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On the Exploitation of Automated Planning for Efficient Decision
Making in Road Traffic Accident Management

Lukáš Chrpa and Mauro Vallati

Abstract— Automated Planning can be fruitfully exploited as
a Decision Support toolkit that, given a specification of available
actions (elementary decisions to be taken), an initial situation
and goals to be achieved, generates a plan that represents a
(partially ordered) sequence of such elementary decisions that
once performed the required goals are achieved. Road Traffic
Accident Management is a life-critical task that deals with
effective planning of emergency response when accidents occur,
in order to mitigate negative effects, especially saving human
lives that might be in imminent danger.

In this paper, we exploit Automated Planning in the Road
Traffic Accident Management domain. We specifically focus
on providing necessary treatment for victims injured during
accidents. This involves coordination of medical teams re-
sponsible for providing medical treatment to the victims and
fire brigades that are required to release victims trapped in
damaged vehicles. An empirical analysis, based in the region
of West Yorkshire (UK) with a number of real accidents recently
occurred there, shows the suitability of the proposed Automated
Planning approach to be used in time-critical conditions, and
confirms the effectiveness of the generated plans. We also
demonstrated its usefulness as a tool for evaluating the impact
of additional resources, in order to provide guidance for future
investments.

I. INTRODUCTION
Managing emergency response to traffic accidents is cru-

cial to mitigate their consequences, especially to save human
lives that might be in danger after an accident occurs,
and to reduce the economical impact on the society. Ef-
fective managing of emergency response involves coordi-
nating medical staff that is responsible for providing first-
aid to accident victims, ambulances that are necessary for
transporting seriously injured victims to hospitals, and fire
brigades that have to assist in cases where a victim is
trapped in damaged vehicle. Traffic accident management
is also subject to specific local regulations [1] with strictly
defined (medical) response times [2] and procedures. This
provides a challenge for accident management coordinators
because they have to take a number of critical decisions in
a very short time. Currently, most of these decisions are
taken by humans. However, humans in charge of taking
decisions are usually under a huge pressure –particularly in
case of multiple accidents– and must react quickly: chances
of making errors are therefore high.

Remarkably, there has been work in the area of au-
tonomous systems for supporting human experts. However,
it is primarily focused to the Search and Rescue domain [3],
[4], mainly thanks to the RoboCup Rescue Robot and Simu-
lation competitions [5]. In emergency response, the research
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focuses on the problem of determining a (nearly) optimal
coverage of emergency services [6] where various techniques
such as genetic programming [7] or fuzzy reasoning [8]
have been used. Models predicting the likeliness of medical
incident occurrence, which can assist the emergency response
controllers in their decision making, have been developed [9].
For simulating ambulance deployment in urban areas sev-
eral systems have been developed [10], [11]. However, the
aforementioned approaches give a little assistance in decision
making for emergency response controllers.

Automated planning, which deals with the problem of
finding a plan (a sequence of actions) that transforms the
environment from an initial state to some desired goal
state [12], is an effective tool for decision making. Plans
consist of information about which action and at which time
it has to be executed, in order to achieve given goals. In
traffic accident management, for example, a plan embodies a
procedure which if correctly followed will ensure that the all
accident victims have received appropriate treatment while
taking into account constraints (e.g. the number of medical
staff). Moreover, with numerous generic planning engines
that accept the description of planning problems in a standard
language such as PDDL [13], it is easy to apply Automated
Planning as part of larger intelligent systems (e.g., the recent
work in marine robotics [14]).

In this paper, we aim to use Automated Planning as an
effective Decision Support tool in the Road Traffic Accident
Management domain. Automated Planning provides a power-
ful toolkit for decision support that has already been used in
real-world applications, including Urban Traffic Control [15],
[16]. Applying Automated Planning for decision support
in Traffic Accident Management has been considered by
Özbay et al. [17], where probabilistic models have been
used for planning operations –but not for reacting to actual
reported accidents–, and by Shah et al. [18], which con-
sidered “classical” domain-independent planning. It should
be noted that in the work of Shah et al., the traffic accident
management domain was mainly investigated as a case study
for comparing Knowledge Engineering techniques; one of
the resulting domain models was included in the temporal
track of the last International Planning Competition [19].
In terms of modelling of real-world scenarios, it was quite
simplistic. Recently, the work has been also adapted for
general incident management [20].

Inspired by the work of Shah et al. [18], here we spec-
ify and develop a planning domain model that complies
with standards provided by the National Health Services
(NHS) in the UK [2]. The domain model is encoded in



Planning Domain Definition Language (PDDL) [13] that is
widely supported by the large number of existing domain-
independent planning engines. Our approach is empirically
evaluated on several scenarios that involve a part of the area
of West Yorkshire (UK) with actual locations of emergency
services and frequent traffic accident spots. The results are
thoroughly discussed in order to understand strengths and
drawbacks of using Automated Planning in Traffic Accident
Management as well as to indicate promising avenues for
future research.

II. BACKGROUND

Automated Planning can deal with different levels of
expressiveness. In this work we focus on Temporal Planning,
which is a subclass of Automated Planning that reasons
with actions whose execution takes time (so called “durative
actions”) in a deterministic and fully observable environment.
The environment is described by first-order logic predicates
and numeric fluents. Actions are specified via their execution
duration, preconditions which are logical expressions that
must hold in order to make the action executable, and effects
which are sets of literals or fluent assignments that take place
when the action is executed. In PDDL 2.1, preconditions
can take place just before the action is executed, during
execution of the action and just before finishing execution of
the action. Similarly, effects can take place just after stating
execution of the action, or just after finishing execution
of the action [13]. A Planning Domain Model consists of
predicates, numeric fluents and actions. A Planning Problem
Description consists of a set of objects, an initial state (a
set of grounded predicates and fluent assignments), and a
set of goals (logical expressions). A plan is a set of pairs
in the form of 〈timestamp,action〉 such that executing these
actions in the corresponding timestamps (it must always be
possible) transforms the environment from the initial state to
some state where all the goals are satisfied (i.e. a goal state).

III. PROBLEM SPECIFICATION

Traffic accidents are events that put human lives in danger
and cause huge economic costs, so it is crucial to respond
quickly and efficiently to mitigate their consequences. To
do so, it is necessary to coordinate teams of professionals
(e.g. paramedics or fire brigades) as well as manage limited
amount of resources (e.g. ambulances). Our primary focus is
directed towards rescuing and providing necessary medical
treatment to accident victims to maximize chances of their
survival.

When an accident occurs and is reported, information
about victims on the site of the accident that need to be
treated are given. According to NHS guidelines [2], patients
that need assistance are prioritised following a 3-categories
(A, B and C) schema. Category A includes patients in life-
threatening conditions, category B are patients in serious but
not life-threatening conditions, while category C includes not
serious patients. Patients in A and B categories should be
reached within very strict time limits, respectively 8 and 19
minutes from the accident report. NHS also uses the reaching

time as metrics for evaluating the local services. Nationally,
the target is to reach the 75% of category A patients within
the 8 minutes limit, and the 95% of category B patients
within the 19 minutes limit.

In this work, we consider patients in categories A and B, as
well as those who are trapped in damaged vehicles. Notice
that patients in category C are not of interest in our case,
given the not strict (up to 1 hour) time limits for treating
them. The goal is to have all the victims given first-aid
to their injuries and been untrapped (if they were initially
trapped in damaged vehicles), and the seriously injured
victims been transported into hospitals by ambulances. The
plan achieving such a goal provides the emergency response
coordinators a procedure that distributes tasks to teams of
medics and fire brigades, and provides an allocation of
available resources which are required for the execution of
the tasks (e.g. ambulances).

A. Domain Model Specification

Given the “high-level” problem specification, one might
have an impression about actions that have to be taken in
order to achieve the goal (rescue and treat traffic accident
victims). To be precise, the conceptualisation of the problem
requires to specify object types, which stand for classes
of objects considered in the planning process, predicates
and numeric fluents, which describe the environment, and
actions, which modify the environment [18].

Object types in our model are divided into four main
categories: Assets, Agents, Locations and Victims. Assets
are further divided into Static Assets, which consist of
hospitals and fire stations, and Mobile Assets, which consist
of fire brigades, ambulances, medical cars and medical
motorbikes. Agents are human professionals, in particular
drivers, firemen, medics (paramedics and emergency medical
technicians) that carry out “role-specific” tasks (e.g. giving
first-aid).

The static part of the environment, i.e., aspects that do
not change during execution of the plan, is related to the
road network and some properties of the assets. We consider
an abstract road network, where only locations of interest
(e.g. asset or accident locations) are considered and existence
of a road between two locations is denoted by a predicate
connected and the distance between connected locations is
denoted by a numeric fluent distance. Average speed of a
mobile asset is captured by a numeric fluent speed. Note
that although we assume that average speed of an asset does
not change during the planning episode, it might be initially
set differently for different planning episodes (e.g. average
speed is smaller for rush hours). We provide restrictions on
whether an agent can enter/board an asset, which is captured
by a predicate compatible. For mobile assets that need a
“driver agent” in order to move, we denote such a fact by
a predicate need-driver. For static assets, their locations are
represented by a predicate at.

The dynamic part of the environment considers aspects
that can be modified by executing planned actions. Mo-
bile assets, agents and victims can change their locations



(:durative-action load-victim
:parameters (?v - victim ?x - ambulance
?m - medic ?l - location)
:duration (= ?duration 5)
:condition (and

(at start (at ?v ?l))
(at start (free ?x))
(over all (aided ?v))
(over all (at ?x ?l))
(over all (at ?m ?l))
(at start (available ?m)) )

:effect (and
(at start (not (at ?v ?l)))
(at start (not (free ?x)))
(at start (not (available ?m)))
(at end (in ?v ?x))
(at end (available ?m)))

)

Fig. 1. PDDL encoding of the load-victim operator.

– their current location in a given timestamp is denoted
by a predicate at (similarly to the static assets). Agents,
in addition, can be inside assets (denoted by a predicate
inside). Victims, similarly to agents, can be in ambulances or
hospitals (denoted by a predicate in). Clearly, state invariants
apply. A mobile asset can be at at most one location at time.
An agent (victim) can be either at one location or inside (in)
one asset at time. An ambulance (a type of mobile asset) can
be free or carry at most one victim (i.e., the victim is in the
ambulance). Notice that capacity of mobile assets in terms of
how many agents it can accommodate can be ensured by the
compatible predicates. That is that if the number of instances
of the compatible predicate with respect to a given asset is
not higher than its capacity, then there is no plan in which
the capacity can be exceeded. Victims can be either slightly
injured (corresponding to the NHS category B), seriously
injured (category A), or first-aided. Also, victims can be
either trapped or untrapped. However, for clear reasons, it
is not possible that a victim is both trapped and first-aided.

In temporal planning, action execution takes some time.
An agent can perform (or be involved in) at most one
action at time, such constraint has been encoded using well-
known PDDL techniques, and is therefore omitted from the
following description of actions. Let ts be the timestamp at
which an action is executed, and te be the timestamp at which
an action execution finishes. We have defined the following
actions:

• move(x,a,l1,l2) – moves a mobile asset x driven by an
agent a from a location l1 to a location l2. As a pre-
condition at(x, l1) must hold in ts, connected(l1, l2),
inside(a, x) as well as that a is a driver if need-
driver(x) is true must hold in [ts, te] (over the whole
execution interval). As an effect at(x, l1) becomes false
in ts and at(x, l2) becomes true in te. The action dura-
tion is determined from distance(l1, l2) and speed(x).

• board(x,a,l) – an agent a boards/enters an asset x at a
location l. As a precondition at(a, l), at(x, l) as well

as compatible(a, x) if x is a mobile asset must hold
in ts. As an effect at(a, l) becomes false in ts and
inside(a, x) becomes true in te.

• debark(x,a,l) – an agent a debarks/exits an asset x at a
location l. As a precondition inside(a, x), at(x, l) must
hold in ts. As an effect inside(a, x) becomes false in
ts and at(a, l) becomes true in te.

• untrap(f,v,l) – a fireman f untraps a victim v at a
location l. As a precondition at(f, l), at(v, l) must hold
in [ts, te] and trapped(v) must hold in ts. As an effect
trapped(v) becomes false at te.

• firstaid(m,v,l) – a medic m gives a first-aid to a victim
v at a location l. As a precondition at(m, l), at(v, l)
must hold and trapped(v) must not hold in [ts, te] and
slightly-injured(v) or seriously-injured(v) must hold in
ts. If seriously-injured(v) holds in ts, m must be a
paramedic. As an effect slightly-injured(v) or seriously-
injured(v) becomes false, and aided(v) becomes true
at te. The action duration is larger for the seriously-
injured(v) case.

• load-victim(v,x,m,l) – A medic m loads a victim v
into an ambulance x at a location l. As a precondition
at(m, l), at(x, l) and aided(v) must hold in [ts, te]
and at(v, l) and free(x) must hold in ts. As an effect
at(v, l) and free(x) become false in ts, and in(v, x)
becomes true in te.

• hospitalise(v,m,x,h,l) – A medic m hospitalises a vic-
tim v from an ambulance x to a hospital h at a location
l. As a precondition at(x, l) and at(h, l) must hold in
[ts, te], and in(v, x), at(m, l) must hold in ts. As an
effect at(m, l) and in(v, x) become false in ts, and
in(v, h), inside(m,h) and free(x) become true in te.

Figure 1 shows the PDDL encoding of the described load-
victim(v,x,m,l) operator. It is worth noting the presence of
the available predicate, which is used for ensuring that an
agent is performing at most one action at time.

IV. EVALUATION OF THE APPROACH

This section is devoted to evaluate the ability of the pro-
posed approach in managing limited resources for effectively
handling road traffic accidents.

A. Settings

The Planning domain model and problems have been en-
coded in PDDL 2.1. For solving such problems, we selected
Yahsp3 [21], a planner that achieved remarkable results in
recent International Planning Competitions (IPCs) [19] –the
major competition run by the planning community– and that
is able to handle the set of PDDL features required by the
encoded domain model. It should be noted that Yahsp3 is
not an optimal solver –i.e. plans identified are not optimal
with regard to a considered metric– but it tends to be
very quick, and to provide good quality plans. Furthermore,
we also considered the LPG planner [22], due to its good
performance in previous editions of the IPC. Both systems
can be used as anytime solvers, i.e. they are able to improve
the quality of generated plans if additional CPU-time is



given. In this context, quality is measured in terms of overall
time required to achieve the specified goals.

The planners have been run on a system equipped with 2.5
Ghz Intel Core 2 Quad Processors, 4 GB of RAM and Linux
operating system. The generated plans have been validated
using the well-known VAL tool [23]. This was done in
order to check their correctness with regards to the designed
domain model, and also to identify the presence of bugs or
flaws in the model.

Our analysis has been focused on the region controlled by
the Yorkshire Ambulance Service (YAS) and by the West
Yorkshire Fire Service. YAS is in charge on the whole
Yorkshire county, which is located in the north-east part of
United Kingdom. However, such large area is divided into
several regions. Here, following the way in which the YAS
service is organised, we considered the Bradford, Calderdale
and Kirklees regions (BCK). In the mentioned region there
are 7 ambulance stations –where ambulances and medical
equipment are stored, ready to be used– and 5 hospitals,
assets that are able to receive emergency patients. In order
to simulate a busy condition, fleet and crews have been
distributed as follows: each hospital has one ambulance and
the corresponding crew available; each hospital has either a
car or a motorbike available, with an associated paramedic.
Beside the ambulance service resources –which still repre-
sent the main focus of our investigation– two fire stations,
which are the main stations in the BCK area, have also been
considered. Each fire station has a pump/ladder vehicle and
the corresponding crew available. Figure 2 (coloured) shows
an overview of the considered region.

In terms of scenarios used in this evaluation, we simulated
two accidents recently happened, involving respectively 2
and 6 victims1. Moreover, we also included an accident at
Ainley top (located between Huddersfield and Brighouse, see
Figure 2), which simulates the fact that the huge traffic flow
on M62 –the main highway in the area– leads to frequent
incidents. In total, 6 category A (seriously injured) and 4
category B (slightly injured) patients (victims) are involved
in the three car accidents.

B. Effective Emergency Response for Victims in Life-
threatening Conditions

As previously mentioned, NHS poses strict time targets for
reaching life-threatening and seriously injured victims. It is
therefore critical that the proposed planning-based approach
is able to efficiently and effectively manage the available
resources, in terms of crews and vehicles, to meet the
nationally set targets.

In a first set of experiments, designed for testing the
fact that the proposed system is effectively able to manage
and exploit available resources, we considered a scenario
in which the presence of a single victim in life-threatening
condition is reported, and it should be first-aided as soon
as possible. We run 10 different experiments by changing

1The interested reader can find more information about the mentioned
accidents here: http://goo.gl/vctsHZ, http://goo.gl/Ag5ePP

Fig. 2. The region considered in the experimental analysis: this includes
the Calderdale, Bradford and Kirklees councils, within the Yorkshire county
of United Kingdom. Green dots indicate the position of ambulance stations;
hospital locations are represented by the blue patient icon. Emergency icons
are used for indicating the places of accidents as considered in our scenarios.

the position of the victim: s/he was placed respectively at
the three previously mentioned accident places, and in other
random locations of the considered region. It is worthy
reminding that a victim in life-threatening conditions must
be reached by a paramedic for the required care.

Remarkably, in every plan generated by the considered
planning engines for the described scenarios, the available
paramedic which is able to reach the victim in the shortest
time –either because closer to the accident location, or using
a faster vehicle– is always selected to succour the victim.
This allows to fulfil the national NHS target for category A
patients in all the cases in which it is actually possible to
reach the accident locations in less than 8 minutes.

Clearly, victims in life-threatening conditions must also be
hospitalised as soon as possible: the support of a paramedic
at the accident location is fundamental, but not sufficient, to
maximise their chance of survival. For this reason we run
a second set of experiments, considering the same previ-
ously described scenarios, but requiring that victims are also
hospitalised. Also in such cases we observed that the plans
generated by Yahsp3 and LPG are very valuable. Whenever
possible, a paramedic is sent to the accident location for
providing first aid and, in the meanwhile, an ambulance is
sent for transporting the victim to the closest hospital. When
both ambulances and other vehicles take almost the same
time to reach the accident place, in some cases planners
decide to send only an ambulance: the delay in providing
first-aid is negligible (usually less than a minute).

Finally, in order to evaluate the coordination between



5: (debark Paramedic RRV-Brighouse
AinleyTop)
10.3: (debark FireCrew FireVehicleHalifax
AinleyTop)
10.3: (untrap FireCrew Victim1 AinleyTop)
20.3: (firstaid Paramedic Victim1
AinleyTop)

Fig. 3. Part of plan (and timestamp at which actions start) provided by
Yahsp3 involving both fire brigades and paramedics. RRV stands for Rapid
Response Vehicles, i.e. a car used by paramedics.

ambulance services and fire brigades achievable by using
our planning approach, we considered cases in which the
category A victim is trapped into a vehicle, at the differ-
ent accident locations. In such scenario, planners correctly
decide to send the closest available fire-fighting vehicle –
with the appropriate crew–. In the meanwhile, a paramedic
is sent to the accident location, for providing support. Figure
3 shows part of an example plan. In the shown case, the
rapid response vehicle arrived before the fire brigade at the
accident location, and the paramedic can start supporting the
victim as soon as s/he has been untrapped.

In terms of required runtime, the planners are able to
generate plans for handling all the scenario considered in
this set of experiments very quickly; less than 0.5 CPU-time
seconds are necessary.

C. Response to Multiple Concurrent Accidents

In the previous section, we focused our analysis on cases
in which a single victim required support. However, signifi-
cantly more complex –and to some extent more realistic–
scenarios are those in which more than one accident is
reported, and need to be handled, at the same time. Here we
therefore assess the performance of the proposed planning-
based approach in handling the three accidents (located
accordingly to Figure 2) concurrently, the goal is that all the
category A victims are hospitalised, and category B are first-
aided, as soon as possible. We emphasise that the number
of available vehicles is extremely limited, with regards to
the number of critical victims in the need of support: five
ambulances are available, while ten victims are reported.
Moreover, a few medical vehicles are located at premises
that are too far from the accident locations to be useful.

As a first remark, we note that despite the complexity of
the modelled problem, both LPG and Yahsp3 are able to
generate a valid plan using very short runtimes: less than 1
CPU-time second is required by YAHSP, while LPG usually
takes between 1 and 3 seconds (it is a randomised planner,
so CPU-time can differ between runs). However, the quality
of first generated plans –in terms of temporal length of the
plan– can be low. For this reason we let planners run for
10 CPU-time seconds, in order to allow them improving
such plans. Even in the time-critical domain of emergency
management, 10 seconds is a reasonable amount of time that
can be invested for obtaining good quality plans. Table I
shows a comparison of the performance of the two planning

LPG Yahsp3
Runtime (seconds) 1.2 – 3.8 0.7
Plan Quality (minutes) 143 – 183 131
1st Aided Cat. A (minutes) 8 – 28 9
1st Hospitalised Cat.A (minutes) 52 – 75 26
1st Aided Cat. B (minutes) 8 – 38 8

TABLE I
RUNTIME (CPU-TIME SECONDS) NEEDED BY LPG AND YAHSP3 FOR

PROVIDING THE FIRST SATISFICING PLAN FOR HANDLING THREE

CONCURRENT CAR ACCIDENTS. QUALITY OF GENERATED PLANS IS

EVALUATED IN TERMS OF EXECUTION DURATION. INFORMATION ABOUT

THE TIME NEEDED TO: AID THE FIRST CATEGORY A VICTIM,
HOSPITALISE THE FIRST CATEGORY A VICTIM, AND AID THE FIRST

CATEGORY B VICTIM IS PROVIDED. LPG IS A RANDOMISED PLANNER:
BEST AND WORST RESULTS OBTAINED ARE SHOWN.

engines. Performance is shown in terms of overall temporal
length of plans, time needed to reach the first category A and
category B victims, and the time needed for transporting to
hospital the first victim among those involved in the three
accidents. By analysing the plans, we observed that all the
vehicles and crews close to accident locations are effectively
exploited by the planners.

D. Assess the Usefulness of Additional Resources

Noteworthy, the planning-based approach proposed in this
paper can also be exploited as a tool for assessing the
usefulness of additional resources with regards to the already
available vehicles fleet and personnel, in order to provide
some guidance on possible future investments. Intuitively,
the evaluation of usefulness of additional resources can be
done by testing their impact on plans generated for handling
expected recurrent situations.

As a case study, we aim at evaluating if it would be
worthy to extend the considered YAS fleet with an additional
ambulance, and the corresponding crew, and where it would
be better to place it for maximising usefulness. We consider
our three accidents scenario as a typical recurrent situation
that has to be faced by the Yorkshire Ambulance Service. The
investigation is done by positioning the additional ambulance
and crew in each of the YAS premises, generating and
solving the corresponding planning problem, and measuring
the impact on the plan’s quality. By using a 10 seconds CPU-
time limit, the overall evaluation takes at most 130 seconds.

According to the performed analysis, the additional am-
bulance and crew should be placed at Dewsbury in order to
maximise their impact for handling the modelled scenario.
Specifically, their exploitation would reduce the length of the
best plan by approximately 10%: from 131 to 117 minutes.
This also indicates that most of the victims in life-threatening
conditions are hospitalised earlier, with a significant positive
repercussion on their survival chances. On the other hand, it
has been observed that positioning the additional resources
in the Airedale or Menston YAS premises will have no effect
on plans for the studied scenario. In other words, they will
not be exploited.



V. DISCUSSION AND CONCLUSION

Effective management of emergency response to traffic
accidents is crucial for maximising the chances of survival
of victims. Remarkably, such management requires a very
high level of coordination between a number of entities, like
medical staff, medical vehicles and fire brigades. With the
aim of providing useful guidelines and improving the quality
of services, clear and strict regulations and guidelines have
been defined and put in place by national bodies, such as
the National Health Services (NHS) in the UK. However,
despite its importance and complexity, the management of
emergency response task is currently mainly performed by
human experts.

In order to assist experts in the stressful and time-critical
duty of road traffic accident management, here we investi-
gated the exploitation of automated planning techniques as
an effective decision support tool. The main contribution of
our work are: (i) a PDDL 2.1 encoding of the traffic accidents
management domain, which embeds guidelines from the
NHS regulations; (ii) a thorough experimental analysis, that
considers the actual premises of NHS in West Yorkshire,
and allows to highlight strengths and weaknesses of the
proposed approach; and (iii) a comparison between plans
and strategies generated by two state-of-the-art domain-
independent planning engines.

The performed experimental analysis demonstrates the
extent to which the proposed approach is able to efficiently
and effectively coordinate available resources for emergency
response to traffic accidents. Remarkably, plans are generated
very quickly –in a few seconds–, and this demonstrates the
potential of the approach for being used in time-critical
conditions. Moreover, an analysis of generated plans con-
firmed their overall quality feasibility: they can therefore
provide useful suggestions for the human experts in charge
of managing the emergency.

Finally, it is worth noting that the proposed PDDL 2.1
encoding can be easily extended. For instance, an extended
model can also consider different sort of vehicles, such as
helicopters. Moreover, the knowledge about the scenario can
be easily improved and updated: traffic conditions can be
encoded, and problems can be modified if new pieces of
information are made available to the emergency operator.

For the future, we plan to integrate our approach into some
of the existing simulation platforms. This will allow us to
see planning and plan execution from accident coordinator’s
point of view which will validate the concept for a poten-
tial use in practice. We are also interested in considering
different, and more expressive, languages for describing the
considered problem. Finally, we are interested in evaluating
the exploitation of decentralised (multi-agent) strategies for
stretching the importance of coordination between the differ-
ent agents involved in handling traffic accidents emergencies.
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