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Abstract—With the unprecedented and dramatic development
of Web services in recent years, designing novel approaches
for efficient Web service prediction has become of paramount
importance. Quality of Service (QoS) plays a critical role in Web
service recommendation. However determining QoS values of
Web services is still a challenging task. For example, some QoS
properties (e.g., response time, throughput) may hold different
values for different users. In this paper, we describe how to
develop a novel approach, PLMwsp, based on a probabilistic
latent model, to predict effectively the QoS values of Web services.
A Web service prediction has been developed, and experiments
have been conducted to show the efficacy of our approach.

Keywords— Web Services, Quality of Service, Web Service
Prediction, Probabilistic Latent Model.

I. INTRODUCTION

During the era of Web 2.0, Web service has been supported
intensively by service providers due to the high demand from
organizations and clients. Several providers have designed and
produced a number of Web services for customers. Many
customers used and liked these services, leading to dramatic
increases in the number of individuals that use the Web. As
a result, the Web has become more dynamic and attractive.
Web service is software created to facilitate the interaction
among devices and the Internet. It makes a considerable
contribution for customers as well as providers. In addition, the
unprecedented, dramatic development of Web services recently
has called for effective approaches to Web service prediction
and recommendation, which is an active issue in the area of
service computing [1] .

The success of Web services has led to the concept of Qual-
ity of Service (QoS) [2]. There have been several approaches
and frameworks that add QoS to Web services. Nowadays,
providers are paying increasing attention to QoS. Recently, a
number of publications on QoS have raised concerns regarding
service-oriented computing and a number of QoS models
have been implemented for improving Web service automatic
composition and Web service selection [3], [4].

However, many service providers are likely to under-deliver
QoS with respect to what is reported. In addition, some QoS
values rely on terms such as location and existence in the
network. From the dataset that we work on, it is obvious that
the distance between the user and the Web service is a factor
that affects the value of QoS attributes, such as response time
and throughput.

Evaluation of QoS of Web services can be conducted by
the service user; however, such method has some disadvan-
tages. First, it requires an invocation from the users, which
means imposing costs on them. Second, in many situations,
there are a considerable number of services to be evaluated,
some of which are appropriate but undiscovered by the user.
Furthermore, some service users lack the necessary experience
to evaluate the services [5], [6].

Analyzing the data of each Web service would be tedious
and consume much time. Thus, Web service QoS prediction
techniques, which demand no additional invocations of the
corresponding Web service, are becoming increasingly popular.
Web service QoS prediction aims to make personalized QoS
value predictions for service users by employing partially
available information, such as characteristics of the current
user, QoS information of the users, and historical QoS per-
formance of Web services and users. To predict Web service
QoS values with high accuracy, comprehensive investigations
of the prediction approaches are needed.

There are three main methodologies to obtain Web service
QoS values. First, QoS values can be obtained from the Web
services providers, who could provide the QoS parameters.
But this method is impractical, as the service providers may
not deliver the QoS they declared, and some QoS properties
are highly related to the locations and network conditions of
the service users. Second, QoS values could be obtained from
users’ use experiences and evaluations of Web services, which
may produce results that are more accurate. However, there
is an obvious drawback in that it depends highly on users’
situations. Different users at different locations or in different
situations invoking the same services may experience quite
different QoS results. Collaborative filtering-based (CF-based)
techniques are widely used for uncovering user services dyadic
interactions in QoS, such as using neighbourhood-based CF
techniques to tackle problems that are likely to be faced by
similar users or that originate from similarly delivered service
items. Third, another method is to estimate QoS change by
building up a model based on subjective factors (locations,
network situation) affecting QoS performance. Subsequently,
this model could be used to estimate the QoS values.

As such, to tackle the aforementioned downside, we
propose a novel approach based on a probabilistic latent
model. The basic idea of our method is to predict the values
of Web services by using user observable variables and
Web service observable variables, which will be modeled
in a matrix, called the user Web service matrix. In order to



generate the final user Web service matrix, we will compute
a latent model of users and services before combining them.
In each step, we compute the noise variable by Gaussian
distribution for both the observable model and the latent
model. Then, we apply the stochastic gradient decent to find
suitable theta values that can produce a predicted value with
decreased error. Subsequently, we compare the prediction
results with the real values in the experimental stage by
applying mean absolute error (MAE) and root mean squared
error (RMSE) to check the accuracy of our approach.

The rest of this paper is organized as follows: Section II
includes a description of the related work and the approaches
that have been proposed. Section III provides a presentation of
our methodology for Web Service QoS prediction, followed by
a data description and metrics that have used for assessing our
methodology. Section IV is devoted on giving brief description
of the comparison approaches and an experimental evaluation
on the performance of the proposed approach. Finally, Section
V concludes this paper.

II. RELATED WORK

Researchers have recently begun attending to the impor-
tance of providing new techniques for predicting QoS attributes
for Web services [7], [8], [5], [9], [10]. Many QoS attributes
of Web service have been considered, which provide different
feasibility and usability [11], [2], [12]. From these studies,
response time, throughput, latency and availability are some
commonly used attributes. Note that, in this paper, we con-
centrate on response time and throughput, which are the most
import attributes in measuring QoS of Web services.

In the following, we review existing approaches for tack-
ling the of problem of predicting QoS attributes of Web
services. In the literature, various techniques have been utilized
for this purpose, including Multi Agents, collaborating filtering
based approaches and Matrix Factorization Model [5], [13].

Malak et al. proposed an approach in 2009 based on Multi
Agents techniques [13]. They designed a clear architecture of a
prediction engine for a selection system. In terms of the agent
system, each process can be included with a word agent. After
a request from a consumer, they divide the process into stages.
The stages are started by the consumer agent and then move
to a selection agent where a prediction operation is performed.

In the area of selection and recommended systems, there
are a number of systems using collaborative filtering for pre-
dicting unknown needed values [5], [8], [10], [14], [15], [16],
[17], [18]. The collaborative filtering technique was coined
by Goldberg et al. in 1992 [19]. They have proposed this
technique for filtering information, namely for filtering email
information. This concept is classified under the information
filtering technique [20]. The most common technique of col-
laborative filtering is based on the neighbourhood approach.
The first model of the neighbourhood approach is user-user
based [21]. It is used for predicting the unknown values based
on the recorded value of a similar user.

The idea of collaborative filtering has inspired many people
who work on classification problems, particularly in areas
of prediction, selection and recommender systems [22], [23].

For example, Zheng et al. have proposed an approach based
on the collaborative filtering technique for a Web service
recommender system [5]. They apply experiments on a dataset
of QoS Web services by implementing a Pearson correlation
coefficient (PCC) to conduct the comparison to determine the
similarity between a service user and a Web service item.

Some related studies have also employed latent models in
recommender systems [24] [9]. Zhang et al. proposed latent
features for QoS prediction in cloud computing [9]. They
design an algorithm called CloudPred to predict QoS values.
The main algorithm depends on another algorithm called latent
feature learning algorithm, which has been designed to correct
the initial values of users and Web services. These values,
which are randomly generated, are not highly accurate. Thus,
to increase the accuracy, Zhang et al. generate the user-Web
services matrix from the initial values of both users and Web
service. Thereafter, they use the newly generated matrix with
the user-Web services matrix of the real values (which comes
from the dataset). The latent feature learning algorithm then
uses the two matrices to correct the values of users and
Web services. Once the values converge, the next step would
be applying a similarity computation using the PCC. After
applying the main algorithm, the missing QoS values can be
predicted.

Salakhutdinov and Mnih proposed a probabilistic matrix
factorization technique to perform on a large, sparse, and very
imbalanced dataset [25]. However, their results were not very
accurate, and they developed another idea by describing a fully
Bayesian treatment of the probabilistic matrix factorization
model. The distinguishing feature of their work is the use of
Markov chain Monte Carlo methods for approximate inference
in the new model.

Hybrid techniques have been proposed as well. The basic
idea of hybrid techniques is to combine two or more techniques
to benefit from the features in each technique [26]. Due to
the disadvantages of some approaches, hybrid techniques have
been used to provide a partial solution for addressing such
drawback. For instance, it can be beneficial when we can com-
bine an agent technique with a latent mode or neighbourhood.

Tang et al. proposed a hybrid collaborative filtering tech-
nique in 2012 [27]. They concentrated on utilizing the distance
between the locations of the user and Web service to predict
the missing value. Tang et al. included two techniques, one
for detecting similar users for an active user and another for
finding similar services for a target service. They combine the
two techniques into a hybrid collaborative filtering method.

Yao et al. proposed a novel approach that unifies collabora-
tive filtering and content-based recommendations. In particular,
our approach considers simultaneously both rating data (e.g.,
QoS) and semantic content data (e.g., functionalities) of Web
services using a probabilistic generative model.

Yu et al. proposed in 2013 a combination approach for
prediction of QoS Web services. They applied the idea of
poor service (poor performance) for classifying services [6].
Their approach has three steps to predict QoS. The first step
is finding the Top-K poor services using IMEAN. IMEAN is
a metric that they designed for determining poor service and
sorting services by order. The second step is if the predicted
service is one of the Top-K poor services, the metric is utilized



for predicting its QoS performance. The third step is that they
used an adjust UPCC for predicting the QoS performance when
the predication service was not one of the Top-K poor services.
For evaluating the results, they used the two metrics, (MAE),
and its variation, normalized mean absolute error (NMAE).

III. METHODOLOGY

In this section, we present our method in details.

A. Model Construction

Our task is predicting the QoS attributes of Web Services
based on modeling the historical dyadic interactions between
Users I and Services J . Let the dyadic interactions from user
i ∈ I and Web service j ∈ J , interact with each other; their
dyadic interactions can be denoted byyij ∈ Y . Therefore, the
mapping relationship can be denoted as follows:

{(i, j)→ yij , i ∈ I, j ∈ J } (1)

This mapping creates a large matrix Y ∈ Y |I|×|J |.
However, this matrix is very sparse and noisy, and many
entries are missing; therefore, our goal is to predict the value
of any missing entry ŷij given an incoming pair (i, j). The
known interactions define a graph, and the task amounts to
propagating the sparse observations to the unobserved values
of the matrix. For convenience, we will henceforth refer to i
as the user and j as the Web Service item in this approach.

TABLE I. IMPORTANT NOTATIONS

Symbol Definition
U = {u1, u2, ..., ui} users’ observable variables
V = {v1, v2, ..., vj} services items’ observable variables
Φ = {φ1, φ2, ..., φi} users’ latent variables
Ψ = {ψ1, ψ2, ..., ψj} services items’ latent variables

i ∈ I users set
j ∈ J services items set
Y = {yij} historical QoS value when user i use services item j.
Ŷ = ŷij predicted QoS value for the missing entry when user i use

service item j
ε = {εy, εφ, εψ} model parameters

To estimate yij , we can see two dependencies in our model:
i) yij depends on both Users and Services items observable
variables and latent variables [yij |ui, vj , φi, ψj , εy]; ii) Users
latent variables depend on their observable variables [φi|ui, εφ]
and [ψj |vj , εψ]. Further clarification of the variables is shown
in Table I.

To predict the dyadic interactions between Users and QoS
Web Services, we need to construct a model representing
the dependencies mentioned above in Figure 1. The users
observable variables, U , can be generated by SVD as shown
in equation 4 and 5. The Users latent factors, φU , cannot
be observed directly (e.g., the Users preference for QoS of
a certain Web Service), but can be determined by the Users
observable variables. In addition, the Web Service observable
variable set, V , which denotes the service item textual informa-
tion for its functional or non-functional description, together
with the Users observable variables, can generate the value
of Web Service observable variables from SVD. Thereby we
can apply a learning algorithm to increase their accuracy. The
latent factors of the service items follow the same discipline as
those of the users, which cannot be observed directly, and ψV

Fig. 1. Relationship between the variables

depends on the service items observable factors. Therefore, the
model can be defined as follows:

Pr(Ŷ ) ∼ Pr(Ŷ |U, V, φU , ψV , ε)
where.Pr(φU ) ∼ Pr(φU |U,A, εφ)

Pr(ψV ) ∼ Pr(ψV |V,B, εψ)

(2)

where ε = {εy, εφ, εψ}.

This approach is mainly based on a typical learning ap-
proach. From the known values of User ui and Web Service vj
we can predict the missing values. The approach is simplified
by a factorization technique so we can easily generate the val-
ues of U and V, and then implement the steps of our models. In
this area of factorization, there are many approaches, including
using a factorization-style collaborative filtering algorithm [28]
[29].

The factorization for the User-Web Service Matrix (Y ) it
can be shown as the following:

SV D(Y ) = SΣD∗. (3)

After factorization, the User-Web Service Matrix assumes
the value of U is equal to SΣ and that V is equal to D∗ , as
follows:

U = SΣ. (4)

V = D∗. (5)

To clarify the model shown above, we need to illustrate the
relationship among the variables in three steps, as follows:

Step 1: Dependency between observable variables and
latent variables

As described, we have a two-latent variable: one for Users
and one for Web Services, as shown in the equations below. We
assume that the latent features are the functions of observable
variables in our model, and we assume this function is a linear
function. The dependency can be defined as:

φU = A · U + εU (6)



and
ψV = B · V + εV (7)

where εU and εV are the noise in this function, and we
assume that both of them follow the Gaussian distribution,
εU ∼ N(0, 1) and εV ∼ N(0, 1). In addition, A and
B follow the Gaussian distribution A ∼ N(µU , σU ) and
B ∼ N(µV , σV ) .

To find the latent variables, we should first find the values
of the two observable variables, User variable U and Web
Services variable V . They might be a scalar, a vector, or a two-
dimensional matrix. In our dataset, they should be a vector.
This step is a challenging aspect of this approach, as other
variables depend on the values of U and V , and we should
find appropriate values that converge quickly in our learning
algorithm. In this case, we need to apply SVD on the matrix
to get the observable variables. Thereafter, we can easily find
variables A, B, εU and εV as shown in Equations 8, 9, 10 and
11.

As mentioned above, εU and εV are noise variables and
follow Gaussian distribution with mean at zero (µ=0) and
Standard deviation value at one (σ =1).

εU = N (U |µ, σ2) =
1√

2πσ2
e−(U−µ)2/2σ2

(8)

and
εV = N (V |µ, σ2) =

1√
2πσ2

e−(V−µ)2/2σ2

(9)

Variable A follows Gaussian distribution, where the mean
equals to the mean of U (µU ), and the standard deviation
equals to the standard deviation of U (σU ).

A = N (U |µU , σ2
U ) =

1√
2πσ2

U

e−(U−µU )2/2σ2
U (10)

Variable B follows Gaussian distribution, where the mean
equals to the mean of Web service V (µV ), and the standard
deviation equals to the standard deviation of Web service V
(σV ).

B = N (V |µV , σ2
V ) =

1√
2πσ2

V

e−(V−µV )2/2σ2
V (11)

After finding U and V and computing the other variables,
A, B, εU and εV , from Gaussian distribution equations, we
can compute the two latent variables (φU and ψV ), as shown
in Equations 6 and 7.

Step 2: Relevance for observable variables and latent
variables

In our model, the observable variables and latent variables
are not independent. For the relevance of observable variables,
we assume observable features through a bilinear product, so
that this dependency for the Users observable variables and
Service items variables can be denoted as in Equations 8 and 9.
This provides affinity between observations and corresponding
dyadic interactions. For latent variable dependency, we inherit

the latent factor model-base CF techniques, and the Users
latent variables and Service items variables dependency can
be assumed as a multiplicative model, which can be denoted
as: UTV and φTUψV .

Step 3: Specify the Ŷ : After the first two steps, we can
specify the Ŷ ; the results from Step 1 and Step 2 are a linear
sum, which can be denoted as:

Pr(Ŷ ) ∼ Pr(hθ(xi)|uTi vj+φTi ψj+εy), i = 1...n, and, j = 1...n.
(12)

where

hθ(xi) = θ0 + θ1e
xi (13)

The variable x denotes the index of Web Services. For
instance, if a User has invoked 5825 Web Services, then any
invoked Web service xi would be any number between 1 and
5825.

B. Model Learning

This model is accomplished by computational framework.
We fit it by using a traditional supervised learning approach,
namely nonlinear regression and stochastic gradient descent in
the optimization phase [30].

After specifying the model, we use the computational
model-based method, the optimization framework, to solve this
model. Therefore, it is necessary to minimize the hθ(xi)−yij ,
where hθ(xi) is the predicted value between ui and vj . This
can be rewritten as:

minhθ(xi)− UTV + φTUψV + εy (14)

We adopt the L2 loss function and L2 regularization based
on [30], So that we can define this equation:

min
∑

i∈I,j∈J
`(hθ(xi), ŷij)+

∑
i∈I

`(U − φU ) +
∑
j∈J

`(V − ψV ) +
λa
2
||A||2 +

λb
2
||B||2

(15)

Where `(·) is the loss function, we adopt the least square

function, which is:
1

2

∑
i∈I,j∈J {hθ(xi)− yij}2. The || · || and

coefficient λ· govern the relative importance of regularization
term compared with sum-of-squares error term. The error
functions can be minimized in a closed form. To solve the
parameters, we adopt the stochastic gradient descent.

C. Non-Linear regression

Generally, the hypotheses function can be represented as a
vector of θ’s and a vector of features X. It shows as follows:



θ =


θ0

θ1

...
θn

 X =


ex0

ex1

...
exn


Because of the lack of features that should be included

with the dataset, we use just one feature, x1. As explained
before, we make x0 equal to 1 during the learning stage, and x1

denotes the index of Web Service. As a result, the two vectors
with two values can be written again as follows separately:

θ =

[
θ0

θ1

]
X =

[
ex0

ex1

]
From the equation we need to transpose θ to be θT . The
hypothesis can be rewritten again as shown below.

hθ(x) =
n∑
i=0

θie
xi = θT ex = [θ0 θ1]

[
ex0

ex1

]
(16)

The equation of the hypotheses can be written ashθ(x) =
θ0+θ1e

x. For simplicity, we need to represent the cost function
by the symbol J(θ), as shown in Equation 17.

J(θ) =
1

2

n∑
i=0

(hθ(xi)− yi)2 (17)

D. Stochastic Gradient Descent

During model learning, we need to minimize Function 14,
which is simplified in the cost function of non-linear regression
in Equation 17. A suitable well-known technique is Stochastic
Gradient Descent (SGD).

To minimize J(θ) we need to update θ in the main equation
of gradient descent in each iteration which is:

θj = θj − α
d

dθj
J(θ) (18)

Where α is the step size. The term to the right of α is the
derivative of the cost function J(θ). To simplify Equation 18
we need to apply derivative on it to obtain the final equation.

d

dθj
J(θ) =

d

dθj

1

2
(hθ(xi)− yi)2

d

dθj
J(θ) = 2

1

2
(hθ(xi)− yi)

d

dθj
(hθ(xi)− yi)

d

dθj
J(θ) = (hθ(xi)− yi)

d

dθj
(hθ(xi)− yi)

We need to substitute the hypotheses function hθ(xi) by its
value

∑n
i=0 θie

xi to accomplish the derivative.

d

dθj
J(θ) = (hθ(xi)− yi)

d

dθj
(

n∑
i=0

θie
xi − yi)

d

dθj
J(θ) = (hθ(xi)− yi) exi

For a single training example, Formula 18 can be written
again as in Equation 19. For clarity, we place the i between
two brackets to show that i is not power.

θj := θj − α
1

m

m∑
i=1

(hθ(x
(i))− y(i))ex

(i)
j (19)

IV. EXPERIMENTS

In this section, we describe our experimental settings and
present detailed performance reports of our approach.

A. Data description

We evaluated our model on a well-known dataset generated
by Zhang et al. [9]. This dataset was generated from 339
users and 5825 Web services and was saved in a massive
matrix, namely, the user-item matrix, for response time and
throughput. The rows in the matrix represent the users that
who invoked Web services while the columns represent the
Web service attributes. The size of the matrix is 339× 5825,
which means it has 1,974,675 invocations. In the response time
matrix, there is a number of Web service invocation values
assign -1. The value -1 indicates that the value could not be
obtained for some reason, including connection refused or read
time [9]. Table II shows the statistics of the data.

TABLE II. STATISTICS OF THE DATA

Statistics Values
Number of Web Service 5825
Number of Service Users 339
Number of Web Service Invocation 1,974,675
Number of Web Service Countries 73
Number of User Countries 30
Mean of Throughput 102.86kbps
Mean of Response Time 1.43s
Standard Deviation of Throughput 531.85
Standard Deviation of Response Time 31.9s

B. Metrics

We evaluate PLMwsp by a metric widely used in col-
laborative filtering techniques, mean absolute error (MAE),
and its variation, normalized mean absolute error (NMAE), to
evaluate the performance of our algorithm. These two metrics
are mainly for evaluating the predictive accuracy for the CF-
based algorithms.

MAE calculates the average of the absolute difference
between the predicted values and the real values:

MAE =

∑
i,j |ŷij − yij |

n
(20)

The other metric, root mean sequared error(RMSE), is defined
as:



RMSE =

√∑
ij(ŷij − yij)2

n
(21)

where n is the total number of the predicted QoS values for
Web services, ŷij is the predicted value, and yij is a real value.
By applying the two equations, 20 and 21, we can examine our
model and compare the results with other methods that utilized
similar metrics. We use these metrics to assess PLMwsp by
choosing many different matrix densities. For instance, if we
assume that the density is 5%, the test results indicate the
accuracy is very low.

C. Comparison approaches

1) CloudPred: The authors in CloudPred generated the
dataset that we used in our experiments [9]. Basically, in
their approach, they use a latent feature-learning algorithm for
making the latent variables learn until convergence is reached.
After getting the values of the latent variables, they compute
the similarity among all users by employing PCC. The PCC
value falls into the interval [-1, 1]. If the PCC value is -1, there
is no correlation between users; if the PCC value is +1, the
two users have a strong correlation. In CloudPred, the authors
prefer to exclude PCC with negative values due to their effect
on prediction accuracy. For the prediction stage, they use the
Top-K to predict the missing value for current users.

2) UPCC: The user-based collaborative filtering (UPCC)
technique also uses the PCC. It employs the PCC to determine
similarities between users and predicted QoS values based on
identical users [22]. In the dataset that we work on, there is
a massive matrix where the rows represent users. Applying
this approach on that dataset would give rise to a comparison
between each user (row) with all other users (all other rows).
For instance, if we started from the first user (first row), then
we would find all similar values with the other users (other
rows). In this case, the mechanism of choosing is clear. Thus,
the user that has high similarity can be used to predict the
missing QoS values of the active user.

3) IPCC: Item-based collaborative filtering (IPCC) is sim-
ilar to UPCC. However, instead of focusing on the user, it
concentrates on the item. IPCC also utilizes the PCC. The
key point of using the PCC is to find similarity among items
to predict QoS values according to these similar items [31],
[32]. As mentioned above, the dataset that we have used in this
project has a huge matrix. The columns of that matrix represent
the items (Web service attributes). The same idea that is used
in UPCC for comparison of the rows can be employed on the
columns to find the similarity between the items (Web services
attributes). As a result, it is easy to recognize the items with
high similarity and to find the items that we need to predict
the missing values.

4) UIPCC: UIPCC is a hybrid technique that combines
UPCC and IPCC, taking the advantages of both. UPCC focuses
just on behaviour and characteristics of the user, while IPCC
concentrates on the behaviour and characteristics of the item
itself. Ma et al. propose an approach that combines the two
techniques to accomplish high accuracy in predicting missing
values [33]. The predicted values are based on a similar user
and a similar item. When we apply this approach on the dataset

used in this research, the item will be the Web service attribute.
UIPCC balances similar user values and similar Web service
values to optimize the predicting values for the active user.

5) NMF: Non-negative matrix factorization (NMF) is an
approach proposed by Lee and Seung to handle user item
datasets for predicting missing values [34]. It primarily applies
the non-negative matrix factorization technique for factorizing
the user item matrix. In addition, they use principle component
analysis and vector quantization in addition to NMF for holistic
learning.

D. Experiments and Results

In this section, we report the prediction qualities of the
proposed PLMwsp technique with some state-of-the-art Web
service recommendation techniques, including user-based CF,
item-based CF, and latent factor model CF. We designed
the experiments for evaluating the impact of different matrix
density on our algorithm’s performance. The matrix density
has affected the results in that as the density increases, we
obtain better results. For instance, a density of 10% is much
better than 5%, and a density of 20% is much better than 10%.

The main task of our prediction algorithm is to compute
a ranking score for each candidate service item (i.e., service
item that the user has not invoked) and return the prediction
value of this service to a targeted user. From the dataset, we
apply the SVD to obtain the two observable variables, the user
observable variable and the Web service observable variable.
Thereafter, it is easy to generate the other two latent variables,
the user latent variable and the Web service latent variable.
As shown previously in the model, we can predict a missing
value for an active user.

To evaluate prediction accuracy, we were interested in
determining how many service items previously marked off in
the pre-processing step were recovered in the returned services
QoS prediction. By applying the learning technique, which is
SGD, we can learn from non-active users who invoked Web
services to predict the new values.

Table III presents the comparison between the all ap-
proaches, including PLMwsp. We employ the comparison just
for 4 cases of matrix density due to the availability of data in
[9]: 10%,20%,80% and 90%. To assess the result, we must
compare them with the results of the other approaches. If
the value of MAE and RMSE in each specific density for
any approach has a higher value from another approach, that
approach has the worst value. As a result, the prediction value
will have low accuracy. For instance, from table III, IPCC
has the highest value, which means that IPCC is the worst
approach. In contrast, if the approach has the lowest value with
respect to MAE and RMSE, that indicate the goodness of the
approach. For example, PLMwsp has the lowest value of MAE
and RMSE, which means that our approach has high accuracy
for predicted values. Figures 2 visualizes the numerical results
of the comparison. The red line represents the results of our
model (PLMwsp).

In Figure 2, we compare the prediction accuracy of all
approaches under different matrix densities. We start from 10%
and move to 90%, with a step value of 10%. Figures 2(a)
and (b) show the values of all methods that applied on the



Matrix
Density Metrics Response Time (Seconds) Throughput (kbps)

IPCC UPCC UIPCC NMF CloudPred PLMwsp IPCC UPCC UIPCC NMF CloudPred PLMwsp

10%
MAE 0.7596 0.5655 0.5654 0.6754 0.5306 0.0905 31.6722 26.2015 22.6567 19.7700 19.0009 17.2954

RMSE 1.6133 1.3326 1.3309 1.5354 1.2904 1.0172 65.5220 61.9658 57.4653 57.3767 51.8236 27.2155

20%
MAE 0.7624 0.5516 0.5053 0.6771 0.4745 0.0881 35.1780 21.9313 18.1230 15.7794 15.4203 15.3723

RMSE 1.6257 1.3114 1.2486 1.5241 1.1973 1.0168 66.6028 56.5441 50.0435 50.1402 44.8975 26.4091

80%
MAE 0.6703 0.4442 0.3873 0.3740 0.3704 0.0658 29.9146 14.5497 12.4880 12.5107 10.7881 3.8257

RMSE 1.4102 1.1514 1.0785 1.1242 1.0597 1.0130 64.3079 44.3738 39.6017 39.2029 36.8506 18.3626

90%
MAE 0.6687 0.4331 0.3793 0.3649 0.3638 0.0455 29.9404 13.8761 12.0662 11.6960 10.4722 1.9091

RMSE 1.4173 1.1264 1.0592 1.1121 1.0359 1.0093 63.7149 42.5534 38.0763 36.7555 35.9225 15.3438

TABLE III. PERFORMANCE COMPARISON.

(a) (b)

(c) (d)

Fig. 2. (a) Impact of matrix density by using MAE on response time (b) Impact of matrix density by using RMSE on response time (c) Impact of matrix
density by using MAE on throughput, (d) Impact of matrix density by using RMSE on throughput

response time matrix, while figures 2(c) and (d) present the
values of all approaches that implemented throughput. The X-
axis represents the density values and the Y-axis represents the
metric type. As the density of the matrix increases, the line in
the figures decreases. The reason behind this is that when the
density matrix increases, it means the predicted values will
decrease. Thus, the error will decrease too.

From the previous results in the tables and figures that
we obtained for PLMwsp, we show the efficacy of our
model (PLMwsp) when we compare the results with other
approaches. Non-linear regression plays an essential role for
improving the results of PLMwsp. We can apply PLMwsp
to other Web service attributes apart from response time and
throughput in a similar way.

V. CONCLUSION

In this paper, we have proposed a probabilistic latent
model (PLMwsp) for predicting QoS values of Web services.

The objective of PLMwsp is to predict the values of Web
service QoS by using a user observable variable and a web
service observable variable. We used SVD to generate the
two variables from the matrix-user web service matrix. Then,
we computed the latent variables of users and services by
generating them from the observable variables. We obtained
on the needed matrix by applying three computation steps. We
evaluate PLMwsp through a set of experiments and compar-
isons with existing approaches. The proposed PLMwsp shows
higher efficacy and quality of prediction than other approaches.

REFERENCES

[1] L.-J. Zhang, J. Zhang, and H. Cai, Services computing. DE: Springer
Verlag, 2008.

[2] A. Al-Moayed and B. Hollunder, “Quality of service attributes in
web services,” in Software Engineering Advances (ICSEA), 2010 Fifth
International Conference on, aug. 2010, pp. 367 –372.

[3] J. El Hadad, M. Manouvrier, and M. Rukoz, “Tqos: Transactional and
qos-aware selection algorithm for automatic web service composition,”



Services Computing, IEEE Transactions on, vol. 3, no. 1, pp. 73–85,
2010.

[4] M. Alrifai and T. Risse, “Combining global optimization with local
selection for efficient qos-aware service composition,” in Proceedings
of the 18th international conference on World wide web, ser. WWW
’09. New York, NY, USA: ACM, 2009, pp. 881–890. [Online].
Available: http://doi.acm.org/10.1145/1526709.1526828

[5] Z. Zheng, H. Ma, M. R. Lyu, and I. King, “Wsrec: A collaborative
filtering based web service recommender system,” in Proceedings of
the 2009 IEEE International Conference on Web Services, ser. ICWS
’09. Washington, DC, USA: IEEE Computer Society, 2009, pp.
437–444. [Online]. Available: http://dx.doi.org/10.1109/ICWS.2009.30

[6] D. Yu, M. Wu, and Y. Yin, “A combination approach to qos prediction
of web services.” Springer Berlin Heidelberg, 2013, pp. 99–106.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-37804-111

[7] Y. Zhang, Z. Zheng, and M. Lyu, “Wspred: A time aware personalized
qos prediction framework for web services,” in Software Reliability
Engineering (ISSRE), 2011 IEEE 22nd International Symposium on,
2011, pp. 210–219.

[8] W. Lo, J. Yin, S. Deng, Y. Li, and Z. Wu, “Collaborative web service
qos prediction with location-based regularization,” in Proceedings of
the 2012 IEEE 19th International Conference on Web Services, ser.
ICWS ’12. Washington, DC, USA: IEEE Computer Society, 2012,
pp. 464–471.

[9] Y. Zhang, Z. Zheng, and M. R. Lyu, “Exploring latent features for
memory-based qos prediction in cloud computing,” in Proceedings of
the 2011 IEEE 30th International Symposium on Reliable Distributed
Systems, ser. SRDS ’11. Washington, DC, USA: IEEE Computer
Society, 2011, pp. 1–10.

[10] Z. Zheng, Y. Zhang, and M. Lyu, “Distributed qos evaluation for real-
world web services,” in Web Services (ICWS), 2010 IEEE International
Conference on, 2010, pp. 83–90.

[11] Y. Zhang, Z. Zheng, and M. Lyu, “Wsexpress: A qos-aware search
engine for web services,” in Web Services (ICWS), 2010 IEEE Interna-
tional Conference on, 2010, pp. 91–98.

[12] L. Yao, Q. Z. Sheng, A. H. Ngu, J. Yu, and A. Segev, “Unified
collaborative and content-based web service recommendation,” Services
Computing, IEEE Transactions on, vol. 8, no. 3, pp. 453–466, 2015.

[13] J. S. Malak, M. Mohsenzadeh, and M. A. Seyyedi, “Web service
qos prediction based on multi agents,” in Proceedings of the 2009
International Conference on Computer Technology and Development
- Volume 01, ser. ICCTD ’09. Washington, DC, USA: IEEE Computer
Society, 2009, pp. 265–269.

[14] K. Karta, “An investigation on personalized collaborative filter-
ing for web service selection, technical report, available online at
http://citeseerx.ist.psu.edu/ viewdoc/summary?doi=10.1.1.90.6961 (last
accessed on april 2013),” 2005.
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