University of Huddersfield Repository

Lee, Hyunkook

Capturing and Rendering 360º VR Audio Using Cardioid Microphones

Original Citation

This version is available at http://eprints.hud.ac.uk/29582/

The University Repository is a digital collection of the research output of the University, available on Open Access. Copyright and Moral Rights for the items on this site are retained by the individual author and/or other copyright owners. Users may access full items free of charge; copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational or not-for-profit purposes without prior permission or charge, provided:

- The authors, title and full bibliographic details is credited in any copy;
- A hyperlink and/or URL is included for the original metadata page; and
- The content is not changed in any way.

For more information, including our policy and submission procedure, please contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/
Capturing and Rendering 360° VR Audio using Cardioid Microphones

Hyunkook Lee
h.lee@hud.ac.uk
Applied Psychoacoustics Lab (APL)
University of Huddersfield, UK
Motivation

• Near-coincident mic arrays
 – ORTF, NOS, etc.
 – Arguably, preferred to pure coincident or pure spaced techniques by most professional recording engineers.
 – Rely on the trade-off between Time and Level differences.
 – Best of both worlds (Localisability & Spaciousness).

• Cardioid microphones
 – Most popular.
 – Most widely available.

• Record for VR using favourite cardioid mics arranged in a near-coincident fashion?
Contents

• Research background
• Localisation test in loudspeaker reproduction
• Localisation test in binaural reproduction
• Discussion
• Summary
Research Background
Existing methods for VR audio capture

- First Order Ambisonics (FOA)

<table>
<thead>
<tr>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
</table>
| • Very good “localisability” due to the coincident nature (But not necessarily good localisation “accuracy”).
 • Virtual microphones from flexible decoding.
 • Compact. | • High interchannel correlation.
 • Lack of spaciousness.
 • Comb-filtering and rapid change in image position even with a small head movement. |
Existing methods for VR audio capture

- Higher Order Ambisonics (HOA)

<table>
<thead>
<tr>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
</table>
| • Higher spatial resolution.
 • More accurate localisation. | • Requires a large number of channels for a proper decoding.
 $N = (M + 1)^2$
 • Very expensive.
 • Tonal quality.
 • Spaciousness? |
Existing methods for VR audio capture

- **Quad Binaural**

<table>
<thead>
<tr>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Direct pinnae filtering.</td>
<td>• Inaccurate localisation and comb-filtering due to crossfading between ear signals.</td>
</tr>
<tr>
<td>• No need for extra binaural synthesis.</td>
<td>• Not possible to use personal HRTFs.</td>
</tr>
<tr>
<td></td>
<td>• Only for horizontal head rotation.</td>
</tr>
<tr>
<td></td>
<td>• Expensive.</td>
</tr>
</tbody>
</table>
Psychoacoustic considerations for VR

- In VR, it is important to match the actual and perceived source positions.
Psychoacoustic considerations for VR

- The perceived source position should stay the same as the head rotates.
Psychoacoustic considerations for VR

- The perceived source position should stay the same as the head rotates.
Psychoacoustic considerations for VR

- Limitation of FOA
 - Quadraphonic Cardioid decoding.
Psychoacoustic considerations for VR

- Limitation of FOA
 - Only 6dB ICLD (interchannel level difference) for the front pair for a source at 45°.
 - Not sufficient for a full phantom image shift to 45°.
Psychoacoustic considerations for VR

• Limitation of FOA
 – Another 6dB ICLD for the left pair.
 – The image is perceived almost at the front left speaker
 (mainly one ear → no effective interaural difference)
Psychoacoustic considerations for VR

• Limitation of FOA
 – The resulting image position in the quadrephonic reproduction is still not fully shifted to 45°.
Psychoacoustic considerations for VR

- Problems of B-format (FOA) binauralisation for VR
 - Inaccurate localisation due to insufficient ICLD.
 - The image follows you when you rotate the head.
Proposed Technique
Design philosophy

• Equal Segment Microphone Array (ESMA)
 – A design concept proposed by Williams (1991), but for 360 multichannel reproduction.

• Requirements
 1. Equal subtended angle for all stereo segments (±45°).
 2. The stereophonic recording angle (SRA) of each segment should match the subtended angle of the segment. (±45°)
Design philosophy

- **IRT-Cross by Theile**
 - Originally designed for ambience capture.
 - \(d = 20 \) to \(25 \) cm.

- **ORTF-Surround (or 3D)**
 - SRA not consistent for every segment.
 - Not suitable for ESMA.
Design philosophy

• BBC Proms using ORTF 3D
• The SRA of ±45° for quadraphonic ESMA
 → A source at ±45° in recording should be localised at ±45° in reproduction.

\[\text{SRA} = \pm 45° \]
• The SRA of ±45° for quadraphonic ESMA
 → A source at ±45° in recording should be localised at ±45° in reproduction.
Design philosophy

- Suitable for VR applications with head-tracking.
Psychoacoustic basis

- The appropriate spacing between microphones to produce the ±45° SRA?
 - Depends on what psychoacoustic time-level trade-off model is used for calculating the SRA.

<table>
<thead>
<tr>
<th>Model</th>
<th>Microphone spacing</th>
<th>Source to mic array distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Williams</td>
<td>23.8cm</td>
<td>unknown</td>
</tr>
<tr>
<td>Sengpiel</td>
<td>25cm</td>
<td>unknown</td>
</tr>
<tr>
<td>Wittek + Theile</td>
<td>24cm</td>
<td>2m</td>
</tr>
<tr>
<td>Lee + Theile</td>
<td>30cm</td>
<td>2m</td>
</tr>
<tr>
<td>Lee</td>
<td>50cm</td>
<td>2m</td>
</tr>
</tbody>
</table>

Based on ICTD and ICLD data obtained using ±30 setup°

Optimised for ±45 setup°
Designing a near-coincident VR mic array

- **Linear time-level trade-off functions (Lee 2016)**
 - Shift region dependent.
 - Loudspeaker base angle dependent.

![Graph showing ICTD and ICLD image shift factors]

- ICTD and ICLD image shift factors change in proportion to the change of ITD and ILD.
- Shift factors for ±45° base angle.
 - 8.8%/0.1ms; 6%/dB (< 30°)
 - 4.4%/0.1ms; 3%/dB (30°- 45°).
Experiments
Aim

• To evaluate the localisation accuracies of the quadraphonic FOA and ESMA.
 – If the SRA of ±45° can be achieved.
 – Loudspeaker and headphone reproduction tests in simulated head rotation scenarios.

• Microphone spacing tested:
 – 0cm (FOA)
 – 24cm (Wittek + Theile)
 – 30cm (Lee + Theile)
 – 50cm (Lee)
Stimuli creation

• Recording setup

- ITU-R BS.1116 standard room.

- 8 Genelec 8040As arranged in an octagonal layout.

- Room impulse responses (RIRs) captured for 0° and 45°.

- Soundfield SPS 422b for FOA.

- Neumann KM184 for ESMA.
Stimuli creation

- Stimuli for Experiment 1 (Loudspeaker playback)
 - An anechoic speech signal was convolved with the direct sounds of the RIRs (reflections removed).
 - Head rotations simulated for 0°, ±45°, ±90°, ±135° and ±180° (Soundfield rotation).
Stimuli creation

• Stimuli for Experiment 1 (Loudspeaker playback)

 – An anechoic speech signal was convolved with the direct sounds of the RIRs (reflections removed).

 – Head rotations simulated for 0°, ±45°, ±90°, ±135° and ±180° (Soundfield rotation).
Stimuli creation

- Stimuli for Experiment 1 (Loudspeaker playback)
 - An anechoic speech signal was convolved with the direct sounds of the RIRs (reflections removed).
 - Head rotations simulated for 0°, ±45°, ±90°, ±135° and ±180° (Soundfield rotation).
Stimuli creation

• Stimuli for Experiment 1 (Loudspeaker playback)

 – An anechoic speech signal was convolved with the direct sounds of the RIRs (reflections removed).

 – Head rotations simulated for 0°, ±45°, ±90°, ±135° and ±180° (Soundfield rotation).
Stimuli creation

• Stimuli for Experiment 1 (Loudspeaker playback)
 – An anechoic speech signal was convolved with the direct sounds of the RIRs (reflections removed).
 – Head rotations simulated for 0°, ±45°, ±90°, ±135° and ±180° (Soundfield rotation).
Stimuli creation

• Stimuli for Experiment 1 (Loudspeaker playback)

 – An anechoic speech signal was convolved with the direct sounds of the RIRs (reflections removed).

 – Head rotations simulated for 0°, ±45°, ±90°, ±135° and ±180° (Soundfield rotation).
Stimuli creation

• Stimuli for Experiment 1 (Loudspeaker playback)

 – An anechoic speech signal was convolved with the direct sounds of the RIRs (reflections removed).

 – Head rotations simulated for 0°, ±45°, ±90°, ±135° and ±180° (Soundfield rotation).
Stimuli creation

• Stimuli for Experiment 2 (Binaural playback)

 – Same conditions as Experiment 1, but with the full RIRs (reflections included).

 – The multichannel stimuli were binauralised with dry KU100 dummy head HRIRs from the ‘SADIE’ database (Kearney 2015).
Listening tests

- **Experiment 1** (Loudspeaker playback)
 - Loudspeakers hidden by acoustically transparent curtains.
 - Small markers were placed on the curtain from 0° with 22.5° intervals.
 - 70dBA playback level.
Listening tests

• Experiment 1 (Loudspeaker playback)

 – 9 experienced subjects repeated each test twice.

 – The task was to mark down the perceived image position on a horizontal circle on a GUI with markers indicated with 22.5° intervals.
• Experiment 2
 (Binaural playback)

 – The same room, subjects, task and method as Experiment 1.

 – Equalised Sennheiser HD650 headphones were used.

 – Loudness matched to the playback levels of multichannel stimuli.
Results – Loudspeaker experiment

- 0° source position
 - 0° and 180° target: accurate for all arrays.
 - 45° target: statistically accurate for 50, 30 and 24cm, but not for 0cm (Wilcoxon tests).
 - 90° target: front-back confusion (cone-of-confusion) in general.
 - 135° target: significantly bimodal for 0 and 30cm.
Results – Loudspeaker experiment

- **45° source position**
 - **0° target**: accurate for all arrays.
 - **45° target**: accurate only for 50cm.
 - **90° target**: accurate except for 0cm (sig. bimodal).
 - **135° target**: accurate except for 0cm (MED = 152°).
 - **180° target**: accurate only for 50cm.
Results – Binaural experiment

- **0° source position**
 - **0° target**: significant bimodality for all arrays.
 - **45° target**: significant bimodality for 50cm.
 - **90° target**: significant bimodality except for 50cm.
 - **135° target**: significantly bimodal for all arrays.
 - **180° target**: accurate except for 30cm.
Results – Binaural experiment

- **45° source position**
 - **0° target**: bimodal (50cm & 30cm); inaccurate (24cm & 0cm).
 - **45° target**: accurate for 50 and 24cm. MED = 27° for 0cm.
 - **90° target**: significant bimodality for 0cm.
 - **135° target**: accurate only for 50cm.
 - **180° target**: accurate only for 50cm and 24cm.
Results – Real source

- **Loudspeaker**
 - Loudspeaker: accurate for all source angles.

- **Binaural**
 - Binaural responses are generally more spread than loudspeaker ones.
 - 0°: significantly bimodal.
 - 45°: inaccurate, MED = 52°.
 - 90°, 135°: accurate.
 - 180°: inaccurate, bimodal.
Discussion

• Microphone spacing effect

 – 0cm had the worst localisation performance overall.
 • Significant bimodal distributions for many target angle conditions.
 • Perceived to be significantly narrower for the 45° source in both loudspeaker (MED = 30°) and binarual (MED = 27°).

 – 50cm was the only spacing that achieved the SRA of ±45°.
 • Seems to validate the new psychoacoustic model.

 – 50cm had slightly better consistency and accuracy than the other configurations overall.
 • But a smaller size might be more beneficial in practical situations.
 • Practical importance of localisation accuracy in VR?
• Source angle effect

 – The 0° source produced larger response spreads and more bimodal distributions than the 45°.
 • Front-back confusion (Cone of confusion), especially for the 90° target angle.
 • Lateral phantom image localisation is highly unstable (Theile and Plenge 1977, Martin et al 1999).
• **Loudspeaker vs. Binaural**

 – **Front-back confusion** was more frequently observed in the binaural presentation, but not in the loudspeaker one.
 – The binaural presentation had more spread responses.
 – Real source results also show similar tendencies for the 0° and 45°.
 – Might be due to the use of non-individualised HRTF, rather than the microphone arrays.
 – But more about the **lack of head movement**?
 • FB confusion can occur even with individualised HRTF when head rotation is not allowed (Wightman and Kistler 1999).
 – The FB confusion problem might be largely resolved in practical VR applications with head tracking.
Discussion

• Higher Order ESMA

 – For an octagonal setup, each segment should have the SRA of 45° (±22.5°).

 – Can potentially solve the problem of unstable side image localisation.

 – Mic spacing d
 • *Williams*: 82cm
 • *Lee*: 55cm
Discussion

• Adding vertical dimension to ESMA
 – Cardioid + Figure-of-eight in a vertically coincident fashion.
 • Vertical Mid-Side decoding.
 • Vertical microphone spacing has little effect on LEV (Lee and Gribben JAES 2014).
 • Vertical level panning can provide source imaging with a limited resolution (Barbour 2003, Mironovs and Lee 2016).
 • Vertical time panning is highly unstable (Wallis and Lee JAES 2015).
Conclusions

• ESMAs had a better localisation accuracy than FOA.

• 50cm spacing had the best localisation accuracy, but 30cm or 24cm might still be acceptable.

• Front-Back confusion in binaural reproduction without head rotation.

• Ongoing works
 – Investigations on different attributes.
 – Externalisation, tonal quality, spaciousness, naturalness, etc.
 – Practical evaluations with head tracking.
Thank you for listening.

Hyunkook Lee
h.lee@hud.ac.uk