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Abstract. Reachability queries are of great importance in many research
and application areas, including general graph mining, social network
analysis and so on. Many approaches have been proposed to compute
whether there exists one path from one node to another node in a graph.
Most of these approaches focus on static graphs, however in practice
dynamic graphs are more common. In this paper, we focus on handling
graph reachability queries in dynamic graphs. Specifically we investigate
the influence of a given edge in the graph, aiming to study the overall
reachability changes in the graph brought by the possible failure/deletion
of the edge. To this end, we firstly develop an efficient update algorithm for
handling edge deletions. We then define the edge influence concept and
put forward a novel computation algorithm to accelerate the computation
of edge influence. We evaluate our approach using several real world
datasets. The experimental results show that our approach outperforms
traditional approaches significantly.

Keywords: Graph reachability, Dynamic graph, Edge influence

1 Introduction

Nowadays, graph structured data plays a more important role in various fields.
As a foundational operation of a graph, reachability has a wide range of ap-
plications in many areas such as web data mining, biological research, social
networks and computer programming, etc. It is noteworthy that, in these areas,
the structure of graph is large and dynamic. To illustrate, Facebook has 1.79
billion active users monthly in the third quarter of 2016, increased from 1.55 bil-
lion active users monthly in the same period in 2015 1. They may have different
characters such as age, gender, hobbies, and may have complicated relationship
with existing users.

A large body of indexing techniques have been recently proposed to process
reachability queries in graphs [2, 3, 5, 12–14]. Among them, a significant portion

1 https://www.statista.com/statistics/264810/number-of-monthly-active-facebook-
users-worldwide/, retrieved December 2016
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of indexes are based on 2-hop labeling, which is originally proposed by Cohen et
al. [7]. Most of the above mentioned approaches generally make the assumption
that graphs are static. Some approaches investigate reachability in dynamic
graphs, but they mainly focus on updating the overall indexes and supporting
reachability queries in dynamic graphs [1, 8, 10, 15].

One important question remains open: How can we evaluate the impact of
an individual edge in a large graph in terms of reachability aspect? To the best
of our knowledge, there is little work available in literature about the analysis of
potential impact caused by changes in a large graph like edge deletions. How to
evaluate the reachability influence of an edge is still an open problem. State-of-
the-art approach TOL proposed in [1], which focuses on handling reachability
queries in large dynamic graphs, does not provide an efficient way to compute
the reachability difference caused by the failure or deletion of an edge. Therefore
it remains challenging to evaluate the impact of the deletion of a given edge
efficiently.

In this work, we firstly develop a decremental maintenance algorithm to
efficiently update labeling index for edge deletions. We then define edge influ-
ence to indicate the impact of an edge on the reachability of the whole graph
and put forward a novel computation algorithm to calculate edge influences
efficiently. Experimental results show that our method outperforms state-of-
the-art approach TOL in updating indexes on edge deletions and our edge
influence computation algorithm is very efficient and can scale well. Potential
applications of our algorithm include finding the most influencing edges in a
given network, looking to building up some most important connections in an
existing network, and so on.

The remainder of this paper is organized as follows. Section 2 reviews related
work. Section 3 describes the details of our approach. Section 4 presents the
experimental results and analysis. Section 5 concludes the paper and discusses
future work.

2 Related Work

There is a large body of work on handling reachability queries in large graphs.
Tree Cover approach is proposed by Agrawal et al. in [4], which searches a
path based on a tree cover. The principle of this method is to encode each
node by multiple intervals in a graph. However, even though it searches the
graph efficiently, Tree Cover method can only guarantee its efficiency on static
graphs. This is mainly because in order to achieve the optimal tree cover, it
has to firstly establish a spanning tree when a graph changes. Dual-Labeling
approach proposed by Wang et al. in [3] answers reachability queries by a Dual-
Labeling encoding scheme. As a tree encoding method, Dual-Labeling method
also encodes each node as a tree structure. Similar to Tree Cover method, it is
suited for handling static graphs. Chain Cover approach proposed by Jagadish
[6] uses a chain cover scheme to compute a reachability query. In this method,
it divides a graph into several chains, which forms a chain cover for this graph.
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If we want to answer a reachability query, we just search whether there exists a
pair in the chain cover. The disadvantage of this method is that if the graph is
dynamic, for each update operation, there are numerous pairs to be modified,
which reduces the efficiency especially when the graph is large. Path-Tree Cover
approach proposed by Jin et al. [5] answers reachability queries by using a path-
tree cover scheme. Its principle is similar to the Chain Cover method and the
Tree Cover method. The difference is that Path-Tree Cover uses an extra scheme
to deal with non-edge in the tree structure like Dual-Labeling approach.

Meanwhile, a few approaches have been proposed for handling reachability
queries in dynamic graphs [8, 10, 15]; however, these approaches cannot scale
well. State-of-the-art approach in this direction is TOL, proposed by Zhu et al.
[1]. TOL uses a total order labeling scheme to answer reachability queries. It
encodes a level order to each node in a graph. According to this order, TOL can
compute a labeling table. Comparing with other schemes mentioned above, the
advantage of TOL is that it simplifies the process of table construction. TOL
has an advantage in dealing with large dynamic graphs. Surprisingly, it also
outperforms most existing approaches on static graphs [1]. However, the main
drawback of TOL is that it can only handle node deletions but cannot handle
edge deletions.

3 Methodology

In this section, we present our approach in detail. Since our approach is in-
spired by state-of-the-art approach TOL [1], we firstly introduce TOL index
briefly, then we develop our decremental maintenance algorithm for handling
edge deletions. After that, we further define the concept of edge influence to
investigate the impact of an edge in the overall reachability of a graph. We also
put forward an efficient computation algorithm to compute edge influence on
top of the updated labeling index of the graph.

3.1 TOL Index

The TOL Index [1] of graphG in Fig. 1 is shown in Fig. 2. There are three columns,
n (denoting nodes), Lin and Lout. Note that, TOL labeling is very similar to the
2-HOP Cover approach proposed by Cohen et al. [7].

Fig. 1. Graph G (DAG)
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Fig. 2. TOL Index L

Example 1. According to Fig. 2, for node C, Column Lout contains {C}. It means
that node C can reach all nodes that contains C in ColumnLin, including nodes
C, D, E, and F. Similarly, for node E, Column Lin contains {C,E}. Hence node
E can be reached by all nodes in Column Lout that contains C or E, including
nodes A, B, C, E, and F.

3.2 Handling Edge Deletions

Suppose the TOL index of a given graph G is L. Assuming after deleting edge
e from G, we have G′ and its corresponding index L′. Using TOL approach, we
have to compute L′ from scratch for G′. It is obvious that such process is not
efficient. To improve efficiency, we devise a new approach that only calculates
the difference between labeling indexes L and L′, if an edge deletion occurs.

Given a DAG G = (V,E), if deleting edge e = NS → NE ∈ E from it, we can
construct a new graph Gr ∈ G, which includes only nodes that can reach or be
reached by either node NS or node NE. The structure ofGr is presented in Fig. 3.

It should be noted that, we only need to deal with those nodes whose
reachability status to another node might be changed due to the edge deletion.
All such nodes can be divided into six sets, NtoSO, NtoEO, N f romSO, N f romEO, NtoSE
and N f romSE. Details of these node sets are as follows:

Fig. 3. Graph Gr
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NtoSO contains nodes that can reach node NS but cannot reach node NE, defined
as a special ancestor node set of NS.

NtoEO contains nodes that can reach node NE but cannot reach node NS, defined
as a special ancestor node set of NE.

N f romSO contains nodes that can be reached by node NS but cannot be reached
by node NE, defined as a special descendant node set of NS.

N f romEO contains nodes that can be reached by node NE but cannot be reached
by node NS, defined as a special descendant node set of NE.

NtoSE contains nodes that can reach both node NS and node NE, which form the
common ancestor node set of both NS and NE.

N f romSE contains nodes that can be reached by both node NS and node NE, which
form the common descendant node set of both NS and NE.

The next process is to classify all relevant nodes into the corresponding sets,
which is described in the following.

1. Find all ancestor and descendant node sets of NS and NE using BFS (Breadth-
First-Search).

2. Compare the ancestor node set of NS with the ancestor node set of NE; put
all nodes that appear in both ancestor node sets together and form NtoSE.
Then NtoSO is the set containing the rest ancestor nodes of NS and NtoEO is
the set containing the rest ancestor nodes of NE.

3. Following a similar step to the above Step 2, we can construct all the defined
descendant node sets, including N f romSE, N f romSO and N f romEO.

After completing the nodes classification, we can start to handle the edge
deletion process. When deleting edge e = NS → NE ∈ E, changes of each node
in the labeling index can be divided into three situations as shown in Fig. 4.

Fig. 4. Edge Deletion Flow Chart

Situation 1: For node sets NtoEO and N f romSO, no changes are needed in the
original labeling index. As shown in Fig. 3, a path from a node of NtoEO to any
other node of Gr or a path from any node of Gr to a node in N f romSO, will not
contain edge e. In other words, reachability of any node in NtoEO and N f romSO
will not be affected by deletion of edge e.



6 Yongrui Qin et al.

Situation 2: For node sets NtoSE and N f romSE, although the reachability related
to the nodes in these sets is the same as before, the path of reachability may be
different. This creates impact on the labeling index. We use the following steps
to modify the labeling index to ensure the reachability of these nodes remains
the same as before when computed from the updated labeling index.

1. Denote node set of Lout column of node NE in the labeling index as NEout.
2. Add NEout to Lout column of each node in NtoSE in the labeling index.
3. Denote node set of Lin column of NS in the labeling index as NSin.
4. Add NSin to Lin column of each node in N f romSE in the labeling index.

For the three node sets that NtoSE can reach (including N f romSO, N f romSE and
N f romEO), the reachability status from set NtoSE to set N f romSO is not affected by
edge e (see Fig. 3). For N f romSE and N f romEO, they are the only sets that can be
reached by node NE. Therefore, we only need to add NEout to the column of each
node of N f romSE and N f romEO in the new labeling index.

Situation 3: For node sets N f romEO and NtoSO, whether edge e is deleted or
not has significant influence on their reachability status. After deleting edge e,
all nodes in NtoSO cannot reach node NE any more. When deleting edge e, the
update of the labeling index can be achieved by deleting node NE in the column
of Lin of each node in NtoSO. It is similar to NtoSO, for N f romEO, we only need to
delete node NS in the column of Lout of each node of N f romEO.

Similar to deleting a node in TOL approach [1], the key step of updating
index in the above situation is to modify the labeling index as follows.

For NtoSO and NS:

1. Check the column Lout of node NS, if there is node NE, delete it.
2. Find out allLout of child nodes of NS except NE, and denote them as set SetS.

Add all nodes in SetS intoLout of NS except the case that this node is already
in Lout.

3. Find out all nodes in NtoSO, and apply steps similar to Steps 1 to 2.

For NtoEO and NE:

1. Check the column Lin of node NE, if there is node NS, delete it.
2. Find out allLin of father nodes of NE except NS, and denote them as set SetE.

Add all nodes in SetE intoLin of NE except the case that this node is already
in Lin.

3. Find out all nodes in NtoEO, and apply steps similar to Steps 1 to 2.

Example 2. Given a DAG G and its corresponding labeling indexL as shown in
Fig. 4, if deleting edge e = C→ F, the process of edge deletion is as follows.

Firstly, we divide all nodes of G into six sets, where:

NtoSO contains nodes A and B.
N f romEO contains nodes E and D.
NtoEO, NtoSE, N f romSO, N f romSE All are empty sets.
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Fig. 5. Graph G and labeling index L

It is obvious that we need to handle NtoSO and N f romEO, which is Situation 3.

1. After checking column Lout of node C, we find that there is no F, so we do
not need to delete anything.

2. We need to find out the child node of C, which is node F. Because F is the
terminus node of edge e, we do not need to add anything to Lout.

3. We deal with the father node of C, which is B. Because F is not in Lout of B,
we just need to check all child nodes of B, E and C. For child node C, the
Lout of C has already been included in Lout of B, which we do not need deal
with. For child node E, the Lout of E is not in Lout of B, so we need to add E
to Lout of B.
The new L′out of B = Lout of B +Lout of E = {B,E,C}.

4. We handle with the father node of B, which is A. Similar to B, we can compute
the new L′out of A = {A,B,C,E}. Because A does not have any father node,
the process of dealing with C finishes.

5. Similar to C, after handling F, we can compute the new L′in of F = {F}.
6. Similar to nodes B and A, we have L′in of E = {E} and L′in of D = {D,E}.

Because D does not have any child node, the process of dealing with F
finishes.

Finally we can successfully compute the new L′ of G′ as shown in Fig. 6.

Fig. 6. New graph G′ and new labeling index L

3.3 Edge Influence

Next, we define edge influence and show how to calculate influence of a given
edge efficiently. The influence provides a measure of how important an edge is
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to a graph. In other words, without this edge, its influence shows how greatly
the reachability of all pairs of nodes of this graph will change.

Definition 1. When one edge is deleted, the number of pairs of nodes whose reachability
has been changed due to the deletion stands for the absolute influence of this edge (denoted
as In fe).

According to Definition 1, we can calculate the maximum absolute influence of
an edge in a given graph according to the following theorem.

Theorem 1. Whatever the structure of the graph is, provided the amount of nodes is
n, the maximum absolute influence (denoted as In fmax) of any edge in the graph is:

In fmax =


(

n
2

)2
n is even.

(n−1)
2 ·

(n+1)
2 n is odd.

(1)

Proof. Given a graph G = (V,E) with n nodes, there must exist an edge e ∈
E which divides V into three node sets A, B and C. Sets A and B meet two
requirements: First, each node in A can find a path to each node in B; Second,
every such path contains e. Set C contains all other nodes that do not belong to
sets A and B.

If denoting the number of nodes in sets A, B and C as a, b and c, we have
formula (2).

n = a + b + c (2)

If deleting edge e, any path from one node in A to another node in B may
become disconnected. And the amount of these paths are a · b. Then according
to Definition 1, we have formula (3).

In fe = ab (3)

Combining (2) and (3), we have formula (4) as follows.

In fe = a(n − a − c) (4)

It is obvious that when c increases, the value of In fe decreases. In order to
achieve the maximum value of In fe, c should be 0. Then, we can transform (4)
to (5).

In fe = a(n − a) (5)

Obviously, In fe is maximum when a = n
2 . Since n ∈ Z+, if n is even, a = n

2 ,
and if n is odd, a = n−1

2 . Combining (2), we arrive at formula (1). This completes
the proof. ut

Once In fmax of a graph is known, the normalized influence of an edge in this
graph can be calculated as follows.
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Definition 2. Given a graph G′ = (V,E) with n nodes, the influence of an edge e ∈ E
is denoted as In fe, which can be computed as follows:

In fe =
In fe

In fmax

(6)

Calculation Given a DAG G, if deleting an edge e = NS → NE, we can apply
the following steps to calculate the influence of edge e.

– According to Theorem 1, we calculate In fmax
– Find out the node set where nodes can be reached by node NE including

node NE itself, denoted as SetE
– Find out nodes that belong to SetE and can be reached by node NS before

deleting edge e, denoted as SetSP
– Find out nodes that belong to SetE and can be reached by node NS after

deleting edge e, denoted as SetSL. And then we can get node set SetS =
SetSP−SetSL. The amount of nodes in SetS equals to the amount of bode pairs
with changed reachability status that is related to node NS after deleting edge
e

– For each ancestor node of NS, we can calculate the corresponding Seti. It
should be noted that during the calculation, once we have Seti = ∅, we can
stop calculating ancestors of node Ni

– Assuming ni is the amount of nodes in Seti, the absolute influence of edge
e is In fe =

∑
ni. Then we can compute the influence of edge e according to

formula (6)

Example 3. Given a DAG G, we can calculate the influence of edge e = C→ F in
the following.

Fig. 7. Graph G

– Calculate the maximum absolute influence In fmax of graph G.

In fmax =
(7 − 1)

2
×

(7 + 1)
2

= 12

– There are two other nodes that F can reach. Then SetF = {D,E,F}
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– SetCP = {D,E,F}
– SetCL = ∅ Then SetC = {D,E,F} −∅ = {D,E,F}. SetC has three nodes D, E and

F, so nC = 3
– For node C’s ancestor node B, SetB = {D,E,F} − {D,E} = {F}. There is only

one node F in SetB, so nB = 1. For the second ancestor node A of node C,
SetA = {F} − ∅ = {F}, which means nA = 1

– In fe =
∑

ni = nC + nB + nA = 3 + 1 + 1 = 5. Then

In fe =
In fe

In fmax

=
5
12

Therefore, the influence of edge e is
5

12
in graph G in Fig. 7.

4 Experiments

We use the following five real-world datasets in our experiments: p2p-Gnutella08
(Gnu08, 6.3K nodes, 21K edges), p2p-Gnutella06 (Gnu06, 8.7K nodes, 32K edges),
Wiki-Vote (Wiki, 7.1K nodes, 104K edges), p2p-Gnutella31 (Gnu31, 63K nodes,
148K edges) and soc-Epinions1 (Epi1, 76K nodes, 509K edges) [11]. We use these
datasets to conduct two sets of experiments. The first set is to delete 100 edges
generated by the graph transformation module randomly. We compare labeling
index method (TOL method) with our method by performing 100 edge dele-
tions and record the average time cost and the average index size (the changed
part). The second set is to validate our edge influence algorithm also by per-
forming 100 edge deletions and record the average time cost. All experiments
were performed on a PC with 64-bit Windows 7, 8GB RAM and 2.40GHZ Intel
i7-3630QM CPU.

It should be noted that these bar charts use log-scale plotting features. From
Fig. 8(a), we can see that our method performs deletion nearly at a speed of
an order of magnitude faster than TOL method among all the datasets. The
updated index size of our method is also much smaller than TOL method
(see Fig. 8(b)). The main reason for these two experimental results is that our
method can incrementally compute updated index for edge deletions, while
TOL method can only support node deletions. For edge deletions, TOL method
has to recompute the whole index from scratch. Here, we do not compare
indexing time with other approaches for static graphs, as TOL method has been
shown to outperform most existing approaches for static graphs [1].

Fig. 9 shows the average calculation time of edge influences for the 100
deleted edges. Since this is the first attempt on the calculation of edge influence,
we compare our method with a modified BFS&DFS method2. From the figure we
can see that our method can compute edge influences orders of magnitude faster
than the modified BFS&DFS method. For dataset Epi1, the modified BFS&DFS
method cannot complete the calculation within 24 hours.

2 BFS&DFS refers to Breadth-First-Search and Depth-First-Search. Both our method and
BFS&DFS were performed on top of the updated labeling index.
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Fig. 9. Calculation Time of Edge Influence

5 Conclusion

In this work, we propose a new approach to calculate an updated labeling index
of a graph after edge deletions. Then we define the influence of edges in a graph
based on reachability between nodes affected by the potential deletions of edges,
and provide an approach to calculating the influence of any given edge in the
graph. Our experiments validate the efficiency and scalability of our approach.

Future work includes devising faster algorithms to handle even larger dy-
namic graphs (e.g., at the scale of millions of nodes and edges) and design new
algorithms to rank all the edges based on our defined edge influence in large
graphs.
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