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Large Scale Reasoning Using Allen’s Interval
Algebra

Matthew Mantle, Sotirios Batsakis, and Grigoris Antoniou

University of Huddersfield
{m.e.mantle,s.batsakis,g.antoniou}@hud.ac.uk

Abstract. This paper proposes and evaluates a distributed, parallel ap-
proach for reasoning over large scale datasets using Allen’s Interval Alge-
bra (IA). We have developed and implemented algorithms that reason
over IA networks using the Spark distributed processing framework. Ex-
periments have been conducted by deploying the algorithms on computer
clusters using synthetic datasets with various characteristics. We show
that reasoning over datasets consisting of millions of interval relations is
feasible and that our implementation scales effectively. The size of the
IA networks we are able to reason over is far greater than those found
in previously published works.

Keywords: Qualitative Temporal Reasoning, Distributed Computing,
MapReduce

1 Introduction

Temporal information often exists in a qualitative form, for example ’Alice
brushed her teeth before Bob went to bed’. In this description no quantitative,
numeric measurements of time are used, instead events are described in terms
of how they relate temporally, one event occured before another. A number
frameworks provide formalisms for representing and reasoning over qualitative
temporal data such as this. One of the most widely used is Allen’s Interval Alge-
bra (IA)[3]. IA has been widely used in planning [4] and scheduling [10][8], but
also seen application in areas as diverse as medicine [18] and analysis of crime
[17].

Recent years have seen rapid growth in the volume of data computing practi-
tioners are required to deal. Data from business transactions, web traffic, social
media and smart devices is being generated at a scale that creates challenges
for analysis, reasoning and querying. Much of this vast data has a temporal as-
pect. For example, the introduction of sensors and meters into a wide variety of
objects has resulted in huge amounts of timestamped data. One open area for
investigation is the application of qualitative temporal reasoning techniques to
these large scale datasets.

– Many huge datasets contain temporal information that is only available in
qualitative form, e.g. those originating in natural language such as social
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media posts, email archives, case notes in electronic medical records. Rea-
soning over this data e.g. to build a timeline of medical history may only be
possible using qualitative techniques.

– Even when the origin of the data is numeric it may be beneficial to represent
time qualitatively. For example, in smart homes events such as entering a
room are recorded with timestamps. Converting these timestamps to time
intervals representing activities such as eating, sleeping etc. would allow for
qualitative reasoning. Inferring the relations between these activities could
then be used as a basis for scheduling automated tasks.

– Qualitative reasoning is often suited to situations where datasets are incom-
plete. Data collected from sensor devices is often noisy and records are often
missing or incomplete. Rather than discarding records or assigning assumed
values, qualitative reasoning frameworks are able to represent indefinite in-
formation, allowing them to provide correct (though less precise) solutions
[9].

The main contribution of this paper lies in the development of parallel
agorithms for qualitative temporal reasoning. An implementation of Allen’s In-
terval Algebra has been developed for use with large scale datasets in a dis-
tributed environment. The rest of the paper is organised as follows. Section 2
provides background information on Allen’s Interval Algebra and the Apache
Spark cluster computing framework. Section 3 describes related work. Section 4
describes our implementation of Interval Algebra for the Spark platform. Exper-
iments and results are provided in Section 5, and conclusions and future work
in Section 6.

2 Background

2.1 Allen’s Interval Algebra

Allen’s Interval Algebra provides a formalism for qualitative descriptions of time
[3]. Specifically, IA is concerned with time intervals. Allen describes 13 possible
binary relations that can exist between a pair of intervals. These are shown
in Table 1. Six of the relations have an inverse e.g. the inverse of during (d)
is contains (di). Where the relation between two intervals is indefinite, a set is
used to describe a disjunction of possible basic relations that could hold between
the two intervals. For example X{b,m,o}Y, is interpreted as interval X either
happens before, meets or overlaps interval Y. If no information is known, the
relation could any of the thirteen basic relations {b,bi,m,mi,o,oi,s,si,d,di,f,fi,e},
this is denoted by I.
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Relation Symbol Inverse Visual Representation

X before Y b bi XXXX YYYY

X meets Y m mi XXXXYYYY

X overlaps Y o oi XXXX
YYYY

X starts Y s si XXXX
YYYYYYYY

X during Y d di XXXX
YYYYYYYY

X finishes Y f fi XXXX
YYYYYYYY

X equals Y eq eq XXXX
YYYY

Table 1. Allen’s Basic Relations

A collection of three or more intervals with relations defined between these
intervals can be represented as a directed graph, an IA network, where each node
is a time interval and the label on each edge is the relation between a pair of
intervals. Fig.1 shows an example. For simplicity, loops are not shown and nor
are inverses of relations. Plus, for clarity, if there is no information regarding the
relation between two intervals, rather than showing a disjunction of all 13 basic
relations, I, the label simply is not shown.

V

U

W

X

Z

Y
{o}

{o,d}

{b,d}

{b}

{b,m,o,s,d}
{o}

Fig. 1. A Simple IA Network

Reasoning using Interval Algebra The reasoning problem for Allen’s algebra
involves determining the smallest set of possible relations between all pairs of
intervals. This can be viewed as a type of constraint satisfaction problem. A
widely used approach for solving such problems, and the one proposed by Allen
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is path consistency [3], specified by the following formula, and described in more
detail below.

∀i, j, kRs(i, k)← Ri(i, k) ∩ (Rj(i, j) ◦Rk(j, k))

Given any three intervals in the network i, j and k, the relation between i
and j, and the relation between j and k, imply a relation between i and k. For
example, in Fig. 1 the relations X{o}Y, and Y{b}Z, imply a relation between the
intervals X and Z. Allen provides a table that describes all possible compositions
of basic relations [3]. Part of this table can be seen in Table 2. Referring to
Table 2 we can deduce that the relation between X and Z, the composition of
overlaps and before, is before, X{b}Z. Given two disjunctive relations R1 and R2

the composition of these relations is the union of the composition of each basic
relation in R1 with each basic relation in R2. In Fig. 1, the relation between Y
and U, implied by Y{o,d}V and V{b,d}U is such an example. Again looking up
the compositions of the basic relations in Table 2 and taking the union of the
results, the composition of these disjunctive relations is {b,o,s,d}.

Table 2. Part of the Composition Table for Interval Algebra

b bi d di o

b {b} I {b,m,o,s,d} {b} {b}
bi I bi {bi,oi,mi,d,f} {bi} {bi,mi,oi,d,f}
d {b} {bi} {d} I {b,m,o,s,d}
di {b,m,o,di,fi} {bi,mi,oi,si,di} {o,oi,s,si,d,di,e,f,fi} {di} {o,di,f}
o {b} {bi,mi,oi,si,di} {o,s,d} {b,m,o,di,fi} {b,m,o}

The inference of relations places constraints on an IA network. For example,
the inference arising from the composition of X{o}Y and Y{o}W implies the
label on the edge (X,W) can be updated to {b,m,o}. Updating this value is only
possible if the newly inferred relation is consistent with the existing relation
between the pair of intervals, {b,m,o,s,d}. Consistency is checked by taking the
intersection of the existing relation and the newly inferred relation. Basic rela-
tions are pairwise disjoint. Therefore, in the case where the intersection of two
sets of possible relations is empty, this denotes an inconsistency in the network.

Reasoning over a temporal network is an iterative process. As new informa-
tion is added to the network, and relations get updated, these updated relations
form the basis for new inferences to be made, and further constrain existing re-
lations. Once Y{b,o,s,d}U is added to the network, it is then possible, through
the composition of X{o}Y and Y{b,o,s,d}U, to infer the relation between X and
U. Therefore, the above path consistency formula is applied repeateadly until a
fixed point is reached or an inconsistency is detected.

It is important to note that path consistency does not guarantee the con-
sistency of the entire network [3], it only ensures the consistency of three node
subsets of time intervals. As such it provides an approximation. In order to guar-
entee consistency, we would have to consider consistency between all nodes in
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a network, n-consistency (where n is the number of time intervals in the net-
work). However, the computational complexity of implementing n-consistency is
exponential with respect to n. An alternative would be to employ backtracking
search alongside path consistency, which also has a runtime which is exponen-
tial. However, if expressiveness is limited by constructing sub-algebras, there are
tractable sets of IA relations for which path consistency is a sound and complete
method [11]. Despite path consistency being an approximation, it is a useful one.
As Allen [3] states ’it provides us with enough temporal reasoning to participate
in these tasks’ (comprehension, problem solving).

2.2 The Apache Spark Framework

Processing large quantities of data is typically accomplished using a cluster com-
puting approach. A large dataset is split, distributed over a number of different
machines, and then processed in parallel. Cluster computing frameworks provide
programming models for developing distributed applications, as well as handling
aspects such as managing resources, load balancing and fault tolerance. The im-
plementation in this paper uses the Apache Spark framework [1]. The Spark API
provides many operations that can be executed in parallel. These borrow many
ideas from functional programming: map, reduce, join, filter etc. A key feature
of the Spark framework is the capacity to maintain datasets in memory through
a cache action [16]. This is especially useful for iterative tasks where the same
dataset needs to be visited several times. In the more established MapReduce
based frameworks data is written to disk after each map or reduce action. Spark
datasets can be stored in memory allowing them to be easily re-used without
this performance overhead. The implementation of a temporal reasoner is such
an example. As an existing IA network needs to be merged with newly inferred
relations repeateadly, it can take advantage of Spark’s caching capabilities.

3 Related Work

When analysing related work, the closely related area of spatial reasoning is
also considered. There are examples of frameworks that provide analysis of large
scale spatial-temporal datasets. For example, SpatialHadoop [2] is a MapReduce
framework designed specifically to work with spatial datasets. It extends the
core Hadoop code base to provide spatial index structures and spatial operations
e.g. R-trees, range queries, kNN and spatial join [7]. Experiments conducted on
datasets consisting of billions of data items show SpatialHadoop offering sig-
nificant performance advantages over standard Hadoop based implementations.
However, SpatialHadoop uses metric point based representations, rather than
qualitative ones. There appear to be no examples of qualitative spatial-temporal
reasoning over large scale datasets using a distributed computing approach.

There are several examples of applications that provide qualitative spatial-
temporal reasoning in a non-distributed environment. GQR (Generic Qualitative
Reasoner) [15] is a tool that can reason over any qualitative constraint calculi,
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including IA. PelletSpatial [12] is a qualitative spatial reasoner built on top of
the Pellet reasoner. Both these tools are limited in terms of the size of IA net-
works they are able to handle. The largest example of temporal reasoning using
Allen’s algebra appears to be by Anagnostopoulos et al [5]. who have successfully
reasoned over datasets consisting of 10,000 relations on a single machine using
the CHRONOS framework. To our knowledge, the approach taken in this paper
is the first attempt to implement an IA reasoner using a distributed, parallel
architecture, and to work with larger scale datasets, over 1 million relations.

4 Temporal Reasoning using Spark

X{b}Y Y{b}Z X{b,m,o}Z

(X, X{b}Y) (Y, X{b}Y) (Y, Y{b}Z) (Z, Y{b}Z) (X, X{b,m,o}Z)(Z, X{b,m,o}Z)

(Y, (X{b}Y, Y{b}Z))

X{b}Z

(X#Y, X{b}Y) (X#Z, X{b}Z) (X#Z, X{b,m,o}Z)(Y#Z, Y{b}Z)

X{b}Y Y{b}Z X{b}Z

join

map

map

map map

map

map

map map

reducebyKey reducebyKeyreducebyKey
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u
t
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Fig. 2. Overview of Temporal Reasoning Using Spark

Fig. 2, provides an overview of our implementation of Allen’s path consistency
algorithm using Spark.

The input consists of an IA network. Specifically, the input is a collection
of edges in the form (i,Rij,j), where i and j are time intervals and Rij the
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relation between these intervals. The full set of relations, I, is never used. The
composition of I with any other relation always results in I, therefore no useful
information can be obtained from inference based on the full set of relations.

The first phase is inference which corresponds to the composition operation
in Allen’s algebra. This is accomplished via a join between edges with common
time intervals. The initial map operation outputs two key-value pairs for each
edge in the input, once for the head interval, and once for the tail interval. At
this point it is unknown, which, if any of the intervals, will form the basis for
the join. In the above example, there is only one join possible, the one between
X{b}Y and Y{b}Z. Following the join operation, the actual inference takes place
via a map transformation on pairs of edges. A Scala Map is used to implement
Allen’s composition table. The inferred relation is then deduced by looking-up
the composition of each basic relation in the first edge with each basic relation
in the second edge. The outputs of the inference stage are possible new relations
between intervals, in this example, again, there is only one output, the edge
X{b}Z. The application then moves onto a consistency checking phase where
the output from inference is combined with the initial input. This combined
dataset is mapped to key-value pairs where the key specifies a pair of intervals.
Edges between the same pair of intervals will be sent to the same reduce process
which computes the intersection of these relations for the final output.

The above diagram is a simplification, intended to give an overview of the
application. Additional steps and optimisations were implemented as follows:

– It is necessary to add the inverse of each relation into the initial dataset.
For example, consider two edges, X{b}Y and Z{bi}Y. It is not possible to
perform inference using these edges, as joins can only be performed where
the head node of one edge matches the tail node of a second edge. If the
inverse of each relation is inserted into the dataset (Y{bi}X and Y{b}Z ),
inference is now possible. Therefore the transpose of the initial IA network
was added as a pre-processing step.

– As mentioned above, path consistency is an iterative process. The two phases,
inference and consistency checking are applied repeatedly until no new in-
ferences are made. Algorithm 1 shows an high level overview of the temporal
reasoner. Further details on the inference and consistency operations are
provided below.

Algorithm 1 Temporal Reasoning Overview

IAnetwork=IAnetwork ∪ IAnetworkT

IAnetwork=consistency(IAnetwork)
count=0
i=1
while IANetwork.count() 6= count

count=IAnetwork.count() //the size of the network taking into account new inferences
newEdges=inference(IAnetwork,i)
IAnetwork=consistency(IAnetwork ∪ newEdges)
i++

end while
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Limiting duplicates

One problem with a naive implementation is the derivation of duplicate edges.
Consider the simple IA network shown in Fig. 3. In iteration 1, it is possible
to infer a relation between the time intervals W and Y, and between X and
Z. These two new edges (W{b}Y and X{b}Z ) will be added to the network.
In iteration 2 it is then possible to infer the relation between the intervals W
and Z. However, the reasoner will also infer W{b}Y and X{b}Z again, and add
these edges to the network. These duplicates will be removed in the consistency
checking phase but they add a significant and unnecessary data in the inference
phase and will be inferred repeatedly with every iteration.

W X ZYIteration 1

Iteration 2

Existing relations

Inferences made during iteration

W X ZY

{b} {b} {b}

{b}

{b}

{b} {b} {b}

{b}

{b}

{b}

{b}

{b}

Fig. 3. Derivation of duplicate inferences

Urbani et al. faced a similar problem when reasoning over RDF triples using
MapReduce [13]. They limited the joins that were possible based on the distance
between nodes in a graph, specifically on one side of the join only edges with a
distance of 2i−1 or 2i−2 were allowed (where i is the iteration number), on the
other side of the join only edges with a distance greater than 2i−2 were allowed.
The same approach is adopted in our temporal reasoner. In order to implement
this, the distance between nodes is stored as part of each edge. When a new
relation is inferred, the new edge is assigned a distance that is the sum of the
joined edges’ distances. During consistency checking the minimum distance is
assigned to the reduced edge. The implementation can be seen in Algorithm
2 and Algorithm 3. It is important to note that duplication still takes place.
This is because the same relation can be derived through different joins within
the same iteration. In Fig. 3, W{b}Z can be inferred twice within iteration 2,
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through the composition of W{b}X with X{b}Z and through the composition
of W{b}Y with Y{b}Z.

Algorithm 2 Inference
inference(iaNetwork, i )

//iaNetwork: A collection of edges e.g. [(X,{b},Y,1), (Y,{b},Z,1), ...]
//i: The iteration number e.g. 1

tailEdges=iaNetwork
.filter(edge ⇒ edge.distance=2i−1∨edge.distance=2i−2)
.map(edge ⇒ (edge.tailInterval, edge)

headEdges = iaNetwork.filter(edge ⇒ edge.distance> 2i−2)
.map(edge ⇒ (edge.headInterval, edge)

joinedEdges = tailEdges.join(headEdges)
newEdges=joinedEdges.map((key,(tailEdge,headEdge))⇒(

tailEdge.headInterval,
lookUp(tailEdge.relation,headEdge.relation),
headEdge.tailInterval,
tailEdge.distance+headEdge.distance
))

return newEdges

Algorithm 3 Consistency Checking
consistency(iaNetwork)

//iaNetwork: A collection of edges e.g. [(X,{b},Y,1), (Y,{b},Z,1), ...]
keyedEdges=iaNetwork

.map(edge ⇒ (edge.tailInterval+’#’+edge.headInterval, edge))
consistentEdges=keyedEdges.reduceByKey((edgeA,edgeB)⇒(

edgeA.tailInterval,
edgeA.relation ∩ edgeB.relation,
edgeA.headInterval,
Math.min(edgeA.distance,edgeB.distance)

))
return consistentEdges

5 Evaluation

The purpose of the evaluation was to investigate the potential and limitations
of the algorithms described above. In particular the evaluation was concerned
with the issue of scalability and the capacity of the reasoning application to deal
with large datasets.

Platform

The experiments were conducted by implementing the algorithms in the Scala
programming language using the Apache Spark framework. Some initial exper-
iments were also carried out using the Hadoop MapReduce framework. How-
ever, as expected, the algorithms implemented in Spark ran much faster than
those in Hadoop. Spark’s in-memory caching provided a significant advantage
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over the Hadoop based implementation. The experiments were carried out using
Amazon’s Elastic Cloud Compute (EC2) platform. Although EC2 has potential
drawbacks such as lack of data locality, virtualised hardware, it is a widely used
system as it negates the need for users to build and manage a cluster themselves
and provides a typical real-world implementation for a distributed application.
For the majority of the experiments a cluster consisting of four machines was
used, each with four virtual CPUs and 30GB of memory. One of the experiments
focussed on assessing the impact of increasing computing resources. In this case
the size of the cluster was varied.

5.1 Experiments

The experiments were conducted using synthetic datasets. The features of each
input dataset are discussed under each experiment description.

– Experiment 1. A number of time intervals were generated by randomly
selecting points on a line for the start and end points. For each time interval,
the relation between it and one other time interval was calculated. This
gave rise to an input graph with an equal number of nodes (time intervals)
and edges (relations between time intervals). Tests were run over datasets
consisting of between 2 and 10 million edges.

– Experiment 2. Experiment 2 focussed on exploring the effect of increased
computing resources on reasoning time. An input dataset of 10 million edges,
generated in the same way as in Experiment 1, was used. The application
was then run using a cluster size of between 2 and 16 machines.

– Experiment 3. Reasoning over an IA network as described in Experiment 1
does not result in a complete graph. To investigate the worst-case scenario of
reasoning over an IA network where the relation between every pair of inter-
vals can be inferred, a connected graph consisting of a consecutive sequence
of time intervals was used. Datasets of between 2,000 and 32,000 relations
were generated based on this worst-case scenario.

5.2 Results

– Fig.4 shows the results for Experiment 1. The reasoning application demon-
strates close to linear time performance and even considering the relatively
small size of the cluster, the application is easily able to cope with an input
of ten million edges. This is far larger in scale than previous applications
that have reasoned over IA networks (limited to 10,000 edges), and shows
the benefit of a distributed, parallel approach.

– Fig.6 shows the results for Experiment 2, the scalability of the reasoner in
terms of the number of nodes in the cluster. As would be expected, an in-
crease in the size of the cluster results in reasoning time decreasing. Fig. 7
shows scaled speed-up, a standard metric used when evaluating the perfor-
mance of parallel systems. Ideally a parallelised system should display linear
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speed-up, as we double the number of machines in the cluster the reason-
ing time should half. Apart from an increase with 4 nodes, the application
shows sub-linear speed-up. However, this is consistent with many other ap-
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plications running on distributed frameworks, and can be explained by the
inevitable overheads of starting and managing jobs. The number of jobs re-
mains constant regardless of cluster size. At some point adding additional
nodes has little impact on processing time.

– The results for Experiment 3, Fig. 8, show two significant differences in the
runtime compared to Experiment 1. Firstly, even though the input datasets
are considerably smaller, in many cases the runtime is longer. Secondly,
runtime does not increase linearly with regards to the input size. These
differences can be attributed to the volume of data generated. Fig. 5 and Fig.
9 show the numbers of generated edges in the corresponding experiments.
In Experiment 1, even when reasoning over an initial graph with 10 million
edges, the final output is less than 50 million edges. In Experiment 3, a
complete graph is generated. For an input size of 32,000 edges over 1 billion
edges are generated. Plus, unlike Experiment 1, when generating a complete
graph the output does not grow linearly with regards to the input size.

6 Conclusions and Future Work

To our knowledge this is the first attempt to explore the feasibility of large scale
reasoning using Allen’s Interval Algebra. The results are encouraging. We have
shown that, depending on the characteristics of the dataset, it is possible to
reason over very large IA networks. Future work will expand the approach to
look at:

– The use of real world datasets. The experiments above use datasets with
specific characteristics that we have designed. The next step is to work with
real world datasets.

– Other areas of qualitative reasoning. The approach described above can be
modified to work with other qualitative calculus. For example, Vilain and
Kautz’s Point Algebra [14] or spatial reasoning using Region Connection
Calculus (RCC-8) [6].

– Temporal knowledge bases often feature both qualitative and metric infor-
mation. We plan to extend the approach described here to reason using both
quantitative and qualitative information in large scale datasets.
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