescence units (RLU) following background correction (top figure). Fold 
increase relative to control was generated from background corrected data as detailed in section 
2.13.2 and as described in Figure 4.4 (bottom figure). Bars correspond to mean values of 4-5 
replicates ±S.D. Stats: ns. non-significant; *, p < 0.05; **, p < 0.01; ***, p < 0.001, paired student t-test, 
NHU cells/control vs NHU cells/mLIGHT, as indicated.  

 

 

 

 



  

157 
 

4.8 Induction of pro-inflammatory cytokine secretion following 
LTβR and HVEM ligation by mLIGHT 

There is evidence that ligation of TNFR members can induce cytokine secretion in 

epithelial cells. A study reported that HT29 cells exhibited IL-8 secretion in response 

to TNF-α and Fas treatment (Abreu-Martin et al., 1995). Moreover, previous studies 

on the highly related TNFR member CD40 have shown that ligation by membrane 

presented CD40L (mCD40L) induced secretion of cytokines IL-6, IL-8 and GM-CSF 

in some carcinoma cell lines of CRC and UCC origins (Georgopoulos et al., 2007). 

Interestingly, although soluble CD40 agonist could induce IL-8 (and to a lesser extent 

IL-6 secretion), only mCD40L could induce GM-CSF secretion (Georgopoulos et al., 

2007). The secretion of IL-6 and IL-8 was reported to be dependent on NF-κB 

activation in normal and malignant epithelial cells and also in human colonic 

fibroblasts (Cagnoni et al., 2004; Gallagher et al., 2002; Gelbmann et al., 2003; 

Schwabe et al., 2001). Others have demonstrated that LTβR activation with 

immobilised agonistic anti-LTβR monoclonal antibody (M12) induced secretion of IL-8 

and RANTES in A375 cells, but not cell death, and similar results were observed 

when LT receptor was cross-linked with membrane-bound LTβ and LTαβ (both 

ligands for LTβR) (Degli-Esposti et al., 1997b).  

As the secretion of pro-inflammatory cytokines in carcinoma cells by mLIGHT is not 

yet investigated, this study examined whether mLIGHT can induce the secretion of 

cytokines IL-6, IL-8 and GM-CSF at various time points of 6, 12, 36 and 48hrs post 

receptor ligation. Detection of cytokines secretion was quantified by ELISA assays 

and data were analysed (see section 2.15).  

Results showed that mLIGHT caused a decrease in IL-6 levels in HT29 cells (Figure 

4.10a); by contrast it induced the increase of IL-6 secretion in EJ cells (Figure 4.10b), 

whilst there was no IL-6 secretion by HCT116 cells (data not shown). mLIGHT 

triggered significant IL-8 secretion in all cells tested compared with controls in a time-

dependent fashion (Figure 4.10c, d and e). Moreover, mLIGHT caused secretion of 

GM-CSF in HT29 and HCT116 (Figure 4.10f and g) and more dramatic secretion of 

GM-CSF was observed in EJ cells, compared with controls (Figure 4.10h). 
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c.  
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f.  

 
g.  

 
h.  

 
Figure 4.10. mLIGHT-mediated secretion of pro-inflammatory cytokines in 
carcinoma cells  

HT29, HCT116 and EJ cells were co-cultured with MMC-treated control (NT-L) or mLIGHT-L cells for 
6, 12, 24, 36 and 48hrs. Culture supernatants were collected at the indicated time points and secretion 
of IL-6, -8 and GM-CSF were assessed using cytokine specific ELISAs by a FLUOstar OPTIMA (BMG 
Labtech) plate reader. Data are represented as mean values ±S.D cytokine concentrations (pg/mL) for 
2 replicates. a and b show IL-6 results for HT29 and EJ cells, c, d and e show results of IL-8 for HT29, 
HCT116 and EJ cells, respectively. f, g and h show GM-CSF results for HT29, HCT116 and EJ cells.  
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Summary  

- Culture-medium adapted mLIGHT-L cells and the original mLIGHT-L cells 

showed similar levels of mLIGHT expression, whereas control (NT-L) cells 

were negative for LIGHT expression as determined by flow cytometry.  

- Cell viability experiments demonstrated that control (NT-L) and mLIGHT-L 

cells were efficiently and optimally growth-arrested following MMC treatment 

using concentration 15µg/mL. 

- MMC treatment had no effect on LIGHT expression in mLIGHT-L cells tested 

by flow cytometry.  

- Using the in vitro co-culture system for mLIGHT delivery:   

a. CytoTox-Glo death detection assays demonstrated that mLIGHT, in the 

absence of IFN-γ, triggered extensive cell death in HT29, HCTT16 and EJ 

cells, whilst RT112 cells showed moderate level of cell death (within less 

than 72hrs), but SW480 cells appeared relatively resistant to mLIGHT.  

b. SensoLyte caspase-3/7 detection assays demonstrated that mLIGHT 

triggered significant activation of caspase-3/7 in HT29, HCT116, RT112 

and EJ cells but not in SW480 cells and these observations are in 

agreement with the results of the CytoTox-Glo assays.  

c. DNA fragmentation experiments showed that mLIGHT caused significant 

levels of DNA fragmentation in HCT116 cells and low levels of DNA 

fragmentation in HT29 and EJ cells.  

d. LT receptors ligation by mLIGHT resulted in significant induction of IL-8 

and GM-CSF secretion in HT29, HCT116 and EJ cells. 
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- Normal (NHU) epithelial cells were positive for LTβR and HVEM expression as 

determined  by flow cytometry. 

- Unlike to the pro-apoptotic effects of mLIGHT on carcinoma cells, mLIGHT 

ligation was cyto-protective in normal (NHU) cells. 

- The findings in this chapter highlighted the importance of signal quality 

(strength) in determining cellular functional outcome, and that mLIGHT-

mediated death is tumour cell-specific.  
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Chapter 5 

Investigations on the regulation and functional role 
of intracellular signalling proteins involved in LTβR 
and HVEM-associated signal transduction pathways 
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5.1 Introduction   

LTβR and HVEM are members of the non-classical death receptor TNFR subfamily 

and mediate their intracellular pathways via TRAF recruitment, following ligand-

receptor binding and activation (Dempsey et al., 2003; Xie, 2013). In response to 

extracellular stimuli (e.g. growth factors or cytokines) intracellular cascades are 

activated and TRAF proteins are recruited and relocated to membrane lipid rafts 

(section 1.8.1). TRAF recruitment triggers the activation of signalling events such as 

MAPKs, ERK1/2, JNK and p38 (section 1.8.2), transcription factors (TFs) AP-1 and 

NF-κB (section 1.8.3) and may also involve ROS production, which all can ultimately 

control and regulate cellular processes ranging from cell survival to cell death 

(Albarbar et al., 2015; Bishop et al., 2007; Kyriakis and Avruch, 2012; Roux and 

Blenis, 2004; Xie, 2013). As the precise regulation and/or roles of the TRAF adaptor 

proteins and MAPK in LTβR/HVEM signalling remain relatively under-investigated, 

the specific aims of the work described in this chapter were to: 

- optimise immunoblotting techniques for the detection of intracellular proteins 

associated with LTβR and HVEM signalling. 

- detect TRAF1, 2, 3, 5 and 6 expression activation following LTβR and HVEM 

signalling triggered by mLIGHT using immunoblotting and by utilising human 

protein-specific antibodies for TRAFs.   

- perform immunoblotting to investigate TRAF1 and 3 regulation following LTβR 

and HVEM signalling by soluble agonists versus mLIGHT. 

- employ immunoblotting to detect LT receptor-mediated ERK1/2, JNK and p38 

expression/activation and use specific pharmacological inhibitors for ERK1/2 

(U0126), JNK (SP600125) and p38 (SB202190) to investigate the functional 

role of these MAPKs in LTβR/HVEM death triggered by mLIGHT using 

CytoTox-Glo assays.  

- use specific pharmacological inhibitors to determine whether TFs NF-κB and 

JNK/AP-1 are critical in LTβR/HVEM-mediated death as determined by 

CytoTox-Glo death detection assays. 
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5.2 Optimisation of immunoblotting techniques for detection of 
protein expression in epithelial and non-epithelial cultured 
cells    

Due to the experimental challenges that the co-culture experiments pose when 

determining epithelial cell protein expression by immunoblotting (Western blotting) 

(see subsequent section), preliminary experiments were initially performed for 

detection of house-keeping protein expression for the selection of appropriate loading 

control proteins for co-culture-derived lysates. It is well-documented that the house-

keeping protein β-actin expressed in most cell types (including epithelial cells and 

fibroblasts), as a part of the cell cytoskeleton as well as being important in controlling 

other housekeeping functions (i.e., development of cell shape and cell division) 

(Hofmann, 2009; Hofmann and de Lanerolle, 2006). β-actin has been one of the most 

commonly used loading controls in laboratory techniques to normalise protein 

expression as it is believed to have constant expression levels in different cells. By 

contrast, cytokeratins (CKs) are epithelial cell-specific protein (e.g. CK8 and CK18) 

and are expressed by epithelial cells but not fibroblasts (Moll et al., 1982a; Moll et al., 

1982b).  

At a first step of this optimisation, CK8 and CK18 expression was examined in 

lysates from cultured epithelial and fibroblast cells alone. For CK detection, 

immunoblotting was performed using initially an antibody detecting both CK8 and 18 

isoforms to confirm specificity in epithelial cells versus fibroblasts, whereas equal 

protein loading was confirmed in all cell lines using a β-actin-specific antibody. As 

shown in Figure 5.1, the expression of both CK8 and 18 was naturally detectable in 

epithelial cells RT4, SW480 and HT29 cells, whilst other cells lines, such as CRC cell 

line (HCT116), UCC (RT112) and transfected CRC cell line SW480 with CD40 

(SW480CD40) were detectable for CK8 but not CK18. CK8 or 18 expression was 

absent in fibroblast cell lines 3T3Neo and 3T3CD40L, whilst little CK expression was 

detectable with this antibody in EJ cells, which is in agreement with the highly 

mesenchymal nature of EJ cells (Crallan et al., 2006). Equal loading was confirmed 

by β-actin detection.  
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Figure 5.1. Detection of CK8 and CK18 expression in cell lines of epithelial and 
mesenchymal (fibroblast) origins 

20µg of cell lysates from various cells lines as indicated were loaded per track and separated by SDS-
PAGE using 4-12% (w/v) Bis-Tris gel and then transferred onto a PVDF membrane. The PVDF 
membrane was probed overnight with monoclonal anti-CK8-18 (Zym5.2) in TBS/Tween 0.1% (v/v) 
(1:1000 dilution) and then the membrane was immunoblotted with primary monoclonal antibody β-
actin (1:25,000 dilution) in TBS/Tween 0.1% (v/v). The membrane was incubated with goat anti-mouse 
IgG Alexa 680 antibody (1:10,000) in TBS/Tween 0.1%. Antibody binding was visualised at channel 
700nm using an OdysseyTM Infra-red Imaging system (Li-Cor). The expected molecular weight of CK8, 
18 and β-actin were 52.5, 50 and 42kDa, respectively.          

 

As only very little detectable CK expression was evident for the UCC line EJ and this 

may be because the monoclonal anti-CK8-18 (Zym5.2) used was not sensitive for 

detection of CK8-18 on EJ cells, immunoblotting experiments were performed using 

different human-specific antibodies against CK8/18 to a) detect CK8/18 expression in 

EJ cells and b) confirm lack of CK expression in NT-L (control) and mLIGHT cells (to 

be used in co-culture experiments) and the HCT116 line (served as a positive 

control). As shown in Figure 5.2, EJ cells exhibited detectable CK18 expression but 

not CK8 whereas both CK8 and 18 were absent in fibroblast cells NT-L and mLIGHT-

L cells. HCT116 cells showed high levels of CK8 and CK18 expression.         
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Figure 5.2. Optimised detection of CK expression in effector and target cell 
lines 

20µg of cell lysates from control (NT-L), mLIGHT-L, HCT116, and EJ cells were loaded per track and 
separated by SDS-PAGE using 4-12% (w/v) Bis-Tris gels and then transferred onto a PVDF 
membrane. Then PVDF membrane was probed with the primary monoclonal antibody anti-CK8 (C51) 
or anti-CK18 (CY-90) in TBS/Tween 0.1% (v/v) (1:1000 dilution). Membranes were immunoblotted with 
primary monoclonal antibody β-actin (1:25,000 dilution) in TBS/Tween 0.1% (v/v). Then membranes 
were incubated with secondary antibody goat anti-mouse IgG Alexa 680 in TBS/Tween 0.1% (v/v) 
(1:10,000). Antibody binding was visualised at channel 700nm using an OdysseyTM Infra-red Imaging 
system (Li-Cor). The expected molecular weight of CK8, 18 and β-actin were 52.5, 50 and 42kDa, 
respectively.       
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5.3 Immunoblotting methodologies for correct and sensitive 
detection of epithelial proteins in lysates derived following co-
culture experiments  

The use of the co-culture system for LT receptor activation in epithelial (target 

cancer) cells poses experimental limitations in terms of using appropriate loading 

controls in immunoblotting experiments, in comparison to experiments involving 

protein detection in epithelial cells alone (e.g. treated with soluble agonists). The 

optimisation experiments described in the previous section, established the methods 

for the detection of total (β-actin) and epithelial cell-specific markers (CK8 and 18). 

CK8 and 18 were used as a loading control for immunoblotting and densitometry-

based normalisation and adjustment of loading. This was to ensure that when lysates 

were loaded for gel electrophoresis (and subsequent blotting), the equivalent protein 

content of target cells from co-cultures of both target/control (NT-L) and 

target/mLIGHT-L cells was appropriately assessed, as also described previously 

(Bugajska et al., 2002; Georgopoulos et al., 2006). In particular, for all co-culture 

experiments, densitometry was initially used to quantify band intensity for CK8 (for 

HT29 and HCT116) or CK18 (for EJ cells) by the Li-Cor Odyssey analysis software 

and correction based on CK8 or CK18 band intensity was performed. Following band 

intensity-based normalisation of lysates (Figure 5.3a), subsequent immunoblotting 

experiments were performed with equal protein from epithelial cells ensured, as 

shown in Figure 5.3b where representative data are provided.        
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Figure 5.3. An example of densitometry analysis for protein expression 
correction based on CK8 band intensities values   

40µg of cell lysates from HCT116 co-cultures with control (NT) and mLIGHT-L (mL) cells were loaded 
per track and separated by SDS-PAGE using 4-12% (w/v) Bis-Tris gels and then transferred onto a 
PVDF membrane. Then PVDF membrane was probed with primary anti-CK8 in TBS/Tween 0.1% (v/v) 
(1:1000 dilution). The membrane was then incubated with goat anti-mouse IgG Alexa 680 antibody in 
TBS/Tween 0.1% (v/v) (1:10,000 dilution). Antibody binding was visualised at 700nm using an 
OdysseyTM Infra-red Imaging system (Li-Cor). a, results from “first run” immunoblotting experiment with 
quantification of band intensities for CK8 expression (before loading correction). b, “second run” 
immunoblotting experiment following densitometry analysis (after loading correction).    
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5.4 Differential regulation of TRAFs following LTβR and HVEM 
signalling 

The TRAF adaptor proteins play critical roles in the intracellular signalling pathways 

triggered by members of the TNFR family. Studies demonstrated that TRAF1 

interacts indirectly with TNFRI (via TRADD) and forms a complex with TRAF2 to 

trigger the activation of MAPK and TFs (Hehlgans and Pfeffer, 2005). TRAF2 on the 

other hand was reported to regulate cell survival by the activation of MAPK and NF-

κB (Arch et al., 1998; Park et al., 2000). TRAF3 is an important and multifaceted 

regulator of TNFRSF signalling, and studies have previously demonstrated that 

TRAF3 contains a site on its C-terminal cytoplasmic domain that can interact with 

TRAF1, 2 and 5, and mediates EBV and induced B cell proliferation and the 

activation of NF-κB (Izumi et al., 1999). Previous studies reported that TRAF3 

recruitment is important in cell death triggered by the activation of CD40 and LTβR 

(Eliopoulos et al., 1996; Force et al., 1997; Georgopoulos et al., 2006; Rooney et al., 

2000; VanArsdale et al., 1997). However, TRAF5 was discovered as an adaptor 

protein that can bind to CD40 and LTβR (Ishida et al., 1996a; Nakano et al., 1996), 

and it was reported to be implicated in NF-κB activation following CD27 and CD30 

signalling (Aizawa et al., 1997; Akiba et al., 1998). Similarly to TRAF5, TRAF6 was 

reported to activate NF-κB, JNK and p38 when it is overexpressed (Song et al., 

1997) and other studies demonstrated that TRAF6 can interact with some of TNFR 

members such as CD40, RANK, TNFRII and NGFR (Darnay et al., 1999; Galibert et 

al., 1998; Ishida et al., 1996b; Khursigara et al., 1999; Tsukamoto et al., 1999; Wong 

et al., 1998).   

Therefore, to understand the proximal events of LT receptor signalling, this study 

screened for the expression (and its regulation) of cytosolic TRAF proteins TRAF1, 2, 

3, 5 and 6 following LTβR and HVEM signalling by immunoblotting using human-

specific antibodies. As TRAF1 and 3 have been reported to be crucial in 

transcriptional mechanisms and induction of cell death, respectively (Georgopoulos 

et al., 2006), TRAF1 and 3 expression in particular were examined following the 

activation of LTβR and HVEM by soluble agonists versus mLIGHT. In some 

experiments, positive controls have been used as described in figure legends.   
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Based on the observations in Chapters 3 and 4 that HT29, HCT116 and EJ cells 

showed LT receptor-mediated death at 72hrs and 24hrs after activation with soluble 

agonists and mLIGHT treatment, respectively, and as TRAF recruitment represents 

an early event in TNFRSF signalling, TRAF expression was investigated following 

cell treatment with soluble agonists and as early as 1.5, 3, and 6hrs following 

treatment with mLIGHT. The results showed that HT29 and HCT116 cells showed 

some level of TRAF1 upregulation following LIGHT and/or combinatorial LIGHT/IFN-γ 

treatment, whereas EJ cells showed a massive induction of TRAF1 after LIGHT/IFN-

γ treatment (Figure 5.4a). Importantly, treatment with mLIGHT, although it did not 

lead to a detectable increase in HT29 cells, it caused a dramatic, and time-

dependent induction of TRAF1 levels in both HCT116 and EJ cells (Figure 5.4b).  
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Figure 5.4. TRAF1 expression following LTβR and HVEM activation in 
carcinoma cells after receptor activation by soluble receptor agonists versus 
mLIGHT 

a, HT29, HCT116 and EJ cells were seeded in 10cm2 culture dishes and treated with control antibody 
(MOPC-21 – at conc. 10μg/mL), agonistic antibody (BS-1 – at conc. 30μg/mL), IFN-γ (at conc. 
180U/mL), LIGHT (at conc. 1μg/mL) in the absence or presence of IFN-γ and incubated for 48hrs. b, 
HT29, HCT116 and EJ cells were co-cultured at cell density 3x106 with MMC-treated control (NT) or 
mLIGHT-L cells (mL) at cell density 3.5x106 in 10cm2 culture dishes and incubated for the indicated 
times. 20µg of treated cells or 40µg of co-cultured cells of whole cell lysates were loaded per track 
and separated under denaturing conditions by SDS-PAGE using 4-12% (w/v) Bis-Tris gels and then 
transferred onto a PVDF membrane. The membranes were probed with primary polyclonal antibody 
anti-TRAF1 in TBS/Tween 0.1% (v/v) (1:250 dilution). Then membranes were immunoblotted with 
primary monoclonal antibody β-actin (1:25,000 dilution) in TBS/Tween 0.1% for treated cells with 
soluble agonist or membranes were probed with CK8 (for H29 and HCT116 cells) or CK18 (for EJ 
cells) (1:1000 dilution) for co-cultured cells. Then incubated for one hour with secondary antibody goat 
anti-rabbit IgG IRDye 800 (1:10,000 dilution) for TRAF1 detection or incubated with secondary 
antibody goat anti-mouse IgG Alexa 680 in TBS/Tween 0.1% (v/v) (1:10,000) for β-actin, CK8 and 18 
detection. Antibody binding was visualised using an OdysseyTM Infra-red Imaging system (Li-Cor). 
Positive control represents lysates from co-cultures of mCD40L with HCT116 cells for TRAF1 
induction. The expected molecular weight of TRAF1 was 52kDa. 
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Interestingly, the pattern of regulation for TRAF2 was different, with TRAF2 

expression being downregulated following treatment of HT29 cells with mLIGHT in 

comparison to control. A similar trend in TRAF2 level regulation was observed in 

HCT116 and EJ cells after treatment with mLIGHT (Figure 5.5).  

 

 
Figure 5.5. TRAF2 expression following LTβR and HVEM activation in 
carcinoma cells by mLIGHT 

HT29, HCT116 and EJ cells were co-cultured in 10cm2 culture dishes at cell density 3x106 with MMC-
treated control (NT) or mLIGHT-L cells (mL) at cell density 3.5x106 for different time points 1.5, 3 and 
6hrs, as indicated in figure. 40µg of whole cell lysates were loaded per track and separated under 
denaturing conditions by SDS-PAGE using 4-12% (w/v) Bis-Tris gels and then transferred onto a 
PVDF membrane. Membranes were probed with primary polyclonal antibody anti-TRAF2 in 
TBS/Tween 0.1% (v/v) (1:250 dilution) and then membranes were incubated with primary monoclonal 
antibody CK8 (for H29 and HCT116 cells) or CK18 (for EJ cells) (1:1000 dilution). Membranes were 
incubated with secondary antibody goat anti-rabbit IgG IRDye 800 (1:10,000 dilution) for TRAF2 
detection and membranes were probed with secondary antibody goat anti-mouse 680 (1:10,000 
dilution) for CK8 and 18 detection. Antibody binding was visualised using an OdysseyTM Infra-red 
Imaging system (Li-Cor). Positive control represents lysates from co-cultures of 3T3Neo with HCT116 
cells for TRAF2 induction. The expected molecular weight of TRAF2 was 50kDa. 
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TRAF3 expression was detected following treatment with soluble receptor agonists 

and mLIGHT. Treatment with LIGHT and combination of LIGHT/IFN-γ caused a 

massive induction of TRAF3 expression in EJ cells but there was no TRAF3 

expression observed in HT29 and HCT116 cells (Figure 5.6a). Importantly, however, 

treatment with mLIGHT cells in HT29 cells caused detectable TRAF3 at 1.5, 3 and 

6hrs, whereas there was moderate and strong upregulation of TRAF3 in HCT116 

and EJ cells, respectively, as early as 1.5hrs post-ligation (Figure 5.6b).  
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Figure 5.6. TRAF3 expression following LTβR and HVEM activation in 
carcinoma cells after receptor activation by soluble receptor agonists versus 
mLIGHT 

a, HT29, HCT116 and EJ cells were seeded in 10cm2 culture dishes and treated with control antibody 
(MOPC-21 – at conc. 10μg/mL), agonistic antibody (BS-1 – at conc. 30μg/mL), IFN-γ (at conc. 
180U/mL), LIGHT (at conc. 1μg/mL) in the absence or presence of IFN-γ and incubated for 48hrs. b, 
HT29, HCT116 and EJ cells were co-cultured at cell density 3x106 with MMC-treated control (NT) or 
mLIGHT-L cells (mL) at cell density 3.5x106 in 10cm2 culture dishes and incubated for various time 
points 1.5, 3 and 6hrs. 20µg of treated cells or 40µg of co-cultured cells of whole cell lysates were 
loaded per track and separated under denaturing conditions by SDS-PAGE using 4-12% (w/v) Bis-Tris 
gels and then transferred onto a PVDF membrane. The membranes were probed with primary 
polyclonal antibody anti-TRAF3 in TBS/Tween 0.1% (v/v) (1:250 dilution). Then membranes were 
incubated with primary monoclonal antibody β-actin (1:25,000 dilution) for treated cells or CK8 (for 
H29 and HCT116 cells) or CK18 (for EJ cells) co-cultured cells (1:1000 dilution). Membranes were 
incubated with secondary antibody goat anti-rabbit IgG IRDye 800 (1:10,000 dilution) for TRAF3 
detection and membranes were probed with secondary antibody goat anti-mouse 680 (1:10,000 
dilution) for β-actin, CK8 and 18 detection. Antibody binding was visualised using an OdysseyTM Infra-
red Imaging system (Li-Cor). Positive control represents lysates from co-cultures of mCD40L with 
HCT116 cells for TRAF3 induction. The expected molecular weight of TRAF3 was 50kDa.   
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Although TRAF5 basal levels were detectable in 2/3 of the cell lines tested (HT29 

and EJ), the level of TRAF5 protein expression was relatively unchanged in HT29 

and EJ following treatment with mLIGHT, whereas TRAF5 expression was 

undetectable in HCT116 cells (Figure 5.7). No TRAF6 expression was detected in 

HT29, HCT116 and EJ cells following treatment with mLIGHT, although TRAF6 

expression was detected in the positive control (Figure 5.8), which represents CD40-

mediated TRAF6 upregulation by mCD40L (Mohamed and Georgopoulos, 

unpublished observations).  

 
Figure 5.7. TRAF5 expression following LTβR and HVEM activation in 
carcinoma cells by mLIGHT 

HT29, HCT116 and EJ cells were co-cultured at cell density 3x106 with MMC-treated control (NT) or 
mLIGHT-L cells (mL) at cell density 3.5x106 in 10cm2 culture dishes and incubated for different time 
points 1.5, 3 and 6hrs, as indicated. 40µg of whole cell lysates were loaded per track and separated 
under denaturing conditions by SDS-PAGE using 4-12% (w/v) Bis-Tris gels and then transferred onto 
a PVDF membrane. The membranes were probed with primary polyclonal antibody anti-TRAF5 in 
TBS/Tween 0.1% (v/v) (1:250 dilution). Membranes were incubated with primary monoclonal antibody 
CK8 (for H29 and HCT116 cells) or CK18 (for EJ cells) (1:1000 dilution). Membranes were incubated 
with secondary antibody goat anti-rabbit IgG IRDye 800 (1:10,000 dilution) for TRAF5 detection or 
membranes were probed with secondary antibody goat anti-mouse 680 (1:10,000 dilution) for CK8 
and 18 detection. Antibody binding was visualised using an OdysseyTM Infra-red Imaging system (Li-
Cor). Positive control represents lysates from co-cultures of 3T3Neo with HCT116 cells for TRAF5 
induction. The expected molecular weight of TRAF5 was 55kDa.    
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Figure 5.8. TRAF6 expression following LTβR and HVEM activation in 
carcinoma cells by mLIGHT  

HT29, HCT116 and EJ cells were co-cultured in 10cm2 culture dishes at cell density 3x106 with MMC-
treated control (NT) or mLIGHT-L cells (mL) at cell density 3.5x106 and incubated for different time 
points 1.5, 3 and 6hrs, as indicated. 40µg of whole cell lysates were loaded per track and separated 
under denaturing conditions by SDS-PAGE using 4-12% (w/v) Bis-Tris gels and then transferred onto 
a PVDF membrane. The membranes were probed with primary monoclonal antibody anti-TRAF6 in 
TBS/Tween 0.1% (v/v) (1:250 dilution). Then membranes were incubated with primary monoclonal 
antibody CK8 (for H29 and HCT116 cells) or CK18 (for EJ cells) (1:1000 dilution). Then membranes 
were probed with secondary antibody goat anti-mouse 680 (1:10,000 dilution) for TRAF6, CK8 and 18 
detection. Antibody binding was visualised using an OdysseyTM Infra-red Imaging system (Li-Cor). 
Positive control represents lysates from co-cultures of mCD40L with HCT116 cells for TRAF6 
induction. The expected molecular weight of TRAF6 was 50kDa.   
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5.5 The role of MAPKs in LTβR and HVEM signalling 

The main MAPKs identified in mammals include a) ERKs, b) JNKs, c) p38 and d) 

ERKs 3, 4 and 5 (Roux and Blenis, 2004) (as discussed in detail in section 1.8.2). 

The majority of studies that have reported on ERK1/2 function indicate that these 

MAPKs are mainly inducers of cell proliferation (Chang and Karin, 2001; Kyriakis and 

Avruch, 2012). However, other studies have implicated ERK1/2 in loss of proliferation 

and/or cell death responses, for instance it has been demonstrated that HeLa cells 

treatment with cisplatin can activate ERK (Wang et al., 2000), and inhibition of ERK 

in renal cell lines and primary cultures of renal proximal tubular cells stimulated their 

survival (Kim et al., 2005; Nowak et al., 2004). JNK can have multifaceted roles in 

cell fate but in many cases represents a strong pro-apoptotic mediator. For instance, 

JNK is activated in cell death responses to chemotherapy drugs (Hayakawa et al., 

2004; Potapova et al., 2001). Furthermore, the ligation of RANK in osteoclast 

precursor cells and CD40 in carcinoma cells with cognate ligand RANKL and CD40L, 

respectively, contribute to cell death associated with JNK activation (Boyle et al., 

2003; Eliopoulos et al., 2000; Elmetwali et al., 2010). Studies also have shown that 

the activation of LTβR and HVEM by overexpression leads to JNK activation (Chang 

et al., 2002; Hsu et al., 1997; Marsters et al., 1997b).  

p38 is also a member of the MAPK family and studies reported that p38 can play 

anti-apoptotic and pro-apoptotic roles and this is depending on cell type as well as 

the stimuli. For instance, overexpression of the active form of the p38 inhibits cardiac 

myocytes from β-adrenergic receptor-mediated apoptosis (Zechner et al., 1998). 

Moreover, early activation of p38 protects Kyme cells from TNF-α-mediated 

apoptosis (Roulston et al., 1998). With a role of p38 in pro-apoptotic responses, 

studies demonstrated that NGF withdrawal and Fas ligation induced p38 activation 

(Juo et al., 1997; Kummer et al., 1997; Xia et al., 1995). Studies reported that p38 

activation is a mediator in cell apoptosis of neurons (De Zutter and Davis, 2001), 

others demonstrated that p38 activates cell death in rat fetal brown adipocytes 

following stimulation with TNF-α (Valladares et al., 2000), and TRAIL-mediated cell 

death via ROS-activated p38 followed by caspase activation in HeLa cells (Lee et al., 

2002).   
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As TRAF protein recruitment triggers the activation of MAPK cascades (Bishop, 

2004; Bishop et al., 2007; Ichijo, 1999) and, as shown above, TRAF1 and 3 are 

induced as early as 1.5hrs (and remained upregulated at 3 and 6hrs) following 

treatment of HT29, HCT116 and EJ cells with mLIGHT, the activation (in the form of 

phosphorylation) of ERK1/2, JNK and p38 was examined at 6, 12 and 24hrs following 

LTβR and HVEM ligation with mLIGHT by immunoblotting using human protein-

specific antibodies. Moreover, to determine the possible functional involvement of 

these MAPKs and downstream of TFs in LT receptor signalling, MAPK- and TF-

specific pharmacological inhibitors (for JNK, MEK/ERK and p38, as well as inhibitors 

for NF-κB and AP-1 – see Appendix V for MAPK inhibitors titrations) were used and 

their effects in LTβR/HVEM-mediated activation by mLIGHT were assessed using 

CytoTox-Glo death detection assays.  

Following treatment with mLIGHT, the immunoblotting results demonstrated that 

mLIGHT treatment did not appear to cause an obvious activation (phosphorylation) of 

ERK expression in HT29, HCT116 and EJ cells as shown in Figure 5.9. However, 

results from functional inhibition experiments showed that mLIGHT-mediated death 

was significantly abolished in a dose-dependent fashion by the inhibitor of MEK/ERK 

U0126 in HT29, HCT116 and EJ cells (Figure 5.10). 
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Figure 5.9. ERK1/2 expression following LTβR and HVEM activation in 
carcinoma cells by mLIGHT 

HT29, HCT116 and EJ cells were co-cultured at cell density 3x106 with MMC-treated control (NT) or 
mLIGHT-L cells at cell density 3.5x106 in 10cm2 culture dishes and incubated for time points 6, 12 and 
24hrs. 40µg of whole cell lysates were loaded per track and separated under denaturing conditions by 
SDS-PAGE using 4-12% (w/v) Bis-Tris gels and then transferred onto a PVDF membrane. The 
membranes were probed with primary monoclonal antibody anti-phospho-ERK1/2 in TBS/Tween 0.1% 
(v/v) (1:1000 dilution) with 5% w/v non-fat dry milk. Membranes were incubated with primary 
monoclonal antibody CK8 (for H29 and HCT116 cells) or CK18 (for EJ cells) (1:1000 dilution). Then 
membranes were incubated with secondary antibody goat anti-mouse 680 (1:10,000 dilution) for p-
ERK1/2, CK8 and 18 detection. Antibody binding was visualised using an OdysseyTM Infra-red Imaging 
system (Li-Cor). Top and bottom black solid triangle indicate activated ERK (p-ERK) isoforms: p-ERK1 
and p-ERK2 at molecular weight 44kDa and 42kDa, respectively. 
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a.  

 
b.  

 
c.  

   
Figure 5.10. Effects of the MEK/ERK inhibitor U0126 on mLIGHT-mediated cell 
death  
HT29, HCT116 and EJ were co-cultured at density 1.6x104 cells/well with MMC-treated control (NT-L) 
or mLIGHT-L cells at cell density 2x104 cells/well in 96-well plates, in the absence (control) or 
presence of MEK inhibitor (U0126) at concentrations 10 and 20μM, and solvent control (DMSO) was 
included. Cells were incubated for 72hrs at 37ºC and 5% CO2. 50μL of prepared CytoTox-Glo 
reagents was added to wells and luminescence was measured by a FLUOstar OPTIMA (BMG 
Labtech) plate reader. Fold increase relative to control was generated from background corrected data 
as detailed in section 2.13.2 and as described in Figure 4.4. a, b and c show HT29, HCT116 and EJ 
cells, respectively. Data are represented as mean values of 4-5 replicates ±S.D. Stats: ns. non-
significant; *, p < 0.05; **, p < 0.01; ***, p < 0.001, paired student t-test for co-cultured HT29, HCT116 
or EJ cells with mLIGHT-L cells vs co-cultured cells with mLIGHT plus U0126, as indicated.  
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The immunoblotting results of JNK showed that there was no significant activation of 

JNK expression in HT29, HCT116 and EJ cells following mLIGHT treatment (Figure 

5.11). When JNK function was blocked by pharmacological inhibition using the highly 

specific JNK inhibitor SP600125, strikingly JNK blockade enhanced death in HT29 

cells, yet it significantly attenuated death in HCT116 and EJ cells after LT receptor 

ligation by mLIGHT (Figure 5.12).  

 
Figure 5.11. JNK expression following LTβR and HVEM activation in carcinoma 
cells by mLIGHT 

HT29, HCT116 and EJ cells were co-cultured at cell density 3x106 with MMC-treated control (NT) or 
mLIGHT-L cells (mL) at cell density 3.5x106 in 10cm2 culture dishes and incubated for time points 6, 
12 and 24hrs. 40µg of whole cell lysates were loaded per track and separated under denaturing 
conditions by SDS-PAGE using 4-12% (w/v) Bis-Tris gels and then transferred onto a PVDF 
membrane. The membranes were probed with primary monoclonal antibody anti-phospho-JNK in 
TBS/Tween 0.1% (v/v) (1:1000 dilution) with 5% w/v non-fat dry milk. Membranes were incubated with 
primary monoclonal antibody CK8 (for H29 and HCT116 cells) or CK18 (for EJ cells). Then incubated 
with secondary antibody goat anti-mouse 680 (1:10,000 dilution) for p-JNK, CK8 and 18 detection. 
Antibody binding was visualised using an OdysseyTM Infra-red Imaging system (Li-Cor). Positive 
control represents lysates from co-cultures of mCD40L with HCT116 cells for phospho-JNK induction. 
Top and bottom black solid triangle indicate activated JNK (p-JNK) isoforms: short isoform and long 
isoform at molecular weight 46kDa and 54kDa, respectively. 
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a.  

  
b.  

    
c.  

 
Figure 5.12. Effects of the JNK inhibitor SP600125 on mLIGHT-mediated cell 
death 

HT29, HCT116 and EJ were co-cultured at density 1.6x104 cells/well with MMC-treated control (NT-L) 
or mLIGHT-L cells at cell density 2x104 cells/well in 96-well plates, in the absence (control) or 
presence of JNK inhibitor (SP600125) at concentrations 5 and 10μM, solvent control was included 
DMSO. Cells were incubated for 72hrs at 37ºC and 5% CO2. 50μL of prepared CytoTox-Glo was 
added to wells and luminescence was measured by a FLUOstar OPTIMA (BMG Labtech) plate reader. 
Fold increase relative to control was generated from background corrected data as detailed in section 
2.13.2 and as described in Figure 4.4. a, b and c show HT29, HCT116 and EJ cells, respectively. Data 
are represented as mean values of 5-6 replicates ±S.D. Stat: ns. non-significant; *, p < 0.05; **, p < 
0.01; ***, p < 0.001, paired student t-test for co-cultured HT29, HCT116 or EJ cells with mLIGHT-L 
cells vs co-cultured cells with mLIGHT plus SP600125, as indicated. 
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Immunoblotting for p38 activation showed that the expression of phospho-p38 level 

appeared unchanged in HT29 and EJ cells following treatment with mLIGHT; by 

contrast, HCT116 showed a significant induction of phospho-p38 at 24hrs (Figure 

5.13). Interestingly, p38 blockade using the inhibitor SB202190 significantly but only 

partially attenuated mLIGHT-mediated cell death in HT29, HCT116 and EJ cells 

(Figure 5.14).  

 
Figure 5.13. p38 expression following LTβR and HVEM activation in carcinoma 
cells by mLIGHT 

HT29, HCT116 and EJ cells were co-cultured at cell density 3x106 with MMC-treated control (NT) or 
mLIGHT-L cells (mL) at cell density 3.5x106 in 10cm2 culture dishes and incubated for time points 6, 
12 and 24hrs. 40µg of whole cell lysates were loaded per track and separated under denaturing 
conditions by SDS-PAGE using 4-12% (w/v) Bis-Tris gels and then transferred onto a PVDF 
membrane. The membranes were probed with primary polyclonal antibody anti-phospho-p38 in 
TBS/Tween 0.1% (v/v) (1:1000 dilution) in 5% w/v BSA. Membranes were incubated with primary 
monoclonal antibody CK8 (for H29 and HCT116 cells) or CK18 (for EJ cells). Then incubated with 
secondary antibody goat anti-rabbit 800 (1:10,000 dilution) for p38 detection and were probed with 
secondary antibody goat anti-mouse 680 (1:10,000 dilution) for CK8 and 18 detection. Antibody 
binding was visualised using an OdysseyTM Infra-red Imaging system (Li-Cor). Positive control 
represents lysates from co-cultures of mCD40L with HCT116 cells for phospho-p38 induction. The 
expected molecular weight of activated p38 was 43kDa.   
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a.  

 
b.  

    
c.  

    
Figure 5.14. Effects of the p38 inhibitor SB202190 on mLIGHT-mediated cell 
death  

HT29, HCT116 and EJ were co-cultured at density 1.6x104 cells/well with MMC-treated control (NT-L) 
or mLIGHT-L cells at cell density 2x104 cells/well in 96-well plates, in the absence or absence of p38 
inhibitor (SB202190) at concentration 25μM, solvent control was included DMSO. Cells were 
incubated for 72hrs at 37ºC and 5% CO2. 50μL of prepared CytoTox-Glo was added to wells and 
luminescence was measured by a FLUOstar OPTIMA (BMG Labtech) plate reader. Fold increase 
relative to control was generated from background corrected data as detailed in section 2.13.2 and as 
described in Figure 4.4. Data are represented as mean values of 5 replicates ±S.D. a, b and c show 
HT29, HCT116 and EJ cells, respectively. Stats: ns. non-significant; *, p < 0.05; **, p < 0.01; ***, p < 
0.001, paired student t-test for co-cultured HT29, HCT116 or EJ cells with mLIGHT-L cells vs co-
cultured cells with mLIGHT plus SB202190, as indicated. 
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As MAPK signalling leads to the activation of TFs NF-κB and AP-1, the functional 

roles of NF-κB and AP-1 in LTβR and HVEM signalling were also investigated using 

well-characterised pharmacological inhibitors of NF-κB (NF-κB Activation Inhibitor III) 

and AP-1 (NDGA). Results from CytoTox-Glo death detection assays revealed that 

inhibition of NF-κB activity partially reduced mLIGHT-mediated death in HT29 and 

HCT116 cells, whereas it potentiated death EJ cells (Figure 5.15).  

On the other hand, AP-1 inhibition partially of fully blocked death in HCT116 and EJ 

cells, respectively; by contrast (and in agreement with the JNK blockade results using 

SP600125), AP-1 blockade did not cause any statistically significant effect in 

mLIGHT-mediated death in HT29 cells (Figure 5.15).   
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a.  

 

 

 
b.  

 

 

 
c.  

 

  

  
Figure 5.15. Effects of NF-κB/NDGA on mLIGHT-mediated cell death  

HT29, HCT116 and EJ were co-cultured at density 1.6x104 cells/well with MMC-treated control (NT-L) 
or mLIGHT-L cells at cell density 2x104 cells/well in 96-well plates, in the absence or presence of NF-
κB inhibitor (NF-κB Activation Inhibitor III) or AP-1 inhibitor (NDGA) at concentration 5μM and 25μM, 
respectively. Solvent control (DMSO) was included. Cells were incubated for 72hrs at 37ºC and 5% 
CO2. 50μL of prepared CytoTox-Glo was added to wells and luminescence was measured by a 
FLUOstar OPTIMA (BMG Labtech) plate reader. Fold increase relative to control was generated from 
background corrected data as detailed in section 2.13.2 and as described in Figure 4.4. Data are 
represented as mean values of 3-5 replicates ±S.D. a, b and c, show HT29, HCT116 and EJ cells 
treated with NF-κB inhibitor (left figures) and HT29, HCT116 and EJ cells treated with NDGA (right 
figures). Stats: ns. non-significant; *, p < 0.05; **, p < 0.01; ***, p < 0.001, paired student t-test for co-
cultured HT29, HCT116 or EJ cells with mLIGHT-L cells vs co-cultured cells with mLIGHT plus NF-κB 
inhibitor or NDGA, as indicated. 
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Summary 

- In this chapter this study provided evidence for the first time that LIGHT and/or 

combinatorial LIGHT/IFN-γ treatment caused stabilisation and some degree of 

upregulation in TRAF1 expression in CRC (HCT116 and HT29) and UCC (EJ) 

cells, respectively. By contrast, mLIGHT treatment induced a dramatic 

activation of TRAF1 in some CRC (HCT116) and UCC (EJ) whereas no 

significant TRAF1 induction was observed in HT29 cells.     

- Western blotting results demonstrated that treatment with mLIGHT 

downregulated TRAF2 expression in HT29 cells, it caused slight reduction in 

TRAF2 levels in HCT116 cells, whereas little change in TRAF2 levels was 

observed in EJ cells.  

- UCC cells showed a massive induction of TRAF3 expression in response to 

soluble LIGHT and combinatorial LIGHT/IFN-γ treatment, whereas no TRAF3 

was detected in CRC cells. However, TRAF3 regulation by mLIGHT treatment 

was different, as TRAF3 was upregulated in all cell lines as early as 1.5hrs 

post-ligation, showing similar observations with TRAF1 data.   

- Despite the presence of basal TRAF5 expression in all cell lines tested, 

mLIGHT treatment caused little detectable effects in TRAF5 levels (very little 

TRAF5 expression was detectable in HCT116). TRAF6 expression was not 

detected in any of the cell lines with or without treatment with mLIGHT.  

- The investigations in MAPK expression levels following mLIGHT-mediated LT 

receptor ligation showed little detectable differences in phospho-ERK, -JNK or 

-p38 in CRC and UCC cells, with the sole exception HCT116 cells which 

showed a significant activation of phospho-p38 in response to mLIGHT.  
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- However, when functional inhibition experiments were performed to define any 

functional role for these MAPKs in mLIGHT-mediated death, it was shown 

that: 

a. inhibition of MEK/ERK and JNK dose-dependently and significantly 

abrogated mLIGHT-mediated death in HCT116 and EJ cells, whereas JNK 

inhibitor potentiated death of HT29 cells. 

b. p38 inhibition significantly attenuated, but not fully, mLIGHT-mediated cell 

death in CRC and UCC cells. 

c. the NF-κB inhibitor partially reduced death of CRC cells and potentiated 

death of UCC (EJ) cells in response to mLIGHT.  

d. inhibition of AP-1 partially blocked death in HCT116 and EJ cells (but not in 

HT29 cells) following mLIGHT treatment. 

- The results have provided evidence that mLIGHT, but not soluble receptor 

agonists, triggered not only extensive cell death but also induced rapid TRAF1 

and TRAF3 signalling; this is the first time this has been demonstrated on 

carcinoma cells of CRC and UCC origins.  

- Moreover, it appears that mLIGHT-mediated cell death involves a number of 

MAPKs (such as ERK, JNK and p38); however, clearly the involvement of 

these MAPKs (and downstream TFs), appears to be cell type specific, as 

significantly different observation were made in HT29 versus HCT116 and EJ 

cells.  

- These findings not only provide a better understanding of the mechanisms of 

LT receptor-mediated death in carcinoma cells but also raise a significant 

argument against the suitability of HT29 cells as a model for the study of the 

effects of the LT system in carcinoma cells.  
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Chapter 6 

Investigations into the molecular nature of mLIGHT-
mediated apoptosis: the role of Reactive Oxygen 

Species (ROS), the mitochondrial pathway, and the 
caspases in cell death 
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6.1 Introduction  

Reactive oxygen species (ROS) are normally produced in mammalian cells and are 

chemically highly reactive, which can in turn lead to modification of lipids, protein 

oxidation and degradation (Kathiria et al., 2012; Kobayashi and Suda, 2012; MatÉs 

et al., 1999). Cells can generate ROS under physiological conditions as by-products 

from two sources: a) the mitochondrial electron transport chain and b) by the action 

of the NADPH oxidase (NOX) complex and peroxidases (from several cellular 

components such as cell membrane and endoplasmic reticulum) (Dickinson and 

Chang, 2011; Lennicke et al., 2015; Turrens, 2003). ROS include: a) superoxide 

anion radicals (O2–), and b) singlet O2, which are mainly produced by the 

mitochondrial respiratory chain, c) hydrogen peroxide (H2O2), which can be produced 

directly from action of oxidases or indirectly from the dismutation of O2-, and d) 

hydroxyl radicals (-OH), which are highly reactive species that can change purine 

and pyrimidine bases of DNA and lead to DNA damage (Matés et al., 2010; Matés et 

al., 2012).  

Cellular ROS balance is controlled by the antioxidant system, which includes 

endogenous antioxidant enzymes (such as superoxide dismutase (SOD), catalase, 

glutathione peroxidase (GPx), and glutathione (GSH)). The antioxidant system is 

regulated through genes such as Ref-1, Nrf-2 and Thioredoxin (Trx), and the 

antioxidant system scavenges ROS to prevent cellular oxidative damage (Fruehauf 

and Meyskens, 2007; Poljsak et al., 2013). The level of ROS has an impact on cell 

fate; low or moderate ROS most likely promotes cell growth and survival (Dunnill et 

al., 2015; Hamanaka and Chandel, 2010), whereas cells under stress show 

increased ROS levels (e.g. following chemotherapy or UV exposure) and ultimately 

high ROS levels cause cytotoxicity, apoptosis and probably necrosis (Ambrosone, 

2000; Halliwell, 2007; Hoeijmakers, 2009; Lee et al., 2011; Phillips et al., 2006; 

Szatrowski and Nathan, 1991; Yee et al., 2014). Previous studies demonstrated that 

some members of TNFR use ROS, which is induced as a result of the interaction of 

TRAF with NADPH oxidases (Matés et al., 2012). For instance CD40 activation 

produced ROS via 5-lipoxygenase pathway and a TRAF3-NADPH oxidase 

association (Aggarwal, 2004; Dickinson and Chang, 2011). Moreover, it was 

demonstrated that CD40 ligation in B-cells leads to the production of oxidative stress, 

ROS and triggers NF-κB and JNK activation (Ha and Lee, 2004; Ha et al., 2011).  
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It has been reported that ROS play a crucial role in the activation of stress-activated 

mitogen-activated protein kinase kinase kinase (MAPKKK) signalling pathway, such 

as ASK1 and the release and auto-phosphorylation of Trx (redox-sensing protein and 

an inhibitor for ASK1) was shown to associate with ASK1 (Gotoh and Cooper, 1998; 

Liu and Min, 2002; Saitoh et al., 1998). Studies demonstrated that LTβR and TNF-α 

signal transduction was triggered by the activation of ASK1 through the production of 

ROS (Chen et al., 2003; Gotoh and Cooper, 1998). This was previously explained as 

ROS activates ASK1 by preventing ASK1 and Trx association and this leads to form 

complex of binding TRAF2 and ASK1 (Liu and Min, 2002). These events may trigger 

cell death which is mediated by two main pathways: extrinsic and intrinsic and these 

pathways are associated with activation of specific caspases (as discussed in detail 

in Chapter 1 section 1.3). It is well-documented that caspase-8 is activated and 

involved within the extrinsic pathway, while apoptosis that is triggered by the intrinsic 

pathway activates caspase-9 (Fulda and Debatin, 2006; Zimmermann and Green, 

2001).  

Previous study on the mechanism of CD40-mediated apoptosis demonstrated that 

CD40 ligation by mCD40L in bladder carcinoma cells triggers apoptosis via the 

activation of caspase-9, but not caspase-8 (Georgopoulos et al., 2006). Studies on 

LT receptors demonstrated that activation of LTβR in epithelial cells by agonistic 

antibody (BS-1) induces the activation of caspase -8 and -3 and cytochrome c 

release in multidrug-resistant counterpart of human sarcoma cell line (MES-SA/Dx5), 

which may indicate that the activation of LTβR mediates cell death via caspase-

dependent mitochondria-mediated apoptosis (Hu et al., 2013). A previous study 

reported that HVEM activation on a lymphoid malignancy by LIGHT or anti-HVEM 

(mAb) induced caspase activation, decrease in mitochondrial membrane potential, 

upregulation of the pro-apoptotic protein Bax, also a role of TRAIL and induced 

endogenous TNF-α production and TNF-α enhanced HVEM-mediated cell death 

(Pasero et al., 2009b).  
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Cells initiate mitochondrial apoptosis signalling via the involvement of the pro-

apoptotic Bcl-2 protein activation with three BH domains (e.g. Bak and Bax) that 

trigger mitochondrial outer membrane permeabilisation (MOMP) (Fesik, 2000; 

Hengartner, 2000). This results in cytochrome c and other proteins release into the 

cytosol and initiate caspase activation in the cell leading ultimately to cell death 

(Nechushtan et al., 2001; Todt et al., 2015; Wolter et al., 1997). Bax is believed to 

form a supramolecular opening or pores for the MOMP alone or with the help of Bak 

or the active form of Bid, truncated Bid (tBid) (Kuwana et al., 2002; Li et al., 1998; 

Luo et al., 1998). Bax and Bak are present in the cytosol of healthy cells, and the 

relocalisation of Bax from cytosol to mitochondria to facilitate MOMP is essential for 

triggering cell death (Todt et al., 2015; Wolter et al., 1997), Bax retaining in cytosol, 

MOMP and cell death are found to be inhibited (Cheng et al., 2001; Wei et al., 2001; 

Zong et al., 2001).   

The aims of the work presented in this chapter were to:  

- detect ROS production during LTβR/HVEM death by mLIGHT-mediated 

signalling using ROS-Glo assays. 

- perform functional inhibition experiments using the antioxidant NAC and to 

determine whether ROS release is critical in LTβR/HVEM-mediated death 

triggered by mLIGHT as determined by CytoTox-Glo death detection assays. 

- perform immunoblotting to investigate the activation of NOX subunit (p40phox) 

and to use a pharmacological inhibitor for NOX (DPI) to determine whether 

NOX is involved in LTβR/HVEM death signalling triggered by mLIGHT as 

determined by CytoTox-Glo assays. 

- investigate the activation of ASK1 and Thioredoxin expression in LTβR/HVEM-

mediated cell death by mLIGHT using immunoblotting and human protein-

specific antibodies for ASK1 and Thioredoxin. 

- use biochemical inhibitors for caspases (pan caspase z-VAD), caspase-3 and 

-7 (Z-DEVD-FMK), -8 (Z-IETD-FMK), -9 (Z-LEHD-FMK) and -10 (Z-AEVD-

FMK) to determine whether caspases are critical in LTβR/HVEM-mediated 

death triggered by mLIGHT using CytoTox-Glo death detection assays. 
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- investigate the regulation of pro-apoptotic mitochondrial pathway-related 

proteins Bak and Bax in LTβR/HVEM-mediated death triggered by soluble 

agonists versus mLIGHT treatment, using immunoblotting techniques and by 

utilising human protein-specific antibodies for Bak and Bax.  

- optimise transfection techniques for using small interfering RNA (siRNA) to 

knockdown LT receptors expression to determine whether LT receptors (LTβR 

and HVEM) signal independently, cooperatively or in an antagonistic fashion in 

determining cell fate in the context of mLIGHT treatment. 
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6.2 Detection of ROS production  

For ROS detection, two assays were used to measure ROS levels following mLIGHT 

treatment: CM-H2DCFDA and ROS-Glo (section 2.14). A series of experiments were 

performed to measure ROS levels following co-culture of effector (NT-L and 

mLIGHT-L) cells with target carcinoma cells using CM-H2DCFDA (section 2.14.1). 

CM-H2DCFDA assay did not prove effective in detecting ROS in cells and due to time 

constraints near the end of the experimental work it was not possible to sufficiently 

optimise it, so the ROS-Glo assay was performed instead. 

ROS-Glo is designed to measure H2O2 levels, as most cellular ROS are converted to 

H2O2 and have the longest half-life of all ROS in cultured cells. The ROS-Glo assay 

is convenient and does not involve medium aspiration and washing steps as does the 

CM-H2DCFDA assay. In these assays the CRC and UCC lines HCT116 and EJ cells 

were selected as representative cell lines to measure ROS levels. Tests involved co-

cultures of HCT116 and EJ cells with control (NT-L) and mLIGHT-L cells, whilst EJ 

cells treated with H2O2 served as the positive control. Unlike the CytoTox-Glo and 

caspase detection assays, no “cells alone” background control subtractions were 

necessary in this assay as only target cells were treated with the H2O2 detection 

substrate (ROS-Glo is detailed in section 2.14.2). Data were presented as Relative 

Luminescence Unit (RLU) as shown in Figure 6.1.  

The results showed that mLIGHT induced a significant and rapid production of ROS 

levels in HCT116 and EJ cells at 3hrs post receptor ligation compared with controls 

(Figure 6.1). Treated EJ cells with H2O2 showed high levels of ROS production.  
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a.  b.  

  

Figure 6.1. Measurement of ROS induction in carcinoma cells following 
mLIGHT treatment  

HCT116 and EJ were pretreated with H2O2 substrate for 30mins and cells were co-cultured with 
control (NT-L) or mLIGHT-L cells in 96-well plates. Cells were incubated for 3hrs at 37ºC and 5% (v/v) 
CO2. 100μL of prepared ROS-Glo Detection Solution was added to the wells and relative 
luminescence unit (RLU) was determined by a FLUOstar OPTIMA (BMG Labtech) plate reader. The 
intensity of the RLU signal is proportional to H2O2 level which corresponds to ROS production in cells 
(as described in section 2.14.2). a, data of HCT116 and EJ cells. b, ROS positive control data (EJ 
cells was treated with H2O2). Data are represented as mean values of 3 replicates ±S.D. Stats: ns. 
non-significant; *, p < 0.05; **, p < 0.01, paired student t-test for co-cultured HCT116 or EJ cells with 
control cells vs co-cultured cells with mLIGHT-L cells, as indicated. 
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6.3 Effects of the ROS scavenger and antioxidant NAC on 
mLIGHT-mediated cell death 

Based on the finding that the aforementioned cells released ROS following LTβR and 

HVEM ligation with mLIGHT and to demonstrate the functional involvement of ROS in 

mLIGHT-induced cell death, the antioxidant N-acetyl L-cysteine (NAC) was used. 

The L-NAC is a precursor form metabolised to cysteine and then to GSH, which 

functions as an antioxidant that can prevent damage to important cellular 

components caused by ROS (De Vries and De Flora, 1993).  

Following initial pre-titration experiments, it was observed that NAC was cytotoxic 

when it was added to cultures at high concentrations (5mM and above), compared 

with control. Treatment of cells with 1.25mM of NAC appeared to be the optimal 

concentration (see Appendix VI). Therefore, the concentration of 1.25mM was 

selected and used in co-culture experiments as presented in Figure 6.2. Cells were 

pre-treated with NAC for two time points 1hr and 3hrs and then cells were co-cultured 

with control (NT-L) or mLIGHT-L cells for 72hrs and the CytoTox-Glo assay was 

performed. Data were presented as fold increase relative to control and calculated 

using the parameters and equations as described in section 2.13.2. 

The addition of NAC without pre-treatment showed no significant effects on mLIGHT-

mediated cell death in HT29, HCT116 and EJ cells (data not shown). Interestingly, 

when NAC pre-treatment was performed, in particular for 3hrs, it did partially inhibit 

death of HT29, HCT116 and EJ cells in response to mLIGHT treatment (Figure 6.2)  
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a.  

 
b.  

 
c.  

   

Figure 6.2. Effects of the antioxidant NAC on mLIGHT-mediated cell death  

HT29, HCT116 and EJ were pre-treated with NAC for 1 and 3hrs at concentration 1.25mM. HT29, 
HCT116 and EJ were co-cultured at cell density 1.6x104 cells/well with MMC-treated control (NT-L) or 
mLIGHT-L cells at cell density 2x104 cells/well in 96-well plates, in the absence or presence of NAC. 
Cells were incubated for 72hrs at 37ºC and 5% (v/v) CO2. 50μL of prepared CytoTox-Glo reagents 
were added to wells and luminescence was measured by a FLUOstar OPTIMA (BMG Labtech) plate 
reader. Fold increase relative to control was generated from background corrected data as detailed in 
section 2.13.2 and as described in Figure 4.4. Data are represented as mean values of 5 replicates 
±S.D. a, b and c show HT29, HCT116 and EJ cells. Stats: ns. non-significant; *, p < 0.05; **, p < 0.01; 
p < 0.001; ***, paired student t-test for co-cultured HT29, HCT116 or EJ cells with mLIGHT-L cells vs 
co-cultured cells with mLIGHT plus NAC, as indicated. 
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6.4 The role of NOX in ROS production following LTβR/HVEM 
signalling  

The NOX enzyme complex can play a role in cellular ROS production, and in the 

context of the TNFR family and CD40 in particular it was reported that CD40 can 

generate ROS in malignant B-cells through the association of TRAF3 and the NOX 

subunit phospho-p40phox (Ha and Lee, 2004). This study showed in chapter 5 

(Figure 5.6) that mLIGHT in particular induced rapid and significant induction of 

TRAF3 and it showed in chapter 6 (Figure 6.2) that the antioxidant NAC inhibited cell 

death in CRC and UCC cells, indicating possible ROS involvement in cell death. 

Therefore, the involvement of NOX in ROS production was investigated. As there is a 

possible link between TRAF3 and NOX activation, the activation of p40phox was 

examined at time points 6, 12 and 24hrs following LTβR and HVEM activation by 

mLIGHT by immunoblotting as shown in Figure 6.3. The results showed that mLIGHT 

caused little detectable effects in phospho-p40phox expression in HT29. By contrast 

there was some level of activation in EJ cells by 12 hours following mLIGHT 

treatment and more dramatically there was a significant induction of p40phox in 

HCT116 cells at 24hrs post-ligation (Figure 6.3).    

Following the investigation of p40phox activation (by measuring its phosphorylation), 

inhibition experiments were performed to examine whether the activation of p40phox 

was of functional importance in LTβR/HVEM signalling by mLIGHT. For this purpose, 

the inhibitor diphenyleneiodonium chloride (DPI) (an inhibitor for the NOX enzyme 

complex) was used. DPI is a chemical compound specifically inhibiting NOS2, NOS3 

and NADPH oxidase. DPI was used to inhibit ROS sourced from NOX (Li et al., 

2003). Cells were pre-titrated with various concentrations of DPI to select the optimal 

concentration. According to the obtained results, cells were very sensitive to DPI, and 

that even low concentrations appeared toxic to all cells. However, doses of 0.01562 

and 0.03125μM were well tolerated by HT29, HCT116 and EJ cells (Appendix VII). 

Therefore, HT29, HCT116 and EJ cells were co-cultured with control (NT-L) or 

mLIGHT-L cells in the absence or presence of DPI at two concentrations: 0.01562 

and 0.03125μM and the effects of DPI on cell death triggered by mLIGHT treatment 

was tested and data was presented as fold increase relative to control. The results 

showed that NOX blockade enhanced death in HT29, HCT116 and EJ cells after LT 

receptor ligation by mLIGHT (Figure 6.4). 
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Figure 6.3. p40phox expression following LTβR and HVEM activation in 
carcinoma cells by mLIGHT 

HT29, HCT116 and EJ cells were co-cultured at cell density 3x106 with MMC-treated control (NT) or 
mLIGHT-L cells (mL) cells at cell density 3.5x106 in 10cm2 culture dishes and incubated for time points 
6, 12 and 24hrs. 40µg of whole lysates were separated under denaturing conditions by SDS-PAGE 
using 4-12% (w/v) Bis-Tris gels and then transferred onto a PVDF membrane. The membranes were 
probed with primary polyclonal antibody anti-phospho-p40phox in TBS/Tween 0.1% (v/v) (1:1000 
dilution) with 5% (w/v) BSA and then incubated with primary monoclonal antibody CK8 (for H29 and 
HCT116 cells) or CK18 (for EJ cells). Then membranes were incubated with secondary antibody goat 
anti-rabbit 800 (1:10,000 dilution) for p-p40phox detection or were probed with secondary antibody 
goat anti-mouse 680 (1:10,000 dilution) for CK8 and 18 detection. Antibody binding was visualised 
using an OdysseyTM Infra-red Imaging system (Li-Cor). The expected molecular weight of activated 
p40phox (p-p40phox) was 40kDa. 
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a.  

 
b.  

  
c.  

                            

Figure 6.4. Effects of the NOX inhibitor DPI on mLIGHT-mediated cell death  

HT29, HCT116 and EJ were co-cultured at density 1.6x104 cells/well with MMC-treated control (NT-L) 
or mLIGHT-L cells at cell density 2x104 cells/well in 96-well plates. DPI was added to co-cultures at 
two concentrations 0.01562 and 0.03125μM, as indicated, and then cells were incubated for 72hrs at 
37ºC and 5% (v/v) CO2. 50μL of prepared CytoTox-Glo reagents were added to wells and 
luminescence was measured by a FLUOstar OPTIMA (BMG Labtech) plate reader. Fold increase 
relative to control was generated from background corrected data as detailed in section 2.13.2 and as 
described in Figure 4.4. Data are represented as mean values of 5 replicates ±S.D. a, b and c show 
HT29, HCT116 and EJ cells, respectively. Stats: ns. non-significant; *, p < 0.05; **, p < 0.01, paired 
student t-test for co-cultured HT29, HCT116 or EJ cells with mLIGHT-L cells vs co-cultured cells with 
mLIGHT plus DPI, as indicated. 
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6.5 Effects of LTβR/HVEM signalling on ASK1 and Trx expression 

The activation of ASK1 and Trx were investigated at various times 6, 12 and 24hrs 

following ligation with mLIGHT, using immunoblotting and by utilising human protein-

specific antibodies for ASK1 and Trx. The immunoblotting results showed that HT29 

cells showed no detectable of phospho-ASK1, whereas HCT116 cells showed some 

activation of ASK1 at 24hrs and it appeared that the pattern level of phospho-ASK1 

in EJ cells was relatively unchanged, following mLIGHT treatment as shown in Figure 

6.5.  

On the other hand, interestingly, Trx expression basal levels were detectable in all 

cell lines tested HT29, HCT116 and EJ cells, and in agreement with previous 

observations in our laboratory (Dunnill and Georgopoulos, manuscript in 

preparation), Trx levels progressively increased in cultured cells following seeding. 

Strikingly, mLIGHT induced down-regulation of Trx in all cell lines by 6-12 hours post 

receptor ligation, although the exact pattern (and timing) differed between different 

cell lines (Figure 6.6). 
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Figure 6.5. ASK1 expression following LTβR and HVEM activation in carcinoma 
cells by mLIGHT 

HT29, HCT116 and EJ cells were co-cultured at cell density 3x106 with MMC-treated control (NT) or 
mLIGHT-L cells (mL) cells at cell density 3.5x106 in 10cm2 culture dishes and incubated for time points 
6, 12 and 24hrs. 40µg of whole lysates were separated under denaturing conditions by SDS-PAGE 
using 4-12% (w/v) Bis-Tris gels and then transferred onto a PVDF membrane. The membranes were 
probed with primary polyclonal antibody anti-phospho-ASK1 in TBS/Tween 0.1% (v/v) (1:1000 dilution) 
with 5% (w/v) BSA and then with primary monoclonal antibody CK8 (for H29 and HCT116 cells) or 
CK18 (for EJ cells). Membranes were probed with secondary antibody goat anti-rabbit 800 (1:10,000 
dilution) for ASK1 detection and membranes were probed with secondary antibody goat anti-mouse 
680 (1:10,000 dilution) for CK8 and 18 detection. Antibody binding was visualised using an OdysseyTM 

Infra-red Imaging system (Li-Cor). The expected molecular weight of activated ASK1 (p-ASK1) was 
50kDa. 
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Figure 6.6. Trx-1 expression following LTβR and HVEM activation in carcinoma 
cells by mLIGHT 

HT29, HCT116 and EJ cells were co-cultured at cell density 3x106 with MMC-treated control (NT) or 
mLIGHT-L cells (mL) cells at cell density 3.5x106 in 10cm2 culture dishes and incubated for time points 
6, 12 and 24hrs. 40µg of whole lysates were separated under denaturing conditions by SDS-PAGE 
using 4-12% (w/v) Bis-Tris gels and then transferred onto a PVDF membrane. The membranes were 
probed with primary polyclonal antibody anti-Thioredoxin-1 in TBS/Tween 0.1% (v/v) (1:1000 dilution) 
with 5% (w/v) BSA and then with primary monoclonal antibody CK8 (for H29 and HCT116 cells) or 
CK18 (for EJ cells). Membranes were probed with secondary antibody goat anti-rabbit 800 (1:10,000 
dilution) for Trx-1 detection and were probed with secondary antibody goat anti-mouse 680 (1:10,000 
dilution) for CK8 and 18 detection. Antibody binding was visualised using an OdysseyTM Infra-red 
Imaging system (Li-Cor). The expected molecular weight of Trx-1 was 12kDa. 
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6.6 The role of caspases in LTβR/HVEM signalling 

Functional inhibition experiments were also performed to determine the role of 

specific caspases in mLIGHT-mediated apoptosis and to understand whether the 

extrinsic or intrinsic pathways were involved in cell death. First, using a generic 

biochemical caspase inhibitor, the pan-caspase inhibitor z-VAD to determine whether 

cell death was caspase dependent. The results showed that the addition of pan-

caspase z-VAD increased death of HT29 and EJ cells following ligation with mLIGHT, 

whereas z-VAD partially blocked HCT116 death in response to mLIGHT treatment 

compared with controls (Figure 6.7). 

As only HCT116 cells death was blocked by z-VAD treatment, thus indicating a 

caspase-dependent apoptotic pathway in these cells (and non caspase-dependent, 

and possibly non-apoptotic/necrotic pathways in the other cell lines), further 

investigations were performed to determine which death pathway was utilised, 

extrinsic or intrinsic. Therefore, biochemical caspase inhibitors used specific for 

caspase-3 and -7 (Z-DEVD-FMK), -8 (Z-IETD-FMK), -9 (Z-LEHD-FMK), -10 (Z-

AEVD-FMK) alongside z-VAD (used as a control). Caspase inhibitors were added to 

co-cultured cells and their effects were determined using CytoTox-Glo. Data were 

presented as fold increase relative to control and calculated using the parameters 

and equations as described in section 2.13.2. As shown in Figure 6.8, it was 

observed that treatment with caspase-3 inhibitor (Z-DEVD-FMK), and -8 inhibitor (Z-

IETD-FMK) had some reduction effects on HCT116 death triggered by mLIGHT, 

whereas, interestingly, inhibition of caspase-9 and -10 increased death of HCT116 

(Figure 6.8).   
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a.  

 
b.  

 
c.  

                             
Figure 6.7. Effects of the pan-caspase inhibitor z-VAD on mLIGHT-mediated cell 
death 

HT29, HCT116 and EJ were co-cultured at density 1.6x104 cells/well with MMC-treated control (NT-L) 
or mLIGHT-L cells at cell density 2x104 cells/well in 96-well plates. z-VAD was added to co-cultures at 
concentration 100μM and then cells were incubated for 72hrs at 37ºC and 5% (v/v) CO2. 50μL of 
prepared CytoTox-Glo reagent was added to wells and luminescence was measured by a FLUOstar 
OPTIMA (BMG Labtech) plate reader. Fold increase relative to control was generated from 
background corrected data as detailed in section 2.13.2 and as described in Figure 4.4. a, b and c 
show HT29, HCT116 and EJ cells. Bars correspond to mean values of 3 replicates ±S.D. Stats: ns. 
non-significant; *, p < 0.05, paired student t-test for co-cultured HT29, HCT116 or EJ cells with 
mLIGHT-L cells vs co-cultured cells with mLIGHT plus z-VAD, as indicated.  
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Figure 6.8. Effects of caspase -3, -8, -9, -10 and z-VAD inhibitors on mLIGHT-
mediated cell death 

HCT116 cells were co-cultured at density 1.6x104 cells/well with MMC-treated control (NT-L) or 
mLIGHT-L cells at cell density 2x104 cells/well in 96-well plates. Caspase inhibitors were added, 
caspase-3 (Z-DEVD-FMK), -8 (Z-IETD-FMK), -9 (Z-LEHD-FMK), -10 (Z-AEVD-FMK) and pan 
caspases inhibitor (z-VAD) at concentration 100μM and incubated for 72hrs at 37ºC and 5% (v/v) CO2. 
50μL of prepared CytoTox-Glo reagent was added to wells and luminescence was measured by a 
FLUOstar OPTIMA (BMG Labtech) plate reader. Fold increase relative to control was generated from 
background corrected data as detailed in section 2.13.2 and as described in Figure 4.4. Bars 
correspond to mean values of 3 replicates ±S.D. Stats: ns. non-significant, *, p < 0.05, paired student 
t-test for co-cultured HCT116 with mLIGHT-L cells vs co-cultured cells with mLIGHT plus caspase 
inhibitors, as indicated. 
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6.7 Regulation of pro-apoptotic proteins in LTβR/HVEM signalling  

Previous studies demonstrated that CD40 activation induced Bak and Bax 

expression in epithelial carcinoma cell lines (Bugajska et al., 2002). More recent work 

in our laboratory has shown that mCD40L induced MOMP in both UCC and CRC 

cells (Dunnill et al, under review) and release of cytochrome c in parallel with 

translocation of Bax/Bak to the mitochondria (Mohamed and Georgopoulos, 

unpublished observations). Activation of LTβR and HVEM in the breast cancer cell 

line MDA-MB-231 and CRC cells HT29 with LIGHT/IFN-γ treatment led to the 

upregulation of Bak and downregulation of Bax and associated with the activation of 

caspases-3, -6, -7, -8 and -9 and DNA fragmentation factor (DFF45) (Zhang, 2004; 

Zhang et al., 2004; Zhang et al., 1996). To better understand the involvement of Bak 

and Bax in LTβR/HVEM signalling triggered by soluble agonists versus mLIGHT in 

epithelial cells, the expression of Bak (Figure 6.9) and Bax (Figure 6.10) was 

investigated following cell treatment with soluble agonists and at 6, 12, 24 and 48hrs 

following mLIGHT, using immunoblotting techniques and by utilising human protein-

specific antibodies for Bak and Bax detection.  

The immunoblotting data showed that soluble agonists treatment did not cause any 

significant changes in Bak expression in HT29 and EJ cells. Little Bak expression 

was detected in HCT116 cells following treatment with soluble agonists (Figure 6.9a). 

Similarly, no significant / noticeable changes in Bak expression were observed 

following mLIGHT treatment in the cell lines tested (Figure 6.9b), although Bak 

expression was detected in the positive control (which represents HaCaTa cells 

treated with cyclophosphamide (4-OH-CP) (Al-Tameemi and Georgopoulos, 

unpublished observations).  

On the other hand, Bax expression was detectable in treated HT29, HCT116 and EJ 

cells with soluble agonists, and the level of Bax expression was relatively unchanged 

in HT29, HCT116 and EJ cells following soluble agonist treatment (Figure 6.10a), 

although strangely treatment HT29 and HCT116 cells with LIGHT/IFN-γ led to 

downregulation of Bax expression. mLIGHT caused no noticeable Bax expression 

changes, whilst Bax was undetectable in HCT116 cells following co-cultures (Figure 

6.10b) although it was detectable in experiments involving treatments with soluble 

agonists (Figure 6.10a). The positive control, which represents HaCaTa cells treated 
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with cyclophosphamide (4-OH-CP) (Al-Tameemi and Georgopoulos, unpublished 

observations) showed a significant induction of Bax expression.  
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Figure 6.9. Bak expression following LTβR and HVEM activation in carcinoma 
cells after receptor activation by soluble receptor agonists versus mLIGHT 

a), HT29, HCT116 and EJ cells were seeded in 10cm2 culture dishes and treated either with control 
antibody (MOPC-21 – at conc. 10μg/mL), agonistic antibody (BS-1 – at conc. 30μg/mL), IFN-γ (at 
conc. 180U/mL), LIGHT (at conc. 1μg/mL) or in the absence or presence of IFN-γ, and incubated for 
48hrs. b), HT29, HCT116 and EJ cells were co-cultured at cell density 3x106 with MMC-treated control 
(NT) or mLIGHT-L cells (mL) cells at cell density 3.5x106 in 10cm2 culture dishes and incubated for 
time points 6, 12, 24 and 48hrs. Cells were lysed using 2x SDS-lysis buffer and protein concentration 
was determined. 20µg of treated cells or 40µg of co-cultured cells of whole lysates were separated 
under denaturing conditions by SDS-PAGE using 4 -12% (w/v) Bis-Tris gels and then transferred onto 
a PVDF membrane. The membranes were probed with primary polyclonal antibody anti-Bak in 
TBS/Tween 0.1% (v/v) (1:500 dilution) and then incubated with primary monoclonal antibody β-actin 
(1:25,000 dilution) for treated cells (a) or CK8 and 18 for co-cultured cells (b). Membranes were with 
secondary antibody goat anti-rabbit IgG IRDye 800 (1:10,000 dilution) for Bak detection or were 
incubated with secondary antibody goat anti-mouse 680 (1:10,000 dilution) for CK8 and CK18 
detection. Antibody binding was visualised using an OdysseyTM Infra-red Imaging system (Li-Cor). 
Control represents lysates from HaCaTa cells treated with cyclophosphamide (4-OH-CP). The 
expected molecular weight of Bak was 28kDa.  
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Figure 6.10. Bax expression following LTβR and HVEM activation in carcinoma 
cells after receptor activation by soluble receptor agonists versus mLIGHT 

a) HT29, HCT116 and EJ cells were seeded and treated either with control antibody (MOPC-21 – at conc. 
10μg/mL), agonistic antibody (BS-1 – at conc. 30μg/mL), IFN-γ (at conc. 180U/mL), LIGHT (at conc. 
1μg/mL) in the absence or presence IFN-γ and incubated for 48hrs. HT29, HCT116 and EJ cells were 
seeded in 10cm2 culture dishes and either treated with the indicated treatment as shown in (a) and 
incubated for 48hrs. b) HT29, HCT116 and EJ cells were co-cultured at cell density 3x106 with MMC-
treated control (NT) or mLIGHT-L cells (mL) cells at cell density 3.5x106 in 10cm2 culture dishes and 
incubated for time points 6, 12, 24 and 48hrs. Cells were lysed using 2x SDS-lysis buffer and protein 
concentration was determined. 20µg of treated cells or 40µg of co-cultured cells of whole lysates were 
separated under denaturing conditions by SDS-PAGE using 4 -12% (w/v) Bis-Tris gels and then 
transferred onto a PVDF membrane. The membranes were probed with primary monoclonal antibody anti-
Bax in TBS/Tween 0.1% (v/v) (1:500 dilution) and then incubated with primary monoclonal antibody β-
actin (1:25,000 dilution) for treated cells (a) or CK8 or 18 co-cultured cells (b). Then membranes were 
probed with secondary antibody goat anti-mouse 680 (1:10,000 dilution) for Bax and CK8 and 18 
detection. Antibody binding was visualised using an OdysseyTM Infra-red Imaging system (Li-Cor). Control 
represents lysates from HaCaTa cells treated with cyclophosphamide (4-OH-CP). The expected molecular 
weight of Bax was 21kDa. 
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6.8 Effects of LT receptor knockdown on mLIGHT-mediated cell 
death   

LIGHT interacts with two membrane receptors LTβR and HVEM and one soluble 

receptor DcR3 (as discussed in detail in Chapter 1 section 1.11.3). This work has 

showed for the first time that mLIGHT triggered extensive cell death in HT29, HCT116 

and EJ cells, yet it remains unknown whether these receptors signal cooperatively, 

independently or in an antagonistic fashion in determining cell fate in the context of 

mLIGHT signalling. Some studies have previously investigated the roles of LTβR and 

HVEM in cell death using different agonist formats; for instance, previous studies have 

demonstrated that the presence and activation of both LTβR and HVEM by soluble 

LIGHT are important to induce cell death (Zhai et al., 1998). However, a study by 

Rooney and colleagues (2000) reported that LTβR activation by soluble mutant LIGHT 

(LIGHT-R228E discriminates between two receptors and interacts with LTβR) is 

sufficient to trigger cell death but this was only shown in the HT29.14S cell line (which is 

a clone of the HT29 cells).  

In this work, transfection experiments were performed to exploit RNA interference 

(RNAi) and LT receptor specific small interfering RNAs (siRNAs) to knockdown 

expression of LTβR and HVEM proteins in HT29, HCT116 and EJ cells as detailed in 

Materials and Methods (section 2.10). To assess whether successful knockdown for 

LTβR and HVEM was achieved, transfection experiments were performed several times 

with HT29, HCT116 and EJ cells which had been treated with LTβR or HVEM-specific 

siRNA (LTβR or HVEM siRNA) prior to LT receptor activation. As a first step, a series of 

optimisations were performed to determine the best conditions that would provide a 

good protein knockdown (e.g. siRNA amount and incubation time of transfection) whilst 

maintaining levels of cell death, i.e. within a period and using conditions where death 

was sufficiently detectable using the co-culture system (see modified protocol for siRNA 

delivery as described in section 2.10.5). Receptor expression following knockdown was 

determined by flow cytometry. A treatment with 100nM siRNA LTβR or HVEM was used 

and could reduce cell surface expression compared with non-specific siRNA (referred to 

as Con siRNA).   
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As shown in Figure 6.11, the flow cytometry results showed that transfection with siRNA 

against LTβR and HVEM expression reduced in overall LTβR and HVEM cell surface 

expression of cell lines tested (HT29, HCT116 and EJ) following treatment with LTβR or 

HVEM siRNA. Based on this partially successful knockdown for LTβR and HVEM 

(LTβR-KD and HVEM-KD) with siRNA, the effect of LTβR and HVEM knockdown on 

mLIGHT apoptosis was investigated using CytoTox-Glo death detection assays and 

data were presented as fold increase relative to control (calculated using the parameters 

and equations detailed in section 2.13.2). The results showed that transfection with 

LTβR siRNA (LTβR-KD) has no effect on mLIGHT-mediated death in HT29 and EJ cells, 

yet it caused statistically significant reduction in death of HCT116 cells triggered by 

mLIGHT. When HVEM transfection was performed using HVEM siRNA (HVEM-KD), it 

caused some increase in cell death levels in all cell lines tested which reached statistical 

significance (Figure 6.12).       
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Figure 6.11. LTβR and HVEM cell surface expression knockdown by siRNA  

HT29, HCT116 and EJ cells were transfected with LTβR or HVEM Accell Human SMARTpool siRNA or an 
irrelevant siRNA (control) in KSFM medium and incubated for 24hrs. KSFM and transfection reagents 
were replaced with DR 5% medium and incubated for 48hrs. Cells were harvested and labelled with anti-
LTβR or HVEM or isotype control antibody PE-conjugated for 20-30mins. Cells were then washed and re-
suspended in FACS buffer. Samples were acquired on an EasyCyte Guava flow cytometer and data 
analysed using InCyte2.6 Guava software (Millipore). The open histograms represent the fluorescence of 
cells labelled with isotype-matched control mAb of irrelevant specificity (Con Ab). The filled grey and 
yellow histograms represent specific LTβR-PE or HVEM-PE conjugated mAb. Grey and yellow histograms 
show the expression of LTβR or HVEM for control cells (Con siRNA) and transfected cells LTβR siRNA 
(LTβR-KD) or HVEM siRNA (HVEM-KD), respectively.   
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a.  

 
b.  

 
c.  

    
Figure 6.12. Effects of LTβR and HVEM knockdown on mLIGHT-induced cell death  

HT29, HCT116 and EJ were transfected with LTβR or HVEM Accell Human SMARTpool siRNA or an 
irrelevant siRNA (control) for 24hrs at concentration 100nM in KSFM medium. HT29, HCT116 and EJ 
were harvested and co-cultured at density 1.6x104 cells/well with MMC-treated control (NT-L) or mLIGHT-
L cells at cell density 2x104 cells/well in 96-well plates, and incubated at 37°C in 5% (v/v) CO2 for 72hrs. 
50μL of prepared CytoTox-Glo reagent was added to wells and luminescence was determined by a 
FLUOstar OPTIMA (BMG Labtech) plate reader. Fold increase relative to control was generated from 
background corrected data as detailed in section 2.13.2 and as described in Figure 4.4. Data are 
represented as mean values of 4-5 replicates ±S.D. a, b and c, show HT29, HCT116 and EJ cells, 
respectively. Stats: ns. non-significant; *, p < 0.05; **, p < 0.01, p < 0.001; ***, paired student t-test for 
HT29, HCT116 or EJ vs LTβR-KD and HVEM-KD cells
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Summary 

- In this chapter, this work has provided evidence for the first time that mLIGHT 

triggered rapid production of ROS in cell lines tested (HCT116 and EJ cells), ROS 

production was observed at 3hrs following receptor post ligation with mLIGHT.  

- Pre-treatment of cells with the ROS scavenger NAC caused statistically 

significant inhibition in mLIGHT-mediated cell death in CRC and UCC cells. 

- Western blotting results demonstrated that CRC and UCC cells showed 

detectable phospho-p40phox expression in response to mLIGHT. However, cell 

death of CRC and UCC was not affected by the addition of inhibitor DPI in 

response to mLIGHT.    

- The investigations in the activation of ASK1 expression levels following ligation 

with mLIGHT demonstrated that only HCT116 cells showed phospho-ASK1 at 

24hrs (HT29 cells showed no detectable activation in ASK-1) and the expression 

of phospho-ASK-1 level was unchanged in EJ cells.   

- Trx-1 expression was detected in CRC and UCC cells, which increased during 

culture, and interestingly there was downregulation of Trx-1 expression in CRC 

and UCC cells by 6-12 hours post receptor ligation, although the pattern and the 

timing differed between CRC and UCC cells. 

- Incubation of CRC and UCC cells with the caspase inhibitor z-VAD potentiated 

death in HT29 and EJ cells yet partially blocked death in HCT116 cells in 

response to mLIGHT. As caspase activation was involved in HCT116 death, the 

inhibition of caspase-8 partially reduced mLIGHT-mediated death in HCT116 

cells. 
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- Despite the presence of basal Bak and Bax expression in all cell lines tested, 

after treatment with soluble agonists, Bak expression was detected in CRC (little 

Bak was detectable in HCTT16 cells) and UCC cells. mLIGHT caused no 

significant changes in Bak expression in CRC and UCC cells.  

- The level of Bax expression was relatively unchanged in CRC and UCC cells in 

response to soluble agonist treatment, however, CRC cells showed 

downregulation of Bax expression with combinatorial treatment LIGHT/IFN-γ. 

Similarly, mLIGHT caused no noticeable Bax expression changes in CRC and 

UCC cells (Bax was undetectable in HCT116 cells).  

- Knockdown experiments to reduce expression of LTβR and HVEM proteins in 

CRC and UCC cells, showed that LTβR-KD caused reduction in cell death only in 

HCT116 cells in response to mLIGHT. HVEM-KD caused statistically significant 

increase in mLIGHT-mediated cell death in CRC and UCC cells.        

- The results have provided a mechanistic insight into mLIGHT killing in CRC and 

UCC, it appears that mLIGHT-mediated cell death involves ROS production, the 

activation of p40phox in CRC and UCC cells. This study also demonstrated that 

mLIGHT-induced cell death was partially dependent on caspase activation in 

HCT116 cells; by contrast death was non caspase-dependent in HT29 and EJ 

cells, in fact caspase-inhibition potentiated death in these cells. 
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Chapter 7 

General Discussion 
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7.1 General perspective  

LT receptors, LTβR and HVEM, and their cognate ligand (LIGHT) belong to the TNFSF. 

LTβR and HVEM-mediated signalling plays roles in regulating cell fate both in the 

immune system and in non-lymphoid tissues. Although LTβR and HVEM comprise no 

intrinsic ‘death’ domain (DD) per se (hence they are referred to as non-death domain-

containing TNFRs), there is evidence that they do have the ability to transmit death 

(apoptotic) signals through the recruitment of TRAF adaptor proteins; thus they share 

similarities to other TNFR members, in particular with CD40 (Albarbar et al., 2015; 

Georgopoulos et al., 2006; Georgopoulos et al., 2007). The absence of a classical DD 

inherently confers a higher level of intracellular signalling complexity and, combined with 

the fact that the LT system comprises two receptors, understanding the pathways 

involved in LTβR and HVEM-mediated cell death in carcinoma cells has been more 

challenging.  

Few studies have focused on the specific activation of LTβR and/or HVEM by soluble 

agonists and showed that the activation of LTβR by agonistic antibody BS-1 induced 

growth inhibition in HT29 cells, whereas a study showed that the activation of HVEM on 

chronic lymphocytic leukaemia (CLL) by anti-HVEM mAb induced an increase in the 

level of pro-apoptotic genes and chemokine IL-8 secretion. Moreover, activation of LTβR 

and HVEM by combinatorial treatment with LIGHT and IFN-γ dramatically enhanced cell 

death in limited tumour cells including HT29 cells (Chang et al., 2004; Hu et al., 2013; 

Pasero et al., 2009b; Zhai et al., 1998). These reports have indicated that the soluble LT 

agonists alone are weakly (if at all) pro-apoptotic. It appears that LT soluble agonists 

require IFN-γ to induce cell death. Equally importantly, most of these studies have used 

a limited type of cells to demonstrate these effects (Albarbar et al., 2015), with the 

majority of studies utilising HT29 or HT29-specific sublines of this cell line.  

The aim of the present work was to investigate the effects of LT soluble agonists using a 

panel of carcinoma cell lines that have been extensively characterised for their 

responses to pro-apoptotic signals triggered by the TNFSF (Bugajska et al., 2002; 

Georgopoulos et al., 2006; Georgopoulos et al., 2007; Hill et al., 2008; Steele et al., 
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2006) and to deliver, for the first time, membrane-presented LIGHT ligand (mLIGHT) to 

activate LTβR and HVEM. Because of the close similarities between the LT receptors 

and CD40, this study focused on well-characterised carcinoma cells for their responses 

to CD40, such as HCT116 and EJ cells, and then compared them to the widely used 

HT29 cells to investigate the differences in pro-apoptotic potential between soluble 

agonists and mLIGHT. To perform this experimentally, the activation of LT receptors 

was achieved by three methods: a) agonistic antibody BS-1 for LTβR activation, b) 

soluble recombinant LIGHT and c) mLIGHT delivered to epithelial cells by co-culture 

with third-party cells (L cells engineered to express membrane LIGHT on their surface) 

to trigger the activation of LTβR and HVEM.  

Following initial flow cytometry-based receptor expression studies and systematic 

assessment of the effects of soluble LT agonists in carcinoma cells, the work involved 

extensive optimisation for the establishment of a robust and reproducible co-culture 

system for the delivery of mLIGHT to epithelial (normal and malignant) cells. Upon 

successful optimisation, the work permitted for the first time the assessment of the pro-

apoptotic effects of LTβR and HVEM via a number of assays, as well as detection of 

intracellular signalling mediators and their potential involvement in cell death. This work 

has identified intracellular proteins and their potential functional roles in LTβR/HVEM-

mediated death signalling triggered by mLIGHT, and these observations are discussed 

in detail in subsequent sections.  

7.2 LT receptor expression on carcinoma and normal cells and its 
regulation by pro-inflammatory cytokines  

One interesting characteristic of LT receptors is that expression is not restricted only to 

normal cells and particularly immunocytes, but it is also expressed in both mice and 

humans in certain malignant cell types of lymphoid and non-lymphoid origins, such solid 

tumours (e.g. colorectal carcinoma) (Hu et al., 2013; Lukashev et al., 2006; Pasero et 

al., 2009a; Pasero et al., 2009b). This work examined the expression of LTβR and 

HVEM in epithelial tumours of different origins including CRC (HT29, SW480 and 

HCT116) and UCC cells (RT4, RT112 and EJ) as well as in normal human urothelial 
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cells (NHU). This work has provided evidence (Figure 3.2) that all the tested cells 

expressed both LTβR and HVEM receptors thus the data offered additional evidence 

that LTβR and HVEM are not restricted only to lymphoid malignancies but can be also 

detected in epithelial tumours, as well as normal (NHU) cells. As shown in Chapter 3 

(Figure 3.2), the presence of LT receptor on the CRC and UCC cells allowed 

investigations on the effects of pro-inflammatory cytokines (IFN-γ and TNF-α) on the 

regulation of LTβR and HVEM expression alongside with the detection of other TNFRs 

(e.g. TNFRI, TNFRII and CD40) and ICAM-1 expression. The rationale for this part of 

the work was that it was of interest to determine whether a pro-inflammatory cytokine 

milieu could regulate LT receptor expression.   

The pro-inflammatory cytokine IFN-γ is usually classified as a growth inhibitor as well as 

a growth factor for many types of cells (Schroder et al., 2004). On one hand, IFN-γ can 

be a growth inhibitor as it induces the activation of signal transducer activator of 

transcription 1 (Stat1) and interferon regulatory factor-1 (IRF-1) (Asao and Fu, 2000). 

Stat1 is a class of transcription factor which can play an essential role in cell 

differentiation, cell cycle and cell death (Asao and Fu, 2000), whilst IRF-1 functions to 

regulate the expression of target genes by binding to an interferon stimulated response 

element (ISRE) in their promoters (Asao and Fu, 2000). The activation of Stat1 and IRF-

1 expression has been reported to be implicated in the inhibition of cell proliferation 

(Chin et al., 1997; Sato et al., 1998). IFN-γ, on the other hand, can stimulate cell growth 

once the Stat1 is inhibited or cells lack Stat1 expression (Bromberg et al., 1996). It is 

reported that IFN-γ is a strong inducer for Stat1 activation and therefore under these 

conditions IFN-γ acts as a growth inhibitor (Bromberg et al., 1996; Schroder et al., 

2004). Given the complexity of IFN-γ regulation, it is likely that IFN-γ treatment regulates 

the expression of target genes and this may have an effect on upregulation, 

downregulation or the induction of protein expression on cell surface. As shown in 

Chapter 3 (Figure 3.2), cell treatment with IFN-γ overall led to an increase in LTβR 

expression in RT112 cells and also HVEM expression in HT29, SW480, HCT116, RT4, 

RT112 and EJ cells compared with controls. Moreover, IFN-γ treatment upregulated 

CD40 expression in EJ and HCT116 cells and this is supported by previous studies by 

our group (Georgopoulos et al., 2007). As IFN-γ may trigger direct cell growth regulatory 
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signalling and have an effect on LT receptor expression, it was interesting to investigate 

the effects of IFN-γ in combination with LT soluble agonists on cell growth, as IFN-γ may 

play an important role in enhancing the cytotoxic activity of LT soluble agonists by 

known mechanisms (as discussed above) or by unknown mechanisms which need to be 

further investigated.  

TNF-α was also used in such cell treatment and to determine any effects on LT receptor 

expression. TNF-α is a member of TNFLs and it can bind two receptors: death receptor 

(TNFR-I) and non-death receptor (TNFR-II) (Cabal-Hierro and Lazo, 2012) (as 

discussed in detail in Chapter 1 section 1.7.1 and 1.9). As shown in Chapter 3 (Figure 

3.2), cell treatment with TNF-α upregulated LTβR expression in RT4 and HCTT16 cells 

and also HVEM expression in HT29, HCT116 and EJ cells. In terms to the biological 

effects of TNF-α on cell signalling whether cell survival or cell death, studies 

demonstrated that TNF-α acted as an inducer of apoptotic cell death during the 

maturation of mice thymocytes (Giroir et al., 1992; Hernandez-Caselles and Stutman, 

1993). In vitro, TNF-α has either growth inhibitory or cytotoxic effects in some normal 

cell types and human tumour cells, but in most cases tumour cell lines are sensitive to 

TNF-α particularly when the protein synthesis is inhibited by CHX (Meager, 1991; Porter, 

1990; Ruggiero et al., 1987). TNF-α can induce both necrotic and apoptotic cell death in 

mouse fibroblasts in vitro and in vivo (Kamata et al., 2005) and under some 

circumstances accumulating evidence suggest that it can induce a characteristic type of 

death known as necroptosis (Vandenabeele et al., 2010). In particular, recombinant 

TNF-α causes growth inhibition or cytotoxicity in a number of cell lines of human and 

murine origin such as human carcinoma cell lines ME-180 (cervical) and murine 

fibroblasts (L929); interestingly, not all cells respond to TNF-α by apoptosis as reviewed 

extensively elsewhere (Albarbar et al., 2015). Consistent with this and as shown in 

Chapter 3 (Figure 3.3), TNF-α showed inhibitory effects on cell growth of RT4 and 

RT112 cells. However, TNF-α treatment promoted cell growth or had no effects on cell 

growth of HT29, SW480, HCT116 and EJ cells and this is in agreement with a previous 

study demonstrating that there are some carcinoma cell types of UCC where TNF-α can 

be growth-promoting (Bugajska et al., 2002). In support of this and others, there are 

other studies demonstrating that normal skin (Detroit 551) and lung fibroblasts (WI-38) 
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were resistant and TNF-α treatment stimulated their growth (Fransen et al., 1986; 

Haranaka and Satomi, 1981; Sugarman et al., 1985). These opposing signals described 

for TNF-α, are attributed to its ability to bind to different receptors TNFR-I and/or TNFR-

II and leading to different complexes following receptor activation (Cabal-Hierro and 

Lazo, 2012). TNF-α engagement of TNFRI triggers responses which may be cell 

proliferation, apoptosis or necroptosis (Andera, 2009; Gommerman and Summers 

deLuca, 2011; Micheau and Tschopp, 2003; Nagata, 1997), whereas binding to TNFR-II 

results in anti-apoptotic signalling outcomes by involving TRAF2 localisation and 

degradation and can also induce a slow apoptotic cell death (Grell et al., 1995; Rauert et 

al., 2010; Rodríguez et al., 2011). Although in Chapter 3 (section 3.2) the effects of TNF-

α and IFN-γ were tested in the context of LT receptor expression, only the role IFN-γ in 

the context of LT receptor signalling was examined further (in subsequent Results 

chapters – section 7.3.1). The influence of TNF-α in the context of LT receptor signalling 

(via LIGHT) should be the subject of future experimental work, in order to determine any 

potential cell type-dependent effects and/or any context-specificity.  

7.3 Insights into the activation of LTβR and HVEM using various 
agonist formats  

It is well documented, yet often its importance is largely understated in the literature, that 

the ability of some TNFR members to cause cell proliferation/differentiation or lead to 

cell death (apoptosis) depends on signal “quality” as determined by the nature of the 

agonist used. i.e. whether the agonist is delivered in soluble or membrane-bound form; it 

may also depend on tumour type- and the cellular context (Albarbar et al., 2015). In this 

study, in order to address these questions, LT soluble agonists used were anti-LTβR Ab 

(BS-1) and soluble recombinant LIGHT and their effects compared to membrane ligand 

(mLIGHT). 
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7.3.1 Soluble LT agonists are weakly pro-apoptotic in carcinoma cells   

A study by Lukashev et al. demonstrated that agonistic anti-LTβR antibody CBE11 

(multivalent, pentameric antibody) can reduce the growth of colon and cervical tumours 

in vivo (Lukashev et al., 2006), and more recently Hu et al. (2013) showed that BS-1 

induced growth inhibition as well as NF-κB activation in colon carcinoma cell lines HT29, 

CT26, mammary carcinoma 4T1 and soft-tissue sarcoma CMS4 cell lines. The latter 

study also demonstrated that BS-1 triggered the activation of caspase-8 and -3 as well 

as release of cytochrome c in tumour cells, thus providing evidence that growth inhibition 

of these tumour cells could be partially driven by a caspase-dependent death 

mechanism (Hu et al., 2013). The aforementioned study also reported that the activation 

of LTβR using a different monoclonal anti-LTβR antibody (ACH6) suppressed colon 

carcinoma metastasis in vivo (Hu et al., 2013). These findings are supported by previous 

work demonstrating that anti-LTβR (mAb) caused cell death in vitro for number of cell 

lines (Browning et al., 1996).  

Studies on LTβR activation by agonistic antibody are relatively limited, and this has been 

tested on limited number of cell lines, whilst most importantly often the effects of these 

agonists are tested by means of detection of total cells biomass (MTT-based assays) 

and not using assays formally detecting cell death (apoptosis and/or necrosis). It was 

therefore interesting to determine if similar effects could be triggered via LTβR on a 

panel of carcinoma cells characterised by our group for their responses to CD40 

(HCT116 and EJ cells) and additional cell lines SW480 and RT112, and to compare 

them to widely used HT29. As shown in Chapter 3 (Figure 3.4), cell treatment with BS-1 

alone had no effect on the cell growth of HT29, SW480, HCT116, RT112 and EJ cells, 

but it showed some growth inhibition when BS-1 was combined with IFN-γ (which 

synergised the BS-1 toxicity). This effect was particularly noticeable on the growth of 

HT29 and RT112 cells. SW480 cells showed no detectable response to either the 

cytotoxic activity of BS-1 or co-treatment with IFN-γ; this observation is in agreement 

with a previous study which reported that SW480 cells are resistant to the cytotoxic 

effects of LTβR agonistic antibody (Lukashev et al., 2006). The present study also used 

BS-1 treatment with the protein synthesis inhibitor CHX (Figure 3.5). The use of CHX 
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was reported to sensitise agonistic Fas mAb (APO-1), TNF-α and soluble CD40 agonist 

treatment in carcinoma cells (Bugajska et al., 2002; Chinnaiyan et al., 1995; Eliopoulos 

et al., 2000; Eliopoulos et al., 1996; Miura et al., 1995). Because of its ability to block 

protein synthesis, CHX is expected to block the function of anti-apoptotic proteins Bcl-2, 

which in turn enhances the cytotoxic activity of soluble agonists. Our findings 

demonstrated that CHX only sensitised HCT116 and EJ cells to BS-1.  

Importantly, this study demonstrated that treatment with BS-1 alone was not cytotoxic in 

HT29 cells (and the other cell lines tested), and this is in contrast with previous studies 

demonstrating that BS-1 was cytotoxic on HT29 cells (Browning et al., 1996; Hu et al., 

2013). Despite systematic attempts to do so, this study could not reproduce some of the 

previously published data. In fact, we could only partially demonstrate some (though 

small) level of loss of cell biomass by adjusting both cell density (cell number/well) or the 

timing of addition of soluble agonists (this was investigated as part of this study as well 

as additional studies in our laboratory). Only when a much smaller cell number was 

seeded (<5,000/well) and LT agonist was added whilst cells were attaching to their 

substratum, was detectable growth inhibition observed. Of note also, all cell lines 

routinely cultured in our laboratory are maintained in antibiotic-free medium, and we 

have unpublished evidence that the presence of antibiotics induces low level of stress 

that can enhance weakly pro-apoptotic insults (Dunnill and Georgopoulos, unpublished). 

Interestingly, the Hu et al. (2013) study demonstrated that BS-1 can induce both growth 

inhibition and growth promotion (via NF-κB activation) in human CRC and other cells, 

and the present data suggest that growth promotion by BS-1 is evident in CRC and UCC 

cells (e.g. in EJ cells). It is also worth mentioning that two previous studies reported that 

activation of LTβR in transfected tumour cell lines to express LTβR leads to cell growth 

(Fujiwara et al., 2005; Hehlgans et al., 2002).  

Activation of LTβR may be insufficient to induce cell death in CRC and UCC cells and 

activation of both LTβR and HVEM may be needed to trigger cell death; this is 

supported by a previous study demonstrating that activation of LTβR and HVEM is 

necessary to induce cell death in HT29 cells (Zhai et al., 1998), which contradicts 

findings by Browning and colleagues. For this purpose, our study initially activated both 
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LTβR and HVEM using the recombinant trimeric ligand LIGHT. LIGHT is the ligand for 

LTβR and HVEM and also has the property of binding to DcR3 which functions to 

neutralise LIGHT and LTβR/HVEM interactions (Yu et al., 1999). Previous studies 

showed that HT29 cells were sensitive to LIGHT treatment (Zhai et al., 1998; Zhang et 

al., 2004). This study observed (Figure 3.6) that a) unlike BS-1, recombinant LIGHT was 

clearly and significantly growth inhibitory in most lines tested and b) the combination of 

LIGHT with IFN-γ was more effective than LIGHT treatment alone in reducing carcinoma 

cell viability, particularly in HT29 cells; to an extent, similar effects were observed in 

HCT116 and RT112 cells with little effects in EJ. These findings concord with those 

observed previously in HT29 cells (Zhai et al., 1998; Zhang et al., 2004). Importantly and 

as shown in Figure 3.7, LIGHT in combination with IFN-γ can trigger growth inhibition 

only in HT29 cells (and to a smaller extent in RT112 cells), which suggest a necessity for 

LIGHT/IFN-γ synergy to induce loss of viability. By contrast the same treatment showed 

cytoprotection or little growth inhibition in the other cell lines tested (SW480, HCT116 

and EJ). This is a significant observation as it is suggestive of a possible effect that is 

specific or idiosyncratic for HT29 cells (Figure 3.7). As discussed above (section 7.2), 

IFN-γ is a pleiotropic cytokine and can play dual roles; it can inhibit and stimulate cell 

growth (Asao and Fu, 2000). It was reported that IFN-γ can induce cell death through 

induction of several genes/protein molecules, by upregulation of Fas and TNF-α 

receptor expression, and also via ROS production (Cassatella et al., 1990; Schroder et 

al., 2004; Spanaus et al., 1998; Spets et al., 1998; Tsujimoto et al., 1986; Xu et al., 

1998; Zheng et al., 2002), as well as by other poorly defined mechanisms (Schroder et 

al., 2004). Zhang and colleagues reported that LIGHT/IFN-γ did not induce cell death in 

STAT1 deficient fibrosarcoma cells U3A, yet by contrast, cell death was induced in 

STAT1 knock-in cells U3A1-1. These studies are consistent with a study demonstrating 

that the STAT signalling pathway plays a critical role in triggering cell death (Chin et al., 

1997). Previous work had shown that based on RNA found that IFN-γ upregulated 

caspases in HT29 cells and leading cell death (Ossina et al., 1997). Although IFN-γ can 

potentiate the cytotoxic effects of BS-1 in HT29 cells and LIGHT on many of the CRC 

and UCC cells, the exact mechanism by IFN-γ crosstalks or synergies with soluble 

agonist to induce or inhibit cell death remains unknown. As the analysis of the molecular 
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mechanism underlying IFN-γ was not within the scope of this work, however, future work 

should investigate the effects of IFN-γ alone and in combination with LT soluble agonists 

on the upregulation of death receptors/ligands, ROS levels, caspase activation and Bcl-

2 family members for the respective tested cell lines. This work also showed (Figure 3.8) 

that LIGHT combined with CHX (to inhibit the cell survival machinery and allow the 

death-signalling pathway) was cytotoxic only on carcinoma cells HCT116 and EJ and 

less cytotoxic on the other cells, these observations are in agreement with the data from 

BS-1/CHX treatment (as discussed above). The findings are also supportive of previous 

studies demonstrating that combination of soluble CD40 agonist with CHX dramatically 

enhanced the anti-proliferative properties of CD40 ligation in various types of carcinoma 

cells (Bugajska et al., 2002; Eliopoulos et al., 2000; Georgopoulos et al., 2007; 

Ghamande et al., 2001; Hess and Engelmann, 1996; Melichar et al., 2007). This work 

showed that only EJ and HCT116 cells, but not others, were sensitive to combined LT 

soluble agonists with CHX; it is tempting to speculate the exact mechanism signalling of 

CHX treatment combined with LT soluble agonists on cell growth in our system. It is 

possible that CHX may synthesis of anti-apoptotic proteins or reverse BS-1 and LIGHT 

resistance by influencing post-translational modifications of proteins such as c-FLIP, as 

previously shown in group of B cell lines when were treated with Fas and CD40L (Irmler 

et al., 1997; Sato et al., 1995b). Our observations are interesting and future studies 

should investigate the mechanism of LT soluble agonists combined with CHX and the 

involvement and interactions of multi-protein complex between the receptor and c-FLIP. 

Overall, our data from the MTS (biomass detection) assays indicated that activation of 

LTβR and HVEM with the combinatorial treatment LIGHT/IFN-γ (but not LTβR agonist 

BS-1 with or without IFN-γ) is cytotoxic in tumour cells. The findings also indicate that 

although LIGHT is superior than BS-1, the induction of more significant cytotoxicity 

requires combination with another ‘insult’ (IFN-γ).  

However, the MTS assay strictly detects effects of cell viability but does not measure cell 

death and therefore other assays were employed (e.g. cell death detection assays 

(CytoTox-Glo)) (Kroemer et al., 2009; Martinez et al., 2010). As shown in Chapter 3 

(Figure 3.10), activation of both receptors by LIGHT/IFN-γ treatment induced significant 

cell death in HT29, HCT116 and RT112 cells, yet EJ cells showed little if any cell death 
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in response to LIGHT/IFN-γ. Interestingly, the amount of death triggered in RT112 cells 

by LIGHT/IFN-γ was much less than that triggered by BS-1/IFN-γ (Figure 3.9). In 

agreement with the MTS data, SW480 cells were relatively resistant to both 

combinatorial treatments BS-1/IFN-γ and LIGHT/IFN-γ and this had been supported by 

two previous studies. In one study, SW480 cells are resistant to the cytotoxic activity of 

agonistic anti-LTβR (Lukashev et al., 2006). In a second report, SW480 cells did not 

respond to the cytotoxic effects of LIGHT treatment due to SW480 cells releasing DcR3 

(which antagonises LIGHT and LTβR/HVEM interactions) and thus inhibiting cell death 

(Yu et al., 1999; Yu et al., 2013).  

7.3.2 mLIGHT is a potent pro-apoptotic in carcinoma cells 

The findings discussed above indicated that LT soluble agonists are not cytotoxic in the 

absence of IFN-γ and suggested that the signals of LT soluble agonists are weak as 

they may not trigger adequate receptor cross-linking as previously reported with some 

TNFR members (Bugajska et al., 2002; Holler et al., 2003). In this regard, this study 

delivered for the first time a membrane signal in the form of membrane-bound LIGHT 

(mLIGHT) to trigger activation of both LT receptors. One fundamental property of the 

TNFR signalling is related to “signal quality” (i.e. the degree of receptor cross-linking), 

which determines the outcome of receptor ligation (Albarbar et al., 2015; Fernandes et 

al., 2016; Georgopoulos et al., 2007). In support of this, several previous studies have 

demonstrated that there are differences in receptor activation potential and triggering 

cell signalling between the soluble and membrane-bound forms, which have been 

described for some common TNFR members. For instance, cross-linking with 

membrane-bound ligands of Fas, TRAIL, TNF-α or CD40 induced higher cytotoxicity 

than soluble ligand in certain tumour cell lines in comparison to their soluble forms 

(Ardestani et al., 2013a; Bugajska et al., 2002; Engels et al., 2005; Georgopoulos et al., 

2007; Schneider et al., 1998; Suda et al., 1997; Wajant et al., 2001b; Zapata et al., 

2001). Consistent with this and as shown in Chapter 4 (Figure 4.4), this study showed 

for the first time that mLIGHT induced extensive cell death in HT29, HCT116 and EJ 

cells and moderate cell death in RT112 cells, whereas SW480 cells appeared relatively 

resistant to mLIGHT (although some small level of death was observed). By contrast, 
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strikingly, mLIGHT was a cyto-protective signal in normal human urothelial (NHU) cells 

(Figure 4.9). Therefore mLIGHT demonstrates a) strong similarities to the effects of the 

CD40 system in normal and malignant epithelial cells (Bugajska et al., 2002; 

Georgopoulos et al., 2006) and b) a clear parallel with the situation in vivo whereby 

binding with LIGHT functions as a co-stimulatory signal for some normal immune cells 

(Granger and Rickert, 2003; Holmes et al., 2014). Overall, our data indicate that LTβR 

and HVEM expression is functional, as LTβR/HVEM ligation by mLIGHT induced 

extensive cell death in most CRC and UCC cells. SW480 cells showed relative 

resistance to mLIGHT and this is in agreement with the data of LT soluble agonists 

(above) and LIGHT delivered in membrane-bound form caused extensive death in 

carcinoma cells, whereas LT soluble agonists BS-1 and LIGHT were non-apoptotic 

and/or required IFN-γ to trigger cell death. Our data also have provided evidence that 

cell death susceptibility is clearly dependent on signal quality as well as that mLIGHT-

mediated death is tumour cell-specific (it did not cause death in NHU cells).  

mLIGHT induced caspase-3/7 activation in HT29, HCT116, RT112 and EJ cells, 

whereas SW480 cells showed no activation in caspase-3/7 and this is in agreement with 

cell death detection assay (CytoTox-Glo) data which demonstrated that SW480 cells did 

not undergo cell death (Figure 4.5). In combination, the CytoTox-Glo and Anaspec 

caspase detection assays permitted measurement of different components of cell death, 

indicating that mLIGHT induces extensive cell death which is associated with effector 

caspase-3/7 activity in HT29, HCT116, RT112 and EJ cells, in contrast to SW480 cells 

that were resistant. The differential responses of RT112 to soluble LT agonist plus IFN-γ 

versus mLIGHT, as well as the overall resistance of SW480 cells to either signal are 

extremely interesting observations that merit further investigation by future studies.  

In addition to cell death and caspase-3/7 activation triggered by mLIGHT in HT29, 

HCT116 and EJ cells, this study also found that (Figure 4.6) mLIGHT caused significant 

levels in DNA fragmentation in HCT116 cells. However, relatively little DNA 

fragmentation was detected in HT29 and EJ cells. As DNA fragmentation is a marker for 

classically apoptotic cell death, these findings indicated that HCT116 death was 

apoptotic but raised the possibility that death observed in HT29 and EJ cells might show 
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necrotic features as well. In line with this possibility, a previous report demonstrated that 

death triggered by the LT system may display both apoptotic and non-apoptotic features 

(Wilson and Browning, 2002), whilst more generally in the TNFR family, receptor 

activation does not always induce DNA fragmentation when cell death induced also 

displays non-apoptotic features, as has been shown for the TRAIL-R system in particular 

((Steele et al., 2006) and references therein). In support of this, Wallach et al. (1999) 

have demonstrated that a mixture of cell death features were observed following LTβR 

activation and this depends on cell type. For instance, apoptosis was observed in the 

fibroblastoid line WEHI164, whereas a mixed type of cell death (apoptosis and necrosis) 

was detected in HT29 cells. Collectively, apoptotic and necrotic cell death triggered by 

mLIGHT appeared to exist in a cell-type dependent manner.  

The study also observed increased cytokine secretion in response to mLIGHT, in 

particular induction of pro-inflammatory cytokines IL-6, IL-8 and GM-CSF in CRC and 

UCC cells (although HCT116 cells showed no detectable IL-6 secretion). IL-6 is a 

pleiotropic cytokine that plays critical roles in the acute phase reaction, inflammation, 

haematopoiesis and bone metabolism (Mansell and Jenkins, 2013). mLIGHT induced 

marked secretion of IL-8 in all cell lines tested HT29, HCT116 and EJ cells (Chapter 4 – 

Figure 4.10). IL-8 is an inflammatory chemokine (CXCL8) which is chemoattractant of 

neutrophil and lymphocytes in a variety of inflammatory diseases (Belperio et al., 2000). 

A previous study demonstrated that the activation of LTβR activation with anti-LTβR 

(mAb) induced IL-8 and RANTES secretion in A375 cells and similar observations were 

made when membrane-bound LTβ and LTαβ (ligands for LTβR) were investigated 

(Degli-Esposti et al., 1997b). Moreover, a study reported that treatment of HT29 cells 

with TNF-α (a non-classical activator of the LT system) and Fas induced IL-8 secretion 

(Abreu-Martin et al., 1995). Significantly, mLIGHT also caused GM-CSF secretion in 

HT29, HCT116 and EJ cells. GM-CSF is a pleiotropic cytokine and functions to maintain 

the generation of immune responses and it has been demonstrated that the secretion of 

GM-CSF in vivo chemo-attracts mononuclear cells, dendritic cells and macrophages, 

which ultimately lead to macrophage-mediated tumour cell cytolysis (Shinohara et al., 

2000). These observations are in agreement with a previous study showing that the 

activation of CD40 by mCD40L caused IL-8 and GM-CSF secretion in some carcinoma 
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cell lines of CRC and UCC cells (Georgopoulos et al., 2007). Moreover, previous reports 

demonstrated that the secretion of IL-8 and GM-CSF is dependent on NF-κB and AP-1 

activation in normal and malignant epithelial cells, respectively (Cagnoni et al., 2004; 

Gallagher et al., 2002; Gelbmann et al., 2003; Schwabe et al., 2001). It is attempting to 

speculate the relationship between IL-8 and GM-CSF secretion and NF-κB and AP-1 

activation in our system, but it would be necessary for future work to explore the 

mechanisms underlying mLIGHT-mediated cytokine secretion in CRC and UCC cells. 

7.4 Regulation of TRAF adaptor proteins in LTβR/HVEM death 
signalling 

TNFRs are activated by ligand-induced trimerisation and oligomerisation through the 

interaction of receptor CRD domains, which typically leads to receptor aggregation and 

at the molecular level the subsequent recruitment of cytosolic TRAF adaptor proteins 

(TRAF1-3, 5, and 6) to the TNFR cytoplasmic tail (Fernandes et al., 2016; Rauert et al., 

2010; Wyzgol et al., 2009). TRAF1 can interact indirectly with TNFR-II, and directly with 

some other TNFR members, such as CD30 (Lee et al., 1996) and HVEM (Marsters et 

al., 1997b) and others (Bradley and Pober, 2001). TRAF1 was reported to regulate 

transcriptional activation (Leo et al., 1999; Schwenzer et al., 1999). Marsters and 

colleagues reported that TRAF1 binds to HVEM following its activation in some epithelial 

cells (Marsters et al., 1997b). As shown in Chapter 5 (Figure 5.4), this work showed that 

there was some degree of upregulation in TRAF1 expression in CRC and UCC cells, 

following LIGHT and/or combinatorial treatment with LIGHT/IFN-γ. mLIGHT induced 

marked upregulation of TRAF1 in HCT116 and EJ cells but no significant TRAF1 

induction was observed in HT29 cells. These observations share similarities to previous 

studies on CD40 where TRAF1 was induced and indirectly recruited via interactions with 

TRAF2 (Pullen et al., 1999a; Pullen et al., 1998; Pullen et al., 1999b). On the other 

hand, TRAF2 functions as an inducer, but TRAF3 (discussed below) acts as an inhibitor 

of NF-κB (Hostager et al., 2003). It has been shown that TRAF2 recruitment and 

association with CD40 leads to the activation of pro-inflammatory signalling pathways 

(Mukundan et al., 2004), whereas TRAF2 is found to mediate the activation of NF-κB 

following LTβR signalling (Luftig et al., 2001). Other studies demonstrated that HVEM is 
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likely to recruit TRAF2 and TRAF5 which are key mediators for the activation of NF-κB 

as well as AP-1 (Kim, 2005; Kuai et al., 2003). In this work, it appeared that TRAF2 

expression (Figure 5.5) was downregulated in HT29 cells, and HCT116 and EJ cells 

showed little changes in TRAF2 levels in response to mLIGHT.  

TRAF3, on the other hand, often acts as a negative regulator of NF-κB activation and 

studies demonstrated that TRAF3 activation is associated with cell death in HT29 cells 

and in human embryonic kidney (HEK293T) cells (Force et al., 1997; Sanjo et al., 2010; 

VanArsdale et al., 1997). This study for the first time demonstrated in Chapter 5 (Figure 

5.6) that marked induction of TRAF3 expression was observed in UCC cells following 

LIGHT and/or combinatorial treatment LIGHT/IFN-γ, whereas CRC cells showed no 

detectable TRAF3 expression. Importantly, mLIGHT caused TRAF3 upregulation in 

CRC and UCC cells as early as 1.5hrs post-ligation. Therefore, it appears that as 

extensive cell death is triggered, TRAF2 and TRAF3 may be competing and thus TRAF3 

is upregulated and TRAF2 degraded, as has previously been reported following CD40 

ligation by mCD40L (Georgopoulos et al., 2006) and in line with findings reporting 

CD40-mediated TRAF2 degradation in B cell lines (Brown et al., 2002). Critically, killing 

by mLIGHT occurs without co-treatment with IFN-γ or CHX and triggered TRAF1 and 

TRAF3 upregulation, whereas LT soluble agonist treatment did not cause any 

detectable death and entrained the apoptotic pathway only if both LTβR and HVEM 

expression were activated by combinatorial LIGHT/IFN-γ treatment and caused TRAF1 

and 3 upregulation only in UCC cells. These findings have provided direct evidence that 

the degree of receptor cross-linking determines TRAF adaptor protein regulation in 

LTβR/HVEM death signalling, thus showing parallels with other TNFR members (e.g. 

CD40) by our group and others (Georgopoulos et al., 2006; Hauer et al., 2005). The 

current data are in agreement with previous studies reporting that HT29 death is TRAF3-

dependent (Rooney et al., 2000). This is also consistent with previous findings that the 

LTβR-mediated signalling in a number of cell lines is transduced by TRAF3 and TRAF5 

recruitment and ROS production (discussed in more detail below) (Chen et al., 2003). 

What is interesting about the TRAF3 expression observation is that it was detected at an 

approximately 50kDa protein despite its full length being reported as 65kDa. This 

observation is interesting yet in agreement with studies in CRC (Mohamed and 
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Georgopoulos, manuscript in preparation) and UCC (Dunnill et al, manuscript under 

review). This is a novel observation in the context of the LT system but adds to the 

similarities with CD40 signalling. It has previously been reported that TRAF3 protein has 

several splice variants that can produce different isoforms (Gamper et al., 2001; Van 

Eyndhoven et al., 1999). 

Previous studies have demonstrated that recruitment of TRAF5 via CD40 mediated the 

activation of NF-κB (Ishida et al., 1996a) and later findings reported that TRAF5 forms 

heterodimers with TRAF3 and contributes to NF-κB activation (Leo et al., 1999). 

Moreover, it has been reported that TRAF6 can induce cell death via caspase-

dependent pathways, which is mediated by the interaction of the RING domain of 

TRAF6 with caspases (He et al., 2006). It has been shown that targeting TRAF6 

following the activation of CD40 by CD40L leads to the inhibition of NF-κB, p38, JNK 

and Akt activation (Davies et al., 2005a; Davies et al., 2005b). In this work, mLIGHT 

caused little detectable effects in TRAF5 levels in CRC (very little TRAF5 expression 

was detected in HCT116) and UCC (Figure 5.7). TRAF6 expression was not detected in 

any of CRC and UCC lines treated with mLIGHT (Figure 5.8). It appeared that TRAF5 

and TRAF6 expression may not be as important as TRAF1, 2 and 3 in cell death of CRC 

and UCC cells triggered by mLIGHT. This is in line with previous findings in CD40 

signalling in our laboratory (Dunnill et al, under review).  

Overall, the findings presented in this study revealed that cross-linking with mLIGHT-

induced not only extensive cell death but it also induced early activation of TRAF1 and 

TRAF3 expression (and TRAF2 downregulation in HT29 cells). It appeared that 

recruitment of TRAF3 may inhibit TRAF2/5 activation by downregulation (this inactivates 

NF-κB pathway) and allow for the death pathway to take place, and this mechanism 

shares similarities with reported mechanism of CD40-mediated cell death 

(Georgopoulos et al., 2006; Hauer et al., 2005). It should, however, be noted that to 

demonstrate these hypotheses it would be necessary to perform functional assays (in 

the form of siRNA-mediated knockdown) to confirm the actual functional involvement of 

molecules like TRAF1 and particularly TRAF3 in mLIGHT-mediated death. Finally, the 

induction of TRAF3 mediated cell death is possibly mediated by lipid raft formation 
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(Dadgostar and Cheng, 2000) and this process may be dependent on and crosstalk with 

other molecules (e.g. ROS)-mediated receptor clustering (via acid sphingomyelinase 

activation and ceramide production) (Zhang et al., 2006).  

Future work should further probe the exact mechanism of regulation of TRAF1 and 

TRAF3 (i.e. whether regulation is at the transcriptional and/or post-transcriptional level) 

in LTβR/HVEM death signalling by performing such as investigating the precise role of 

these TRAFs by RNAi (as described above).  

7.5 The roles of MAPKs and TFs in pro-apoptotic LTβR/HVEM 
signalling  

MAPKs are intracellular signalling molecules that regulate a number of cellular activities 

(e.g. cell differentiation, cell survival and cell death) and are divided into subgroups: 

ERK1/2, JNK and p38 (Mebratu and Tesfaigzi, 2009). In the context of cell death 

induction, studies demonstrated that ERK1/2 can phosphorylate BH3-proteins Bim and 

Bad to reduce cell sensitivity to death and thus lead to cell growth promotion and this is 

entirely dependent on the cell and stimuli types (Hübner et al., 2008; Ley et al., 2003; 

Ley et al., 2004; Zha et al., 1996a). In this work, we could not sensitively detect 

activation (phosphorylation) by immunoblotting, so functional inhibition experiments were 

performed to demonstrate the functional role of MAPKs in mLIGHT-mediated cell death. 

This work found in Chapter 5 (Figure 5.9) that mLIGHT caused little detectable 

differences in phospho-ERK in CRC and UCC cells, yet interestingly, inhibition of 

MEK/ERK significantly abrogated mLIGHT-mediated death in CRC and UCC cells 

(Figure 5.10). Consistent with this ERK1/2 observation, previous studies demonstrated 

that ERK1/2 is implicated in cell death responses of HeLa cells treated with cisplatin 

(Wang et al., 2000), and inhibition of ERK1/2 in renal cell lines and primary cultures of 

renal proximal tubular cells stimulated their survival (Kim et al., 2005; Nowak et al., 

2004). Although the overall levels of p-ERK are not altered, future studies 

(immunofluorescence microscopy) should investigate whether p-ERK translocates to the 

nucleus. Nevertheless, the pharmacological inhibition studies clearly suggest that 

ERK1/2 regulates mLIGHT-mediated cell death in CRC and UCC cells. This observation 
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is in contrast to findings by our group in the CD40 system, where ERK is not involved in 

mCD40L-mediated apoptosis (Georgopoulos et al., 2006).  

JNK is MAPK that is intimately associated with the induction of apoptosis (Davis, 2000; 

Green and Kroemer, 2004). Previous studies reported that JNK is activated in response 

to chemotherapy drugs (Hayakawa et al., 2004; Potapova et al., 2001), whilst in the 

context of the TNFR family, it has been shown that CD40 signalling in carcinoma cells 

triggered JNK activation (Eliopoulos et al., 2000; Elmetwali et al., 2010). Moreover, 

Georgopoulos and colleagues (2006) reported that JNK activation plays a role in cell 

death via the cooperation and regulation of pro-apoptotic proteins of Bcl-2 leading to 

intrinsic cell death (mitochondrial pathway). The activation of the stress kinase p38, 

plays a critical role in cell death of rat fetal brown adipocytes triggered by TNF-α 

treatment (Valladares et al., 2000). Furthermore, studies by our group demonstrated that 

CD40-mediated apoptosis activated p38 and blocking the function of p38 attenuated 

death in CRC cells (Mohammed and Georgopoulos, manuscript in preparation). 

Consistent with the role of JNK and p38 in cell death, this study showed that some 

detectable differences in phospho-JNK and -p38 in CRC (HCT116 cells showed a 

significant activation of phospho-p38 in response to mLIGHT) and UCC cells. The 

inhibition of JNK partially blocked death in HCT116 and EJ cells, yet, strikingly, JNK 

inhibitor potentiated death of HT29 cells. The blockade of p38 significantly reduced 

mLIGHT-mediated cell death in CRC and UCC cells (Figure 5.11 – 5.14). The present 

work suggests that activation of MAPKs ERK1/2, JNK and p38 closely regulates 

mLIGHT-mediated cell death in CRC and UCC cells, although further experiments would 

be required to clarify their exact functional roles.     

As the role of MAPKs is to activate downstream ubiquitous TFs and in particular NF-κB 

and AP-1, this work examined the functional role of these TFs in mLIGHT-mediated 

death using specific inhibitors. NF-κB plays an anti-apoptotic role in TNF-α stimulation 

and JNK activation is found to be required for TNF-α-induced apoptosis (De Smaele et 

al., 2001; Deng et al., 2003; Javelaud and BesancËon, 2001; Tang et al., 2001). NF-κB 

can modulate the activity of c-Fos and AP-1 (Fujioka et al., 2004), whereas other studies 

reported that NF-κB has the capability to inhibit JNK activation (De Smaele et al., 2001; 
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Papa et al., 2004; Park et al., 2004; Tang et al., 2001). Previous studies have 

demonstrated that overexpression of HVEM in HEK293 cells leads to the activation of 

NF-κB and AP-1 as a result of TRAF2 and TRAF5 recruitment (Hsu et al., 1997; 

Marsters et al., 1997b). As shown in Chapter 5 (Figure 5.15), NF-κB inhibition partially 

reduced death in CRC cells and potentiated death in UCC cells, whereas inhibition of 

AP-1 partially blocked death in HCT116 and EJ cells (but not in HT29 cells) following the 

ligation with mLIGHT.  

Our data have provided the first demonstration of a direct role for JNK/AP-1 in the 

LTβR/HVEM death signalling in CRC and UCC cells, observations showing some 

similarity to those from studies reporting a role for JNK/AP-1 in CD40-induced cell death 

in other model systems (Afford et al., 2001; Choudhury et al., 2003; Georgopoulos et al., 

2006). Overall, these data offer evidence for the first time that mLIGHT-mediated cell 

death involves a number of MAPKs (e.g. ERK, JNK and p38) and downstream NF-κB 

and AP-1 and these events may be triggered via a TRAF3-dependent mechanism in 

malignant epithelial cells (Force et al., 1997). It, however, remains unknown how the 

same signal can be so cell type- and context-specific, as significantly different 

observations were made in the widely used HT29 versus HCT116 and EJ cell lines, and 

functionally mLIGHT is non-apoptotic in normal cells. 
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7.6 The role of ROS and NOX in mLIGHT-mediated cell death  

ROS represent a critical upstream component in the activation of MAPKs and TFs (NF-

κB and AP-1) and caspases in TNFR-induced responses (Kamata et al., 2005; Zhang 

and Chen, 2004). For instance, ROS regulate TNF-α-induced apoptosis and/or necrosis 

(Crompton, 1999; Sakon et al., 2003). Moreover, activation of CD40 by soluble CD40L 

triggers ROS production in B-cells and hepatocytes through the activation of NOX 

(Bhogal et al., 2012; Ha and Lee, 2004). There is accumulating evidence on the role of 

ROS in TNFRs-induced cell death and ROS-induced death is overall increasingly 

attracting attention in the context of the TNFRSF signalling. As shown in Chapter 6 

(Figure 6.1), ROS production was rapidly induced in HCT116 and EJ cells within 3hrs 

post receptor ligation by mLIGHT. The data suggested that mLIGHT induced oxidative 

stress, a finding in agreement with studies by Chen and colleagues demonstrating that 

LIGHT/IFN-γ drives ROS-dependent cell death in the human hepatoma cell line 

Hep3BT2 (Chen et al., 2000; Chen et al., 2003). Importantly, ROS induction is critical in 

mLIGHT-mediated death as the antioxidant NAC inhibited death in CRC and UCC cells 

in response to mLIGHT (Figure 6.2).  

It has been shown that the activation of CD40 can generate ROS in a malignant B-cells 

through the association of TRAF3 and the activation of NOX subunit p40phox (Ha and 

Lee, 2004). Moreover, our group has recently demonstrated that CD40-mediated 

apoptosis in UCC (Dunnill et al, manuscript under review) and CRC cells (Mohamed and 

Georgopoulos, manuscript in preparation) involves rapid, TRAF3-dependent induction of 

ROS in a NOX-dependent fashion. Although there was little activation in p40phox in 

HT29 cells, activation in p40phox was detected in HCT116 and EJ cells at 24 and 12hrs, 

respectively, in response to mLIGHT (Figure 6.3). As mentioned above there is a link 

between TRAF3 and p40phox activation, thus the findings of this work indicated that 

mLIGHT may induce cell death via TRAF3-dependent phospho-p40phox in CRC and 

UCC. Paradoxically, however, when the NOX inhibitor DPI was used, DPI treatment had 

no effects in mLIGHT-mediated cell death in CRC and UCC cells (Figure 6.4). It is 

possible that because the NOX enzyme complex has several subunits and DPI may 

have an effect on other, less well-characterised NOX subunits which should be further 
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investigated in future. Future work should investigate the exact functional role of NOX 

subunits in context of mLIGHT-mediated cell death, and this may be by using shRNA 

knockdowns. Of note, although this study has provided evidence that mLIGHT may 

trigger a novel TRAF3-MAPKs-p40phox pathway, which triggers ROS for the activation 

of cell death, this applies to well characterised cell lines, such as HCT116 and EJ cells, 

but does not appear to be functional in HT29 cells. 

7.7 Regulation of ASK1 and Thioredoxin in mLIGHT-mediated cell 
death 

ASK1 phosphorylates MKK4/7 which then activates JNK and also phosphorylates 

MKK3/6 resulting in p38 activation (Cargnello and Roux, 2011). ASK1 plays a critical 

role in cell death and it has been demonstrated that kinase-inactive mutant ASK1 

inhibits cell death triggered by TNF-α, Fas, anti-cancer drugs, or the withdrawal of 

neurotrophic factors (Chang et al., 1998; Chen et al., 1999; Ichijo et al., 1997; Kanamoto 

et al., 2000; Wang et al., 1999). TNF-α-mediated cell death can occur by activation of 

ASK1 through ROS production (Gotoh and Cooper, 1998). ROS indirectly activates 

ASK1 by preventing ASK1 and Thioredoxin (Trx) association via direct oxidation of Trx 

(Liu and Min, 2002). Similarly, Chen and colleagues (2003) demonstrated that LTβR can 

mediate cell death via ROS production, which in turn activates ASK1, which is 

dependent on TRAF3 recruitment.  

In this work, HCT116 cells showed some ASK1 activation at 24hrs and the level of ASK1 

activation in EJ cells was similar, in response to mLIGHT. However, HT29 cells were 

different as there was no detectable ASK1 activation in response to mLIGHT. An 

interesting observation with ASK1 related to its MW; this study showed that the activated 

(phosphorylated) ASK1 fragment was 50kDa as shown in Chapter 6 (Figure 6.5). It has 

previously been reported that ASK1 are cleaved to different fragments of MW 39, 50, 75, 

110kDa in carcinoma cells but only following transfection (over-expression) is the full 

length 150kDa protein produced and detected (Stordal and Davey, 2008), which 

interestingly is consistent with recent observations in CD40-mediated apoptosis in UCC 

and CRC cells (Dunnill et al, under review), where phosphorylated ASK1 was observed 
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at 39kDa and 50kDa, respectively, during immunoblotting techniques. It remains to be 

confirmed however, whether the active isoform of ASK1 involved in LTβR/HVEM death 

signalling is the 50kDa one and future RNAi experiments can confirm this.  

This work also investigated expression of Trx-1 following ligation with mLIGHT (Figure 

6.6). Interestingly, it was found that although immediately after seeding CRC and UCC 

cells expressed low levels of Trx-1, the expression of this protein progressively 

increased steadily from 6hrs to 12 and 24hrs in untreated cells. It has been suggested 

that cells in vitro progressively increase Trx levels because Trx may protect from culture 

related stress, a suggestion based on evidence that the inhibition of Trx arrests the 

growth of carcinoma cells in vivo (Baker et al., 1997; Welsh et al., 2003). Strikingly, Trx-

1 was downregulated in mLIGHT-treated CRC and UCC cells in comparison to controls, 

indicating that receptor ligation by mLIGHT actively down-regulates Trx-1 to permit 

ASK1 activation and subsequently cell death. These observations are strikingly 

consistent with very recent observations in CD40-mediated cell death (Dunnill et al, 

under review) demonstrating that Trx-1 levels progressively increased in UCC and CRC 

cultured cells following seeding and Trx-1 is actively downregulated by membrane-

bound but not soluble CD40 agonists. Both the biological function of the detected ASK1 

isoform and Trx-1 regulation in LTβR/HVEM death signalling remain unknown and merit 

further investigation by performing functional (shRNA knockdown) experiments.  

Collectively, our findings suggested that LTβR/HVEM death signalling induced TRAF3, 

p40phox activation and ROS production, and caused the downregulation of Trx-1 

expression leading to ASK1 activation in HCT116 and EJ cells (but not in HT29 cells).  

7.8 Regulation of pro-apoptotic proteins and caspases by mLIGHT 
signalling  

The activation of caspases is critical in classical apoptotic pathways and normally 

requires the Bcl-2 family pro-apoptotic Bax (and often Bak) to activate, in particular, 

caspase-9 (Davis, 2000; Lei and Davis, 2003). This study showed in Chapter 6 (Figure 

6.7) that the inhibition of total caspase activity (using z-VAD) surprisingly potentiated 

death in HT29 and EJ cells, whereas z-VAD partially blocked death in HCT116 cells, 
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suggesting that caspases are partially involved in HCT116 cell death, yet death in HT29 

and EJ cells is caspase-independent. Interestingly, these observations are in agreement 

with DNA fragmentation data which showed that there was little DNA fragmentation 

detected in HT29 and EJ cells, whereas high level of DNA fragmentation was detected 

in HCT116 cells. In support of this and others, Wilson and Browning (2002) 

demonstrated that death of HT29 cells triggered by the activation of a number of TNFR 

members (e.g. Fas, TRAIL, TNF, TWEAK and LTβ) was not blocked by z-VAD, thus 

indicating that death is mediated via a caspase-independent pathway. As death of 

HCT116 cells was shown to be caspase-dependent and this suggests possible 

involvement of known caspases (e.g. caspase-8, -9 and -10), further investigations were 

carried out. As shown in Chapter 6 (Figure 6.8), death of HCT116 was partially blocked 

using the specific inhibitors of caspase-3/7 and, interestingly, caspase-8. This indicated 

that mLIGHT-mediated cell death in HCT116 cells may involve the extrinsic pathway and 

be triggered via cross-talk with other TNFR and possibly death receptors, as is the case 

of CD40-mediated death in CRC cells, where death is partially dependent on cross-talk 

of CD40 with TRAIL (Mohamed and Georgopoulos, manuscript in preparation). 

Bak and Bax are cytosolic proteins and are associated with induction of MOMP to trigger 

cell death (Nechushtan et al., 2001; Wolter et al., 1997). Previous studies demonstrated 

that LTβR/HVEM activation by LIGHT/IFN-γ in MDA-MB-231 and HT29 cells led to the 

upregulation of Bak, Bax and the activation of caspases-3, -6, -7, -8 and -9 (Zhang et al., 

2004). This ultimately resulted in the activation of both poly ADP-ribose polymerase 

(PARP) and a DNA fragmentation factor (DFF45) (Zhang, 2004; Zhang et al., 2004; 

Zhang et al., 1996). Our laboratory has previously demonstrated the activation of Bak 

and Bax by mCD40L in UCC (Bugajska et al., 2002). This work showed in Chapter 6 

(Figure 6.9) that, although Bak expression was detectable in CRC and UCC cells, 

neither soluble agonists nor mLIGHT caused significant changes in Bak expression in 

CRC and UCC cells. Surprisingly, Bax expression was relatively unchanged in UCC 

following soluble agonists treatment cells yet CRC cells showed downregulation of Bax 

expression following combinatorial treatment LIGHT/IFN-γ. mLIGHT caused no 

noticeable Bax expression changes in CRC and UCC cells, although Bax was 
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undetectable in HCT116 cells (Figure 6.10). There is also a possible explanation that the 

mechanism underlying mLIGHT killing may involve the JNK pathway.  

It may be possible that although mLIGHT does not directly regulate the overall level 

(relative protein amount) of Bak and Bax in carcinoma cells, it might instead regulate the 

localisation of these pro-apoptotic mediators to the mitochondria. Therefore, it is critical 

that future studies investigate these possibilities and should involve 

immunofluorescence microscopy as well as cell fractionation experiments followed by 

immunoblotting to determine any such changes in Bak/Bax location. Collectively, our 

data have provided evidence that LTβR/HVEM-triggered death by mLIGHT is highly 

signal type-, cell type- and context dependent. Our findings also suggest that despite a 

plethora of signalling similarities between CD40 and the LT receptors, the two systems 

maintain a number of differences in terms of the precise nature of the death pathway 

triggered and in the way they entrain apoptotic (or non-apoptotic/necrotic) cell death.    

7.9 LTβR and HVEM signal cooperatively in mLIGHT-induced cell 
death 

As LIGHT can trigger signalling via both LTβR and HVEM receptors (Albarbar et al., 

2015), it was important to examine whether these receptors act independently, 

cooperatively or in an antagonistic fashion when determining cell fate in the context of 

ligation by mLIGHT. In Chapter 6 (Figure 6.12), we attempted to examine the functional 

effects of LTβR and HVEM knockdown in mLIGHT killing. The results showed that 

knockdown of HVEM caused a very small increase in death in CRC and UCC cells, 

whereas LTβR knockdown showed no effect on cell death in HT29 and EJ cells yet it 

resulted in statistically significant reduction in death of HCT116 cells triggered by 

mLIGHT. It should be noted, however, that as the knockdown observed was transient, 

the results were difficult to interpret. Also, as it is possible that LTβR and HVEM signal 

cooperatively in inducing cell death, combination of siRNAs would be an appropriate 

strategy to examine this hypothesis. There is some evidence that activation of both 

LTβR and HVEM is important to induce cell death in tumour cell lines (HT29 cells) in 

response to LIGHT treatment (Zhai et al., 1998). By contrast, a study reported that 
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soluble mutated LIGHT (LIGHT-R228E – which is a mutated form of LIGHT that 

preferentially interacts with LTβR over HVEM) is sufficient to trigger cell death via LTβR 

in the HT29.14S cell line (a clone of the HT29 colon adenocarcinoma) that is sensitive to 

the pro-apoptotic activity of TNF-related ligands (Rooney et al., 2000). Another study 

demonstrated that activation of LTβR by membrane-bound LIGHT or mutant LIGHT 

(LIGHT-R228E) in the presence of IFN-γ induced high levels of chemokine secretion, 

with nothing reported about cell death induction (Bechill and Muller, 2014). In light of the 

unclear evidence (or even contradictory reports), and due to the relative inefficacy of 

knockdown observed (particularly in HT29) cells in our study, further experimentation 

would be required to understand which specific receptors are engaged by LIGHT and 

mLIGHT in our cells and to determine the exact role of each receptor in apoptosis. One 

appropriate approach would be the preparation of third party effector cells (L cell 

transfectants) expressing mutant LIGHT that preferentially interacts with LTβR over 

HVEM (the LIGHT-R228E mutant mentioned above), and study the effect of that in 

carcinoma cells. This would be important as it would address simultaneously the 

importance of an individual receptor (LTβR) in apoptosis whilst providing the signal in 

membrane-presented form. To perform this, our laboratory is currently in communication 

with Prof Carl Ware (Laboratory of Molecular Immunology, Sanford Burnham Discovery 

Institute, La Jolla, USA) for the preparation of an expression construct as published 

previously (Rooney et al., 2000) but adapted for expression in mammalian cells. In 

addition, using the new technology Clustered regularly interspaced short palindromic 

repeats (CRISPR) for LTβR and HVEM knockdown will be also ideal for future work for 

this purpose.  

It should be noted that one of the limitations of our work relates to the Western blots 

experiments for co-cultures in terms of normalisation to housekeeping gene expression, 

although the normalisation has been performed for co-culture experiments; however, it 

was observed in some experiments differences in amounts loaded on gels. In this 

context, pharmacological inhibition experiments were performed for some essential 

mediators involved in mLIGHT-mediated cell death. This also could be improved in 

future by introducing other techniques such as immunofluorescence and 

immunoprecipitation assays. Regarding the controls and the specificities of antibodies 
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used in Western blotting experiments, controls are ideal for detection of proteins in our 

study, there are some experiments controls did not work for unknown reasons. It should 

be noted that antibodies used are specific for the proteins we investigated and this was 

demonstrated by our group (Dunnill et al, under review) and others (Bugajska et al., 

2002; Georgopoulos et al., 2006). For publication purposes, controls (L cells alone) 

would be necessary and appropriate loading corrections to ensure equal loading has 

been confirmed. Also, further investigation could perhaps conceivable involve the 

immunoprecipitation assays.  

7.10 Future directions    

The role of the LT receptor and the ligand LIGHT in regulating cell fate in the immune 

system as well as in non-lymphoid tissues has been under extensive research in recent 

years. Moreover, the ability of several family members to induce death (mainly via 

apoptosis) represents a promising target for cancer therapy. Such efforts have focused 

mostly on death receptors such as TNFRI, Fas (CD95), and TRAIL-R due to their strong 

pro-apoptotic potential. However, lack of tumour cell-specificity represents an obstacle in 

such therapeutic strategies. The ability of tumour-specific death induction might instead 

be a feature of the non-classical death receptors, and the LT and CD40 systems might 

represent better such targets. However, as shown in this study, it appears that the 

interaction of LT receptor LTβR and HVEM with mLIGHT demonstrate more complex, 

cell-type and clearly context-specific capabilities, so it is essential that more studies 

delve further into the complexities of LT system signalling.  

This complexity is evident at the signal transduction level as well as the level of receptor 

activation. For instance, there is clear difference between the ability of LT soluble 

agonists to trigger cell signalling when presented in a soluble versus membrane-bound 

form. LT soluble agonists lack cytotoxic potency when administrated as a single 

treatment (without synergism by co-treatment with IFN-γ), yet membrane-presented 

ligand mLIGHT caused extensive cell death. There is often a lack of consistency when it 

comes to the cell models used to study the functional role of LT receptor-ligand 

interactions. This may perhaps explain some of the inconsistencies evident in the 

literature, some of which we mentioned above. We believe that our work has for the first 
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time addressed some of these questions and provided some evidence for the underlying 

mechanisms of these differential responses. Future work should focus on understanding 

the complexity of the signalling cascades examined here. One fascinating prospect is to 

understand how the LT and CD40 receptors, though capable of recruiting similar (or 

identical) adaptor proteins and regulating their fate in similar fashion whilst showing 

similar requirement for effective cross-linking to induce strong enough death responses, 

can nevertheless engage cell death pathways that might differ in such signal- and cell-

type fashion. How can the internal mediators engaged in HT29 and EJ cells differ yet 

death shows equally necrotic features? What is the mechanism of differential 

susceptibility in RT112 cells? How does HCT116 cell death differ? Another elegant 

experimental way to address these differences could involve construction of chimeric 

receptors comprising the extracellular domain of LT receptor but the cytoplasmic tail of 

CD40 and vice versa, as this could provide insights as to the molecular determinant of 

cell death type. Other questions also of interest include the investigation of the 

antioxidant pathways (excluding Trx), such as the Glutathione (GSH) pathway – is it 

regulated by LIGHT and how?   

7.11 Conclusion  

Using appropriate, well-characterised and robust epithelial cell models, this study has 

provided evidence for the first time that mLIGHT, in the absence of IFN-γ, is pro-

apoptotic in carcinoma cells, but not in normal (NHU) cells. By contrast, this study 

showed the inability of LT soluble agonists to induce CRC and UCC cell death and their 

requirements for IFN-γ to kill HT29. Yet this combination did not kill other well-

characterised carcinoma cell lines HCT116 and EJ cells. This study has also 

demonstrated that mLIGHT triggered 1) rapid TRAF signalling, 2) caspase-dependent 

and -independent pathways, 3) apoptotic and necrotic death features, and 4) ROS-

dependent death. Thus, this study also identified for the first time the roles of MAPKs 

and ROS involvement in mLIGHT-mediated cell death. These findings have highlighted 

novel observations on the mechanism of cell death through LTβR/HVEM activation as 

well as the importance of the signal quality (strength) of ligand-receptor interactions in 

determining functional outcome and also demonstrated that mLIGHT is tumour cell-
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specific. The new knowledge of the ability of mLIGHT signal to trigger extensive cell 

death in CRC and UCC cells has enhanced our understanding of the LTβR/HVEM death 

signalling pathway. Thus, these findings may allow for the design of better therapeutic 

strategies. 
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Appendix I:  
Stock solutions   

1. EDTA preparation  

Reagent  Volume or mass 
Ethylenediaminetetraacetic acid (EDTA) 1g 
Phosphate-buffered saline (PBS) (1x) 1000mL 

The solution was mixed well and was then autoclaved. 

 

2. SDS lysis buffer preparation for cell lysates  

Reagent  Volume or mass 
Glycerol  10mL  
SDS 1g  
Tris-HCl 6.25mL (stock conc. 1M) and pH 

6.8 
Sodium fluoride (NaF) 0.42g  
Sodium pyrophosphate tetrabasic  0.446g 
Sodium orthovandate (Na3VO4)  0.0184g 

Up to total volume of 50mL of deionised water (dH2O) and using magnetic heat block to 
and magnetic flea to dissolve all chemicals. SDS lysis buffer was then aliquoted and 
stored at -20°C. 
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Appendix II:  
IFN-γ and CHX titrations    

1. IFN-γ titration   
a.  

         
 
 

b.  
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c.  

     
d.  
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e.  

 

Effects of IFN-γ treatment on carcinoma cell viability  

Cells of HT29, EJ, RT112, SW480 and HCT116 were plated in 96-well plates and treated with various 
concentrations of recombinant IFN-γ for 96hrs as indicated. 20µl of MTS solution was added to each well 
and incubated for approximately 4hrs. Cell viability was determined by a FLUOstar OPTIMA (BMG 
Labtech) plate reader at absorbance 492nm. Data are represented as mean values of 5-6 replicates ±S.D. 
a, b, c, d and e show HT29, SW480, HCT116, RT112 and EJ cells, respectively. 

 

  

 

 

 

 

 



  

252 
 

2. Protein synthesis inhibitor (Cycloheximide (CHX)) titration  
a.  

 

b.  
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c.  

 

d.  
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e.  

 

Effects of CHX treatment on carcinoma cell viability 

Cells of HT29, EJ, RT112, SW480 and HCT116 were plated in 96-well plates and were then treated with 
indicated concentrations of CHX for 72hrs. 20µl of MTS solution was added to each well and incubated for 
4hrs. Cell viability was determined by a FLUOstar OPTIMA (BMG Labtech) plate reader at absorbance 
492nm. Data are represented as mean values of 5-6 replicates ±S.D. a, b, c, d and e show HT29, SW480, 
HCT116, RT112 and EJ cells, respectively. 
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Appendix III:  
1. BS-1/IFN-γ 

 
a.  

 

b.  
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c.  

 

d.  
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e.  

 

Detection of cell death following carcinoma cell treatment with BS-1 and BS-1/IFN-
γ  

HT29, SW480, HCT116, RT112 and EJ were seeded in 96-well plates. Cells were treated with BS-1 
(30μg/mL), MOPC-21 (10μg/mL), in the absence or presence of IFN-γ (180U/mL) and incubated for 96hrs. 
CytoTox-Glo reagents were prepared and added to each well and then relative luminescence unit (RLU) 
was measured by a FLUOstar OPTIMA (BMG Labtech) plate reader. The intensity of the RLU signal 
corresponds to the degree of dead cells in a population (as described in section 2.13.2). Fold increase 
relative to control was generated from raw RLU data by comparing treated cells versus untreated cells as 
shown in right panels. a, b, c, d and e show HT29, SW480, HCT116, RT112 and EJ cells, respectively. 
Data are represented as mean values of 4-5 replicates ±S.D. 
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2. LIGHT/IFN-γ 
 

a.  

 

b.  
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c.  

 

d.  
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e.  

 

Detection of cell death following carcinoma cell treatment with LIGHT and 
LIGHT/IFN-γ 

HT29, SW480, HCT116, RT112 and EJ were plated in 96-well plates. Cells were treated with LIGHT 
(1μg/mL), in the absence or presence of IFN-γ (180U/mL) and incubated for 96hrs. CytoTox-Glo was 
prepared and added to each well and then relative luminescence unit (RLU) was measured by a 
FLUOstar OPTIMA (BMG Labtech) plate reader. The intensity of the RLU signal corresponds to the 
degree of dead cells in a population (as described in section 2.13.2). Fold increase relative to control was 
generated from raw RLU data used in left panels by comparing treated cells versus untreated cells as 
shown in right panels. a, b, c, d and e show HT29, SW480, HCT116, RT112 and EJ cells, respectively. 
Data are represented as mean values of 4 replicates ±S.D.    
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Appendix IV:  
1. Absence of LIGHT expression on NT-L cells 
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LIGHT expression on NT-L cells   

NT-L cells were harvested and labelled with anti-LIGHT or isotype control antibody PE-conjugated for 20-
30mins. Cells were then washed and re-suspended in FACS buffer. Samples were acquired on an 
EasyCyte Guava flow cytometer and data analysed using InCyte2.6 Guava software (Millipore). a, 
Forward and side scatter plots for acquired cells; b, Control isotype antibody PE was used (dashed white 
left histogram). LIGHT expression was determined by using PE-conjugated anti-LIGHT antibody (filled 
grey histograms) and this was compared with control PE. 
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2. Photos of MMC-treated cells 

a. Control (NT-L) cells 

Untreated cells MMC-treated cells (10µg/mL) 

  

MMC-treated cells (15µg/mL) MMC-treated cells (20µg/mL) 
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b. mLIGHT-L cells 

Untreated cells MMC-treated cells (10µg/mL) 

  

MMC-treated cells (15µg/mL) MMC-treated cells (20µg/mL) 

  

Microscopy images of untreated and treated NT-L and mLIGHT-L cells with MMC 

Cells were treated with various concentrations of MMC (10, 15 and 20µg/mL) as indicated in different 
flasks and incubated for 2hrs at 37°C and 5% (v/v) CO2. Cells were then harvested, counted and seeded 
in 96-well plates for 72hrs. a. shows control (NT-L) cells, while b. shows mLIGHT-L cells. Photos were 
taken at magnification a 100x using an EVOSXL inverted microscope (PeqLab).  
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Appendix V: 

Titrations of MAPK inhibitors   

1. MEK/ERK inhibitor (U0126) 

a.  

 

 

b.  
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c.  

           

 

 

d.  
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e.  

 

Effects of the MEK/ERK inhibitor (U0126) on carcinoma cell viability 

NT-L, mLIGHT-L, HT29, HCT116 and EJ were in 96-well plates. Cells were then treated with MAPKs 
inhibitors: MEK/ERK inhibitor (U0126), as indicated, and vehicle control (VC) was also included. 20µl of 
MTS solution was added to each well and incubated for 4hrs. Cell viability was determined by a FLUOstar 
OPTIMA (BMG Labtech) plate reader at absorbance 492nm. Data are represented as mean values of 4-5 
replicates ±S.D. a, b, c, d and e show NT-L, mLIGHT-L, HT29, HCT116 and EJ cells, respectively. 
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2. JNK inhibitor (SP600125) 
a.  

 

b.  
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c.  

 

d.  
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e.  

 

Effects of the JNK inhibitor (SP600125) on carcinoma cell viability 

NT-L, mLIGHT-L, HT29, HCT116 and EJ were in 96-well plates. Cells were then treated with MAPKs 
inhibitors: JNK inhibitor (SP600125), as indicated, and vehicle control (VC) was also included. 20µl of 
MTS solution was added to each well and incubated for 4hrs. Cell viability was determined by a FLUOstar 
OPTIMA (BMG Labtech) plate reader at absorbance 492nm. Data are represented as mean values of 4-5 
replicates ±S.D. a, b, c, d and e show NT-L, mLIGHT-L, HT29, HCT116 and EJ cells, respectively. 
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3. p38 inhibitor (SB202190) 
 
a.  

 
 

b.  
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c.  

               

 

d.  
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e.  

                

Effects of the p38 inhibitor (SB202190) on carcinoma cell viability 

NT-L, mLIGHT-L, HT29, HCT116 and EJ were in 96-well plates. Cells were then treated with MAPKs 
inhibitors: p38 inhibitor (SB202190), as indicated, and vehicle control (VC) was also included. 20µl of MTS 
solution was added to each well and incubated for 4hrs. Cell viability was determined by a FLUOstar 
OPTIMA (BMG Labtech) plate reader at absorbance 492nm. Data are represented as mean values of 4-5 
replicates ±S.D. a, b, c, d and e show NT-L, mLIGHT-L, HT29, HCT116 and EJ cells, respectively. 

 

 

 

 

 

 

 

 

 



  

273 
 

Appendix VI:  
The antioxidant (NAC) titration  

a.  

 

b.  
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c.  

 

d.  
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e.  

 

Effects of the antioxidant NAC on carcinoma cell viability 

NT-L, mLIGHT-L, HT29, HCT116 and EJ were in 96-well plates. Cells were then treated with NAC as 
indicated. 20µl of MTS solution was added to each well and incubated for 4hrs. Cell viability was 
determined by a FLUOstar OPTIMA (BMG Labtech) plate reader at absorbance 492nm. Data are 
represented as mean values of 5-6 replicates ±S.D. a, b, c, d and e show NT-L, mLIGHT-L, HT29, 
HCT116 and EJ cells, respectively. 
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Appendix VII: 
The NOX inhibitor (DPI) titration 

a.  

 

b.  
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c.  

 

d.  
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e.  

 

Effects of DPI on carcinoma cell viability 

NT-L, mLIGHT-L, HT29, HCT116 and EJ were in 96-well plates. Cells were then treated with NOX 
inhibitor (DPI), as indicated, and vehicle control (VC) was also included. 20µl of MTS solution was added 
to each well and incubated for 4hrs. Cell viability was determined by a FLUOstar OPTIMA (BMG Labtech) 
plate reader at absorbance 492nm. Data are represented as mean values of 5-6 replicates ±S.D. a, b, c, d 
and e show NT-L, mLIGHT-L, HT29, HCT116 and EJ cells, respectively. 
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