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Least-squares integration (LSI) and radial basis function integration (RBFI) methods are widely used to reconstruct 
specular surface shape from gradient data in a deflectometry measurement. The traditional LSI method requires 
gradient data having a rectangular grid, and RBFI method is effective at handling small size measurement data set. 
Practically, the amount of gradient data is rather large and data grids are in quadrilateral shapes. With this in mind, 
a new LSI method is proposed to integrate gradient data, which is based on an approximation that normal vector of 
one point is perpendicular to the vector connecting points at either side. A small measurement data set integrated 
by RBFI method is employed as a supplementary constraint of the proposed method. Simulation and experimental 
results show that this proposed method is effective and accurate at handling deflectometry measurement. © 2015 
Optical Society of America 
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1. Introduction 
In gradient measurement techniques, only normal fields or gradient 
data are acquired. To obtain a quality surface shape from these 
measurement data, an accurate 2D integration procedure is necessary. 
Currently, least-squares integration (LSI) method [1-4] and radial basis 
function integration (RBFI) method [5, 6] are widely used to reconstruct 
specular surface shape  when gradient data is obtained by 
deflectometry, and many attempts at improvement have been 
researched. For example, G. Li [7] proposed a least-squares based 
integration method with high order truncation errors to reconstruct 
surfaces in the Southwell geometry, which is called high-order finite-
difference-based least-squares integration method (HFLI) in the paper 
[3]. H. Ren [4] introduced an easy implementation integration method 
(EI-HFLI) based on HFLI to reconstruct gradient data locating at 
arbitrary domains. L. Huang [8] described an integration method by 
splitting a large size dataset into subsets, which are integrated by the 
RBFI method and then are stitched together with the least-squares 
method. Though these 2D integration methods can improve the 
reconstruction accuracy in some aspects, they still have some 
disadvantages. L. Huang gave a comparison of three of these 2D 
integration methods [3] , and pointed out that both the traditional LSI 
method and the cosine transform integration (CTI) method are easy and 
straightforward for dealing with large data sets but will introduce 
obvious shape errors if the gradient data does not have rectangular 
grids, and the RBFI method can handle gradient data in irregular grids 
but is mainly effective at handling small data sets. Practically, in a 

deflectometry measurement, the amount of gradient data is rather 
large, and data grids exist in quadrilateral or irregular shapes due to lens 
distortion and detection angle, as shown in Fig 1. This means that the 
traditional LSI method and RBFI method are not effective at directly 
handling this kind of measurement data. Though these measurement 
data can be interpolated into rectangular format [4] and then integrated 
via  traditional LSI methods, this implementation is not so convenient.  

With this in mind, we propose a new LSI method accounting for this 
disadvantage, which is based on an assumption that a regular surface at 
a given point can be approximated using Taylor’s theorem by a 
polynomial. On the basis of this, within a tiny region around this point, 
the normal vector of this point can be seen as perpendicular to the 
vector connecting points at either side, as shown in Fig 2(a) and as 
described later. At the same time, a small measurement data sets 
integrated by the RBFI method is employed as a supplementary 
constraint of the new LSI method. In this paper, we call this method LSI-
T, since this method is deduced from Taylor’s Theorem. A detailed 
description is given in the next sections.  

2. Principle of LSI-T method 

2.1 Principle of deflectometry 
Figure 1(a) exhibits a schematic illustration of deflectometry, where 
sinusoidal fringe patterns displayed on a LCD screen or ground glass are 
captured by a CCD camera after reflection by a specular surface.  



  
 

Fig. 1(a) Principle of deflectometry, (b) rectangular grids (red) becoming 
quadrilateral grids (green). 

The captured patterns are deformed corresponding to the shape and 
curvature of the measured specular surface. Through analyzing the 
deformation, normal fields of this surface are obtained, which are then 
integrated to obtain the surface shape by related reconstruction 
algorithms. In a practical deflectometry system, lens distortion of a CCD 
imaging system and the specific perspective view of the CCD image used 
to observe the specimen will introduce additional dimensional changes 
of the sensor grids, which results in the normal vectors being located on 
the quadrilateral grids instead on the rectangular grids, as shown in Fig. 
1(b). In this case, traditional LSI method cannot directly handle 
deflectometry measurement.  

2.2 Height relation analysis from Taylor’s theorem 
We assume the measured regular surface can be expressed by an 
explicit function ( , )z f x y= , and this function has at least two times 
differentiable at a given point. Then the surface at this given point can be 
approximated using Taylor’s theorem [9] in two variables by a 
polynomial.  
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Where 1x∆ and 1y∆ are small real increments, approximation error

2 1 1( , )R x y∆ ∆ goes to zero faster than 2 2
1 1x y∆ + ∆ , i.e. faster than the 

smallest term in the approximation. Then Eq. (1) can be re-written in a 
more compact way using the vector ( , )f x y∇ and the matrix of second 
derivatives 2 ( , )D f x y as  
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Where ⋅ denotes the scalar product. On the basis of the 
approximation function of Eq. (2), the relation between neighboring 
points and corresponding normal vectors can be deduced.  

Assuming , , ,( , , )m n m n m nx y z are world coordinates of a given point of 
the measured surface, and the first and second differentiable of the 
surface at this point are ( , )f x y∇ and 2 ( , )D f x y . Within a tiny region 
around this given surface point, assuming two adjacent points 

, 1 , 1 , 1( , , )m n m n m nx y z+ + + and , 1 , 1 , 1( , , )m n m n m nx y z− − −
are each located at either 

side of point ,( , , )m n m nx y z . According to Eq. (2), the relation between 
two neighboring points can be depicted as  
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Where 1x∆ and 2x∆ are the increment of ,m nx  along , 1m nx +  and

, 1m nx − , respectively. Similar with 1y∆  and 2y∆  along , 1m ny +  and

, 1m ny − .  

 

Fig. 2 Principle of LSI-T method in irregular grids 

Subtracting the second equation of Eq. (3) from the first one, the 
relation between two separated points can be expressed as  
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Comparing Eq. (3) with Eq. (4), we can find that the second-order 
element of Eq. (4) is far smaller than the second-order element of Eq. 
(3). If the height relation is approximately expressed only by the first 
differentiable, Eq. (4) is more accurate than Eq. (3). In addition, the 
second-order element of Eq. (4) goes to zero faster than the first 
element. Thereby, Eq. (4) can be approximated as  
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Where xf and yf  are the first derivative of the surface. Similar 
relation between another two points 1, 1, 1,( , , )m n m n m nx y z+ + + and 

1, 1, 1,( , , )m n m n m nx y z− − −
locating at either side of ,( , , )m n m nx y z  can be 

deduced as 
1, 1, 1, 1, 1, 1,( ) ( )m n m n x m n m n y m n m nz z f x x f y y+ − + − + −− ≈ − + −         (6) 

If a regular surface can be expressed by an explicit function, then the 
normal vector of one surface point can be depicted as , , 1x yf f − . 

Therefore, it can be concluded from Eq. (5) and (6) that normal vector 
of one point can be seen as perpendicular to the vector connecting 
points at either side, as shown in Fig. 2(a). Accordingly, the height 
relation between two separated points can be acquired as  
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A visual description of Eq. (7) is shown in Fig. 2(b). Equation (7) can 
be written in terms of matrices as  
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Fig. 3 A small data set acting as supplementary constraints  
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Equation (8) can be resolved by the Levenberg-Marquardt algorithm.  
 As seen from the aforementioned analysis, the expression in Eq. (7) 

does not require the measurement data to have South-well grids or 
rectangular formats. Thus, this integration method can deal with large 
measurement data with irregular grid shapes. However, Eq. (7) only 
gives a relationship between one point and every other data point.  
Therefore, a supplementary constraint between two neighboring points 
is needed to compensate the Eq. (8).  

2.3 Supplementary constraint 
Figure 2(b) shows the relation between one point and every other data 
point can be established via Eq. (7). If there are another two equations, 
one to establish the connection between two neighboring point along 
x axis and another one to build up a link between two neighboring 

points along y axis, then a relationship exists to link all the points 
together, as shown in Fig. 3(b). For constructing these kind of equations, 
the RBFI method is employed.   

As shown in Fig. 3(a), a small data set less than 40 (pixel)×40 (pixel) 
×2 (direction) but more than 4 (pixel)×4 (pixel) ×2 (direction) marked 
in brown is selected from the measurement, which is reconstructed by 
the RBFI method [5]. The principle of RBFI method and reconstruction 
process can be seen in [5]. Here we assume the selected data have a size 
of 1 1 2M N× × , and the reconstructed height data within this region is

,'m nz . Then the relationship between neighboring points within the 
selected region can be constructed as   
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Where , jiz is the height in the world coordinate system and , j'iz is 
the reconstructed height data by the RBFI method. The above equation 
is rewritten in matrices as  
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Combing Eq. (8) and Eq. (12), the new LSI method (LSI-T) is 
expressed as  
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Thus, when the normal data of the detected surface and 
corresponding x and y position are known or have been calculated by 
other methods, the height data can be calculated via Eq. (15) by the 
Levenberg-Marquardt algorithm whether the data is located on a 
regular or irregular rectangular grids.  

3. Simulation  
To investigate the feasibility of the LSI-T method and to verify its 
accuracy in comparison to the traditional LSI method, numerical 
simulations for data located at rectangular grids and quadrilateral grids 
are performed via LSI-T, HFLI and EI-HFLI methods.  The HFLI method 
represents one typical LSI method to reconstruct the measurement data 
having rectangular grids. When the data has irregular grids shape, the 
EI-HFLI method will interpolate the measurement data first to format 
them into rectangular grids data, and then reconstruct them.   

3.1 Simulation on rectangular grids  
A concave spherical surface is simulated as shown in Eq. (16). The 
circular measurement range of this surface is -25 mm to 25 mm for 
both x and y direction, and the points’ interval is 50 mµ , as shown in 
Fig. 4.  

2 210000z x y= − − −   (16) 

 
                          



 
Fig. 4 Simulated concave spherical surface 

 
Fig. 5 RMS value of reconstruction errors when data are in rectangular grids 

The normal vector of this surface at each point can be calculated by 
differentiating the simulated function. To investigate the performance 
of these integration methods under noise condition, random noises 
with noise to signal ratio from 0% to 2% are added to the gradient data. 
When the data is distributed uniformly on the rectangular grids, Fig. 5 
shows how the standard deviation (Std.) of the errors changes based on 
different noises.  As depicted in Fig. 5, all the three methods can achieve 
better than sub-micrometer results, though the LSI-T method exhibits 
an inferior result compared to the EI-HFLI and HFLI, which may be 
result from the exclusion of the second-order element of Eq. (4). The 
effect of the high-order element of Taylor’s expansion on the 
reconstruction accuracy using the LSI-T method will be analyzed in 
another paper.  

3.2 Simulation on quadrilateral grids  
For verifying the performances of the integration method under non-
rectangular grid conditions, a similar simulation is carried out. Here the 
concave surface described using Eq. (16) is assumed to be measured by 
deflectometry, as shown in Fig. (6). The CCD camera with lens-distortion 
parameters [-0.1196 0.3236 0 0] observes the detected surface with a 
given perspective.  Due to the lens distortion and perspective view of the 
CCD camera, the captured data is not on a rectangular grid.  

Similarly, random noise with noise to signal ratio from 0% to 2% are 
added to the gradient data. The RMS value of standard deviation of the 
errors is shown in Fig. 7, where the HFLI method gives the poorest 
reconstruction quality with RMS value around 0.4615 mm, while the 
LSI-T and EI-HFLI methods more give satisfactory results. When the 
noise to signal ratio is more than 0.5%, the EI-HFLI method has a better 
reconstruction accuracy than LSI-T, which also may be the influence of 
the exclusion of the high-order element of Eq. (4). When the noise is less 
than 0.5%, the LSI-T method gives the best results. In the EI-HFLI 
method, an interpolation process is used to transfer the irregular grid 
data into rectangular grid format. In addition, comparing the 
reconstruction error of Fig. 5 and Fig. 7, it can be concluded that grids  

 
Fig. 6 Concave surface is simulated in a deflectometry system 

 
Fig. 7 RMS value of reconstruction errors when data are in quadrilateral 

grids (red and blue data corresponds to y axis on the left, green data 
corresponds to right label) 

format has nearly no influence on the reconstruction result of EI-HFLI 
method because of the interpolation operation but has a strong affect 
for the HFLI method. For the LSI-T method, it is also seldom affected by 
grid format and can achieve a high-accuracy reconstruction.  

4. Experiments  
Measurements have been conducted to investigate the feasibility and 
verify the reconstruction accuracy of the LSI-T method in a stereo-
deflectometry system. A 2 inch optical flat surface with flatness 

/10λ≤ and a 2 inch concave surface with 0.0
0.276.2+− mm radius are 

measured.  
When the flat surface is inspected by stereo deflectometry, Fig. 8 

shows the calculated normal vectors distribution and corresponding 
errors along x direction for the 86% range of the whole surface. The 
root mean squares (RMS) value of the gradients along x is 
approximately 53.75 10−× radian. The gradients along the y direction 
and the associated error distribution are shown in Fig. 9, and RMS value 
of the errors is 59.26 10−× radian.  In order to make a comparison 
between the proposed method and the LSI method, the calculated 
gradients are reconstructed by the EI-HFLI and LSI-T method, 
respectively. Before the gradients of Fig. 8 and Fig. 9 are integrated by 
the EI-HFLI method, the data are transformed into rectangular grids 
with spacing of 56.1 µm along the x  axis and 56.2 µm along the y axis 
by interpolation. Then the formatted gradients are reconstructed by the 
EI-HFLI method as shown in Fig. 10(a). Fig. 10(b) shows the error 
distribution, with an RMS value of approximately 155.05 nm. When 
applying the LSI-T method, a small data set with 5 (pixel) ×5 (pixel) ×2 
(direction) is selected to be reconstructed by RBFI method as the  



 
Fig. 8 Normal vector distribution along x direction (a) and its errors (b) 

 
Fig. 9 Normal vector distribution along y direction (a) and its errors (b) 

 
Fig. 10 Reconstructed surface using RBFI method within selected region 

 
Fig. 11 Reconstructed surface by LSI-T (a) and its error distribution (b) 

 
 
 

 



 
Fig. 12 Reconstructed concave surface with LSI-T 

 
Fig. 13 Reconstructed concave surface using EI-HFLI 

 
Fig 14 Shape difference between reconstructed surface by LSI-T and EI-

HFLI 

supplementary constraints, as shown in Fig. 11(a). On the basis of the 
calculated gradients data and the constraints data, the reconstructed 
surface using the LSI-T method is shown in Fig. 11(b), and its error 
distribution is as Fig. 11(c). The RMS value of which is approximately 
152.9 nm . As seen from the error distribution in Fig. 11(c) and Fig. 
10(b), it can be deduced that the LSI-T method can be used to 
reconstruct the gradients directly and have a comparable 
reconstruction results with the EI-HFLI method.  

The same procedure is applied to measure the 2 inch concave 
surface.  Fig. 12 shows the reconstructed surface using the LSI-T 
method, and Fig. 13 depicts the integrated surface shape using the EI-
HFLI method. The shape difference between the two reconstructed 
surfaces is shown in Fig. 14, the RMS value of which is 119.97 nm . The 
data in Fig. 14 demonstrates the proposed method is feasible and 
accurate.  In addition, if the reconstructed surface is fitted using a 

spherical function, the radius of the surface in Fig. 12 is 76.3153 mm, and 
the surface radius in Fig. 13 is 76.3162 mm.  This small difference in 
radius of 0.9 µm illustrates the comparability of the proposed method to 
that of the EI-HFLI method.  

5. Conclusions  
For some gradient measurement methods, the captured gradient data 
are not uniformly distributed on a rectangular grid because of lens 
distortion or other reasons. In this case, the traditional LSI method or 
RBFI method are not direct or convenient to reconstruct the gradients. 
This paper proposes a new LSI method based on the approximation that 
the normal vector of a point is perpendicular to the vector connecting 
points at either side. Simulation shows that the grid format rarely has an 
effect on the reconstruction accuracy for the LSI-T method, but has a 
strong influence on the LSI methods. Though the EI-HFLI method can be 
used to integrate the gradients data by formatting them into rectangular 
grids, this method is not so direct and convenient. Experiments 
demonstrate that LSI-T is effective at handling data from gradient 
measurement techniques when data grids are not uniform and is 
comparable with the EI-HFLI method.  
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