University of Huddersfield Repository

Rehab, Ibrahim, Tiana, Xiange, Hu, Niaoqing, Yan, Tianxiao, Zhang, Ruiliang, Gu, Fengshou and Ball, Andrew

A study of two bispectral features from envelope signals for bearing fault diagnosis

Original Citation

This version is available at http://eprints.hud.ac.uk/29330/

The University Repository is a digital collection of the research output of the University, available on Open Access. Copyright and Moral Rights for the items on this site are retained by the individual author and/or other copyright owners. Users may access full items free of charge; copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational or not-for-profit purposes without prior permission or charge, provided:

- The authors, title and full bibliographic details is credited in any copy;
- A hyperlink and/or URL is included for the original metadata page; and
- The content is not changed in any way.

For more information, including our policy and submission procedure, please contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/
A study of two bispectral features from envelope signals for bearing fault diagnosis

Ibrahim Rehab, Xiange Tian, Niaoqing Hu, Tianxiao Yan, Ruiliang Zhang, Fengshou Gu and Andrew D. Ball

Centre for Efficiency and Performance Engineering, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK.

School of Mechatronics and Automation, National University of Defense Technology, Hunan, China, 410073.

School of Mechanical Engineering, Taiyuan University of Technology, Shanxi, China, 030024.

Email: Ibrahim.rehab@hud.ac.uk, u1178848@hud.ac.uk, F.Gu@hud.ac.uk, a.ball@hud.ac.uk

Abstract: To accurately detect and diagnose bearing faults, bispectral analysis has received more attention recently because of its unique property of noise reduction and nonlinearity extraction. Particularly this study investigates two typical bispectra: conventional bispectrum (CB) and modulation signal bispectrum (MSB) for suppressing noise influences in envelope signals and hence obtaining more accurate diagnostic features. The first component from the diagonal slice of CB results and that of the sub-diagonal slices of MSB results are taken as the diagnostic features considering effective inclusion of information and easy of computations. Simulative and experimental studies show that both MSB and CB features result in good diagnostic performances but MSB may outperform CB slightly in that it shows smaller variance in attaining the feature and more sensitive to weak fault signatures. This merit of MSB may be due to that the MSB feature has more diagnostic information as it is the combination of first three harmonics, whereas the CB feature is combined from just the first two harmonics.

Keywords: Modulation signal bispectrum, taper roller bearing, fatigue test, condition monitoring, high order statistics.

1.0 Introduction

For an accurate diagnosis of the bearing fault, a number of techniques have been proposed to separate deterministic fault components from noisy bearing vibration. McFadden and Smith [2] reported that the envelope spectrum contain single, discrete components only in the very simplest examples of an axial bearing or a radial bearing with a defect in outer race and it is possible to detect the bearing condition. Randall [3] noted that the discrete random separation (DRS) technique is more successful in separating gear signals from the cyclostationary bearing signals compared to the self-adaptive noise cancellation (SANC) technique. Minimum entropy deconvolution (MED) was first proposed by Wiggins [4] to sharpen the reflections from different subterranean layers in seismic analysis. Spectral kurtosis (SK) provides a means of determining which frequency bands contain a signal of maximum impulsivity. It was first used in the 1980s for detecting impulsive events in sonar signals [5]. Sawalhi et
al. [6] proposed an algorithm using a combination of autoregressive model and MED technique to enhance the defect recognition capability of the SK by sharpening the impulses originating from the defective bearings. However, in these studies, the authors have focused more on tracking the variations of vibration components at the characteristic fault frequency but with limited concentration on noise reduction and utilizing the modulation characteristics in extracting the diagnostic information. Rehab et al [7] applied MSB to extract the fault feature from envelope signals due to its capability to suppress noise for reliable bearing fault severity diagnosis. Tian et al [8] presented a unique method for diagnosing combination faults in planetary gearboxes using a modulation signal bispectrum based sideband estimator (MSB-SE). Furthermore, the authors [9] also proposed a robust MSB detector that allows the achievement of both optimal band selection and envelope analysis, which overcome the filter band optimisation problem in traditional narrowband envelope analysis, compared with optimal envelope analysis using fast Kurtogram.

The purpose of this paper is to accurately estimate the performance of high order spectrum analysis, power spectrum, conventional bispectrum and modulation signal bispectrum based on statistical significance of the estimated spectra in two selected case studies: a simulated time signal where spectral contents is known an then estimate the high order statistics amplitude using Mote Carlo estimator. In the next section vibration signal of taper roller bearing fatigue test were analyzed using aforementioned methods.

2.0 Rolling element bearing vibration signal.

Generally, the vibration signal $x(t)$ from a rolling element bearing with a single-point fault is expressed as [10],

$$x(t) = x_f(t) - x_q(t) - x_{bs}(t) + x_{bs}(t) + n(t)$$ (1)

where $x_f(t)$ is the basic impulse series produced by the fault which impacts repetitiously with another surface in the bearing $x_q(t)$ is the modulation effect due to non-uniform load distribution of the bearings and the cyclic variation of transmission path between the fault impact site and the transducer, and $x_{bs}(t)$ is the bearing induced vibrations. This modulating effect is caused partly by the bearing geometry, but more significantly by the position of the vibration sensor relative to the fault location. It is this element which, if not taken into account, significantly affects the efficacy of the signal model in real-life situations where optimal sensor position is not possible or perhaps undesirable. $x_{bs}(t)$ is the machinery induced vibration. The signal $x(t)$ is an unwanted, structured, and predictable damped harmonic signal which is also considered to be a source of noise. $n(t)$ is a Gaussian white noise sequence with variance σ^2. This is unpredictable measurement noise present in any practical measurement system.
3.0 Signal processing based on MSB

3.1 Power Spectrum (PS)

The discrete Fourier transform (DFT) \(X(f) \) of a discrete time vibration signal \(x(t) \), is defined as [11]:

\[
X(f) = \text{DFT}[x(t)] = \sum_{t=-\infty}^{\infty} x(t)e^{-j2\pi ft} \tag{2}
\]

The power spectrum method is generally used to describe the power distribution of signal in the frequency domain. In the same environment, the amplitude of PS increases with the growth of fault severity. So it is widely applied for fault severity diagnosis. Usually it is calculated using Fourier transform (FT) by:

\[
p(f) = E\{X(f)X^*(f)\} \tag{3}
\]

where, \(X(f) \) and its conjugate \(X^*(f) \) are the Fourier Transform of the sequence \(x(n) \), and \(E\{\} \) is the expectation operation [12].

3.2 Conventional bispectrum (CB)

Form DFT the conventional bispectrum \(B(c_f, f_s) \) can be defined in frequency domain as [13]

\[
B(c_f, f_s) = E\{X(c_f)x(f_s)X^*(c_f + f_s)\} \tag{4}
\]

where, \(X^*(f) \) is the complex conjugate of \(X(f) \) and \(E\{\} \) is the statistical expectation operation. \(c_f, f_s \) and \(c_f + f_s \) indicates three individual frequency components achieved from Fourier series integral.

On the other hand, if the three spectral components: \(f_c, f_s \) and \(f_c + f_s \) are nonlinearly coupled to each other, the total phase of the three components will not be random at all, even though each of the individual phases are random, in particular, the phases have the following relationship:

\[
\phi(f_c) + \phi(f_s) = \phi(f_c + f_s) \tag{5}
\]

Consequently, the statistical averaging will not lead to a zero value in the bispectrum. This nonlinear coupling is indicated by a peak in the bispectrum at the bifrequency \(B(c_f, f_s) \). To measure the degree of coupling between coupled components, a normalised form of the bispectrum or bicoherence is usually used and defined as.

\[
b^{SE}(c_f, f_s) = \frac{\|B(c_f, f_s)\|^2}{E\{X(c_f)X(f_s)\}E\{X(c_f + f_s)\}} \tag{6}
\]

The bicoherence is independent of the amplitude of the triple product of the DFT amplitudes and its values are bounded between 0 and 1. The bicoherence is close to 1 if there are nonlinear interactions among frequency combinations, \(f_c, f_s \) and \(f_c + f_s \).

On the other hand, a value of near 0 implies an absence of interactions between the components. The possible amplitudes in the latter case may suggest that the
components are originated independently from a system. Therefore, based on the amplitude of bicoherence the nonlinear interactions can be detected and the interaction degrees can be also measured between the coupling components.

3.3 Modulation signal bispectrum (MSB)

MSB has the capability to detect nonlinear components and suppress random noise by detecting phase coupling in modulation signal. The definition of MSB can be described by Equation (7), \[12, 14\]

$$
B_{MS}(f_c, f_x) = E\left(X(f_c + f_x)X^*(f_c - f_x)X^*(f_c)X^*(f_c) \right)
$$

(7)

where, \(X^*(f)\) is the complex conjugate of \(X(f)\) and \(E\{\cdot\}\) is the statistical expectation operation. \(f_c\), \(f_x\) and \(f_c + f_x\) indicates three individual frequency components achieved from Fourier series integral. The magnitude and phase of MSB can be expressed as Equations (8) and (9).

$$
A_{MS}(f_c, f_x) = E\left(\left| X(f_c + f_x) \right| \left| X(f_c - f_x) \right| \left| X^*(f_c) \right| \left| X^*(f_c) \right| \right)
$$

(8)

$$
\phi_{MS}(f_c, f_x) = \phi(f_c + f_x) + \phi(f_c - f_x) - \left| \phi(f_c) \right| - \left| \phi(f_c) \right|
$$

(9)

It takes into account both \((f_c - f_x)\) and \((f_c + f_x)\) simultaneously in Equation (8) for measuring the nonlinear effects of modulation signals. If \((f_c - f_x)\) and \((f_c + f_x)\) are both due to the nonlinear effect between \((f_c - f_x)\) and \((f_c + f_x)\), there will be a bispectral peak at bifrequency \(B_{ms}(f_c, f_x)\). On the other hand, if these components are not coupled but have random distribution the magnitude of MSB will be close to nil. In this way it allows the wideband noise in bearing vibration signals to be suppressed effectively so that the discrete components can be obtained more accurately.

To measure the degree of coupling between three components, a Modulation Signal Bicoherence (MSBc) can be used and calculated by Equation (10).

$$
b_{MS}(f_c, f_x) = \frac{B_{MS}(f_c, f_x)}{E\left(\left| X(f_c)X^*(f_c)X^*(f_c)X^*(f_c) \right| \right)\left| E\left(X(f_c + f_x)X(f_c - f_x) \right) \right|}
$$

(10)

Based on MSB property of highlighting modulation effect, a MSB detector can be developed. Firstly, MSB amplitude array is averaged along the \(f_x\) direction according to Equation (11) to obtain an average spectrum at different \(f_c\).

$$
A_i = \frac{1}{N} \sum_{j} A_{ij}
$$

(11)

where \(i\) and \(j\) is the index of \(f_c\) and \(f_x\) respectively. Then the carrier frequencies which have high amplitudes are selected as the candidates for feature extraction. Finally, the selected \(f_c\) slices are farther averaged to get the MSB detector as expressed by Equation (12).

$$
MSBdt = \frac{1}{m} \sum_{i=1}^{k_c} A_i
$$

(12)

where \(j = k_1, \ldots, k_m\) is the slice number that selected for calculating MSB detector.
4.0 Simulation Study

To evaluate the performance of MSB, CB and PS, in estimating the signal components contaminated with high level of white noise, a harmonic signal was generated with three components at frequencies of 20Hz, 40HZ and 60Hz, pulsing a white noise for a SNR as low as -5dB. Figure 1 shows the results of MSB and CB for the simulated signal. It can be seen that the MSB results have a clear distinct peak at the bifrequency $B_{BMS}(f_r, 2f_r)$, while the CB results also show a clear distinct peak at bifrequency $B_{BMS}(f_r, f_r)$. Moreover, PS showed a clear peak at $B_{BMS}(0, f_r)$.

![Figure 1. MSB and CB of simulated signals](image)

Twenty Monte Carlo tests were performed, with the feature magnitude with averages being calculated for PS, CB and MSB along the diagonal slices. The signal features were hence extracts using the following magnitude features respectively.

\[
D_{ps} = |B_{BMS}(0, f_r)|^2 |B_{BMS}(0, 2f_r)|^2
\]

\[
D_{cb} = |B_{BMS}(f_r, f_r)|^2
\]

\[
D_{ms} = |B_{BMS}(f_r, 2f_r)|^2
\]

where f_r is the characteristic frequency. These components are usually more significant in an envelope signal and provide sufficient diagnostic information for both the fault components and their severity. Figure 2 illustrates the feature harmonic magnitude of the aforementioned simulated signal. Averages of PS, CB and MSB are shown in blue dotted lines, while the expected magnitude is represented by solid red line. The error has been calculated based on the difference between the mean value of each harmonics magnitude and the expected value. The MSB results exhibit a lower deviation relative to the CB and PS results.
To evaluate the variability of the averaged tests, the average values of MSB, CB and PS were considered as an estimator while the standard deviations were calculated based on the calculated and expected value of the simulated signal. Figure 3 illustrates the estimation of variability in the averages of MSB, CB and PS results. The MSB
method presents a clearer convergence than CB and PS for both the Estimator and the SD calculation

5.0 Experimental verification

5.1 Test rig facility and test procedure

Bearing vibration data was collected from an in house gearbox test rig as shown in Figure 5 (a). The maximum torque of gearbox was 1372 Nm, the rotational speed of the large gear was 1122 rpm and the pinion gear speed was 1400 rpm. Figure 4 (b) shows the position of bearing studied in this experiment. It was mounted on the pinion gear whose rotation frequency is 23.33Hz. An accelerometer mounted in the outer surface of the gearbox on the vertical direction.

Figure 4. Experimental set-up, (a) test rig components, (b) bearing position and (c) bearing type

In the experiment, the gearbox operated at a constant speed and under constant load conditions. The vibration was measured by a general purpose accelerometer with a sensitivity of 31.9 mv/(m/s²) and a frequency response range of 1Hz to 10kHz. All the data were logged by a multiple-channel, high-speed data acquisition system at a sampling rate 25.6 kHz and 16-bit resolution. The geometric dimensions of the tapered roller bearings are listed in Table 1, while the bearing defect frequencies are given in and Table 2.

<table>
<thead>
<tr>
<th>Table 1. Specification of tapered roller bearing type 32212</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
</tr>
<tr>
<td>Outer diameter</td>
</tr>
<tr>
<td>Inner diameter</td>
</tr>
<tr>
<td>Pitch diameter</td>
</tr>
<tr>
<td>Roller diameter</td>
</tr>
<tr>
<td>Roller number</td>
</tr>
<tr>
<td>Contact Angle</td>
</tr>
</tbody>
</table>
Table 2. Fault characteristic frequencies

<table>
<thead>
<tr>
<th>Fault type</th>
<th>Defect frequency (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inner race</td>
<td>254.39</td>
</tr>
<tr>
<td>Outer race</td>
<td>188.88</td>
</tr>
<tr>
<td>Rolling element</td>
<td>74.61</td>
</tr>
<tr>
<td>Cage</td>
<td>9.94</td>
</tr>
</tbody>
</table>

The tests were carried out for 11h13min, at the beginning the data were collected once every 9min and data duration of 1min. during the test an abnormal sound appeared at 60 time index of the data collection then the data collection intervals have been reduced to 4min. during the test the RMS and kurtosis have calculated to monitor the change of the vibration signal.

6.0 Signal processing results and discussion

6.1 Online results

Figure 6 shows the RMS and kurtosis of the collected data, which were obtained online. the RMS values increase gradually for the initial 50 test time index they then increase rapidly as a result of increasing surface fatigue leading to increased vibration. The kurtosis values increase gradually for the first 60 test time index and then more rapidly up to 72 test time index. Beyond this the kurtosis decreases as result of the increase in surface fatigue. At that point the test was stopped because of the high levels of vibration. Subsequent offline inspection indicated that the bearing was heavily damaged as shown in Figure 5.
6.2 MSB and CB results

To investigate the early signs of bearing defects and to evaluate the performance of the two bispecta analysis techniques, a vibration signal processing procedure was employed. This is illustrated in Figure 7. Firstly, the envelope of vibration signal was calculated. Then, CB and MSB analysis were carried out to enhance the nonlinear components in the envelope signal. The next step was to extract the features using the first component from the diagonal slice of CB results and that of the sub-diagonal slices of MSB results. Finally, the fault type and severity were examined using these features.

The MSB and CB results from the bearing’s vibration signal at time index 1 are illustrated in Figure 8. It can be seen that at the beginning of the test the bearing has a fault on both the inner race and the cage. The signal magnitude at the inner race fault frequency f_i is clearly visible using MSB, as well as the both sidebands, but nothing can be seen from CB. For the cage defect the second harmonic of the cage frequency $2 \cdot f_c$ is clearly visible from both MSB and CB, with CB producing the higher magnitude.

Figure 9 shows the MSB and CB analysis of the bearing vibration data for test time index 74. Increased magnitude of inner race fault and cage fault can be seen in comparison with Figure 8 based on the MSB detector. Meanwhile, for the CB detector the magnitude of the cage defect at the second harmonic is close to that observed in Figure 8. Moreover, the magnitude of the inner race defect appears to be high when
using CB detector. Thus, the MSB exhibits a good noise reduction performance and can therefore be used to identify the fault type more accurately than CB.

Figure 8. MSB and CB of the time index 1

Figure 9. MSB and CB of the time index 74
7.0 Conclusion

The study shows that CM and MSB allows significant suppression of noise content in an envelope signal and leads to more accurate diagnostic features. In particular, the CB and MCB directly combine the magnitude information of the first a few harmonics which are usually more significant in an envelope signal and provide sufficient diagnostic information for both the fault components and severity. Monte Carlo tests show that the MSB features exhibit less deviation and lower variation between different tests, compared with that of PS and CB, showing that MSB performs better in extracting the diagnostic information as its first component combines the first three harmonics in the original spectrum and has higher SNR compared with that from CB and PS which includes only the first two harmonics. As a results MSB provide more sensitive detection of the incipient faults occurring the tapper bearing of the gearbox.

References

<table>
<thead>
<tr>
<th>Authors’ Biography</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ibrahim Rehab</td>
</tr>
<tr>
<td>Xiange Tian</td>
</tr>
<tr>
<td>Fengshou Gu</td>
</tr>
<tr>
<td>Andrew D. Ball</td>
</tr>
</tbody>
</table>